+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Конденсатор зачем он нужен. Что такое конденсатор и для чего он нужен

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой — станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S — площадь пластин в квадратных метрах, d — расстояние между пластинами в метрах, C — емкость в фарадах, ε — диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC — цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки — тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда — разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор — ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе — изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье — .

В электротехнике и радиоэлектронике широкое распространение получили различные виды конденсаторов. Каждый из них представляет собой устройство с двумя полюсами, имеющее определенное или переменное значение емкости и очень малую проводимость. Самый простой вариант конденсатора включает в себя два электрода в виде пластин или обкладок, где накапливаются разряды с противоположным значением. Чтобы избежать замыкания, они разделяются между собой тонкими .

Стандартный выпускаемый конденсатор состоит из электродов в виде многослойного рулона лент, разделяемых диэлектриком. Конфигурация конденсатора, чаще всего, представляет собой параллелепипед или цилиндр.

Как работает конденсатор

В сравнении с обычной батареей, конденсатор имеет существенные отличия. У него совершенно другая максимальная емкость, а также скорость зарядки и разрядки.

При подключении к источнику питания в самом начале ток зарядки будет иметь максимальное значение. Однако, по мере того, как заряд накапливается, наблюдается постепенное уменьшение тока, который полностью пропадает при полном заряде. Напряжение во время зарядки, наоборот, увеличивается и по окончании процесса становится равным напряжению в источнике питания.

Обозначение конденсаторов на схеме.

В случае подключения нагрузки при отключенном источнике питания, конденсатор сам становится источником тока. В этот момент, между пластинами происходит образование цепи. Через нагрузку происходит движение отрицательно заряженных электронов к ионам, обладающим положительным зарядом. В данном случае, вступает в силу закон притяжения разноименных зарядов. При прохождении тока через нагрузку происходит постепенная потеря заряда и, в конечном итоге, разрядка конденсатора. Одновременно, снижается напряжение и ток. Процесс разрядки считается завершенным, когда напряжение на электродах будет равным нулю.

Время зарядки полностью зависит от величины , а время его разрядки находится в зависимости от величины подключаемой нагрузки.

Применение конденсаторов

Конденсаторы, так же как транзисторы и , нашли широкое применение для электронных и радиотехнических схем. В электрических цепях они играют роль емкостного сопротивления. Благодаря способности к быстрой разрядке и созданию импульсов, они применяются в конструкциях фотовспышек, лазерах и ускорителях электромагнитного типа.

Очень эффективны конденсаторы при переключении электродвигателя с 380 на 220 вольт. Во время переключения к третьему выводу, происходит сдвиг фазы на 90 градусов. Таким образом, появляется возможность подключения трехфазного двигателя в однофазную сеть.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Электрический конденсатор — это устройство, которое может накапливать заряд и энергию электрического поля. В основном он состоит из пары проводников (обкладок), разделенных слоем диэлектрика. Толщина диэлектрика всегда намного меньше, чем размер обкладок. На электрических схемах замещения конденсатор обозначается 2-мя вертикальными параллельными отрезками (II).

Основные величины и единицы измерения

Существует несколько основных величин, определяющих конденсатор. Одна из них — это его емкость (латинская буква С), а вторая — рабочее напряжение (латинская U). Электроемкость (или же просто емкость) в системе СИ измеряется в фарадах (Ф). Причем как единица емкости 1 фарад — это очень много — на практике почти не применяется. Например, электрический заряд планеты Земля составляет всего 710 микрофарад. Поэтому в большинстве случаев из-меряется в производных от фарада величинах: в пикофарадах (пФ) при очень маленьком значении емкости (1 пФ=1/10 6 мкФ), в микрофарадах (мкФ) при достаточно большом ее значении (1 мкФ = 1/10 6 Ф). Для того чтобы рассчитать электроемкость, необходимо разделить величину заряда, накопленного между обкладками, на модуль разницы потенциалов между ними (напряжение на конденсаторе). Заряд конденсатора в данном случае — это заряд, накапливающийся на одной из обкладок рассматриваемого устройства. На 2-х проводниках устройства они одинаковы по модулю, но отличаются по знаку, поэтому сумма их всегда равняется нулю. Заряд конденсатора измеряется в кулонах (Кл), а обозначается буквой Q.

Напряжение на электроприборе

Одним из самых важных параметров рассматриваемого нами устройства является пробивное напряжение — разность значений потенциалов двух проводников конденсатора, приводящая к электрическому пробою слоя диэлектрика. Максимальное напряжение, при котором не происходит пробоя устройства, определяется формой проводников, свойствами диэлектрика и его толщиной. Условия работы, при которых напряжение на обкладках электроприбора близко к пробивному, недопустимы. Нормальное рабочее напряжение на конденсаторе меньше пробивного в несколько раз (в два-три раза). Поэтому при выборе следует обратить внимание на номинальное напряжение и емкость. В большинстве случаев значение этих величин указывается на самом устройстве или в паспорте. Включение конденсатора в сеть на напряжение, превышающее номинальное, грозит его пробоем, а отклонение значения емкости от номинального может привести к выбросу в сеть высших гармоник и перегреву устройства.

Внешний вид конденсаторов

Конструкция конденсато-ров может быть самой разнообразной. Она зависит от значения электроемкости устройства и его назначения. На параметры рассматриваемого устройства не должны влиять внешние факторы, поэтому обкладки имеют такую форму, при которой электрическое поле, созданное электрическими зарядами, сосредотачивается в небольшом зазоре между проводниками конденсатора. Поэтому они могут состоять из двух концентрических сфер, двух плоских пластин или двух коаксиальных цилиндров. Следовательно, конденсаторы могут быть цилиндрическими, сферическими и плоскими в зависимости от формы проводников.

Постоянные конденсаторы

По характеру изменения электроёмкости конденсаторы делят на устройства с постоянной, переменной ёмкостью или подстроечные. Разберем подробнее каждый из упомянутых типов. Приборы, чья ёмкость не меняется в процессе работы, то есть она является постоянной (значение емкости все-таки может колебаться в допустимых пределах в зависимости от температуры),- это постоянные конденсаторы. Существуют также электроприборы, меняющие свою электроемкость в процессе работы, они называются переменными.

От чего зависит С в конденсаторе

Электроемкость зависит от площади поверхности его проводников и расстояния между ними. Есть несколько способов изменения этих параметров. Рассмотрим конденсатор, который состоит из двух видов пластин: подвижных и неподвижных. Подвижные пластины перемещаются относительно неподвижных, в результате чего изменяется электроемкость конденсатора. Переменные аналоги используются для настроек аналоговых устройств. Причем емкость можно изменять в процессе работы. Подстроечные конденсаторы в большинстве случаев используют для настройки заводской аппаратуры, например для подбора емкости эмпирическим путем при невозможности расчета.

Конденсатор в цепи

Рассматриваемый прибор в цепи постоянного тока проводит ток только в момент включения его в сеть (при этом происходит заряд или перезаряд устройства до напряжения источника). Как только конденсатор полностью заряжается, ток через него не идет. При включении устройства в цепь с переменным током процессы разрядки и зарядки его чередуются друг с другом. Период их чередования равен приложенного синусоидального напряжения.

Характеристики конденсаторов

Конденсатор в зависимости от состояния электролита и материала, из которого он состоит, может быть сухим, жидкостным, оксидно-полупроводниковым, оксидно-металлическим. Жидкостные конденсаторы хорошо охлаждаются, эти устройства могут работать при значительных нагрузках и обладают таким важным свойством, как самовосстановление диэлектрика при пробое. У рассматриваемых электрических устройств сухого типа достаточно простая конструкция, немного меньше потери напряжения и ток утечки. На данный момент именно сухие приборы пользуются наибольшей популярностью. Основным достоинством электролитных конденсаторов являются дешевизна, компактные габариты и большая электроемкость. Оксидные аналоги — полярные (неверное подключение приводит к пробою).

Как подключается

Подключение конденсатора в цепь с постоянным током происходит следующим образом: плюс (анод) источника тока соединяется с электродом, который покрыт окисной пленкой. В случае несоблюдения этого требования может произойти Именно по этой причине жидкостные конденсаторы нужно подключать в цепь с переменным источником тока, соединяя встречно последовательно две одинаковые секции. Или нанести оксидный слой на оба электрода. Таким образом, получается неполярный электроприбор, работающий в сетях как с постоянным, так и с Но и в том и в другом случаях результирующая емкость становится в два раза меньше. Униполярные электрические конденсаторы обладают значительными размерами, зато могут включаться в цепи с переменным током.

Основное применение конденсаторов

Слово «конденсатор» можно услышать от работников различных промышленных предприятий и проектных институтов. Разобравшись с принципом работы, характеристиками и физическими процессами, выясним, зачем нужны конденсаторы, например, в системах энергоснабжения? В этих системах батареи широко применяют при строительстве и реконструкции на промышленных предприятиях для компенсации реактивной мощности КРМ (разгрузки сети от нежелательных ее перетоков), что позволяет уменьшить расходы на электроэнергию, сэкономить на кабельной продукции и доставить потребителю электроэнергию лучшего качества. Оптимальный выбор мощности, способа и места подключения источников (Q) в сетях электроэнергетических систем (ЭЭС) оказывает существенное влияние на экономические и технические показатели эффективности работы ЭЭС. Существуют два типа КРМ: поперечная и продольная. При поперечной компенсации батареи конденсаторов подключаются на шины подстанции параллельно нагрузке и называются шунтовыми (ШБК). При продольной компенсации батареи включают в рассечку ЛЭП и называют УПК (устройства продольной компенсации). Батареи состоят из отдельных приборов, которые могут соединяться различными способами: конденсаторы последовательного подключения или параллельного. При увеличении количества последовательно включенных устройств увеличивается напряжение. УПК также используются для выравнивания нагрузок по фазам, повышения производительности и эффективности дуговых и рудотермических печей (при включении УПК через специальные трансформаторы).

В бардачке каждого автолюбителя можно найти пару-тройку этих электроприборов. Зачем нужны конденсаторы в автомобиле? Там они используются в усиливающей аппаратуре акустических систем для качественного воспроизведения звука.

Практически во всех электронных устройствах, от самых простых до высокотехнологичных, таких как материнские платы компьютеров, можно встретить один неизменно присутствующий элемент, являющийся пассивным компонентом. Но к сожалению, мало кто знает как устроен и для чего нужен конденсатор, и какие виды этого накопителя бывают.

Просто о сложном

Итак, это небольшое устройство для накопления электрического поля или заряда похоже на обычную банку, ту, в которой маринуют помидоры или хранят муку. Она точно так же в себе накапливает сухое вещество или жидкость, которую в неё поместят. Аналогия проста: по цепи бегут электроны, а на своей дороге встречают проводников, которые ведут их в «банку», где они и накапливаются, усиливая заряд.

Для того чтобы выяснить, много ли элекрончиков так можно собрать, и в какой момент накопление прекратится (банка лопнет), электрический процесс обычно сравнивают с водопроводом. Если представить трубу, в которой течёт вода, закачиваемая туда насосом, то где-то в центре трубопровода нужно вообразить мягкую мембрану, растягивающуюся под давлением жидкости. Очевидно, что она будет растягиваться до определённого предела, пока не разорвётся или, если попалась очень крепкая, не уравновесит силу насоса.

Такой пример показывает, как работает конденсатор, только мембрана заменяется электрическим полем, которое увеличивается по мере зарядки накопителя (работы насоса), уравновешивая напряжение источника питания. Очевидно, что этот процесс не бесконечный, и предельный заряд существует, по достижении которого «банка» выйдет из строя и перестанет выполнять свои функции.

Устройство и принцип работы

Конденсатор — устройство, состоящее из двух пластин (обкладок), имеющих между собой пустоту. Напряжение к нему подаётся через проводки, подсоединённые к пластинкам. Современные приборы, по сути, не сильно отличаются от макетов на уроках физики, они также состоят из диэлектрика и обкладок. Следует отметить, что именно вещество или его отсутствие (вакуум), плохо проводящее электричество, изменяет характеристики накопителя.

Суть принципа работы конденсатора проста: дали напряжение, и заряд начал накапливаться. Для примера следует рассмотреть как ведёт себя накопитель в двух вариантах электрической цепи:

  • Постоянный ток . Если в цепь с подключённым к ней конденсатором подать ток, то можно увидеть, что стрелка на амперметре начнёт двигаться, а потом быстро вернётся в исходное положение. Это объясняется просто: устройство быстро зарядилось, то есть источник питания был уравновешен обкладками накопителя, и тока не стало. Поэтому часто говорят, что в условиях постоянного тока конденсатор не работает. Такое утверждение неправильное, всё функционирует, но очень непродолжительное время.
  • Переменный ток — это когда электроны двигаются сначала в одну, а затем в другую сторону. Если представить такую цепь с подключённым к ней накопителем, то на обеих обкладках конденсатора будут попеременно накапливаться положительные и отрицательные заряды. Это говорит о том, что переменный ток свободно протекает через устройство.

Поскольку конденсатор задерживает постоянный ток, но пропускает переменный, отсюда формируются и сферы его назначения, например, для устройств, в которых нужно убрать постоянную составляющую в сигнале. Вполне очевидно, что накопитель обладает сопротивлением, а вот мощность на нём не выделяется, поэтому он не греется.

Основные виды

Рядовой пользователь не всегда знает о том, каким конденсатором снабжено его устройство. А ведь каждый вид имеет свои недостатки и преимущества, а также эксплуатационные особенности. Существуют две большие группы этих устройств, предназначенные для электрической цепи с переменным и постоянным током. Но всё-таки основная классификация ведётся по типу диэлектрика, который находится между облатками конденсатора. Основные виды:

Отдельно стоит отметить электролитические конденсаторы. Главное их отличие от других видов — подключения только к цепи постоянного или пульсирующего тока. Такие накопители имеют полярность — это особенность их конструкции, поэтому неправильное подключение ведёт к вздутию или взрыву устройства. Они обладают большой ёмкостью, что делает конденсатор электролитический пригодным для применения в выпрямительных цепях.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

Электрические накопители можно встретить как в телевизорах, так и в приборах радиолокации, где необходимо формировать импульс большой мощности, для чего и служит конденсатор. Невозможно встретить блок питания без этих устройств или сетевой фильтр.

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.

Что такое конденсатор и зачем он нужен? — Для начинающих — Каталог статей

.

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Как и резисторы, конденсатор бывают разных типов и емкостей. Выпускаются в разных корпусах, самые маленькие это ЧИП SMD конденсаторы, которые применяются например в сотовых телефонах.



Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:


Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). В электронике используются конденсаторы с разными емкостями, это пикофарады, нанофарады и микрофарады.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. Номинальное напряжение маркируют на корпусе конденсатора, при превышении этого напряжения конденсаторы взрываются.

Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе, у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Электролитический полярный конденсатор.


Кроме обычных конденсаторов (пико и нанофарадов) существуют электролитические. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность.

Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Подстроечный конденсатор.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Конденсатор переменной емкости (КПЕ).

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Конденсатор не пропускает постоянный ток и является для него изолятором.

Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Расшифровка номинала конденсаторов.


Что касается подобных конденсаторов, они маркируются кодовой маркировкой, ниже дана таблице по их расшифровке. Следует упомянуть, что микрофарады можно переводить в нано или пикофарады и т.п. Например конденсатор 100 пикофарад можно заменить конденсатором в 0.1 нанофарад.


Похожие статьи:

Конденсатор трамблера. зачем нужен? | Twokarburators.ru

На трамблере (распределителе зажигания) «классических» автомобилей ВАЗ с контактной системой зажигания устанавливается конденсатор.

Разберемся, что это такое, зачем он нужен и как работает. В качестве примера используем конденсатор, установленный на трамблер автомобилей ВАЗ 2104, 2105, 2107 с контактной системой зажигания карбюраторного двигателя.

Что такое конденсатор?

Конденсатор это устройство, позволяющее накапливать, а затем отдавать электрический заряд.

Своего рода маленькая аккумуляторная батарея. Состоит из двух электродов разделенных диэлектриком. Если на него подать электрический ток, то он начнет скапливаться на электродах конденсатора. Основное свойство конденсатора- это емкость.

В трамблере он подключен параллельно контактам прерывателя.

Зачем нужен конденсатор в контактной системе зажигания?

Если коротко — для повышения напряжения выдаваемого катушкой на свечи зажигания.

Подробнее о работе конденсатора. Как известно контактная система зажигания работает за счет принудительного размыкания контактов прерывателя в трамблере. Каждое размыкание — это прерывание электрического тока, протекающего через первичную обмотку катушки зажигания. После чего магнитное поле в катушке зажигания резко сокращается и пересекая витки вторичной и первичной обмоток индуктирует ЭДС порядка 14000-24000 В. Что выливается в мощную искру на свечах. Двигатель при этом работает ровно, хорошо тянет, свечи коричневые. Чем быстрее сокращение магнитного поля тем выше ЭДС и сильнее искра и лучше работа двигателя.

Но тут возникают проблемы, так как индуктируемая в первичной обмотке ЭДС  (ЭДС самоиндукции) пытается поддержать исчезающий электрический ток и замедляет сокращение магнитного поля. Напряжение снижается, искра становится недостаточно мощной. Двигатель вдруг «затроил» или вообще заглох. В качестве бонуса ЭДС самоиндукции вызывает сильное искрение между контактами прерывателя, что ускоряет их износ.

Чтобы не допустить такие негативные явления, в электрическую цепь включен конденсатор (установленный на трамблере). В начальный момент размыкания контактов ток самоиндукции заряжает конденсатор, что уменьшает прохождение тока между контактами прерывателя и снижает искрение между ними. Затем конденсатор разряжается через первичную обмотку катушки зажигания, причем ток разряда направлен против тока самоиндукции, благодаря чему исчезновение магнитного поля в катушке происходит быстрее и она выдает ток высокого напряжения в высоковольтную цепь. Работа двигателя восстанавливается до нормы. Если бы не было конденсатора, то катушка выдавала бы всего 4000-5000 В.

Большое значение имеет емкость конденсатора. При слишком большой емкости искрение между контактами прерывателя будет незначительным, но увеличится время заряда и разряда конденсатора, что уменьшит ЭДС индуктируемую во вторичной обмотке. При малой емкости конденсатора искрение будет больше, но ЭДС так же уменьшится так ток его разряда будет низкий и не сможет противодействовать замедлению исчезновения магнитного поля в катушке зажигания. В результате снижение напряжения в высоковольтной цепи системы зажигания и слабая искра.

Неисправности конденсатора трамблера ВАЗ 2101, 2102, 2103, 2106, 2121

Основной неисправностью конденсатора в контактной системе зажигания является его «пробой» на «массу». При этом двигатель автомобиля может не запуститься вовсе или будет запускаться и глохнуть, либо внезапно заглохнет во время движения. Характерными внешними признаками неисправности являются: сильное искрение между контактами прерывателя при пуске двигателя и очень слабая искра или полное ее отсутствие.

Конденсатор можно проверить и в случае обнаружения неисправности заменить новым.

Примечания и дополнения

— Параметры работы конденсатора автомобилей ВАЗ 2105, 2107: емкость конденсатора замеряется в диапазоне частоты 50 – 1000 Гц и находится в пределах 0,20-0,25 мкФ, сопротивление изоляции при температуре (100±2)ºС и напряжении постоянного тока 100 В должно быть более 1 МОм/мкФ.

Еще статьи по электрооборудованию автомобилей ВАЗ 2104, 2105, 2107

— Центробежный регулятор опережения зажигания трамблера ВАЗ 2101-2107

— Схема контактной системы зажигания автомобилей ВАЗ 2101, 2102, 2103, 2106, 2121

— Катушка зажигания Б-117А

— Свеча зажигания А17ДВ, характеристики, применяемость

— Проверка катушки зажигания ВАЗ 2101-2107

— Свечи зажигания NGK на «классику» ВАЗ

— Зачем нужны отверстия в крышке трамблера?

Для чего нужен конденсатор?

Начнем с ответа на второй вопрос. Конденсатор – это система из двух проводников, которые называют обкладками конденсатора, разделенных слоем диэлектрика. Эти проводники несут равные по модулю и противоположные по знаку заряды имеют такую форму и расположены так, по отношению друг к другу, что поле, которое они создают, локализовано в ограниченной пространственной области. Характеризуют конденсатор при помощи емкости (). Емкость конденсатора – это взаимная емкость обкладок.
В задачах чаще всего рассматривают плоские, цилиндрические и сферические конденсаторы. Например, емкость цилиндрического конденсатора вычисляют при помощи формулы:

   

где — электрическая постоянная; — диэлектрическая проницаемость вещества между обкладками конденсатора; и — радиусы цилиндров (внешнего и внутреннего).
Для конденсатора важной характеристикой служит пробивное напряжение – это разность потенциалов его обкладок, при которой происходит электрический разряд через слой диэлектрика. Этот параметр зависит от толщины слоя диэлектрика, его свойств и формы обкладок конденсатора.
Теперь перейдем к вопросу: для чего нужен конденсатор. Конденсаторы применяют в электронике и радиотехнике в схемах. В совокупности с сопротивлениями и транзисторами конденсаторы – основа радиотехники. В цепях переменного тока конденсатор может выступать как емкостное сопротивление. Если последовательно соединить конденсатор, лампу и источник переменного тока, то лампа будет гореть тем ярче, чем больше емкость конденсатора. Конденсаторы могут выступать как фильтры, подавляющие частотные помехи, скачки напряжения и тока. Конденсаторы могут долго копить заряд и быстро отдавать его. Так в цепях с низким сопротивлением создают сильный импульс. Этот эффект имеет применение при изготовлении лазеров, фотовспышек т.п. Конденсаторы могут копить и хранить заряд долгое время, что позволяет применять их в устройствах для хранения информации и как источники питания в устройствах низкой мощности. Надо сказать, что конденсаторы существенно уступают аккумуляторным батареям в способности копить электрическую энергию, так как они не могут аккумулировать большие энергии и способны к саморазряду. При помощи конденсаторов подключают трехфазные двигатели к однофазной сети, так как при  подключении конденсатора к третьему выводу сети осуществляется сдвиг фазы на .  Установки конденсаторов используют в промышленности для того, чтобы компенсировать реактивную энергию.

Принцип работы и назначение конденсатора в электрической цепи

Данный элемент применяется практически в любых электронных приборах, поэтому, чтобы понять, в чем назначение конденсаторов, необходимо разобраться в их устройстве и принципах функционирования. Конденсатором называется одна из составных частей электрической цепи, у которой имеются две проводящие обкладки (одна обладает положительным зарядом, а другая – отрицательным). Чтобы исключить саморазрядку устройства, между обкладками помещают специальное вещество – диэлектрик, который препятствует перетоку заряда.

Конденсатор

Классификация устройств

Прежде, чем ответить на вопрос, для чего нужен конденсатор, следует разобраться, какие они бывают. Конденсаторы разделяются по следующим признакам:

  • Предназначение и выполняемые функции;
  • Рабочие условия;
  • Тип вещества, разделяющего обкладки.

Конденсаторы активно используются в цепях, где необходима их способность копить и хранить электрический заряд (требуется наличие емкостного устройства). Для этого внутри него установлены две обкладки с разными знаками заряда. Между ними расположено вещество, препятствующее их соприкосновению и разрядке. В большинстве случаев в качестве диэлектрика используется тантал или алюминий, но могут применяться и керамические материалы, слюда или полистирол.

Основным достоинством алюминиевых устройств является их более низкая, по сравнению с танталовыми, стоимость, а также более широкая сфера применения. Вместе с тем, танталовые аналоги более эффективны в использовании и обладают более высокими техническими характеристиками, поэтому при выборе следует учитывать не только фактор цены.

Виды конденсаторов

Дополнительная информация. Конденсаторы из тантала отличаются повышенной надежностью, у них широкий рабочий диапазон температур, что позволяет эксплуатировать их практически в любых условиях. Наиболее широкое применение они нашли в электронике и сопутствующих отраслях промышленности, поскольку обладают большой емкостью и компактными габаритами. К недостаткам устройств данного типа специалисты относят их более высокую цену и чувствительность к колебаниям тока и напряжения.

Силовые элементы применяются чаще всего в цепях с высоким напряжением. Специальная конструкция позволяет обеспечивать большую емкость, а значит, они могут использоваться для стабилизации обеспечения электричеством по линиям электропередач (компенсируют потери энергии). Кроме того, они активно используются для повышения мощности промышленных электроустановок. Диэлектрик в таком устройстве – это пропитанная изоляционным маслом металлизированная пропиленовая пленка.

Самыми широко используемыми являются керамические. Их емкость может варьироваться в значительных пределах – от 1 пикофарада до 0,1 микрофарада. Для предотвращения саморазряда применяется керамика, а в качестве преимущества специалисты отмечают доступную цену, широкие функциональные возможности, высокий уровень надежности и низкий –потерь.

Несмотря на свою дороговизну, на практике применяются серебряно-слюдяные конденсаторы. Они работают крайне стабильно, поддерживают высокую емкость, их корпус полностью герметичен. Но широкому распространению мешает высокая цена.

Применяются и бумажные или металлобумажные элементы. Их обкладка изготовлена из алюминиевой фольги, а в качестве диэлектрика используется бумага, пропитанная специальным составом.

Типы конденсаторов

Принцип функционирования

Основная причина, по которой описываемый элемент включается в электрическую схему, состоит в том, чтобы копить заряд в периоды повышенного напряжения и обеспечивать питание цепи в периоды низкого.

Принцип работы конденсатора заключается в следующем. Когда электрический прибор подключен к сети питания, конденсатор заряжается. На одной его пластине накапливаются электроны (частицы с отрицательным зарядом), а на другой – ионы, которые заряжены положительно. Соприкосновению их мешает диэлектрик. Такое устройство конденсатора позволяет накопить заряд. Ведь, как только прибор подключается к источнику тока, напряжение в цепи равно нулю. Затем, по мере наполнения зарядами, напряжение становится равным тому, которое подается от источника.

После того, как прибор отключается от розетки или батареи, происходит разряд конденсатора. Нагрузка в электрической цепи сохраняется, для этого прибору нужны напряжение и ток, который передает устройство. Необходимость питания прибора заставляет электроны в конденсаторе двигаться к ионам, образуется ток, который передается к другим элементам.

Устройство конденсатора

Возможное применение устройств

Конденсаторы служат решению самых разнообразных задач. В частности, они активно используются при хранении аналоговых и цифровых данных, часто устанавливаются в телемеханических устройствах для регулирования сигналов в соответствующем оборудовании, что сохраняет его от различных повреждений и проблем.

Широко распространено применение конденсаторов в источниках бесперебойного питания, что позволяет сглаживать напряжение при подключении к приборам различного оборудования (компьютеры, оргтехника и так далее).

Обратите внимание! По такому же принципу устроен источник бесперебойного питания. Во время подключения к электрической цепи он накапливает заряд, который потом можно использовать в течение короткого времени, что делает возможным выключение техники без каких-либо сбоев, а это особенно актуально в современных условиях, когда информация имеет крайне большое значение.

Описываемые элементы нашли свое применение в различных преобразователях напряжения. В частности, их можно использовать для увеличения напряжения в сети, величина которого будет превышать входное значение.

Важно! Эксплуатация конденсатора в качестве временного источника питания имеет некоторые ограничения. Это объясняется наличием у диэлектрика хоть небольшой, но проводимости. Поэтому устройство со временем постепенно разряжается, следовательно, при необходимости иметь стабильный источник тока лучше воспользоваться аккумуляторной батареей.

Применение конденсаторов

Наличие возможности накопить заряд, а потом быстро его направить в сеть позволяет сделать устройство незаменимым элементом при изготовлении лазеров, вспышек для фотоаппаратов и других подобных приборов.

Таким образом, без использования описываемого устройства практически невозможно представить современную электронную и электротехническую промышленность. Благодаря пониманию того, как работает конденсатор, его активно применяют при производстве различных устройств, как промышленного, так и бытового назначения. Он помогает обеспечить безопасность электрической цепи и увеличивает срок службы различных приборов.

Видео

Оцените статью:

Для чего нужен накопитель для автозвука – АвтоТоп

Автозвук – это искусство. И как в любом искусстве, здесь есть свои секреты. Один из секретов качественного глубокого баса кроется в установке нехитрого устройства – автомобильного конденсатора.

Зачем нужен конденсатор в автомобиле? По сути, автомобильный конденсатор – это большая батарейка, способная длительно сохранять заряд мощности и быстро отдавать его в нужный момент. Конденсатор ставят для того, чтобы помочь усилителю быстро отдать мощность на пиках низких частот (для сабвуфера). Без конденсатора, во-первых, бас будет не таким четким и быстрым, как хотелось бы. Во-вторых, возможна просадка в питании электросети машины (усилитель в эти моменты начинает потреблять больше тока, а аккумулятор не может так быстро этот ток отдавать). А самое опасное, такое падение и скачки напряжения могут привести в конечном итоге к повреждению сабвуфера.

Как конденсатор влияет на качество звука? Когда мощности усилителя на пиковых моментах хватает, благодаря конденсатору, бас становится четким, хорошо очерченным, неразмытым, неискаженным – и Ваша любимая музыка звучит именно так, как Вам нравится.

Как выбрать автомобильный конденсатор? Пользуйтесь простым правилом «киловатт=фарад». На 1 кВт мощности системы понадобится конденсатор емкостью 1 Фарад. То есть, если мощность Вашей аудиосистемы, к примеру, 2 киловатта, Вам понадобится конденсатор емкостью 2 Фарада. Емкость может быть немного больше мощности системы. Самые популярные модели – конденсаторы на 1 Ф.

Еще один важный параметр – скорость зарядки и отдачи заряда. Чем качественней конденсатор, тем лучше он справится с поставленной задачей.

Некоторые модели оборудованы цифровым вольтметром для контроля напряжения.

Наличие у конденсатора схемы управления зарядом будет безопасней для автомобильной проводки. Конденсаторы с такой схемой постепенной зарядки стоят дороже, но они того стоят. Если конденсатор не оборудован такой функцией, его рекомендуется перед установкой зарядить.

Как установить автомобильный конденсатор? Самая большая нагрузка в аудиосистеме приходится на сабвуферный усилитель (так как самый мощный динамик системы – сабвуфер). Конденсатор следует установить как можно ближе к сабвуферному усилителю (рекомендуемое расстояние – не больше 60 см). Подключают конденсатор параллельно с питанием этого усилителя. Если Вы ставите несколько усилителей, особенно если их мощность велика, Вам тем более понадобится конденсатор.

На схеме наглядно показано где находится конденсатор в электрической цепи, и как его правильно подключить.

PS: Как видите, все просто. Однако конденсатор – это не панацея. Стоит позаботиться также о хорошей проводке, качественных компонентах и грамотной установке аудиосистемы – и Ваша музыка заиграет на все 100%!

У некоторых автолюбителей желание иметь в машине хороший звук превращается в погоню за рекордами. Существуют даже сообщества, участники которых нацелены на построение систем с огромной мощностью. Здесь считается уровнем начинающего акустика в киловатт. Не редкость — система с мощностью в 5 и более тысяч Ватт. На такое потребление не рассчитана ни одна бортовая система автомобиля. Поэтому нужен конденсатор для сабвуфера, который в моменты пикового отбора мощности способен компенсировать просадку напряжения в сети.

Зачем нужен конденсатор для сабвуфера

Чтобы понять, зачем машина оснащается емким конденсатором, стоит вспомнить закон Ома для полной цепи. Именно он поможет понять, что происходит, когда сабвуфер резко выходит на максимальную громкость.

  1. У каждого аккумулятора есть параметр электродвижущей силы, который зависит от емкости устройства, его внутреннего сопротивления и других характеристик.
  2. До момента, когда усилитель и вся звуковая установка в целом не превышают по потреблению возможности аккумулятора, проводка работает в нормальном режиме.
  3. В периоды, когда сабвуфер резко наращивает громкость и потребление мощности — аккумулятор физически не способен удовлетворить потребности. Его электродвижущей силы недостаточно для поддержки стабильного напряжения.

В результате интенсивного отбора мощности для звука происходит следующее: растут рабочие токи, аккумулятор не может обеспечить потребности и напряжение бортовой сети резко падает. Как следствие, наблюдается просадка саба (динамики захлебываются), становится нештатным функционирование усилителя.

Именно для стабилизации работы бортовой сети нужны электролитические конденсаторы, которые отдают мощность в момент пиковой нагрузки. Стоит понимать, что среднестатистическая колонка в машине, как и вся аудиосистема в целом, не всегда работают даже на номинальной мощности. В эти периоды низкого потребления и токов машина своим генератором заряжает не только аккумулятор, но и установленный накопитель.

В периоды роста потребления конденсатор разряжается. Это позволяет получить действительно лучший звук без падений мощности и отказа набора фронта громкости звучания.

На что обращать внимание при покупке?

Главное, что следует учитывать автовладельцу, желающему купить электролитический конденсатор для сабвуфера — соотношение его емкости и мощности системы. Правило достаточно простое. Минимальный предел составляет от 650 до 850 мкФ на киловатт. Для упрощения расчетов рекомендуется принимать 1Ф на 1 кВт мощности звуковой системы.

Идеально, если в автомобиль производится установка конденсатора с емкостью, превышающей номинальные показатели. Другие черты хорошего элемента выглядят следующим образом:

  • комплект поставки должен включать все, что нужно для того, чтобы установить электролитический конденсатор в машину. Это и провода, которым подключается усилитель, и специальные защищенные кронштейны, исключающие повреждение оболочки элемента и появление других нештатных ситуаций;
  • импульсное напряжение конденсатора должно составлять 24 В. Это достаточный запас (соответствующий параметр работы бортовой сети составляет от 12 до 18 В), чтобы во время зарядки накопитель не перегревался;
  • для резкой отдачи большой мощности, формирования больших токов, конденсатор обязан иметь мощные разъемы с толстыми подводами и большой площадью. Ответственные компании предлагают изделия с позолоченными контактами;
  • огромным подспорьем, в том числе для удобства контроля состояния накопителя во время эксплуатации, выступают индикаторы заряда. Это может быть простейшая схема с рядом светодиодов или цифровое табло;
  • если нужен накопитель, который можно просто подключать и рассчитывать на долговременную стабильную работу — рекомендуется покупать изделия, оснащенные системой контроля заряда и состояния. Такие модели обязательно комплектуются индикатором.

Последнее, но одно из главных, замечание: экономить на покупке электролитического конденсатора для сабвуфера не стоит. На специализированных форумах можно найти множество примеров, видео и фото разборки дешевых изделий. Они явно и точно показывают несоответствие реальных характеристик заявленным, а также описывают опасность использования подобного типа накопителей.

Перед покупкой электролитического конденсатора стоит обязательно поискать отзывы на специализированных ресурсах. Или — полистать рейтинги и ознакомиться с характеристиками подходящих изделий на сайте их производителей. Сегодня на массовом рынке предлагаются как электролитические конденсаторы, так и достаточно чувствительные к колебаниям температуры ионисторы.

Установка конденсатора в бортовую сеть, кроме сугубо утилитарных результатов в виде стабильной работы акустической системы, имеет еще несколько достоинств. В частности, сглаживаются броски тока при работе системы зажигания. Также, улучшается режим эксплуатации бортового генератора, так как он начинает меньше испытывать броски потребления. И самое главное: установленный конденсатор отлично помогает работе стартера зимой, отдавая мощность в общую сеть.

Как установить конденсатор?

Сложнее всего устанавливать простой конденсатор, не оснащенный системой контроля заряда. Пустой накопитель, подключаемый в сеть, в некоторых случаях может сжечь подключенный усилитель. Происходит следующее:

  • пустой конденсатор с очень малым внутренним сопротивлением замыкает цепь;
  • проходящие токи резко возрастают до максимума, зависящего от технических характеристик накопителя;
  • токи в цепи падают по мере роста заряда накопителя.

Первичный скачок тока настолько высок, что подвергать усилитель и другие компоненты акустики такому испытанию явно не рекомендуется. Поэтому конденсатор без системы контроля заряда перед включением в бортовую систему заряжают. Для этого собирают простую схему.

Минусовая клемма конденсатора присоединяется к массе, корпусу автомобиля. К плюсовой припаивают стандартную лампу накаливания для машины, второй ее контакт соединяют с плюсовой клеммой аккумулятора. Минусовой отвод автомобильной батареи также коммутируют на массу, корпус.

При включении схемы происходит следующее: нить лампы рывком разогревается до максимума. По мере накопления заряда, светимость падает. Когда лампа гаснет полностью — это означает, что напряжение на конденсаторе сравнялось с аккумулятором, нет разницы потенциалов. Заряд накопителя полный, его аккуратно отсоединяют, не допуская замыкания контактов. Работать нужно в резиновых перчатках.

С накопителями, которые оснащены системой контроля заряда — можно не колдовать. Они включаются в общую цепь без предосторожностей. Встроенная электроника блокирует первичный скачок тока. Такое удобство накопителя компенсируется некоторым недостатком. Конденсатор может выдать ток, ограниченный параметром электронного блока контроля заряда. Это нужно учитывать при покупке устройства.

Топ 5 устройств 2019 года

На основании отзывов потребителей выбраны 5 лучших конденсаторов для сабвуфера, показывающих хорошие результаты и длительный срок службы. Среди них изделия известных брендов, пригодные для использования как начинающими, так и опытными инженерами автомобильных звуковых систем.

Что такое автомобильный конденсатор и зачем он нужен?

Под автомобильным конденсатором сегодня принято понимать электролитический конденсатор, подключенный к автомобильному усилителю звука (или непосредственно к магнитоле) параллельно питающим проводам. Но зачем он нужен?

2. Поддержка питания магнитолы при пиковых нагрузках, например, при проигрывании басов. Здесь возможны два варианта:
2.1. На аудиосистему приходит недостаточно мощности. Причины могут быть разные: севшая батарея, слабый генератор, провода питания недостаточной толщины и пр.

2.2. Мощности достаточно, но аккумулятор не успевает «отдать» требуемый ток. Как известно, при появлении потребителя, ток разряда АКБ устанавливается не мгновенно; и время его установки зависит от характеристик аккумулятора – в первую очередь от внутреннего сопротивления (если точнее, то от реактивной составляющей внутреннего сопротивления). И если внутреннее сопротивление АКБ велико, то при резком возрастании нагрузки требуемый ток она даст с некоторой задержкой, небольшой, но искажения звука в этот момент уже могут быть заметны.

Характеристики автомобильных конденсаторов.

ESR (Equivalent Series Resistance – Эквивалентное Последовательное Сопротивление) – параметр, определяющий максимальный ток разряда. Устанавливаемые в автомобильную аудиосистему конденсаторы должны иметь ESR не более 10 мОм. В принципе, под это требование подойдет любой электролитический конденсатор, но это не значит, что этот параметр можно игнорировать – по нему можно однозначно выяснить, ионистор перед вами или конденсатор. Особенно важно обратить внимание на ESR при выборе компактного конденсатора очень высокой (в десятки и сотни Фарад) емкости. И следует отнестись к нему с большим подозрением, если для него производителем ESR не указан.

Нелишне будет выяснить, есть ли у конденсатора зарядное устройство (зарядная схема), ограничивающая зарядный ток. Из-за низкого внутреннего сопротивления конденсатор во время зарядки берет ток, практический равный току короткого замыкания – это может повредить контакты цепи питания и расположенные «по дороге» электронные компоненты. Если зарядной схемы у конденсатора нет, первую его зарядку следует производить через нагрузку – например, через 12-вольтовую лампочку, подключив её последовательно к конденсатору.

Зачем нужен конденсатор

Когда говорят о конденсаторах применительно к автомобилям, в первую очередь имеют в виду систему зажигания. В ней конденсаторы начали применять тогда, когда она была контактной, и применяют до сих пор.

В классической контактной системе зажигания конденсатор подключен параллельно прерывателю. Катушка зажигания (бобина) является автотрансформатором, коэффициент трансформации которого не так уж велик. Поэтому при замыкании контактов прерывателя, когда напряжение на ее первичной обмотке скачком возрастает от нуля до напряжения бортовой сети, амплитуды импульса, вырабатываемого вторичной обмоткой, для пробоя свечи не хватает. Одновременно с этим в катушке начинает накапливаться энергия в виде магнитного поля. Когда же контакты размыкаются, эта энергия выделяется, и на выводах первичной обмотки появляется напряжение самоиндукции, превышающее напряжение бортовой сети почти в 20 раз. Но напряжения для возникновения тока недостаточно — нужна также замкнутая цепь. Без конденсатора ее образовывали бы аккумуляторная батарея и искра между контактами прерывателя, отчего последние бы сильно изнашивались. Если же параллельно прерывателю подключен конденсатор, ток идет через него. На вторичной обмотке бобины возникает напряжение, превышающее напряжение самоиндукции на коэффициент трансформации, пробивающее искровой промежуток свечи.

Принципы действия электронных систем зажигания различны. В одних из них, как и в контактных, происходит коммутация первичной обмотки катушки зажигания, питаемой от бортовой сети, только эта коммутация производится бесконтактным способом. В других напряжение бортовой сети заранее повышается приблизительно в 20 раз преобразователем. Этим напряжением заряжается конденсатор. В момент, когда требуется искра, конденсатор замыкается на бобину и разряжается на нее, затем отключается от нее и снова заряжается от преобразователя. В системах второго типа искрообразование происходит не в момент размыкание, а в момент замыкания.

Находят применение конденсаторы и во вспомогательных узлах электронных системы зажигания. Таковы, например, фильтры питания, частотозадающие цепи преобразователей, а в микропроцессорных системах — тактовых генераторов. Здесь применяются низковольтные конденсаторы малых емкостей, поэтому они малогабаритны. Но для бесперебойной работы системы зажигания и двигателя в целом они не менее важны. Если бы любой из них внезапно исчез, двигатель бы тотчас остановился.

Конденсатор

. Применение и применение »Электроника

Особенно важно выбрать правильный конденсатор или любое конкретное приложение — понимание ключевых требований для любого конкретного применения конденсатора или использования конденсатора обеспечит правильную работу схемы.


Capacitor Tutorial:
Использование конденсатора Типы конденсаторов Электролитический конденсатор Керамический конденсатор Танталовый конденсатор Пленочные конденсаторы Серебряный слюдяной конденсатор Супер конденсатор Конденсатор SMD Технические характеристики и параметры Как купить конденсаторы — подсказки и подсказки Коды и маркировка конденсаторов Таблица преобразования


Конденсаторы используются практически во всех областях электроники и выполняют множество различных задач.Несмотря на то, что конденсаторы работают одинаково, независимо от их применения или использования, конденсаторы могут использоваться в схемах по-разному.

Для того, чтобы выбрать правильный тип конденсатора, необходимо иметь представление о конкретном применении конденсатора, чтобы его свойства можно было сопоставить с конкретным применением, для которого он будет использоваться.

У каждой формы конденсатора есть свои собственные атрибуты, и это означает, что он будет хорошо работать при использовании или применении конденсатора с твердыми частицами.

Выбор подходящего конденсатора для конкретного применения является частью процесса проектирования схемы. Использование неправильного конденсатора может легко означать, что схема не будет работать.

Применение конденсатора и схема

Конденсаторы

могут использоваться в электронных схемах по-разному. Хотя их режим работы остается точно таким же, различные формы конденсаторов могут использоваться для обеспечения множества различных функций схемы.

Для различных схем потребуются конденсаторы с определенными номиналами, а также с другими атрибутами, такими как допустимый ток, диапазон значений, точность значений, температурная стабильность и многие другие аспекты.

Некоторые типы конденсаторов будут доступны в разных номиналах, некоторые конденсаторы могут иметь большие диапазоны значений, другие — меньшие. Другие конденсаторы могут иметь высокие токи, другие — высокий уровень стабильности, а другие по-прежнему доступны с очень низкими значениями температурного коэффициента.

Понимание различных способов использования конденсаторов помогает выбрать лучший тип конденсатора для конкретного применения.

Путем выбора правильного конденсатора для конкретного применения или применения схема может работать наилучшим образом.

Использование конденсатора связи

В этом конденсаторе компонент позволяет только сигналам переменного тока проходить от одной секции схемы к другой, блокируя любое статическое напряжение постоянного тока. Такая форма применения конденсатора часто требуется при соединении двух каскадов усилителя вместе.

Возможно, что постоянное напряжение постоянного тока будет присутствовать, скажем, на выходе одного каскада, и будет присутствовать только переменный сигнал, звуковая частота, радиочастота или что-то еще, что требуется.Если бы составляющие постоянного тока сигнала на выходе первого каскада присутствовали на входе второго, то смещение и другие рабочие условия второго каскада изменились бы.

Транзисторная схема с входными и выходными разделительными конденсаторами

Даже при использовании операционных усилителей, схема которых была разработана для обеспечения малых напряжений смещения, часто бывает разумным использовать разделительные конденсаторы из-за наличия высоких уровней усиления постоянного тока. Без разделительного конденсатора высокие уровни усиления по постоянному току могут означать, что операционный усилитель перейдет в режим насыщения.

Для конденсаторов такого типа необходимо обеспечить достаточно низкое полное сопротивление конденсатора. Обычно выходной импеданс предыдущей схемы выше, чем та, которую она ведет, за исключением ВЧ-цепи, но об этом позже. Это означает, что значение конденсатора выбирается таким же, как полное сопротивление цепи, обычно входное сопротивление второй цепи. Это дает падение отклика на 3 дБ на этой частоте.

Важные параметры для конденсатора связи
Параметр Указания по использованию конденсатора
Номинальное напряжение конденсатора Должно быть больше пикового напряжения на конденсаторе.Обычно конденсатор может выдерживать напряжение на шине питания с запасом для обеспечения надежности.
Значение емкости Достаточно высокий, чтобы передавать самые низкие частоты с небольшим затуханием или без него.
Допуск Конденсаторы с широким допуском часто можно использовать, потому что точное значение не имеет значения.
Диэлектрик Некоторые конденсаторы, например электролитические, имеют ограниченную частотную характеристику, часто только до частот около 100 кГц максимум. Это следует учитывать. Также для приложений с высоким импедансом не следует использовать электролитические конденсаторы, поскольку они имеют относительно высокий уровень утечки, который может нарушить работу второй ступени.

Использование развязывающего конденсатора

В этом приложении конденсатор используется для удаления любых сигналов переменного тока, которые могут быть в точке смещения постоянного тока, шине питания или другом узле, который должен быть свободен от конкретного изменяющегося сигнала.

Как указывает название этого конденсатора, он использовался для развязки узла от изменяющегося на нем сигнала.

Схема транзистора с развязывающими конденсаторами линии и коллектора

В этой схеме есть два способа использования конденсатора для развязки. C3 используется для развязки любого сигнала, который может быть на шине напряжения. Конденсатор этого типа должен выдерживать напряжение питания, а также обеспечивать и поглощать уровни тока, возникающие из-за шума на шине. Также во время выключения, когда питание отключено, этот конденсатор может потреблять большой ток в зависимости от его значения.Танталовые конденсаторы для этой позиции не подходят.

Развязка также обеспечивается комбинацией конденсатора и резистора C4, R5. Это гарантирует, что коллекторный сигнал не просочится на сигнальную шину. Постоянная времени C4 и R5 обычно является доминирующим фактором, и постоянная времени должна быть выбрана больше, чем ожидаемая самая низкая частота.

Тип развязки, используемый с C5, служит для хорошей изоляции этого конкретного каскада от любого шума на шине, а также предотвращения передачи шума от цепи на шину питания.Во время отключения ток конденсатора ограничивается резистором R5.

Важные параметры для использования развязывающего конденсатора
Параметр Указания по использованию конденсатора
Номинальное напряжение конденсатора Должно быть больше пикового напряжения на конденсаторе. Обычно конденсатор может выдерживать напряжение узла с некоторым запасом для обеспечения надежности.
Значение емкости Достаточно высокий, чтобы передавать самые низкие частоты с небольшим затуханием или без него.Иногда это может привести к тому, что требуются относительно большие значения. Однако необходимо учитывать используемые частоты. Для низких частот обычно требуются большие уровни емкости, и часто используются электролитические конденсаторы. Если это слаботочная цепь, как в случае C4, R5, танталовый конденсатор также может быть подходящим, но обычно изолируется от шины основного напряжения через последовательный резистор, чтобы предотвратить слишком большой ток, потребляемый, как в случае C4. Для более высоких частот также могут подойти керамические конденсаторы.
Допуск Конденсаторы с широким допуском часто можно использовать, потому что точное значение не имеет значения.
Диэлектрик Некоторые конденсаторы, например, электролитические, имеют относительно низкий верхний предел частоты. Часто, чтобы преодолеть это, конденсатор, такой как керамический конденсатор с меньшим значением, может использоваться для обеспечения высокочастотной характеристики, в то время как электролитический конденсатор большего номинала используется для пропускания более низкочастотных компонентов.Керамический или другой конденсатор более низкого номинала по-прежнему имеет низкий импеданс на более высоких частотах, потому что реактивное сопротивление обратно пропорционально частоте.

ВЧ-соединения и развязка

ВЧ связи и развязки следуют тем же основным правилам, что и обычные конденсаторы связи и развязки. Часто используются схемы, подобные показанным для стандартной связи и развязки, и они работают в основном одинаково.

Однако при использовании конденсаторов для ВЧ приложений необходимо учитывать их ВЧ характеристики. Это может отличаться от производительности на более низких частотах.

Обычно электролитические конденсаторы не используются — их характеристики падают с увеличением частоты, и они редко используются для приложений с частотой выше примерно 100 кГц. Керамические конденсаторы особенно популярны, поскольку они обладают хорошими ВЧ-характеристиками, особенно конденсаторы MLCC для поверхностного монтажа.

Последовательная индуктивность, присутствующая во всех конденсаторах, в большей или меньшей степени проявляется на некоторых частотах, образуя резонансный контур с емкостью.

Как правило, керамические конденсаторы имеют высокую собственную резонансную частоту, особенно конденсаторы для поверхностного монтажа, которые очень малы и не имеют выводов, создающих индуктивность.

Могут использоваться и другие типы конденсаторов, но керамические конденсаторы наиболее широко используются в этом приложении.

Применения сглаживающего конденсатора

Фактически это то же самое, что и разделительный конденсатор, но этот термин обычно используется в связи с источником питания.

Когда входящий линейный сигнал проходит через трансформатор и выпрямитель, результирующая форма волны не является гладкой.Оно варьируется от нуля до пикового напряжения. При применении к цепи маловероятно, что это сработает, поскольку обычно требуется постоянное напряжение. Чтобы преодолеть это, используется конденсатор для развязки или сглаживания выходного напряжения.

Схема выпрямителя со сглаживающим конденсатором

В этом случае конденсатор заряжается, когда пиковое напряжение превышает выходное напряжение, и обеспечивает заряд, когда напряжение выпрямителя падает ниже напряжения конденсатора.

В этом конденсаторе компонент развязывает шину и подает заряд там, где это необходимо.

Обычно для обеспечения необходимого уровня тока требуются относительно большие значения емкости. В результате наиболее широко используемой формой конденсатора для этого приложения является электролитический конденсатор.

Важные параметры для сглаживающего конденсатора
Параметр Указания по использованию конденсатора
Номинальное напряжение конденсатора Должно быть больше пикового напряжения на конденсаторе.Конденсатор должен выдерживать максимальное пиковое напряжение шины с некоторым запасом для обеспечения надежности.
Значение емкости Зависит от требуемого тока, но обычно может составлять несколько тысяч микрофарад.
Допуск Конденсаторы с широким допуском часто можно использовать, потому что точное значение не имеет значения.
Диэлектрик Электролитические конденсаторы обычно используются из-за их высокой стоимости.Танталовые конденсаторы, хотя они могут иметь достаточно высокие значения, не подходят из-за низкого уровня тока пульсаций, которые они могут выдерживать. Керамические конденсаторы не доступны с требуемым уровнем емкости.
Пульсации тока В дополнение к конденсатору, имеющему достаточную емкость для удержания требуемого количества заряда, он также должен быть сконструирован таким образом, чтобы обеспечивать необходимый ток. Если конденсатор становится слишком горячим при подаче тока, он может выйти из строя.Номинальные значения пульсационного тока особенно важны для конденсаторов, используемых для сглаживания. Обычно используются электролитические конденсаторы, но даже для них необходимо проверить соответствие номинального тока пульсации.

Использование конденсатора в качестве синхронизирующего элемента

В этом приложении конденсатор может использоваться с резистором или катушкой индуктивности в резонансной или зависимой от времени цепи. В этой функции конденсатор может присутствовать в фильтре, цепи настройки генератора или в элементе синхронизации для такой цепи, как a-stable, время, необходимое для зарядки и разрядки, определяющее работу схемы

. Генераторы и фильтры

LC или RC широко используются во множестве схем, и, очевидно, одним из основных элементов является конденсатор.

В данном конкретном случае использования конденсатора одним из основных требований является точность, и поэтому начальный допуск важен для обеспечения того, чтобы схема работала на требуемой частоте. Температурная стабильность также важна для обеспечения того, чтобы рабочие характеристики контура оставались неизменными в требуемом диапазоне температур.

Важные параметры времени использования конденсатора
Параметр Указания по использованию конденсатора
Номинальное напряжение конденсатора Фактическое пиковое напряжение на конденсаторе будет варьироваться в зависимости от конкретной цепи и напряжения шины.Необходимо оценивать каждый случай по существу, отмечая, что в некоторых случаях оно может быть выше ожидаемого. В большинстве случаев превышение напряжения на шине маловероятно.
Значение емкости Зависит от используемых частот и от катушки индуктивности или резистора, необходимых для получения требуемой рабочей частоты.
Допуск Обычно требуется строгий допуск для обеспечения требуемой рабочей частоты.В этом приложении конденсаторы с хорошим выбором значений в пределах каждой декады могут быть преимуществом.
Диэлектрик Во многих приложениях для синхронизации важны потери в конденсаторе. Высокие потери равны низкому Q, и значения Q обычно должны быть как можно более высокими. Есть много диэлектриков, обеспечивающих подходящий уровень производительности. Многие керамические диэлектрики конденсаторов в наши дни способны обеспечить высокий уровень стабильности. Конденсаторы с пластиковой пленкой также могут предложить высокий уровень производительности.Серебряные слюдяные конденсаторы также используются, особенно в ВЧ цепях. Хотя эти серебряные слюдяные конденсаторы довольно дороги, они обладают высокими характеристиками: высокая добротность; высокая стабильность; низкие потери; и высокая терпимость.
Температурная стабильность Температурная стабильность конденсатора должна быть высокой для этих конденсаторных применений, потому что схема должна будет сохранять свою частоту в диапазоне рабочих температур. Если значение изменяется в зависимости от температуры, даже на небольшую величину, это может существенно повлиять на работу контура.

Применения удерживающего конденсатора

В этом конкретном применении конденсатора заряд, удерживаемый конденсатором, используется для обеспечения питания цепи на короткое время.

В прошлом могли использоваться небольшие перезаряжаемые батареи, но они часто страдали от проблем с памятью и ограничением срока службы, поэтому конденсаторы могут стать жизнеспособной альтернативой.

В настоящее время суперконденсаторы обладают огромной емкостью, и теперь они достаточно велики, чтобы позволить многим схемам оставаться под напряжением в периоды отсутствия сетевого питания.Они относительно дешевы и предлагают отличный уровень производительности.

Суперконденсаторы
Важные параметры для удерживающего конденсатора
Параметр Указания по использованию конденсатора
Номинальное напряжение конденсатора Должен выдерживать максимальное рабочее напряжение с хорошим запасом надежности.
Значение емкости Может быть до нескольких фарадов.
Допуск, широко используемые в конденсаторах, имеют большой допуск.К счастью, это не проблема, так как это в первую очередь влияет на время, в течение которого может поддерживаться задержка.
Суперконденсаторы часто используются для аккумуляторов

Варианты применения конденсаторов

Выбор конденсатора часто важен для работы схемы. Знание того, как будет использоваться конденсатор и как его характеристики и параметры связаны с работой схемы, означает, что некоторые конденсаторы работают лучше, чем другие, в различных приложениях.Выбор подходящего конденсатора для любого конкретного применения является важной и очень важной частью схемы.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Объяснение

конденсаторов — Инженерное мышление

Объяснение конденсаторов

. Узнайте, как работают конденсаторы, где мы их используем и почему они важны.

Прокрутите вниз, чтобы просмотреть руководство по YouTube.

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения электромонтажных работ. Не прикасайтесь к клеммам конденсатора, так как это может вызвать поражение электрическим током.

Что такое конденсатор?

Конденсатор и батарея

А конденсатор накапливает электрический заряд. Это немного похоже на батарею, за исключением того, что она по-другому накапливает энергию. Он не может хранить столько энергии, хотя может заряжаться и высвобождать свою энергию намного быстрее. Это очень полезно, поэтому конденсаторы можно встретить практически на каждой печатной плате.

Как работает конденсатор?

Я хочу, чтобы вы сначала представили водопроводную трубу, по которой течет вода. Вода будет продолжать течь, пока мы не закроем вентиль.Тогда вода не сможет течь.

Если после клапана мы позволим воде течь в резервуар, тогда резервуар будет хранить часть воды, но мы продолжаем получать воду, вытекающую из трубы. Когда мы закроем клапан, вода перестанет поступать в резервуар, но мы все равно будем получать постоянный приток воды, пока резервуар не опустеет. Как только резервуар снова наполнится, мы можем открывать и закрывать клапан, и пока мы не опорожняем резервуар полностью, мы получаем непрерывную подачу воды из конца трубы.Таким образом, мы можем использовать резервуар для воды для хранения воды и сглаживания перебоев в подаче.

В электрических цепях конденсатор действует как резервуар для воды и накапливает энергию. Он может освободить его, чтобы сгладить перебои в подаче электроэнергии.

Если мы очень быстро выключим простую схему без конденсатора, то свет будет мигать. Но если мы подключим конденсатор в цепь, то свет будет гореть во время прерываний, по крайней мере, на короткое время, потому что теперь конденсатор разряжается и питает цепь.

Внутри основного конденсатора у нас есть две проводящие металлические пластины, которые обычно делают из алюминия или алюминия, как его называют американцы. Они будут разделены диэлектрическим изоляционным материалом, например керамикой. Диэлектрик означает, что материал поляризуется при контакте с электрическим полем. Мы скоро увидим, что это значит.

Внутри конденсатора

Одна сторона конденсатора подключена к положительной стороне схемы, а другая сторона подключена к отрицательной.На стороне конденсатора вы можете увидеть полоску и символ, указывающие, какая сторона у отрицательного полюса, кроме того, отрицательная сторона будет короче.

Если подключить конденсатор к аккумулятору. Напряжение подталкивает электроны от отрицательного вывода к конденсатору. Электроны накапливаются на одной пластине конденсатора, в то время как другая пластина, в свою очередь, высвобождает некоторые электроны. Электроны не могут проходить через конденсатор из-за изоляционного материала. В конце концов, конденсатор имеет то же напряжение, что и батарея, и электроны больше не будут течь.

Теперь на одной стороне скопилось скопление электронов, это означает, что мы накопили энергию и можем высвободить ее, когда это необходимо. Поскольку на одной стороне больше электронов по сравнению с другой, и электроны заряжены отрицательно, это означает, что у нас есть одна сторона, которая отрицательна, а другая сторона, которая положительна, поэтому между ними есть разница в потенциале или разница напряжений. Мы можем измерить это с помощью мультиметра.

Что такое напряжение?

Напряжение похоже на давление: когда мы измеряем напряжение, мы измеряем разность или разность потенциалов между двумя точками.Если вы представите трубу с водой под давлением, мы сможем увидеть давление с помощью манометра. Манометр также сравнивает две разные точки: давление внутри трубы по сравнению с атмосферным давлением снаружи трубы. Когда резервуар пуст, манометр показывает ноль, потому что давление внутри резервуара равно давлению снаружи резервуара, поэтому манометру не с чем сравнивать. Оба давления одинаковы. То же самое и с напряжением, мы сравниваем разницу между двумя точками.Если мы измеряем через батарею 1,5 В, то мы читаем разницу в 1,5 В между каждым концом, но если мы измеряем один и тот же конец, мы читаем ноль, потому что разницы нет, это то же самое.

Хотите изучить основы электричества? НАЖМИТЕ ЗДЕСЬ

Возвращаясь к конденсатору, мы измеряем и считываем разницу напряжений между ними из-за скопления электронов. Мы все еще получаем это значение, даже когда отсоединяем аккумулятор.

Если вы помните, с магнитами противоположности притягиваются и притягиваются друг к другу.То же самое происходит с накоплением отрицательно заряженных электронов, они притягиваются к положительно заряженным частицам атомов на противоположной пластине, но никогда не могут добраться до них из-за изоляционного материала. Это притяжение между двумя сторонами представляет собой электрическое поле, которое удерживает электроны на месте, пока не появится другой путь.

Объяснение основ работы с конденсаторами

Если мы затем поместим в цепь небольшую лампу, то теперь существует путь, по которому электроны могут течь и достигать противоположной стороны.Таким образом, электроны будут проходить через лампу, питая ее, и электроны достигнут другой стороны конденсатора. Это будет длиться недолго, пока количество электронов не выровняется с каждой стороны. Тогда напряжение равно нулю, поэтому нет толкающей силы и нет потока электронов.
Как только мы снова подключим аккумулятор, конденсатор начнет заряжаться. Это позволяет нам прервать подачу питания, и конденсатор будет обеспечивать питание во время этих прерываний.

Примеры

Мы везде используем конденсаторы.Они выглядят немного иначе, но их легко заметить. На печатных платах они, как правило, выглядят примерно так, и мы можем видеть их представленными на инженерных чертежах вот так. Мы также можем получить конденсаторы большего размера, которые используются, например, в асинхронных двигателях, потолочных вентиляторах или установках кондиционирования воздуха, и мы можем даже получить такие огромные конденсаторы, которые используются для коррекции низкого коэффициента мощности в больших зданиях.

Пример обозначения конденсатора

На стороне конденсатора мы найдем два значения.Это будут емкость и напряжение. Мы измеряем емкость конденсатора в единицах фарад, которые мы показываем с заглавной буквы F, хотя мы обычно измеряем конденсатор в микрофарадах, поэтому у нас есть микро-символ непосредственно перед этим, который выглядит примерно как буква U с хвостом.

Пример емкости

Другое значение — это наше напряжение, которое мы измеряем в вольтах с заглавной буквой V, значение напряжения на конденсаторе — это максимальное напряжение, которое может выдержать конденсатор.

Этот конденсатор рассчитан на определенное напряжение, и если я превышу это значение, он взорвется.

Пример напряжения конденсатора

Большинство конденсаторов имеют положительную и отрицательную клеммы. Нам нужно убедиться, что конденсатор правильно включен в схему.

Пример платы конденсатора

Почему мы их используем

Одно из наиболее распространенных применений конденсаторов в больших зданиях — коррекция коэффициента мощности. Когда в цепь помещается слишком много индуктивных нагрузок, формы сигналов тока и напряжения не будут синхронизироваться друг с другом, и ток будет отставать от напряжения.Затем мы используем батареи конденсаторов, чтобы противодействовать этому и вернуть их в соответствие.

Еще одно распространенное применение — сглаживание пиков при преобразовании переменного тока в постоянный.
Когда мы используем полный мостовой выпрямитель, синусоидальная волна переменного тока переворачивается, чтобы отрицательный цикл протекал в положительном направлении, это заставит схему думать, что она получает постоянный ток.

через GIPHY

Но, одна из проблем этого метода — промежутки между пиками. Поэтому мы используем конденсатор, чтобы выделять энергию в цепь во время этих прерываний, и это сгладит подачу питания, чтобы она больше походила на постоянный ток.

Как измерить емкость мультиметром

Мы можем измерить емкость и накопленное напряжение с помощью мультиметра. Не все мультиметры имеют функцию измерения емкости.

Вы должны быть очень осторожны с конденсаторами, поскольку они накапливают энергию и могут удерживать высокие значения напряжения в течение длительного времени, даже когда они отключены от цепи. Чтобы проверить напряжение, мы переключаемся на постоянное напряжение на нашем измерителе, а затем подключаем красный провод к положительной стороне конденсатора, а черный провод к отрицательной стороне.Если мы получаем показание в несколько вольт или более, мы должны разрядить его, безопасно подключив клеммы к резистору, и продолжить считывание напряжения. Мы хотим убедиться, что он упал до диапазона милливольт, прежде чем обращаться с ним, иначе мы можем получить электрический ток.

Чтобы измерить емкость, мы просто переключаем измеритель на функцию конденсатора. Подключаем красный провод к положительной стороне, а черный провод к отрицательной стороне. После небольшой задержки счетчик покажет нам показания.Вероятно, мы получим значение, близкое к заявленному, но не точное.

Например, этот показатель рассчитан на 1000 микрофарад, но мы читаем около 946.

Пример считывания 1000 микрофарад на конденсаторе

Этот конденсатор рассчитан на 33 микрофарад, но мы измеряем около 36.

Пример конденсатора

Как работает конденсатор?

Вы часто задаетесь вопросом, «как работает конденсатор»?

По крайней мере, я спрашивал себя об этом много раз, когда был моложе.

[youtube http://www.youtube.com/watch?v=oIooFPhXiNs?rel=0&w=640&h=360]

Мне никогда не нравилось «объяснение физики».

В нем говорится что-то вроде «конденсатор работает, накапливая энергию электростатически в электрическом поле» .

Не знаю, как вы, но это предложение не сделало меня мудрее, когда я только начинал заниматься электроникой.

Мне нравится отвечать на вопрос «как работает конденсатор?» говоря, что конденсатор работает как крошечная перезаряжаемая батарея с очень очень низкой емкостью.

Время, необходимое для разряда конденсатора, обычно составляет доли секунды. Настало время подзарядить его.

БЕСПЛАТНО Бонус: Загрузите базовые электронные компоненты [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

Что такое конденсатор?

Значит, конденсатор может накапливать заряд. И он может освободить заряд при необходимости. Но как это сделать? Как конденсатор работает на более глубоком уровне?

Конденсатор состоит из двух металлических пластин.С диэлектрическим материалом между пластинами.

Когда вы прикладываете напряжение к двум пластинам, создается электрическое поле. Положительный заряд будет накапливаться на одной пластине, а отрицательный — на другой.

И это то, что имеют в виду физики, когда говорят, что «конденсатор работает, накапливая энергию электростатически в электрическом поле».

Существует много разных типов конденсаторов.

Для чего нужен конденсатор?

Для фильтрации обычно используется конденсатор

А.Но что такое фильтрация?

Аналог батареи

Рассмотрим пример с аккумулятором.

Многие будильники получают питание от розетки на стене в доме. Иногда отключается электричество. У большинства будильников есть резервная батарея, которая берет на себя и питает будильник до тех пор, пока питание не вернется, чтобы время не сбрасывалось.

Ну, в электронных схемах точно так же можно использовать конденсаторы.

Конденсаторы развязки

Например, если у вас есть схема с микроконтроллером, на котором выполняется какая-то программа.Если напряжение на микроконтроллере падает всего на долю секунды, микроконтроллер перезапускается. А ты этого не хочешь.

Используя конденсатор, конденсатор может подавать питание на микроконтроллер за доли секунды, когда напряжение падает, так что микроконтроллер не перезапускается. Таким образом, он отфильтрует «шум» в линии электропередачи.

Этот тип фильтрации называется «развязкой». И конденсатор, используемый для этой цели, называется «развязывающим конденсатором». Его также называют «байпасным конденсатором».

Использование конденсаторов для фильтров

Вы также можете комбинировать конденсаторы и резисторы, чтобы сформировать фильтры, предназначенные для определенных частот. Например, в аудиосистеме вы можете настроить высокие частоты, чтобы удалить их (например, в сабвуфере). Это называется фильтром нижних частот.

Возврат из «Как работают конденсаторы?» в «Электронные компоненты онлайн»

Важная роль конденсаторов в системах распределения

Коэффициент мощности

Если напряжение в цепи по какой-либо причине упадет ниже заданного уровня, устройство, называемое конденсатором, может на мгновение поддержать напряжение на уровне линии. По сути, конденсатор служит той же цели, что и резервуар для хранения воды в системе водоснабжения.

Что такого важного в роли конденсаторов в распределительных сетях? (Фото: utilityproducts.com)

Поддерживая воду в резервуаре для хранения на определенном уровне, давление на воду, подаваемую системой, подключенной к нему, поддерживается равномерно.

Задача конденсаторов — поддерживать коэффициент мощности как можно ближе к 1.

Коэффициент мощности играет важную роль в электричестве. Здесь достаточно сказать, что поддержание коэффициента мощности на уровне 1 является значительным экономическим преимуществом для энергокомпании и потребителя. Индуктивность — это элемент в цепи, который снижает коэффициент мощности до 1.

Емкость — враг индуктивности. Таким образом, конденсаторы противодействуют индуктивности, поддерживают коэффициент мощности близким к 1 и экономят деньги для энергокомпании.

Конденсатор обычно состоит из двух проводников, разделенных изоляционным материалом.Среди других материалов, которые могут быть использованы, конденсатор может быть изготовлен из алюминиевой фольги, разделенной пропитанной маслом бумагой (см. Рисунок 4-22), или из синтетических изоляционных материалов.

Рисунок 1. Первичный конденсатор

Емкость — это свойство конденсатора. Емкость зависит от площади проводников, от расстояния между проводниками и от типа используемого изоляционного материала.

Введение конденсаторов в цепь приводит к тому, что ток опережает напряжение в фазе .

Введение индуктивности (или катушки индуктивности) в цепь заставляет ток отставать от напряжения по фазе. В большинстве энергетических приложений преобладает индуктивность, которая снижает мощность полезной нагрузки, производимую коммунальной компанией для данного размера генерирующего оборудования.

Конденсатор противодействует этой потере мощности и делает производство электроэнергии более экономичным.


Рисунок 2 — Конденсаторы на опоре. (a) Первичный и (b) вторичный конденсаторы

устанавливаются на траверсах или платформах (см. Рисунок 2 ) и защищены молниеотводами и вырезами, как и трансформаторы. Рисунок 3 иллюстрирует множество вариантов использования конденсаторов.


Как используются конденсаторы

Рисунок 3 — Как используются конденсаторы

Ссылка: Руководство по системам распределения электроэнергии — Энтони Дж. Пансини, EE, PE; Life Fellow IEEE, старший член ASTM

Связанное содержание EEP с спонсорскими ссылками

Конденсатор — Energy Education

Рис. 1. Схема конденсатора, включая две параллельные пластины с площадью поверхности A и разделительным расстоянием, d.Хотя не все конденсаторы имеют такую ​​форму, часто думают, что они выглядят именно так, поскольку это простейшая геометрия.

Рисунок 2. Анимация из моделирования PhET батареи, заряжающей конденсатор до тех пор, пока ток не перестанет течь через цепь. [1]

Конденсатор — это электронное устройство, которое накапливает заряд и энергию. Конденсаторы могут выделять энергию намного быстрее, чем батареи, что приводит к гораздо более высокой удельной мощности, чем батареи с таким же количеством энергии.Исследования конденсаторов продолжаются, чтобы увидеть, можно ли их использовать для хранения электроэнергии для электросети. Хотя конденсаторы — это старая технология, суперконденсаторы — это новый поворот в этой технологии.

Конденсаторы — это просто устройства, состоящие из двух проводников, несущих одинаковые, но противоположные заряды. Простой конденсатор с параллельными пластинами состоит из двух металлических пластин одинакового размера, известных как электроды, разделенных изолятором, известным как диэлектрик, который удерживается параллельно друг другу. Затем конденсатор интегрируется в электрическую цепь.В простой цепи постоянного тока каждая пластина конденсатора со временем становится противоположно заряженной из-за пути электрического тока через цепь. Батарея направляет заряд в одном направлении, так что одна пластина становится заряженной положительно, а другая — отрицательно. Это создает электрическое поле из-за накопления равных и противоположных зарядов, что приводит к разнице потенциалов или напряжению между пластинами. Поскольку емкость пластин постоянна, напряжение между пластинами пропорционально увеличивается.По мере увеличения заряда на каждой пластине напряжение между пластинами становится равным напряжению батареи, и в этот момент ток больше не будет течь через цепь. [2] Этот эффект зарядки и разрядки можно увидеть на рисунке 2. Ток может возобновиться, если открыт альтернативный путь, так что конденсаторы могут разряжаться, или с использованием переменного тока, чтобы конденсатор периодически заряжался и разряжался.

Важным параметром конденсатора является емкость, мера способности объекта накапливать заряд.2} {2} [/ математика]

  • [math] \ Delta V [/ math] — это напряжение между пластинами, измеренное в вольтах (В)
  • [math] C [/ math] — емкость конденсатора, измеряемая в фарадах (F)
  • [math] E [/ math] — энергия, запасенная в конденсаторе, измеренная в джоулях (Дж)


Увеличение емкости или напряжения, или того и другого, увеличивает количество энергии, хранящейся в конденсаторе. .

В качестве альтернативы к конденсатору можно добавить диэлектрик. Диэлектрик — это изолятор, помещенный между электродами. Это увеличивает емкость конденсатора без изменения его размеров. Это позволяет конденсатору накапливать больше энергии, оставаясь при этом маленьким. Степень увеличения зависит от материала, из которого изготовлен диэлектрик. [3]

использует

Конденсаторы

не обладают такой высокой плотностью энергии, как батареи, а это означает, что конденсатор не может хранить столько энергии, как батарея сопоставимого размера.Тем не менее, более высокая мощность конденсаторов означает, что они подходят для приложений, требующих хранения небольшого количества энергии с последующим ее очень быстрым высвобождением. Le Mans Prototype Гоночные автомобили используют конденсаторы для питания электродвигателей передних колес. Эти конденсаторы заряжаются за счет рекуперативного торможения и обеспечивают полный привод и дополнительную мощность при выезде из поворотов. [4]

Конденсаторы также используются во многих электронных устройствах, для которых требуется аккумулятор.Этот конденсатор накапливает энергию, чтобы предотвратить потерю памяти во время замены батареи. Распространенным (хотя и не обязательно широко известным) примером является зарядка вспышки камеры. Вот почему нельзя сделать два снимка со вспышкой в ​​быстрой последовательности; конденсатор должен накапливать энергию от батареи. [5]

Более того, конденсаторы играют ключевую роль во многих практических схемах, прежде всего как стабилизаторы тока и как компоненты, помогающие преобразовывать переменный ток в постоянный в адаптерах переменного тока.Их можно использовать таким образом благодаря тому факту, что конденсаторы устойчивы к резким изменениям напряжения, а это означает, что они могут действовать как буфер для хранения и отвода электроэнергии для поддержания стабильного выходного тока. [6] Таким образом, конденсатор способен стабилизировать колеблющийся переменный ток за счет своей способности удерживать и выделять электрическую энергию в разное время.

Поскольку конденсаторы накапливают энергию в электрических полях, некоторые исследователи работают над разработкой суперконденсаторов, чтобы помочь с накоплением энергии.Это может оказаться полезным при транспортировке энергии или для хранения и высвобождения энергии из непостоянных источников, таких как энергия ветра и солнца.

Моделирование петель

Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите эту симуляцию, чтобы увидеть, как гравитационная потенциальная энергия и потенциальная энергия пружины перемещаются вперед и назад и создают изменяющееся количество кинетической энергии (подсказка: щелкните , чтобы показать энергию , прежде чем подвешивать массу):

Список литературы

  1. ↑ Университет Колорадо. (25 апреля 2015 г.). Комплект для конструирования цепей [Интернет]. Доступно: http://phet.colorado.edu/sims/circuit-construction-kit/circuit-construction-kit-ac_en.jnlp
  2. ↑ Гиперфизика. (25 апреля 2015 г.). Конденсаторы [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/capac.html
  3. ↑ Р. Д. Найт, «Потенциал и поле», в Физика для ученых и инженеров: стратегический подход, 2-е изд. Сан-Франциско: Пирсон Аддисон-Уэсли, 2008, гл.30, сек. 5. С. 922-932.
  4. ↑ «Суперконденсаторы берут на себя ответственность в Германии» Филиппа Болла, бюллетень MRS, том 37, выпуск 09, 2012 г., стр. 802-803
  5. ↑ (2014, 27 июня). Как работают вспышки камеры [Онлайн]. Доступно: http://electronics.howstuffworks.com/camera-flash.htm
  6. ↑ Sparkfun. (25 апреля 2015 г.). Конденсаторы [Онлайн]. Доступно: https://learn.sparkfun.com/tutorials/capacitors

Почему конденсаторный блок пропускает постоянный ток? Электрические технологии

Почему конденсатор допускает переменный ток и блокирует постоянный ток?

Один из наиболее частых вопросов, которые студенты-электрики снова и снова задают: почему конденсаторы блокируют постоянный ток и допускают переменный ток ?.Чтобы узнать точную причину, давайте узнаем, что такое конденсатор и как он работает при подключении к источнику постоянного, а затем переменного тока.

Что такое конденсатор?

Конденсатор (также известный как конденсатор) представляет собой устройство с двумя металлическими пластинами, разделенными изолирующей средой, такой как фольга, ламинированная бумага, воздух и т.д. AC. Его способность к хранению измеряется в Фарадах. Для конденсаторов малой емкости используются единицы «мкФ» или «нФ».Имейте в виду, что конденсатор работает как разомкнутая цепь при постоянном токе, то есть он работает только при переменном напряжении.

Разница между переменным током и постоянным током

Постоянный ток является постоянным значением, то есть он не меняет полярность (направление) и величину, в то время как переменный ток постоянно меняет свое направление и амплитуду в зависимости от своей частоты, как показано на рисунке ниже.

Теперь давайте подключим конденсатор к постоянному току, а затем к переменному току и посмотрим, что произойдет?

Почему конденсаторный блок постоянного тока?

Имейте в виду, что конденсатор действует как короткое замыкание на начальной стадии, а полностью заряженный конденсатор ведет себя как разомкнутая цепь.Конденсаторы сопротивляются изменениям напряжения , в то время как катушки индуктивности сопротивляются изменению тока и действуют как короткое замыкание в DC .

На начальном этапе, когда мы подключаем конденсатор к источнику постоянного тока, будет возникать небольшой ток, пока пластины не станут насыщенными. Другими словами, положительный вывод источника питания постоянного тока будет всасывать электроны с одного вывода и подталкивать электроны ко второму выводу, пока первая пластина не станет заряженной положительно, а вторая — отрицательно заряженной, как показано на рис.На этом этапе приложенное напряжение, равное напряжению на конденсаторе и обкладках конденсатора, становится насыщенным, и ток больше не протекает. На этом этапе конденсатор ведет себя как разомкнутая цепь, и если мы увеличим значение приложенного постоянного напряжения, конденсатор может повредиться и взорваться.

Давайте посмотрим на решенном примере конденсатора, подключенного по постоянному току.

Мы знаем, что в источнике постоянного тока нет частоты, т.е. частоты 0 Гц.

Если мы положим частоту « f = 0» в формулу индуктивного реактивного сопротивления (которое является сопротивлением переменному току в емкостной цепи).

X C = 1 / 2π f C

Положим f = 0

X C = 1 / 2π 0 C

X C = 1/0 = Infinity

Это означает Теоретически конденсатор будет обеспечивать бесконечное сопротивление протеканию тока в соответствии со своим номиналом. Следовательно, ток не будет протекать, поскольку ток в емкостных цепях равен:

I = V / X C

Если мы положим X C как бесконечность, значение тока будет равно нулю.

I = 0 A

Это точная причина, по которой конденсаторный блок постоянного тока.

Почему конденсатор проходит переменный ток?

Когда мы подключаем конденсатор к источнику переменного тока, он начинает заряжаться и разряжаться непрерывно из-за постоянного изменения напряжения питания. Это происходит из-за изменений в напряжении переменного тока, т.е. переменный ток положительный в начальном цикле для «t = 1» и отрицательный во втором цикле «t = 2», как показано на рисунке ниже.

На рис. 2 (а) происходит то же самое, что и в конденсаторе, подключенном постоянным током на начальном этапе i.е. положительный вывод источника засасывает электроны из подключенной пластины конденсатора и толкает обратно ко второму выводу. Первая пластина становится положительной, а другая отрицательной из-за большого количества электронов. Этот процесс известен как зарядка конденсатора, то есть он сохраняет энергию в виде электрического поля.

Заряд конденсатора определяется по формуле:

В C = V S (1− e (−t / RC) )

или

V C = V S (1 — e -t / τ )

Где:

  • В C = Напряжение на конденсаторе
  • В S = Источник или приложенное напряжение
  • e = 2.718 (экспонента, т.е. основание натурального логарифма)
  • τ = R / C = постоянная времени «тау» в секундах

Теперь полярность приложенного напряжения меняется на противоположную, т.е. положительное становится отрицательным и наоборот, как показано на рис. (б). Теперь отрицательная клемма источника притягивается к дыркам и отталкивает электроны к дыркам в противоположном направлении. Процесс остается непрерывным, и ток течет из-за непрерывного потока электронов. Этот процесс известен как разряд конденсатора i.е. он восстанавливает накопленную энергию в цепи.

Разрядка конденсатора определяется по формуле:

В C = В S x e (−t / RC) )

Почему тогда конденсатор рассчитан на постоянный ток?

Мы знаем, что существуют разные конденсаторы с разной маркировкой на паспортных табличках, то есть 400 В постоянного тока или 400 В переменного тока. Если конденсатор блокирует постоянный ток, почему номинал указан в постоянном токе?

Ну, это не значит, что мы не можем использовать конденсаторы в цепях постоянного тока (вы их уже видели).Значение постоянного тока, указанное на паспортной табличке конденсатора, является максимальным значением постоянного напряжения, которое может быть безопасно подключено к нему. Имейте в виду, что это не значение емкости зарядки. Поляризованные конденсаторы в основном используются в цепях постоянного тока, а неполяризованные — в цепях переменного тока.

Как правило;

  • Конденсаторы с маркировкой переменного тока могут использоваться на постоянном токе.
  • Конденсаторы с маркировкой DC нельзя использовать с переменным током.

Потому что напряжения переменного тока показывают среднеквадратичное значение, где пиковое значение переменного тока равно 1.414 раз больше, чем DC.

Связанное сообщение: Переменный ток или постоянный ток — какой из них более опасен и почему?

Применение конденсаторов в постоянном токе
  • Фильтры
  • Выпрямители (преобразование переменного тока в постоянный)
  • Кондиционирование питания
  • Конденсатор связи и развязывающий конденсатор и т. Д.
Применение конденсаторов в переменном токе

Конденсаторы по теме:

объяснение громкоговорителей — блог Teufel Audio

Также известные как «конденсаторы», конденсаторы представляют собой пассивные электрические компоненты, способные накапливать электрический заряд в двух отдельных электродах или «пластинах», разделенных непроводящим материалом, называемым диэлектриком .Диэлектриком может быть что угодно, через которое не проходит электричество, от керамики и стекла до специально разработанного геля. В отличие от батарей, транзисторы не используют химическую реакцию для зарядки электродов, а требуют входящего тока. Конденсаторы разряжаются, если их электроды подключены к проводящему материалу. Молния — это пример двух электродов — двух заряженных слоев облаков или заряженного слоя облаков и земли, — которые разделены диэлектрическим воздухом. Все мы знаем, как это выглядит, когда этот конкретный конденсатор разряжается.Из этого примера очевидны две вещи: конденсаторы мощные и могут очень быстро разряжать накопленный электрический заряд.

Среди множества применений конденсатора:

  • Частоты фильтрации
  • Выравнивание блока питания
  • Сигнальная развязка и развязка
  • Обработка сигналов

Обеспечение равномерного расхода напряжения

Многие из вышеупомянутых применений могут быть применены в области аудиотехнологий. Например, конденсаторы способны справляться с быстрыми изменениями напряжения — очень удобная черта в области Hi-Fi.Они также помогают обеспечивать стабильный сигнал громкоговорителей. Например, если уровень низких частот в определенной песне увеличивается очень быстро, может не хватить напряжения для питания динамика до уровней, обозначенных звуковым сигналом. В таких случаях в краткосрочной перспективе могут помочь конденсаторы, передавая свою заряженную энергию.

Это известно как «выравнивание» напряжения. Конденсаторы часто встраивают в усилители, чтобы обеспечить равномерный поток напряжения. Неиспользование конденсаторов приведет к неопределенному источнику питания, который не может быть обработан.Изображенное графически, напряжение будет состоять только из большой синусоидальной волны, которая падает до нуля вольт после каждого пика. Для более стабильного результата эти промежутки напряжения должны быть заполнены сэкономленной энергией конденсатора. Конденсатор никогда не разряжается, потому что он просто заряжается во время пиков волны и разряжается во время промежутков.

Для каскадов усиления

Дополнительное применение конденсатора — соединение двух каскадов усиления, например предусилителя с усилителем.В идеале от предусилителя к усилителю должно передаваться только переменное напряжение, а не постоянное. С конденсатором это достаточно легко устроить: когда конденсатор присоединен к батарее и полностью заряжен, через него не может протекать постоянный ток. Однако переменный ток будет продолжать течь. Конденсатор, который служит для блокировки постоянного напряжения от переменного напряжения, известен как разделительный конденсатор.

Микрофоны

также используют конденсаторы связи для блокировки сигналов постоянного тока из записываемого сигнала.В то время как сигнал постоянного тока необходим для питания микрофона, в готовой аудиозаписи требуется только сигнал переменного тока.

Перейти к кроссоверу

В блоге Teufel Audio недавно обсуждался еще один важный аудиокомпонент, а именно кроссовер. Также в кроссоверах используется много разных конденсаторов разного размера. Без конденсаторов кроссоверы не могли нормально работать. Работа конденсаторов — пропускать только высокие частоты. Индуктор (также известный как катушка или дроссель) выполняет противоположную задачу, пропуская только низкие частоты.Он делает это, сохраняя энергию в магнитной, а не в электрической форме. Индукторы — это фильтры нижних частот, а конденсаторы — фильтры верхних частот. Катушки индуктивности и конденсаторы будут различаться по размеру в зависимости от типа громкоговорителя, для которого построен кроссовер, который их содержит.

Значения конденсаторов

Чем больше конденсатор, тем больше он способен заряжать. Точный заряд, который может испустить конденсатор, обычно указывается на устройстве.Если это не так, теоретически можно рассчитать его самостоятельно по формуле.

Значения конденсатора указаны в фарадах (Ф), обычно в микрофарадах (мкФ) и вольтах (В). Значение в фарадах указывает на то, что известно как номинальная емкость конденсатора, или просто емкость , которая сообщает нам, сколько энергии содержит конденсатор при заданном напряжении. Конденсатор емкостью 1 фарад может заряжаться 1 вольт. Кроме того, нагрузка будет указана на конденсаторе как номинальное напряжение.Это указывает на величину напряжения, которому может подвергаться конденсатор, прежде чем он станет поврежденным. Большинство производителей будут использовать конденсаторы, рассчитанные на большее напряжение, чем обычно выдает система. Это сделано для того, чтобы дать системе запас прочности. Например, если на конденсатор подается напряжение +50 В, можно ожидать, что его конденсатор будет иметь значение 63 В и 5000 мкФ. Обратите внимание, что в отличие от батареи, это значение указывает не количество заряда, а, скорее, максимум, до которого он может быть заряжен .Производитель обычно гарантирует, что конденсатор будет правильно работать в этих условиях при температуре от 70 до 80 градусов Цельсия.

Что делать, если конденсатор перестал работать?

А конденсатор может выйти из строя из-за воздействия тепла более 80 градусов. Белый дым, поднимающийся из корпуса усилителя, свидетельствует о неисправности конденсатора. Кто бы ни владел несколькими старыми Hi-Fi устройствами, вероятно, когда-нибудь приходилось менять конденсатор.

Следующее видео дает несколько полезных советов для тех, кто хотел бы попробовать заменить неисправный конденсатор самостоятельно, хотя всегда следует помнить, что конденсатор с высоким напряжением может быть чрезвычайно опасным — даже смертельным — в обращении.Это одна из причин, по которой мы рекомендуем в случае сомнений обратиться к специалисту.

Помимо сильного нагрева, конденсаторы могут быть повреждены многими другими способами.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *