+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Конденсатор это

Конденсатор — это устройство с постоянным или переменным значением емкости и малой проводимостью, предназначенное для накопления заряда и энергии электрического поля (от латинского condensare, что значит уплотнять или сгущать; condensatio — накопление). Конденсатор является пассивным электронным компонентом. Его емкость измеряется в фарадах.

Рассмотрим принцип работы конденсатора, узнаем какие процессы внутри него происходят и зачем нужен данный компонент.

Как работает конденсатор — устройство и принцип взаимодействия

Вначале разберемся, что такое конденсатор. Для этого рассмотрим, как данная радиодеталь изображается на схемах:

Обозначение конденсаторов
Как видно по маркировке конденсатора — это две металлические пластины, расположенные рядом с небольшим зазором. Как правило, между ними прокладывается слой диэлектрика. Также бывают конденсаторы просто с воздушным зазором.

У незнающего человека может возникнуть вопрос, какую роль играют рядом расположенные металлические пластины?

Разберемся в данном вопросе:

Дело в том, что если подать на эти пластины напряжение, то они накопят электрический заряд и будут некоторое время его держать.

Как конденсаторы накапливают и держат заряд:

Например мы возьмем элемент питания, между контактами которого есть напряжение. Электрическое напряжение можно представить как стремление заряженных частиц перескочить от одного контакта к другому для устранения разности потенциалов. Подключая к источнику питания конденсатор, заряженные частицы устремляются друг к другу через него. Расстояние между платинами конденсатора невелико, но все же они разделены диэлектриком, что не позволяет частицам перескочить друг к другу. Но между ними возникает электрическое поле, которое подобно магнитному удерживает в притянутом друг к другу состоянии отрицательно заряженные частицы на одной пластине, а положительно заряженные — на другой.
Соответственно происходит накопление в конденсаторе заряда.

Логично предположить, что чем больше пластин и чем они ближе друг к другу, тем больше заряженных частиц можно удержать на их плоскостях.

Как уже упоминалось, заряженные частицы устремляются друг к другу и заполняют всю площадь пластин. Движение заряжает их — это и есть электрический ток. Получается, что в момент зарядки конденсатора элемент питания отдает свой заряд. Но в отличие от аккумуляторов сила тока накопления и отдачи заряда конденсаторов ограничивается сопротивлением проводников и некоторыми нюансами, зависящими от типов компонентов.

Емкость конденсаторов

Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроемкостью.

Электроемкость обозначается буквой C и определяется по формуле: C=q ⁄ U, где q — заряд конденсатора, U — напряжение между обкладками конденсатора. Электроемкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика: C ∼ S ⁄ d, где S — площадь каждой обкладки, d — расстояние между обкладками.

За единицу электроемкости в СИ принимается Фарад (Ф). 1 Фарад равен емкости конденсатора, при которой заряд 1 Кулон создает между его обкладками напряжение 1 Вольт: 1 Фарад = 1 Кулон ⁄ 1 Вольт.

1 Ф — это большая емкость для конденсатора. Чаще всего конденсаторы имеют электроемкость, равную дольным единицам Ф: микрофарад (мкФ) — это 10 в минус 6 степени Ф, пикофарад (пФ) — это 10 в минус 12 степени Ф.

Для получения требуемой емкости конденсаторы соединяют в батареи:

Если конденсаторы соединены параллельно, то общая емкость равна сумме емкостей: Cоб = C1 + C2 + C3.
Если конденсаторы соединены последовательно, то общая емкость будет равна: 1 ⁄ Cоб = 1 ⁄ C1 + 1 ⁄ C2 + 1 ⁄ C3.

Виды конденсаторов в зависимости от конструкции

Прежде чем переходить к классификации, нужно отметить, что пластины конденсаторов правильнее называть обкладками. Это обусловлено тем, что не всегда используются именно пластины.

Электролитические конденсаторы (оксидные)

Электролитические конденсаторы (оксидные) — это разновидность конденсаторов, в которых диэлектриком между обкладками является пленка оксида металла, где анод выполнен из металла, а катод представляет собой твердый, жидкий или гелевый электролит.

В алюминиевых электролитических конденсаторах используется алюминиевая фольга, свернутая для экономии пространства в рулон, а в качестве второй обкладки используется жидкий электролит. Такие конденсаторы имеют достаточно большую емкость, так как электролит ввиду своего агрегатного состояния очень плотно прилегает к первой обкладке. А разделяет эти слои тончайший диэлектрик в виде оксидной пленки на алюминиевой фольге.

Электролитические (оксидные) конденсаторы имеют полярность («+», «-»), и ее нужно соблюдать при подключении. При смене полярности из-за химических процессов слой оксидной пленки разрушается, но электролит подобран таким образом, что при повторном подключении уже с правильной полярностью разрушенные участки оксидной пленки восстанавливаются.

Восстановительный процесс называется анодированием. При этом выделяется газ, и конденсатор может вздуться. На электролитических конденсаторах сверху делаются насечки, чтобы при сильном вздутии он не взорвался, а просто раскрылся в этом ослабленном месте.

Из недостатков электролитических (оксидных) конденсаторов можно также выделить, что из-за свернутой в рулон обкладки она имеет паразитную индуктивность. Из-за такой индуктивности на высокой частоте конденсатор может вести себя как дроссель. Такие конденсаторы ввиду неидеальности электролита как проводника также имеют паразитное сопротивление. Данное сопротивление со временем увеличивается из-за высыхания электролита.

К электролитическим конденсаторам относятся и следующие типы:

  • В танталовых конденсаторах в роли анода (обкладки, к которой подключается плюсовой контакт) используется танталовая губка, которая находится в среде электролита (катода). Обкладки разделяет оксидная пленка на металле. Танталовые конденсаторы не подвержены паразитной индуктивности и используются в высокочастотных цепях.
  • В ниобиевых электролитических конденсаторах пассивированный металлический ниобий или монооксид ниобия рассматривается в качестве анода, а на анод добавляется изолирующий слой пятиокиси ниобия, так что он действует как диэлектрик. Твердый электролит укладывается на поверхность оксидного слоя, который действует как катод. Основным преимуществом ниобиевых конденсаторов является способность выдерживать высокие температуры во время пайки и довольно большая удельная емкость. Данные компоненты легко встраиваются в печатную плату и требуют соблюдения идеальной полярности. Любое обратное напряжение или ток пульсации, превышающий указанный разрушит диэлектрик и сам конденсатор.

Керамические конденсаторы

Керамический конденсатор — это накапливающий электронный компонент, у которого диэлектриком служит керамика на основе титанатов циркония (ZrTiO3), кальция (CaTiO3), никеля (NiTiO3) и бария (BaTiO3) (в особых случаях применяют конденсаторную керамику на базе Al2O3, SiO2, MgO).

Керамические конденсаторы дополнительно можно разделить на два подвида: 

  • Дисковые керамические конденсаторы состоят из двух обкладок, которые разделены между собой керамическим диэлектриком.
  • В многослойных элементах обкладки представлены в виде пачек из металлических пластин, которые входят друг в друга, и которые все так же разделены керамическим диэлектриком.

В отличие от электролитических конденсаторов, керамические имеют меньшую емкость. При этом они более надежны и не имеют паразитной индуктивности, так как обкладки не свернуты в рулон. А благодаря современным технологическим процессам в какой-то степени нивелируется недостаток с малой емкостью (конденсаторы могут иметь емкость десятки микрофарад).

Основной недостаток данного типа конденсаторов кроется в самой керамике. Такой диэлектрик очень сильно подвержен термическому воздействию. От перепадов температуры меняется емкость конденсатора. Также в зависимости от приложенного напряжения емкость может колеблется.

Существуют более качественные керамические диэлектрики — керамика первого класса. С такими изоляторами описанные выше проблемы исчезают. Но ухудшается показатель емкости к объему, и увеличивается цена компонента.

Пленочные конденсаторы

Для того, чтобы избежать недостатков керамических конденсаторов, применяют другой тип — пленочные, которые используют в качестве диэлектрика между обкладок пленку из разных материалов (полистирол, полипропилен, тефлон).

Пленочные конденсаторы можно считать почти идеальными. Они очень стабильно держат емкость, не имеют индуктивности, умеют самостоятельно восстанавливаться после пробоя. Но, к сожалению, их соотношение емкости к объему одно из самых худших. Их используют в ответственных и важных местах схем, где нужно пожертвовать пространством на плате в угоду надежности и стабильности.

Применение конденсаторов в электротехнике

В данном пункте разберемся с типами конденсаторов, но уже не по конструкции, а по применению.

Начнем изучение с пусковых конденсаторов. Как известно у электродвигателей пусковой ток гораздо выше, чем номинальный рабочий ток. И так как конденсатор может отдать ток очень большой величины, то параллельно лини питания подключается элемент большей емкости. Если таким же образом установить конденсатор после трансформатора и диодного моста, то его уже можно будет называть сглаживающим. Дело в том, что скорость зарядки конденсатора велика, и он будет заряжаться пиками, полученными от выпрямленного переменного напряжения.

Пусковой и сглаживающий конденсатор

Может возникнуть вопрос, почему после выпрямления переменного тока напряжение поднимается? Переменное напряжение обычно считается как среднеквадратичное, но в вершине своей амплитуды оно имеет гораздо выше значение, и конденсатор заряжается этими пиками и стремится держать это максимальное напряжение.

В импульсных блоках питания для сглаживания применяются одновременно разные типы конденсаторов (обычно оксидные и керамические), подключенных параллельно. Электролитические элементы ввиду своей большой емкости хорошо сглаживают низкочастотные пульсации большой амплитуды. А керамические конденсаторы хороши тем, что имеют минимальное внутреннее сопротивление и хорошо сглаживают высокочастотные пульсации.

Чтобы перейти к следующим сценариям применения, нужно принять тот факт, что конденсатор проводит переменный ток. Разберемся подробнее. В тот момент, пока конденсатор заряжается, по цепи передвигаются заряженные частицы (что и является течением тока). При постоянном токе движение частиц в цепи происходит только в то время, пока конденсатор заряжается. При переменном же токе полярность постоянно меняется и конденсатор будет постоянно заряжаться, и из-за этого будет поддерживаться течение тока. Уменьшая емкость конденсатора можно ограничивать мощность, подаваемую к нагрузке. При одинаковой емкости, но увеличивая частоту переменного тока и соответственно процесса зарядки, можно пропустить через конденсатор ток большей величины. Использующие такой принцип работы конденсаторы называются

гасящими или балластными.

Разделительные конденсаторы (межкаскадные) как правило используют на звуковом усилении. Для того, чтобы транзистор усиливал сигнал, нужно переменный звуковой сигнал сместить полностью в постоянную сторону (перемещение переменного синуса в одну из полярностей). По сути получается постоянный, но пульсирующий ток. Транзистор полученный результат усиливает, и остается подать сигнал на динамик. Но это невозможно, так как ток имеет постоянную составляющую. Если после усиливающего каскада поставить конденсатор, то он вычтет из сигнала всю постоянную составляющую. В итоге получится чистый синусоидальный сигнал. Если уменьшить емкость используемого конденсатора, то можно обрезать низкие частоты. Данные частоты имеют большую ширину волны и не впишутся в меньшую емкость компонента.

В заключение стоит отметить, что конденсаторы применяются в паре с другими радиокомпонентами. Такие связки используются для создания всевозможных колебательных контуров, частотных фильтров и цепей обратной связи.

Конденсатор — Физикон

КОНДЕНСАТОРЫ  Презентация…загрузить

Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля (от лат. kondensator — «уплотнять», «сгущать»).

Простейший плоский конденсатор состоит из двух одинаковых металлических пластин — обкладок — и  слоя диэлектрика, толщина которого мала по сравнению с размерами пластин.

 

На схемах электрических цепей  конденсатор обозначается:  .

 

Конденсатор — два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

YouTube Video

  

Типы конденсаторов


      Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника тока.  При зарядке обе обкладки получают заряды, равные по модулю, но противоположные по знаку. Под зарядом конденсаторов понимают модуль заряда одной из его обкладок. Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроёмкостью.

Электроёмкость  обозначается буквой C и определяется по формуле:

C=qU, где  q — заряд конденсатора, Кл  U — напряжение между обкладками конденсатора, В.

Электроёмкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика:

 

C∼Sd, где S — площадь каждой обкладки , d — расстояние между обкладками.

За единицу электроёмкости в СИ принимается Фарад (Ф).   

Она названа в честь Майкла Фарадея — английского физика. 1 Фарад равен ёмкости конденсатора, при которой заряд 1 Кулон создаёт между его обкладками напряжение 1 Вольт:  1 Фарад=1 Кулон1 Вольт.

 

1 Ф — это очень большая ёмкость для конденсатора. Чаще всего конденсаторы имеют электроёмкость, равную дольным единицам Ф: микрофарад (мкФ) — 10−6Ф,  пикофарад (пФ) — 10−12 Ф.

 

Для получения требуемой ёмкости конденсаторы соединяют в батареи.

 

Если конденсаторы соединены параллельно, то общая ёмкость равна сумме ёмкостей: Cоб=C1+C2+C3.

 

Если конденсаторы соединены последовательно, то общая ёмкость будет равна: 1Cоб=1C1+1C2+1C3.

 

  

При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов. По закону сохранения энергии работа внешних сил равна энергии поля конденсатора. При разрядке конденсатора за счёт этой энергии может быть совершена работа. Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

C — ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

YouTube Video

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью.  

!Электроёмкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Емкость плоского конденсатора прямо пропорциональна площади пластин , диэлектрической проницаемости среды , и обратно пропорциональна расстоянию между пластинами d:

 Величина, измеряемая отношением заряда одной из пластин конденсатора к напряжению между пластинами, называется электроёмкостью конденсатора.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

C=q/U

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Опыт для наблюдения зависимости электроемкости плоского конденсатора от расстояния между пластинами
YouTube Video


 

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Энергию электрического поля конденсатора можно рассчитать по формуле: 

  

Из формулы видно, что энергия конденсатора данной электроёмкости тем больше, чем больше его заряд.


YouTube Video

Конденсаторы в клавиатуре

Пластины конденсатора располагаются на тыльной стороне клавиши и на плате.

При нажатии на клавишу, меняется расстояние между пластинами. Это приводит к изменению электроемкости конденсатора, на которое реагирует микросхема клавиатуры. Далее, микросхема преобразует сигнал в соответствующий код, который передается компьютеру.

Для закрепления и проверки знаний  пройдите тест по теме «КОНДЕНСАТОР»

Тестирование

Тестирование




Источники:

Учебник А. В. Перышкин, Е. М. Гутник  «Физика. 9 класс».

https://electrosam. ru/  Виды конденсаторов.

https://elektronchic.ru/  Электронщик.

https://ru.wikipedia.org  Википедия.

КОНДЕНСАТОР (электрический) — это… Что такое КОНДЕНСАТОР (электрический)?

КОНДЕНСА́ТОР электрический (от лат. сondensator, — тот, кто уплотняет, сгущает), устройство, предназначенное для получения нужных величин электрической емкости (см. ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ) и способное накапливать (перераспределять) электрические заряды.
Электрический конденсатор состоит из двух (иногда более) подвижных или неподвижных проводящих электродов (обкладок), разделенных диэлектриком. Обкладки должны иметь такую геометрическую форму и быть так расположены друг относительно друга, чтобы созданное ими электрическое поле было сосредоточено в пространстве между ними. Как правило, расстояние между обкладками, равное толщине диэлектрика, мало по сравнению с линейными размерами обкладок. Поэтому электрическое поле, возникающее при подключении обкладок к источнику с напряжением U, практически полностью сосредоточено между обкладками. При этом частичные собственные емкости электрических обкладок пренебрежимо малы.
Таким образом, конденсатором называют систему, состоящую, как правило, из двух разноименно заряженных проводников, при этом заряд, который надо перенести с одного проводника на другой, чтобы зарядить один из них отрицательно, а другой положительно, называется зарядом конденсатора. Разность потенциалов U между обкладками конденсатора прямо пропорциональна величине заряда Q, находящегося на каждой из них:
Q=С.U
С — коэффициент, характеризующий конденсатор, называется электрической емкостью конденсатора или емкостью.
Численно емкость электрического конденсатора С равна величине заряда Q одной из обкладок при напряжении, равном 1 вольт:
С = Q/U.
В СИ единицей емкости является фарад (см. ФАРАД) — 1 Ф. Емкостью, равной одному фараду, обладает такой конденсатор, между пластинами которого возникает разность потенциалов, равная одному вольту, при заряде на каждой из пластин, равном одному кулону.
Параметры, конструкция и область применения конденсаторов определяются диэлектриком (см. ДИЭЛЕКТРИКИ), разделяющим его обкладки, поэтому основная классификация электрических конденсаторов проводится по типу диэлектрика. В зависимости от типа используемого диэлектрика конденсаторы могут быть воздушные, бумажные, слюдяные, керамические, электролитические и др.
По емкости различают конденсаторы постоянной емкости и конденсаторы переменной емкости. Конденсаторы переменной емкости и полупеременные изготовляются с механически и электрически управляемой емкостью. Изменение емкости в электрическом конденсаторе с механическим управлением достигается чаще всего изменением площади его обкладок или (реже) изменением зазора между обкладками. Простейший воздушный конденсатор переменной емкости состоит из двух изолированных систем металлических пластин, которые входят друг в друга при вращении рукоятки: одна группа (ротор) может перемещаться так, что ее пластины заходят в зазоры между пластинами другой группы (статора). Вдвигая и выдвигая одну систему пластин в другую можно изменить емкость конденсатора. Электрические конденсаторы переменной емкости с твердым диэлектриком (керамические, слюдяные, стеклянные, пленочные) в основном используются как полупеременные (подстрочные) с относительно небольшим изменением емкости. В настоящее время широко используются управляемые конденсаторы переменной емкости — варикапы (см. ВАРИКАП) и вариконды (см. ВАРИКОНД).
Емкость электрического конденсатора зависит от диэлектрический проницаемости диэлектрика, заполняющего конденсатор, и от формы и размеров его обкладок. По форме обкладок различают плоские, цилиндрические, сферические конденсаторы.
Плоский конденсатор представляет собой две плоские пластины, расстояние между которыми d мало по сравнению с их линейными размерами. Это позволяет пренебречь малыми областями неоднородности электрического поля у краев пластин и считать, что все поле однородно и сосредоточено между пластинами. Заряд конденсатора Q — это заряд положительно заряженной пластины.
Емкость плоского конденсатора С:
С= eeо S/d
S — площадь каждой обкладки или меньшей из них, d — расстояние между обкладками, eо— электрическая постоянная, e — относительная диэлектрическая проницаемость вещества, находящегося между обкладками. Заполнение пространства между пластинами диэлектриком увеличивает емкость в e раз.
Энергия, запасенная заряженным до постоянного напряжения U плоским электрическим конденсатором, равна:
W = CU2/2.
Наряду с плоским конденсатором часто используется плоский многопластинчатый конденсатор, содержащий n обкладок, соединенных параллельно.
Емкость цилиндрического конденсатора, обкладки которого представляют собой два коаксиальных полых цилиндра, вставленные друг в друга, и разделенных диэлектриком, равна:
С = 2peeoh¤ln(r2/r1),
где r2 и r1 — радиусы внешнего и внутреннего цилиндров, соответственно, а h — длина цилиндра. При этом не учитываются искажения однородности электрического поля у краев обкладок (краевой эффект), и потому эти расчеты дают несколько заниженные значения емкости C.
Емкость сферического конденсатора, представляющего собой вставленную одна в другую сферы, равна:
С = 4peeor2r1/(r2-r1),
где r2 и r1 — радиусы внешней и внутренней сфер, соответственно.
Кроме емкости, электрический конденсатор обладает активным сопротивлением R и индуктивностью (см. ИНДУКТИВНОСТЬ) L. Как правило, электрические конденсаторы используют на частотах, значительно меньших резонансной, на которых его индуктивностью обычно пренебрегают. Активное сопротивление конденсатора зависит от удельного сопротивления диэлектрика, материала обкладок и выводов, формы и размера конденсатора, частоты и температуры. Зависимость реактивного сопротивления электрических конденсаторов от частоты используется в электрических фильтрах.
При подключении обкладок к источнику постоянного напряжения, конденсатор заряжается до напряжения источника. Ток, продолжающий течь через конденсатор после его зарядки, называется током утечки.
Конденсаторы характеризуются пробивным напряжением — разностью потенциалов между обкладками конденсатора, при котором происходит пробой — возникает электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.
Пластины конденсатора притягиваются друг к другу. Сила притяжения между пластинами конденсатора называется пондемоторной силой и рассчитывается по формуле:
F = -Q2/2eeoS
Знак минус указывает, что пондемоторная сила является силой притяжения.
По применению различают электрические конденсаторы низкого напряжения низкой частоты (большая удельная емкость С), низкого напряжения высокой частоты (высокая С), высокого напряжения постоянного тока, высокого напряжения низкой и высокой частоты (высокая удельная реактивная мощность).
Для увеличения емкости и варьирования ее возможных значений конденсаторы соединяют в батареи, при этом используется их последовательное, параллельное или смешанное (состоящее из последовательного и параллельного) соединения.
Увеличение емкости достигается параллельным соединением конденсаторов в батарею. При этом конденсаторы соединяются одноименно заряженными обкладками. При таком соединении сохраняющейся величиной на всех конденсаторах является разность потенциалов, а заряды суммируются. Общая емкость батареи при параллельном соединении конденсаторов равна сумме емкостей отдельных конденсаторов:
С = С1 + С2 + …+ Сn
При последовательном соединении конденсаторов результирующая емкость всегда меньше наименьшей емкости, используемой в батарее, и на каждый конденсатор приходится лишь часть разности потенциалов клемм батарей, что значительно снижает возможность пробоя конденсатора. При последовательном соединений конденсаторов соединяются их разноименные обкладки. При этом складываются величины, обратные емкостям и результирующая емкость определяется следующим образом:
1/С = (1/Сn).
Электрические конденсаторы применяются в электрических цепях (сосредоточенные емкости), электроэнергетике (компенсаторы реактивной мощности), импульсных генераторах напряжения, в измерительных целях (измерительные конденсаторы и емкостные датчики).

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

Рис. 181. Заряд и разряд конденсатора

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным.

В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться.

При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь.

В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора.

Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10-6 Ф), пикофарадой (1 пФ = 10-12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе.

Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Устройство конденсаторов и их применение в технике.

В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184).

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями.

Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается).

Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе.

На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для создания симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин.

В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине).

Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается.

По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186).

Рис. 186. Устройство конденсатора переменной емкости

Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов.

Конденсаторы можно соединять последовательно и параллельно. При последовательном соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /Cэк = 1 /C1 + 1 /C2 + 1 /C3

эквивалентное емкостное сопротивление

XCэк= XC1 + XC2 + XC3

результирующее емкостное сопротивление

Cэк = C1 + C2 + C3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /XCэк = 1 /XC1 + 1 /XC2 + 1 /XC3

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Включение и отключение цепей постоянного тока с конденсатором.

При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc.

При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б).

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

T = RC

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств.

Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору.

Рис. 190. Кривая пилообразного напряжения

Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е. сопротивлениями резисторов, включенных в эти цепи.

Конденсатор

24 марта 1896 года Александр Степанович Попов с помощью изобретённого им радиопередатчика передал на расстояние в 250 метров азбукой Морзе первую в мире радиограмму из двух слов: «Генрих Герц». В то время это было воспринято как чудо. Сейчас же мы настолько привыкли к тому, что можем не только слышать, но и видеть то, что происходит за многие километры от нас, что это не вызывает ни малейшего удивления. Но чтобы понять физические процессы, лежащие в основе приёма и передачи звука и изображения, нам сначала следует познакомиться с одним важным устройством — конденсатором.

Конденсатор — это устройство, служащее для накопления заряда и энергии электрического поля.

История конденсаторов началась в тысяча семьсот сорок пятом году в городе Ле́йдене, где местный учёный Пи́тер ван Му́шенбру́к и его ученик Кюне́ус заряжали электричеством воду в банке. Зарядка осуществлялась при помощи цепочки, присоединённой к электрофорной машине. Цепочка спускалась через горлышко колбы в воду. Когда, по мнению Кюне́уса, зарядка воды была завершена, он решил вынуть цепочку рукой из сосуда и тут получил «такой страшный электрический удар, что чуть не скончался».

Так была изобретена лейденская банка (по названию города Лейден в Голландии), — первый простейший конденсатор, и одно из самых распространённых электротехнических устройств нашего времени.

Позже данный опыт был повторен в присутствии французского короля аббатом Нолле. Он образовал цепь из 180 гвардейцев, взявшихся за руки, причём первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. «Удар почувствовался всеми в один момент; было забавно наблюдать разнообразие жестов и слышать мгновенный вскрик десятков людей». Кстати, говорят, что именно от этой цепи солдат и произошёл термин «электрическая цепь».

Но мы слегка отвлеклись. Итак, простейший конденсатор представляет собой две металлические пластины, называемые обкладками, разделённые между собой слоем диэлектрика. При этом толщина слоя диэлектрика намного меньше, чем размеры обкладок.

Если обкладки конденсатора подсоединить к полюсам источника тока, например, батарейки, то на обкладках появятся равные по модулю, но противоположные по знаку электрические заряды.

Модуль заряда любой из обкладок конденсатора называется зарядом конденсатора. Как показали различные опыты, заряды распределены на внутренних поверхностях пластин конденсатора. А созданное ими электрическое поле в основном сосредоточено внутри конденсатора.

Если отключить конденсатор от источника тока, то заряд с его обкладок никуда не исчезнет, в чём легко убедиться, если присоединить к обкладкам лампочку, которая на мгновение вспыхивает.

Для характеристики свойства проводника накапливать электрический заряд ввели физическую величину — электрическую ёмкость или просто — ёмкость. Для объяснения её физического смысла проведём такой опыт: возьмём конденсатор, одну из пластин которого соединим со стержнем электрометра, а другую — с его корпусом.

Возьмём три одинаково заряженных шара и будем последовательно сообщать конденсатору одинаковые положительные электрические заряды, увеличивая его суммарный заряд в целое число раз.

Из результатов опыта не трудно увидеть, что чем больше сообщённый конденсатору электрический заряд, тем больше напряжение между его обкладками. При этом, обратите внимание, напряжение увеличивается во столько же раз, во сколько раз увеличивается заряд. Но отношение электрического заряда к напряжению остаётся постоянным.

Таким образом, электроёмкостью конденсатора называют физическую величину, численно равную отношению заряда конденсатора к напряжению на его пластинах.

Обозначается ёмкость конденсатора большой латинской буквой С. А единицей ёмкости в СИ является фарад (Ф), названная так, как вы догадались, в честь Майкла Фарадея. 1 Ф — это такая ёмкость конденсатора, при которой заряд, равный 1 Кл, создаёт между обкладками конденсатора напряжение 1 В.

1 Ф — это очень большая электроёмкость. Например, в вакууме электроёмкостью один фарад обладал бы шар радиусом 9 000 000 километров (для сравнения: радиус Солнца примерно равен 696 000 километрам, а нашей планеты — всего 6400 километров). Поэтому на практике применяют дольные единицы фарада:

Например, электроёмкость такого огромного конденсатора, как земной шар, составляет 710 мкФ.

Но вернёмся к нашему опыту и попытаемся выяснить, от чего зависит ёмкость конденсатора. Для этого зарядим конденсатор и отметим показания электрометра.

Теперь сблизим пластины — не трудно увидеть, что напряжение между пластинами уменьшилось. Поскольку заряд на пластинах оставался неизменным, то уменьшение напряжения связано с увеличением ёмкости конденсатора. Таким образом, чем меньше расстояние между обкладками конденсатора, тем больше его ёмкость.

Теперь будем изменять площадь пластин конденсатора.

Как видим, при уменьшении площади пластин напряжение между ними увеличивается, значит, ёмкость конденсатора уменьшается.

И наконец, внесём между пластинами конденсатора диэлектрик, например, лист стекла.

Как видим, напряжение уменьшилось, следовательно, ёмкость конденсатора увеличилась. Значит, ёмкость зависит и от свойств используемого диэлектрика.

Физическая величина, характеризующая свойства изолирующей (диэлектрической) среды, называется диэлектрической проницаемостью. Она показывает, во сколько раз сила взаимодействия двух электрических зарядов в этой среде меньше, чем в вакууме.

Таким образом, ёмкость плоского конденсатора зависит от площади пластин, расстояния между ними и свойств внесённого в конденсатор диэлектрика. Она прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между ними.

В СИ коэффициентом пропорциональности между электроёмкостью конденсатора и определяющими её величинами является электрическая постоянная.

Полученный нами экспериментальным путём вывод о зависимости ёмкости плоского конденсатора от его параметров очень важен в практическом отношении. Он указывает способы изменения ёмкости. Например, в одних конденсаторах ёмкость можно изменить, повернув рукоятку и уменьшив или увеличив при этом площадь пластин.

А в других используется зависимость электроёмкости от расстояния между обкладками. Такие конденсаторы используют, например, в схемах кодирования клавиатуры персонального компьютера. Под каждой клавишей находится конденсатор, электроёмкость которого изменяется при нажатии на клавишу. Микросхема, подключённая к каждой клавише, при изменении электроёмкости выдаёт кодированный сигнал, соответствующий данной букве.

Идём дальше. Вы знаете, что любые заряженные тела создают в пространстве вокруг себя электростатическое поле, силовой характеристикой которого является напряжённость.

Напомним, что напряжённость — это физическая векторная величина, характеризующая электрическое поле в данной точке и численно равная отношению силы, действующей на неподвижный пробный заряд, помещённый в эту точку поля, к величине заряда.

Рассмотрим электростатическое поле заряженного плоского конденсатора.

Как видно, оно в основном сосредоточено между его обкладками. Обратите внимание, что линии напряжённости электрического поля плоского конденсатора параллельны и расположены на одинаковом расстоянии друг от друга. Значит поле такого конденсатора однородно. Но вблизи краёв пластин однородность поля нарушается, однако этим часто пренебрегают, когда расстояние между пластинами значительно меньше их размеров.

При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов. По закону сохранения, работа внешних сил равна энергии поля конденсатора. Значит, при разрядке конденсатора за счёт этой энергии может быть совершена работа.

Убедиться в том, что заряженный конденсатор действительно обладает энергией, можно на простом опыте. Соберём электрическую цепь, состоящую из источника тока, конденсатора и электрической лампы. Зарядим конденсатор, подсоединив его к источнику тока. Затем, отключив конденсатор от источника тока, подсоединим его к лампе. При этом наблюдаем кратковременную вспышку света. В данном случае во время разрядки конденсатора его энергия превратилась во внутреннюю энергию спирали лампы.

Энергию электрического поля конденсатора можно рассчитать по формуле:

Воспользовавшись формулой для электроёмкости, можно получить ещё две формулы для расчёта энергии электрического поля конденсатора.

В настоящее время конденсаторы находят широкое применение во многих областях науки и техники. В связи с этим конденсаторы можно классифицировать по следующим признакам и свойствам:

по назначению — это конденсаторы постоянной и переменной ёмкости.

по форме обкладок — различают конденсаторы плоские, сферические, цилиндрические и другие;

а также по типу диэлектрика — это, например, бумажные, керамические, электролитические конденсаторы и так далее.

Наиболее распространённым типом конденсаторов является бумажный конденсатор. Он представляет собой две ленты металлической фольги, разделённые тонкой парафинированной бумагой, полистиролом, слюдой или другим диэлектриком, которые свёрнуты в тугую спираль и запаяны.

Для получения очень больших электроёмкостей используют электролитические конденсаторы. В качестве диэлектрика в них применяют тонкую плёнку окиси алюминия, нанесённую на металлическую пластину, являющуюся одной из обкладок. Роль второй обкладки играет электролит, контактирующий с металлическим корпусом. Ёмкость таких конденсаторов может достигать сотен и тысяч микрофарад.

В последнее время широкое применение находят керамические конденсаторы. Диэлектриком в них служит специальная керамика. Электрическая ёмкость таких конденсаторов достигает сотен пикофарад.

Закрепления материала.

Конденсаторы. Что это и для чего они нужны.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.

ПРИНЦИП ДЕЙСТВИЯ

Назначение конденсатора и принцип его работы – это распространенные вопросы, которыми задаются новички в электротехнике. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, такое устройство получает электрический ток, сохраняет его и впоследствии передает в цепь. Для лучшего понимания принципа работы посмотрите статью про то, как сделать простой конденсатор своими руками.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток, поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

1.    Бумага;

2.    Фольга;

3.    Изолятор из стекла;

4.    Крышка;

5.    Корпус;

6.    Прокладка из картона;

7.    Оберточная бумага;

8.    Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

НАЗНАЧЕНИЕ И ИСПОЛЬЗОВАНИЕ КОНДЕНСАТОРОВ

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В светильниках применяется  для компенсации реактивной мощности.

 

 

Электрическая энергия, вырабатываемая генераторами электростанций, характеризуется их активной и реактивной мощностью. Активная мощность потребляется электроприемниками, преобразуясь в тепловую, механическую и другие виды энергии. Реактивная мощность характеризует электроэнергию, преобразуемую в энергию электрических и магнитных полей. В электрической сети и ее электроприемниках происходит процесс обмена энергией между электрическими и магнитными полями. Устройства, которые целенаправленно участвуют в этом процессе, называют источниками реактивной мощности(ИРМ). Такими устройствами могут быть не только генераторы электрических станций, но и синхронные компенсаторы, реакторы, конденсаторы, реактивной мощностью которых управляют по определенному закону регулирования с помощью специальных средств.

Реактивная мощность снижает эффективность использования всей энергосистемы, ее пытаются максимально снизить с помощью конденсаторных установок.

Конденсатор

всем привет меня зовут владимир романов тема урока конденсатор конденсатор это устройство для накопления и хранения электрического заряда в отличие от батареи если конденсатор включить в цепь то конденсатор отдает свой заряд практически мгновенно батарея же способна многие часы создавать напряжение в цепи если мы возьмем два металлических листа расположим их параллельно друг другу одному металлическому листу сообщим положительный заряд другому металлическому листу сообщим отрицательный заряд мы получим простейший конденсатор металлические листы зарядом мы будем называть обкладками конденсатора я нарисую конденсатор схематически так как одна обкладка имеет отрицательный заряд другая положительный то между обкладками конденсатора будет существовать электрическое поле если у нас есть электрическое поле мы будем говорить что существует разность потенциалов и будем обозначать разность потенциалов как дельта фильм и разность потенциалов это ничто иное как электрическое напряжение теперь если мы поделим заряд который есть у конденсатора на напряжение электрического поля внутри конденсатора мы получим емкость конденсатора которую будем обозначать большой буквой c электрический заряд мы измеряем в кулонах напряжение измеряем вольтах делим 1 кулон на 1 вольт получим единицу измерения ёмкости конденсатора 1 фарад 1 фарад это очень большая емкость и на практике используют микрофарады в одном фарадей миллион микрофарад и пика фарады в одном foro de триллион пикофарад емкость конденсатора зависит от расстояния между обкладками чем меньше это расстояние тем больше емкостью конденсатора также емкость за висит от площади обкладок чем большая площадь тем больший заряд может помещаться на обкладки конденсатора емкость пропорционально отношению площади к расстоянию между обкладками предположим что в нашем примере пространство между обкладками занимает воздух если мы вместо воздуха заполним пространство между обкладками стеклом то емкость конденсатора также изменится так как воздух и стекло по-разному пропускают через себя электрическое поле эту величину обозначим эпсилон это диэлектрическая проницаемость среды и диэлектрическая проницаемость показывает во сколько раз сила взаимодействия двух зарядов вакууме больше чем силы взаимодействия этих зарядов в какой-то среде в стекле или в воздухе эту величину мы с вами будем брать из таблиц и в задачах эта величина у нас будет как правило дано емкость конденсатора также будет зависеть от диэлектрической проницаемости конденсатор мы будем обозначать на электрических схемах вот таким значком если через конденсатор начать пропускать постоянный ток то конденсатор будет пропускать постоянный ток через себя очень небольшой промежуток времени буквально доли секунд пока он будет заряжаться как только конденсатор зарядится он перестанет пропускать через себя постоянный электрический ток зато конденсатор очень хорошо пропускает через себя переменный электрический ток если соединить три конденсатора различной емкости параллельно это значит левые выводы от конденсаторов собрать в одной точке и правые выводы от конденсаторов собрать в другой точке то емкость всего этого соединения будет равняться сумме ёмкостей 3 конденсаторов если же конденсаторы соединены последовательно то чтобы найти емкость всего этого соединения нужно воспользоваться вот этой формулой теперь рассмотрим задачу номер один найдите общую ёмкость последовательного соединения конденсаторов для этого мы воспользуемся формулой где c это общая емкость приведем дроби справа к общему знаменателю для этого первую дробь и знаменатель и числитель домножим на c2 вторую дробь и числитель и знаменатель домножим на c1 и так числителе мы получим сумму c 2 + c 1 в знаменателе будет произведение c2 ic1 теперь чтобы нам найти ценам нужно перевернуть как выражение слева так и выражение справа единицу можем не записывать и подставляем значения получим 8 шестых сократим эту дробь на два и числитель и знаменатель это будет четыре третьих так как емкости конденсаторов у нас были в пиков о родах то искомая емкость будет также выраженных пика парадах задача номер два конденсатор емкостью 20 микрофарад подключен к источнику напряжением 220 вольт определите заряд конденсатора выраженный в кулонах из формулы для расчета емкости конденсатора перенесем напряжение в левую часть в числитель тогда мы получим формулу для расчета электрического заряда чтобы нам найти заряд в кулонах нам нужно микрофарады перевести фарады в одном параде миллион микрофарад или 10 в шестой степени микрофарад и так чтобы нам получить фарады нам нужно 20 разделить на миллион в этой дроби мы можем сократить 10 в числителе и 10 в знаменателе получим 2 разделить на 10 в пятой степени теперь я 10 в пятой степени из знаменателя перенесу в числитель при этом показатель степени будет с минусом и это значение уже будет выражена в парадах и так умножаем напряжение 220 вольт на емкость конденсатора мы можем у 220 убрать 10 при этом 10 в минус пятой степени умножить на 10 и мы получим 10 в минус четвертой степени и так это будет равняться 40 4 умножить на 10 в минус четвертой степени так как напряжение у нас была в вольтах емкость конденсаторов парадах то заряд мы получим в кулонах на сегодня это все получайте только хорошие оценки всем пока

создает кроссплатформенные приложения с Интернетом.

Device API предоставляет внутреннюю информацию об устройстве, такую ​​как модель и версия операционной системы, а также пользовательскую информацию, такую ​​как уникальные идентификаторы.

Установить

  npm install @ конденсатор / устройство
npx cap sync  

Пример

  импорт {Устройство} из '@ конденсатор / устройство';

const logDeviceInfo = async () => {
  const info = ожидание Device.getInfo ();

  console.log (информация);
};

const logBatteryInfo = async () => {
  const info = ожидание устройства.getBatteryInfo ();

  console.log (информация);
};  

API

getId ()

  getId () => Promise   

Возвращает уникальный идентификатор устройства.

Возвраты: Обещание

Начиная с: 1.0.0


getInfo ()

  getInfo () => Promise   

Возвращает информацию о базовом устройстве / ОС / платформе.

Возвращает: Обещание

Начиная с: 1.0.0


getBatteryInfo ()

  getBatteryInfo () => Promise   

Вернуть информацию о батарее.

Возврат: Promise

Начиная с: 1.0.0


getLanguageCode ()

  getLanguageCode () => Promise   

Получите текущий языковой код устройства.

Возвращает: Promise

Начиная с: 1.0,0


Интерфейсы

DeviceId
Prop Тип Описание Начиная с
uuid строка UUID устройства, доступного для приложения. Этот идентификатор может измениться на современных мобильных платформах, которые позволяют устанавливать только UUID для каждого приложения. В сети случайный идентификатор генерируется и сохраняется в localStorage для последующих вызовов. 1.0.0
DeviceInfo
Prop Тип Описание Начиная с
наименование строка Название устройства. Например, «iPhone Джона». Это поддерживается только на iOS и Android 7.1 или выше. 1.0.0
модель строка Модель устройства.Например, «iPhone». 1.0.0
платформа 'ios' | "андроид" | 'паутина' Устройство платформенное (строчные). 1.0.0
Операционная система Операционная система Операционная система устройства. 1.0.0
os Версия строка Версия ОС устройства. 1.0.0
производитель строка Производитель устройства. 1.0.0
isVirtual логический Указывает, запущено ли приложение в симуляторе / эмуляторе. 1.0.0
в памяти номер Приблизительный объем памяти, используемый текущим приложением, в байтах.Разделите на 1048576, чтобы получить количество используемых МБ. 1.0.0
диск бесплатно номер Сколько свободного места на диске доступно в обычном хранилище данных. путь для ОС в байтах 1.0.0
диск Всего номер Общий размер обычного пути хранения данных для ОС в байтах. 1.0.0
webViewVersion строка Версия веб-браузера 1.0.0
BatteryInfo
Опора Тип Описание Начиная с
Уровень батареи номер Процент (от 0 до 1), указывающий, насколько заряжен аккумулятор. 1.0.0
isCharging логический Заряжается ли устройство. 1.0.0
GetLanguageCodeResult
Prop Тип Описание Начиная с
значение строка Двухсимвольный код языка. 1.0.0

Псевдонимы типов

Операционная система

'ios' | "андроид" | 'окна' | «макинтош» | 'неизвестно'

Предыдущая

<- Буфер обмена

Далее

Диалог ->

Внести вклад ->

КОНДЕНСАТОРОВ. Конденсатор — это устройство, используемое для «хранения» электрического заряда. Он может накапливать энергию и очень быстро ее высвобождать !!

Презентация на тему: «КОНДЕНСАТОРЫ.Конденсатор — это устройство, используемое для «хранения» электрического заряда. Он может накапливать энергию и очень быстро выделять ее !! »- стенограмма презентации:

ins [data-ad-slot = «4502451947»] {display: none! important;}} @media (max-width: 800px) {# place_14> ins: not ([data-ad-slot = «4502451947»]) {display: none! important;}} @media (max-width: 800px) {# place_14 {width: 250px;}} @media (max-width: 500 пикселей) {# place_14 {width: 120px;}} ]]>

1 КОНДЕНСАТОРЫ

2 Конденсатор — это устройство, используемое для «хранения» электрического заряда.Он может накапливать энергию и очень быстро ее высвобождать !!

3 В некоторых гибридных автобусах вместо батарей используются конденсаторы.

4 Так что сделайте некоторые другие новые автомобили

5 Кинетические факелы накапливают энергию в конденсаторе

6 В динамиках используются конденсаторы для подачи тока к нужному динамику.

7 От чего зависит количество воздуха, которое вы можете втиснуть в бутылку? Больше давления Больше объема

8 Что влияет на количество заряда в конденсаторе? Больше напряжения Больше емкости

9 Резистор — это объект.Его сопротивление — это то, насколько он противодействует потоку заряда. (измеряется в Ом) Конденсатор — это объект. Его емкость — это то, сколько заряда он может хранить. (измеряется в фарадах (Ф))

10 Накопленный заряд = Емкость x Напряжение Q = C x В Конденсатор емкостью 1 Фарад будет накапливать один кулон заряда при подключении к элементу на одно вольт.

11 Конденсатор Анимация

12 Закачка воздуха в баллон Время давления воздуха Расход воздуха

13 Зарядка конденсатора Что происходит, когда переключатель замкнут?

14 Зарядка конденсатора напряжение время текущее напряжение аккумулятора

15 электронный поток

16 ссылка на phet AC

17 время Напряжение аккумулятора Напряжение 0.63 В макс. 1 постоянная времени макс. 0,37 В При t = RC

18 время Напряжение аккумулятора Напряжение 0,63 В макс. 1 постоянная времени макс. 0,37 В 2 постоянные времени 0,37 x 0,37 В макс. 2 постоянные времени 3 постоянные времени 0,37 x 0,37 x 0,37 В макс.

19 Постоянная времени. Мера времени, необходимого для зарядки конденсатора, называется постоянной времени.Это время, необходимое для повышения до 63% от максимального напряжения… …… или падения до 37% от максимального напряжения или падения до 63% от максимального напряжения.

20 время В макс. напряжение 0,63 В макс. 1 τ 2 τ 3 τ 0,37 2 В макс. 0,37 В макс. {{0,37 3 В макс. {

21 год Какой конденсатор заряжается быстрее? Какая схема имеет большую постоянную времени? Какой конденсатор имеет большую емкость?

22 Сделать сейчас Постоянная времени для цепи зарядки конденсатора равна 2.0 с. Узнайте: время, необходимое для того, чтобы напряжение на конденсаторе достигло 50% и 99% от максимального значения соответственно.

23 Ответ

24 Как и почему R и C влияют на постоянную времени τ, прямо пропорционально R и C. Если R увеличивается, ток для заряда / разряда конденсатора уменьшается. Для зарядки / разрядки конденсатора до / от максимального напряжения потребуется больше времени.Если C увеличивается, требуется больший заряд для заряда / разряда конденсатора, так как Q = CV. Для зарядки / разрядки конденсатора до / от того же напряжения потребуется больше времени.

25 Сделать сейчас: вычислить постоянную времени: (1) R = 2,26 МОм, C = 100 мкФ (2) R = 3,2 кОм, C = 10000 мкФ (3) R = 1,1 МОм, C = 100 мкФ (4) R = 1,02 МОм, C = 100 мкФ (5) R = 132 кОм, C = 1000 мкФ (6) R = 65 кОм, C = 1000 мкФ

26 год Напряжение аккумулятора Напряжение конденсатора Поток электронов продолжается до тех пор, пока напряжение на конденсаторе не станет равным (и противоположным) напряжению аккумулятора.

27 VBVB Какая связь между V B V C и V R VCVC VRVR

28 год VBVB V B = V C + V R VCVC VRVR

29 Что происходит с V B при зарядке конденсатора? VBVB VCVC VRVR Что происходит с V C по мере заряда конденсатора? Что происходит с V R при зарядке конденсатора? VBVB VCVC VRVR

30 Кривые зарядки Какая кривая представляет напряжение зарядки конденсатора, а какая — резистора? напряжение время Vmax VBVB VCVC VRVR VCVC VRVR

31 год Разрядка конденсатора Что происходит, когда переключатель замкнут?

32 VCVC VRVR Что происходит с V C при разрядке конденсатора? Что происходит с V R при разрядке конденсатора? V макс VCVC VRVR

33 Кривые разрядки Какая кривая представляет напряжение разрядки конденсатора, а какая — резистора? напряжение время Vmax VCVC VRVR VCVC VRVR

34 VBVB Q TOT = C x V

35 год V Конденсаторы параллельно C2C2 C1C1 Q1Q1 Q2Q2

36 V Конденсаторы, подключенные параллельно, имеют одинаковое напряжение Q TOT = Q 1 + Q 2 C TOT V = C 1 V + C 2 V C TOT = C 1 + C 2 Q1Q1 Q2Q2 V B = V C1 = V C2 Конденсаторы, подключенные параллельно, сохраняют больше заряда

37 Конденсаторы серии V V1V1 V2V2 C1C1 C2C2

38 V V = V 1 + V 2 Общая емкость меньше, чем у любого из последовательно соединенных конденсаторов, имеющих одинаковый заряд, общее напряжение складывается из индивидуальных.V1V1 V2V2 C1C1 C2C2 Q = Q 1 = Q 2

39 Подключение конденсаторов: конденсатор подключается к батарее. VBVB Q TOT = C x V

40 Аккумулятор отключен. Что происходит с зарядом конденсатора? Q ТОТ = C x V

41 год Конденсатор подключен к незаряженному конденсатору.Что просходит? Q TOT = C x V электронов

42 Замкнутый контур, так что заряд перераспределяется до тех пор, пока конденсаторы не будут иметь одинаковое напряжение Q TOT = C x V V 1 = V 2

43 год разряд конденсатора MIT

44 год Конструкция конденсатора

45 Емкость зависит от: площади пластин; разделения пластин.ε o — абсолютная диэлектрическая проницаемость свободного пространства (вакуума или воздуха) ε o = 8,84×10 -12 Ф · м -1

46 например. Найдите площадь, необходимую для создания конденсатора емкостью 1 Ф, используя две параллельные пластины на расстоянии 1 мм друг от друга в воздухе. Это площадь 10000м х 10000м.

47 Диэлектрик. Помещение изолятора между пластинами увеличивает емкость ε r, называемую безразмерной диэлектрической проницаемостью.

48 Что делает диэлектрик ?? — — — — — — — + + + + + + +

49 Диэлектрик становится поляризованным — — — — — — — + + + + + + + + + + + — — — — Заряды поляризованного диэлектрика притягивают больше зарядов к пластинам. Поскольку напряжение не меняется, емкость увеличивается.

50 Можно хранить больше заряда.Емкость увеличивается — — — — — — — + + + + + + + + + + + — — — — Больше электронов — — — — — + + + + + + +

51 Конденсаторы

52 Керамический конденсатор Электролитический конденсатор

53 Когда конденсатор полностью заряжен: поток электронов прекращается; Обе пластины имеют равный и противоположный заряд; Разность потенциалов на пластинах равна напряжению питания; Между пластинами существует электрическое поле; Напряженность электрического поля между пластинами: напр.Конденсатор с двумя параллельными пластинами на расстоянии 1 мм друг от друга подключается к аккумулятору 12 В. Напряженность электрического поля между пластинами: E = 12 / 0,001 = 12000Vm -1.

54 Энергия, запасенная в конденсаторе Когда конденсатор заряжается, он получает энергию от источника питания. Энергия сохраняется как электрическая потенциальная энергия. Когда конденсатор разряжен, потенциальная энергия рассеивается в сопротивлении цепи в виде тепла и света.

55 Когда конденсатор заряжается до напряжения V, с зарядом Q, энергия, обеспечиваемая мощностью = QV. Напряжение конденсатора V Q Charge Электрическая потенциальная энергия, запасаемая конденсатором.

56 Маркировка конденсатора: 100 В 200 мкФ Что это значит? Сколько заряда он может хранить? Сколько энергии он может хранить?


Конденсаторы и диэлектрики | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Опишите действие конденсатора и определите емкость.
  • Объясните, почему конденсаторы с параллельными пластинами и их емкости.
  • Обсудите процесс увеличения емкости диэлектрика.
  • Определите емкость при заданном заряде и напряжении.

Конденсатор — это устройство, используемое для хранения электрического заряда. Конденсаторы имеют разные применения: от фильтрации статического электричества при радиоприеме до накопления энергии в дефибрилляторах сердца. Обычно в промышленных конденсаторах две проводящие части расположены близко друг к другу, но не соприкасаются, как показано на рисунке 1.(В большинстве случаев между двумя пластинами используется изолятор для обеспечения разделения — см. Обсуждение диэлектриков ниже.) Когда клеммы батареи подключены к изначально незаряженному конденсатору, равные количества положительного и отрицательного заряда, + Q и — Q , разделены на две пластины. Конденсатор в целом остается нейтральным, но в этом случае мы называем его хранящим заряд Q .

Рис. 1. Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее.Теперь у них разделены заряды + Q и — Q на своих двух половинах. (а) Конденсатор с параллельными пластинами. (b) Скрученный конденсатор с изоляционным материалом между двумя проводящими листами.

Конденсатор

Конденсатор — это устройство, используемое для хранения электрического заряда.

Количество заряда Q , который может хранить конденсатор , зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.

Количество заряда

Q конденсатор может хранить

Количество заряда Q , который может хранить конденсатор , зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.

Рис. 2. Линии электрического поля в этом конденсаторе с параллельными пластинами, как всегда, начинаются с положительных зарядов и заканчиваются отрицательными. Поскольку напряженность электрического поля пропорциональна плотности силовых линий, она также пропорциональна количеству заряда на конденсаторе.

Система, состоящая из двух идентичных параллельных проводящих пластин, разделенных расстоянием, как на рисунке 2, называется конденсатором с параллельными пластинами . Легко увидеть взаимосвязь между напряжением и накопленным зарядом для конденсатора с параллельными пластинами, как показано на рисунке 2. Каждая линия электрического поля начинается с отдельного положительного заряда и заканчивается отрицательным, так что поля будет больше. линии, если есть больше заряда. (Рисование одной линии поля для каждой зарядки — это только удобство.Мы можем нарисовать много силовых линий для каждого заряда, но их общее количество пропорционально количеству зарядов.) Напряженность электрического поля, таким образом, прямо пропорциональна Q .

Поле пропорционально начислению:

E Q ,

, где символ ∝ означает «пропорционально». Из обсуждения в разделе «Электрический потенциал в однородном электрическом поле» мы знаем, что напряжение на параллельных пластинах равно

.

V = Ed .

Таким образом, V E . Отсюда следует, что V Q , и, наоборот,

Q V .

В целом это верно: чем больше напряжение, приложенное к любому конденсатору, тем больше в нем хранится заряд.

Различные конденсаторы будут накапливать разное количество заряда для одного и того же приложенного напряжения, в зависимости от их физических характеристик. Мы определяем их емкость C так, чтобы заряд Q , хранящийся в конденсаторе, был пропорционален C .Заряд, накопленный в конденсаторе, равен

.

Q = CV .

Это уравнение выражает два основных фактора, влияющих на количество накопленного заряда. Этими факторами являются физические характеристики конденсатора C и напряжение В . Изменив уравнение, мы видим, что емкость , C, , — это количество заряда, сохраняемого на вольт, или

.

[латекс] C = \ frac {Q} {V} \\ [/ latex].

Емкость

Емкость C — это количество хранимого заряда на вольт, или

[латекс] C = \ frac {Q} {V} \\ [/ latex]

Единица измерения емкости — фарад (Ф), названная в честь Майкла Фарадея (1791–1867), английского ученого, внесшего вклад в области электромагнетизма и электрохимии. Поскольку емкость — это заряд на единицу напряжения, мы видим, что фарад — это кулон на вольт, или

.

[латекс] 1 \ text {F} = \ frac {1 \ text {C}} {1 \ text {V}} \\ [/ latex].

Конденсатор емкостью 1 фарад может хранить 1 кулон (очень большое количество заряда) при подаче всего 1 вольт. Таким образом, одна фарада — это очень большая емкость. Типичные конденсаторы варьируются от долей пикофарада (1 пФ = 10 −12 Ф) до миллифарадов (1 мФ = 10 −3 Ф).

На рисунке 3 показаны некоторые распространенные конденсаторы. Конденсаторы в основном изготавливаются из керамики, стекла или пластика, в зависимости от назначения и размера. Как обсуждается ниже, в их конструкции обычно используются изоляционные материалы, называемые диэлектриками.

Рисунок 3. Некоторые типичные конденсаторы. Размер и значение емкости не обязательно связаны. (Источник: Windell Oskay)

Конденсатор с параллельной пластиной

Рис. 4. Конденсатор с параллельными пластинами, разделенные пластинами на расстояние d. Каждая пластина имеет площадь A.

Конденсатор с параллельными пластинами, показанный на рисунке 4, имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности A , разделенных расстоянием d (без материала между пластинами).Когда на конденсатор подается напряжение В , он сохраняет заряд Q , как показано. Мы можем увидеть, как его емкость зависит от A и d , рассмотрев характеристики кулоновской силы. Мы знаем, что одинаковые заряды отталкиваются, в отличие от зарядов притягиваются, и сила между зарядами уменьшается с расстоянием. Поэтому кажется вполне разумным, что чем больше пластины, тем больше заряда они могут хранить, потому что заряды могут расходиться больше. Таким образом, C должен быть больше для более крупного A .Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов. Таким образом, C должен быть больше для меньшего d .

Можно показать, что для конденсатора с параллельными пластинами есть только два фактора ( A, и d ), которые влияют на его емкость C . Емкость конденсатора с параллельными пластинами в форме уравнения равна

.

[латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex].

Емкость параллельного пластинчатого конденсатора

[латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex]

A — это площадь одной пластины в квадратных метрах, а d — это расстояние между пластинами в метрах.Константа ε 0 — диэлектрическая проницаемость свободного пространства; его числовое значение в единицах СИ составляет ε 0 = 8,85 × 10 −12 Ф / м. Единицы измерения Ф / м эквивалентны C 2 / Н · м 2 . Небольшое числовое значение ε 0 связано с большим размером фарада. Конденсатор с параллельными пластинами должен иметь большую площадь, чтобы его емкость приближалась к фарадам. (Обратите внимание, что приведенное выше уравнение действительно, когда параллельные пластины разделены воздухом или свободным пространством.Когда между пластинами помещается другой материал, уравнение изменяется, как обсуждается ниже.)

Пример 1. Емкость и заряд в параллельном пластинчатом конденсаторе

  1. Какова емкость конденсатора с параллельными пластинами, каждая из которых имеет площадь 1,00 м 2 , разделенных расстоянием 1,00 мм?
  2. Какой заряд сохраняется в этом конденсаторе, если к нему приложено напряжение 3,00 × 10 3 В?
Стратегия

Определение емкости C — это прямое приложение уравнения [латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex].{-9} \ text {F} = 8.85 \ text {nF} \ end {array} \\ [/ latex]

Обсуждение части 1

Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью. Помогают специальные методы, например, использование тонких пленок очень большой площади, расположенных близко друг к другу.

Решение для части 2

Заряд любого конденсатора определяется уравнением Q = CV . Ввод известных значений в это уравнение дает

[латекс] \ begin {array} {lll} Q & = & CV = \ left (8.{3} \ text {V} \ right) \\\ text {} & = & 26.6 \ mu \ text {C} \ end {array} \\ [/ latex]

Обсуждение части 2

Этот заряд лишь немного больше, чем у обычного статического электричества. Поскольку воздух разрывается при примерно 3,00 × 10 6 В / м, на этом конденсаторе не может быть накоплено больше заряда за счет увеличения напряжения.

Другой интересный биологический пример, связанный с электрическим потенциалом, обнаружен в плазматической мембране клетки. {6} \ text {V / m} \\ [/ latex]

Этого электрического поля достаточно, чтобы вызвать пробой в воздухе.

Диэлектрик

Предыдущий пример подчеркивает сложность сохранения большого количества заряда в конденсаторах. Если d сделать меньше, чтобы получить большую емкость, то максимальное напряжение должно быть уменьшено пропорционально, чтобы избежать пробоя (поскольку [латекс] E = \ frac {V} {d} \\ [/ latex]). Важным решением этой проблемы является размещение изоляционного материала, называемого диэлектриком , между пластинами конденсатора и обеспечение минимально возможного размера d .Мало того, что меньший d увеличивает емкость, но многие изоляторы могут выдерживать более сильные электрические поля, чем воздух, перед тем, как сломаться.

Есть еще одно преимущество использования диэлектрика в конденсаторе. В зависимости от используемого материала емкость больше, чем заданная уравнением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex], на коэффициент κ , называемый диэлектрическая постоянная . Конденсатор с параллельными пластинами с диэлектриком между пластинами имеет емкость, определяемую выражением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex] (конденсатор с параллельными пластинами с диэлектриком).

Значения диэлектрической проницаемости κ для различных материалов приведены в таблице 1. Обратите внимание, что κ для вакуума равно 1, поэтому приведенное выше уравнение справедливо и в этом случае. Если используется диэлектрик, например, путем размещения тефлона между пластинами конденсатора в примере 1, то емкость будет больше в κ раз, что для тефлона составляет 2,1.

Эксперимент на вынос: создание конденсатора

Насколько большой конденсатор можно сделать из обертки от жевательной резинки? Пластины будут из алюминиевой фольги, а разделитель (диэлектрик) между ними — из бумаги.

Таблица 1. Диэлектрическая проницаемость и диэлектрическая прочность для различных материалов при 20ºC
Материал Диэлектрическая проницаемость κ Диэлектрическая прочность (В / м)
Вакуум 1,00000
Воздух 1.00059 3 × 10 6
Бакелит 4,9 24 × 10 6
Плавленый кварц 3.78 8 × 10 6
Неопреновый каучук 6,7 12 × 10 6
Нейлон 3,4 14 × 10 6
Бумага 3,7 16 × 10 6
Полистирол 2,56 24 × 10 6
Стекло Pyrex 5,6 14 × 10 6
Кремниевое масло 2.5 15 × 10 6
Титанат стронция 233 8 × 10 6
тефлон 2,1 60 × 10 6
Вода 80

Обратите внимание, что диэлектрическая проницаемость воздуха очень близка к 1, так что конденсаторы, заполненные воздухом, действуют так же, как конденсаторы с вакуумом между пластинами , за исключением , что воздух может стать проводящим, если напряженность электрического поля становится равной. слишком большой.(Напомним, что [латекс] E = \ frac {V} {d} \\ [/ latex] для конденсатора с параллельными пластинами.) В таблице 1 также показаны максимальные напряженности электрического поля в В / м, которые называются диэлектрической прочностью , для нескольких материалов. Это поля, над которыми материал начинает разрушаться и проводить. Диэлектрическая прочность накладывает ограничение на напряжение, которое может быть приложено для данного расстояния между пластинами. 6 \ text {V / m} \ right) \ left ( 1.{-3} \ text {m} \ right) \\\ text {} & = & 3000 \ text {V} \ end {array} \\ [/ latex]

Однако предел для расстояния 1,00 мм, заполненного тефлоном, составляет 60 000 В, поскольку диэлектрическая прочность тефлона составляет 60 × 10 6 В / м. Таким образом, тот же конденсатор, заполненный тефлоном, имеет большую емкость и может подвергаться гораздо большему напряжению. Используя емкость, которую мы рассчитали в приведенном выше примере для конденсатора с параллельными пластинами, заполненного воздухом, мы обнаружили, что конденсатор с тефлоновым заполнением может хранить максимальный заряд

[латекс] \ begin {array} {lll} Q & = & CV \\\ text {} & = & \ kappa {C} _ {\ text {air}} V \\\ text {} & = & (2.4 \ text {V}) \\\ text {} & = & 1.1 \ text {mC} \ end {array} \\ [/ latex]

Это в 42 раза больше заряда того же конденсатора, заполненного воздухом.

Диэлектрическая прочность

Максимальная напряженность электрического поля, при превышении которой изоляционный материал начинает разрушаться и становится проводником, называется его диэлектрической прочностью.

Микроскопически, как диэлектрик увеличивает емкость? За это отвечает поляризация изолятора. Чем легче он поляризуется, тем больше его диэлектрическая проницаемость κ .Вода, например, представляет собой полярную молекулу , потому что один конец молекулы имеет небольшой положительный заряд, а другой конец имеет небольшой отрицательный заряд. Полярность воды обуславливает ее относительно большую диэлектрическую проницаемость, равную 80. Эффект поляризации лучше всего объясняется характеристиками кулоновской силы. На рис. 5 схематично показано разделение зарядов в молекулах диэлектрического материала, помещенных между заряженными пластинами конденсатора. Кулоновская сила между ближайшими концами молекул и зарядом на пластинах притягивает и очень сильна, поскольку они расположены очень близко друг к другу.Это притягивает больше заряда к пластинам, чем если бы пространство было пустым, а противоположные заряды находились на расстоянии d .

Рис. 5. (a) Молекулы изоляционного материала между пластинами конденсатора поляризованы заряженными пластинами. Это создает слой противоположного заряда на поверхности диэлектрика, который притягивает больше заряда к пластине, увеличивая ее емкость. (б) Диэлектрик снижает напряженность электрического поля внутри конденсатора, что приводит к уменьшению напряжения между пластинами при одинаковом заряде.Конденсатор сохраняет тот же заряд при меньшем напряжении, что означает, что он имеет большую емкость из-за диэлектрика.

Другой способ понять, как диэлектрик увеличивает емкость, — это рассмотреть его влияние на электрическое поле внутри конденсатора. На рисунке 5 (b) показаны силовые линии электрического поля с установленным диэлектриком. Поскольку силовые линии заканчиваются зарядами в диэлектрике, их меньше, идущих от одной стороны конденсатора к другой. Таким образом, напряженность электрического поля меньше, чем если бы между пластинами был вакуум, даже если бы на пластинах был одинаковый заряд.Напряжение между пластинами составляет В, = Ед, , поэтому оно тоже снижается за счет диэлектрика. Таким образом, есть меньшее напряжение В для того же заряда Q ; поскольку [латекс] C = \ frac {Q} {V} \\ [/ latex], емкость C больше.

Диэлектрическая проницаемость обычно определяется как [латекс] \ kappa = \ frac {E_0} {E} \\ [/ latex], или отношение электрического поля в вакууме к электрическому полю в диэлектрическом материале, и в конечном итоге связанные с поляризуемостью материала.

Великие и малые вещи: субмикроскопическое происхождение поляризации

Поляризация — это разделение зарядов внутри атома или молекулы. Как уже отмечалось, планетарная модель атома описывает его как имеющее положительное ядро, вращающееся вокруг отрицательных электронов, аналогично планетам, вращающимся вокруг Солнца. Хотя эта модель не совсем точна, она очень полезна для объяснения широкого круга явлений и будет уточнена в других местах, например, в атомной физике. Субмикроскопическое происхождение поляризации можно смоделировать, как показано на рисунке 6.

Рис. 6. Представление художника о поляризованном атоме. Орбиты электронов вокруг ядра слегка смещены внешними зарядами (показаны в преувеличении). Получающееся разделение зарядов внутри атома означает, что он поляризован. Обратите внимание, что непохожий заряд теперь ближе к внешним зарядам, вызывая поляризацию.

В атомной физике мы обнаружим, что орбиты электронов более правильно рассматривать как электронные облака с плотностью облака, связанной с вероятностью обнаружения электрона в этом месте (в отличие от определенных местоположений и траекторий планет на их орбитах). вокруг Солнца).Это облако сдвигается кулоновской силой, так что в среднем атом имеет разделенный заряд. Хотя атом остается нейтральным, теперь он может быть источником кулоновской силы, поскольку заряд, поднесенный к атому, будет ближе к одному типу заряда, чем к другому.

Некоторым молекулам, например молекулам воды, присуще разделение зарядов, поэтому они называются полярными молекулами. На рисунке 7 показано разделение зарядов в молекуле воды, которая имеет два атома водорода и один атом кислорода (H 2 O).Молекула воды несимметрична — атомы водорода отталкиваются в одну сторону, придавая молекуле форму бумеранга. Электроны в молекуле воды более сконцентрированы вокруг более заряженного ядра кислорода, чем вокруг ядер водорода. Это делает кислородный конец молекулы слегка отрицательным, а водородный конец — слегка положительным. Внутреннее разделение зарядов в полярных молекулах облегчает их выравнивание с внешними полями и зарядами. Следовательно, полярные молекулы проявляют более сильные поляризационные эффекты и имеют более высокие диэлектрические проницаемости.Те, кто изучает химию, обнаружат, что полярная природа воды имеет множество эффектов. Например, молекулы воды собирают ионы гораздо эффективнее, потому что у них есть электрическое поле и разделение зарядов для притяжения зарядов обоих знаков. Кроме того, как было показано в предыдущей главе, полярная вода обеспечивает защиту или экранирование электрических полей в сильно заряженных молекулах, представляющих интерес в биологических системах.

Рис. 7. Художественная концепция молекулы воды. Существует внутреннее разделение зарядов, поэтому вода — полярная молекула.Электроны в молекуле притягиваются к ядру кислорода и оставляют избыток положительного заряда около двух ядер водорода. (Обратите внимание, что схема справа является приблизительной иллюстрацией распределения электронов в молекуле воды. На ней не показано действительное количество протонов и электронов, участвующих в структуре.)

Исследования PhET: лаборатория конденсаторов

Узнайте, как работает конденсатор! Измените размер пластин и добавьте диэлектрик, чтобы увидеть влияние на емкость.Измените напряжение и посмотрите, как на пластинах накапливаются заряды. Наблюдайте за электрическим полем в конденсаторе. Измерьте напряжение и электрическое поле.

Щелкните, чтобы загрузить симуляцию. Запускать на Java.

Сводка раздела

  • Конденсатор — это устройство, используемое для хранения заряда.
  • Количество заряда Q , которое может хранить конденсатор, зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
  • Емкость C — это количество накопленного заряда на вольт, или [латекс] C = \ frac {Q} {V} \\ [/ latex].
  • Емкость конденсатора с параллельными пластинами составляет [латекс] C = {\ epsilon} _ {0} \ frac {A} {d} \\ [/ latex], когда пластины разделены воздухом или свободным пространством. [latex] {\ epsilon} _ {\ text {0}} [/ latex] называется диэлектрической проницаемостью свободного пространства.
  • Конденсатор с параллельными пластинами с диэлектриком между пластинами имеет емкость, определяемую выражением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex], где κ — диэлектрик. постоянная материала.
  • Максимальная напряженность электрического поля, выше которой изолирующий материал начинает разрушаться и становится проводником, называется электрической прочностью.

Концептуальные вопросы

  1. Зависит ли емкость устройства от приложенного напряжения? А как насчет хранящегося в нем заряда?
  2. Используйте характеристики кулоновской силы, чтобы объяснить, почему емкость должна быть пропорциональна площади пластины конденсатора. Аналогичным образом объясните, почему емкость должна быть обратно пропорциональна расстоянию между пластинами.
  3. Объясните причину, по которой диэлектрический материал увеличивает емкость по сравнению с тем, что было бы с воздухом между пластинами конденсатора.Какова независимая причина того, что диэлектрический материал также позволяет приложить большее напряжение к конденсатору? (Таким образом, диэлектрик увеличивает C и допускает более V .)
  4. Как полярный характер молекул воды помогает объяснить относительно большую диэлектрическую проницаемость воды? (См. Рисунок 7.)
  5. Искры возникают между пластинами заполненного воздухом конденсатора при более низком напряжении, когда воздух влажный, чем когда сухой. Объясните почему, учитывая полярный характер молекул воды.
  6. Вода имеет большую диэлектрическую проницаемость, но редко используется в конденсаторах. Объяснить, почему.
  7. Мембраны в живых клетках, включая клетки человека, характеризуются разделением заряда через мембрану. Таким образом, мембраны представляют собой заряженные конденсаторы, важные функции которых связаны с разностью потенциалов на мембране. Требуется ли энергия для разделения этих зарядов в живых мембранах, и если да, то является ли ее источником метаболизм пищевой энергии или каким-либо другим источником?

Рисунок 8.Полупроницаемая мембрана клетки имеет разную концентрацию ионов внутри и снаружи. Диффузия перемещает ионы K + (калий) и Cl (хлорид) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Это приводит к слою положительного заряда снаружи, слою отрицательного заряда внутри и, следовательно, к напряжению на клеточной мембране. Мембрана обычно непроницаема для Na + (ионы натрия).

Задачи и упражнения

  1. Какой заряд сохраняется в конденсаторе 180 мкФ, когда к нему приложено 120 В?
  2. Найдите накопленный заряд, когда 5.50 В подается на конденсатор емкостью 8,00 пФ.
  3. Какой заряд хранится в конденсаторе в Примере 1?
  4. Рассчитайте напряжение, приложенное к конденсатору 2,00 мкФ, когда он имеет заряд 3,10 мкКл.
  5. Какое напряжение необходимо подать на конденсатор емкостью 8,00 нФ, чтобы накопить заряд 0,160 мкКл?
  6. Какая емкость необходима для хранения 3,00 мкКл заряда при напряжении 120 В?
  7. Какая емкость терминала большого генератора Ван де Граафа, учитывая, что он хранит 8?00 мкКл заряда при напряжении 12,0 МВ?
  8. Найдите емкость конденсатора с параллельными пластинами, площадь пластин которого составляет 5,00 м 2 , разделенных слоем тефлона 0,100 мм.
  9. (a) Какова емкость конденсатора с параллельными пластинами, площадь пластин которого составляет 1,50 м 2 , разделенных 0,0200 мм неопренового каучука? (b) Какой заряд он держит, когда к нему приложено 9,00 В?
  10. Интегрированные концепции. Шутник подает 450 В на 80.Конденсатор 0 мкФ, а затем бросает его ничего не подозревающей жертве. Палец пострадавшего обгорел от разряда конденсатора через 0,200 г мяса. Какое повышение температуры мяса? Разумно ли предполагать отсутствие изменения фазы?
  11. Необоснованные результаты. (a) Определенный конденсатор с параллельными пластинами имеет пластины площадью 4,00 м 2 , разделенные 0,0100 мм нейлона, и накапливает 0,170 Кл заряда. Какое приложенное напряжение? б) Что неразумного в этом результате? (c) Какие допущения являются ответственными или противоречивыми?

Глоссарий

конденсатор: устройство, накапливающее электрический заряд

емкость: количество накопленного заряда на единицу вольт

диэлектрик: изоляционный материал

диэлектрическая прочность: максимальное электрическое поле, выше которого изоляционный материал начинает разрушаться и проводить

конденсатор с параллельными пластинами: две идентичные проводящие пластины, разделенные расстоянием

полярная молекула: молекула с внутренним разделением заряда

Избранные решения проблем и упражнения

1.21,6 мК

3. 80.0 мС

5. 20,0 кВ

7. 667 пФ

9. (а) 4,4 мкФ; (б) 4.0 × 10 −5 C

11. (а) 14,2 кВ; (b) Напряжение неоправданно велико, более чем в 100 раз больше напряжения пробоя нейлона; (c) Предполагаемый заряд неоправданно велик и не может храниться в конденсаторе таких размеров.

Как работают конденсаторы? — Объясни, что это за штука

Смотрите в небо большую часть дней, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов. В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же накапливают энергию.Давайте принимать подробнее рассмотрим конденсаторы и как они работают!

Фото: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: Малый конденсатор в транзисторной радиосхеме.

Возьмите два электрических провода (то, что пропускает электричество через них) и разделите изолятором (материал тот не пропускает электричество очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию.Добавление электроэнергии к конденсатору называется зарядка ; высвобождая энергию из Конденсатор известен как разрядный .

Конденсатор немного похож на батарею, но у него другая работа делать. Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее — часто за секунды или меньше. Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды.Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку-вспышку. Зап!

Конденсаторы бывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины, , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ).Две пластины внутри конденсатора подключены к двум электрическим соединения на внешней стороне называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: вскрытие конденсаторов может быть опасным.Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: Как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом). Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд. Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электротехнике. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей. Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от Его емкость .Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них — увеличить размер тарелок. Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха.В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике. Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними.Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарады (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867). Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ).Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации. Предположим, вы стоите у подножия ступенек. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию.Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-то еще, работает против Земли. гравитационное поле. Очень похожая вещь происходит с конденсатором. Если у вас есть положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов — или как ваше тело и Земля.Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется , электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор. Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году.Точное расстояние между пластины можно регулировать (и измерять) с помощью микрометрического винта. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две проводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка. Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разобьется, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим запасом заряда (Q) точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина составляет огромную разницу в , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении — и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, — это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки с обычным стеклом в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом на одной стороне и больше отрицательного электрического заряда с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Таблица

: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, имеющие полярные молекулы, являются особенно хорошими диэлектриками.

Роль конденсатора в электронных компонентах?

Идеальный партнер для электроники

В большинстве электронных устройств используются конденсаторы, которые являются бесценной частью электронных продуктов. Конденсаторы очень популярны во многих приложениях, таких как электронные схемы, силовые цепи и блоки питания.
Конденсатор вместе с сопротивлением и катушкой, которые составляют основу электронных схем, называют «большой тройкой пассивных компонентов».Пассивные компоненты — это электронная часть, которая получает энергию для потребления, хранения и поставки.

В отличие от интегральных схем (ИС), у него нет активной операции, когда низкая мощность усиливается для постоянного вывода мощности. Вы также можете рассматривать конденсатор как простую деталь для приема и подачи электричества. Однако, что более важно, такие пассивные компоненты являются незаменимыми частями для точной работы активных компонентов.

Три пассивных компонента также называются LCR, что означает катушка, конденсатор и сопротивление.

Состоит из двух металлических пластин и изолятора, базовая модель конденсатора

[Рис.1] Основная структура конденсатора

Конденсатор в основном состоит из изолятора и двух металлических пластин, которые прикреплены с обеих сторон изолятора. Изоляторы не проводят ток. Изолятор, используемый для конденсаторов, называется диэлектриком. Пока электричество течет, положительные и отрицательные заряды переносятся внутри проводника.

Заряженный электричеством, поток заряда запускается, но он блокируется, поскольку между металлическими пластинами находится изолятор.Затем заряды накапливаются только на одной из двух металлических пластин. Между тем, другая металлическая пластина, прикрепленная к изолятору, имеет противоположный заряд.

Таким образом, конденсаторы имеют структуру для хранения электричества между двумя металлическими пластинами. В качестве изоляционных материалов используются газы, масла, керамика и смолы. Что касается форм металлических пластин, существует большое разнообразие типов с параллельными пластинами, пленкой, многослойной и т. Д. Количество накопленных зарядов, а также поддерживаемые частоты различаются в зависимости от типов изоляторов или конструкции конденсаторов.Итак, необходимо выбрать подходящий конденсатор, отвечающий вашим требованиям.

Значение конденсаторов

В принципе конденсаторы состоят из двух важных частей.

  1. Накопление электрического заряда (электричества)
  2. переменный ток протекает, но не постоянный ток

Подробнее о хранении электроэнергии см. В вышеупомянутой базовой конструкции конденсатора.
Поскольку электрический заряд накапливается между металлическими пластинами, передача электрического заряда прекращается, и постоянный ток перестает течь.Однако, другими словами, до тех пор, пока конденсаторы не будут полностью заряжены, даже постоянный ток может протекать в течение короткого периода времени. В случае переменного тока направление тока переключается с определенным интервалом, а затем конденсатор заряжается и разряжается. Таким образом, электричество выглядит как проходящее через конденсатор.
Соответственно, чем выше частота переменного тока, тем легче проходит через конденсаторы. Таким образом, конденсаторы играют в электронной схеме следующие три важные роли.

1) Зарядка и разрядка электрических зарядов

Конденсаторы могут заряжаться и разряжаться благодаря своей конструкции.Конденсаторы, обладающие электрическим зарядом и разрядом, также могут использоваться в качестве источника питания. Вспышки камеры используют эту особенность конденсаторов.
Для получения сильного излучения света к нему должно быть немедленно приложено высокое напряжение. Между тем, такое высокое напряжение в цепи для работы камеры не требуется. Кроме того, имеется подходящая конструкция конденсатора, в которой такое высокое световое излучение обеспечивается за счет мгновенной разрядки электрического заряда, накопленного в конденсаторе.

2) Поддержание напряжения на прежнем уровне

Помимо вышеупомянутой особенности, конденсаторы также имеют функции для поддержания напряжения на определенном уровне.Конденсаторы полезны для уменьшения пульсации напряжения. Когда на параллельную цепь подается высокое напряжение, конденсатор заряжается, а с другой стороны, он разряжается низким напряжением.
В то время как электричество выходит переменным током, большинство электронных схем работает с постоянным током. Следовательно, переменный ток преобразуется в постоянный ток через схему выпрямителя, которая преобразует переменный ток в постоянный, но преобразованный постоянный ток представляет собой нестабильный ток с пульсациями на этой стадии. Чтобы справиться с этим, используется конденсатор для коррекции пульсаций и постоянного поддержания напряжения.

3) Удаление шума

Что касается шумоподавления, то функция конденсатора, пропускающего переменный ток, но постоянный ток, полезна для удаления шума. В общем, поскольку шум в постоянном токе является высокочастотной составляющей переменного тока, он имеет тенденцию легко проходить через конденсатор.
Путем вставки ответвительной цепи между входом и выходом формируется земля для подключения к конденсатору. После этого переменная составляющая проходит только через конденсатор, а затем постоянный ток течет в выходной цепи.

Типы конденсаторов

Алюминиевый электролитический конденсатор
Конденсатор изготовлен из алюминия и другого металла. Поскольку оксидная пленка блокирует электричество, она используется в качестве диэлектрического материала, образуя поверхность алюминия. Конденсаторы этого типа обладают большой емкостью по доступной цене. Поэтому он широко используется в качестве конденсатора большой емкости. Однако у него есть некоторые слабые места, такие как плохие частотные характеристики, больший размер, потеря диэлектрика из-за утечки жидкости.
Танталовый конденсатор
В конденсаторе в качестве анода используется тантал, а в качестве диэлектрического материала — пятиокись тантала. Он имеет относительно большую емкость и меньше по размеру, чем алюминиевый электролитический конденсатор. Кроме того, конденсатор превосходит алюминиевый конденсатор по характеристикам тока утечки, частотным характеристикам, конденсаторам и температурным характеристикам.
Электрический двухслойный конденсатор
Конденсаторы с двойным электрическим слоем имеют чрезвычайно большую емкость.Он более чем в 1000–10 000 раз превосходит алюминиевые электролитические конденсаторы, и его можно использовать многократно в течение длительного периода без ограничений, таких как количество циклов заряда / разряда. Благодаря уникальной особенности конденсатор можно использовать многократно. Конденсаторы с двойным электрическим слоем имеют электрические заряды, ориентированные на границе электролита и электрода, который называется «двойным электрическим слоем» и имеет размер одной молекулы. Слой используется в качестве диэлектрического материала конденсаторов с двойным слоем.Цена на конденсаторы с двойным электрическим слоем относительно высока по сравнению с другими.
Керамический конденсатор
Конденсаторы в основном делятся на три типа в зависимости от типа керамики, используемой в качестве диэлектрического материала: тип с низкой диэлектрической проницаемостью, тип с высокой диэлектрической проницаемостью и тип полупроводника. Основная особенность конденсатора заключается в том, что увеличение напряжения приводит к изменению его емкости. Небольшой конденсатор термостойкий, хотя он хрупкий и может быть поврежден или сломан.
Пленочный конденсатор
В этом типе пленки, такие как полиэстер и полиэтилен, используются в качестве диэлектрического материала.Полиэфирные, полипропиленовые и другие пленки помещаются между электродной фольгой с обеих сторон, и они наматываются в цилиндрическую форму. Неполярный конденсатор, который больше керамического, имеет высокое сопротивление изоляции и отсутствие электрических потерь. Он также обеспечивает высокую надежность с отличными частотными и температурными характеристиками.
Конденсатор слюдяной
В качестве диэлектрического материала конденсатора используется слюда — природный минерал. Слюда идеально подходит для конденсатора, так как обладает высокими диэлектрическими свойствами и может сниматься.Слюдяные конденсаторы обладают превосходными характеристиками, такими как сопротивление изоляции, тангенс угла диэлектрических потерь, частотные и температурные характеристики, хотя есть некоторые недостатки в том, что они дороги и имеют большой размер.
Для получения дополнительной информации о типах конденсаторов перейдите по ссылке ниже.
Типы конденсаторов. Базовые знания компонентов

Соответствующие технические знания

Конденсаторы

Конденсаторы Конденсатор — это устройство, которое

Конденсаторы

Конденсаторы • Конденсатор — это устройство, которое используется для хранения электрического заряда (что на удивление полезно в схемах!).• Фактически любой конденсатор состоит из пары проводящих пластин, разделенных изолятором. Изолятор называется диэлектриком и часто бывает воздушным, бумажным или масляным.

Иллюстрируя действие конденсатора Настройте схему. Подключите вывод конденсатора к батарее. Подключите его к лампе. Что вы наблюдаете. 6 В 10 000 мкФ 6 В, 0,003 А лампа Попробуйте подключить резистор 100 Ом последовательно с лампой. Какой эффект от этого?

Что происходит • Когда конденсатор подключен к батарее, протекает кратковременный ток.• Электроны собираются на пластине, прикрепленной к отрицательной клемме батареи. В то же время электроны вытягиваются из положительной пластины конденсатора +++++ ——-

Что происходит • Когда конденсатор подключен к батарее, протекает кратковременный ток. • Электроны собираются на пластине, прикрепленной к отрицательной клемме батареи. В то же время электроны вытягиваются из положительной пластины конденсатора +++++ ——-

Что происходит • Когда конденсатор подключен к лампе, заряд может сбалансироваться, и ток течет, зажигая лампу.• Это продолжается до полной разрядки конденсатора. +++++ ——-

Пока конденсатор заряжается • Хотя ток падает, когда конденсатор заряжает, ток в любой момент в обоих измерителях одинаков, показывая, что заряд, накопленный на отрицательной пластине, равен по количеству заряду, накопленному на положительной пластине. тарелка. м. A +++++ ——- м. A

Когда конденсатор полностью заряжен • Когда конденсатор полностью заряжен, pd, измеренный на конденсаторе, равен и противоположен p.d. через батарею, поэтому не может быть дальнейшего протекания тока. V +++++ ——- V

Емкость • Степень, в которой конденсатор может накапливать заряд, называется его емкостью. Он определяется как C = емкость (единица фарада (F)) Q = величина заряда на одной пластине (единица кулонов (C)) V = p. d. между пластинами (единица вольт (В)). Обратите внимание, что на самом деле общий заряд, накопленный конденсатором, фактически равен нулю, потому что сохраняется столько же положительного, сколько отрицательного заряда.Когда мы говорим о накопленном заряде (Q в этой формуле), это относится к избыточному положительному заряду на положительной пластине конденсатора. ++++ ——- + Q -Q

Влияние сопротивления на зарядку и разрядку • Последовательное подключение резистора к конденсатору увеличивает время зарядки на 6 В 2 200 мкФ • и увеличивает время разрядки

Второе la Кирхгофа говорит нам, что e. мф. Должен равняться сумме Vbattery = V резистора + V конденсатора 6 В. Первоначально конденсатор не заряжен.В это время Vcapacitor = 0 и V батареи = Vresistor

Второе la Кирхгофа говорит нам, что e. мф. Должен равняться сумме Vbattery = V резистора + Vcapacitor По мере того, как конденсатор заряжается, Vcapacitor увеличивается, а значит, Vresistor падает. 6 В С Ток через резистор (а значит и всю цепь) падает

I max Current A Small R Для большого резистора максимальный ток (который является начальным током) ниже. I max Время, необходимое для зарядки конденсатора, соответственно больше.I max Large R Time / s

Поиск сохраненного заряда Помните, что заряд, хранящийся на каждой пластине, одинаков. Нахождение сохраненного заряда — это еще один способ найти заряд, сохраненный на положительной пластине. Текущий / сохраненный заряд (Q = It) +++++ ——- m. A Площадь под кривой — это накопленный заряд Время / с

Разрядка конденсатора Здесь конденсатор емкостью 1 000 мкФ заряжается от батареи и разряжается через резистор 100 кОм. Попробуйте рассчитать время разряда с зарядным потенциалом 3 В, 4.5 В и 6 В. В м. A Нарисуйте график зависимости тока от времени в каждом случае и измерьте площадь под графиком. Эта область даст вам заряд конденсатора. Рассчитайте емкость конденсатора в каждом случае, используя

.

Разрядка с постоянным током Если последовательное сопротивление непрерывно уменьшается по мере разряда конденсатора, можно поддерживать постоянным ток во время разряда конденсатора. Преимущество этого состоит в том, что заряд конденсатора легче рассчитать.Ток / А Q = Ixt Время / с

Разряд постоянным током 100 кОм 6 В В 1 000 мкФ м. A

Экспоненциальный затухающий ток, мкА Независимо от того, заряжается ли конденсатор или разряжается, график текущего времени имеет эту особую форму. Он имеет экспоненциальную форму. («Математическая» форма кривой, подобной этой, на самом деле никогда не падает до нуля, хотя на практике это происходит). Время с

Экспоненциальное затухание Уравнение кривой может быть показано как I o Ток мкА, где C — емкость конденсатора, а R — сопротивление последовательного резистора FIXED. Обратите внимание, что единственная переменная справа — это t.Время s Итак, C x R — важная величина, известная как постоянная времени. Когда t = CR e = 2. 718, поэтому 1 / e = 0. 368

Экспоненциальное затухание Ток мкА Io I = 0,368 Io (0,368) 2 Io (0,368) 3 Io RC 2 RC Время с 3 RC Время, за которое ток падает в 1 / е раз, составляет постоянный. Этот временной интервал — это RC постоянная времени

.

Конденсаторы, включенные параллельно Q 1 Q 2 C 1 C 2 Конденсаторы включены параллельно и, следовательно, есть то же p. d. на каждом из C 3 Q 3 Один конденсатор, который хранит столько же заряда (Q = Q 1 + Q 2 + Q 3), представлен следующим образом: V So C = C 1 + C 2 + C 3 Отсюда следует, что конденсаторы, подключенные параллельно, имеют общая емкость, равная сумме их индивидуальных емкостей.

Последовательные конденсаторы Q 1 C 1 V 1 Q 2 C 2 V 2 с добавлением i. е. V Единственный конденсатор, который имеет такой же эффект: Итак: Q 3 C 3 V 3

Конденсаторы и резисторы Сравнение конденсаторов Последовательное соединение Резисторы параллельного соединения

Энергия и конденсаторы Во время зарядки добавление электронов к отрицательной пластине включает работу по преодолению отталкивания электронов, уже находящихся там. Таким же образом удаление электронов с положительной пластины включает в себя преодоление притягивающей электростатической силы положительного заряда на пластине. Работа выполняется при перемещении электронов +++++++ —— C

Энергия и конденсаторы Помните, что напряжение V — это работа, совершаемая на единицу заряда: представьте, что конденсатор частично заряжен, так что заряд на пластинах равен Q. Затем он приобретает немного больше заряда δQ.Это включает в себя работу по перемещению заряда δQ от одной пластины к другой. Если δQ очень мало, V можно считать неизменным, и в этом случае Q + Q δQ + + + —- C V

Energy and Capacitors And as Мы можем заменить V Итак, общая работа, проделанная для обеспечения полного заряда конденсатора от 0 до Qfull And в пределе δQ → 0 Q + δQ + + + —- C V

Запись Q fpr Qfull и использование Q = VC W = энергия, запасенная заряженным конденсатором (Дж) Q = заряд на пластинах (C) V = pd на пластинах (V) C = емкость конденсатор (F)

Конденсатор

— обзор | Темы ScienceDirect

12.1.1 Конденсатор — интересный компонент в текстиле

Конденсатор — это пассивный электрический компонент, который имеет свойство накапливать электрический заряд, то есть электрическую энергию, в электрическом поле. В основном конденсатор состоит из двух электродов, разделенных диэлектриком. При использовании источника постоянного напряжения и последовательно подключенного сопротивления электрический ток протекает через конденсатор, что обеспечивает создание электрического поля в пространстве между двумя электродами.Сила электрического поля пропорциональна создаваемому напряжению. Однако для выравнивания напряжения на конденсаторе с источником постоянного напряжения требуется определенное время. Это описывается постоянной тау. Тау определяется как время, необходимое конденсатору для достижения 67% уровня напряжения источника постоянного напряжения [22].

Существуют разные типы конструкций, которые различаются как по форме, так и по используемым материалам. В дополнение к классическому пластинчатому конденсатору, описанному ранее, существуют также цилиндрические конденсаторы, у которых есть проводящий сердечник, окруженный диэлектриком.Затем его закрывают токопроводящей оболочкой для создания конденсатора. Аналогично сконструированы сферические конденсаторы, с той разницей, что они состоят из двух изолированных сферических металлических поверхностей [22,23].

Материалы, из которых изготовлены конденсаторы, различаются в зависимости от области применения. Керамические конденсаторы производятся, как следует из названия, с керамическим диэлектриком. Преимущество керамики — это электрическая прочность до 100 кВ, которая может быть достигнута соответствующим выбором керамики.Поэтому они в основном используются в высокочастотных фильтрах, а также в качестве накопителей энергии. Конденсаторы с пластиковыми пленками отличаются тем, что они изготовлены из пластиковых пленок. Для этого пленки либо объединяются с металлической фольгой в качестве электродов, и в этом случае пластик используется в качестве диэлектрика, либо пленки осаждаются из паровой фазы с металлом с одной стороны. Преимущество этого типа конденсатора заключается в том, что фольга самовосстанавливается в случае скачка напряжения, поскольку дуга, создаваемая повреждением, обеспечивает плавление металла вокруг дефекта обратно в фольгу.Металлизированные бумажные конденсаторы похожи на пленочные конденсаторы, за исключением того, что вместо пластиковых пленок используется изоляционная бумага, которая также осаждена из паровой фазы с металлом. Готовый конденсатор пропитывают изоляционным маслом для достижения высокой диэлектрической прочности и снижения потерь. Поэтому они хорошо подходят для использования в силовой электронике или в качестве конденсаторов для подавления помех. Кроме того, они, как и пленочные конденсаторы, самовосстанавливающиеся. Электролитические конденсаторы составляют последнюю группу. Он состоит из анода, который сделан из алюминия, тантала или ниобия, и катода, который может быть либо жидким, либо твердым электролитом.Из-за полярности важно правильно подключить конденсатор, иначе это может привести к взрыву. Диэлектрик образован оксидом анодного материала, который не является электропроводным. Если электролит может поставлять кислород, этот тип конденсатора также является самовосстанавливающимся. Из-за возможных комбинаций материала анода и катода электролитический конденсатор может использоваться для множества применений, таких как частотные развязки, сглаживание напряжения и буферизация [22,23].

Помимо классических конденсаторов, которые могут иметь емкость от пикофарад до фарад, существуют также так называемые суперконденсаторы, которые могут иметь емкость до нескольких килофарад [24]. Они делятся на конденсаторы с двойным слоем и псевдоконденсаторы, при этом смесь двух типов конденсаторов называется гибридным конденсатором. Двухслойный конденсатор состоит из двух электродов, которые пространственно разделены жидким или твердым электролитом, но при этом электрически соединены друг с другом.При приложении напряжения на каждом из двух электродов образуется так называемый двойной слой Гельмгольца. Это означает, что на аноде образуется очень тонкий слой анионов электролита. Это относится и к катоду. Анод и анионы образуют двойной слой, который служит диэлектриком. Таким образом может сохраняться высокий электрический заряд [25].

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *