Что такое коэффициент трансформации — Cтатьи от компании T-zamer
- Что такое коэффициент трансформации?
- Методы расчета коэффициент трансформации.
- Как подготовить приборы к расчету?
- Измерение потерь холостого хода
Что такое коэффициент трансформации?
Проверка коэффициента трансформации подразумевает расчет отношения напряжений U1 и U2. U1 – это напряжение концов обмотки трансформатора. U2 – это напряжение выводов вторичной обмотки, которое определяется во время холостого хода. В теории устройство не претерпевает потери мощности. Но на практике часто встречаются ситуации, при которых наблюдается понижающий или повышающий коэффициент. В таком случае без специальных расчетов не обойтись. Коэффициент можно найти с помощью простой формулы:
Данное значение показывает, насколько токовое напряжение в одной обмотке отличается от другой при воздействии определенных нагрузок.
Методы расчета коэффициент трансформации
Для проведения испытаний вам понадобится вольтметр. С помощью этого прибора можно убедиться в том, что соотношение количества витков соответствует техническим стандартам. Для этого необходимо измерить коэффициенты на холостом ходу. Эти проверки также позволяют определить полярности и возможные повреждения трансформатора.
Существует 3 метода определения коэффициента трансформации:
- технические документы от производителя;
- мост переменного тока;
- последовательные измерения вольтметром.
Классический метод измерений предполагает использование двух вольтметров. Номинальный коэффициент определяется путем деления показателей напряжения, которые фиксируются на холостом ходу.
При работе с новым прибором эти данные можно посмотреть в техническом паспорте производителя. При проверке трехфазных трансформаторов измерения проводятся одновременно для одной и другой обмотки.
Встречаются ситуации, при которых прибор имеет скрытые выводы. В таком случае измерения проводятся только в том месте, в котором провода соединяются с устройством и не находятся под кожухом. Они находятся снаружи, поэтому доступны для проведения проверки. При работе с устройством одной фазы задача упрощается. Для исследования понадобятся значения двух вольтметров, расположенных в разных концах обмотки. Такая схема учитывает подключенную нагрузку цепи №2.
Наиболее современный способ определения коэффициентов позволит быстро получить показатели должного уровня точности. Универсальные приборы не требуют подведения к трансформатору каких-либо источников напряжения. Данным методом пользуются профессиональные электрики. При наличии специальных приборов с такой задачей справится и неподготовленный человек.
При анализе токов трансформатора создается цепь, в которой величина тока от 20 до 100 процентов пропускается по обмотке первичного типа. При этом должно и измеряться ответвление – вторичный ток.
Стоит быть предельно осторожными при работе с трансформаторами, имеющими несколько обмоток вторичного типа. Такие устройства могут быть опасными. Вторичные обмотки в таком случае изолируются с целью предотвращения возникновения риска для жизни и рабочего оборудования.
Некоторые типы трансформаторов требуют заземления. Для работы с ними требуется найти в корпусе найти клемму со специальным обозначением «З» (то есть, заземление).
Как подготовить приборы к расчету?
Современные устройства для измерения коэффициентов способны работать в полуавтоматическом режиме, поэтому сложностей при их настройке не возникает. Несмотря на это, пользователю следует знать некоторые особенности выполнения такого задания.
Для определения коэффициентов в трансформаторах с одной и тремя фазами воспользуйтесь схемами, представленными ниже.
Инженерные универсальные приборы для измерения показателей должны соответствовать государственным стандартам.
Перед использованием прибора убедитесь в том, что датчики находятся на нулевом значении. Несмотря на высокую точность измерений, следует снизить уровень погрешности путем проведения нескольких испытаний. Более точные значения можно получить после нахождения общего арифметического всех полученных результатов.
Стоит запомнить, что номинальное напряжение всегда выше подводимого. Универсальные приборы современного типа предназначены не только для определения коэффициента трансформации. Такие приспособления показывают полярность катушек и значение тока возбуждения в трансформаторах различного типа.
Измерение потерь холостого хода
Такие испытания проводятся для трансформаторов, мощность которых превышает 1000 кВт. Установки мощностью до 1000 кВт можно проверять только после проведения капитального ремонта и частичным изменением магниопровода.
Потери холостого хода у трансформаторов трехфазного типа фиксируются при наличии однофазного возбуждения тока. При проведении работ следует использовать схемы, предоставленные производителем.
Обратите внимание, что коэффициенты установок во время ремонта или эксплуатации не должны отличаться от заводских стандартов более чем на 5%. Для трансформаторов однофазного типа аналогичные значение не превышают 10%.
Решение о начале измерений принимается техническим руководителем на предприятии. Поводом для начала исследований могут стать данные хроматографического анализа газов, растворенных в масле. В этом случае полученные показатели не должны отличаться от исходных норм более чем на 30%. В конце исследования все технические параметры заносятся в соответствующий отчет. Этот документ может использоваться в будущем технологами предприятия для определения уровня амортизации оборудования и его общего технического состояния.
счетчик электроэнергии, 20, класс точности, учет электроэнергии
Коэффициент трансформации определяется с помощью специальной формулы В многоквартирных домах потребляется большое количество электроэнергии, поэтому для измерения числа энергии необходимо обязательно прибегать к использованию приборов, которые понижают (или трансформируют) ток перед подачей на установленный общедомовой счетчик. Такими приборами являются различные трансформаторы тока. При этом происходит измерение счетчиком не реальной энергии, а пониженной в несколько раз. Это называется коэффициентом трансфoрмации.
Коэффициент трансформации счетчика электроэнергии
Трансформатор представляет собой две обмотки с разным числом витков, которые индуктивно связаны друг с другом с помощью железного сердечника. Для его работы важен такой показатель, как коэффициент трaнсформации.
Коэффициент трансформации – техническая величина, показывающая преобразовательную или масштабирующую характеристику касательно параметров электрической цепи в трансформаторе.
Другими словами – это показатель отношения числа витков на обоих обмотках трансформатора, а именно вторичной и первичной. С помощью коэффициента трансформации определяется тип трансформатора, поскольку существует коэффициент трансформации как напряжения, так и силы тока.
Рассмотрим типы трансформаторов:
- Трансформатор напряжения применяется для преобразования напряжения в цепях – высокого в низкое. Он изолирует логические цепи измерения и защиты от высокого напряжения. Такой трансформатор питается от источника напряжения.
- Трансформатор тока снижает первичный ток до того показателя, чтобы он смог быть используем в цепях защиты и измерения. Питание трансформатора такого типа происходит от источника тока.
Определить коэффициент трансформации достаточно легко после изучения теоретической части процесса
Если коэффициент трансформации k, а напряжение на концах первичной и вторичной обмотке U1 и U2, соответственно, получим следующую формулу: k=U1/U2. При этом напряжение на вторичной обмотке определяется на холостом ходу. Эта формула действительна для трансформатора напряжения.
Делаем расчет: трансформатор имеет коэффициент трансформации 20
Для трансформатора тока получим следующую формулу, где для определения коэффициента трансформации берут отношение значений токов первичной I1 и вторичной I2 обмотки, расчет производится по следующей формуле k =I1/ I2.
Отметим:
- У силового трансформатора с двумя обмотками, которые расположены на едином стержне, коэффициент трансформации будет равен соотношению чисел витков на стержне.
- В трансформаторе с тремя фазами (трехфазном) коэффициенты трансформации могут быть различны для фазных и междуфазных напряжений.
- Коэффициент трансформации равен отношению высшего напряжения к низшему будет в двухобмоточном трансформаторе.
Для большей экономии покупатель все чаще покупает электронный счетчик, поскольку он относится к классу 2,0 точности, а индукционный – 2,5 класс. Это говорит о большей точности показаний, снятых с его помощью. Узнать, что это такое, как влияет на экономию и что показывает, можно у электриков. Считать в дальнейшем можно все самостоятельно. Ведь посчитать совсем не сложно. Для этого есть специальные формулы.
Выбор счетчика: коэффициент трансформации – это
Все мы знаем, что существует два типа электросчетчиков: электронные и индукционные. Электронный счетчик компактный и удобен при установке, также в нем отсутствует механика. Ток в нем проходит напрямую через полупроводники и микросхемы. Также есть электронные счётчики делятся на однофазные и двухфазные. При двухфазном учитываются дневное и ночное показатели, то есть два тарифа. Отметим, что ночное гораздо меньше дневного.
Поэтому многие потребители пользуются электрозатратной техникой преимущественно ночью, например, стиральной машиной, скороваркой и т.д.
Интерфейс достаточно понятный благодаря цифровой шкале. Такой тип оборудования имеет меньший гарантийный срок, хотя в нем нет движущихся частей, что повышает долговечность и надежность.
Индукционные электрические счетчики встречаются в каждом доме, поскольку они появились еще задолго до электронных:
- Они имеют механическую конструкцию с двумя катушками – для напряжения и тока.
- Поэтому он достаточно тяжелый и громоздкий.
- Магнитное поле, появляющееся во время работы электросчётчика, двигает эти катушки.
Затем приходят в движение диски и шкала со значениями. После этого на циферблате появляется объем затрачиваемой электроэнергии. Скорость работы всей системы в целом зависит от уровня напряжения. Недостаток прибора в том, что он не подходит для многотарифного учета.
При покупке счетчика следует проконсультироваться с продавцом, узнав обо всех нюансах использования выбранной модели
В расчетный период многие пользователи отмечают некоторые погрешности при сверке показаний общедомового счетчика и своих, но эта погрешность незначительна. Обычной средний срок службы индукционного электросчетчика примерно 15 лет.
Показатель: коэффициент трансформации счетчика
Для проверки класса электросчетчика и реального уровня электропотребления ведут определенные расчеты.
А именно:
- Снимают показания со счетчика и умножают на коэффициент трансформации, указанного общедомовым трансформатором.
- Например, показания счетчика равны 70 кВт*ч, а трансформатор понижает напряжение в 20 раз (коэфф. трансформации получается равен 20), то умножаем эти два показателя и получаем реальный расход электричества (70*20=1400 кВт*ч).
- Иногда появляется необходимость в определении коэффициента трансформации, чтобы определить значение уменьшенного электросчетчика трансформатором, поскольку на счетчике нет соответствующего идентификатора (Кт на приборе).
Для расчета используют специальный прибор, при этом одновременно на вторичной обмотке фиксируют величину электрического тока. Затем необходимо поделить значение (важно, что теперь оно получено от прохождения через вторую обмотку) первичного тока, который ранее подавался на первичную обмотку. В результате чего появится необходимое значение коэффициента трансформации.
Обычно в качестве измерительного прибора используют амперметра. На нем выставляется значение в 5 ампер для вторичного тока, то есть ток теперь будет измеряться в этих пределах. С помощью полученного расчета также определяют, к какому классу точности относится электросчетчик.
Что такое коэффициент трансформации (видео)
При подборе электросчетчика нужно обращать внимание на множество факторов, проверять технический паспорт, учитывать биоритмы потребителя и так далее. Проверить точность прибора поможет коэффициент трансформации, так как с его помощью определяют точность измерений и исключают погрешности.
Добавить комментарий
Коэффициент трансформации: особенности и вычисления
Коэффициент трансформации – величина, показывающая во сколько раз входной параметр (напряжение, ток) меньше либо больше выходного. Если цифра выше единицы, выполняется понижение, наоборот – меньше единицы демонстрирует устройство повышающее. Соответственно, различают коэффициенты трансформации по напряжению или току. Чисто практическое деление, соответствующее решаемым задачам. Магнитное поле наводит в витках выходной обмотки ЭДС, током не являющуюся определенно.
Измеритель коэффициента трансформации
Устройство трансформаторов
Встречается полное непонимание принципов действия трансформатора. Почему малое количество витков выполняется толстым проводом, прочие вопросы – возникают у новичков. Начнем рассмотрением сердечников. Выполняются из ферромагнитных материалов. Чтобы внутри распространялось поле. Именно оно является причиной генерации вторичной обмоткой ЭДС. Майкл Фарадей изготовил сердечник опытного трансформатора (1831 год) из мягкой стали, ввиду выраженности свойств, сегодня поступают иначе:
- Электротехническая сталь содержит изрядную долю кремния (несколько %), значительно повышает удельное сопротивление материала. Жесткий сплав с долей углерода до 1%. Ферромагнитные свойства выражены нечетко, падают тепловые потери. В первую очередь – на вихревые токи Фуко. Наводятся переменным магнитным полем в железном сплаве, некоторых других материалах. При работе трансформатора резко растут потери с увеличением частоты, повышение удельного сопротивления подмешиванием кремния является эффективной мерой борьбы с указанным явлением. Потери перемагничивания снижаются применением жесткой стали. Марки Э42, 43, 320, 330, 340, 350, 360. Первая цифра указывает процентное содержание кремния (3 – порядка 4,8%), вторая – характеризует магнитные потери, конкретные значения приводятся ГОСТ (например, 3836), не являются определенными.
- Пермаллой представлен сплавом железо-никель. Характерной особенностью материала становится чрезвычайная высокая магнитная проницаемость. Поле внутри многократно усиливается. Пермаллой применяется в маломощных трансформаторах, где потери перемагничивания не могут быть большими по определению. Маркировка дополнена процентным содержанием металлов, Н указывает никель, Х — хром, С — кремний, А — алюминий.
До 60-х годов стоимость трансформаторов считалась по совокупности материалов, потери волновали мало. Но с 70-х цены на нефть выросли порядком, закономерно поднимая стоимость прочих энергоносителей. Ранее горячекатаную сталь заменили холоднокатаной (ГОСТ 21427.2), имеющую ориентированную структуру зерен. Закономерно повысилась магнитная проницаемость в продольном направлении. Саму сталь нарезают пластинами сообразно этому факту, одновременно блокируется возникновение вихревых токов. Процесс называется шихтованием, слои отделяются друг от друга пленкой лака.
Формула коэффициента трансформации
Технология литья стали, внесение новых свойств являются определяющими. Отвечают наравне с активным сопротивлением меди за возникающие потери, закономерно определяющие КПД устройства. Зависит от параметров сердечника, коэффициента трансформации, магнитный поток несет некоторые потери, ослабляется. Этот факт в полной мере замалчивается в формуле, которую видим на рисунке. Где R1 и R2 – потери в активном сопротивлении меди, факт перемагничивания сердечника замалчивается.
Попутно проанализируем формулу. Видно: активные потери входят таким образом, что коэффициент трансформации повышается. Казалось бы, если требуется понизить напряжение, только на руку, на деле энергия потребляется источником питания, приходится оплатить расход. Вот почему активные потери медных обмоток стремятся сделать нулевыми. Не распространяется без затухания поле, совершенно не учитывается формулой. Чтобы улучшить характеристики трансформатора, приходится выбирать электротехнический сплав.
Другая сторона монеты: активные потери уменьшим, снизив число витков. Требуется повысить магнитную индукцию поля, что требует создания совершенно особых сталей. Другим путем решения проблемы стало использование толстого провода, резко усложняя технологию намотки, одновременно существенно повышая стоимость, габариты изделия. Затем, на высоких частотах эффективность метода снижает скин-эффект, большое сечение создает пространство возникновению вихревых токов. Частично снимает проблему применение транспонированного провода, физически состоящего из большого числа изолированных друг от друга тонких жил (иногда полос). Изоляция эпоксидной смолой после отвердевания придает проводникам прочность.
Касательно трансформаторной стали к решению проблемы потерь (появлению возможности работать с большой индукцией) идут тремя путями:
- Улучшение ориентации доменов (процесс производства).
- Уменьшение толщины листов (сегодня – до 0,27 мм, более тонкая сталь редка).
- Поверхностная обработка стали.
Отдельной строкой идут акустические потери (трансформаторы гудят), если общий урон удается снизить, упомянутый аспект остался на уровне середины прошлого века. В общем смысле вихревые токи, магнитный гистерезис вносят теперь равные доли. По этой причине технологи бьются за снижение толщины листов, формируя повышение чувствительности к механическим воздействиям, деформациям.
Тонкая сталь: коэффициент трансформации
В смысле уменьшения толщины листов большая перспектива видится в использовании аморфной стали. Главное ограничение накладывает магнитострикция (изменение геометрических размеров материала действием поля). Эффект снижает коэффициент передачи на вторичную обмотку, аналогично гистерезису. Однако, несмотря на хрупкость, сложности отжига в технологическом цикле, удаётся получить листы толщиной единицы сотых долей мм. Специалисты называют основным препятствием применению высокую стоимость, не названные выше особенности.
Основной сегмент использования находится в рамках намотанных магнитопроводов. Здесь (в отличие от шихтования) сердечник сложен не полосами, является одним цельным куском, образующим тесно свитую спираль. Касаемо прочих методик сборки, надежду дает факт независимости потерь от направления вдоль кристаллической решётки. Поскольку ориентированных доменов нет, упраздняются требования поверхностной обработки листов стали.
Ввиду описанных особенностей из аморфной стали становится возможным собирать трансформаторы с приемлемым коэффициентом передачи высокочастотных сигналов.
Токи циркуляции, коэффициент трансформации, параметры короткого замыкания
Чаще на подстанции трансформаторы включаются параллельно по очевидным причинам. Потребление слишком велико, чтобы нагрузку выдержало одно-единственное изделие. Казалось бы, никаких особенностей здесь не имеется, на практике технические характеристики трансформаторов даже одной заводской партии отличаются. Нормы выбираются согласно ГОСТ 14209, IEC 905. Считается допустимой установки совместно указанных отклонений коэффициента трансформации:
- Для изделий с коэффициентом трансформации 3 и менее, на неосновном ответвлении – 1% (в обе стороны).
- Для изделий с коэффициентом трансформации свыше 3, на основном ответвлении – 0,5% в каждую сторону.
На подстанциях, где стоят изделия с разным коэффициентом трансформации, уравнительные токи между ними возникают при отсутствии нагрузки. Нагрузка ситуацию усугубляет. Токи распределяются обратно пропорционально сопротивлениям короткого замыкания. Предъявляются требования к другим параметрам. Допустимое отклонение напряжения короткого замыкания ограничено пределами 19%, отдают предпочтение трансформаторам одной парии.
Сила тока обмоток
В трехфазных сетях требования к коэффициенту распространяются только на обмотки в рамках отдельной фазы. Если значения отличаются, начинает циркулировать ток. Даже если нет никакой нагрузки. Иногда феномен называют уравнительным, уравнивает падение напряжения двух параллельно включенных ветвей (обмоток). В формуле зависимости амплитуды этого тока от коэффициента трансформации: в числителе с правой стороны относительная разница (см. список выше), знаменателе сформирован удвоенным относительным напряжением (короткого замыкания). Левая часть равенства содержит отношение тока циркуляции к номинальному.
Здесь поясним: напряжение короткого замыкания берется в процентах номинального. Значение устанавливается опытным путем. На первичную обмотку подают некое напряжение, вторичную замыкают накоротко. Добиваются соответствия тока рабочему. Регулируют амплитуду входного напряжения. Значение, при котором достигаются указанные выше условия, в дальнейшем называют напряжением короткого замыкания. Обычно выражается в процентах от номинального, что отражено формулой.
Отношение токов
Соотношение показывает: при Uk% = 5, разнице между коэффициентами трансформации 1% циркуляционные токи достигнут 10% номинала. Вызовет нагрев обмоток, усугубит на участке ситуацию с тепловыми потерями. В случае если напряжения короткого замыкания отличаются для двух трансформаторов, полагается воспользоваться вместо удвоения операцией суммирования. Вдобавок номинальная мощность различна – приведите цифры к общему знаменателю. Для этого (на выбор) одна цифра делится на собственную мощность, умножается на номинальную мощность другого трансформатора.
Иногда меньше ошибок, если воспользоваться абсолютными величинами вместо относительных. Здесь под U понимается фазное напряжение со стороны обмотки НН; Zk1, Zk2 – комплексные сопротивления (импеданс короткого замыкания) изделий. k1, k2 – коэффициенты трансформации обоих изделий, а буквой греческого алфавита дельта обозначена разница. Токи разного направления, стремятся уравновесить разницу потенциалов через падение напряжения. Комплексность сопротивления напоминает об индуктивной составляющей, поскольку обмотка – это катушка.
Формула трансформаторов, количеством больше двух
При количестве трансформаторов большем двух формула усложняется. Приводится изображение, поскольку физический смысл каждой величины понятен из сказанного ранее. Ток формулы суммарный, для каждой параллельной обмотки меньше в число раз, равное коэффициенту трансформации. Точка над символом означает: число комплексное.
Ощутимо улучшает ситуацию наличие специальных устройств регулирования напряжения. В этом случае число витков изменяется, и коэффициенты трансформации выравниваются. Под нагрузкой токи распределяются неравномерно. В идеальном случае значение обратно пропорционально входному комплексному сопротивлению изделия. При разнице индуктивностей возможно применение реакторов, в любом случае понятно, при параллельном включении параметры обоих трансформаторов не должны слишком расходиться. Отрадно, что для режима нагрузки точный расчет коэффициентов не требуется… потому что явное различие выводит систему в аварийный режим. Конкретика не важна. Главное – избежать окончательного выхода изделий из строя.
Что такое коэффициент трансформации — Блог о строительстве
Коэффициент трансформации— трансформатора это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого нибудь параметра электрической цепи (напряжения, тока, сопротивления и т. д.).
Содержание 1 Общие… … Википедиякоэффициент трансформации — Отношение напряжений на зажимах двух обмоток в режиме холостого хода. Примечания: 1. Для двух обмоток силового трансформатора, расположенных на одном стержне, коэффициент трансформации принимается равным отношению чисел их витков 2.
В трехфазном… … Справочник технического переводчикаКоэффициент трансформации— 9.1.7. Коэффициент трансформации Отношение напряжений на зажимах двух обмоток в режиме холостого хода. Примечания: 1. Для двух обмоток силового трансформатора, расположенных на одном стержне, коэффициент трансформации принимается равным отношению … Словарь-справочник терминов нормативно-технической документациикоэффициент трансформации— transformacijos koeficientas statusas T sritis automatika atitikmenys: angl.
step up ratio of transformation; transformation coefficient; transformation ratio vok. Übersetzungsverhältnis, n; Transformationsübersetzung, f;… … Automatikos terminų žodynasкоэффициент трансформации— transformacijos koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Transformatorių apibūdinantis dydis, išreiškiamas pirminės ir antrinės apvijos elektrovarų, įtampų, srovių stiprių arba vijų skaičių dalmeniu. atitikmenys:… … Penkiakalbis aiškinamasis metrologijos terminų žodynasкоэффициент трансформации— keitimo santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Keitiklio parametras, keičiamąjį signalą siejantis su pakeistuoju signalu, pvz., B = kA; čia A – keičiamasis signalas, B – pakeistasis signalas, k – keitimo santykis.… … Penkiakalbis aiškinamasis metrologijos terminų žodynasкоэффициент трансформации— keitimo santykis statusas T sritis fizika atitikmenys: angl.
transformation ratio vok. Übersetzung, f rus. коэффициент трансформации, m pranc.
rapport de transformation, m … Fizikos terminų žodynas Коэффициент трансформации— – отношение напряжения на зажимах двух обмоток трансформатора в режиме холостого хода. ГОСТ 16110 82 … Коммерческая электроэнергетика. Словарь-справочник коэффициент трансформации ответвления (пары обмоток)— Коэффициент, равный номинальному коэффициенту трансформации: умноженному на коэффициент ответвления обмотки с ответвлениями, если это обмотка высшего напряжения; деленному на коэффициент ответвления обмотки с ответвлениями, если это обмотка… … Справочник технического переводчикакоэффициент трансформации трансформатора малой мощности— Отношение числа витков вторичной обмотки к числу витков первичной обмотки [ГОСТ 20938 75] Тематики трансформатор Классификация >>> Синонимы коэффициент трансформации EN low power transformer turns ratio DE Übersetzungsverhältnis des… … Справочник технического переводчика
Вам понадобится
- – трансформатор; – источник переменного тока; – тестер; – калькулятор.
Инструкция
Возьмите обычный трансформатор. Он состоитиз двух катушек. Найдите количество витков катушек N1 и N2, которые являютсяосновой трансформатора и соединены магнитопроводом. Определите коэффициент трансформацииk. Для этого поделите количество витков первичной катушки N1, которая подключается к источнику тока, на количество витков вторичной катушки N2, к которой подключается нагрузка: k=N1/N2.Пример. Обмотка трансформатора, подключенная к источнику тока, имеет 200 витков, а другая обмотка 1200 витков. Определите коэффициент трансформациии тип трансформатора. Найдите первичную и вторичную обмотку. Первичная – это та, которая подключена к источнику тока, она имеет 200 витков. Вторичная обмотка имеет, соответственно, 1200 витков. Рассчитайте коэффициент трансформациипо формуле: k=N1/N2=200/1200=1/6≈0,167. Трансформатор повышающий.Измерьте электродвижущую силу (ЭДС) на обоих обмотках трансформатора ε1 и ε2, если нет возможности узнать количество витков в них. Для этого подключите первичную обмотку трансформатора к источнику тока. Этот режим называетсяхолостым ходом. С помощьютестера найдите напряжение на первичной и вторичной обмотке. Оно будет равно ЭДС каждой из обмоток. Учитывайте, что потериэнергии за счет сопротивления обмоток пренебрежимо малы. Рассчитайте коэффициент трансформациичерез отношение ЭДС первичной и вторичной обмотки: k= ε1/ε2.Пример. Напряжение на первичной обмотке после подключенияк источнику тока равно 220 В. На разомкнутой вторичной обмотке напряжение составляет55 В. Найдите коэффициент трансформации. Трансформатор работаетна холостом ходу, поэтому напряжения на обмотках считайте равными ЭДС. Рассчитайте коэффициент трансформациипо формуле: k=ε1/ε2=220/55=4.Найдите коэффициент трансформацииработающего трансформатора, когдак вторичной обмотке присоединен потребитель. Рассчитайте его, поделив ток в первичной I1 обмотке, на ток во вторичной I2 обмотке. Ток измерьте, присоединяя последовательно обмоткам тестер, переключенный в режим работы амперметра: k=I1/I2.
Видео по теме
Обратите внимание
Трансформатор подключайте только к источнику переменного тока, иначе он не будет работать и может испортиться.
Источники:
- коэффициент трансформации этоОпределение коэффициента трансформации однофазного
Трансформатор– это электрический аппарат, который преобразует одно переменное напряжение в другое, например из 220 В. в 12 В. – это понижающий трансформатор.
Простейший трансформатор состоит из магнитопровода и намотанных на нем обмоток: первичной и вторичной. На первичную обмотку подается переменное напряжение, к примеру, 220 вольт от сети, а во вторичной обмотке, посредством индуктивной связи создается другое переменное напряжение. Выходное напряжение, зависит от разности витков первичной и вторичной обмоток.
Инструкция
Расчет примитивного Ш-образного трансформатора лучше всего показать на примере. Допустим, вам нужно рассчитать трансформаторс параметрами: сетевое напряжение U1=220В; выходное напряжение (напряжение на вторичной обмотке) U2=12В; ток нагрузкиi2=0,5А. Сначала определите выходную мощность: P2=U2*i2=12*0,5=6Вт. Для такой мощностиможно взять магнитопровод сечением примерно четыре квадратных сантиметра (S=4)Далее рассчитайте, сколькотребуется витков для одного вольта. Для Ш-образного трансформатора есть формула: К=50/S=50/4=12,5 витков на вольт.
Затем, рассчитайте количество витков первичной обмотки: W1=U1*K=220*12,5=2750 витков. И количество витков вторичной обмотки: W2=U2*K=12*12,5=150 витков.
После этого, определите ток в первичной обмотке: i1=(1,1*P2)/U1=(1,1*6)/220=30мА. А затем удастся посчитать диаметр проводапервичной обмотки без изоляции. Дело в том, что максимальный ток для медного провода составляет 5 амперна квадратный миллиметр, поэтому: d1=5А/(1/i1)=5A/(1/0,03А)=0,15мм.
И последнее, рассчитайте диаметр провода вторичной обмотки по формуле, d2=0,025*корень квадратный из i2, значение i2 в этой формуле подставляйте в миллиамперах: d2=0,025*22,4=0,56мм.
Полезный совет
Измерить диаметр провода при подборке можно и без использования точных измерительных приборов. Намотайте плотно измеряемый провод на карандаш, замерьте один сантиметр намотки и разделив его на количество витков вы получите диаметр провода.
О финансовой устойчивости предприятия можно сделать вывод, зная о степени его зависимости от заемных средств, о возможности маневрировать собственным капиталом. Эта информация важна для собственников компании, ее инвесторов, а также контрагентов (покупателей готовой продукции и поставщиков сырья).
Инструкция
При анализе финансовой устойчивости вы можете рассчитать коэффициент маневренности собственного капитала. Он характеризует долю источников собственных средств предприятия, находящихся в мобильной форме. Коэффициент маневренности показывает, какаячасть собственного оборотного капиталазанятав обороте, а какая капитализирована. При этом оборотным капиталом, находящимся в мобильной форме, предприятие может свободно маневрировать.Для расчета коэффициента маневренности используйте следующую формулу: Км = СОС/СК, гдеСОС – собственные оборотные средства;СК – собственный капитал.
Иными словами, коэффициент маневренности представляет собой отношение собственного оборотного капитала предприятия к собственнымисточникам финансирования его деятельности.
Рекомендуемое значение для данного показателя – 0,5 и выше. Его величина зависитот вида деятельности предприятия. В фондоемких производствах его нормальный уровень, как правило, ниже, чем в материалоемких.
Величину собственного капитала вы можете увидеть в III разделе пассива бухгалтерского баланса. Что касается объема собственных оборотных средств, то это расчетная величина. Ее вы можете найти одним из следующихспособов:1) СОС = СК – ВА, гдеСК – собственный капитал предприятия; ВА – внеоборотные активы.2) СОС = ОА – КО, гдеОА – оборотные активы;КО – краткосрочные обязательства предприятия.
Данный показатель характеризует долю собственного капитала, которая направляется на финансирование его текущей деятельности (формирование текущих активов).
Вы должны учитывать, что в динамикекоэффициент маневренности должен увеличиваться. Однако его резкий рост не являетсясвидетельством нормального развития предприятия. Это связано с тем, что повышение данного коэффициента возможно при росте собственного оборотного капитала или при снижении собственных источников предприятия. А значит, резкое увеличение данного показателя автоматически вызовет уменьшение других, например, коэффициента автономии, что свидетельствует об усилении зависимости предприятия от кредиторов.
Содержание:
При использовании различных типов трансформаторов, а также счетчиков электрической энергии нередко возникает вопрос, что такое коэффициент трансформации.
По своей сути, данный параметр представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение.
Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.
Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.
Основной параметр трансформатора
Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.
Формула
При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.
В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение.
С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.
Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.
В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора.Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор.
Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.
Коэффициент трансформации электросчетчика
Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.
Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства.Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60).
В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными.
Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока.Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.
В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам.
Кроме того, они не могут передавать данные на удаленное расстояние.Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиковоказывает прямое влияние на точность получаемых данных.
Как определить коэффициент трансформации
Главная> Теория> Коэффициент трансформации
Трансформатор представляет собой одно,- или многообмоточную систему на общем магнитопроводе, связанные взаимоиндукцией и предназначенные для преобразования (трансформации) величины напряжения переменного тока без изменения частоты.
Что такое коэффициент трансформации, и как определяется эта величина? Коэффициентом трансформации называется характеристика трансформатора, которая определяет его преобразовательные свойства. Данное свойство является основным и находится в общем случае отношением числа витков в обмотках.
Устройство трансформатора
Кроме преобразования, трансформаторы выполняют роль гальванической развязки входных и выходных цепей (исключение – автотрансформатор).
Свойства трансформатора
Большинство людей знакомо с трансформаторами только в том смысле, что они являются преобразователями переменного напряжения, повышающими или понижающими.
К сведению.На самом деле трансформатор не является преобразователем. Он масштабирует в определенных пределах электрические величины.
Соответственно, можно говорить о трансформаторах:
- напряжения;тока;сопротивления.
Трансформатор напряжения
Наиболее известное устройство. Включается параллельно нагрузке.
Его задача состоит в изменении входного напряжения с заданным коэффициентом. Как определить этот коэффициент? В простейшем случае он численно равен отношению количества витков в обмотках.
Говорят о понижающем трансформаторе, когда количество витков первичной (сетевой) обмотки меньше, чем у вторичной. Тогда на выходе напряжение также будет меньше. У повышающего, наоборот, количество витков вторичной (нагрузочной) обмотки превосходит количество первичной.
Включение трансформатора напряжения
Обратите внимание!В более общем случае устройство может иметь не две, а более обмоток. Для каждой из обмоток будет иметься свой коэффициент трансформации, причем часть обмоток будут понижающими, а часть –повышающими.
Любой трансформатор напряжения обратим, то есть, подав на любую из вторичных обмоток переменное напряжение, получим его и на выходе первичной, с тем же коэффициентом преобразования (трансформации).
Определение коэффициента трансформации производится по формуле:
N=U1/U2.
Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь.
Ток, который протекает в обмотках, создает на их сопротивлении падение напряжения, которое вычитается из ЭДС ненагруженного преобразователя. Таким образом, при увеличении нагрузки коэффициент трансформации падает. Аналогичная ситуация возникает для обмоток, выполненных проводами различного сечения.
Пример.Имеем понижающий трансформатор с коэффициентом трансформации, равным 10, на двух вторичных обмотках, но одна из которых выполнена проводом, сечением в два раза меньше. При одинаковых нагрузках напряжение на той обмотке, где использовался более тонкий провод, будет ниже на величину падения напряжения на сопротивлении обмоточного провода.
У трансформатора может быть и одна обмотка. В таком случае он называется автотрансформатором. Обмотка в таком случае имеет как минимум три вывода.
К одной из пары выводов подключается входное напряжение. Выходное напряжение снимается с одного из входных и оставшегося свободным. Автотрансформатор также может быть повышающим и понижающим.
Автотрансформатор
Трансформатор тока
Данное устройство более известно тем, кто занимается измерениями и обслуживанием мощных электрических установок. Измерение токов больших величин связано с определенными затруднениями, связанными с обеспечением безопасности и трудностями в изготовлении измерительных приборов для непосредственного измерения. Кроме измерений, сигналы с данных устройств используются системами защиты и сигнализации.
Включение трансформатора тока
Трансформатор тока подключается в цепь последовательно с нагрузкой. Соответственно, ток в первичной обмотке в точности равен току нагрузки. На вторичной обмотке получается напряжение, пропорциональное коэффициенту трансформации тока.
Коэффициент трансформации определяется таким же образом, как и для трансформаторов напряжения, но с поправкой на ток холостого хода, который вызван намагничиванием и потерями в магнитопроводе.
Данные устройства тока имеют специфические области применения, поэтому их строго классифицируют по нескольким критериям:
По назначению бывают защитные, измерительные, лабораторные, промежуточные;По типу установки – внутренние, наружные, переносные, накладные, встроенные;По типу конструкции – одно,- и многовитковые или шинные;По типу изоляции – сухие, масляно-бумажные, с компаундной заливкой или газонаполненные;По рабочему напряжению. Для трансформаторов тока отечественного производства установлен ряд стандартных рабочих напряжений от 0.66 до 1150 кВ;По номинальному первичному току.
Также существует диапазон градаций от 1 до 40000 А. Это основной показатель, по которому выбирается необходимый трансформатор тока;По номинальному вторичному току. Обычно 1 или 5 А, но в некоторых случаях может быть 2 или 2.5 А;По мощности вторичной нагрузки – от 1 до 120 ВА;По числу ступеней преобразования – одно,- и многоступенчатые.
К сведению.Характеристики, определяющие тип и назначение трансформаторов тока, указываются на заводской бирке изделия.
Коэффициент трансформации трансформатора тока в характеристиках не указывается, но его легко определить самостоятельно, зная значения первичного и вторичного токов, указанных в технических характеристиках. Коэффициент трансформации тока равен их отношению:
N=I1/I2.
В отличие от аналогичных устройств, токовые трансформаторы нельзя включать без нагрузки, поскольку это приведет к выходу их из строя и появлению на выходных клеммах опасно высокой ЭДС.
Трансформатор сопротивления
Подобное устройство можно назвать еще согласующим трансформатором, так как его задача – согласовывать сопротивления источника и нагрузки для точной передачи сигнала в различных каскадах электронных схем. В данном случае не важны значения напряжений и токов в цепях, поскольку определяющим является согласованная работа каскадов с разными сопротивлениями, которые и трансформируют трансформатор сопротивления.
Включение согласующего трансформатора
Коэффициент трансформации трансформатора сопротивления также определяется отношением количества витков обмоток, но в отношении сопротивления нагрузки и источника используется квадратичная зависимость, формула такова:
Ri=N2·Rn.
Таким образом, если известны сопротивления нагрузки и источника, требуемый коэффициент трансформации находится из зависимости:
N=√Ri/Rn.
В дальнейшем найденный коэффициент трансформации используется для расчета обмоток.
Видео
Источники:
- dic.academic.ru
- www.kakprosto.ru
- electric-220.ru
- elquanta.ru
Расчет коэффициента трансформации для трансформаторов: формула
Трансформатор представляет собой одно,- или многообмоточную систему на общем магнитопроводе, связанные взаимоиндукцией и предназначенные для преобразования (трансформации) величины напряжения переменного тока без изменения частоты. Что такое коэффициент трансформации, и как определяется эта величина? Коэффициентом трансформации называется характеристика трансформатора, которая определяет его преобразовательные свойства. Данное свойство является основным и находится в общем случае отношением числа витков в обмотках.
Устройство трансформатора
Кроме преобразования, трансформаторы выполняют роль гальванической развязки входных и выходных цепей (исключение – автотрансформатор).
Свойства трансформатора
Большинство людей знакомо с трансформаторами только в том смысле, что они являются преобразователями переменного напряжения, повышающими или понижающими.
К сведению. На самом деле трансформатор не является преобразователем. Он масштабирует в определенных пределах электрические величины.
Соответственно, можно говорить о трансформаторах:
- напряжения;
- тока;
- сопротивления.
Трансформатор напряжения
Наиболее известное устройство. Включается параллельно нагрузке. Его задача состоит в изменении входного напряжения с заданным коэффициентом. Как определить этот коэффициент? В простейшем случае он численно равен отношению количества витков в обмотках. Говорят о понижающем трансформаторе, когда количество витков первичной (сетевой) обмотки меньше, чем у вторичной. Тогда на выходе напряжение также будет меньше. У повышающего, наоборот, количество витков вторичной (нагрузочной) обмотки превосходит количество первичной.
Включение трансформатора напряжения
Обратите внимание! В более общем случае устройство может иметь не две, а более обмоток. Для каждой из обмоток будет иметься свой коэффициент трансформации, причем часть обмоток будут понижающими, а часть –повышающими.
Любой трансформатор напряжения обратим, то есть, подав на любую из вторичных обмоток переменное напряжение, получим его и на выходе первичной, с тем же коэффициентом преобразования (трансформации).
Определение коэффициента трансформации производится по формуле:
N=U1/U2.
Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь. Ток, который протекает в обмотках, создает на их сопротивлении падение напряжения, которое вычитается из ЭДС ненагруженного преобразователя. Таким образом, при увеличении нагрузки коэффициент трансформации падает. Аналогичная ситуация возникает для обмоток, выполненных проводами различного сечения.
Пример. Имеем понижающий трансформатор с коэффициентом трансформации, равным 10, на двух вторичных обмотках, но одна из которых выполнена проводом, сечением в два раза меньше. При одинаковых нагрузках напряжение на той обмотке, где использовался более тонкий провод, будет ниже на величину падения напряжения на сопротивлении обмоточного провода.
У трансформатора может быть и одна обмотка. В таком случае он называется автотрансформатором. Обмотка в таком случае имеет как минимум три вывода. К одной из пары выводов подключается входное напряжение. Выходное напряжение снимается с одного из входных и оставшегося свободным. Автотрансформатор также может быть повышающим и понижающим.
Автотрансформатор
Трансформатор тока
Данное устройство более известно тем, кто занимается измерениями и обслуживанием мощных электрических установок. Измерение токов больших величин связано с определенными затруднениями, связанными с обеспечением безопасности и трудностями в изготовлении измерительных приборов для непосредственного измерения. Кроме измерений, сигналы с данных устройств используются системами защиты и сигнализации.
Включение трансформатора тока
Трансформатор тока подключается в цепь последовательно с нагрузкой. Соответственно, ток в первичной обмотке в точности равен току нагрузки. На вторичной обмотке получается напряжение, пропорциональное коэффициенту трансформации тока.
Коэффициент трансформации определяется таким же образом, как и для трансформаторов напряжения, но с поправкой на ток холостого хода, который вызван намагничиванием и потерями в магнитопроводе.
Данные устройства тока имеют специфические области применения, поэтому их строго классифицируют по нескольким критериям:
- По назначению бывают защитные, измерительные, лабораторные, промежуточные;
- По типу установки – внутренние, наружные, переносные, накладные, встроенные;
- По типу конструкции – одно,- и многовитковые или шинные;
- По типу изоляции – сухие, масляно-бумажные, с компаундной заливкой или газонаполненные;
- По рабочему напряжению. Для трансформаторов тока отечественного производства установлен ряд стандартных рабочих напряжений от 0.66 до 1150 кВ;
- По номинальному первичному току. Также существует диапазон градаций от 1 до 40000 А. Это основной показатель, по которому выбирается необходимый трансформатор тока;
- По номинальному вторичному току. Обычно 1 или 5 А, но в некоторых случаях может быть 2 или 2.5 А;
- По мощности вторичной нагрузки – от 1 до 120 ВА;
- По числу ступеней преобразования – одно,- и многоступенчатые.
К сведению. Характеристики, определяющие тип и назначение трансформаторов тока, указываются на заводской бирке изделия.
Коэффициент трансформации трансформатора тока в характеристиках не указывается, но его легко определить самостоятельно, зная значения первичного и вторичного токов, указанных в технических характеристиках. Коэффициент трансформации тока равен их отношению:
N=I1/I2.
В отличие от аналогичных устройств, токовые трансформаторы нельзя включать без нагрузки, поскольку это приведет к выходу их из строя и появлению на выходных клеммах опасно высокой ЭДС.
Трансформатор сопротивления
Подобное устройство можно назвать еще согласующим трансформатором, так как его задача – согласовывать сопротивления источника и нагрузки для точной передачи сигнала в различных каскадах электронных схем. В данном случае не важны значения напряжений и токов в цепях, поскольку определяющим является согласованная работа каскадов с разными сопротивлениями, которые и трансформируют трансформатор сопротивления.
Включение согласующего трансформатора
Коэффициент трансформации трансформатора сопротивления также определяется отношением количества витков обмоток, но в отношении сопротивления нагрузки и источника используется квадратичная зависимость, формула такова:
Ri=N2·Rn.
Таким образом, если известны сопротивления нагрузки и источника, требуемый коэффициент трансформации находится из зависимости:
N=√Ri/Rn.
В дальнейшем найденный коэффициент трансформации используется для расчета обмоток.
Видео
Оцените статью:Что такое коэффициент трансформации
По своей сути коэффициент трансформации представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение. Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.
Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.
Основной параметр трансформатора
Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.
Формула
При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.
В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.
Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.
В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.
Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.
Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.
Коэффициент трансформации электросчетчика
Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.
Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.
Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.
В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.
Как определить коэффициент трансформации
что это такое и как его установить
На чтение 5 мин. Просмотров 141 Опубликовано Обновлено
На крупных зданиях и объектах устанавливают специальные механизмы контроля электричества, которые рассчитаны на объемные показатели токов (свыше 100А). Поэтому есть необходимость установки понижающих трансформаторов. Для корректного снятия показаний со всех устройств нужен расчетный коэффициент учета электроэнергии.
Что такое коэффициент трансформации
Коэффициент может быть указан на специальной бирке, размещенной на корпусе счетчика или клеммной крышкеКоэффициент трансформации счетчика электроэнергии – это параметр технического назначения, который определяет точность показаний устройств учета потребляемой энергии.
Электросчетчики крупных объектов (промышленных, торговых, иных) не подключаются к общедомовой сети напрямую, потому что классические приборы не дают нужного уровня напряжения. Чтобы снизить вероятность поломки, необходимо снижать данные мощности на вход через установленные трансформаторы.
Расчетный коэффициент учета электроэнергии – это показатель, отражающий соотношение силы тока и данных счетчиков. При большом объеме потребляемого электричества приборы не отражают действительного количества, поэтому применяется дополнительный расчет. Цифра коэффициента – выше единицы на несколько пунктов. При умножении получается значение фактически потребленной электроэнергии.
Еще один момент – уровень трансформатора по погрешности. Счетчики энергии соответствуют 0,5 или 0,2. Чем выше значение, тем менее точные данные показывают устройства.
Формула для определения КТ
Расчет показаний электросчетчика с трансформаторами тока и соответствующими коэффициентами производится по определенной формуле. Результат отражает необходимое масштабирование – повышение или понижение данных. Другими словами – трансформатор изменяет уровень напряжения и показывает колебания в цифрах.
Чтобы понять, как правильно считать показания счетчика электроэнергии с трансформаторами тока, стоит разобраться с используемой формулой. В большинстве случае коэффициент трансформации шифруют английскими буквами k и n (другие символы встречаются реже). Если обозначение на трансформаторе k ˂ 1, значит, устройство работает на повышение, если k ˃ 1 – на понижение.
Общая формула следующая:
где: U1 – уровень напряжения на входе, U2 – уровень на выходе, N1 – первичная обмотка (число витков), N2 – вторичная обмотка (число витков).
Данная формула используется, если можно пренебречь показателями потерь в обмотках. В ином случае прибегают к следующим расчетам:
где: R1и R2 – данные по сопротивлению первичной и вторичной обмоток соответственно, I1 и I2 – уровень силы электроэнергии на соответствующих витках.
Для крупных объектов формулы могут быть сложнее указанных, чтобы расчеты учитывали все нюансы и детали потребления электроэнергии.
Коэффициент трансформации (учета) электросчетчика – это величина, на которую умножают показатели счетчиков, чтобы получить более корректные данные. Например, для домашних сетей – 20 единиц. Если использовать коэффициент и цифры с экрана счетчика, можно получить количество реально потребленной энергии.
Разновидности приборов учета электроэнергии
Устройства для подсчета электроэнергии – это многофункциональные механизмы, которые могут отражать текущее положение данных, сохранять и передавать важную информацию. На сегодняшний день используют три разных варианта счетных механизмов.
Механические или индукционные приборы учета
Однофазные индукционные счетчики электроэнергииКлассический тип устройств, который встречается чаще всего. Конструкция состоит из двух обычных катушек. Одна из них ограничивает данные переменного напряжения, предотвращая искажения и получая электрический ток. Вторая преобразует поток переменного напряжения.
Основные плюсы – простота в эксплуатации, долговечность устройств. Срок службы счетчиков подобного типа высокий, а стоимость – низкая. Минус – габариты механизма.
Механические приборы имеют большую погрешность, которая сильно заметна при использовании в сетях с невысоким напряжением.
Электронные приборы учета
Модульный трехфазный электронный электросчетчикУстройства имеют более высокий уровень точности в подсчетах, но и цена их выше. Дополнительный плюс – возможность функционировать в нескольких режимах (например, утро и ночь, двух- и трехтарифные приборы).
Электронные счетчики преобразуют входящие аналоговые показатели в специальную цифровую кодировку, которые в свою очередь преобразуются небольшим микроконтроллером. Полученные данные можно увидеть на дисплее. Такие приборы стараются устанавливать все чаще, заменяя устаревшие механические модели.
Другие преимущества – компактный размер, возможность дистанционного контроля.
Гибридные приборы учета
Гибридный электросчетчикЯвляются средним вариантом между счетчика электронного и механического типа работы. С одной стороны – устройства оснащают цифровым дисплеем для удобства. С другой – используют классический индукционный способ получения и обработки данных.
Гибридные устройства устанавливают редко, предпочитая аналоговые или электронные механизмы.
Полезные рекомендации
Электросчетчики позволяют посмотреть количество потребляемой энергии, чтобы адекватно оценить расход и посчитать итоговую оплату. Устройства различаются по классу точности, мощности, степени допустимой погрешности. Чтобы получить точные данные, снимают показания, с помощью коэффициента и калькулятора вычисляют фактическое потребление.
Для жилых домов в городской зоне и поселках используют небольшие устройства – однофазные счетчики (например, Меркурий 230 ART-03 CN, производство г. Москва) или многотарифные приборы, подходящие для сети в 220 Вольт или 120 Ампер.
Важно, чтобы каждое новое устройство имело пломбу проверки государственного образца. Без этого показания электросчетчика не будут считаться достоверными, и приниматься контролирующими органами. Выбирать подходящий счетчик и высчитывать фактические показатели можно самостоятельно или через контролеров.
Коэффициент трансформации трансформатора (TTR) объяснение
Когда на первичную обмотку трансформатора подается переменный ток (AC), переменные магнитные силовые линии, называемые «потоком», циркулируют по сердечнику, создавая магнитное поле. Фото: Quora
.Трансформаторы эффективно передают электрическую энергию от одной цепи к другой за счет магнитной индукции. Каждая фаза трансформатора состоит из двух отдельных обмоток катушки, намотанных на общий сердечник.
Первичная обмотка трансформатора получает электрическую энергию от источника питания.Когда на первичную обмотку подается переменный ток (AC), переменные магнитные силовые линии, называемые «потоком», циркулируют по сердечнику, создавая магнитное поле.
Когда вторая обмотка намотана вокруг того же сердечника, магнитное поле индуцирует напряжение. Эта обмотка называется вторичной обмоткой. Величина напряжения, индуцируемого в каждом витке вторичной обмотки, будет такой же, как напряжение на каждом витке первичной обмотки; это называется коэффициентом трансформации трансформатора.
Если вторичная обмотка имеет меньше витков, чем первичная, во вторичной будет индуцировано более низкое напряжение. Этот тип трансформатора называется понижающим трансформатором.
Вторичная обмотка с вдвое большим числом витков, чем первичная, будет разрезана в два раза больше магнитным потоком, и во вторичной обмотке будет индуцировано удвоенное первичное напряжение. Этот трансформатор известен как повышающий трансформатор.
Примечание: первичный всегда подключен к источнику питания , а вторичный всегда подключен к нагрузке .Обмотка высокого или низкого напряжения может быть первичной или вторичной.
Как рассчитывается TTR
Общее индуцированное напряжение в каждой обмотке пропорционально количеству витков в этой обмотке, а ток обратно пропорционален как напряжению, так и количеству витков.
E1 / E2 = N1 / N2 = I2 / I1
E1 — это первичное напряжение, I1 — первичный ток, E2 — вторичное напряжение и I2 — вторичный ток, N1 — первичные витки, а N2 — вторичные витки.Если напряжение повышается, ток необходимо понижать, и наоборот. Число витков остается постоянным, если нет переключателя ответвлений.
Пример 1
Если первичное напряжение трансформатора составляет 110 вольт (В), первичная обмотка имеет 100 витков, а вторичная обмотка — 400 витков, каким будет вторичное напряжение?
E1 / E2 = N1 / N2
110 / E2 = 100/400
100 E2 = 44,000
E2 = 440 Вольт
Пример 2
Если первичный ток составляет 20 ампер, каким будет вторичный ток?
E2 x I2 = El x I1
440 x I2 = 110 x 20 = 2200
I2 = 5 ампер
Поскольку отношение витков первичной и вторичной цепей составляет 1: 4, должно быть соотношение 1: 4 между первичным и вторичным напряжением и соотношение 4: 1 между первичным и вторичным током.
При повышении напряжения ток понижается, при этом вольт, умноженные на ампер, остается постоянным. Это называется «вольт-ампер».
Рассчитайте отношение напряжения каждой трехфазной обмотки к линейному и нейтральному напряжению звездообразной обмотки. Разделите линейное напряжение обмотки на 1,732, чтобы получить правильное линейное напряжение.
Пример: 13200-480Y / 277 будет 13200/277 = 47,653
Проверьте положение устройства РПН, чтобы убедиться, что оно установлено в соответствии с напряжением, указанным на паспортной табличке.В противном случае информацию об испытании коэффициента трансформации нельзя будет сравнить с паспортной табличкой.
Как измеряется TTR
Испытание отношения витков позволяет обнаруживать закороченные витки обмотки, которые указывают на нарушение изоляции путем определения правильного отношения витков. Короткое замыкание витков может быть результатом короткого замыкания или нарушения диэлектрической проницаемости.
Измерения выполняются путем приложения известного низкого напряжения к одной обмотке и измерения индуцированного напряжения на соответствующей обмотке.Низкое напряжение обычно подается на высоковольтную обмотку, так что индуцированное напряжение ниже, что снижает опасность при выполнении испытания.
Посмотрите на векторную диаграмму паспортной таблички, чтобы узнать, какая обмотка на первичной обмотке соответствует обмотке на вторичной обмотке. Фото: Quora
.Коэффициент напряжения, полученный при испытании, сравнивается с коэффициентом напряжения, указанным на паспортной табличке. Посмотрите на векторную диаграмму паспортной таблички, чтобы узнать, какая обмотка на первичной обмотке соответствует обмотке на вторичной обмотке.
Соотношение, полученное в ходе полевых испытаний, должно находиться в пределах 0,5% или в зависимости от того, что указывает производитель.
Новые трансформаторы хорошего качества обычно соответствуют заводской табличке с точностью до 0,1%. Для трансформаторов с трехфазным соединением треугольник / звезда или звезда / треугольник следует выполнить испытание на эквивалентность трех фаз. Испытание выполняется и рассчитывается для соответствующих одиночных обмоток.
Список литературы
Комментарии
5 комментариев
Все комментарии (5) Войдите или зарегистрируйтесь, чтобы комментировать.Как рассчитать коэффициент трансформации трансформатора
Обновлено 28 декабря 2020 г.
Автор S. Hussain Ather
Переменный ток (AC) в большинстве бытовых электроприборов может поступать только от линий электропередач, которые посылают постоянный ток (DC) за счет использования трансформатора. Через все различные типы тока, который может протекать по цепи, это помогает иметь возможность контролировать эти электрические явления. Во всех случаях использования трансформаторов для изменения напряжения в цепях трансформаторы в значительной степени полагаются на коэффициент передачи.
Расчет коэффициента поворотов трансформатора
Коэффициент трансформации трансформатора — это деление количества витков в первичной обмотке на количество витков во вторичной обмотке по уравнению
T_R = \ frac {N_P} { N_S}
Это соотношение также должно равняться напряжению первичной обмотки, деленному на напряжение вторичной обмотки, как указано как V p / V s . Первичная обмотка относится к активной катушке индуктивности, элементу цепи, который индуцирует магнитное поле в ответ на поток заряда трансформатора, а вторичная обмотка — это индуктор без питания.
Эти соотношения верны при предположении, что фазовый угол первичной обмотки равен фазовым углам вторичной обмотки по уравнению Φ P = Φ S . Этот первичный и вторичный фазовый угол описывает, как ток, который чередуется между прямым и обратным направлениями в первичной и вторичной обмотках трансформатора, синхронизируется друг с другом.
Для источников переменного напряжения, используемых с трансформаторами, форма входящего сигнала является синусоидальной, то есть формой, которую создает синусоидальная волна.Коэффициент трансформации трансформатора показывает, насколько изменяется напряжение через трансформатор, когда ток проходит от первичной обмотки ко вторичной.
Также обратите внимание, что слово «соотношение» в этой формуле относится к дроби , а не к фактическому соотношению . Доля 1/4 отличается от соотношения 1: 4. В то время как 1/4 — это одна часть целого, которая разделена на четыре равные части, соотношение 1: 4 означает, что для одного чего-то есть четыре других.«Коэффициент» в соотношении витков трансформатора — это дробная часть, а не соотношение в формуле коэффициента трансформации.
Коэффициент трансформации трансформатора показывает, что относительная разница напряжения зависит от количества обмоток, намотанных вокруг первичной и вторичной частей трансформатора. Трансформатор с пятью обмотками с первичной обмоткой и 10 обмотками с вторичной обмоткой разрежет источник напряжения пополам, как указано в 5/10 или 1/2.
Повышение или понижение напряжения в результате этих катушек определяет, является ли это повышающий трансформатор или понижающий трансформатор, по формуле коэффициента трансформации.Трансформатор, который не увеличивает и не уменьшает напряжение, является «трансформатором сопротивления», который может либо измерять импеданс, сопротивление цепи току, либо просто указывать на разрывы между различными электрическими цепями.
Конструкция трансформатора
Основные компоненты трансформатора — это две катушки, первичная и вторичная, которые наматываются на железный сердечник. В ферромагнитном сердечнике или сердечнике из постоянного магнита трансформатора также используются тонкие электрически изолированные пластины, так что эти поверхности могут уменьшать сопротивление току, который проходит от первичных катушек ко вторичным катушкам трансформатора.
Конструкция трансформатора обычно рассчитана на минимальные потери энергии. Поскольку не весь магнитный поток от первичной обмотки проходит во вторичную, на практике будут некоторые потери. Трансформаторы также будут терять энергию из-за вихревых токов , локализованного электрического тока, вызванного изменениями магнитного поля в электрических цепях.
Трансформаторы получили свое название, потому что они используют эту схему намагничивающего сердечника с обмотками на двух отдельных его частях для преобразования электрической энергии в магнитную энергию посредством намагничивания сердечника из тока через первичные обмотки.
Затем магнитный сердечник индуцирует ток во вторичных обмотках, который преобразует магнитную энергию обратно в электрическую. Это означает, что трансформаторы всегда работают от входящего источника переменного напряжения, который переключается между прямым и обратным направлениями тока через равные промежутки времени.
Типы эффектов трансформатора
Помимо формулы напряжения или количества катушек, вы можете изучить трансформаторы, чтобы узнать больше о природе различных типов напряжений, электромагнитной индукции, магнитных полях, магнитном потоке и других свойствах, которые являются результатом конструкции трансформатора.
В отличие от источника напряжения, который посылает ток в одном направлении, источник переменного напряжения , передаваемый через первичную катушку, создает собственное магнитное поле. Это явление известно как взаимная индуктивность.
Напряженность магнитного поля увеличится до максимального значения, равного разнице магнитных потоков, деленной на период времени, dΦ / dt . Имейте в виду, что в этом случае Φ используется для обозначения магнитного потока, а не фазового угла.Эти силовые линии магнитного поля направлены наружу от электромагнита. Инженеры, создающие трансформаторы, также принимают во внимание потокосцепление, которое является произведением магнитного потока Φ и количества витков в проводе N , создаваемого магнитным полем, передаваемым от одной катушки к другой.
Общее уравнение для магнитного потока:
\ Phi = BA \ cos {\ theta}
для площади поверхности, через которую проходит поле A в м 2 , магнитное поле B в теслах и θ как угол между перпендикулярным вектором к площади и магнитным полем.Для простого случая обмотки катушек вокруг магнита поток определяется как
\ Phi = NBA
для количества катушек N , магнитного поля B и на определенной площади A Поверхности, параллельной магниту. Однако для трансформатора магнитная связь заставляет магнитный поток в первичной обмотке равняться магнитному потоку вторичной обмотки.
Согласно закону Фарадея, вы можете рассчитать напряжение, индуцированное в первичной или вторичной обмотке трансформатора, вычислив Н x dΦ / dt .Это также объясняет, почему коэффициент трансформации напряжения одной части трансформатора относительно другой равен количеству витков одной части трансформатора в другой.
Если бы вы сравнили Н x dΦ / dt одной части с другой, dΦ / dt компенсировались бы из-за того, что обе части имели одинаковый магнитный поток. Наконец, вы можете рассчитать ампер-витки трансформатора как произведение тока на количество катушек в качестве метода измерения силы намагничивания катушки
Трансформаторы на практике
Электрораспределительные сети отправляют электроэнергию от электростанций в здания и дома .Эти линии электропередач начинаются на электростанции, где электрический генератор вырабатывает электрическую энергию из некоторого источника. Это может быть плотина гидроэлектростанции, использующая энергию воды, или газовая турбина, которая использует горение для создания механической энергии из природного газа и преобразования ее в электричество. К сожалению, это электричество вырабатывается как напряжение постоянного тока и , которое для большинства бытовых приборов необходимо преобразовать в напряжение переменного тока.
Трансформаторы делают это электричество пригодным для использования, создавая однофазные источники питания постоянного тока для домашних хозяйств и зданий из поступающего переменного напряжения переменного тока.Трансформаторы в распределительных сетях также обеспечивают необходимое напряжение для домашней электроники и электрических систем. В распределительных сетях также используются «шины», которые разделяют распределение по нескольким направлениям рядом с автоматическими выключателями, чтобы отдельные разводки были отделены друг от друга.
Инженеры часто учитывают КПД трансформаторов, используя простое уравнение КПД:
\ eta = \ frac {P_O} {P_I}
f или выходная мощность P O и входная мощность P I . Основываясь на конструкции трансформатора, эти системы не теряют энергию из-за трения или сопротивления воздуха, потому что трансформаторы не содержат движущихся частей.
Ток намагничивания, величина тока, необходимая для намагничивания сердечника трансформатора, обычно очень мала по сравнению с током, который индуцирует первичная часть трансформатора. Эти факторы означают, что трансформаторы обычно очень эффективны с КПД 95% и выше для большинства современных конструкций.
Если бы вы подали источник переменного напряжения на первичную обмотку трансформатора, магнитный поток, индуцированный в магнитопроводе, будет продолжать индуцировать переменное напряжение во вторичной обмотке в той же фазе, что и напряжение источника.Однако магнитный поток в сердечнике остается на 90 ° ниже фазового угла напряжения источника. Это означает, что ток первичной обмотки, ток намагничивания, также отстает от источника переменного напряжения.
Уравнение трансформатора для взаимной индуктивности
В дополнение к полю, магнитному потоку и напряжению, трансформаторы иллюстрируют электромагнитные явления взаимной индуктивности, которые дают большую мощность первичным обмоткам трансформатора при подключении к источнику питания.
Это происходит как реакция первичной обмотки на увеличение нагрузки, что потребляет мощность на вторичных обмотках.Если вы добавили нагрузку на вторичные обмотки с помощью такого метода, как увеличение сопротивления проводов, первичные обмотки отреагировали бы потреблением большего тока от источника питания, чтобы компенсировать это уменьшение. Взаимная индуктивность — это нагрузка на вторичную обмотку, которую можно использовать для расчета увеличения тока через первичные обмотки.
Если бы вы написали отдельное уравнение напряжения как для первичной, так и для вторичной обмоток, вы могли бы описать это явление взаимной индуктивности.Для первичной обмотки
V_P = I_PR_1 + L_1 \ frac {\ Delta I_P} {\ Delta t} -M \ frac {\ Delta I_S} {\ Delta t}
для тока через первичную обмотку I P , сопротивление нагрузки первичной обмотки R 1 , взаимная индуктивность M , индуктивность первичной обмотки L I , вторичная обмотка I S и изменить по времени Δt . Отрицательный знак перед взаимной индуктивностью M показывает, что ток источника сразу же испытывает падение напряжения из-за нагрузки на вторичную обмотку, но в ответ первичная обмотка увеличивает свое напряжение.
Это уравнение следует правилам написания уравнений, описывающих, как ток и напряжение различаются между элементами схемы. Для замкнутого электрического контура вы можете записать сумму напряжения на каждом компоненте как равную нулю, чтобы показать, как напряжение падает на каждом элементе в цепи.
Для первичных обмоток вы пишете это уравнение, чтобы учесть напряжение на самих первичных обмотках ( I P R 1 ), напряжение из-за индуцированного тока магнитного поля. поле L 1 ΔI P / Δt и напряжение, обусловленное влиянием взаимной индуктивности вторичных обмоток M ΔI S / Δt.
Аналогичным образом вы можете написать уравнение, описывающее падение напряжения на вторичных обмотках как
M \ frac {\ Delta I_P} {\ Delta t} = I_SR_2 + L_2 \ frac {\ Delta I_S} {\ Delta t}
Это уравнение включает ток вторичной обмотки I S , индуктивность вторичной обмотки L 2 и сопротивление нагрузки вторичной обмотки R 2 . Сопротивление и индуктивность обозначены индексами 1 или 2 вместо P или S соответственно, поскольку резисторы и индуктивности часто нумеруются, а не обозначаются буквами.Наконец, вы можете рассчитать взаимную индуктивность катушек индуктивности напрямую как
M = \ sqrt {L_1L_2}
Основные операции трансформатора
- Изучив этот раздел, вы сможете описать:
- • Принцип работы трансформатора.
- • Передаточное число.
- • Коэффициент мощности.
- • Коэффициент трансформации.
- • Потери трансформатора: медь, гистерезис и вихревые токи.
- • КПД трансформатора и ток холостого хода.
Трансформаторы.
Трансформатор использует принципы электромагнетизма для переключения одного уровня переменного напряжения на другой. Работа Фарадея в 19 веке показала, что изменяющийся ток в проводнике (например, первичной обмотке трансформатора) создает изменяющееся магнитное поле вокруг проводника.Если другой проводник (вторичная обмотка) поместить в это изменяющееся магнитное поле, в этой обмотке будет индуцироваться напряжение.
Передаточное число.
Фарадей также подсчитал, что напряжение, индуцированное во вторичной обмотке, будет иметь величину, которая зависит от ОТНОШЕНИЯ ОБОРОТОВ трансформатора. т.е. если вторичная обмотка имеет половину числа витков первичной обмотки, то вторичное напряжение будет вдвое меньше напряжения на первичной обмотке. Аналогичным образом, если вторичная обмотка имеет в два раза больше витков первичной обмотки, вторичное напряжение будет вдвое больше первичного напряжения.
Коэффициент мощности.
Поскольку трансформатор является пассивным компонентом (у него нет внешнего источника питания), он не может выдавать больше мощности из вторичной обмотки, чем подается на первичную обмотку. Следовательно, если вторичное напряжение больше, чем первичное напряжение на определенную величину, вторичный ток будет меньше первичного тока на аналогичную величину, то есть если напряжение удвоится, ток будет уменьшен вдвое.
Рис. 11.1.1 Основные операции трансформатора.
Коэффициент трансформации.
Функционирование базового трансформатораможно описать двумя формулами, связывающими коэффициент трансформации с числом витков обмоток трансформатора.
- В P = первичное напряжение.
- I P = первичный ток.
- В S = вторичное напряжение.
- I S = вторичный ток.
- N P = количество витков в первичной обмотке.
- N S = количество витков вторичной обмотки.
Потери трансформатора.
Формулы на рис. 11.1.1 относятся к идеальному трансформатору, то есть трансформатору без потерь мощности, в котором первичный вольт-ампер = вторичный вольт-ампер.
Хотя практические трансформаторы могут быть чрезвычайно эффективными, некоторые потери будут происходить, потому что не весь магнитный поток, создаваемый первичной обмоткой, будет связываться со вторичной обмоткой. Потери мощности, возникающие в трансформаторе, бывают трех типов;
1.Медные потери.
Эти потери также можно назвать потерями в обмотке или потерями I2R, поскольку они могут возникать в обмотках, сделанных не из меди, а из других металлов. Потери проявляются в виде тепла, выделяемого в обмотках (медных) проводов, поскольку они рассеивают мощность из-за сопротивления провода.
Потери мощности в обмотке трансформатора можно рассчитать, используя ток в обмотке и ее сопротивление в формуле для мощности P = I 2 R. Эта формула является причиной того, что потери в меди иногда называют I 2 R убытки.Чтобы свести к минимуму потери, сопротивление обмотки должно быть низким, используя провод подходящей площади сечения и низкого удельного сопротивления.
2. Гистерезисные потери.
Каждый раз, когда переменный ток меняет направление (раз в каждом цикле), крошечные «магнитные домены» в материале сердечника меняются местами. Это физические изменения в основном материале, требующие некоторой энергии. Количество используемой энергии зависит от «сопротивления» материала сердечника; в больших сердечниках силовых трансформаторов, где потери на гистерезис могут быть проблемой, они в значительной степени решаются за счет использования специальной стали с низким сопротивлением «ориентированной зернистостью» в качестве материала сердечника.
3. Вихретоковые потери.
Поскольку железный или стальной сердечник является электрическим проводником, а также магнитной цепью, изменяющийся ток в первичной обмотке будет иметь тенденцию создавать ЭДС внутри сердечника, а также во вторичной обмотке. Токи, наведенные в сердечник, будут противодействовать изменениям магнитного поля, происходящим в сердечнике. По этой причине эти вихревые токи должны быть как можно меньше. Это достигается разделением металлического сердечника на тонкие листы или «ламинаты», каждый из которых изолирован от других изолирующим слоем лака или оксида.Ламинированные сердечники значительно уменьшают образование вихревых токов, не влияя на магнитные свойства сердечника.
Ферритовые сердечники.
В высокочастотных трансформаторах потери на вихревые токи уменьшаются за счет использования сердечника из керамического материала, содержащего большую долю мельчайших металлических частиц, железной пыли или марганцево-цинка. Керамика изолирует металлические частицы друг от друга, давая аналогичный эффект ламинированным слоям и лучше работая на высоких частотах.
Благодаря способам снижения потерь, описанным выше, практические трансформаторы по своим рабочим характеристикам очень близки к идеалу.В мощных силовых трансформаторах может быть достигнут КПД около 98%. Поэтому для большинства практических расчетов можно предположить, что трансформатор «идеален», если не указаны его потери. Фактические вторичные напряжения в практическом трансформаторе будут лишь немного меньше, чем рассчитанные с использованием теоретического коэффициента трансформации.
Ток выключения.
Поскольку трансформатор работает практически идеально, мощность как в первичной, так и во вторичной обмотках одинакова, поэтому, когда на вторичную обмотку не подается нагрузка, вторичный ток не течет, а мощность во вторичной обмотке равна нулю (V x I = 0).Следовательно, хотя к первичной обмотке приложено напряжение, ток не будет течь, поскольку мощность в первичной обмотке также должна быть равна нулю. В практических трансформаторах «ток холостого хода» в первичной обмотке на самом деле очень мал.
Вольт на оборот.
Трансформатор с первичной обмоткой на 1000 витков и вторичной обмоткой на 100 витков имеет соотношение витков 1000: 100 или 10: 1. Следовательно, 100 вольт, приложенное к первичной обмотке, даст вторичное напряжение 10 вольт.
Другой способ измерения напряжения трансформатора — вольт / виток; если 100 вольт, приложенное к 1000 витков первичной обмотки, дает 100/1000 = 0. 1 вольт на виток, тогда каждый отдельный виток 100-витковой вторичной обмотки будет производить 0,1 В, поэтому общее вторичное напряжение будет 100 × 0,1 В = 10 В.
Тот же метод можно использовать для определения значений напряжения, возникающего на отдельных ответвлениях автотрансформатора, если известно количество витков на ответвление.
Просто разделите общее напряжение на всей обмотке на общее количество витков и умножьте этот результат на количество витков в конкретном ответвлении.
Коэффициент трансформации напряжения (K) | Задание по электротехнике
Коэффициент трансформации определяется как отношение вторичного напряжения к первичному. Обозначается буквой K.
Пример 1 . A 40 кВА, однофазный трансформатор имеет 400 витков на первичной обмотке и 100 витков на вторичной обмотке . Первичная обмотка подключена к источнику питания 2000 В, 50 Гц.Определить:
i. Вторичное напряжение на обрыв.
ii. Ток, протекающий через две обмотки при полной нагрузке.
iii. Максимальное значение потока.
Решение . Номинальная мощность = 40 кВА
Первичная витка N 1 = 400
Вторичная витка, N 2 = 100
Первичное индуцированное напряжение, E 1 = В 1 = 2000 В
(i) Вторичный напряжение на разомкнутой цепи, В 2 :
Пример 2 . Коэффициент холостого хода, необходимый для однофазного трансформатора с частотой 50 Гц, в составляет 6600/600 В. Если максимальное значение магнитного потока в сердечнике должно составлять около 0,08 Вт-байта, найдите количество витков в каждой обмотке.
Решение. Первичный E 1 = V 1 = 6600 В
Вторичный, E 2 = V 2 = 600 В
Максимальное значение магнитного потока ɸ max = 0,08 Втб.
Пример 3 . Однофазный трансформатор подключен к сети 230 В, 50 Гц. Чистая площадь поперечного сечения сердечника составляет 60 см 2 . Количество витков в первичной обмотке — 500, а во вторичной — 100. Определите:
(i) Коэффициент трансформации.
(ii) E.m.f. индуцируется во вторичной обмотке.
(iii) Максимальное значение плотности потока в сердечнике.
Решение . Первичные витки, Н 1 = 500
Вторичные витки, Н 2 = 100
Первичные витки, E 1 = V 1 = 230 В
Площадь сердечника, α = 60 см 2 = 60 × 10 -4 м 2
(i) Коэффициент трансформации, K:
Следовательно, K = 0,2. (Отв.)
(ii) Максимальное значение плотности потока, B max :
Использование e.м.ф. уравнение, E1 = 4,44fɸ max N 1
230 = 4,44 × 50 × ɸ max × 500
Пример 4 . Однофазный трансформатор мощностью 3300/300 В на 300 кВА имеет 1100 витков первичной обмотки. Найдите:
i. Коэффициент трансформации.
ii. Вторичные витки.
iii. Напряжение / об.
iv. Вторичный ток при питании нагрузки 200 кОм Вт при отстающем коэффициенте мощности 0,8.
Решение , первичный, E 1 = 3300 В
N 1 = 1100
Вторичный, E 2 = 300 В
Номинал трансформатора = 300 кВА
Выход = 200 кВт
Пример 5 . Напряжение на виток однофазного трансформатора 1.1 В. Когда первичная обмотка подключена с к к источнику переменного тока 220 В, 50 Гц, вторичное напряжение оказывается 550 В. Найдите:
(i) Первичная и вторичная витки .
(ii) Core Площадь, если максимальная плотность потока 1,1 T.
Решение . Напряжение на оборот = 1,1 В
Первичный, E 1 = 220 В
Вторичный, E 2 = 550 В
Макс.плотность потока, B max = 1,1 Тл
Пример 6 , Сердечник однофазного трансформатора мощностью 1000 кВА, 11000/550 В, 50 Гц имеет поперечное сечение 20 см × 20 см. Если максимальная плотность ядра не должна превышать 1,3 тесла, рассчитайте:
(i) Количество h.v. и l.v. оборотов на фазу.
(ii) Э.д.с. за оборот.
Предположим, что коэффициент суммирования равен 0.9.
Решение. Дано:
A = 20 см × 20 см = 400 × 10 -4 м 2 ;
B max = 1,3 Вт / м 2 ,
f = 50 Гц;
E 1 = 11000 В
E 2 = 550 В
Коэффициент суммирования = 0,9
(i) Число витков N 1 (в.в.); N 2 (l.v.)
Мы знаем, что поток = плотность потока × площадь поперечного сечения × коэффициент суммирования
ɸ max = 1.3 × 400 × 10 -4 × 0,9 = 0,0468 Wb
E 1 = 4,44fɸ max N 1
11000 = 4,44 × 50 × 0,0468 × N 1
Как сделать Я изменяю коэффициент моего трансформатора тока?
Модификации коэффициента трансформации трансформаторов тока RC, SC и CT
Коэффициент тока между первичной и вторичной обмотками определяется по следующей формуле:
Нс x Is = Np x Ip
Где:
Ip = первичный ток
Is = вторичный ток
Np = No. количество витков на первичной обмотке
Ns = количество витков на вторичной обмотке
Пример:
На трансформаторе тока 300: 5,
Is = 5 А при Ip = 300 А,
количество витков первичной обмотки равно 1.
Нс x 5 = 300 x 1
Нс = 60
Передаточное отношение трансформатора тока можно изменить, изменив количество витков вторичной обмотки. Прямая или обратная намотка вторичных проводов через окно трансформатора тока будет добавлять или вычитать вторичные витки соответственно.
При добавлении вторичных витков такой же первичный ток приведет к уменьшению вторичного выходного тока. Вычитая вторичные витки, такой же первичный ток приведет к большему вторичному выходу.
Пример:
На трансформаторе тока 300: 5, если требуется соотношение тока 325: 5, необходимо добавить пять витков к вторичной обмотке.Чтобы добавить вторичные витки, белые провода должны быть намотаны через трансформатор тока со стороны, противоположной отметке полярности. Чтобы вычесть витки вторичной обмотки, провод от левой клеммы или белый провод следует намотать через трансформатор тока с той же стороны, что и метка полярности. При подключении, как показано, напряжение на белом проводе будет совпадать по фазе с напряжением на проводе питания, соединяющем линию с нагрузкой. Модификации передаточных чисел серии
Нс x 5 = 325 x 1
Нс = 65Вычитая 5 вторичных витков, мы получим трансформатор с коэффициентом тока 275: 5.
Нс x 5 = 275 x 1
Нс = 55
SC
Изменения передаточного отношения первичной обмотки
Формула:Ka = Kn x Nn / Na
Где:Ka = Фактический коэффициент трансформацииПередаточное отношение трансформатора тока можно изменить, добавив больше витков первичной обмотки трансформатора.За счет добавления витков первичной обмотки снижается ток, необходимый для поддержания пяти ампер на вторичной обмотке. (Пример: трансформатор тока 100: 5, рассчитанный на один виток первичной обмотки.)
Kn = Паспортный коэффициент трансформатора
Na = Фактическое количество витков первичной обмотки
Nn = Паспортное число витков первичной обмотки
Полярность трансформатора в квадратном корпусе
Модификация передаточного числа вторичного вала
Коэффициент тока между первичной и вторичной обмотками определяется по следующей формуле:Чтобы вычесть витки вторичной обмотки, вывод от клеммы X1 должен проходить через трансформатор тока с той же стороны, что и h2. Чтобы добавить вторичные витки, провод от клеммы X1 следует намотать через трансформатор тока со стороны, противоположной h2.Где:Нс x Is = N
Ip = первичный токПередаточное отношение трансформатора тока можно изменить, изменив количество витков вторичной обмотки. Прямая или обратная намотка вторичных проводов через окно трансформатора тока будет добавлять или вычитать вторичные витки соответственно.
Is = вторичный ток
Np = No.количество витков на первичной обмотке
Ns = количество витков на вторичной обмоткеПри добавлении вторичных витков такой же первичный ток приведет к уменьшению вторичного выходного тока. Вычитая вторичные витки, такой же первичный ток приведет к большему вторичному выходу.
Передаточные числа однофазных трансформаторов
В данном однофазном трансформаторе переменного тока, будь то автоматический, изолирующий или токовый, существует три основных передаточных отношения трансформатора: коэффициент тока, коэффициент передачи и коэффициент напряжения.Соотношения тока и напряжения зависят от соотношения витков, которое устанавливается на месте изготовления (количеством витков провода в каждой соответствующей обмотке).
Количество витков или витков провода вокруг железного сердечника определяет номинальное напряжение трансформатора или его соответствующих обмоток цепи. Обмотка или наматывание провода эффективно создает индуктивный реактор (катушку) в первичной или вторичной цепи. Вместо того, чтобы оценивать соответствующие катушки с проводом с точки зрения индуктивного сопротивления, катушки (обмотки), как здесь используются, оцениваются с точки зрения напряжения.
Номинальное напряжение соответствующих цепей на Рисунке 1 определяется количеством витков или витков провода, которые каждая содержит.
Рисунок 1. Однофазный трансформатор и подключенная к нему нагрузка на электрической схеме
Если первичная или вторичная цепь имеет высокое номинальное напряжение, она также будет иметь большое количество витков в пределах обмотка трансформатора. Если первичная или вторичная цепь имеет низкое номинальное напряжение, она также будет иметь небольшое количество витков в обмотке трансформатора.Соотношения напряжения и числа оборотов прямо пропорциональны друг другу. По формуле:
$ \ frac {{{V} _ {P}}} {{{V} _ {S}}} = \ frac {{{N} _ {P}}} {{{N} _ {S}}} $
Где
В () = номинальное напряжение в первичной (P) и вторичной (S) цепях
N () = количество витков в первичной (P) и вторичные (S) цепи
Когда трансформатор используется для понижения питающего напряжения, соотношение первичного и вторичного напряжения, которое равно коэффициенту витков трансформатора (прямо пропорционально), выражается кратно 1:
Пример: Если понижающий трансформатор имеет отношение напряжений 30 к 1, то отношение витков выражается как 30: 1 (30: 1).
Когда трансформатор используется для повышения напряжения питания, отношение первичного к вторичному напряжению, которое равно отношению витков трансформатора, выражается как значение от 1 до некоторого кратного 1
Пример: Если повышающий трансформатор имеет отношение напряжений от 1 до 55, то отношение витков выражается как 1: 55 (1:55).
Когда для изоляции используется трансформатор, номинальные значения первичного и вторичного напряжения равны. Поскольку обе цепи имеют одинаковую номинальную мощность, количество витков первичной и вторичной обмоток также должно быть одинаковым.Передаточное число выражается как 1: 1 (1: 1).
Игнорирование потерь в сердечнике трансформатора: Номинальная мощность трансформатора равна произведению напряжения и тока первичной цепи или произведению напряжения и тока вторичной цепи.
Величина токов, протекающих в соответствующих цепях трансформатора, определяется величиной тока нагрузки, подключенного к вторичной цепи.
Номинальная мощность трансформатора указывает максимальное количество энергии, которое может потреблять нагрузка без серьезного перегрева трансформатора.По формуле (при 100% эффективности — предполагается для всех расчетов):
В P × A P = В S × A S
Где
В () = номинальное напряжение первичной (P) и вторичной (S) цепей
A () = номинальный ток полной нагрузки первичной (P) и вторичной (S) цепей
Тот факт, что трансформатор имеет только одну номинальную мощность для как первичная, так и вторичная цепи устанавливают коэффициент напряжения и коэффициент тока одного и того же трансформатора обратно пропорциональными друг другу.Переставляя приведенную выше формулу,
$ \ frac {{{V} _ {P}}} {{{V} _ {S}}} = \ frac {{{A} _ {S}}} {{{A } _ {P}}} $
Когда трансформатор используется для понижения напряжения питания, первичный ток повышается до более высокого (большего) значения вторичного тока. Отношение первичного к вторичному напряжению выражается как несколько кратное 1. Отношение первичного к вторичному току выражается как значение от 1 до некоторого кратного 1.
Пример: Если понижающий трансформатор имеет коэффициент напряжения 30: 1 (30: 1), коэффициент тока 1: 30 (1:30).
Ток в первичной цепи этого трансформатора (поскольку отношения напряжения и тока обратно пропорциональны) всегда будет равняться измеренному значению вторичного тока, деленному на 30.
Когда трансформатор используется для повышения напряжения питания , первичный ток понижается до более низкого (меньшего) значения вторичного тока. Отношение первичного к вторичному напряжению выражается величиной от 1 до некоторого кратного 1. Отношение первичного к вторичному току выражается как некоторое кратное 1.
Пример: Если повышающий трансформатор имеет отношение напряжений от 1 до 55 (1:55), его коэффициент по току составляет 55: 1 (55: 1).
Ток в первичной цепи этого трансформатора всегда будет равен измеренному значению вторичного тока, умноженному на 55.
Когда трансформатор используется для изоляции, номинальные значения первичного и вторичного напряжения равны. Поскольку обе цепи имеют одинаковую номинальную мощность, первичный и вторичный токи также должны быть равны. Соотношение напряжений и тока составляет 1: 1 (1: 1).
Технически первичная обмотка отдельного трансформатора может быть любой обмоткой. Вторичная может быть любой обмоткой. Первичная обмотка подключена к источнику питания, который подвергается преобразованию (понижается для более низкого напряжения цепи, повышается для более высокого напряжения цепи или просто электрически развязано для того же напряжения цепи). Вторичная обмотка подключена к нагрузке, на которую трансформатор подает питание.
Фактический ток вторичной нагрузки трансформатора может быть значительно ниже его полной нагрузки (например, доступно 200 ампер, но к трансформатору подключена только нагрузка 60 ампер).По закону Ома величина тока вторичной цепи определяется номинальным напряжением вторичной цепи и сопротивлением (или импедансом переменного тока) подключенной нагрузки: чем выше сопротивление вторичной цепи, тем ниже ток нагрузки и наоборот. наоборот. Фактическое значение тока первичной цепи всегда будет прямо пропорционально фактическому току вторичной нагрузки (без учета потерь в трансформаторе).
Соотношения напряжения, тока и количества витков будут верны для любого трансформатора, независимо от того, рассчитан ли он на небольшой сигнальный трансформатор (например, обычный источник питания дверного звонка) или небольшой силовой трансформатор (как показано в предыдущем примере) , или большой силовой трансформатор (часто встречается на блочных подстанциях).
Расчетный коэффициент трансформации в зависимости от частоты как функция …
Контекст 1
… резонанс имеет один узел в центре трансформатора (режим / 2), его первый обертон имеет три узла (3 λ / 2 режим). Измеренные резонансные частоты как функция объемного отношения входной части на рисунке 2 не следуют точно такой же тенденции, как смоделированные данные, т.е. есть колебания в резонансной частоте. Это связано с неидеальной геометрией, неоднородной полировкой исследуемых образцов и, следовательно, с неоднородными коэффициентами материала во входных и выходных частях, используемых в численном моделировании.Нагрузка Z L с полным сопротивлением выходной цепи также очень важно влияет на коэффициент трансформации, как это видно из смоделированных данных для состояния холостого хода (рисунок 3). Коэффициент трансформации в условиях холостого хода имеет оптимальное значение для объемного отношения входной части l 1 / l 0,34 для основного резонанса. Подобного оптимума нет при нагрузке Z L 1 M V. Значения коэффициента трансформации примерно на порядок выше в условиях холостого хода по сравнению с нагрузкой 1 МОм. Оптимальные коэффициенты трансформации нагрузки и эффективность относительно невелики — они находятся в диапазоне 0.26–0,93 и 11–60% для разных соотношений сторон соответственно. Такая конструкция ПТ могла бы служить для понижающего преобразования при оптимальной нагрузке. Оба резонанса показывают одинаковые значения коэффициента трансформации и эффективности, однако для разных соотношений сторон l 1 / l. Основная мода более эффективна при меньших соотношениях сторон l 1 / l 0,40, в отличие от первого обертона с максимальной эффективностью при l 1 / l 0,69 — см. Рисунок 4. Аналогичное поведение наблюдается для плотности выходной мощности с максимальным значением 90 мВт / см 3.Максимум коэффициента трансформации был измерен при l 1 / l 0,40 для основного резонанса и при l 1 / l 0,45 для его первого обертона. Оптимальная импедансная нагрузка составляет 20 кВ для основной моды и 10 кВ для ее первого обертона, что явно соответствует емкостной природе PT. Нагрузочные характеристики коэффициента трансформации и КПД представлены на рисунке 5. Характеристики пьезоэлектрического трансформатора (например, плотность выходной мощности) могут быть дополнительно улучшены путем введения многослойной структуры во входную цепь, как это обсуждалось и исследовалось в [10].Предложенная конструкция пьезоэлектрического преобразователя исследована как теоретически, так и экспериментально. Теоретическая модель была построена для описания параметров преобразования в зависимости от геометрии трансформатора, свойств материала и импедансной нагрузки в выходной цепи. Был подготовлен набор образцов и измерены параметры преобразования в зависимости от частоты и импедансной нагрузки. Трансформатор имеет низкий коэффициент трансформации напряжения (как для оптимальной нагрузки, так и для условий нагрузки 1 МВ).Максимальный КПД 52% и коэффициент трансформации U 2 / U 1 0,59 при оптимальной нагрузке 20 кВ достигается для объемного отношения входной части l 1 / l 0,40 для основного резонанса трансформатора. Более высокий КПД 60% и коэффициент трансформации 0,36 при оптимальной нагрузке 10 кВ наблюдается на первом обертоне при соотношении объема входной части l 1 / l 0,69. Коэффициент трансформации напряжения меньше 1 для импедансов нагрузки ниже 1 МОм. Оптимальное соотношение сторон l 1 / l 0,34 было численно рассчитано для основного резонанса в условиях холостого хода.Предлагаемый пьезоэлектрический преобразователь подходит для применения в понижающих трансформаторах с низкой плотностью выходной мощности (0,09 Вт · см-3) и относительно низким КПД (50%). Эта работа была поддержана оперативной программой ESF «Образование для конкурентоспособности» в Чешской Республике в рамках проекта «Поддержка инженерии отличных исследовательских и опытно-конструкторских групп в Техническом университете Либереца» № .