+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Катоды и аноды отрицательно и положительно заряженные электроды

Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.

Окислительно-восстановительный процесс на электродах

Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.

Применение в электрохимии

В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.

Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.

Электролиз меди

На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.

На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.

Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.

При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:

  • цинковые;
  • кадмиевые;
  • медные;
  • никелевые;
  • оловянные;
  • золотые;
  • серебряные;
  • платиновые.

Чаще всего на производстве используют цинковые аноды. Они бывают:

  • катанные;
  • литые;
  • сферические.

Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.

Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.

Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.

Никелирование чайника методом гальванизации

Применение в вакуумных электронных приборах

Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.

Маркировка

Стандартно катод маркируют как «-». Знак анода –  «+». А вот в гальванике, из-за того, что отрицательный заряд на проводнике снабжается не источником тока извне, а реакцией окисления металла, катод получит положительный заряд электрического проводника. Поэтому в аккумуляторах, когда ток меняет направление, происходит смена знаков «+» и «-».

Эти свойства катодов и анодов нашли широкое применение в промышленности при очистке металла и в гальваностегии.

Видео

Оцените статью:

Катод — это… Что такое Катод?

Катод (от греч. κάθοδος — ход вниз; возвращение) — электрод некоторого прибора, присоединённый к отрицательному полюсу источника тока.

Катод в электрохимии

В электрохимии катод — электрод, на котором происходят реакции восстановления. Например, при электролитическом рафинировании металлов (меди, никеля и пр.) на катоде осаждается очищенный металл.

Катод в вакуумных электронных приборах

В вакуумных электронных приборах катод — электрод, который является источником свободных электронов, обычно вследствие термоэлектронной эмиссии. В электронно-лучевых приборах катод входит в состав электронной пушки.

Катод у полупроводниковых приборов

Электрод полупроводникового прибора (диода, тиристора), подключённый к отрицательному полюсу источника тока, когда прибор открыт (то есть имеет маленькое сопротивление), называют катодом, подключённый к положительному полюсу — анодом.

Знак анода и катода

В литературе встречается различное обозначение знака катода — «-» или «+», что определяется, в частности, особенностями рассматриваемых процессов.

В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод — тот, где протекает процесс окисления[1][2]. При работе электролизера (например, при рафинировании меди) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод.

В то же время при работе гальванического элемента (к примеру, медно-цинкового), избыток электронов (и отрицательный заряд) на одном из электродов обеспечивается не внешним источником тока, а собственно реакцией окисления металла (растворения цинка), то есть здесь отрицательным, если следовать приведённому определению, будет уже анод. Электроны, проходя через внешнюю цепь, расходуются на протекание реакции восстановления (меди), то есть катодом будет являться положительный электрод. Так, на приведённой иллюстрации изображён обозначенный знаком «+» катод гальванического элемента, на котором происходит восстановление меди.

В соответствии с таким толкованием, для аккумулятора знак анода и катода меняется в зависимости от направления протекания тока.

[2][3][4].

В электротехнике катод — отрицательный электрод, ток течет от анода к катоду, электроны, соответственно, наоборот.

См. также

Литература

  1. Антропов Л. И. Теоретическая электрохимия : Учеб. для хим.-технолог. спец. вузов. — 4-е изд., перераб. и доп. — М. : Высш. шк., 1984. — С. 13.
  2. 1 2 Лукомский Ю. Я., Гамбург Ю. Д. Физико-химические основы электрохимии: Учебник. — Долгопрудный : Издательский Дом «Интеллект», 2008. — С. 19 — ISBN 978-5-91559-007-5
  3. Левин А. И. Теоретические основы электрохимии. — М.: Металлургиздат, 1963. — С. 131.
  4. Справочник по электрохимии / Под ред. А. М. Сухотина. — Л. : Химия, 1981. — С. 405.

Ссылки

что это такое, плюс или минус, определяем полярность

Часто возникает проблема определения, какой из электродов является катодом, а какой — анодом. Для начала нужно разобраться с терминами.

Понятие катода и анода — простое объяснение

В сложных веществах электроны между атомами в соединениях распределены неодинаково. В результате взаимодействия частицы перемещаются от атома одного вещества к атому другого. Реакция именуется окислительно-восстановительной. Потеря электронов называется окислением, элемент, отдающий электроны — восстановителем.

Присоединение электронов носит название восстановление, принимающий элемент в этом процессе — окислитель. Переход электронов от восстановителя к окислителю может протекать по внешней цепи, и тогда его можно использовать в качестве источника электрической энергии. Устройства, в которых энергия химической реакции превращается в электрическую энергию, называются гальваническими элементами.

Простейший классический пример гальванического элемента — две пластины, изготовленные из различного металла и погруженные в раствор электролита. В такой системе окисление происходит на одном металле, а восстановление — на другом.

ВАЖНО! Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление — катодом.

Из школьных учебников химии известен пример медно-цинкового гальванического элемента, работающего за счет энергии реакции между цинком и сульфатом меди. В устройстве Якоби — Даниэля пластина из меди помещена в раствор сульфата меди (медный электрод), цинковая пластина погружена в раствор сульфата цинка (цинковый электрод). Цинковый электрод отдает катионы в раствор, создавая в нем избыточный положительный заряд, а у медного электрода раствор обедняется катионами, здесь раствор заряжен отрицательно.

Замыкание внешней цепи заставляет электроны перетекать от цинкового электрода к медному. Равновесные отношения на границах фаз прерываются. Идёт окислительно-восстановительная реакция.

Энергия самопроизвольно протекающей химической реакции превращается в электрическую.

Если химическую реакцию провоцирует внешняя энергия электрического тока, идёт процесс, называемый электролизом. Процессы, протекающие при электролизе, обратны процессам, протекающим при работе гальванического элемента.

ВНИМАНИЕ! Электрод, на котором происходит восстановление, также называется катодом, но при электролизе он заряжен отрицательно, а анод — положительно.

Применение в электрохимии

Аноды и катоды принимают участие во многих химических реакциях:

  • Электролиз;
  • Электроэкстракция;
  • Гальваностегия;
  • Гальванопластика.

Электролизом расплавленных соединений и водных растворов получают металлы, производят очистку металлов от примесей и извлечение ценных компонентов (электролитическое рафинирование). Из металла, подлежащего очистке, отливают пластины. Они помещаются в качестве анодов в электролизер. Под воздействием электрического тока металл подвергается растворению. Его катионы переходят в раствор и разряжаются на катоде, образуя осадок чистого металла. Примеси, содержащиеся в первоначальной неочищенной металлической пластине, либо остаются нерастворимыми в виде анодного шлама, либо переходят в электролите, откуда удаляются. Электролитическому рафинированию подвергают медь, никель, свинец, золото, серебро, олово.

Электроэкстракция — процесс выделения металла из раствора в ходе электролиза. Для того чтобы металл перешёл в раствор, его обрабатывают специальными реагентами. В ходе процесса на катоде происходит выделение металла, характеризующегося высокой чистотой. Так получают цинк, медь, кадмий.

Чтобы избежать коррозии, придать прочность, украсить изделие поверхность одного металла покрывают слоем другого. Этот процесс называется гальваностегией.

Гальванопластика — процесс получения металлических копий с объёмных предметов электроосаждением металла.

Применение в вакуумных электронных приборах

Принцип действия катода и анода в вакуумном приборе может продемонстрировать электронная лампа. Она выглядит как герметически запаянный сосуд с металлическими деталями внутри. Прибор используется для выпрямления, генерирования и преобразования электрических сигналов. По числу электродов выделяют:

  • диоды;
  • триоды;
  • тетроды;
  • пентоды и т.д.

Диод — вакуумный прибор с двумя электродами, катодом и анодом. Катод подключен к отрицательному полюсу источника питания, анод — к положительному. Предназначение катода — испускать электроны под действием нагрева электрическим током до определенной температуры. Посредством испущенных электронов создается пространственный заряд между катодом и анодом. Самые быстрые электроны устремляются к аноду, преодолевая отрицательный потенциальный барьер объемного заряда. Анод принимает эти частицы. Создается анодный ток во внешней цепи. Электронным потоком управляют с помощью дополнительных электродов, подавая на них электрический потенциал. Посредством диодов переменный ток преобразуется в постоянный.

Применение в электронике

Сегодня используется полупроводниковые типы диодов.

В электронике широко используется свойство диодов пропускать ток в прямом направлении и не пропускать в обратном.

Работа светодиода основана на свойстве кристаллов полупроводников светиться при пропускании через p-n переход тока в прямом направлении.

Гальванические источники постоянного тока — аккумуляторы

Химические источники электрического тока, в которых протекают обратимые реакции, называются аккумуляторами: их перезаряжают и используют многократно.

При работе свинцового аккумулятора происходит окислительно-восстановительная реакция. Металлический свинец окисляется, отдает свои электроны, восстанавливая диоксид свинца, принимающего электроны. Металлический свинец в аккумуляторе — анод, он заряжен отрицательно. Диоксид свинца — катод и заряжен положительно.

По мере разряда аккумулятора расходуются вещества катода и анода и их электролита, серной кислоты. Чтобы зарядить аккумулятор, его подключают к источнику тока (плюсом к плюсу, минусом к минусу). Направление тока теперь обратное тому, какое было при разряде аккумулятора. Электрохимические процессы на электродах «обращаются». Теперь свинцовый электрод становится катодом, на нем проходит процесс восстановления, а диоксид свинца — анодом, с протекающей процедурой окисления. В аккумуляторе вновь создаются вещества, необходимые для его работы.

Почему существует путаница?

Проблема возникает из-за того, что определенный знак заряда не может быть прочно закреплен за анодом или катодом. Часто катодом является положительно заряженный электрод, а анодом — отрицательный. Часто, но не всегда. Все зависит от процесса, протекающего на электроде.

ВНИМАНИЕ! Деталь, которую поместили в электролит, может быть и анодом и катодом. Все зависит от цели процесса: нужно нанести на нее другой слой металла или снять его.

Как определить анод и катод

В электрохимии анод — это электрод, на котором идут процессы окисления, катод — это электрод, где происходит восстановление.

У диода отводы называются анод и катод. Ток будет идти через диод, если отвод анод подключить к «плюсу», отвод «катод» — к «минусу».

У нового светодиода с необрезанными контактами анод и катод определяются визуально по длине. Катод короче.

Если контакты обрезаны, поможет батарейка, приложенная к ним. Свет появится, когда полярности совпадут.

Знак анода и катода

В электрохимии речь правильнее вести не о знаках зарядов электродов, а о процессах, на них идущих. На катоде проходит реакция восстановления, на аноде — окисления.

В электротехнике для протекания тока катод подключают к отрицательному полюсу источника тока, анод — к положительному.

Анод и катод — что это и как правильно определить?

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод – это положительный электрод, а катод – отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

Обратимся к ГОСТ 15596-82, который занимается химическими источниками тока. Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом химического источника тока является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным – они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод – это восход. Солнце движется вверх (ток входит). Катод – это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные – помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение – обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие полупроводниковые приборы, как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:
  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в растворе электролита в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе сульфата меди. Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае – это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод – это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является – не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет потенциал катода/потенциал анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

Отрицательный полюс — внешний источник — ток

Отрицательный полюс — внешний источник — ток

Cтраница 2


Что же произойдет, если на электроды этого элемента налагать постепенно возрастающее напряжение, причем отрицательный полюс внешнего источника тока соединен с платиновым электродом, а положительный — с медным. На рис. 12 — 2 показана качественная зависимость тока от наложенного напряжения. Пока оно остается ниже 1 100 В, ток относительно мал, хотя в действительности он увеличивается более или менее линейно по мере возрастания наложенного напряжения.  [17]

Для осуществления электролиза, помимо внешнего источника постоянного тока, надо располагать электролитической ячейкой; двумя электродами — катодом, присоединяемым к отрицательному полюсу внешнего источника тока, и анодом, присоединяемым к положительному полюсу внешнего источника тока; электроды погружаются в раствор или расплав электролита. В большинстве случаев электродами являются металлы, но применяются и неметаллические полупроводниковые электроды, например графитовые.  [18]

Положительный электрод является здесь анодом. Соедо-венный е отрицательным полюсом внешнего источника тока электрод заря-асаетея отрицательно и к нему направляются положительно заряженные катионы; отрицательный электрод является здесь катодом.  [19]

Катодную защиту применяют для предотвращения разрушения труб газопровода от почвенной ( электрохимической) коррозии. При катодной защите отрицательный полюс внешнего источника тока подключают к подземному газопроводу, а положительный — к анодному заземлению ( рис. V.  [21]

В стакан емкостью 100 мл наливают около 45 мл раствора фона ( 0 1 М раствор относительно К2 О4 и h3SO4) и 5 мл испытуемого раствора сульфата меди; туда же опускают проволочные Pt-электроды ( / — 3 см и d 1 мм) и магнитную мешалку. Один из электродов присоединяют к отрицательному полюсу внешнего источника тока, а второй — последовательно через переменные сопротивления, переключатель тока и амперметр — к положительному полюсу. Параллельно к электродам подключают вольтметр ( соблюдать полярность. Проводят электролиз при перемешивании раствора до тех пор, пока вся медь не выделится на катоде. Выключают ток и прекращают перемешивание раствора. Реверсируют ток, удаляют вольтметр, заменяют амперметр миллиамперметром и, подбирая сопротивления, добиваются, чтобы в цепи протекал ток около 1 ма, строго постоянный; одновременно с помощью переключателя включают ток и запускают секундомер. При анодном процессе растворения меди электрод должен быть подключен к клемме электронного вольтметра, к другой клемме которого подключен Нас. Этот стакан с электролитом соединяют U-образной стеклянной трубкой, также наполненной насыщенным раствором К.  [22]

Если металл не переходит в пассивное состояние, то применяется катодная его защита. При катодной защите металлическая деталь присоединяется или к отрицательному полюсу внешнего источника тока, или к протектору из металла, потенциал которого более отрицательный, чем потенциал защищаемого металла. Чтобы полностью прекратить коррозию металла катодной электрохимической защитой, нужно пропускать от внешнего источника ток такой величины, при котором потенциалы наиболее активных анодных составляющих сплава достигают своих равновесных значений. Для сталей таким равновесным потенциалом является равновесный потенциал железа.  [23]

Используется также контакт с внешним источником постоянного тока, в результате чего на поверхности изделия протекают лишь катодные или анодные процессы. Для обеспечения катодной защиты данный металл должен быть соединен с отрицательным полюсом внешнего источника тока либо с менее благородным металлом.  [24]

В гальваническом элементе катод считается положительным полюсом, анод — отрицательным. Если ток подводится к элементу извне — от генератора или от батареи — восстановление идет на электроде, присоединенном к отрицательному полюсу внешнего источника тока, этот электрод служит катодом, а электрод, соединенный с положительным полюсом генератора, — анодом. Это определение справедливо, когда элемент генерирует ток, а также когда ток подается извне.  [25]

При электрохимической защите уменьшение или полное — прекращение коррозии достигается созданием на защищаемом металлическом изделии высокого электроотрицательного потенциала. Для этого защищаемое изделие или соединяют проводником с металлом, имеющим высокий электроотрицательный потенциал ( способным легко отдавать электроны), или с отрицательным полюсом внешнего источника тока. В первом случае защита носит название протекторной, во втором — катодной.  [26]

Собирают установку для проведения потешиометрического титрования с поляризованными электродами. Для этой цели оба платиновых электрода прикрепляют с помощью лапки и штатив а над стаканом. Один из них присоединяют непосредственно к отрицательному полюсу внешнего источника тока поляризации, а второй-последовательно через мегоомное сопротивление и разомкнутый переключатель тока — к соответствующей клемме микроамперметра, вторую клемму которого подключают к положительному полюсу внешнего источника тока поляризации.  [27]

С химической точки зрения эти реакции являются окислительными. В гальванических элементах катоды являются положительным полюсом, а аноды — отрицательным. Однако, когда на элемент подается внешний ток от генератора или батареи, как, например, при электроосаждении, восстановление происходит на электроде, который соединен с отрицательным полюсом внешнего источника тока и, следовательно, этот электрод является катодом. Аналогично этому электрод, соединенный с положительным полюсом генератора, является анодом. Поэтому, по-видимому, целесообразнее не употреблять термины анод и катод как обозначение отрицательного или положительного электродов, а вместо этого катодом называть электрод, к которому поступает ток, а анодом — электрод, который возвращает ток.  [28]

Электролизом называют процессы, происходящие на электродах под действием электрического тока, подаваемого от внешнего источника. При электролизе происходит превращение электрической энергии в химическую. Ячейка для электролиза, называемая электролизером, состоит из двух электродов и электролита. Электрод, на котором идет реакция восстановления ( катод), у электролизера подключен к отрицательному полюсу внешнего источника тока. Электрод, на котором протекает реакция окисления ( анод), подключен к положительному полюсу источника тока.  [29]

Электролизом называются процессы, происходящие на электродах под действием электрического тока, подаваемого от внешнего источника. При электролизе происходит превращение электрической энергии в химическую. Ячейка для электролиза, называемая электролизером, состоит из двух электродов и электролита между ними. Электрод, на котором идет реакция восстановления ( катод), у электролизера подключен к отрицательному полюсу внешнего источника тока. Электрод, на котором протекает реакция окисления ( анод), подключен к положительному полюсу источника тока.  [30]

Страницы:      1    2    3

РАЗНИЦА МЕЖДУ АНОДОМ И КАТОДОМ | СРАВНИТЕ РАЗНИЦУ МЕЖДУ ПОХОЖИМИ ТЕРМИНАМИ — НАУКА

В ключевое отличие между анодом и катодом это то, что анод — это положительный вывод, а катод — отрицательный вывод.Аноды и катоды — это электроды с противоположной полярностью. Чтобы узнать разницу м

В ключевое отличие между анодом и катодом это то, что анод — это положительный вывод, а катод — отрицательный вывод.

Аноды и катоды — это электроды с противоположной полярностью. Чтобы узнать разницу между анодом и катодом, нам сначала нужно понять, что они собой представляют. Аноды и катоды — это электроды, которые используются для подачи электрического тока в любое устройство, использующее электричество, или из него. Электрод — это проводящий материал, который позволяет току проходить через него. Электроды обычно изготавливаются из металлов, таких как медь, никель, цинк и т. Д., Но некоторые электроды также сделаны из неметаллов, таких как углерод. Кроме того, электрод замыкает цепь, пропуская через него ток.

1. Обзор и основные отличия
2. Что такое анод
3. Что такое катод
4. Параллельное сравнение — анод и катод в табличной форме
5. Резюме

Что такое анод?

Анод — это электрод, на котором ток покидает ячейку и где происходит окисление. Мы также называем его положительным электродом. Простая батарея состоит из трех основных частей: анода, катода и электролита. Традиционно электроды находятся на концах батареи. Когда мы соединяем эти концы с электричеством, внутри батареи начинается химическая реакция. Здесь электроны возмущаются и должны реорганизоваться. Они отталкиваются друг от друга и движутся к катоду, на котором меньше электронов. Это уравновешивает электроны во всем растворе (электролите).

Как правило, ток течет через катод, когда устройство разряжается. Однако направление тока меняется на противоположное, когда устройство заряжается, и катод начинает работать как анод, а анод становится катодом.

В первичном элементе или батарее выводы необратимы, а это означает, что анод всегда будет положительным. Это потому, что мы всегда используем это устройство для разряда электрического тока. Но в случае вторичных элементов или батарей электроды обратимы, поскольку устройство разряжается, но также получают ток для зарядки.

Что такое катод?

Катод — это электрод, по которому ток входит в ячейку и происходит восстановление. Мы также можем назвать это отрицательным электродом. Однако катод может быть отрицательным в электролитических ячейках и положительным в гальванических элементах.

Катод обеспечивает электроны для катионов (положительно заряженных ионов). Эти ионы попадают на катод через электролит. Более того, катодный ток — это поток электронов от катода к катионам в растворе. Однако термины катод и анод могут иметь разные значения в разных приложениях.

В чем разница между анодом и катодом?

Анод — это электрод, на котором ток покидает ячейку и где происходит окисление, а катод — это электрод, через который ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом состоит в том, что анод является положительным выводом, а катод — отрицательным выводом. Однако есть также биполярные электроды, которые могут работать как аноды, так и катоды. Обычно анод притягивает анионы, а катод притягивает катионы, что привело к названию этих электродов именно так.

Резюме — анод против катода

Анод — это электрод, на котором ток покидает ячейку и где происходит окисление, а катод — это электрод, через который ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом состоит в том, что анод является положительным выводом, а катод — отрицательным выводом.

Тиристор принцип работы

Что такое тиристор, как работает, типы, применения

Тиристор представляет собой однонаправленное полупроводниковое твердотельное устройство с четырьмя слоями чередующегося материала P и N-типа. 

Он состоит из трех электродов: анода, катода и затвора. 

Анод — это положительный конец, а катод — это отрицательный конец.

Вход контролируют поток тока между анодом и катодом. 

Он используется в электронных устройствах и оборудовании для контроля электроэнергии или тока. Он действует как выпрямитель и может передавать ток только в одном направлении.

Как работает тиристор

Тиристор действует как диод. 

Он состоит из двух слоев полупроводников, а именно p-типа и n-типа, расположенных между собой для образования соединения.

 Анод соединен с внешним p-слоем, катод с внешним n-слоем и затвором с внутренним p-слоем. 

Он имеет 3 соединения, а именно J1, J2, J3.

Когда анод имеет положительный потенциал относительно катода, на затвор не подается напряжение. Соединения J1, J3 смещены в прямом направлении, а J2 — в обратном. Так что никакой проводимости здесь не происходит.

Теперь, когда положительный потенциал увеличивается за пределами напряжения пробоя, происходит пробой соединения J2, и он начинает проводить ток. Как только происходит пробой, он продолжает проводить независимо от напряжения на затворе, пока потенциал на аноде не будет удален или ток через устройство не станет меньше, чем ток удержания.

Когда положительный потенциал приложен к клемме затвора по отношению к катоду, происходит пробой соединения J2. Чтобы быстро включить тиристор, необходимо выбрать соответствующее значение потенциала.

Вход действует как управляющий электрод. Когда небольшое напряжение, известное как импульс затвора, подается на его затвор, устройство переключается в состояние проводимости. Это продолжается до тех пор, пока напряжение на устройстве не изменится или не будет снято.

Ток запуска затвора изменяется обратно пропорционально напряжению затвора, и для его запуска требуется минимальный заряд затвора. Таким образом, переключением тиристоров можно управлять через его импульс затвора.

Двухтранзисторная аналогия тиристора

Ток коллектора от NPN-транзистора подается непосредственно на базу PNP-транзистора, а ток коллектора PNP-транзистора подается на базу NPN-транзистора. Эти соединенные транзисторы полагаются друг на друга для проводимости.

Таким образом, для проведения одного из транзисторов требуется базовый ток. Когда анодный вывод тиристора является отрицательным по отношению к катоду, NP-переход становится смещенным вперед, а PN-переход становится обратным смещением.

Два транзисторных аналога тиристора

Здесь поток обратного тока блокируется до тех пор, пока не будет приложено напряжение пробоя. После пробивного напряжения оно начинает проводить без подачи сигнала затвора. Это одна из отрицательных характеристик тиристоров, так как она запускает проводимость при обратном разрыве напряжения.

Когда анодный вывод сделан положительным по отношению к катоду, внешние переходы смещены в прямом направлении, а центральный переход NP смещен в обратном направлении и блокирует прямой ток. Таким образом, чтобы вызвать его в проводимости, положительный ток прикладывается к базе транзисторов.

Два транзистора соединены в регенеративном контуре, и это заставляет транзистор проводить насыщение. Таким образом, можно сказать, что тиристоры блокируют ток как в направлении источника переменного тока в выключенном состоянии, так и могут включаться путем приложения положительного тока к базе транзистора.

Режимы работы тиристора

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость
Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Применение тиристора

Тиристор используется в различных применениях, таких как:

  • В основном используется в двигателях с переменной скоростью.
  • Используется для управления электроприводом высокой мощности.
  • Используется в основном в двигателях переменного тока, светильниках, сварочных аппаратах и ​​т. Д.
  • Используется в ограничителе тока короткого замыкания и выключателе.
  • Быстрая скорость переключения и низкая проводимость возможны в тиристоре ETO.
  • Используется в качестве диммеров на телевидении, в кинотеатрах.
  • Используется в фотографии для вспышек.
  • Может использоваться в охранной сигнализации.
  • Используется в регулировании скорости вращения электрического вентилятора.
  • Используется в автомобильных зажиганиях.

Режим обратного запирания

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них – это лавинный пробой, а второй – прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Режим прямого запирания

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Двухтранзисторная модель

Для объяснения устройства и принципа работы тиристора в режиме прямого запирания применяется двухтранзисторная модель. Данный полупроводниковый прибор можно рассматривать как два совмещенных транзистора с противоположными выводами. Переход в центре используется в качестве коллектора дырок и электронов, которые инжектируются определенными переходами.

Соотношения не изменяются при протекании токов в противоположном направлении. При повышении коэффициента в замкнутой петле происходит лавинообразный процесс, подразумевающий увеличение тока непосредственно через структуру. Электрический ток ограничен лишь сопротивлением наружной цепи.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Анод, катод, положительный и отрицательный: основные элементы батареи

Обновлено: 2 июня 2021 г.

Значительные разработки были сделаны в области аккумуляторных батарей (иногда называемых вторичными элементами), и большая часть этой работы может быть отнесена к разработке электромобилей. Эта работа привела к присуждению Нобелевской премии по химии 2019 года за разработку литий-ионных аккумуляторов.Следовательно, термины «анод», «катод», «положительный» и «отрицательный» стали все более заметными.

В статьях о новых электродах батареи часто используются названия анод и катод без указания того, разряжается батарея или заряжается. Термины анод, катод, положительный и отрицательный не являются синонимами, иногда их можно путать, что может привести к ошибкам.

Целью данной статьи является прояснение и четкое определение этих различных терминов.

Реакции окисления и восстановления

  • Реакция окисления — это электрохимическая реакция, при которой образуются электроны.- \ to LiCoO_2}

    $

    — реакция восстановления. Уменьшение — это выигрыш электронов.

    Анод, катод

    • Анод — это электрод, на котором протекает реакция окисления. Потенциал анода, через который протекает ток, превышает его равновесный потенциал: $ E_ \ text a (I)> E_ {I = 0} $ (рис. 1).

    • Катод — это электрод, на котором протекает реакция восстановления. Потенциал катода, по которому протекает ток, ниже его равновесного потенциала: $ E_ \ text c (I)

    Рисунок 1: $ (E_ {I \ neq 0} -E_ {I = 0}) \; I> 0 $

    Положительный и отрицательный электроды

    Два электрода батареи или аккумулятора имеют разные потенциалы. Электрод с более высоким потенциалом называется положительным, электрод с более низким потенциалом — отрицательным. Электродвижущая сила, ЭДС в В, батареи — это разность потенциалов положительного и отрицательного электродов, когда батарея не работает. + $ → положительный электрод является анодом.- $ → отрицательный электрод является катодом.

Рисунок 3: Разряд / заряд вторичной батареи, представленной в виде электрохимической ячейки, с электронами и направлением тока.

Заключение

При нормальном использовании аккумуляторной батареи потенциал положительного электрода как при разряде, так и при перезарядке остается больше, чем потенциал отрицательного электрода. С другой стороны, роль каждого электрода переключается во время цикла разряд / заряд.

  • Во время разряда положительный полюс является катодом, отрицательный — анодом.
  • При зарядке положительный полюс является анодом, отрицательный — катодом.

Тексты, описывающие аноды или катоды батарей, безусловно, косвенно рассматривают случай разряда. Давайте, не колеблясь, напишем, перефразируя Резерфорда, неявное — не что иное, как плохое явное.

аккумулятор анод катод положительный отрицательный электрод

физическая химия — положительный или отрицательный анод / катод в электролитической / гальванической ячейке

Анод — это электрод, в котором протекает реакция окисления

\ begin {align} \ ce {Красный -> Ox + e-} \ end {align}

происходит, в то время как катод является электродом, где протекает реакция восстановления

\ begin {align} \ ce {Ox + e- -> Красный} \ end {align}

имеет место.Так определяются катод и анод.

Гальванический элемент

Теперь в гальваническом элементе реакция протекает без помощи внешнего потенциала. Поскольку на аноде происходит реакция окисления, в результате которой образуются электроны, в ходе реакции накапливается отрицательный заряд, пока не будет достигнуто электрохимическое равновесие. Таким образом, анод отрицательный.

На катоде, с другой стороны, происходит реакция восстановления, которая потребляет электроны (оставляя положительные (металлические) ионы на электроде) и, таким образом, приводит к накоплению положительного заряда в ходе реакции до электрохимического равновесия. достигается.Таким образом, катод положительный.

Электролитическая ячейка

В электролитической ячейке вы прикладываете внешний потенциал, чтобы заставить реакцию идти в противоположном направлении. Теперь рассуждение обратное. На отрицательном электроде, где вы создали высокий электронный потенциал через внешний источник напряжения, электроны «выталкиваются» из электрода, тем самым уменьшая окисленные частицы $ \ ce {Ox} $, потому что уровень энергии электронов внутри электрода (Ферми Level) выше, чем уровень энергии НСМО $ \ ce {Ox} $, и электроны могут снизить свою энергию, занимая эту орбиталь — у вас, так сказать, очень реактивные электроны.Таким образом, отрицательный электрод будет тем, где будет происходить реакция восстановления, и, следовательно, это будет катод.

На положительном электроде, где вы создали низкий электронный потенциал через внешний источник напряжения, электроны «засасываются» в электрод, оставляя после себя восстановленные частицы $ \ ce {Red} $, потому что уровень энергии электронов внутри электрода (уровень Ферми ) ниже уровня энергии ВЗМО $ \ ce {Red} $. Таким образом, положительный электрод будет тем, где будет происходить реакция окисления, и, следовательно, это будет анод.

Сказка об электронах и водопадах

Поскольку существует некоторая путаница в отношении принципов, на которых работает электролиз, я попробую использовать метафору, чтобы объяснить это. Электроны текут из области с высоким потенциалом в область с низким потенциалом, подобно тому, как вода падает с водопада или стекает по наклонной плоскости. Причина та же: таким образом вода и электроны могут понижать свою энергию. Теперь внешний источник напряжения действует как две большие реки, соединенные с водопадами: одна на большой высоте, которая ведет к водопаду — это будет минусовой полюс — и одна на низкой высоте, которая ведет от водопада — это будет плюс. столб.Электроды будут похожи на точки реки незадолго до или после водопадов на этой картинке: катод похож на край водопада, на который падает вода, а анод похож на точку, в которую падает вода.

Хорошо, что происходит при реакции электролиза? На катоде вы видите ситуацию на большой высоте. Так электроны устремляются к «краю своего водопада». Они хотят «упасть», потому что за ними река подталкивается к краю, оказывая какое-то «давление».Но куда они могут упасть? Другой электрод отделен от них раствором и обычно диафрагмой. Но есть молекулы $ \ ce {Ox} $, которые имеют пустые состояния, расположенные энергетически ниже состояния электрода. Эти пустые состояния похожи на небольшие пруды, лежащие на более низкой высоте, куда может упасть немного воды из реки. Таким образом, каждый раз, когда такая молекула $ \ ce {Ox} $ приближается к электроду, электрон использует возможность прыгнуть на нее и уменьшить ее до $ \ ce {Red} $. Но это не означает, что в электроде внезапно отсутствует электрон, потому что река немедленно заменяет «вытолкнутый» электрон.И источник напряжения (источник реки) не может исчерпать электроны, потому что он получает электроны из розетки.

Теперь анод: у анода у вас ситуация на малой высоте. Так что здесь река ниже всего. Теперь вы можете представить себе ВЗМО-состояния молекул $ \ ce {Red} $ в виде небольших барьерных озер, лежащих на большей высоте, чем наша река. Когда молекула $ \ ce {Red} $ приближается к электроду, это как будто кто-то открывает шлюзы плотины барьерного озера.Электроны перетекают из ВЗМО в электрод, образуя молекулу $ \ ce {Ox} $. Но электроны не остаются в электроде, так сказать, их уносит река. А поскольку река такая огромная (много воды) и обычно впадает в океан, то небольшое количество «воды», добавляемое к ней, не сильно меняет реку. Он остается неизменным, так что каждый раз, когда открывается наводнение, вода из барьерного озера будет падать на одно и то же расстояние.

Электрохимия

— Что такое анод, а какой катод?

В электрохимической ячейке нет законченной электронной схемы

В электрохимической ячейке анод является источником электронов для внешней цепи, а катод — стоком.Цепь переноса заряда завершается перемещением ионов внутри клетки. Солнечный элемент отличается от электрохимического элемента тем, что в нем нет чистой химической реакции. В солнечном элементе электроны текут по замкнутому контуру — по кругу во внешней цепи и через устройство.

Обозначение анода и катода

Таким образом, маркировка анода и катода основана на аналогии между гальваническим элементом и фотоэлектрическим элементом как источником электрической работы.Имеет смысл использовать направление потока электронов во внешней цепи для определения анода и катода (электроны текут от анода к катоду во внешней цепи). В гальванической ячейке нет потока электронов внутри ячейки (вместо этого есть поток ионов, чтобы уравновесить заряды). В фотоэлементе электроны текут от перехода к аноду, а дырки текут от перехода к катоду (или, можно сказать, электроны текут от катода к переходу).

К сожалению, анод и катод названы с использованием разных условных обозначений в зависимости от типа устройства, см. Этот обзор (и имейте в виду, что ток I иногда идет в том же направлении, что и электроны, а иногда и нет, опять же, в зависимости от условных обозначений).

Отрицательный и положительный электрод

Обозначения (+) и (-) сбивают с толку даже только для электрохимических ячеек. Хотя обозначения анода и катода одинаковы для гальванических и электролитических элементов (т. Е. Для использования и зарядки аккумулятора), обозначения (+) и (-) переключаются, поэтому они не связаны с направлением потока электронов через внешний провод.

Направление потока электронов

Для фотоэлементов, возможно, поможет следующая картина: до того, как свет попадает на элемент, анод и катод не являются ни отрицательными, ни положительными.Как только свет попадает на ячейку, анод становится отрицательным, потому что электроны движутся к нему от перехода, а катод становится положительным, потому что электроны прыгают из него в дырки, выходящие из перехода. Если вы затем подключите внешний потребитель электрической работы, вы можете предсказать направление потока электронов через внешнюю цепь.

Как определить анод и катод

Вот посмотрите на разницу между анодом и катодом элемента или батареи, и как вы можете запомнить, что есть что.

Держать их прямыми

Помните, что cat hode притягивает ионы cat или ca t hode притягивает заряд + . Ода n притягивает исходный заряд n .

Поток тока

Анод и катод определяются течением тока. В общем смысле ток относится к любому движению электрического заряда. Тем не менее, вы должны иметь в виду соглашение о том, что направление тока соответствует тому, куда будет двигаться положительный заряд , а не отрицательный заряд.Итак, если электроны действительно совершают , перемещая в ячейке, тогда ток течет в противоположном направлении. Почему это так определяется? Кто знает, но это стандарт. Ток течет в том же направлении, что и носители положительного заряда, например, когда положительные ионы или протоны несут заряд. Ток течет против направления отрицательных носителей заряда, таких как электроны в металлах.

Катод

  • Катод — отрицательно заряженный электрод.
  • Катод притягивает катионы или положительный заряд.
  • Катод является источником электронов или донором электронов. Он может принимать положительный заряд.
  • Поскольку катод может генерировать электроны, которые обычно представляют собой электрические компоненты, совершающие фактическое движение, можно сказать, что катоды генерируют заряд или что ток движется от катода к аноду. Это может сбивать с толку, потому что направление тока будет определяться тем, как будет двигаться положительный заряд. Просто помните, любое движение заряженных частиц — это ток.

Анод

  • Анод — это положительно заряженный электрод.
  • Анод притягивает электроны или анионы.
  • Анод может быть источником положительного заряда или акцептором электронов.

Катод и анод

Помните, что заряд может течь либо от положительного к отрицательному, либо от отрицательного к положительному! Из-за этого анод может быть заряжен положительно или отрицательно, в зависимости от ситуации. То же самое и с катодом.

Источники

  • Durst, R .; Baumner, A .; Murray, R .; Buck, R .; Андрие, К. (1997) «Химически модифицированные электроды: Рекомендуемая терминология и определения». ИЮПАК. pp 1317–1323.
  • Росс, С. (1961). «Фарадей консультирует ученых: происхождение терминов электрохимии». Примечания и записи Лондонского королевского общества n. 16: 187–220. DOI: 10.1098 / RSNR.1961.0038

17.2: Электролиз — Химия LibreTexts

Типичная электролитическая ячейка может быть изготовлена, как показано на рисунке \ (\ PageIndex {1} \).Два электрических проводника ( электродов, ) погружены в жидкость, подлежащую электролизу. Эти электроды часто изготавливаются из инертного материала, такого как нержавеющая сталь, платина или графит. Жидкость, подлежащая электролизу, должна быть способна проводить электричество, поэтому обычно это водный раствор электролита или расплавленное ионное соединение. Электроды подключены проводами к батарее или другому источнику постоянного тока. Этот источник тока можно рассматривать как «электронный насос», который забирает электроны с одного электрода и выталкивает их на другой электрод.Электрод, с которого удаляются электроны, становится положительно заряженным, в то время как электрод, к которому они подводятся, имеет избыток электронов и отрицательный заряд.

Рисунок \ (\ PageIndex {1} \): электролитическая ячейка. Батарея откачивает электроны от анода (делая его положительным) в катод (делая его отрицательным). Положительный анод притягивает к себе анионы, а отрицательный катод притягивает к себе катионы. Электрический ток переносится электронами в проводе и электродах, но он переносится анионами и катионами, движущимися в противоположных направлениях в самой ячейке.Поскольку анод может принимать электроны, на этом электроде происходит окисление. Катод является донором электронов и может вызвать восстановление. из Википедии (кредит XXX).

Отрицательно заряженный электрод притягивает к себе положительные ионы (катионы) из раствора. Он может отдавать часть своих избыточных электронов таким катионам или другим частицам в жидкости, подвергаемой электролизу. Следовательно, этот электрод фактически является восстановителем. В любом электрохимическом элементе (электролитическом или гальваническом) электрод, на котором происходит восстановление , называется катодом .

Положительный электрод, с другой стороны, притягивает к себе отрицательные ионы (анионы). Этот электрод может принимать электроны от этих отрицательных ионов или других частиц в растворе и, следовательно, ведет себя как окислитель. В любой электрохимической ячейке анод является электродом, на котором происходит окисление . Простой способ запомнить, какой электрод — это то, что анод и окисление начинаются с гласных, в то время как катод и восстановление начинаются с согласных.

На следующем видео показан этот процесс в нейтральном водном растворе с некоторыми присутствующими электролитами.{-} (aq) \ rightarrow \ text {H} _2 (g) + \ text {Cl} _2 (g) + \ text {2H} _2 \ text {O} (l) \]

Чистая реакция [Уравнение \ (\ ref {3} \)] — это обратная спонтанной комбинации H 2 ( г, ) с Cl 2 ( г ) с образованием HCl ( водн ). Такой результат справедлив для электролиза в целом: электрический ток , подаваемый извне системы, вызывает несамопроизвольную химическую реакцию.

Хотя электролиз всегда обращает вспять спонтанную окислительно-восстановительную реакцию, результат данного электролиза не всегда может быть той реакцией, которую мы хотим. {-} \]

Однако Li + — очень плохой акцептор электронов, и поэтому очень трудно заставить выполняться уравнение \ (\ ref {5} \).{-} \ label {8} \]

Общее уравнение можно получить, умножив уравнение \ (\ ref {7 } \ ) на 2, добавив его к уравнению \ (\ ref {8} \) и сложив H + с OH для получения H 2 O:

\ [\ text {2H} _2 \ text {O} (l) \ rightarrow \ text {2H} _2 (g) + \ text {O} _2 (g) \]

На следующем видео показан процесс электролиза воды с использованием серной кислоты в качестве моста для передачи заряда. После завершения электролиза идентичность образующихся газов проверяется с помощью тестов на горючие шины.

Таким образом, этот электролиз обращает спонтанную комбинацию H 2 и O 2 с образованием H 2 O. При обсуждении окислительно-восстановительных реакций мы упоминаем несколько окислителей, например, которые достаточно сильны, чтобы окислять H 2 O. В то же время мы описываем восстановители, которые достаточно сильны для восстановления H 2 O, такие как щелочные металлы и более тяжелые щелочноземельные металлы. Как правило, такие вещества не могут быть получены электролизом водных растворов, поскольку вместо этого H 2 O окисляется или восстанавливается.Вещества, которые подвергаются спонтанной окислительно-восстановительной реакции с H 2 O, обычно получают электролизом расплавов солей или в каком-либо другом растворителе. Однако из этого правила есть некоторые исключения, потому что некоторые электродные реакции протекают медленнее, чем другие. Например, используя таблицу 11.5, мы можем предсказать, что H 2 O является лучшим восстановителем, чем Cl .

Следовательно, можно ожидать, что O 2 , а не Cl 2 , будет получен путем электролиза 1 M HCl, что противоречит уравнению \ (\ ref {1} \).Оказывается, что O 2 образуется больше , медленнее , чем Cl 2 , и последний пузырится из раствора до того, как H 2 O может быть окислен. По этой причине Таблицу 1 из раздела Редокс-пары не всегда можно использовать для прогнозирования того, что произойдет при электролизе.

Как определить анод и катод

Как определить анод и катод

Как определить анод и катод
Джон Денкер

* Содержание

1 Определение

  • Определение: анод устройства — терминал, через который ток течет от за пределами.Катод устройства — это вывод, на котором ток вытекает. Это показано на рисунке ~ 1.

    Полезная мнемоника — КИСЛОТА: ток анода в устройстве. В настоящее время мы означают положительный условный ток. Поскольку электроны отрицательно заряженный, протекающий положительный ток такой же, как электроны вытекают.

    Вот и все.

2 Некоторые примеры

Наше определение легко и правильно применимо к любой ситуации, которую я могу подумайте (с одним отвратительным исключением, как обсуждалось в пункте 11 ниже).

  1. Гальванические элементы и батареи.
  2. Горячий катод в электронно-лучевой трубке, обнаруженный в телевизор старого образца или осциллограф.
  3. Горячий катод в лампе электронного усилителя («Флеминг клапан»).
  4. Горячий катод в рентгеновской трубке, как на рисунке ~ 2.
  5. Вращающийся анод в рентгеновской трубке, как на рисунке ~ 2.
  6. Светодиодная матрица с общим анодом, например, 7-сегментная матрица цифр, хотя это не оптимальная терминология по причинам, обсуждаемым в пункт 8.
  7. Жертвенный анод в лодке; см. пункт 16.
  8. Анодная пластина и катодная пластина (а также анодный раствор) в ячейка электролитического рафинирования; см. пункт 9.

Важно отметить, что наше определение прекрасно применимо к таким вещам, как аккумуляторная батарея, в которой нельзя идентифицировать анод и катод пока вы не увидите, как работает устройство, как описано в пункт 6.

Наше определение также применимо в тех случаях, когда оно относительно легко отличить анод от катода, просто посмотрев, как обсуждается в пункте 7.

Существует одно отвратительное исключение, как описано в пункте 11 ниже.

3 Обсуждение

Наше оригинальное, освященное веками определение. Это согласуется с этимологией, как обсуждается в пункте 17. Другого разумного определения нет. Я видел несколько попыток определения, но если они не были эквивалентны нашему определению (как приведенные в разделе ~ 1), они были гротескно чрезмерно сложными, неправильно, или и то, и другое.
По устоявшемуся соглашению (возвращаясь к Бен Франклин), когда мы говорим о текущем , мы имеем в виду обычные положительный ток.В металлических проводах ток передается по Электроны , движутся в направлении, противоположном току. Этот усложняет понятие тока, но необходимо, потому что электрон заряжен отрицательно.
Для подавляющего большинства людей нет Пункт в запоминании значения анода и катода. Условия просто не очень полезны, если вы не устроитесь на работу в электрохимии лаборатория или какая-нибудь сравнительно узкая специальность. Если когда-нибудь ты сделаешь нужно знать значения, вы можете найти их сегодня утром и забыть их снова в тот вечер.
Обратите внимание, что когда мы говорим ток-вход, мы имеем в виду ток поступающий в устройство из внешнего контура. Точно так же, когда мы говорят, что ток выходит, мы имеем в виду ток, текущий из устройства в сторону внешняя цепь. Мы относимся к устройству как к черному ящику, и мы категорически не говорят о токах, протекающих в устройство. Эта терминология черного ящика является стандартной во всех отраслях инженерное дело и наука, если контекст явно не требует иначе.

Если вы настаиваете на том, чтобы заглянуть внутрь черного ящика, история получит больше сложно, как вы можете видеть на рисунке ~ 2.Тем не мение, это не меняет ни буквы, ни духа определения, которое основан на поведении черного ящика, если смотреть снаружи.

Важно помнить, что анод / катод различие основано на токе, а не на напряжении. Анод / катод не то же самое, что и положительный / отрицательный, или наоборот. Наглядный пример: для разряженной батареи положительный полюс — катод, в то время как для той же аккумуляторной батареи положительный полюс анод.
Имейте в виду, что анод и катод относятся к функции, а не к структуре. Есть много устройства, где было бы безумием постоянно маркировать структуры как анод или катод, потому что их функция время от времени меняется. Перезаряжаемые батареи — очень распространенный и очень важный пример. как указано в пункте 5.
Хотя анод и катод фундаментально определен в терминах функция не структура, там некоторые исключительные устройства, функция которых практически заблокирована к структуре.В таком случае, возможно, допустимо пометить структурирует как анод и катод, потому что только одно направление тока имеет смысл. В списке в разделе ~ 2 все примеры , за исключением аккумуляторной батареи , находятся в этом категория.

В любом случае имейте в виду, что эту категорию нужно считать рискованное исключение, а не общее правило. Верное общее правило объяснено в пункте 6.

Даже в тех случаях, когда это возможно можно идентифицировать определенный анод и катод, обычно есть более простые и лучшие способы обозначения терминалов.В частности, для аккумулятор (аккумуляторный или нет), он обычный и разумный говорят о положительной клемме и отрицательной клемме. Для диода это условно и разумно говорить о стороне, легированной фтором, и о N-легированная сторона. В частности, для модуля светодиодного дисплея так называемый конфигурацию с общим анодом правильнее было бы назвать общая конфигурация стороны P.
Вот интересный и важный пример. Рассмотрим электролитическое рафинирование металлов, таких как медь.

Во время нормальной работы через элемент протекает большой ток, навязывается извне. Ток проталкивается в ячейку на анод, и вынутый на катоде. Клеммы обозначены в соответствии с их нормальной функцией, в соответствии с определением приведено в разделе ~ 1.

В начале работы анодом является нечистая медь. На В конце операции катод — это медь гораздо более высокой чистоты. Пытаться поиск в Google анода грязь.

Если какой-нибудь умник временно изменил направление тока, нормальный анод станет временным катодом и наоборот.Однако эта возможность настолько странна, что обычно даже не считается. Клеммы промаркированы в соответствии с их нормой функция.

Обратите внимание на контраст:

Ячейка электролитического рафинирования. Батарея обыкновенная
В ячейке рафинирования напряжение ячейки холостого хода, если таковое имеется, очень маленький и совершенно неуместен. В батарее есть определенная положительная клемма и определенная отрицательная клемма.
Падение напряжения на ячейке примерно пропорционально электрический ток. Во время работы анод будет находиться под положительным напряжение относительно катода. Падение напряжения на ячейке равно качественно одинаково, независимо от того, положительный ли ток, отрицательный, или ноль. Положительный вывод — это катод во время разряд, но во время перезарядки это анод.
Во всех случаях вы можете использовать описательные термины ток-сток и ток-источник как синонимы анода и катода.Описание обычно предпочтительнее жаргона.
Можно купить массив стабилитронов. Увы, согласно устоявшемуся, но нелогичному соглашению, так называемая конфигурация с общим анодом конструктивно аналогична матрица светодиодов с общим анодом в том смысле, что стороны, легированные P, являются связаны друг с другом. Это мерзость, потому что при обычном использовании Зенера сторона, легированная P, — это то место, где выходит ток, и, по логике, она должна быть называется катодом. Очевидно, кто-то был под неправильным впечатлением этот анод / катод относится к структуре, а не к функции.

Никогда не используйте термины анод или катод для описания структурные части стабилитрона, по той же причине не следует Используйте такие термины для обозначения конструкции аккумуляторной батареи. Анод и катод относится к функции, а не к структуре. Вместо этого вам следует обратиться к сторона с примесью P и сторона с примесью азота, и вы должны настаивать на том, чтобы другие делают то же самое.

Обратите внимание, что изменение правил маркировки матриц стабилитронов не решит проблему в каком-либо фундаментальном смысле, потому что там являются вполне разумными схемами, в которых — часть времени — Стабилитрон смещен в прямом направлении, поэтому ведет себя так же, как и любой другой. другой диод.Это та же ситуация, с которой мы сталкиваемся в связи с с аккумуляторными батареями: если вы прикрепите постоянный анод / катод метки к структуре, вы будете ошибаться, по крайней мере, часть времени.

Термины «анод» и «катод»
правильно относятся к функции, а не к конструкции.
~~~~~
Электрохимическое следствие: в любом электрохимическом на аноде протекают реакции окисления, а на аноде протекают реакции восстановления. реакции происходят на катоде.(Если вы не знаете, что это означает, не беспокойтесь об этом.) Это включает в себя зарядку батарей. (анод = положительный), а также разряжаются батареи (анод = отрицательный). Это следствие, вытекающее из нашего определения, и с традиционной точки зрения, что ячейка — это черный ящик, а все внешнее по отношению к ячейке — это внешняя цепь.

Ситуация резюмируется в следующей таблице:

~ ~~~
~ ~~~~~ зарядка ~~~~~ разрядка
~~~ ~~~~~
— пластина: катод
восстанавливается
~~~~~ анод
окисляется
~~~ ~~~~~
+ пластина: ~~~~~ анод
окисляется
~~~~~ катод
восстанавливается
Сделаем краткое исключение из черного ящика. точки зрения и рассмотрим, что происходит внутри электрохимической ячейки.Внутри клетки катионы (положительно заряженные частицы) движутся в направлении катод вносит положительный вклад в обычный ток внутри ячейки , как показано на рисунке ~ 3. Точно так же анионы (отрицательно заряженные частицы), движущиеся к аноду вносят положительный вклад в условный ток внутри сотовый . На рисунке не показаны анионы. Правило анионы на анод, катионы на катод применяются только внутри ячейки. Это правило требуется из-за того, что ток подчиняется закону сохранения закон; ток, который течет в ячейку на аноде, должен протекать через ячейку, а затем катод.За пределами клетки течет ток к аноду; внутри ячейки ток течет от анода. (Кстати, обычно предполагается, что вне клетки нет подвижные анионы или катионы, просто электроны, переносимые металлическими проводами в внешняя цепь.)
Рисунок ~ 3: Анод и катод: внутри Черный ящик

Говоря об ионах, нужно помнить, что катионы положительно заряженный. Мнемоника катионов состоит в том, чтобы рассматривать «t» как знак плюс: ca + ion. Между тем, мнемоника для анионов является чем-то вроде аббревиатура: A Negative ION = ANION.

Вспоминая правило катион-катод, нужно помнить что внутри ячейки катионы идут на катод (а не с него): ионы ca + + o ca + hode. Соответствующее правило отношения анионов к аноду одинаково действительно, но вам нужно работать усерднее, чтобы помнить, что анионы уходят в (не от) анода.

Пожалуйста, помните, что правило «катионы-катод» подлежит несколько предостережений. В лучшем случае это химическое следствие настоящего определение. Это не может служить определением катода, потому что катод хорошо определен для всех видов устройств, которые нет подвижных катионов, например.грамм. полупроводниковые диоды, электронно-лучевые трубки и т. д. Еще одно предостережение: это правило применяется к тому, что происходит внутри ячейки, тогда как для большинства целей (включая определение анода / катода) обычно и целесообразно фокусировать на свойствах черного ящика, если смотреть снаружи. (Похожий вопросы возникают по пунктам 14 и 16.)

Существует небольшая вероятность путаницы, когда думая об электронно-лучевых трубках и рентгеновских трубках, из-за соблазн отклониться от точки зрения черного ящика.(Подобные вопросы возникают в п. 13 и п. 16.) В Рентгеновская трубка, внутри устройства происходит интересная физика, тогда как определение анода выражается в терминах обычных ток течет во внешний терминал, течет в черный ящик снаружи. Помните, снаружи устройства мы видим позитив обычный ток, выходящий из катода и идущий в анод, в соответствии с нашим определением, как показано на рисунке ~ 1 в разделе ~ 1. Правило: КИСЛОТА: Анод Ток в устройство.(Если заглянуть внутрь устройства, мы увидим электроны вытекает из катода, но это только следствие определение, а не определение как таковое .)
Еще больше возможностей для путаницы, если вы пытаетесь объяснить или дать определение анода / катода с точки зрения электрохимических ячеек хотя бы потому, что мало кто понимает, как такие вещи Работа. См. Ссылку ~ 1 и ссылки в ней. Как говорится Итак, обучение происходит от известного к неизвестному. Наше определение анода / катода, как указано в разделе ~ 1, прост и полезен.Внутренний механизм батареи непростой. Это не имеет никакого смысла «объяснить» первое через второе.

Клеммы аккумулятора помечены как положительный и отрицательный. Они помечены в зависимости от напряжения, а не от заряда или тока. Это условно и вполне уместно, потому что положительный вывод остается на положительное напряжение (относительно другой клеммы) во время всех нормальных условия, в том числе когда аккумулятор разряжается, заряжается или просто сидеть там в равновесии без тока.

Напротив, как упоминалось в пункте 5, это было бы дико неуместно маркировать клеммы аккумулятора как анод и катод. Это потому, что вывод, который является катодом во время разряда становится анодом во время перезарядки … и не является ни анодом, ни катодом в равновесной (нетекущей) ситуации.

Кроме того, нет смысла определять анод и катод в терминах электрохимия, потому что эти термины используются во всевозможных ситуациях там, где нет электрохимии, в том числе полупроводниковой диоды, рентгеновские трубки и т. д.

Лодки и другие конструкции, контактирующие с соленая вода может вызвать некоторую путаницу об аноде по сравнению с катодом. На первый взгляд это может быть неочевидно что считается «черным ящиком» и что считается «Внешняя цепь». Традиционная точка зрения такова:
  • Вода и соприкасающиеся с водой металлы должны быть рассмотрены как гигантская электрохимическая ячейка. Есть анионы и катионы в вода внутри черного ящика.
  • Конструкция лодки (или чего-то еще) считается внешняя цепь. Нет анионов или катионов. Текущий переносятся электронами, протекающими внутри металлов.

То есть принято считать лодку внешней по отношению к вода … хотя может показаться более логичным думать о вода как внешняя по отношению к лодке. Это может показаться произвольным, но по крайней мере это согласуется с вышеупомянутым электрохимическим следствием (пункт 12), чтобы реакции окисления происходили на аноде, на катоде протекают реакции восстановления.Это приводит нас к полезная концепция расходуемого анода , который является просто дешевый, легко заменяемый электрод, который помещается в воду и расположены так, чтобы иметь большое положительное напряжение по отношению к остальной части лодка. Это делает все остальное на лодке катодом, в значительной степени уменьшение коррозии, потому что большинство форм коррозии связаны с окислением реакции. Другими словами, то же самое в воде, высококоррозионные анионы, такие как OH и Cl , текут в направлении анод и вдали от всего остального, в соответствии с правило анионов к аноду.Анод, конечно, быстро корродирует, и необходимо время от времени заменять.

Этимология: слова анод и катод были введен в 1834 году Майклом Фарадеем по совету Уильяма Уэвелл, ученый-эрудит и плодовитый мастер слова. Уэвелл немного понимает греческий и находит ему хорошее применение:
  • Анод происходит от греческих корней ἀνά + ὀδός (означает восходящий путь).
  • Катод происходит от греческих корней κατά + ὀδός (означает нисходящий путь).

Никогда не следует уделять слишком много внимания этимологии, потому что значения могут со временем дрейфовать. Действительно ἀνά и κατά отошли от своих древних корней. Однако ὀδός не имеет, и это ключ. Английские слова, когда были придуманы, явно предназначались для описания расхода, а не напряжения. Эти же корни используются в других греческих языках. и псевдогреческие термины на английском языке, например анаболический, катаракта, одометр, и так далее.

4 Резюме

Меня удивляет, что некоторые люди принимают простую и понятную концепцию. неважно, усложняйте его излишне и притворяйтесь важным.

Имея дело с батареями, не думайте об аноде и катод; думайте с точки зрения положительной клеммы и отрицательной клеммы.

При работе с полупроводниковыми диодами не беспокойтесь об аноде и катод; думайте в терминах стороны, легированной фтором, и стороны, легированной азотом.

Общее правило: анод означает ток в черный ящик и катод означает ток из в черный ящик. Стабилитроны дают привести к отвратительному исключению, которого следует избегать, как чума.

Существует множество свидетельств того, что даже люди, называющие себя эксперты не могут придерживаться правильной терминологии, связанной с анодом / катодом. В любой практическая ситуация, всегда есть способ разобраться, как зацепить вещи без глубокого понимания анода по сравнению с катодом.

Термины анод и катод иногда удобны в ситуациях где имеет смысл только одно направление тока.

В других ситуациях обычно лучше избегать терминов анод и катод. Есть лучшие способы сказать то, что нужно сказать.Конструктивное предложение: лучше поговорить о текущем (а не электрод). Лучше поговорить о том, что ток делает (а не то, что «есть» у электрода).

5 Ссылки

Джон Денкер, «Как работает аккумулятор»
www.av8n.com/physics/battery.htm

Как работают батарейки?

Как работают батарейки?

Как работают батарейки?

Электричество, как вы, наверное, уже знаете, это поток электронов через токопроводящую дорожку, как провод.Этот путь называется цепью .

Батареи состоят из трех частей: анода (-), катода (+), и электролит . Катод и анод (положительный и отрицательный стороны на обоих концах традиционной батареи) подключены к электрическому схема.

Химические реакции в батарее вызывают накопление электронов. на аноде. Это приводит к электрической разнице между анодом и катод.Вы можете думать об этой разнице как о нестабильном накоплении электроны. Электроны хотят перестроиться, чтобы избавиться от этой разницы. Но они делают это определенным образом. Электроны отталкиваются и пытаются уйти в место с меньшим количеством электронов.

В батарее единственное место, куда можно подойти, — это катод. Но электролит не позволяет электронам идти прямо от анода к катоду внутри батареи. Когда цепь замкнута (провод соединяет катод и анод) электроны смогут попасть на катод.На картинке выше электроны проходят по проводу, зажигая лампочку по способ. Это один из способов описания того, как электрический потенциал вызывает появление электронов. протекать по контуру.

Однако эти электрохимические процессы изменяют химические вещества. в аноде и катоде, чтобы они перестали подавать электроны. Итак, есть ограниченное количество энергии, доступной в батарее.

Когда вы перезаряжаете батарею, вы меняете направление потока электронов с помощью другого источника энергии, например солнечных батарей.В электрохимические процессы происходят в обратном порядке, и анод и катод восстанавливаются в исходное состояние и снова может обеспечить полную мощность.


Что есть батареи?
Что это энергия?

Что такое схема?
Что такое электрон?
Что такое поток электронов?
Что такое DS1 срок службы батареи?
Что значит электрически заряженный?
Как атомы заряжены?

Где энергия приходит и уходит?


.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *