Прибор для измерения силы тока. Как измерить силу тока мультиметром
Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).
Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.
Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.
1. Прибор для измерения силы тока.
Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.
На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «PА» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».
Для измерения тока амперметр включается
Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.
2. Измерение силы тока мультиметром.
Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.
Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением:
Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.
Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:
красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.
В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.
Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.
Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.
Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».
Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.
Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется
Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.
И еще совет. Возьмите за правило:
Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.
Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.
Удачи!
Измерение тока. Виды и приборы. Принцип измерений и особенности
Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.
Измерение тока рекомендуется делать в следующих случаях:
- После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
- Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
- При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
- Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
- Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
- Работоспособность теплого пола в квартире также проверяется измерением тока.
Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.
Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.
Измерение тока приборамиДля определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
- Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
- Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.
Порядок измерения силы тока мультиметром:
- Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
- Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
- Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
- Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.
- Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
- Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
- Отключить питание цепи и отсоединить мультиметр.
- Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.
Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.
При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.
Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.
Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.
Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.
Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.
Похожие темы:
Какой прибор измеряет силу тока — MOREREMONTA
Для измерения величины тока в цепях постоянного и переменного тока используют электроизмерительный прибор амперметр. Амперметр включается в цепь последовательно с источником тока.
Поскольку ток — это упорядоченное движение заряженных частиц вдоль проводника (через поперечное сечение проводника), то для измерения его величины необходимо пропустить измеряемый ток еще и через амперметр. Поэтому амперметр включается именно в разрыв исследуемой цепи, когда нужно измерить ток, а ни в коем случае не параллельно ей.
В выходной цепи современного амперметра обычно находится шунт — калиброванный резистор повышенной точности и довольно малого сопротивления (считанные доли ома), на котором электронная схема прибора измеряет падение напряжения, и по нему косвенным путем вычисляет ток (или как говорят — силу тока).
Амперметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения тока. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.
Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мкА, 2мА, 20мА, 200мА, 10А и т.д. Кроме того у некоторых мультиметров есть возможность измерения постоянного, переменного, либо и постоянного и переменного тока.
Вид тока также выбирается на шкале переключателя. Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.
Подключите щупы к соответствующим гнездам мультиметра или амперметра. Включите прибор и переведите его в режим измерения тока, выбрав вид тока и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить. Обесточьте цепь, в которой необходимо будет измерить ток.
Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался включен в разрыв цепи. Подайте ток в цепь. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного тока.
Если диапазон 10А или более, то значение измеренного тока будет отображено в амперах. Если диапазон например 200мА, 20мА или 2мА (порядок величин таков, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в миллиамперах. Если выбран диапазон 200мкА (или такого же порядка) — на дисплее будут показаны микроамперы.
Амперметр никогда нельзя подключать параллельно источнику тока, ибо в этом случае ток короткого замыкания пройдет через измерительный шунт внутри прибора и если ток окажется больше предельно допустимого для прибора, то прибор мгновенно сгорит.
Если источником тока является, например, розетка или другой источник с низким внутренним сопротивлением, это может закончиться трагедией с жертвами, а в самом лучшем случае — быстрым выходом прибора из строя.
Если вам необходимо измерить ток короткого замыкания пальчиковой батарейки — такое может пройти для амперметра безвредно, но правилом включения амперметра лучше не пренебрегать никогда.
Амперметр включается всегда последовательно в цепь и только в тот момент, когда эта цепь обесточена! Потребители в исправной цепи сами ограничат ток рабочей величиной.
Особенной разновидностью амперметра являются электроизмерительные токовые клещи. Они имеют очень большой диапазон измеряемых токов, и их невозможно включить неправильно. Токовые клещи просто накидываются в обхват участка цепи, ток в которой нужно измерить, и сразу показывают ток. Более распространены токовые клещи для измерения переменного тока, но существуют и модели для измерения постоянного тока (на базе датчика холла).
Ответ
Проверено экспертом
Ответ:
Сила тока измеряется в амперах. Величина заряда измеряется в кулонах.
Амперметр измеряет силу тока на той части электрической цепи где он подключен.
- Комментарии
- Отметить нарушение
Ответ
Проверено экспертом
Ответ:
Объяснение:
Сила тока измеряется в амперах (А)
Величина заряда измеряется в кулонах (Кл)
Величину тока измеряет амперметр.
Амперметр включают в электрическую цепь последовательно с нагрузкой.
Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.
Измерение тока рекомендуется делать в следующих случаях:
- После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
- Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
- При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
- Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
- Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
- Работоспособность теплого пола в квартире также проверяется измерением тока.
Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.
Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.
Измерение тока приборамиДля определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
- Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
- Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.
Порядок измерения силы тока мультиметром:
- Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
- Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
- Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
- Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.
- Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
- Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
- Отключить питание цепи и отсоединить мультиметр.
- Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.
Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.
При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.
Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.
Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.
Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.
Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.
Каким прибором измеряют силу тока
Каким прибором измеряют силу электрического тока в цепи?
70(А1). Каким прибором измеряют силу электрического тока в цепи? 1) вольтметром; 2) термометром; 3) амперметром; 4) секундомером;
5) динамометром.
Решение. Узнавание отдельных объектов изучения программного учебного материала, предъявленных в готовом виде (физических явлений, физических величин, единиц физических величин, формул, других физических объектов, в том числе измерительных инструментов, физических приборов) оценивается в 1 балл. Ознакомьтесь с оценками результатов учебной деятельности учащихся по учебному предмету «Физика» Задачи такого типа относятся к простым. Если полистать учебник физики, то там где вводится физическая величина, там же вводится и прибор для измерения физической величины.
Сила электрического тока измеряется в амперах, а для измерения силы тока в электрической цепи использую прибор − амперметр.
Амперметр − прибор для измерения силы тока в цепи. Шкала амперметра может быть проградуирована в микроамперах (мкА), миллиамперах (мА), амперах (А), килоамперах (кА). Включается амперметр в электрическую цепь последовательно с тем участком электрической цепи, силу тока в котором требуется измерить. Для увеличения предела измерений амперметр шунтируется (подключается дополнительное сопротивление) параллельно. Принцип действия амперметра − магнитоэлектрического прибора основан на создании крутящего момента. Вращающий момент возникает в результате взаимодействия поля постоянного магнита и магнитным полем тока, проходящего через обмотку рамки. Стрелка амперметра соединена с рамкой. Угол поворота стрелки пропорционален силе тока. На фото изображен школьный амперметр, обратите внимание на условные обозначение А − что указывает, что данный прибор предназначен для измерения силы тока в электрической цепи в амперах. Смотри похожую задачу.
Прибор для измерения силы тока. Как измерить силу тока мультиметром
Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).
Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.
Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.
1. Прибор для измерения силы тока.
Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.
На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «PА» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».
Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.
Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.
2. Измерение силы тока мультиметром.
Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.
Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.
Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.
Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:
красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»; черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.
В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.
Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.
Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.
Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».
Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.
Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.
Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.
И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.
Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.
Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.
Удачи!
Измерение силы тока: обзор измерительных приборов и краткое руководство к их применению
В ходе эксплуатации электросети или какого-либо прибора приходится выполнять измерение силы тока.Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.
Заодно поговорим о мерах безопасности при проведении подобных работ.
Единица измерения силы тока
Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения — ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).
Силу тока можно сравнить с напором воды. Как известно, в старину небольшие речки перегораживали плотинами, чтобы создать напор, способный вращать колесо мельницы.Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.
Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.
Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:
Сила тока, А (переменный с частотой 50 Гц) | Эффект |
Менее 0,5 мА | является незаметным для человека |
От 0,5 до 2 мА | Появляется нечувствительность к различным раздражителям |
От 2 до 10 мА | Болевые ощущения, спазм мышц |
От 10 мА до 20 мА | Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью |
От 20 мА до 100 мА | Дыхательный паралич |
От 100 мА до 3 А | Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего |
Свыше 3 А | Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется) |
А вот еще несколько причин:
- Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
- По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.
Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:
W = U * I,
Где
- W – мощность, Вт;
- U – напряжение, В;
- I – сила тока, А.
Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.
Формула измерения силы тока
При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.
Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).
Чтобы определить активную мощность (полезная работа электричества), нужно знать фактический коэффициент мощности для данного прибора, представляющий собой соотношение активной и реактивной мощностей.
Приборы для измерения силы тока и напряжения
Вот какие измерительные инструменты помогут электрику в данном вопросе:
Амперметр
Существует несколько разновидностей данного прибора, которые различаются принципом действия:
- Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
- Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
- Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
- Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
- Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
- Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.
Мультиметр для измерения силы тока
Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).
Измерение силы тока мультиметром
Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.
Тестер
По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.
Измерительные клещи
Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.
При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.
Измерительные клещи
Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.
Методы измерения
Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной — только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).
Отметим два важных обстоятельства:- В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
- Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.
Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.
Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.
Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.
Видео на тему
Поделиться:
Нет комментариев
Каким прибором измерять силу тока?
В процессе работы электрику часто приходится производить замеры это: напряжение, сопротивление, сопротивление изоляции. Есть еще одна величина — это сила тока. О том, как ее измерять, и пойдет речь в этой небольшой статье.
Амперметр — прибор при помощи которого можно измерить силу тока.
Во-первых, сила тока измеряется прибором, который называется – амперметр. Для измерения в цепях постоянного и переменного тока используются разные измерительные приборы. На шкале амперметра для переменного тока ставится обозначение – « ? А», для постоянного «–А».
Для измерения напряжения вольтметры подключаются параллельно, а амперметры — последовательно. То есть цепь необходимо разорвать в удобном месте и туда подключить амперметр. Какое напряжение в цепи — 127В, 220В или 380В — не имеет значения, аналогично и в цепях постоянного тока. Это что касается измерения тока отдельным прибором (амперметром).
Измерить величину тока можно и тестером (стрелочный). Этими приборами можно измерять и постоянный, и переменный ток, установив соответствующий переключатель на Вид тока ( ? А или –А).
В цепях переменного тока измерения можно производить токоизмерительными клещами, этот метод удобен тем, что измерения производятся бесконтактным способом. Необходимо просто обхватить проводник магнитопроводом прибора. В цепях постоянного тока такие измерения не производятся.
Все эти измерения необходимы специалистам электрикам в повседневной работе. К примеру, зная потребляемый ток, можно рассчитать мощность агрегата по формуле
Р = UI
P — мощность (Вт), U – напряжение (В), I – сила тока (А). Приведем пример: трехфазный электродвигатель потребляет 11А на каждой фазе — 11А х 220В = 2420 Вт — из вычислений можно определить мощность. Это стандарт 7.5 кВт.
Физика 8 класс. Измерение силы тока и напряжения. Измерение работы и мощности тока :: Класс!ная физика
Физика 8 класс. ИЗМЕРЕНИЕ СИЛЫ ТОКА В УЧАСТКЕ ЦЕПИ
Для измерения силы тока существует измерительный прибор — амперметр.
Условное обозначение амперметра на электрической схеме:
При включении амперметра в электрическую цепь необходимо знать :
1. Амперметр включается в электрическую цепь последовательно с тем элементом цепи,
силу тока в котором необходимо измерить.
2. При подключении надо соблюдать полярность: «+» амперметра подключается к «+» источника тока,
а «минус» амперметра — к «минусу» источника тока.
ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ
НА УЧАСТКЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Для измерения напряжения существуют специальный измерительный прибор — вольтметр.
Условное обозначение вольтметра на электрической схеме:
При включении вольтметра в электрическую цепь необходимо соблюдать два правила:
1. Вольтметр подключается параллельно участку цепи, на котором будет измеряться напряжение;
2.Соблюдаем полярность: «+» вольтметра подключается к «+» источника тока,
а «минус» вольтметра — к «минусу» источника тока.
___
Для измерения напряжения источника питания вольтметр присоединяют непосредственно к его зажимам.
ИЗМЕРЕНИЕ РАБОТЫ И МОЩНОСТИ
ЭЛЕКТРИЧЕСКОГО ТОКА
Для определения работы или мощности тока можно использовать специальный измерительный прибор — ваттметр.
При отсутствии ваттметра пользуются одновременным подключением двух измерительных приборов к нужному участку цепи: амперметра и вольтметра.
Далее проводится расчет работы и мощности тока по формулам.
P = UI ……… и ……. A = UIt
ОПРЕДЕЛИ !
1. Что изменилось на участке цепи, если включенный параллельно вольтметр
показывает уменьшение напряжения?
___
2. Какими способами можно определить напряжение в городской сети,
имея в своем распоряжении любые приборы, кроме вольтметра?
Устали? — Отдыхаем!
Сила тока. Амперметр — урок. Физика, 8 класс.
В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.Сила тока \(I\) — скалярная величина, равная отношению заряда \(q\), прошедшего через поперечное сечение проводника, к промежутку времени \(t\), в течение которого шёл ток.
I=qt, где \(I\) — сила тока, \(q\) — заряд, \(t\) — время.
Единица измерения силы тока в системе СИ — \([I]~=~1~A\) (ампер).
В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:
при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.
За единицу силы тока \(1~A\) принимают силу тока, при которой два параллельных проводника длиной \(1\) м, расположенные на расстоянии \(1\) м друг от друга в вакууме, взаимодействуют с силой \(0,0000002\)H (рис. 1.).
Рис. 1. Определение единицы силы тока
Единица силы тока называется ампером (\(A\)) в честь французского учёного А.-М. Ампера (рис. 2).
Андре-Мари Ампер (1775 — 1836) |
Рис. 2. Ампер Андре-Мари
А.-М. Ампер ввёл термины: электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток.
Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую \(100\) Вт лампочку накаливания проходит ток с силой, приблизительно равной \(0,5A\). Ток в электрическом обогревателе может достигать \(10A\), а для работы карманного микрокалькулятора достаточно \(0,001A\).
Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
\(1 мA = 0,001 A\), \(1 мкA = 0,000001 A\), \(1 кA =1000 A\).
То есть \(1 A = 1000 мA\), \(1 A = 1000000 мкA\), \(1 A = 0,001 кA\).
Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.
Переменным называется ток, сила и направление которого периодически изменяются.
В бытовых электросетях используют переменный ток напряжением \(220\) В и частотой \(50\) Гц. Это означает, что ток за \(1\) секунду \(50\) раз движется в одном направлении и \(50\) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).
Силу тока измеряют амперметром. В электрической цепи он обозначается так:
Рис. 3. Схематичное изображение единицы силы тока
Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить.
Обрати внимание!
Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!
Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры (рис. 4), где измерительная шкала представлена с использованием кратных и дольных единиц 1 А (миллиампер — мА, микроампер — мкА, килоампер — кА).
Рис. 4. Изображение миллиамперметра
Различают амперметры для измерения силы постоянного тока и силы переменного тока (рис. 5).
Обозначения диапазона измерения амперметров:
- «\(~\)» означает, что амперметр предназначен для измерения силы переменного тока;
- «\(—\)» означает, что амперметр предназначен для измерения силы постоянного тока.
Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного тока.
Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.
Для измерения силы постоянного тока | Для измерения силы переменного тока |
Рис. 5. Амперметры для измерения силы постоянного и переменного токов
Для измерения силы тока можно использовать и мультиметр (рис. 6). Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.
Рис. 6. Изображение мультиметра
Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (рис. 7):
провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «\(+\)»;
провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «\(-\)».
Рис. 7. Изображение электрической схемы (постоянный ток)
В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.
Амперметр подключается последовательно к тому прибору, на котором измеряется сила тока (рис. 7).
Безопасным для организма человека можно считать переменный ток силой не выше \(0,05~A\), ток силой более \(0,05\)-\(0,1~A\) опасен и может вызвать смертельный исход.
Источники:
Рис. 1. By Patrick Nordmann — http://schulphysikwiki.de/index.php/Datei:Definition_Ampere.png, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=91011035.
Рис. 2. By Ambrose Tardieu — The Dibner collection ::::::::::,,,;at the Smithsonian Institution (USA),, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6366734.
Рис. 3. Указание авторства не требуется, лицензия Pixabay, 2021-06-14, может использоваться в коммерческих целях, https://clck.ru/VVqyJ.
Рис. 4. Изображение миллиамперметра. © ЯКласс.
Рис. 5. Амперметры для измерения силы постоянного и переменного токов. © ЯКласс.
Рис. 6. Multimeter with probes on white, CC BY 2.0, 2021-06-14, https://www.flickr.com/photos/30478819@N08/50838190626/in/photostream/.
Рис. 7. Изображение электрической схемы (постоянный ток). © ЯКласс.
Правила измерения силы тока с помощью мультиметра
Не дорогой, но очень полезный в домашних условиях и не только, универсальный прибор мультиметр, поможет в различных ситуациях. Не зависимо от цены, им решаются различные задачи, связанные с электричеством. Измерить силу тока мультиметром можно, главное знать, как это делать.
Для начинающих, необходимо понимать, что и куда подсоединять, зачем нужны переключатели значений, как выполнить замеры в бытовых условиях.
Кратко об устройстве прибора
Каждый тестер имеет два выхода. Для подсоединения проводов со щупами. Гнезд для подключения может быть больше, но нам нужен красный для подключения щупа на фазу и черный для нулевого провода. Здесь могут быть гнезда для выполнения замеров всех значений. А именно:
- напряжения;
- сопротивления;
- силы тока.
Для обозначения гнезд применяются обозначение с помощью единицы измерения. Ошибиться невозможно, если вы не прогуливали уроки физики.
Второй основной элемент устройства измерительного устройства – шкала установок и переключатель. Как правило, для замеров значения силы тока отведен определенный сектор. Здесь указанны Амперы с различными цифровыми значениями.
Мультиметры выпускаются в цифровом и аналоговом исполнении. Цифровые приборы имеют большее количество выставляемых значений ампеража, а также они оснащены звуковыми сигналами и другими опциями. Но это касается выбора типа прибора. Каждый из них позволит выполнить замеры, для нас это главное.
Перейдем к рассмотрению главной темы.
Пошаговая инструкция измерения силы тока мультиметром
Всю работу следует выполнять по следующему алгоритму:
- Проводим определение величины, доступной для измерения на данном приборе. Если тестер имеет предел значения в 10 А, а вы проводите замер, пропуская через него 100 А – такая «работа» приведет к выходу из строя предохранителей. Значение максимума указано на шкале мультиметра и в инструкции к нему.
- Выбираем необходимый режим для замера. Для этого следует переключить прибор в необходимый сектор на шкале. Для этого устанавливаем переключатель в сектор «А», либо «АС» этот режим измерения значений переменного тока. Проводя измерение постоянного, флажок следует устанавливать напротив сектора «ДС».
Это следует выполнять обязательно. Для определения типа цепи, необходимо знать источник питания. Для замера на бытовом приборе ставим «А», а замеряя на цепи промышленного оборудования, выставляем сектор «ДС».
- Устанавливаем на тестере пределы значения силы при замере. Гарантированно невозможно повредить мультиметр, выставив максимально возможный уровень. Лучше снизить его при неправильной работе до нормального значения во время замера.
- Вставляем провода со щупами в соответствующие гнезда на корпусе прибора.
Важно. Кабели со щупами следует подключать к разъемам для замера величины силы тока и точно по цветам. Провод со щупом для подключения к фазе (красный) вставляем в нужное гнездо, черный для земли вставляем в определенное место.
Для подстраховки, если есть сомнения, лучше загляните в инструкцию и проверьте правильность подключения.
- Проводим измерение силы тока. Выполняя эту работу необходимо помнить о правилах безопасности при работе с электричеством. Поражение электричеством может произойти даже при работе с небольшими по мощности устройствами. Особенно важно это при выполнении работ в условиях с повышенной влажностью. Здесь лучше работать в резиновых перчатках и сапогах.
Для лучшего понимания выполнения замера разберем типовую операцию, проводя измерение силы тока на любом бытовом приборе. Это необходимо делать под нагрузкой.
Для этого потребуется комплект дополнительных проводов с «крокодилами». Нам необходимо разомкнуть сеть. Поэтому при замере переменного тока подключаем любой дополнительный провод от розетки на один из контактов вилки прибора.
На второй контакт розетки крепим щуп тестера. Второй щуп тестера, с помощью крокодила на дополнительном проводе крепим на второй контакт вилки прибора. У нас получается сеть с подключенным мультиметром.
При выключенном бытовом приборе, на шкале тестера будет 0. После включения, на мультиметре получаем показание интересующего нас измерения.
Практическое значение измерения тока в быту
Измеряя силу тока на микроволновой печи, мы можем определить с его помощью неисправность сразу двух узлов. При включении, значение на шкале будут небольшим, затем амперы вырастут.
Это происходит по причине того что включая печь, мы запускаем сначала вентилятор, и только затем включается магнетрон печи. При значении на шкале силы тока меньше 5. А это значит, не работает магнетрон. При включении значение измерения должно быть не менее 1,5 А., Если это не так, следует ремонтировать вентилятор устройства.
Таким же образом можно замерить эту величину на пальчиковой батарейке, для определения уровня ее зарядки. Но здесь следует беречь батарейку. На шкале выставляем измерение постоянного тока. Здесь важно использовать щупы согласно их полярности. Ставим аккумулятор на черный щуп минусом, а к плюсу касаемся на короткое время красным щупом.
При значении менее Ампера, батарейку можно сдать в утилизацию.
Почему касание щупом должно быть коротким? При измерении мы подаем нагрузку на батарейку, от долгого воздействия она разряжается и ее в таком случае можно будет выбросить сразу после замера.
Таким же способом, получив величину тока зарядного устройства телефона, мы можем выяснить исправность защиты его от короткого замыкания. Таким же образом, но с применением более мощных тестеров, проводится определение величины тока в промышленных установках и станках. Принцип действия одинаковый, не зависимо от вида оборудования.
В заключение обобщим информацию, сделав небольшую памятку для людей, берущих мультиметр в первый раз.
Перед работой следует убедиться в исправности прибора. Для этого установите флажок переключателя в сектор измерения сопротивления сети и закоротите щупы между собой. При 0 на шкале можно приступать к работе.
Выставляйте на шкале максимальное значение тока, для предотвращения сгорания предохранителя устройства. Устанавливайте переключатель в сектор измерения силы тока и устанавливайте его согласно маркировке. «А», «АС» — для измерений переменного тока. Ставим на значение «ДС» при измерении постоянного тока.
Проводить замер исправности бытовых приборов и оборудования можно только под нагрузкой. Поэтому следует помнить схему включения тестера в цепь питания и соблюдать меры безопасности выполнения работ при запитанной электрической сетью.
Работая в сыром помещении с большой влажность воздуха, используйте резиновую обувь и перчатки. Дополнительно положите на пол резиновый коврик. Эти меры спасут вашу жизнь.
После окончания работ обязательно выключайте прибор, для сохранности заряда батарейки.
Выполняя все эти несложные рекомендации, вы получаете возможность экономить средства, выполнив работу специалиста самостоятельно. Сделать это легко, но еще раз хочется напомнить, берегите свою жизнь, проводя измерение силы тока с помощью мультиметра.
Пускай в вашем доме всегда будет светло и радостно.
job.school — школа вакансий
Основная панель управления
Моя учетная запись
Уведомления
Документы
Кошелек
Настройки
Темный режим
Login Resumes
Подано
Работодатель
Опубликовать вакансию
Размещено вакансий
О вакансии.школа
Вопросы MCQ
Текущие события
Количественные способности
Логические рассуждения
Английский
История
География
Политика
Экономика
10000 Квалификация пройти выпускник PG B Pharm B Arch BA BAMS BBA BCA BCom BDS B.Ed BSC B.Tech CA DM DMLT DNB GNM LLB LLM MA MBA MBBS MS MCA Mch Mcom MDS MSC MTech O Уровень PGDM PHD TET
Вакансий по секторам
Банк Центральный правительственный суд Страхование защиты Медицинская инженерия Полиция ПГУ Железная дорога Государственное правительство ПреподаваниеРабочие места по местоположению
Вся Индия А и Н Андхра Аруначал Ассам Бихар Чандигарх Чхаттисгарх Дели Гоа Дж и К. Джаркханд Карнатака Керала Член парламента Махараштра Манипур Пхарамджалайя Мегхалайя Раджастхан Sikkim Tamil Nadu Telangana UP Uttarakahand WBКак измерить ток с помощью датчиков тока
В этой статье мы обсудим, как измеряется электрический ток применительно к приложениям сбора данных (DAQ) сегодня, с достаточной детализацией, чтобы вы:
- См. , какие датчики и преобразователи тока доступны сегодня
- Изучите основы точного измерения силы тока
- Понимать , как различные датчики применяются в приложениях для измерения тока
Готовы начать? Пошли!
Введение
Как и напряжение, ток может быть переменным (AC) или постоянным (DC).Электрический ток — это сила или скорость протекания электрического заряда. Подобно измерению напряжения, нам иногда нужно измерять очень малые токи, то есть в диапазоне микроампер, в то время как в других случаях нам может потребоваться измерить очень большие токи в тысячи ампер.
Для реализации этого широкого диапазона возможностей Dewesoft предлагает множество преобразователей тока и датчиков, которые имеют выходное напряжение или ток, совместимые с одним из преобразователей сигнала напряжения , доступных для нашего оборудования для сбора данных.
Системы сбора данных Dewesoft могут измерять электрические свойства всех основных типов, включая напряжение, ток и т. Д. Эта комбинация датчика и формирователя сигнала плавно преобразует широкий диапазон токов в выходной сигнал низкого уровня, который может быть оцифрован для отображения, хранения и анализа.
Но какой датчик выбрать? Цель этой статьи — описать различные типы доступных датчиков тока, их плюсы и минусы, а также с какими приложениями каждый тип справляется лучше всего.
Что такое электрический ток?
Как упоминалось выше, ток — это сила или скорость протекания электрического заряда. В системах постоянного тока ток течет в одном направлении, иначе говоря, «однонаправленно». Общие источники постоянного тока включают батареи и солнечные элементы.
Переменный и постоянный ток
В системах переменного тока ток меняет направление на заданную частоту. В наших офисах и дома у нас есть сеть переменного тока с частотой 50 или 60 Гц (в зависимости от вашей страны).Этот переменный ток обычно является синусоидальным (например, в форме синусоидальной волны).
Наиболее типичным источником переменного тока является местная электростанция. Ток, создаваемый фотоэлектрическими элементами, является постоянным и должен быть преобразован в переменный, чтобы обеспечить питание наших домов. То же самое и с ИБП, или с системой резервного питания от компьютерных батарей — энергия накапливается в батарее и должна быть преобразована в переменный ток, чтобы обеспечить электроэнергией дом.
Переменный ток также используется несинусоидальным образом для модуляции информации в цепи, например, в радиосигналах и передаче звука.
Типичный аудиосигнал
В Международной системе единиц (СИ) для обозначения силы тока используется термин «ампер», который обычно сокращается до слова «амперы» и обозначается символом A.
Current также часто пишется с буквой I. Это восходит к французской фразе tensité de courant («сила тока» на английском языке). И A, и I являются допустимыми сокращениями для тока.
Переменный ток и постоянный ток часто обозначают аббревиатурой AAC и ADC соответственно.
Один ампер равен одному кулону электрического заряда, проходящего мимо данного места за одну секунду (один кулон содержит примерно 6,242 × 1018 электронов).
А ток всегда создает магнитное поле. Чем сильнее ток, тем сильнее поле. Измеряя это поле с помощью различных методов: эффекта Холла, индукции или магнитного потока, мы можем измерить поток электронов (ток) в электрической цепи.
Как мы можем измерить ток?
Поскольку ток всегда создает магнитное поле, существуют датчики на эффекте Холла и другие датчики, которые позволяют нам измерять это поле и тем самым измерять ток.
Также можно подключить шунтирующий резистор внутри самой схемы и напрямую измерять ток, как в классическом амперметре и токовом шунте. Мы рассмотрим оба метода в следующих разделах.
Датчики тока с разомкнутым контуром и замкнутым контуром
Возможно, вы слышали о датчиках тока разомкнутого и замкнутого контура. Какие отличия?
Датчики тока с разомкнутым контуром дешевле, чем датчики с замкнутым контуром, такие как датчики тока с нулевым потоком.Они состоят из датчика Холла, установленного в зазоре магнитопровода. Выходной сигнал датчика Холла усиливается и измеряет поле, создаваемое током, без какого-либо контакта с ним. Это обеспечивает гальваническую развязку между цепью и датчиком.
Датчик тока без обратной связи
Некоторые датчики тока без обратной связи имеют компенсационную электронику, которая помогает компенсировать дрейф, вызванный изменениями температуры окружающей среды. По сравнению с датчиками с обратной связью, датчики с обратной связью меньше и дешевле.Они имеют низкие требования к мощности и могут использоваться для измерения как переменного, так и постоянного тока. В то же время они не так точны, как их собратья с замкнутым контуром: они подвержены насыщению и обеспечивают низкую температурную компенсацию и помехозащищенность.
Датчики тока с обратной связью используют схему управления с обратной связью для обеспечения выхода, пропорционального входу. По сравнению с датчиками без обратной связи, эта конструкция с обратной связью с обратной связью по своей сути обеспечивает повышенную точность и линейность, а также лучшую компенсацию температурного дрейфа и устойчивость к шумам.
Датчик тока с обратной связью
Для датчиков с разомкнутым контуром дрейф, вызванный температурой, или любые нелинейности в датчике вызовут ошибку. С другой стороны, датчики с обратной связью используют катушку, которая активно приводится в действие за счет создания магнитного поля, которое противодействует полю проводника тока. Это «замкнутый контур», который обеспечивает повышенную точность и характеристики насыщения.
Так что лучше? Это полностью зависит от приложения. Более низкие требования к стоимости, размеру и мощности делают датчики тока без обратной связи очень популярными.Это отчасти компенсируется тем фактом, что их чувствительность к насыщению означает, что они должны быть «завышены» в некоторых приложениях, чтобы избежать этой проблемы.
Датчики токас замкнутым контуром являются явным фаворитом в приложениях, требующих максимально возможной точности и устойчивости к насыщению, или которые используются в средах с большими экстремальными температурами или электрическими шумами.
Датчики тока без обратной связи используются в таких приложениях, как:
- Цепи с батарейным питанием (в связи с низким энергопотреблением)
- Приводные системы, в которых точность крутящего момента не обязательна
- Измерение тока вентилятора и насоса
- Сварочные аппараты
- Системы управления батареями
- Регулируемые приводы
- Применение источников бесперебойного питания
Датчики тока с обратной связью используются в таких приложениях, как:
- Приводы с регулируемой скоростью (когда точность и линейность имеют первостепенное значение)
- Сервоуправление
- Максимальная токовая защита
- Датчики замыкания на землю
- Промышленные приводы постоянного и переменного тока
- Управление роботом
- Приложения для измерения энергии
Как и в случае с любым другим датчиком, желаемый конечный результат должен быть определяющим фактором при выборе типа датчика.
Приложения для измерения тока
Как фундаментальный компонент электричества, ток и точные измерения необходимы в бесчисленных приложениях. Вы можете представить себе энергетическую компанию, не знающую, сколько ампер она вырабатывает? Или что они не будут знать, сколько энергии потребляют их клиенты?
Конечно, это было бы абсурдно. Но есть миллионы других целей и требований к текущим измерениям. Фактически, эти требования можно разделить на разомкнутого контура или замкнутого контура .
Обратите внимание, что это не следует путать с датчиками открытого или закрытого контура , как описано в предыдущем разделе. Здесь мы говорим о самом текущем измерительном приложении как о разомкнутом или замкнутом контуре.
В приложении для измерения тока с обратной связью нам нужно знать ток, потому что нам нужно контролировать его в реальном времени . Приложения включают:
- Компоненты, в которых ток должен быть ограничен до определенного уровня, e.g., импульсные источники питания и зарядные устройства, и это лишь некоторые из них.
- Функции автоматического отключения критических систем в зависимости от текущего потребления.
- Электромагнитные клапаны с регулируемым током, используемые в автомобилях, самолетах и т. Д.
- Усилитель мощности смещает регулировку тока.
- И многое другое.
В приложениях для измерения тока с разомкнутым контуром нет необходимости в управлении в реальном времени, но нам нужно знать текущее значение для различных целей, в том числе:
- Исследования и разработки электродвигателей в автомобилях, поездах, потребительских товарах и т. Д.
- Потребление энергии для получения дохода.
- Проверка работоспособности приводов, используемых в самолетах, ракетах и т. Д.
- Измерение подачи и потребления тока в электропоездах, а также в третьем рельсе и цепных сетях, питающих их.
- Приложения качества электроэнергии как для производителей, так и для потребителей энергии.
- Буквально миллионы приложений в исследованиях, производстве, автомобилестроении, аэрокосмической промышленности, военном деле, здравоохранении, образовании, промышленной автоматизации и т. Д.
Типы основных датчиков тока
Таким образом, для этих различных методов доступны различные датчики тока и преобразователи тока, каждый из которых адаптирован к среде измерения, а также к диапазону тока, который должен быть измерен. Например, требования к измерению микроампер (мкА) сильно отличаются от требований, предъявляемых к измерению тысяч ампер. Мы рассмотрим каждый тип датчика и опишем принцип его действия, а также его применение.
Шунт | Эффект Холла | CT | Роговски | Нулевой поток | |
---|---|---|---|---|---|
Тип соединения | Прямой | Косвенный | Косвенный | Косвенный | Косвенный |
Текущий | переменного и постоянного тока | переменного и постоянного тока | AC | AC | переменного и постоянного тока |
Точность | Высокая | Средний | Средний | Низкий | Высокая |
Диапазон | Низкий | Средний | Высокая | Средний | Высокая |
Выколотка | Низкий | Средний | Средний | Высокая | Низкий |
Изоляция | № 1) | Есть | Есть | Есть | Есть |
1) Шунты могут быть изолированы через внутренний или внешний формирователь сигнала, но они не изолированы по своей природе
Как упоминалось ранее, существует два основных метода измерения тока:
- При прямом контакте с током (шунт / амперметр)
- Путем измерения электромагнитного поля или потока тока
Самый распространенный способ измерения тока — это подключить последовательно к цепи амперметр (измеритель для измерения тока) или шунтирующий резистор .Амперметр или шунт амперметра на самом деле не более чем высокоточный резистор. Когда мы помещаем в цепь прецизионный резистор, на ней происходит падение напряжения. Выходной сигнал шунтирующего датчика измеряется системой сбора данных, которая применяет закон Ома для определения силы тока, протекающей по цепи.
Обратите внимание, что максимальный диапазон тока, который может измерять данный амперметр, ограничен номиналом его резистора. Поэтому обычной практикой является добавление дополнительного шунтирующего резистора параллельно для увеличения максимального диапазона измерения нашего испытательного оборудования.
Это ограничение является причиной того, что прямое соединение с электрическими проводниками цепи более широко используется в слаботочных приложениях, но редко в сильноточных приложениях, где гораздо более распространены косвенные измерительные датчики, такие как токовые клещи и гибкие катушки.
Измерение тока шунта
При подключении низкоомного резистора параллельно цепи ток протекает через шунтирующий резистор -R- и вызывает падение напряжения.
Типовое подключение для измерения шунта в простой цепи
Мы можем измерить это падение и применить закон Ома для расчета тока.
Графическое представление закона Ома
ЗаконОма описывает взаимосвязь между напряжением (В), током (I) и сопротивлением (R). Если мы знаем два из трех из них, мы можем легко вычислить третье с помощью простой арифметики. На приведенной выше диаграмме показаны три способа выражения закона Ома:
I = V / R OR V = IR OR R = V / R
Итак, если мы знаем напряжение (падение) и сопротивление, мы можем рассчитать ток, используя I = V / R.
Шунтирующий резистор следует выбирать для соответствующего диапазона напряжения и тока, потому что слишком высокое сопротивление повлияет на измерение, а также приведет к потере энергии и искажению измерения по мере нагрева резистора. Эта потеря энергии равна:
I2 * R
Кроме того, важным фактором является точность резистора, так как это напрямую влияет на точность самого измерения.
Dewesoft DSIi-10A Токовый шунт
Dewesoft предлагает несколько токовых шунтов компактного размера, каждый из которых имеет внутри свой собственный резистор и предназначен для измерения различных диапазонов тока.Эти шунты были спроектированы таким образом, чтобы оказывать наименьшее влияние на саму цепь.
АдаптерыDSI можно подключить практически ко всем устройствам сбора данных Dewesoft. Изолированные аналоговые входы усилителей Dewesoft являются важным фактором в обеспечении точных измерений, поскольку шунт подключается непосредственно к измеряемой цепи, а изоляция между цепью и измерительной системой всегда важна. Изолированные входы означают, что вы можете разместить свой шунт на стороне низкого или высокого уровня цепи и не беспокоиться о контуре заземления или об ошибках измерения синфазного сигнала .
Снова принимая во внимание закон Ома и взаимосвязанный характер напряжения, тока и сопротивления, становится абсолютно ясно, что система сбора данных должна иметь возможность выполнять очень точное измерение напряжения и сопротивления, чтобы производить точное измерение тока.
IOLITE STG со встроенным токовым шунтом
Некоторые формирователи сигналов Dewesoft имеют встроенный шунт для измерения малых токов . Возьмем, к примеру, формирователь сигналов STG серии IOLITE и IOLITEd для сбора данных.Этот модуль является универсальным, что означает, что он может работать с широким спектром датчиков и типов входов.
Например, он может работать с тензодатчиками в конфигурациях полного моста, полумоста и четверти моста, напряжения до 50 В, потенциометрических датчиков и токов до 20 мА . Кроме того, адаптеры серии DSI могут использоваться для работы с термопарами, датчиками RTD, датчиками положения LVDT, напряжениями до 200 В, токами до 5 А, акселерометрами IEPE и т. Д.
Система сбора данных IOLITE с различными модулями
(6xSTG с 6 универсальными аналоговыми входами в первых двух слотах)
IOLITE 6xSTG имеет шесть дифференциальных входов с защитой от перенапряжения и питанием датчика от каждого из его универсальных входов и частотой дискретизации до 20 kS / s / ch.
Для измерения тока он имеет встроенный шунтирующий резистор 50 Ом , который можно применять в программном обеспечении, что позволяет инженерам измерять ток до 2 мА или 20 мА по выбору пользователя.
ШассиIOLITE доступны в настольной модели «IOLITEs», которая поддерживает до 8 многоканальных модулей (показано на рисунке выше). Для стационарной установки существует модель «ИОЛИТЕР», предназначенная для стандартной установки в 19-дюймовую стойку. В данной модели 12 слотов для модулей:
ИОЛИТЕР для монтажа в стойку, модель
Обе модели IOLITE оснащены блоками питания с двойным резервированием для надежной работы в критически важных приложениях.У них также есть две параллельные шины EtherCAT. Первичная шина используется для получения буферизованных данных на полной скорости на жесткий диск ПК с программным обеспечением DEWESoft X. Вторичная шина в основном используется для передачи данных с малой задержкой в реальном времени в любую стороннюю систему управления на основе EtherCAT.
IOLITE — это уникальная система сбора данных, которая объединяет миры управления в реальном времени и высокоскоростного сбора данных, объединяя их в одном надежном приборе.
Измерение электромагнитного поля или потока тока
Поскольку ток всегда создает магнитное поле, пропорциональное величине тока, мы можем измерить это поле с помощью различных датчиков и, таким образом, измерить ток.
Теперь давайте рассмотрим некоторые из наиболее распространенных датчиков и преобразователей тока, их основные принципы работы и способы их наилучшего использования.
Измерение датчика эффекта Холла
Принцип действия датчиковна эффекте Холла основан на измерении магнитных полей. В 1879 году, за двадцать лет до открытия электрона, американский физик Эдвин Холл заметил, что когда ток течет по проводнику, электроны движутся по прямой линии. Однако, когда этот проводник подвергается воздействию магнитного поля, на него действует сила Лоренца, и путь электронов искривляется.
Кроме того, когда электроны выталкиваются больше к одной стороне проводника, чем к другой, создается разность потенциалов между двумя сторонами проводника. Холл заметил, что эта разность потенциалов прямо и линейно пропорциональна силе магнитного поля.
Эта разность потенциалов, измеренная между сторонами (или «плоскостями») проводника, называется напряжением Холла .
Эффект Холла был принят для тысяч приложений, включая бесконтактные переключатели, схемы управления скоростью двигателя, тахометры, датчики LVDT и даже в качестве датчика уровня топлива в автомобилях.Но мы остановимся на его применении именно с датчиками тока.
Типовой датчик тока на эффекте Холла
Токовые клещина эффекте Холла работают, пропуская провод через открытый сердечник. Таким образом, они обеспечивают бесконтактный метод измерения постоянного и переменного тока. Им требуется очень мало энергии, поэтому они могут питаться напрямую от предусилителя SIRIUS с разъемом DSUB9. Никакого дополнительного источника питания не требуется.
Они не так точны, как токовые клещи с магнитным затвором или преобразователи с нулевым магнитным потоком, но они предлагают гораздо более широкий диапазон измерения.
Датчики на эффекте Холладоступны в вариантах с разомкнутым и замкнутым контуром. Датчики с замкнутым контуром добавляют компенсационную обмотку и улучшают бортовую обработку сигнала, что делает их более точными, чем их аналоги с разомкнутым контуром.
DS-ЗАЖИМ-150DC | DS-ЗАЖИМ-150DCS | DS-ЗАЖИМ-1800DC | |
---|---|---|---|
Тип | Датчик Холла | Датчик Холла | Датчик Холла |
Диапазон | 200 А постоянного тока или 150 А переменного тока, среднеквадратичное значение | 290 А постоянного тока или 150 А переменного тока, среднеквадратичное значение | 1800 А постоянного или переменного тока, среднеквадратичное значение |
Ширина бренда | от 0 до 100 кГц | от 0 до 100 кГц | от 0 до 20 кГц |
Точность | 1% + 2 мА | 1% + 2 мА | 0 — 1000 А: ± 2.5% от показаний ± 0,5 A 1000-1500 A: ± 3,5% от показаний 1500-1800 A: ± 5% от показаний |
Чувствительность | 20 мВ / А | 20 мВ / А | 1 мВ / А |
Разрешение | ± 1 мА | ± 1 мА | ± 1 мА |
Перегрузочная способность | 500 А постоянного тока (1 мин) | 500 А постоянного тока (1 мин) | 2000 А постоянного тока (1 мин) |
TEDS | Полностью поддерживается | Полностью поддерживается | Полностью поддерживается |
Размеры | 205 мм x 60 мм x 15 мм (отверстие под зажим d = 32 мм) | 106 мм x 100 мм x 25 мм (отверстие под зажим d = 25 мм) | 205 мм x 60 мм x 15 мм (отверстие под зажим d = 32 мм) |
Датчики тока на эффекте Холла марки Dewesoft
DS-CLAMP 150DC и 150DCS могут быть подключены напрямую к усилителю Sirius® LV или Sirius® HS-LV с помощью разъема DSUB9.DS-CLAMP-1800DC можно подключать напрямую ко всем усилителям DEWESoft® с разъемом DSUB9 (например, Sirius® LV-DB9).
Типичный датчик эффекта Холла от Dewesoft
Подробные характеристики датчиков тока Dewesoft.
Измерение трансформатора тока (CT)
Трансформаторы тока (CT) используются для измерения переменного тока (AC). Это индуктивные датчики, состоящие из первичной обмотки, магнитопровода и вторичной обмотки.
По сути, высокий ток преобразуется в более низкий с помощью магнитного носителя, поэтому очень высокие токи можно измерять безопасно и эффективно. В большинстве трансформаторов тока первичная обмотка имеет очень мало витков, в то время как вторичная обмотка имеет намного больше витков. Это соотношение витков первичной и вторичной обмоток определяет, насколько снижается величина токовой нагрузки.
Типовой трансформатор тока
Переменный ток, обнаруживаемый первичной обмоткой, создает магнитное поле в сердечнике, которое индуцирует ток во вторичной обмотке.Этот ток преобразуется в выходной сигнал датчика.
Они доступны в конфигурации с разделенным сердечником от Dewesoft, что обеспечивает удобные возможности подключения, так как не нужно каким-либо образом изменять схему. Вы можете просто открыть зажимы и освободить их вокруг провода, что делает эти токовые клещи для переменного тока особенно удобными в использовании.
Трансформаторы тока CT марки Dewesoft
DS-ЗАЖИМ-5AC | DS-ЗАЖИМ-15AC | DS-ЗАЖИМ-200AC | DS-ЗАЖИМ-1000AC | |
---|---|---|---|---|
Тип | Железный сердечник | Железный сердечник | Железный сердечник | Железный сердечник |
Диапазон | 5 А | 15 А | 200 А | 1000 А |
Полоса пропускания | 5 кГц | 10 кГц | 10 кГц | 10 кГц |
Точность | 0.5% для 12A 0,5% для 5A 1% для 500 мА 2% для 5 мА | 1% для токов 1-15 А 2,5% для токов <1 А | 1% для токов 100-240 А 2,5% для токов 10-100 А 3,5% для токов 0,5 — 10 А | 0,3% для токов от 100 А до 1200 А 0,5% для токов от 10 до 100 А 2% для токов <1 А |
Фаза | ≤ 2,5 ° | ≤3 ° для токов 1-15A ≤5 ° для токов <1A | ≤2.5 ° для токов 100-240 А ≤ 5 ° для токов 10-100 А Не указано для токов 0,5 — 10 А | 0,7 ° для токов 100A — 1200 A 1 ° для токов 10A — 100 A Не указано для токов <1A |
TEDS | Полностью поддерживается | Полностью поддерживается | Полностью поддерживается | Полностью поддерживается |
Чувствительность | 60 мВ / А | 100 мВ / А | 10 мВ / А | 1 мВ / А |
Разрешение | 0.01 A | 0,01 А | 0,5 А | 0,001 А |
Перегрузочная способность | Крест-фактор 3 | Крест-фактор 3 | Крест-фактор 3 | 1200 А в течение 40 минут |
Размеры | 102 мм x 34 мм x 24 мм (отверстие зажима d = 15 мм) | 135 мм x 51 мм x 30 мм (отверстие зажима d = 20 мм) | 135 мм x 51 мм x 30 мм (отверстие зажима d = 20 мм) | 216 мм x 111 мм x 45 мм (отверстие зажима d = 52 мм) |
Трансформатор тока CT с железным сердечником Dewesoft
Датчики переменного тока с железным сердечником предлагают удобство использования очень небольшого количества энергии, поэтому они могут питаться напрямую от предусилителя SIRIUS с разъемом DSUB9.Никакого дополнительного источника питания не требуется. Они имеют полосу пропускания от 2 Гц до 10 кГц (от 2 Гц до 5 кГц для DS-CLAMP-5AC) и до 10 кГц для других моделей этой серии). Эти зажимы можно подключать напрямую ко всем усилителям Dewesoft с разъемами DSUB9 (например, Sirius-LV).
Подробные характеристики датчиков тока Dewesoft.
Измерение датчика тока Роговского
ДатчикиРоговского обладают тем преимуществом, что обходят большие кабельные пучки, шины и проводники неправильной формы, чего не могут обычные зажимы.
Они созданы для измерения переменного тока, а их низкая индуктивность означает, что они могут реагировать на быстро меняющиеся токи. А отсутствие железного сердечника делает их очень линейными, даже когда они подвергаются очень большим токам. Они обеспечивают отличные характеристики при измерении содержания гармоник. Необходим небольшой интегратор и силовая цепь, которые встроены в каждый датчик DS-FLEX.
Типовая схема катушки Роговского
Число в названии модели, например 300, 3000 или 30 000, означает максимальную силу тока, которую они могут прочитать.Последнее число относится к длине «веревки» в см. Так, например, DS-FLEX-3000-80 может считывать до 3000 AAC и имеет длину «веревки» 80 см (то есть 800 мм или 31 дюйм).
Датчики тока Dewesoft Rogowski Coil «FLEX»
DS-FLEX-3000-17 | DS-FLEX-3000-35 | DS-FLEX-3000-35HS | DS-FLEX-3000-80 | DS-FLEX-30000-120 | |
---|---|---|---|---|---|
Тип | Катушка Роговского | Катушка Роговского | Катушка Роговского | Катушка Роговского | Катушка Роговского |
Диапазон | 3, 30, 300, 3000 A ACrms | 3, 30, 300, 3000 A ACrms | 3000 А ACrms | 3, 30, 300, 3000 A ACrms | 30, 300, 3000, 30000 А ACrms |
Полоса пропускания | 3A: от 10 Гц до 10 кГц Другое: от 10 Гц до 20 кГц | 3A: от 10 Гц до 10 кГц Другое: от 10 Гц до 20 кГц | 5 Гц — 1 МГц | 3A: от 10 Гц до 10 кГц Другое: от 10 Гц до 20 кГц | 3A: от 10 Гц до 5 кГц Другое: от 10 Гц до 20 кГц |
Точность | <1.5% | <1,5% | <1,5% | <1,5% | <1,5% |
Длина рулона | 170 мм (Ø 45 мм) | 350 мм (Ø 100 мм) | 350 мм (Ø 100 мм) | 800 мм (Ø 250 мм) | 1200 мм (Ø 380 мм) |
TEDS | Не поддерживается | Не поддерживается | Полностью поддерживается | Не поддерживается | Не поддерживается |
Dewesoft DS-FLEX-3000 Датчик тока с поясом Роговского
Эти зажимы можно подключать напрямую ко всем усилителям DEWESoft® с помощью разъемов DSUB9 (например,грамм. СИРИУСи Л.В.).
Обратите внимание, что переменный ток обычно выводится как истинное среднеквадратичное значение, а постоянный ток выводится как дискретное значение.
Подробные характеристики датчиков тока Dewesoft.
Измерение датчиков нулевого потока
Датчик тока с нулевым потоком или «FluxGate» похож на датчик тока на эффекте Холла, за исключением того, что он использует магнитную катушку вместо системы на эффекте Холла. Более высокая точность результатов делает эти датчики идеально подходящими для промышленных, аэрокосмических и других приложений, требующих высокоточных измерений.Преобразователи тока с нулевым потоком измеряют ток с гальванической развязкой. Они снижают токи высокого напряжения до гораздо более низкого уровня, который может легко считываться любой измерительной системой.
Типичный датчик нулевого потока / FluxGate
Они имеют две обмотки, которые работают в режиме насыщения для измерения постоянного тока, одну обмотку для переменного тока и дополнительную обмотку для компенсации. Этот вид измерения тока очень точен благодаря компенсации нулевого потока.Почему? Обычно магнитопровод сохраняет остаточный магнитный поток, что снижает точность измерения. Однако в преобразователях с нулевым потоком этот паразитный поток компенсируется.
Преобразователи нулевого потока идеальны при высокой точности переменного / постоянного тока и / или большой полосе пропускания (до 1 МГц). Они очень линейны и имеют низкую ошибку фазы и смещения. Но они не очень удобны для выполнения более простых измерений, не требующих такой точности или полосы пропускания. Для этих приложений рекомендуются датчики тока, указанные в предыдущих разделах.
ТехнологияFlux расширяет этот принцип за счет использования магнитной катушки в качестве элемента обнаружения вместо элемента Холла. Кроме того, это датчик с обратной связью, что означает, что вторичная обмотка используется для устранения смещений, которые могут привести к неточности измерения. Датчики потока могут обрабатывать даже очень сложные формы сигналов переменного и постоянного тока и, как правило, считаются обеспечивающими превосходную точность, линейность и полосу пропускания и являются неотъемлемой частью любого анализатора качества электроэнергии или анализатора мощности.
Токоизмерительные клещи Dewesoft FluxGate
Dewesoft предлагает несколько токовых клещей FluxGate, которые были соединены с нашими системами SIRIUS, включая соединительные и силовые кабели.Эти зажимы FluxGate должны получать питание от блока питания SIRIUSi-PWR-MCTS2.
DS-ЗАЖИМ-200DC | DS-ЗАЖИМ-500DC | DS-ЗАЖИМ-500DCS | DS-ЗАЖИМ-1000DS | |
---|---|---|---|---|
Тип | Датчик магнитного клапана | Датчик магнитного клапана | Датчик магнитного клапана | Датчик магнитного клапана |
Диапазон | 200 А постоянного или переменного тока, среднеквадратичное значение | 500 А постоянного или переменного тока, среднеквадратичное значение | 500 А постоянного или переменного тока, среднеквадратичное значение | 1000 А постоянного или переменного тока, среднеквадратичное значение |
Ширина бренда | от 0 до 500 кГц | от 0 до 100 кГц | от 0 до 200 кГц | от 0 до 20 кГц |
Точность | ± 0.3% от показаний ± 40 мА | ± 0,3% от показания ± 100 мА | ± 0,3% от показания ± 100 мА | ± 0,3% от показания ± 200 мА |
Чувствительность | ± 10 мВ / А | ± 4 мВ / А | ± 4 мВ / А | ± 2 мВ / А |
Разрешение | ± 1 мА | ± 1 мА | ± 1 мА | ± 1 мА |
Перегрузочная способность | 500 А (1 мин) | 1000 А постоянный ток | 720 А постоянный ток | 1700 А постоянный ток |
TEDS | Полностью поддерживается | Полностью поддерживается | Полностью поддерживается | Полностью поддерживается |
Размеры | 153 мм x 67 мм x 25 мм (отверстие зажима d = 20 мм) | 116 мм x 38 мм x 36 мм (отверстие под зажим d = 50 мм) | 153 мм x 67 мм x 25 мм (отверстие зажима d = 20 мм) | 238 мм x 114 мм x 35 мм (отверстие зажима d = 50 мм) |
Подробные характеристики датчиков тока Dewesoft.
Трансформаторы тока с нулевым потоком Dewesoft
Dewesoft предлагает несколько трансформаторов тока с нулевым потоком, которые были соединены с нашими системами SIRIUS DAQ, включая соединительные и силовые кабели. Эти датчики должны работать с блоками питания SIRIUSi-PWR-MCTS2 или SIRIUSir-PWR-MCTS2.
ИТ-60-С | Т-200-С | ИТ-400-С | ИТ-700-С | ИТ-1000-С | ИН-1000-С | ИН-2000-С | |
---|---|---|---|---|---|---|---|
Диапазон первичного тока DC RMS Синус | 60 А | 200 А | 400 А | 700 А | 1000 А | 1000 А | 2000 А |
Кратковременная перегрузочная способность (100 мс) | 300 Apk | 1000 Apk | 2000 Apk | 3500 Apk | 4000 Apk | 5000 Apk | 10000 Apk |
Макс.нагрузочный резистор (100% Ip) | 10 Ом | 10 Ом | 2,5 Ом | 2,5 Ом | 2,5 Ом | 4 Ом | 3,5 Ом |
di / dt (точное следование) | 25 А / мкс | 100 А / мкс | 100 А / мкс | 100 А / мкс | 100 А / мкс | 100 А / мкс | 100 А / мкс |
Влияние температуры | <2.5 частей на миллион / K | <2 частей на миллион / K | <1 частей на миллион / K | <1 частей на миллион / K | <1 частей на миллион / K | <0,3 частей на миллион / K | <0,1 частей на миллион / к |
Коэффициент выхода | 100 мА при 60 А | 200 мА в 200 А | 200 мА в 400 А | 400 мА в 200 А | 1 А при 1000 А | 666 мА при 1000 А | 1A при 2000 A |
Пропускная способность (0,5% от IP) | DC… 800 кГц | DC … 500 кГц | DC … 500 кГц | DC … 250 кГц | DC … 500 кГц | DC … 440 кГц | DC … 140 кГц |
Линейность | <0,002% | <0,001% | <0,001% | <0,001% | <0,001% | <0,003% | <0,003% |
Смещение | <0,025% | 0.008% | <0,004% | <0,005% | <0,005% | <0,0012% | <0,0012% |
Влияние частоты | 0,04% / кГц | 0,06% / кГц | 0,06% / кГц | 0,12% / кГц | 0,06% / кГц | 0,1% / кГц | 0,1% / кГц |
Угловая точность | <0,025 ° + 0,06 ° / кГц | <0,025 ° + 0.05 ° / кГц | <0,025 ° + 0,09 ° / кГц | <0,025 ° + 0,18 ° / кГц | <0,025 ° + 0,09 ° / кГц | <0,01 ° + 0,05 ° / кГц | <0,01 ° + 0,075 ° / кГц |
Номинальное среднеквадратичное напряжение изоляции, одинарная изоляция | 2000 В 1000 В | 2000 В 1000 В | 2000 В 1000 В | 1600 В 1000 В | 300 В 300 В | Х | Х |
Испытательное напряжение 50/60 Гц, 1 мин | 5.4 кВ | 5,4 кВ | 5,4 кВ | 4,6 кВ | 3,1 кВ | 4,2 кВ | 6 кВ |
Внутренний диаметр | 26 мм | 26 мм | 26 мм | 30 мм | 30 мм | 38 мм | 70 мм |
Шунт DEWESoft® | 5 Ом | 5 Ом | 2 Ом | 2 Ом | 1 Ом | 1 Ом | 1 Ом |
Подробные характеристики датчиков тока Dewesoft.
Изоляция и фильтрация
Изоляция и фильтрация — важные аспекты любого прибора для сбора данных или испытательной системы.
Изоляция
Изоляция особенно важна при прямых измерениях цепи, т. Е. При использовании шунтирующего метода. Изоляция, встроенная практически во все формирователи сигналов и предусилители Dewesoft, достаточно высока и достаточна для должной изоляции измерительной системы от тестируемого объекта.
Это обеспечивает целостность ваших измерений и защищает от коротких замыканий.Кроме того, он позволяет размещать шунт на стороне низкого или высокого уровня цепи большую часть времени, обеспечивая дополнительную гибкость. Измерения шунта на стороне низкого напряжения обычно предпочтительны, потому что относительно небольшое падение тока на шунте означает, что на формирователь сигнала подается выход с высоким импедансом. Но у измерения нижней стороны есть два недостатка:
.- Шунт не обнаружит неисправность, если резистор замкнут на массу
- Шунты на стороне низкого давления не подходят для измерения нескольких нагрузок или тех, которые выключаются и включаются независимо.
Следовательно, иногда требуется измерение шунтирующего тока на стороне высокого напряжения с использованием дифференциальных и изолированных предварительных усилителей Dewesoft.
Фильтрация
Фильтрация — еще одна важная функция любой высокопроизводительной системы сбора данных. Электрические шумы и помехи — повседневная проблема для инженеров-испытателей. Это может быть вызвано люминесцентными лампами, другим электрическим оборудованием и бесчисленным множеством других источников.
Формирователи сигналов Dewesoft обеспечивают мощную аппаратную фильтрацию нижних частот, которая позволяет инженерам подавлять частоты выше определенного уровня.А в программном обеспечении DEWESoft доступна широкая палитра низкочастотной, высокочастотной, полосовой и полосовой фильтрации — и их можно применять в реальном времени или после того, как измерение будет выполнено.
Что такое DMM — Цифровой мультиметр »Примечания по электронике
Цифровой мультиметр DMM — это испытательный прибор, используемый для измерения электрических величин, включая напряжение, ток и сопротивление, хотя современные цифровые мультиметры часто выполняют гораздо больше измерений.
Учебное пособие по мультиметру Включает:
Основные сведения о тестере
Аналоговый мультиметр
Как работает аналоговый мультиметр
Цифровой мультиметр DMM
Как работает цифровой мультиметр
Точность и разрешение цифрового мультиметра
Как купить лучший цифровой мультиметр
Как пользоваться мультиметром
Измерение напряжения
Текущие измерения
Измерения сопротивления
Тест диодов и транзисторов
Диагностика транзисторных цепей
Цифровой мультиметр или цифровой мультиметр сегодня является одним из наиболее широко используемых видов испытательного оборудования — они практически бесценны в любой лаборатории электроники, для дома, любителя и профессионального инженера-электронщика.
Стоимость цифровых мультиметров значительно варьируется. Некоторые из этих измерительных приборов можно купить очень дешево, они обеспечивают очень хорошее обслуживание, и они удивительно точны — гораздо точнее, чем требуется для большинства измерений, но также доступны мультиметры верхнего диапазона с очень высокими характеристиками для использования в самых требовательных приложениях.
Изначально использовались аналоговые мультиметры, но в наши дни они используются редко, поскольку цифровые технологии сделали цифровые мультиметры более дешевыми, гораздо более точными и способными предоставить гораздо больше возможностей, помимо измерения тока, напряжения и сопротивления.
… помимо ампер, вольт и ом, многие цифровые мультиметры могут измерять параметры, включая частоту, емкость, целостность цепи и температуру …. Цифровые мультиметрыили цифровые мультиметры могут измерять множество различных параметров в электрической цепи. Базовые цифровые мультиметры могут измерять амперы, вольты и омы, как это делали старые аналоговые измерители, но с легкостью включения дополнительных функций в интегральную схему многие цифровые мультиметры могут также выполнять ряд других измерений.
Многие из них включают в себя функции, позволяющие измерять емкость, частоту, целостность цепи (с зуммером для облегчения измерений при взгляде на печатную плату), температуру, функциональность транзистора и часто также ряд других измерений.
Что такое цифровой мультиметр?
В течение многих лет использовались аналоговые мультиметры. Поскольку современные интегральные схемы не были доступны, эти испытательные инструменты проложили путь для более поздних цифровых версий.
Типичный недорогой цифровой мультиметрАналоговые мультиметры могут измерять только амперы, вольт и ом. Однако внедрение технологии интегральных схем и других технологий позволило производить аналого-цифровые преобразователи наряду с развертываниями, такими как жидкокристаллические дисплеи. Это позволило создать контрольно-измерительные приборы, которые могли бы измерять основные измерения ампер вольт и ом в цифровом виде.
В дополнение к этому было возможно добавить дополнительные измерения при очень небольших затратах, что сделало эти испытательные приборы гораздо более универсальными, чем старые аналоговые аналоги.
Базовая блок-схема типичного цифрового мультиметра приведена на схеме ниже. Хотя разные цифровые мультиметры будут использовать разные схемы, одни и те же базовые методы, как правило, используются от одного измерительного прибора к другому.
Блок-схема цифрового мультиметра, использующего регистр последовательного приближения ADC
Концепция, используемая в аналого-цифровом преобразовании, называется регистром последовательного приближения. Как следует из названия, регистр последовательного приближения АЦП работает путем последовательного поиска значения входящего напряжения.
Типовые элементы управления и подключения цифрового мультиметра
Интерфейсы на передней панели цифрового мультиметра обычно очень просты. Базовый цифровой мультиметр обычно имеет переключатель, дисплей и разъемы для измерительных щупов.
Основное соединение типичного цифрового мультиметра показано на изображении и в описании ниже, но, очевидно, точная схема и возможности будут зависеть от конкретного используемого измерительного прибора.
Цифровой мультиметр с элементами управления и подключениями- Дисплей Дисплей цифрового мультиметра обычно легко увидеть и прочитать. Большинство из них имеют четыре цифры, первая из которых часто может быть либо 0, либо 1, и обычно также будет индикация + / -. В зависимости от модели цифрового мультиметра могут быть также несколько других меньших индикаторов, таких как переменный / постоянный ток и т. Д.
- Основные соединения Датчики будут подключены к некоторым основным соединениям.Хотя одновременно нужны только двое, их может быть три или четыре. Обычно это могут быть:
- Обычный — для использования со всеми измерениями, и для этого потребуется отрицательный или черный провод и зонд .
- Вольт, Ом, частота — это соединение используется для большинства измерений и включает положительный или красный провод и щуп.
- Ампер и миллиампер — это соединение используется для измерения тока и снова будет подключаться к красному проводу и щупу.
- Сильный ток — часто бывает отдельное соединение для сильноточных измерений.Следует проявлять осторожность, чтобы использовать это соединение, а не соединение с низким током, если ожидается высокий уровень тока
- Главный выключатель Обычно используется один главный поворотный переключатель для выбора типа измерения и необходимого диапазона.
- Дополнительные соединения Могут быть дополнительные соединения для других измерений, таких как температура, когда термопаре потребуются собственные соединения.Некоторые измерители также могут измерять усиление транзисторов, и для этого потребуются отдельные соединения на измерителе.
- Дополнительные кнопки и переключатели Будет несколько дополнительных кнопок и переключателей. Основной, очевидно, будет кнопка включения / выключения. Также могут быть доступны другие функции, в том числе такие, как удержание пикового значения.
Переключатели и органы управления обычно устанавливаются с главным переключателем диапазонов, занимающим центральное положение на панели мультиметра.Дисплей обычно занимает место в верхней части прибора, чтобы его было легко увидеть, он не был закрыт проводами, а также его все еще можно было увидеть, если переключатель задействован.
Любые дополнительные переключатели обычно располагаются вокруг главного переключателя, где к ним очень легко добраться.
Соединения для измерительных проводов обычно расположены в нижней части передней панели измерителя. Таким образом, до него легко добраться, но провода не мешают работе и обзору переключателей и дисплея.
Как пользоваться цифровым мультиметром
Работа самого цифрового мультиметра обычно очень проста. Зная, как проводить измерения напряжения, тока и сопротивления, нужно использовать мультиметр.
Если счетчик новый, то для его питания, очевидно, потребуется установить батарею. Обычно это просто и понятно, подробности можно найти в инструкции по эксплуатации цифрового мультиметра.
При использовании счетчика можно выполнить несколько простых шагов:
- Включите счетчик
- Вставьте датчики в правильные соединения — это необходимо, потому что может быть несколько различных соединений, которые можно использовать.
- Установите переключатель на правильный тип измерения и диапазон, в котором будет проводиться измерение. При выборе диапазона убедитесь, что максимальный диапазон превышает ожидаемый. При необходимости диапазон цифрового мультиметра может быть уменьшен. Однако выбор слишком большого диапазона предотвращает перегрузку счетчика.
- Оптимизируйте диапазон для лучшего чтения. Если возможно, разрешите всем начальным цифрам не считывать ноль, и таким образом можно будет прочитать наибольшее количество значащих цифр.
- После завершения считывания рекомендуется поместить щупы в гнезда для измерения напряжения и установить диапазон на максимальное напряжение. Таким образом, если счетчик случайно подключен без учета используемого диапазона, вероятность повреждения счетчика мала. Это может быть неверно, если он оставлен на текущее показание, и счетчик случайно подключен к точке высокого напряжения!
При проведении каких-либо измерений необходимо соблюдать осторожность, чтобы не допустить проскальзывания измерительных щупов, так как это может привести к короткому замыканию в цепи при тестировании.В крайних случаях это может вызвать короткое замыкание питания или повредить плату.
Обычно при проверке платы соединения расположены достаточно далеко друг от друга, чтобы это не было проблемой, но следует проявлять осторожность, особенно при работе с цепями высокого напряжения и тока.
Общая точность цифрового мультиметра
Есть ряд элементов, которые способствуют тому, что можно условно назвать точностью. Двумя основными составляющими являются разрешение и фактическая точность измерительной системы
.- Разрешение Разрешение цифрового мультиметра часто указывается в количестве цифр.Цифровые мультиметры будут указаны в количестве цифр на дисплее. Обычно это будет число, состоящее из целого и половины, например 3 1/2 цифры. По соглашению половинная цифра может отображать либо ноль, либо 1. Счетчик из трех с половиной цифр может отображать до 1999 года. Иногда можно использовать трехчетвертную цифру. Это может отображать число больше единицы, но меньше девяти.
- Точность Точность измерителя отличается от разрешения дисплея.Это представляет собой неточность показаний из-за неточностей цифрового мультиметра.
Хотя точность цифрового мультиметра будет намного выше, чем у аналогового мультиметра, он помогает понять разницу между точностью и разрешением.
Также необходимо понимать разницу между ними, чтобы понимать общую точность любых производимых измерений.
Цифровые мультиметры— очень универсальные измерительные приборы.С развитием цифровых технологий многие из этих измерительных приборов могут обеспечивать дополнительные измерения помимо измерений основного напряжения, тока и сопротивления. При покупке цифрового мультиметра стоит выбрать тот, который может измерять параметры, которые могут потребоваться.
Цифровые мультиметрымогут выполнять очень точные измерения и отображать их так, чтобы их можно было легко прочитать.
Другие темы тестирования:
Анализатор сети передачи данных
Цифровой мультиметр
Частотомер
Осциллограф
Генераторы сигналов
Анализатор спектра
Измеритель LCR
Дип-метр, ГДО
Логический анализатор
Измеритель мощности RF
Генератор радиочастотных сигналов
Логический зонд
Тестирование и тестеры PAT
Рефлектометр во временной области
Векторный анализатор цепей
PXI
GPIB
Граничное сканирование / JTAG
Вернуться в меню тестирования.. .
, принципиальная схема, типы и применение
Мы знаем, что счетчик — это электронное устройство, используемое для измерения определенной величины, и оно связано с системой измерения. Точно так же амперметр — это не что иное, как амперметр, используемый для измерения силы тока. Здесь ампер — это единица измерения силы тока, а амперметр используется для измерения силы тока. Существует два вида электрического тока: переменный и постоянный. Переменный ток изменяет направление тока через равные промежутки времени, тогда как постоянный ток подает ток в одном направлении.В этой статье обсуждается обзор амперметра, схемы, типов и приложений.
Что такое амперметр?
Определение: Устройство или инструмент, который используется для измерения силы тока, называется амперметром. Единица измерения тока — ампер. Таким образом, это устройство измеряет ток в амперах и называется амперметром или амперметром. Однако на практике внутреннее сопротивление этого устройства равно «0»; у него есть некоторое внутреннее сопротивление. Диапазон измерения этого устройства в основном зависит от величины сопротивления.Схема амперметра показана ниже.
амперметрПринцип работы амперметра в основном зависит от сопротивления, а также индуктивного реактивного сопротивления. Это устройство имеет чрезвычайно низкий импеданс, потому что на нем должно быть меньше падения напряжения. Он включен последовательно, потому что ток в последовательной цепи одинаков.
Основная функция этого прибора — измерение силы тока с помощью набора катушек. Эти катушки имеют очень низкое сопротивление и индуктивное сопротивление.Символическое изображение амперметра показано ниже.
Принципиальная схема амперметра
Конструкция амперметра может быть выполнена двумя способами: последовательным и шунтирующим. Следующая схема представляет собой основную принципиальную схему, а соединение цепи амперметра последовательно и параллельно показано ниже.
последовательная цепьПосле того, как это устройство будет последовательно подключено к цепи, через счетчик будет протекать общий ток измеряемой величины.Таким образом, потеря мощности происходит внутри амперметра из-за их внутреннего сопротивления и измеряемого тока. Эта схема имеет меньшее сопротивление, поэтому в ней будет меньше падения напряжения.
Здесь сопротивление этого устройства остается небольшим по таким причинам, как общий ток измеряемой величины, протекающий через амперметр, и меньшее падение напряжения на устройстве.
параллельная цепьКогда через это устройство протекает большой ток, внутренняя цепь устройства будет повреждена.Чтобы решить эту проблему в цепи, сопротивление шунта можно подключить параллельно амперметру. Если по всей цепи подается большой ток измеряемой величины, основной ток будет проходить через сопротивление шунта. Это сопротивление не повлияет на работу устройства.
Классификация / типы амперметров
Они подразделяются на различные типы в зависимости от их применения, в том числе следующие.
- Подвижная катушка
- Электродинамический
- Подвижный утюг
- Hotwire
- Цифровой
- Интегрирующий
Подвижная катушка
Этот тип амперметра используется для измерения переменного и постоянного тока.В этом устройстве используется магнитное отклонение, при котором ток через катушку заставляет двигаться в магнитном поле. Катушка в этом устройстве свободно перемещается между полюсами постоянного магнита.
Электродинамический
Этот тип амперметра включает подвижную катушку, которая вращается в генерируемом поле через неподвижную катушку. Основная функция этого устройства — измерение переменного и постоянного тока с точностью от 0,1 до 0,25%. Точность этого устройства высока по сравнению с подвижной катушкой и подвижной катушкой с постоянным магнитом.Калибровка устройства одинакова для переменного и постоянного тока.
Подвижный утюг
Этот тип амперметра используется для расчета переменных токов и напряжений. В этом устройстве подвижная система включает в себя специально созданные куски мягкого железа, которые перемещаются под действием электромагнитной силы неподвижной катушки с проволокой. Эти типы устройств подразделяются на два типа: отталкивание и притяжение. Это устройство включает в себя различные компоненты, такие как подвижный элемент, катушку, управление, демпфирование и отражающий момент.
Горячий провод
Он используется для измерения переменного или постоянного тока путем передачи его через провод, чтобы он нагрелся и расширился. Это называется горячей проволокой. Принцип работы этого устройства заключается в увеличении провода за счет теплового эффекта от проходящего через него тока. Это используется как для переменного, так и для постоянного тока.
Цифровой амперметр
Этот тип устройства используется для измерения силы тока в амперах и отображения значений на цифровом дисплее. Проектирование этого устройства может быть выполнено путем использования шунтирующего резистора для создания калиброванного напряжения, пропорционального протеканию тока.Эти инструменты предоставляют информацию о текущем потреблении и непрерывности, чтобы помочь потребителю в устранении неполадок переменных нагрузок и тенденций.
Интеграция
В этом устройстве протекание тока суммируется во времени и дает произведение времени и тока. Эти устройства рассчитывают всю энергию, подаваемую через цепь за определенный промежуток времени. Лучшим примером этого интегрирующего устройства является счетчик ватт-часов, поскольку он измеряет энергию непосредственно в ватт-часах.
Влияние температуры на амперметр
На амперметр легко влияет внешняя температура. Таким образом, изменение температуры вызовет ошибку в считывании. Для преодоления этого используется сопротивление заболачиванию, поскольку температурный коэффициент этого сопротивления равен нулю. В следующей схеме амперметр и сопротивление затухания подключены последовательно, так что влияние температуры на это может быть уменьшено.
Температурный эффектЭто устройство включает предохранитель для защиты от внешнего сильного тока.Если ток через цепь велик, цепь выйдет из строя, и амперметр не будет измерять ток, пока он не будет заменен другим. Таким образом можно уменьшить температурное воздействие на это устройство.
Приложения
Применение амперметра включает следующее.
- Применение этого устройства будет варьироваться от школ до промышленных предприятий.
- Они используются для измерения тока в зданиях, чтобы убедиться, что он не слишком низкий или слишком высокий.
- Используется на производственных предприятиях и в приборостроительных компаниях для проверки работоспособности устройств.
- Используется с термопарой для проверки температуры.
- Электрики часто используют эти устройства для проверки неисправностей электрических цепей в здании.
Часто задаваемые вопросы
1). Какова функция амперметра?
Измерительное устройство, используемое для измерения протекания тока в цепи.
2). Кто изобрел амперметр?
В 1884 году Фридрих Дрекслер изобрел первый амперметр, похожий на счетчик с подвижным железом.
3). Какая единица СИ для электрического тока?
Ампер
4). Что такое амперметр переменного тока?
Устройство, используемое для измерения переменного тока, подаваемого через электрическую цепь, известно как амперметр переменного тока.
5). Какая формула для тока?
Согласно закону Ома Ток (I) = Напряжение (В) / Сопротивление (R)
Таким образом, все сводится к обзору амперметра, а сопротивление идеального амперметра равно нулю.Из приведенной выше информации, наконец, можно сделать вывод, что эти устройства очень важны для измерения тока в различных электрических и электронных схемах. Вот вам вопрос, какова функция амперметра типа MC?
Как измерить пусковой ток
При первом включении электрического устройства пусковым током является скачок или мгновенный всплеск тока, протекающий в нем.
Представьте себе машину, стоящую на ровном тротуаре, припаркованную на нейтрали с выключенным двигателем.Чтобы заставить его двигаться без использования двигателя, человеку нужно было бы сильно толкнуть его, возможно, энергичным толчком ногой. Однако при движении колеса автомобиля вращаются более кооперативно, требуя меньше физических усилий.
Этот начальный резкий привод ноги эквивалентен пусковому току. Последующее легкое перекатывающееся движение равно установившемуся потоку тока, который возникает в двигателе после того, как его шестерни и роторы вышли из инерции и пришли в движение.
Для измерения пускового тока технические специалисты могут использовать токоизмерительные клещи с жесткими губками или гибкий токоизмерительный щуп.Только измерители с кнопкой включения могут измерять пусковой ток. Вот шаги для его измерения, в данном случае при использовании Fluke 381 (см. Иллюстрацию выше):
- При выключенном устройстве, которое нужно проверить, поверните шкалу измерителя в положение .
- Отцентрируйте губку или гибкий зонд вокруг токоведущего провода устройства.
- Нажмите кнопку броска на лицевой стороне измерителя.
- Включить прибор. Пусковой ток (пик) отображается на дисплее измерителя.
Почему это измерение имеет значение? Новые высокоэффективные двигатели потребляют больше рабочего тока, чем их предшественники.Знание значения пускового тока может помочь техническому специалисту обнаружить проблему запуска, будь то двигатель или пусковая цепь. Измерения бросков тока обычно записываются в журнал профилактического обслуживания для использования в будущем.
Для обеспечения повторяемости измерений броска тока двигателя в современных токоизмерительных клещах (например, серии Fluke 370 или Fluke 381) используется «запускаемый» режим, который синхронизирует измерения с пусковым током.
Техники «активируют» счетчик нажатием на его кнопку включения.Затем измеритель запускается пусковым током. После запуска эта функция броска тока берет около 400 выборок за период 100 миллисекунд и вычисляет фактический пусковой ток.
Пусковой ток может привести к тому, что на дисплее измерителя отобразится значение, превышающее номинальное значение автоматического выключателя, но выключатель не сработает. Почему так?
Пусковой ток может быть в 4-10 раз больше, чем нормальный рабочий ток, в зависимости от типа двигателя. Итак, если рабочий ток двигателя составляет восемь ампер, а его автоматический выключатель рассчитан на 20 ампер, как возможно, что токоизмерительные клещи могут отображать значение 40 ампер?
Причина, по которой выключатель или блок защиты от перегрузки не срабатывает, заключается в том, что оба устройства работают синхронно.-токовая кривая. Эта кривая (см. Диаграмму) показывает, сколько тока проходит через прерыватель и в течение какого времени без размыкания цепи.
Недорогой метод измерения тока для устройств IoT — DIY
В инженерии все сводится к использованию ваших ресурсов. В нашем случае мы заботимся об использовании ЦП или памяти нашими алгоритмами (по крайней мере, при разработке программного обеспечения). Тем не менее, энергопотребление играет жизненно важную роль в продолжительности автономной работы наших устройств IoT.
Вы захотите изучить и определить, какая часть вашего кода, алгоритм истощает ваш источник энергии.Ничто не дает лучших результатов, чем экспериментальное наблюдение, которое можно проверить и повторить. Я представлю вам недорогую технику для измерения энергопотребления.
Мы начнем с теоретического введения. Во-вторых, сделаем анализ. В-третьих, мы сравним наши результаты с uCurrent Gold. UCurrent Gold можно считать стандартом де-факто в сообществе Интернета вещей.
Я не собираюсь убеждать никого не использовать uCurrent Gold.Он имеет более широкую полосу частот и диапазон усиления тока. UCurrent Gold используется как источник истины . Это в некоторой степени жизнеспособное и недорогое решение, которое вы можете построить за час или меньше, и обойдется вам чуть меньше 10 долларов США за усилитель.
Теоретическое введение и определение терминовВ этой статье для ясности я буду использовать относительные термины, такие как «быстро» и «медленно». Я объясню, как определить сопротивление и как подобрать усилитель.Эта работа рассчитана на миллиамперный диапазон. Он не предназначен для наблюдения за токами сна вашего IoT-устройства. Все эти устройства являются беспроводными, поэтому радиосвязь потребляет некоторую «видимую энергию».
Вы можете использовать мультиметр для измерения потребления постоянного тока. Но когда ток меняется с большей частотой, все становится немного сложнее. Простая схема показана на рисунке 1.
Рисунок 1. Амперметр в последовательном соединении с источником питания и нагрузкой.Во-первых, решающим фактором становится скорость выборки.Если потребление тока меняется быстро, что, конечно же, происходит на РЧ-накопительном микроконтроллере, например. ESP32, о котором я буду говорить на этом сайте и в этой статье. Например, наш мультиметр может измерять только 6 точек в секунду. Мы не видим изменений, которые могут произойти между двумя точками выборки. Все, что быстрее 3 Гц, «невидимо» для наших глаз), согласно теореме выборки.
Таким образом, нам хотелось бы, чтобы на графике отображалось текущее изменение. Нам нужен осциллограф (или какое-нибудь устройство регистрации данных.) Нам нужно преобразовать непрерывный сигнал в дискретную форму, чтобы мы могли с ним работать.
Измерить ток не так просто, как измерить напряжение. Нам нужно найти удобный способ преобразования тока в напряжение. Другими словами, нам нужен токовый пробник, поскольку осциллограф отображает напряжение во временной области.
Шунтирующий резистор и измерение тока
uCurrent Gold — это схема преобразователя тока в напряжение. Если вам нужно и вы не можете дождаться его прибытия, я предлагаю использовать простой инструментальный усилитель, чтобы сэкономить время и деньги.Основная идея преобразования «ток-напряжение» заключается в шунтирующем резисторе . Шунтирующий резистор — это резистор между источником питания (аккумулятором) и вашим устройством IoT. Применяя закон Ома, как показано в уравнении 1, ток, который проходит через резистор, будет создавать напряжение (как показано в уравнении 2.) Поскольку мы знаем сопротивление шунта, вычислить потребление тока легко, как показано в уравнении 3.
(1)
(2)
(3)
Фигура 2.Простая схема нашего шунтирующего резистора между источником питания и нагрузкой.Закон Кирхгофа по напряжению гласит: направленная сумма разностей потенциалов (напряжений) вокруг любого замкнутого контура равна нулю. [Вики]. Это утверждение (рисунок 2) можно преобразовать в уравнение 4.
(4)
Посмотрев на уравнение 4, мы можем преобразовать его в уравнение 5.
(5)
Глядя на уравнения 4 и 5, мы сразу видим ограничивающие факторы нашего метода.Узким местом является сопротивление шунта. Во-первых, из-за падения напряжения. Во-вторых, ограничение протекания тока.
Если сопротивление слишком велико, а нагрузка значительна, наше тестируемое устройство может даже не запуститься. Это связано с падением напряжения, а также с ограничением проходящего тока. Напряжение на нагрузке не является ее рабочим напряжением, и IoT-устройство не может получить доступный ток. Наверное, IoT-устройство даже не запустилось.
Еще один недостаток нашего метода — температурный коэффициент резистора.Сопротивление начинает меняться при колебаниях температуры. Это может повлиять на падение напряжения. Мы пока проигнорируем это.
Чтобы избежать падения напряжения и проблем с подачей тока, мы должны использовать малые значения сопротивления. Чем меньше сопротивление, тем меньше будет падение напряжения. То же самое верно и для текущего уменьшения, математически выраженного в уравнении 6.
(6)
Мы должны знать рабочее напряжение нашего тестируемого устройства (DUT.) Подаваемое напряжение (В постоянного тока), вычтенное из максимального падения напряжения, не должно быть ниже самого низкого рабочего напряжения тестируемого устройства. Такая информация есть в даташите на DUT (например, в даташите ESP32.)
Ну, мы еще не решили проблему полностью. Выбор значения сопротивления может быть неопределенным. Если сопротивление слишком низкое, нам будет сложно подобрать усилитель. Усилитель должен соответствовать всем ограничениям при использовании с высоким коэффициентом усиления.
Предполагаемое падение напряжения на шунтирующем резисторе будет в диапазоне от 0.Максимум 1 мВ и 100 мВ. Если вы ищете ответ, как я получил эти значения, не беспокойтесь, это станет очевидным сразу. Я решил использовать резистор на 0,1 Ом, и токи, которые я хочу наблюдать, находятся в диапазоне от 1 мА до 1 А (0,1 0,001 = 0,0001 В и 0,1 1 = 0,1 В.)
Усилитель падения напряжения на шунтирующем резисторе
Моя цель — усилить падение напряжения на шунтирующем резисторе. Кроме того, мы не хотим добавлять и умножать другие источники ошибок злоумышленников.Эти ограничения могут быть устранены путем понимания различных взаимозависимых свойств усилителя.
Некоторыми хорошо известными «источниками ошибок» в усилителях являются: напряжение смещения, температурный дрейф напряжения, нелинейности в усилении, скорость нарастания, коэффициент подавления синфазного сигнала (CMRR) и ширина полосы усиления . Оставим пока без внимания не упомянутые «источники» ошибок. Если мы выберем усилитель без учета, эти параметры повлияют на результат. На усиленное падение напряжения может повлиять на несколько порядков.Если свойства усилителя не соответствуют нашему приложению, они увеличивают долю ошибок. В этом случае значения результатов выборки будут бесполезны. Они не отображают фактическое потребление тока ИУ.
Входное напряжение смещения
Я не буду вдаваться в подробности, но эти параметры могут быть нашими заклятыми врагами, если они плохо подобраны. Например, ошибка входного напряжения смещения будет добавлением напряжения к измеренному напряжению на шунтирующем резисторе.Предположим, усилитель имеет напряжение смещения 7 мВ, а измеренное напряжение составляет 100 мВ. По словам Пола Пикеринга, усиленный результат может отличаться на 7%. Если измеренное напряжение составляет 100 мВ, а входное напряжение смещения составляет 0,25 мВ, результирующая ошибка составляет всего 0,25%. Выходное напряжение усилителя указано в уравнении 7.
(7)
где
Эти 7 мВ динамически изменяются в соответствии с нормальным распределением, в противном случае мы могли бы исключить ошибку из результата.Конечно, погрешность «растет» с уменьшением входного сигнала.
На данный момент мы знаем, что напряжение смещения играет важную роль. Но соотношение между измеренным напряжением и напряжением смещения очень велико. Идеального усилителя не существует. Например, предположим, что входной сигнал находится в диапазоне от 1 В до 5 В, и нам нужно усилить его в десять раз. Если смещение составляет ~ 0,250 мВ, результат будет находиться в диапазоне от 10,0025 В до 50,0025 В. Если разрешение нашего АЦП составляет 50 мВ, то смещение не повлияет на наши результаты, и мы сможем с этим жить.
Произведение коэффициента усиления и пропускной способности и график Боде
Другое явление, которое имеет значение, — это произведение коэффициента усиления на полосу пропускания. Мы хотим, чтобы наш усилитель линейно усиливал наш входной сигнал. В большинстве случаев это наша цель — добиться линейности во всем, что мы проектируем (математика становится простой). Хотя полоса пропускания усилителя является функцией частоты сигнала. Другими словами, выход является линейным для входного сигнала при определенной частоте сигнала. Как только мы пройдем эту частоту, мы не сможем гарантировать линейность усиления.Это означает, что форма выходного сигнала не пропорциональна форме входного сигнала. Один из способов проверить полосу пропускания нашего усилителя — это посмотреть в таблицу данных или построить график Боде .
«Среди его нескольких важных вкладов в теорию схем и теорию управления, инженер Хендрик Уэйд Боде, работая в Bell Labs в 1930-х годах, разработал простой, но точный метод построения графиков коэффициентов усиления и фазового сдвига. Они носят его имя: сюжет усиления Боде и фазовый сюжет Боде »[Wiki].
Вам понадобятся генератор частоты и осциллограф для создания графика Боде . Я буду использовать Analog Discovery от Digilent, поскольку он включает и то, и другое. В следующем видео можно увидеть график Боде моей схемы усилителя. Видна линейность усиления, а также фазовый сдвиг. Он в значительной степени соответствует тому, что указан в таблице. Эти графики находятся в частотной области (ось x).
Падение усиления, а также сдвиг фазы на 180 градусов становятся видимыми в конце клипа.Это непропорциональное изменение формы. Вот где процесс усиления становится нестабильным. Проще говоря, выходной сигнал не является хорошим представлением входного сигнала. Это становится видимым и во временной области. Желтая синусоида — это входной / исходный сигнал, который мы хотим усилить. Синяя синусоида — это усиленный выходной сигнал, который масштабируется для соответствия желтой синусоиде, поскольку в противном случае он не поместился бы на экране. Синий выходной сигнал в 11 раз усиливается по сравнению с желтым исходным сигналом.
По мере увеличения частоты сигнала график идет дальше вправо. Таким образом, чем выше частота, тем больше нестабильность. Вторая вертикальная красная линия на диаграмме находится на уровне -3 дБ по сравнению с первой вертикальной красной линией, которая представляет собой усиление, которое я настроил для усилителя (20,72 дБ, что составляет ~ 11 раз). В точке -3 дБ коэффициент усиления вывод в основном бесполезен.
(8)
где A — коэффициент усиления
Скорость нарастания
Мы определим скорость нарастания .Скорость нарастания — это изменение напряжения в единицу времени. Единица скорости нарастания напряжения — В / мкс. «При задании для выхода схемы, такой как усилитель, спецификация скорости нарастания гарантирует, что скорость перехода выходного сигнала будет по крайней мере заданным минимумом или максимум заданным максимумом» [Wiki]. Это свойство определяет, насколько быстро может расти напряжение на входе и выходе. Эффект хорошо показан на рисунке 3.
Рис. 3. Скорость нарастания показывает, насколько быстро выходной сигнал может расти по сравнению с входным.Изображение любезно предоставлено электроникой NotesРассчитано с использованием уравнения 9. Давайте представим пример того, как можно применить формулу. Мы хотим использовать входную частоту 635 кГц. После усиления пик выходного напряжения составляет 1 В. Затем мы можем вычислить его, вставив члены в уравнение. Требуемая скорость нарастания сигнала усилителя составит ~ 3,99 В / мкс.
(9)
где
Это значение влияет на ранее упомянутое произведение коэффициента усиления и полосы пропускания.Это будет способствовать несогласованности формы выходной волны. Более высокое выходное напряжение требует более высокой скорости нарастания напряжения. Таким образом, в своем эксперименте я использовал коэффициент усиления ~ 11. Если бы я использовал коэффициент усиления 100. Выходной сигнал был бы ~ 10 В, следовательно, требуемая скорость нарастания составляла ~ 39,9 В / мкс.
Коэффициент подавления синфазного сигнала (CMRR)
Коэффициент подавления синфазного сигнала (CMRR) — это последний термин, который мы введем. «Коэффициент подавления синфазного сигнала (CMRR) дифференциального усилителя (или другого устройства) — это показатель, используемый для количественной оценки способности устройства отклонять синфазные сигналы, т.е.е. те, которые появляются одновременно и синфазно на обоих входах »[Wiki].
Высокий CMRR обычно свидетельствует о том, что инструментальный усилитель устойчив к шумам. Поскольку я описал только основы, на обучающем сайте Texas Instruments есть отличное вводное видео.
РеализацияУ меня валялась пара разных инструментальных усилителей. Texas Instruments INA128P обладает наиболее подходящими характеристиками, которые я описал ранее.Если вы не можете найти TI INA128P, вы можете поискать другой инструментальный усилитель. Свойства важны и должны быть похожими или лучше. Мыслительный процесс, как вывести ценности, должен быть таким же. У него может быть только другая конфигурация проводки, проверьте это в таблице данных.
INA128P обладает наиболее подходящими характеристиками, когда речь идет о входном напряжении смещения, полосе усиления и высоком CMRR. Так что выбор был очевиден. Напряжение смещения обычно составляло 25 мкВ.Он имел линейную частоту полосы пропускания 700 кГц при усилении 20 дБ (коэффициент усиления 10). Было легко настроить усиление с помощью только одного резистора (я использовал два параллельно 10 кОм, чтобы получить 5 кОм).
В соответствии с таблицей данных коэффициент усиления выражается в уравнении 10.
(10)
где в моем случае
Схема представлена на рисунке 4.
Рисунок 4. Схема усилителя с подключенной к нему нагрузкой.Имейте в виду, что , это инструментальный усилитель, и входное синфазное напряжение не должно быть на 2 В меньше максимального напряжения источника питания.Иными словами, напряжение постоянного тока на схеме не должно превышать 18-2 В = 16 В. Поскольку мы будем использовать это на наших устройствах IoT, которые работают от 3 В, 3,3 В, 5 В или меньше, мы готовы к работе! Если у вас нет отрицательного источника питания, вы можете использовать две батареи 9 В, подключенные через последовательное соединение.
Усилитель не изолирован !!! Поэтому, если вы используете его с источником питания переменного тока и осциллографом, избегайте контуров заземления.
Шунтирующий резистор представляет собой резистор 0,1 Ом, 1% 3 Вт, поэтому размер такой большой.Практическое правило: более точные компоненты приводят к меньшим отклонениям от фактических значений. Избегайте создания такой большой петли, как я сделал с резистором усиления, поскольку он действует как шумовая антенна. Что ж, не ждите работы Леонардо да Винчи, рисунок 5 и рисунок 6.
Рисунок 5. Шунтирующий усилитель, отмеченный красной стрелкой. Усилители усиления отмечены синей стрелкой.Рисунок 6. Виден контур усилителя усиления. ИЗБЕГАЙТЕ ПЕТЛЕЙ ! Результаты и сравнение
В этом разделе я опишу стенд и сравню результаты.
Испытательная установка
Схема моего испытательного стенда представлена на рисунке 7. Я использовал ESP32 в качестве тестовой нагрузки. Положительная клемма моего источника питания подключена к положительной входной клемме uCurrent gold. Отрицательная входная клемма uCurrent gold подключена к положительной клемме шунта цепи INA128. Отрицательный вывод шунтирующего резистора подключен к положительному выводу VCC платы ESP32. Вывод GND платы ESP32 подключен к отрицательной клемме моего источника питания.На INA128 подается напряжение + -9 В, что не показано на схеме.
Выходные клеммы uCurrent Gold подключены к каналу 1 осциллографа Analog Discovery. Выходные клеммы схемы INA128 подключены к каналу 2 осциллографа Аналогового обнаружения. Analog Discovery подключается к ноутбуку через USB-кабель. Ноутбук работает под управлением Linux Ubuntu и программного обеспечения Digilent WaveForms.
Рисунок 7. Схема испытательной установки и сравнение результатов измерений.Вы можете посмотреть видео тестовой установки, а также пару фотографий.
Установка стендов для сравнения. Стол нуждается в уборке.
Сравнение результатов
Желтая кривая (канал 1) — усиленный выходной сигнал схемы INA128P. Синяя кривая (канал 2) — результат uCurrent Gold. Красная кривая эквивалентна желтой кривой (канал 1), но разделенная на 1,1, чтобы получить фактическое потребление тока. Сигнал дискретизировался с частотой дискретизации 1 МГц.
Чтобы компенсировать усиление 11, нам нужно разделить на 1,1. Другими словами, чтобы получить усиление 10, можно увидеть, как если бы шунтирующий резистор был 1 Ом.
Рисунок 8. Несколько секунд текущего анализа, взятого с помощью Analog Discovery. uCurrent Gold (синий) и INA128P (желтый).Мы сразу видим, что в желтом сигнале меньше шума по сравнению с синим сигналом. Еще лучше это видно на рисунке 9.
Рисунок 9.Увеличенное потребление тока ESP32 с наложением сигнала INA12P (красный) на uCurrent Gold (синий) Рисунок 10. Увеличенное потребление тока. Красная кривая менее зашумлена и точно следует синей кривой. Рисунок 11. Увеличенный пик.Я не ожидал, что результаты будут такими хорошими, так как он находится на пустой печатной плате прототипа со сквозным отверстием. На этом я завершу свои мысли.
Если у вас есть какие-либо вопросы, замечания по поводу моей тестовой настройки, или если вы заметили ошибку, дайте мне знать и оставьте комментарий.
7 основных типов датчиков измерения температуры
Будь то термометр или термопара, различные типы датчиков измеряют температуру
Температура определяется как уровень энергии вещества, о котором можно судить по некоторым изменениям в этом веществе. Датчики для измерения температуры бывают самых разных и имеют одну общую черту: все они измеряют температуру, регистрируя некоторые изменения в физических характеристиках.Здесь рассматриваются семь основных типов датчиков измерения температуры: термопары, резистивные температурные устройства (RTD, термисторы), инфракрасные излучатели, биметаллические устройства, устройства расширения жидкости, молекулярные устройства изменения состояния и кремниевые диоды.
1. Термопары
Термопары — это устройства измерения напряжения, которые показывают измерение температуры с изменением напряжения. С повышением температуры выходное напряжение термопары возрастает — не обязательно линейно.Часто термопара находится внутри металлического или керамического экрана, который защищает ее от воздействия различных сред. Термопары в металлической оболочке также доступны со многими типами внешнего покрытия, такими как тефлон, для беспроблемного использования в кислотах и сильных щелочных растворах.
2. Терморезистивные устройства для измерения температуры
Терморезистивные устройства измерения температуры также бывают электрическими. Вместо того, чтобы использовать напряжение, как это делает термопара, они используют другую характеристику вещества, которая изменяется с температурой — ее сопротивление. Два типа резистивных устройств, с которыми мы имеем дело в OMEGA Engineering, Inc., в Стэмфорде, штат Коннектикут, — это металлические резистивные температурные устройства (RTD) и термисторы.В целом RTD более линейны, чем термопары.Они увеличиваются в положительном направлении, причем сопротивление возрастает с повышением температуры. С другой стороны, термистор имеет совершенно иную конструкцию. Это чрезвычайно нелинейное полупроводниковое устройство, сопротивление которого будет уменьшаться при повышении температуры.
3. Инфракрасные датчики
Инфракрасные датчики — это бесконтактные датчики. Например, если вы поднесете типичный инфракрасный датчик к передней части стола без контакта, датчик сообщит вам температуру стола благодаря своему излучению — вероятно, 68 ° F при нормальной комнатной температуре.При бесконтактном измерении ледяной воды он будет немного ниже 0 ° C из-за испарения, что немного снижает ожидаемые показания температуры.
4. Биметаллические устройства
Биметаллические устройства используют расширение металлов при нагревании. В этих устройствах два металла соединены вместе и механически связаны с указателем. При нагревании одна сторона биметаллической полосы расширяется больше, чем другая. А при правильном подключении к стрелке отображается измерение температуры.
Преимущества биметаллических устройств — портативность и независимость от источника питания. Однако они обычно не так точны, как электрические устройства, и вы не можете легко записать значение температуры, как с электрическими устройствами, такими как термопары или RTD; но портативность — несомненное преимущество для правильного приложения.5. Термометры
Термометры — это хорошо известные устройства для расширения жидкости, которые также используются для измерения температуры. Вообще говоря, они бывают двух основных категорий: ртутного типа и органического, обычно красного, жидкого типа.Различие между ними заметно, потому что ртутные устройства имеют определенные ограничения, когда речь идет о том, как их можно безопасно транспортировать или отправлять.Например, ртуть считается загрязнителем окружающей среды, поэтому ее поломка может быть опасной. Обязательно ознакомьтесь с действующими ограничениями на воздушную перевозку ртутных продуктов перед отправкой.
6. Датчики изменения состояния
Датчики изменения состояния температуры измеряют именно это — изменение состояния материала, вызванное изменением температуры, например, переход от льда к воде, а затем к пару.Коммерчески доступные устройства этого типа имеют форму этикеток, гранул, мелков или лаков.
Например, этикетки можно использовать на конденсатоотводчиках. Когда ловушка требует регулировки, она нагревается; тогда белая точка на этикетке станет черной, обозначив повышение температуры. Точка остается черной, даже если температура нормализуется.
Наклейки с изменением состояния показывают измерение температуры в ° F и ° C. В устройствах этого типа белая точка становится черной при превышении указанной температуры; и это необратимый датчик, который остается черным после изменения цвета.Этикетки температуры полезны, когда вам нужно подтверждение того, что температура не превышала определенный уровень, возможно, по техническим или юридическим причинам во время транспортировки. Поскольку устройства изменения состояния неэлектричны, как биметаллическая полоса, они имеют преимущество в определенных приложениях. Некоторые формы этого семейства сенсоров (лак, мелки) не меняют цвет; оставленные ими следы просто исчезают. Пеллетный вариант визуально деформируется или полностью тает.
Ограничения включают относительно низкое время отклика.Таким образом, если у вас наблюдается резкий скачок температуры, который быстро повышается, а затем быстро понижается, видимой реакции может не быть. Точность также не так высока, как у большинства других устройств, более широко используемых в промышленности. Однако в области применения, где вам нужна нереверсивная индикация, не требующая электроэнергии, они очень практичны.
Другие двусторонние этикетки работают по совершенно иному принципу с использованием жидкокристаллического дисплея. Цвет дисплея меняется с черного на коричневый, синий или зеленый, в зависимости от достигнутой температуры.
Например, типичная этикетка полностью черная, когда температура ниже измеряемой. По мере увеличения измерения температуры, скажем, в точке 33 ° F появится цвет — сначала синий, затем зеленый и, наконец, коричневый по мере прохождения через заданную температуру. В любом конкретном жидкокристаллическом устройстве вы обычно видите два соседних цветных пятна — синее чуть ниже индикатора температуры и коричневое чуть выше. Это позволяет вам оценить температуру, например, между 85 ° и 90 ° F.
Несмотря на то, что он не совсем точен, у него есть преимущества, заключающиеся в том, что он представляет собой небольшой прочный неэлектрический индикатор, который постоянно обновляет результаты измерения температуры.