+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как от электрической сети запитать аккумуляторный шуруповерт

Как от электрической сети запитать аккумуляторный шуруповерт

Шуруповерт – это, по сути, электрический заменитель отвертки. Он выполняет те же функции, что и младший «собрат», только делает процесс закручивания/откручивания саморезов и болтов намного быстрее. Такой инструмент особенно эффективен, если шурупов – десятки, а то и сотни. Устройство может не только крутить винты. Установив специальное сверло, шуруповертом можно делать отверстия в дереве, пластике и тонком металле. Более мощные приборы берут даже кирпич и бетон. В общем, инструмент незаменим в быту и при ремонте.

Аккумуляторный шуруповерт предназначен для наворачивания — отворачивания винтов, саморезов, шурупов и болтов. Все зависит от применения сменных головок – битов. Область применения шуруповерта также очень широка: им пользуются сборщики мебели, электромонтажники, строительные рабочие – отделочники закрепляют с его помощью плиты гипсокартона и вообще все, что можно собрать с помощью резьбового соединения.

Это применение шуроповерта в профессиональных условиях. Кроме профессионалов этот инструмент приобретается также исключительно для личного использования при проведении ремонтно-строительных работ в квартире или загородном доме, гараже.

Аккумуляторный шуроповерт имеет малый вес, небольшие размеры, не требует подключения к сети, что позволяет работать с ним в любых условиях. Но вся беда в том, что емкость аккумуляторов невелика, и минут через 30 — 40 интенсивной работы приходится ставить аккумулятор на зарядку не менее, чем на 3 — 4 часа.

Кроме этого аккумуляторы имеют свойство приходить в негодность, особенно когда пользуются шуруповертом не регулярно: повесили ковер, гардины, картины и положили его в коробку. Через год решили привернуть пластиковый плинтус, а шуруповерт не «тянет», зарядка аккумулятора помогает мало.

Новый аккумулятор стоит дорого, да и не всегда в продаже можно сразу найти именно то, что надо. И в том и в другом случае выход один, — питать шуруповерт от сети через блок питания. Тем более, что чаще всего работы проводятся в двух шагах от сетевой розетки. Конструкция такого блока питания будет описана ниже.

В целом конструкция несложна, не содержит дефицитных деталей, повторить ее может любой, кто хоть немножко знаком с электрическими схемами и умеет держать в руках паяльник. Если вспомнить, сколько шуруповертов находится в эксплуатации, то можно предположить, что конструкция будет пользоваться популярностью и спросом.

Блок питания должен удовлетворять сразу нескольким требованиям. Во- первых достаточно надежным, во-вторых малогабаритным и легким и удобным для переноски и транспортировки. Третье требование, пожалуй, самое главное это падающая нагрузочная характеристика, позволяющая избежать повреждения шуроповерта в время перегрузок. Немаловажное значение имеет также простота конструкции и доступность деталей. Всем этим требованиям вполне отвечает блок питания, конструкция которого будет рассмотрена ниже.

Основой устройства является электронный трансформатор марки Feron или Toshibra мощностью 60 ватт. Такие трансформаторы продаются в магазинах электротоваров и предназначены для питания галогенных ламп с напряжением 12 В. Обычно такими лампами подсвечивают витрины в магазинах.

В данной конструкции сам по себе трансформатор не требует никаких переделок, применяется как есть: два входных сетевых провода и два выходных с напряжением 12 В. Принципиальная схема блока питания достаточно проста и показана на рисунке 1.

Рисунок 1. Принципиальная схема блока питания

Трансформатор Т1 создает падающую характеристику блока питания за счет повышенной индуктивности рассеяния, что достигается его конструкцией, о которой будет сказано выше. Кроме того трансформатор Т1 обеспечивает дополнительную гальваническую развязку от сети, что повышает в целом электробезопасность устройства, хотя эта развязка есть уже в самом электронном трансформаторе U1. Подбором числа витков первичной обмотки можно в некоторых пределах регулировать выходное напряжение блока в целом, что позволяет использовать его с разными типами шуруповертов.

Вторичная обмотка трансформатора Т1 выполнена с отводом от средней точки, что позволяет вместо диодного моста применить двухполупериодный выпрямитель всего на двух диодах. По сравнению с мостовой схемой, потери такого выпрямителя, за счет падения напряжения на диодах, в два раза ниже. Ведь диодов-то два, а не четыре. С целью еще большего снижения потерь мощности на диодах в выпрямителе применена диодная сборка с диодами Шоттки.

Низкочастотные пульсации выпрямленного напряжения сглаживает электролитический конденсатор С1. Электронные трансформаторы работают на высокой частоте, порядка 40 — 50 КГц, поэтому, кроме пульсаций с частотой сети, в выходном напряжении присутствуют и эти высокочастотные пульсации. Учитывая то, что двухполупериодный выпрямитель увеличивает частоту в 2 раза, эти пульсации достигают 100 и более килогерц.

Оксидные конденсаторы имеют большую внутреннюю индуктивность, поэтому высокочастотные пульсации сгладить не могут. Более того, они просто будут бесполезно разогревать электролитический конденсатор, и даже могут привести его в негодность. Для подавления этих пульсаций параллельно оксидному конденсатору установлен керамический конденсатор С2, небольшой емкости и с маленькой собственной индуктивностью.

Индикацию работы блока питания можно проконтролировать по свечению светодиода HL1, ток через который ограничивается резистором R1.

Отдельно следует сказать о назначении резисторов R2 — R7. Дело в том, что электронный трансформатор изначально предназначен для питания галогенных ламп. Предполагается, что эти лампы подключены к выходной обмотке электронного трансформатора еще до того, как он будет включен в сеть: иначе без нагрузки он просто не запускается.

Если в описываемой конструкции включить электронный трансформатор в сеть, то последующее нажатие кнопки шуруповерта вращаться его не заставит. Чтобы такого не произошло в конструкции и предусмотрены резисторы R2 — R7. Их сопротивление выбрано таким, чтобы электронный трансформатор уверенно запустился.

Детали и конструкция

Блок питания размещен в корпусе отслужившего свой срок штатного аккумулятора, если его, конечно, еще не выбросили. Основой конструкции служит алюминиевая пластина толщиной не менее 3 мм, размещенная посредине корпуса аккумулятора. В целом конструкция показана на рисунке 2.

Рисунок 2. Блок питания для аккумуляторного шуруповерта

К этой пластине крепятся все остальные детали: электронный трансформатор U1, трансформатор Т1 (с одной стороны), а диодная сборка VD1 и все остальные детали, в том числе и кнопка включения питания SB1, с другой. Пластина служит также общим проводом выходного напряжения, поэтому диодная сборка устанавливается на нее без прокладки, хотя для лучшего охлаждения теплоотводящую поверхность сборки VD1 следует смазать теплоотводящей пастой КПТ-8.

Трансформатор Т1 выполнен на ферритовом кольце типоразмера 28*16*9 из феррита марки НМ2000. Такое кольцо не дефицитно, достаточно распространенно, проблем с приобретением возникнуть не должно. Перед намоткой трансформатора сначала с помощью алмазного надфиля или просто наждачной бумаги следует притупить наружные и внутренние кромки кольца, после чего заизолировать его лентой из лакоткани или ФУМ-лентой, применяемой для подмотки труб отопления.

Как было сказано выше, трансформатор должен иметь большую индуктивность рассеяния. Это достигается тем, что обмотки расположены напротив друг друга, а не одна под другой. Первичная обмотка I содержит 16 витков в два провода марки ПЭЛ или ПЭВ-2. Диаметр провода 0,8 мм.

Вторичная обмотка II намотана жгутом из четырех проводов, количество витков 12, диаметр провода тот же, что и для первичной обмотки. Чтобы обеспечить симметрию вторичной обмотки, ее следует мотать сразу в два провода, точнее жгута. После намотки, как это делается обычно, начало одной обмотки соединяют с концом другой. Для этого обмотки придется «прозвонить» тестером.

В качестве кнопки SB1 используется микропереключатель МП3-1, у которого задействуется нормально замкнутый контакт. В днище корпуса блока питания установлен толкатель, который через пружину связан с кнопкой. Блок питания подключается к шуруповерту, в точности так же, как штатный аккумулятор.

Если теперь шуроповерт поставить на ровную поверхность, толкатель через пружину нажимает на кнопку SB1 и блок питания отключается. Как только шуруповерт будет взят в руки, освобожденная кнопка включит блок питания. Остается только нажать на курок шуроповерта и все заработает.

Немного о деталях

Деталей в блоке питания немного. Конденсаторы лучше применить импортные, это теперь даже проще, чем найти детали отечественного производства. Диодную сборку VD1 типа SBL2040CT (выпрямленный ток 20 А, обратное напряжение 40 В ) можно заменить на SBL3040CT, в крайнем случае двумя отечественными диодами КД2997. Но указанные на схеме диоды дефицитом не являются, поскольку применяются в компьютерных блоках питания, и купить их не проблема.

О конструкции трансформатора Т1 было сказано выше. В качестве светодиода HL1 подойдет любой, какой есть под руками.

Налаживание устройства несложно и сводится лишь к отматыванию витков первичной обмотки трансформатора Т1 для достижения нужного выходного напряжения. Номинальное напряжение питания шуроповертов, в зависимости от модели, составляет 9, 12 и 19 В. Отматывая витки с трансформатора Т1 следует добиться, соответственно, 11, 14 и 20 В.

Ранее ЭлектроВести писали, что владельцы электромобилей Volkswagen смогут продавать электроэнергию в сеть.

По материалам: electrik.info.

Очередная переделка шуруповерта на литий + решаем проблемы платы BMS

Давно не было обзора переделки шуруповерта на литий 🙂
Обзор посвящен в основном плате BMS, но будут ссылки и еще на некоторые мелочи, задействованные в переводе моего старого шуруповерта на литиевые батареи формата 18650.
Коротко — эту плату брать можно, после небольшого допиливания она вполне нормально работает в шуруповерте.
ЗЫ: много текста, картинки без спойлеров.

P.S. Обзор почти юбилейный на сайте — 58000-й, если верить адресной строке браузера 😉

Зачем все это

Трудится у меня уже несколько лет купленный в строймаге по дешевке безымянный двухскоростной шуруповерт на 14.4 вольта. Точнее, не прям совсем безымянный — на нем проставлена марка этого строймага, но и не какой-то именитый. На удивление живуч, до сих пор не сломался и выполняет все, что я от него требую — и сверление, и закручивание-раскручивание шурупов, и как намотчик трудится 🙂

Но вот его родные NiMH аккумуляторы так долго работать не захотели. Один из двух комплектных окончательно сдох год назад после 3 лет эксплуатации, второй в последнее время уже не жил, а существовал — полной зарядки хватало на 15-20 минут работы шуруповерта с перерывами.
Сначала я хотел обойтись малыми силами и просто заменить старые банки на такие же новые. Купил вот эти у вот этого продавца — aliexpress.com/item/Russian-seller-18-pcs-Sub-C-SC-battery-1-2V-1300mAh-Ni-Cd-NiCd-Rechargeable-Battery/32660234790.html
Они отлично работали (хотя и немного хуже родных) целых два или три месяца, после чего сдохли быстро и полностью — после полного заряда их не хватало даже на закрутить десяток шурупов. Не рекомендую брать у него аккумуляторы — хотя емкость изначально соответствовала обещанной, долго они не протянули.
И я понял, что придется все-таки заморочиться.

Ну и теперь о главном 🙂

Повыбирав на Али из предлагаемых плат BMS, остановился на обозреваемой, по ее размерам и параметрам:
  • Модель: 548604
  • Отключение по перезаряду при напряжении: 4.28+ 0.05 V (на ячейку)
  • Восстановление после отключение по перезаряду при напряжении: 4.095-4.195V (на ячейку)
  • Отключение по переразряду при напряжении: 2.55±0.08 (на ячейку)
  • Задержка отключения по перезаряду: 0.1s
  • Температурный диапазон: -30-80
  • Задержка отключения по КЗ: 100ms
  • Задержка отключения по превышению тока: 500 ms
  • Ток балансировки ячеек: 60mA
  • Рабочий ток: 30A
  • Максимальный ток (срабатывание защиты): 60A
  • Работа защиты по КЗ: самовосстановление после отключения нагрузки
  • Размеры: 45x56mm
  • Основные функции: защита от перезаряда, защита от переразряда, защита от КЗ, защита от перегрузки по току, балансировка.
Вроде все отлично подходит для задуманного, наивно думал я 🙂 Нет, чтобы почитать обзоры других BMS, а главное — комментарии к ним… Но мы же предпочитаем свои грабли, и только наступив на них, узнаем, что авторство на эти грабли уже давным давно и множество раз описано в инете 🙂

Все компоненты платы размещены на одной стороне:

Вторая сторона пустая и покрыта белой маской:

Часть, отвечающая за балансировку при заряде:

Эта часть отвечает за защиту ячеек от перезаряда/переразряда и она же отвечает за общую защиту от КЗ:

Мосфеты:

Собрано аккуратно, откровенных разводов флюса нет, вид вполне приличный. В комплекте шел хвост с разъемом, был сразу воткнут в плату. Длина проводов в этом разъеме — около 20-25 см. К сожалению, сразу его не сфотографировал.

Что еще заказал именно для этой переделки:
Аккумуляторы — aliexpress.com/item/6pcs-lot-LiitoKala-LG-HG2-18650-18650-3000mah-electronic-cigarette-Rechargeable-batteries-power-high-discharge-30A/32793701336.html
Никелевые полоски для спайки аккумуляторов: aliexpress.com/item/100pcs-lot-0-2mm-x-6mm-x-100mm-Quality-low-resistance-99-96-pure-nickel-Strip/32334231879.html (да, знаю, что можно спаять и проводами, но полосками будет занято меньше пространства и получится эстетичнее :)) Да и изначально я хотел даже собрать контактную сварку (не только для этой переделки, конечно), поэтому и заказал полоски, но лень победила и пришлось паять.

Выбрав свободный день (точнее, нагло послав все остальные дела подальше), я взялся за переделку. Для начала разобрал батарею со сдохшими китайскими аккумуляторами, выкинул аккумуляторы и тщательно замерил пространство внутри. После чего сел рисовать держатель батарей и платы в 3D-редакторе. Плату тоже пришлось нарисовать (без подробностей) чтобы примерить все в сборе. Получилось как-то так:

По задумке плата крепится сверху, одной стороной в пазы, вторая сторона зажимается накладкой, сама плата серединой лежит на выступающей плоскости, чтобы при ее прижатии она не прогибалась. Сам держатель сделан такого размера, чтобы плотно сидеть внутри корпуса батареи и не болтаться там.
Сначала подумывал сделать пружинные контакты для аккумуляторов, но отказался от этой мысли. Для больших токов это не лучший вариант, поэтому оставил в держателе вырезы для никелевых полосок, которыми аккумуляторы будут спаяны. Так же оставил вертикальные вырезы для проводов, которые должны выходить от межбаночных соединений за пределы крышки.
Поставил печататься на 3D-принтере из ABS и через несколько часов все было готово 🙂

Прикручивание всего навесного я решил не доверять шурупам и вплавил в корпус вот такие вставные гаечки М2.5:

Брал тут — aliexpress.com/item/200pcs-M2-5-x-4mm-x-OD-3-5mm-Injection-Molding-Brass-Knurled-Thread-Inserts-Nuts/32428033377.html
Отличная вещь для подобного применения! Вплавляется не спеша паяльником. Чтобы пластик не набился внутрь при вплавлении в глухие отверстия, я вкручивал в эту гайку болтик подходящей длины и грел его шляпку жалом паяльника с большой каплей олова для лучшей теплопередачи. Отверстия в пластике под эти гайки оставляются чуть меньше (на 0.1-0.2 мм) диаметра внешней гладкой (средней) части гайки. Держатся очень крепко, можно сколько угодно вкручивать-выкручивать болтики и не особо стесняться с усилием затяжки.

Для того чтобы иметь возможность побаночного контроля и, при необходимости, зарядки с внешней балансировкой, в задней стенке батареи будет торчать 5-контактный разъем, для которого я быстро накидал платку и изготовил ее на станке:


В держателе предусмотрена площадка для этой платки.

Как я уже писал, аккумуляторы я спаивал никелевыми полосками. Увы, этот метод не лишен недостатков и один из аккумуляторов возмутился таким обращением с ним настолько, что оставил на своих контактах только 0.2 вольта. Пришлось его выпаивать и паять другой, благо брал их с запасом. В остальном никаких трудностей не возникло. С помощью кислоты лудим контакты аккумулятора и нарезанные по нужной длине никелевые полоски, потом тщательно протираем ватой со спиртом (но можно и с водой) все залуженное и вокруг него, и паяем. Паяльник должен быть мощным и либо уметь очень резво реагировать на остывание жала, либо просто иметь массивное жало, которое не остынет мгновенно при контакте с массивной железкой.
Очень важно: во время пайки и при всех последующих операциях со спаянным блоком аккумуляторов нужно внимательнейшим образом следить за тем, чтобы не замкнуть какие-либо контакты аккумуляторов! Кроме того, как указал в комментариях ybxtuj, очень желательно паять их разряженными, и я абсолютно согласен с ним, так последствия будут легче если все-таки что-то замкнется. КЗ такой батареи, даже разряженной, может привести к большим неприятностям.
К трем промежуточным соединениям между аккумуляторами припаял провода — они пойдут на разъем платы BMS для контроля за банками и на внешний разъем. Забегая вперед, хочу сказать, что с этими проводами я проделал немного лишней работы — их можно не вести к разъему платы, а припаять к соответствующим контактам B1, B2 и B3. Эти контакты на самой плате соединены с контактами разъема.

Кстати, я везде использовал провода в силиконовой изоляции — совершенно не реагируют на нагрев и очень гибкие. Покупал на Ебее нескольких сечений, но точную ссылку уже не помню… Очень они мне нравятся, но есть и минус — силиконовая изоляция не слишком прочна механически и легко повреждается острыми предметами.

Примерил аккумуляторы и плату в держателе — все превосходно:

А вот для чего я оставлял запас по глубине пазов для аккумуляторов:

Это силиконовые самоклеящиеся ножки. Такие же наклеены и на дно пазов, глубина которых рассчитана так, что при закручивании крышки эти ножки прижимают с обеих сторон аккумуляторы, не давая им болтаться и при этом в силу своей упругости не оказывая существенного давления на них. Кстати, эти ножки очень хороши и в качестве именно ножек (как ни странно :)) — упругие и совершенно не скользят. Маст хейв в арсенале самодельщика 🙂
Брал эти ножки тут — aliexpress.com/item/500pcs-8-4mm-3M-self-adhesive-soft-clear-anti-slip-bumpers-silicone-rubber-feet-pads-high/32241890556.html

Примерил платку с разъемом, дремелем выпилил в корпусе батареи отверстие под разъем… и промахнулся по высоте, не от той плоскости взял размер. Получилась приличная такая щель:

Теперь остается спаять все в кучу.
На свою платку припаял идущий в комплекте хвост, обрезав его по нужной длине:

Туда же впаял провода от межбаночных соединений. Хотя, как я уже писал, можно было припаять их на соответствующие контакты платы BMS, но тут есть и неудобство — чтобы вытащить аккумуляторы нужно будет отпаивать от BMS не только плюс и минус, но и еще три провода, а сейчас можно просто выдернуть разъем.
Немного повозиться пришлось с контактами батареи: в родном исполнении пластиковая деталь (держащая контакты) внутри ножки батареи поджимается одним аккумулятором, стоящим прямо под ней, а сейчас пришлось думать чем эту деталь зафиксировать, да так чтобы не намертво. Вот эта деталь:

В конце концов взял кусок силикона (остался от заливки какой-то формы), отрезал от него примерно подходящий кусок и вставил в ножку, поджав ту деталь. Заодно этот же кусок силикона прижимает держатель с платой, ничего болтаться не будет.
На всякий случай проложил поверх контактов каптоновую изоленту, провода прихватил несколькими соплями каплями термоклея, чтобы они не попали между половинками корпуса при его сборке.

Зарядка и балансировка

Зарядку я оставил родную от шуруповерта, она как раз выдает на холостом ходу около 17 вольт. Правда, зарядка тупа и никакой стабилизации тока или напряжения в ней нет, есть только таймер, отключающий ее примерно через час после начала заряда. Ток выдает около 1.7А, что хоть и многовато, но допустимо для этих аккумуляторов. Но это пока я не доделаю ее до нормальной, со стабилизацией тока и напряжения. Потому что сейчас плата отказывается балансировать одну из ячеек, имевшую изначально заряд на 0.2 вольта больше. BMS отключает заряд когда напряжение на этой ячейке доходит до 4.3 вольта, соответственно на остальных оно остается в пределах 4.1 вольта.
Читал где-то утверждение, что эта BMS нормально балансирует только с зарядкой CV/CC, когда ток под конец заряда постепенно снижается. Возможно, это так и есть, так что впереди меня ждет модернизация зарядки 🙂
Разряжать до конца не пробовал, но уверен, что защита по разряду сработает. На Ютубе есть ролики с тестами этой платы, все работает как положено.

А теперь о граблях

Все банки заряжены до 3.6 вольт, все готово к запуску. Вставляю батарею в шуруповерт, нажимаю курок и… Уверен, что не один человек, знакомый с этими граблями, сейчас подумал «И хрен стартанул у тебя шуруповерт» 🙂 Абсолютно верно, шуруповерт слегка дернулся и все. Отпускаю курок, нажимаю снова — то же самое. Нажимаю плавно — стартует и разгоняется, но стоит стартануть его чуть порезче — отказ.
«Вот же …», подумал я. Китаец, наверное, указал в спецификации китайские амперы. Ну да ладно, у меня есть отличная толстая нихромовая проволока, сейчас я напаяю ее кусок поверх резисторов-шунтов (стоят два по 0.004 Ома в параллель) и настанет мне если и не счастье, то хотя бы какое-то улучшение ситуации. Улучшение не настало. Даже когда я вообще исключил из работы шунт, просто припаяв минус батареи после него. То есть не то что улучшений не настало, а не настало вообще никаких изменений.
И вот тогда я полез в инет и обнаружил, что копирайт на эти грабли мне не светит — они давно уже исхожены другими. Но вот решения как-то не было видно, кроме кардинального — покупать плату, подходящую именно для шуруповертов.

И решил я попробовать все же доковыряться до корня проблемы.

Предположения что срабатывает защита от перегрузки при пусковых токах я отмел, так как даже без шунта ничего не менялось.
Но все же посмотрел осциллографом на самодельном шунте 0.077 ома между аккумуляторами и платой — да, ШИМ видно, резкие пики потребления с частотой примерно 4 кГц, через 10-15 мс после начала пиков плата отрубает нагрузку. Но эти пики показывали меньше 15 ампер (исходя из сопротивления шунта), так что точно дело не в токовой перегрузке (как оказалось впоследствии, это не совсем верно). Да и керамическое сопротивление 1 Ом не вызывало отключения, а ведь ток тоже под 15 ампер.
Был еще вариант кратковременной просадки на банках при пуске, от чего срабатывает защита от переразряда и я полез смотреть что творится на банках. Ну да, там ужас творится — пиковая просадка до 2.3 вольта на всех банках, но она очень короткая — меньше миллисекунды, тогда как плата обещает ждать сотню миллисекунд перед тем как врубит защиту от переразряда. «Китайцы указали китайские миллисекунды», подумал я и полез смотреть схему контроля напряжения банок. Оказалось, что в ней стоят RC-фильтры, сглаживающие резкие изменения (R=100 Om, C=3.3 uF). После этих фильтров — уже на входе микросхем, контролирующих банки, просадка была поменьше — всего до 2.8 вольт. Кстати, вот даташит на микросхемы контроля банок на этой плате DW01B — www.zahranvane.com/Download?file=298&name=DW01B.pdf
По даташиту время реакции на переразряд тоже немалое — от 40 до 100 мс, что не вписывается в картину. Но ладно, предположить больше нечего, поэтому поменяю-ка я сопротивления в RC-фильтрах со 100 Ом на 1 кОм. Это кардинально улучшило картину на входе микросхем, просадок меньше 3.2 вольт там больше не было. Но ничуть не изменило поведение шуруповерта — чуть более резкий старт — и затык.
«Пойдем простым логическим ходом»©. Отрубать нагрузку могут только эти микросхемы DW01B, которые контролируют все параметры разряда. И я просмотрел осциллографом управляющие выходы всех четырех микросхем. Все четыре микросхемы никаких попыток отключить нагрузку при старте шуруповерта не делают. А с затворов мосфетов управляющее напряжение пропадает. Или мистика или китайцы что-то навертели в простой схеме, которая должна быть между микросхемами и мосфетами.
И начал я реверс-инжиниринг этой части платы. С матюками и бегая от микроскопа к компьютеру.

Вот что нарисовалось в итоге:

В зеленом прямоугольнике — это сами аккумуляторы. В синем — ключи с выходов микросхем защиты, тоже ничего интересного, в нормальной ситуации их выходы на R2,R10 просто «висят в воздухе». Самая интересная часть — в красном квадрате, вот тут-то, как оказалось, собака и порылась. Мосфеты я нарисовал по одному для упрощения, левый отвечает за разряд в нагрузку, правый за заряд.
Насколько я понял, причина отключения в резисторе R6. Через него организована «железная» защита от токовой перегрузки за счет падения напряжения на самом мосфете. Причем эта защита работает как триггер — стоит напряжению на базе VT1 начать повышаться, как он начинает снижать напряжение на затворе VT4, от чего тот начинает снижать проводимость, на нем повышается падение напряжения, что приводит к еще большему увеличению напряжения на базе VT1 и пошел лавинообразный процесс, приводящий к полному открытию VT1 и, соответственно, закрытию VT4. Почему это происходит при пуске шуруповерта, когда пики тока не достигают и 15А, тогда как постоянная нагрузка в 15А работает — я не знаю. Возможно тут играет роль емкость элементов схемы или индуктивность нагрузки.
Для проверки я сначала сделал симуляцию этой части схемы:

И вот что получил по результатам ее работы:

По оси X — время в миллисекундах, по Y — напряжение в вольтах.
На нижнем графике — включение нагрузки (на цифры по Y можно не смотреть, они условны, просто вверх — нагрузка включена, вниз — выключена). Нагрузкой является сопротивление 1 Ом.
На верхнем графике красным — ток нагрузки, синим — напряжение на затворе мосфета. Как видно, напряжение на затворе (синим) снижается с каждым импульсом тока нагрузки и в конце концов падает до нуля, а значит нагрузка отключается. И не восстанавливается даже когда нагрузка перестает пытаться что-то потреблять (после 2 миллисекунд). И хотя здесь применены другие мосфеты с другими параметрами, картина один в один как в плате BMS — попытка старта и отключение через считанные миллисекунды.
Ну что ж, примем это за рабочую гипотезу и вооружившись новыми знаниями попробуем разгрызть этот кусок науки китайца 🙂
Тут есть два варианта:
1. Поставить небольшой конденсатор параллельно резистору R1, это:

Конденсатор 0.1 мкф, по симуляции можно и меньше, до 1 нф.
Результат симуляции в таком варианте:

2. Убрать вообще резистор R6:

Результат симуляции этого варианта:

Я попробовал оба варианта — оба работают. Во втором варианте шуруповерт не отключается ни при каких обстоятельствах — старт, блокировка вращения — крутит (или изо всех сил пытается). Но как-то не совсем спокойно жить с отключенной защитой, хотя еще и остается защита от КЗ на микросхемах.
При первом варианте шуруповерт уверенно стартует при любом нажатии. Добиться отключения я смог только когда стартовал его на второй скорости (повышенная для сверления) с заблокированным патроном. Но и то он довольно сильно дергает перед отключением. На первой скорости я не смог добиться его отключения. Этот вариант я и оставил себе, меня он полностью устраивает.

На плате даже есть пустые места для компонентов и одно из них как будто специально предназначено для этого конденсатора. Рассчитано оно под размер SMD 0603, сюда я и впаял 0.1 мкф (обвел его красным):

ИТОГ

Плата вполне оправдала ожидания, хотя и преподнесла сюрприз 🙂
Плюсы и минусы расписывать не вижу смысла, все это в ее параметрах, укажу только одно достоинство: совершенно незначительная доработка превращает эту плату в полноценно работающую с шуруповертами 🙂

ЗЫ: блин, я шуруповерт переделывал меньше времени, чем писал этот обзор 🙂
ЗЗЫ: возможно меня поправят в чем-то более опытные в силовой и аналоговой схемотехнике товарищи, сам-то я цифровик и аналог воспринимаю через пень колоду 🙂

дрель 12 вольт от прикуривателя

i-perf.ru

Каким способом можно это сделать? Не опасно ли для шуруповерта?

Т.к. работа шуруповерта связана с толчками напряжения при включении и выключении, автомобильный аккумулятор подойдет как нельзя лучше, ведь нормальный режим работы последнего связан именно с режимом разряд-заряд. Что касательно вреда самому устройству ( шуруповерту ) , то тут нет причины опасаться — он будет потреблять столько, сколько ему нужно. Правда для хорошей работы шуруповерта от автомобильного аккумулятора его рабочее напряжение должно быть в районе 12В.

Подключить шуруповерт к аккумулятору можно при помощи гибкого медного кабеля к полюсам «плюс»/»минус» на устройстве и аккумуляторе соответственно.

Подключить шуруповёрт к автомобильному аккумулятору можно если они совпадают по вольтажу, а именно на шуруповёрте будет указанна маркировка 12 V (таких в продаже достаточно!), в таком случае можно просто присоединить его времянкой и работать ничего не опасаясь.

Но большое количество шуруповёртов имеют более высокий вольтаж это и 14V и 18V — в таком случае для стабильной и качественной работы шуруповёрта нужно использовать выпрямитель с регулировкой повышения вольтажа, иначе шуруповёрт будет давится по причине слабой мощности, а ампераж аккумулятора его будет нагревать — что может привести к поломке электроприбора.

Ка правило чаще мы имеем дело с шуруповертами на 12-14 вольт. Это самое оптимальное напряжение и вполне подходит, поэтому вполне подходит для подключения шуруповерта к автомобильному аккумулятору. Здесь главное не перепутать полярность минус плюс. Даже если ваш шуруповерт на 18 вольт, не беда. Его тоже можно запитать, просто мощность немного упадет. Но это не страшно, это же шуруповерт, а не оборотистая дрель. Свою работу такой шуруповерт сделает нормально.

Если шуроповёрт расчитан на напряжение 12 вольт то естественно можно подключить его к автомобильному аккумулятору и не только.Подойдёт и аккумулятор от бесперебойника он расчитан тоже на 12 вольт.Главное не перепутать плюсовую и минусовую клеммы подключения шуроповёрта.В качестве защиты от неправельного включения можно попробовать включить диод в разрыв одного провода.Это просто теоретически должно помочь от неправильного включения.

remotn.ru

я накидал расчет в екселе (файл в приложении) по вопросу падение напряжение в зависимости от сечения провода и нагрузки хорошо если какой то образованный человек посмотрит и подтвердит или скажет что исправить, будет подключателям шуруповертов к автомобильным аккумуляторам методический материал хороший. спасибо Александру IV за идею. * провод от аккумулятора к шуруповерту я считал как 2е длинные (к нему + от него) правильно, нет?
Позже добавлено автором:

Меня интересует смысл подобной манипуляции?? аккумуляторный инструмент дороже а доплачиваем за удобство отсутствие провода. к тому ж аккумулятор тоже придется обслуживать.

1) деньги и не раскрытый творческий инженерный потенциал который хочется проявить. БУ шуруповерт без аккумуляторас умершим аккумулятором можно от купить за небольшие деньги до просто получить в дар, можно и купить новый от той же макиты без аккумулятора дешевле. 2) удобства от пользования шуруповертом у которого балда снизу тоже весьма относительное явление во первых без акумулятора шуруповерт легче и компактней, а маленький шуруповерт 10,8в про который я завел речь вообще пушинка, меня ни сколько не смущает провод и я готов иметь легкий инструмент на проводе. второе, я много раз видел как монтажники зимой (у нас в сибири -20-30) мучаются с этими аккумуляторными шуруповертами уж не знаю в чем им удобство бегать каждые 15 минут на подзарядку аккумулятор ставить, ни когда не понимал почему не решат для себя эту проблему. 3) относительно того что нужен автомобильный аккумулятор, так у автолюбителя обычно скапливается их приличное количество тех на которых зимой уже ездить не получится, а выбросить или сдать за 300р как бу жалко. Ампер 10, а то и 20 туда легко влазит, а это на несколько дней работы если не на неделю.

Я бы лучше задумался над темой подключения сетевого инструмента к аккумулятору.

мысль конечно интересная но тут объективные законы физики да и есть вообще то готовые решения. законы физики заключаются в том что в аккумулятор влазит не так уж много, а обычный мощный электроинструмент потребляет весьма прилично.

жен просто инвертор соответствующей мощности, там тоже свои заморочки, но его легко можно купить хоть и за приличные деньги и много аккумуляторов и там свои заморочки по количеству полных циклов разряда и важно что БУ автомобильный за бесплатно уже не подойдет придется брать новый за приличные деньги. вот и получается что вопрос готовы ли вы отдать кучу денег за несколько часов работы электроинструмента от аккумуляторов. опять же есть уже готовые решения от производителей которые как и положено прилично дороже. хотя у меня есть инвертор на 800вт самый простой китайский он вполне тянет дрели обычные сетевые соответствующей мощности. позже: проверил с этим китайским инвертором 800вт дрель 650вт шлифмашинку 350 вт лобзик 450 вт немного ими поработал, все прекрасно так что проблемы питание сетевого инструмента от аккумулятора в общем то нет за исключением что в 60Ачас аккумулятор автомобильный новый влазит где то 800вт и то это приведет к его полной разрядке что нежелательно.
Позже добавлено автором:

Кстати меня мучает вопрос почему у всех производителей аккум инструмента эти сам аккумуляторы продаются целиком!!! а патронов к ним ни у кого нет. приходится искать их на радиорынке!

барыги потому что идеальный потребитель для корпораций — это совершенно не представляющий то как устроен продукт человек в точности исполняющий указания производителя по замене расходников в положенное время на фирменные.

forum.woodtools.ru

Зачем переделывать аккумуляторный шуруповёрт?

Зачем переделывать шуруповёрт? Когда возникает такая необходимость? Если вы читаете эту статью, наверное, уже успели оценить всё удобство этого инструмента. Без лишних проводков и в любой момент можно воспользоваться им даже в самых труднодоступных местах, пока аккумулятор не сядет. Это и является первым недостатком шуруповёрта. Чем дешевле инструмент, тем быстрее его аккумулятор исчерпает ресурсы циклов зарядки. Вот и второй недостаток. И вы должны понимать, что производитель экономит точно так же, как и вы, и ничего необычного в этом нет. Покупка нового аккумулятора по расходам практически не отличается от покупки шуруповёрта, но выход есть, и сейчас мы рассмотрим варианты переделки шуруповёрта с аккумуляторного на сетевое питание.

Существует несколько способов переделать шуруповёрт из аккумуляторного в сетевой:

  • используя зарядку от ноутбука;
  • используя блок питания от ПК;
  • используя автомобильный аккумулятор;
  • используя блок питания от галогеновых ламп;
  • используя китайскую плату блока питания на 24V.

Монтаж готового блока питания в корпусе старого аккумулятора

Если удалось приобрести на рынке БП с соответствующими показателями, монтаж и переделка осуществляется несколькими простыми шагами:

  • Произвести демонтаж старого корпуса аккумулятора, извлечение отработавших элементов.
  • Установить новый блок питания таким образом, чтобы он плотно находился при корпусе, при необходимости можно приклеить, подключить провода высокого напряжения (выход от розетки 220 вольт).
  • Подключить клеммы низкого напряжения к питанию электромотора гайковерта, при отсутствии контактов, провода придется перепаять.
  • Собрать корпус после переделки и установить блок на шуруповерт.

Монтаж готового блока питания в корпусе старого аккумулятора

Необходимо помнить, что компактные блоки питания греются в закрытом пространстве, поэтому необходимо просверлить несколько отверстий с разных сторон корпуса для вентиляции.

Как переделать аккумуляторный шуруповёрт для работы от сети 220 вольт?

Методы переделки аккумуляторного шуруповёрта для работы от сети различаются по сложности. Подключение зарядки от ноутбука почти не требует знаний, для монтажа компьютерного блока питания нужно дружить с паяльником, а для перенастройки китайского блока мастер должен уметь обращаться с измерительными приборами.

Используя зарядку от ноутбука

Этот метод потребует от вас минимум технических знаний. Если возникла потребность переделать шуруповёрт в сетевой, вам сможет помочь ненужная зарядка от ноутбука, так как она имеет схожие характеристики и без труда найдётся в любом доме. Сперва необходимо посмотреть, какое выходное напряжение у зарядки. Подойдут зарядные устройства на 12–19В.

Потребуется доработать аккумуляторный блок, для этого нужно его разобрать и достать оттуда вышедшие из строя аккумуляторные батареи.

  1. Взять зарядку от ноутбука.
  2. Отрезать разъём и зачистить провода от изоляции.
  3. Взять оголённые провода и припаять их. Если нет такой возможности, примотать их изолентой.
  4. Сделать в корпусе отверстие для провода и собрать конструкцию.

Задействовав внешний блок питания от компьютера

Итак, вам понадобится блок питания «АТ» формата. Вполне вероятно, что вы найдёте его у себя дома, но можно и без проблем приобрести старый работающий блок питания на любом радиорынке. Его стоимость вряд ли будет велика. Очень важно помнить, что подойдёт блок питания, мощность которого составляет 300–350 Вт, а ток в цепи 12 В — не ниже 16 А.

Действия по переделке следующие:

  1. Раскрутить корпус блока питания. Под корпусом вы увидите вентилятор, плату и множество проводов, которые идут от платы к разъёмам.
  2. Требуется снять защиту от включения. Для этого надо найти на большом квадратном разъёме зелёный провод.
  3. Соединить зелёный провод с любым чёрным проводом из этого же разъёма. Для удобства можно обрезать его покороче и оставить внутри корпуса. Как вариант, можно использовать перемычку из маленького кусочка провода.

Видео: как переделать шуруповёрт для работы от сети

Используя автомобильный аккумулятор

Принцип такой переделки не отличается от способа с использованием зарядки от ноутбука. Благодаря нынешним тенденциям на компактные импульсные зарядки, линейные аналоговые приборы с ручным управлением можно купить на авторынке по весьма привлекательной цене.

Если напряжение на аккумуляторе меняется плавным образом, то он подойдёт к абсолютно любому шуруповёрту, и переделка такого инструмента производится следующим образом:

  1. Для подключения шуруповёрта к автомобильному аккумулятору следует использовать недорогие провода с малым сечением, подойдут автомобильные провода для прикуривания.
  2. На всех сторонах каждого из проводов отрезать так называемые «крокодилы», на свободном конце зачистить провод от изоляции на 2–3 см.
  3. Далее присоединить провода. Для присоединения проводов к клеммам нужно согнуть часть вдвое ту часть, что зачищена, а затем продеть их внутри клемм, чтобы получился своего рода крючок.
  4. Для более надёжной фиксации затянуть все соединения пластиковыми хомутами или припаять их. Не забывайте о полярности, обычно «крокодильчики» промаркированы.
  5. Следующим этапом идёт сборка, необходимо всё заизолировать. Для начала лучше обмотать каждое соединение таким образом, чтобы не выступали металлические части, а уже после обмотать всё вместе, клеммы не должны соприкасаться.

Взяв китайскую плату блока питания

Итак, речь идёт о блоке питания с выходным напряжением 24 В и максимальным током 9 А. Шуруповёрты обычно рассчитаны под напряжение 12 В либо 18 В, поэтому сначала придётся понизить напряжение до приемлемого уровня.

Чтобы изменить выходное напряжение, нужно внести доработку в цепь обратной связи. За выходное напряжение отвечает резистор под позицией R10. Его номинал 2320 Ом. Вместо этого резистора установим подстроечный резистор, таким образом появится возможность изменять выходное напряжение блока питания под наши нужды, номинал подстроечного резистора 10 кОм.

  1. Выпаять постоянный резистор.
  2. Перед монтажом подстроечного резистора рекомендуется выставить его сопротивление примерно равным 2300 Ом. Делается это для того, чтобы выходное напряжение блока питания было приблизительно 24 вольта, и блок питания не ушёл в защиту от чрезмерно высокого либо низкого выходного напряжения.
  3. Впаять подстроечный резистор.
  4. Включить блок питания и настроить напряжение, вращая подстроечный винт. После изменения выходного напряжения проверить характеристики блока питания: максимальный выходной ток и мощность. При токе больше 7,6 А блок питания переходит в перегрузку и резко понижает выходное напряжение.
  5. Проверить, что будет при напряжении 12 В. Настроить выходное напряжение. Максимальный выходной ток более 9 А, отлично!

Как подключить шуруповерт к автомобильному аккумулятору

Недорогие шуруповерты для тех, кто пользуется инструментом не очень часто, хороши. Но, как показывает практика, до поры, до времени. У большинства из них аккумуляторы достаточно быстро выходят из строя, а порой им просто не хватает мощности. Решить этот вопрос поможет простой вариант модификации инструмента. На выходе вы получите шуруповерт, который будет работать напрямую от автомобильного аккумулятора.

Материалы

Для модификации шуруповерта своими руками, подготовьте:

  • сам шуруповерт;
  • длинную крестовую отвертку;
  • напильник;
  • зажимы для аккумулятора с проводами;
  • кусачки;
  • нож;
  • паяльник;
  • припой;
  • изоленту.

Шаг 1

. Прежде чем начать работу, нужно полностью разобрать инструмент. Используйте для этого тонкую длинную отвертку.

Шаг 2

. Вначале снимите одну половину корпуса, а вторую с ее внутренним содержимым оставьте в первоначальном виде. Уберите аккумулятор из корпуса. Ваш шуруповерт изнутри может выглядеть немного по-другому. Здесь уже все зависит от производителя. Обязательно найдите положительный и отрицательный электроды. Для дальнейшей работы нужны будут именно они.

Запомните расположение всех внутренних деталей инструмента и аккуратно достаньте их из корпуса.

Шаг 3

. Нижнюю часть пластикового корпуса, выполняющую функцию подставки, смело срежьте напильником. В модифицированном шуруповерте эта часть будет лишней. Старайтесь срезать части симметрично на двух половинах инструмента.

Шаг 4

. Концы проводов на зажимах для аккумулятора зачистите. Для этого используйте острый нож. Если провода у вас слишком длинные, лишние части отрежьте кусачками и только после этого зачищайте их.

Шаг 5

. Провода подключите к электродам. В данном случае конструкция была немного необычной, потому достаточно было продеть провода в зажимы и закрепить их при помощи изоленты. В большинстве случаев для подключения понадобится использовать паяльник с припоем. Будьте к этому готовы заранее.

Шаг 6

. Соберите шуруповерт обратно. Вставьте внутреннее содержимое, провода с зажимами выведите наружу. Соберите корпус и скрепите его винтами. В нижней части, где была подставка, закрепите все изолентой, закрыв ею образовавшееся отверстие.

Итогом ваших стараний станет значительно улучшенный шуруповерт с производительностью выше прежней. При этом его вы сможете использовать, находясь в дороге или далеко от мест, где можно зарядить батарею самого инструмента.

Что ещё

Теперь о нескольких важных нюансах. Во-первых, прежде чем приступать к каким-либо манипуляциям с аккумулятором шуруповёрта, сначала нужно проверить его тип. Для наших целей подходят никель-кадмиевые или никель-метал-гидридные аккумуляторы. С литий-полимерными моделями лучше не экспериментировать, поскольку они могут не выдержать высокого тока и взорваться.

Теперь о заряде. Понятно, что аккумулятор шуруповёрта должен быть заряжен, причём на все 100%. Если попытаться провернуть трюк с наполовину разрядившимся аккумулятором, то точно ничего не выйдет.

И последний момент: даже от полностью заряженного аккумулятора шуруповёрта можно будет завести машину лишь один раз. Если попытаться сделать это снова, то ничего не получится, пока вы снова его не перезарядите. Поэтому важно не глушить двигатель после того, как он запустится, чтобы дать штатному аккумулятору возможность подзарядиться.

Как отличить пусковой конденсатор от рабочего?

Смотрите также обзоры и статьи:

В целом конденсаторы необходимы для того, чтобы, например, к электросети однофазной подключить двух- и трёхфазный асинхронный двигатель.

Научиться отличать пусковой конденсатор от рабочего, зная некоторые их особенности и характеристики, не так уж и сложно. Давайте попробуем в этом разобраться.

Чем именно отличаются конденсаторы?

Рабочий и пусковой конденсаторы отличаются как емкостью, так условиями применения, способом установки и закрепления. А кроме того – самим предназначением.

Так, собственно первый необходим для того, чтобы качественно сдвигать фазу в цепи. Таким образом он способствует тому, что между обмотками двигателя вырабатывается магнитное поле, которое и приводит мотор к движению. Для этого не приходится прикладывать механику. Примером этому может служить любой электродвигатель в инструментах или установках.

А вот пусковой предназначен для того, чтобы усилить старт двигателя, на который воздействуют механически. Он как бы добавляет мотору оборотов, чтобы тот начал крутиться на нужной скорости с нужным режимом. Такие конденсаторы активно применяются в схемах тяжелых подъемочных механизмов, в наносах и т.п.

По емкости также можно легко отличать рабочий конденсатор от пускового, ведь данная величина обычно раза в два минимум больше у второго. Это объясняется тем, что емкость напрямую зависит от мощности электромотора и обратно пропорциональна величине напряжения в электросети.

Отличия по способу присоединения

Первый подключается обычно во вспомогательную обмотку двигателя, а именно в ее разрыв. При этом вторая обмотка напрямую подключается к сети, а третья – остается свободной. Так получается схема под названием звезда или треугольник.

А пусковой конденсатор присоединяется после рабочего параллельно ему. Для подключения понадобится кнопка (если управление будет вручную) или переключатель (если управлять будет привод).

По условиям эксплуатации

Рабочий конденсатор не зря получил такое свое название – ему приходится постоянно быть задействованным в схеме и держать высокие нагрузки напряжения, ведь он работает в самой обмотке электродвигателя. Из-за этого на концах обмотки рабочего может образоваться в определенные моменты напряжение в 500 и даже 600 вольт, а это в два-три раза выше входящего значения. Словом, рабочие более выносливые, чем пусковые.

Пусковые же не берут на себя нагрузку, превышающую входящие 220 вольт, задействуются только время от времени и ненадолго. Поэтому напряжение максимально допустимое не превышает 1,15 раз. Пусковые могут оставаться работоспособными обычно намного дольше рабочих.

Словом, первый конденсатор – настоящая рабочая «лошадка», благодаря которой происходит сдвиг фаз и собственно трехфазные моторы могут работать от однофазной электросети. А второй – носит скорее вспомогательный характер и имеет кратковременный период занятости. Крайне важно не перепутать эти два элемента, ведь пусковой не сможет выдержать нагрузку рабочего, что может привести к печальным последствиям.

Опубликовано: 2020-11-13 Обновлено: 2021-08-30

Автор: Магазин Electronoff

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Зарядное устройство для шуруповёрта — RadioRadar

После года эксплуатации ёмкость Ni-Cd батарей аккумуляторов двух шуруповёртов резко уменьшилась, а штатное зарядное устройство (ЗУ) не выдержало экспериментов самодеятельных дачных электриков (напряжение сети колебалось в интервале 165…270 В). Вообще-то, штатное ЗУ и при нормальном напряжении вело себя не совсем адекватно, сильно разогревалось, а окончание процесса зарядки установить было невозможно.

Восстановление потерявших ёмкость аккумуляторных батарей (10 шт. Ni-Cd аккумуляторов) я произвёл по методике [1]. В результате одна батарея стала работать удовлетворительно, второй это не помогло, поэтому она была заменена четырьмя Li-Ion аккумуляторами (типоразмер — 18650, ёмкость — 9800 мА·ч). Для зарядки этих разных батарей было изготовлено комбинированное ЗУ, схема которого показана на рис. 1.

Рис. 1. Схема комбинированного ЗУ

 

Ток зарядки определяет суммарная ёмкость конденсаторов С1 и С2 и составляет около 120 мА. Собственное потребление устройства — около 10 мА. ЗУ допускает значительные колебания напряжения питания, а режим короткого замыкания в цепи нагрузки ему не страшен. Переменный ток выпрямляет диодный мост VD1. Пороговое напряжение, до которого заряжается батарея, устанавливают подстроечными резисторами R9 (Ni-Cd) или R11 (Li-Ion). Пока батарея не заряжена, ток зарядки протекает через диод VD2, транзисторы VT1 и VT2 закрыты. Светодиод HL1 светит, сигнализируя об этом процессе. 

При достижении порогового напряжения ток через параллельный стабилизатор напряжения на микросхеме DA1 (который работает как компаратор) резко увеличивается, поэтому последовательно открываются транзисторы VT2 и VT1. В результате ток зарядки протекает через транзистор VT1 и напряжение на нём уменьшается. В результате светодиод HL1 гаснет, а диод VD2 закрывается, не давая батарее разряжаться. Цепь VD3R7 обеспечивает гистерезис переключения компаратора (примерно 1,8 В), так как после отключения зарядного тока происходит снижение напряжения на батарее. При включении ЗУ без подключённой батареи светодиод HL1 кратковременно вспыхивает (частота вспышек определяется ёмкостью конденсатора С3). Подобная картина наблюдается и при подключении неисправного аккумулятора с обрывом цепи или малой ёмкостью.

Большинство элементов смонтированы на печатной плате из фольгированного стеклотекстолита, чертёж которой показан на рис. 2. Применены постоянный резистор R1 МЛТ, С2-23, остальные — для поверхностного монтажа типоразмера 1206, конденсаторы С1, С2 использованы из компьютерного ИБП, можно применить аналогичные, рассчитанные для работы на переменном токе. Оксидный конденсатор C3 — импортный или К50-6, К50-35. Транзистор IRFZ24N можно заменить транзистором IRFZ34N, IRFZ44N. Терморезисторы RK1, RK2 можно заменить одним сопротивлением 10…30Ом, диодный мост 2W10 можно заменить мостом DB107 или четырьмя диодами 1N4007. Такими же диодами можно заменить диоды SMA4007 и КД513А. Светодиод может быть маломощным любого свечения.

Рис. 2. Чертёж печатной платы

 

Плату размещают на дне пластмассового корпуса подходящего размера, на его верхней крышке сделано отверстие для светодиода, на боковых — отверстия для переключателя, сетевого провода и проводов для подключения аккумуляторной батареи.

Налаживание устройства заключается в установке требуемого порогового напряжения подстроечными резисторами R9 и R11. Вместо аккумулятора временно подключают конденсатор большой ёмкости (2000…5000 мкФ) и вольтметр. Регулировка производится по максимальному показанию вольтметра.

Для Li-Ion батареи порог отключения — 16,5 В, так как предельно допустимое напряжение составляет 16,8 В или 4,2 В на элемент, порог для Ni-Cd батареи — 15,2 В, так как предельно допустимое напряжение составляет 15,2 Вили 1,52 В на элемент. Указанные пороги взяты из имеющейся практики, к сожалению, в различных источниках встречается значительный разброс данного параметра, очевидно, что причиной этому является влияние легирующих присадок и разные условия проведения измерений. Например, для свинцовых аккумуляторов приведены данные [2] о требуемом напряжении 14,7 В при температуре +25 оС, а батарея GP12-4.5-S начинает кипеть уже при 14,1 В, а у автомобильных аккумуляторов такого эффекта не наблюдается. Можно заряжать и свинцовые аккумуляторы малой ёмкости. При этом пороговое напряжение — 14,2 В или то, что требуется для конкретного типа аккумулятора.

Без изменения схемы можно увеличить зарядный ток в несколько раз соответствующим увеличением ёмкости конденсаторов С1 и С2 при соответствующей коррекции печатной платы.

При зарядке аккумуляторной батареи следует соблюдать правила техники безопасности и исключить возможность прикосновения к батарее и другим элементам устройства, поскольку они имеют гальваническую связь с сетью 230 В. Поэтому отключение и подключение заряжаемой батареи следует проводить только при отключённом от сети ЗУ Соответствующую предупреждающую надпись надо обязательно разместить на корпусе устройства.

Литература

1. Реальный способ восстановить на 100% аккумулятор шуруповёрта, по моей методике NI-CAD 1.2V. — URL: — http:// peling.ru/realnyiy-sposob-vosstanovit-na-100-akkumulyator-shurupoverta-po-moey-metodike-ni-cad-1-2v/ (22.08.17).

2. Ликбез по кислотным аккумуляторам. — URL: https://samodelcin.nethouse.ru/static/ doc/0000/0000/0039/39764.ry23k68as7. pdf (22.08.17).

Автор: В. Баранов, г. Санкт-Петербург

Как рассчитать емкость гасящего конденсатора простого блока питания. . Обзоры товаров из Китая.

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или «по импортному» — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой «простой» блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

Эту страницу нашли, когда искали:
как рассчитать сколько нужно мкф 16в. что из импульсного тока в постоянный, конденсатор как гасящее сопротивление рассчитать емкость конденсатора, чему равна емкость гасящего конденсатора с в схеме на рис.1, если напряжение на входе uвх = 220 в, требуемое напряжение на выходе uвых = 60 в, частота сети переменного тока fс = 50 гц, а мощность в нагрузке rн составляет 20 вт?, расчет конденсаторов источник питания, подбор конденсаторов для стабилизации, запитан через конденсаторы, рассчитать делитель 220 на 110 10 ватт при помощи конденсаторов, гасящий конденсатор на постоянном токе, конденсатор для блока питания 12 12в 2а, расчёт гасящего резистора с 24 до 16 вольт, какой лучше использовать конденсатор для подключения к переменной сети для ограничения мощность, какой величины поставить конденсатор в цепи для поддержания постоянного напряжения 3 вольт, таблица подбора емкости на 230 вольт для ограничения тока, конденсаторы в зарядном устройстве расчет емкости, гасящий трансформатор, номинал конденсатора перем емкости в светодиодной лампе 7ват, какой ток даст конденсаторы блока питания, как рассчитать емкость конденсатора после диодного моста в зависимости от тока, питание сразу от 220 вольт, через гасящие кондеры, какое напряжение выдает 1.5 мкф с 220 вольт, 40кгц гасящий 1,7 вольта фильтр, 180uf 400v можно ли подключить в переменную электрическую сеть, зачем нужны конденсаторы в блоках питания расчет емкости, как подобрать емкость для сглаживания напряжения 12в, какой конденсатор подойдёт для балласта на диодные лампы 220в

Что такое бесщеточные шуруповерты? Их плюсы и минусы | Шуруповерты и дрели | Блог

Все чаще на электроинструменте можно встретить надпись «Brushless motor». Это значит, что девайс оснащен бесщеточным электродвигателем постоянного тока. Действительно ли от этого есть толк или это очередная уловка маркетологов? Давайте разбираться на примере шуруповертов.

Мы будем говорить о шуруповертах как о наиболее востребованном электроинструменте в арсенале домашнего мастера (кто крутил саморезы отверткой, тот поймет). Но тезисы материала безоговорочно распространяются на весь электроинструмент, оснащенный бесщеточными двигателями.

Конструкция и принцип действия

«Brushless motor» в буквальном переводе означает бесщеточный двигатель, в конструкции которого отсутствует коллектор и щеточный узел. Также можно встретить сокращение BLDC, которым именуют бесщеточный электродвигатель постоянного тока.

Классический коллекторный двигатель

Щеточный узел — это механическая контактная часть якоря электродвигателя. С помощью него через пластины коллектора подается напряжение на обмотку якоря. Электрический ток, протекая по проводнику, вызывает электромагнитное поле. Магнитное поле обмотки якоря, взаимодействуя с постоянным магнитным полем статорных обмоток, приводит к возникновению крутящего момента на валу электродвигателя и его вращению. Чтобы вращение вала сохранялось постоянно, напряжение на отдельные проводники якорной обмотки нужно подавать в определенной последовательности. Электрический ток должен протекать по рамкам якорной обмотки в нужный момент,  а электромагнитное поле, наводимое в проводниках, взаимодействовало с постоянным магнитным полем обмоток статора. В двигателе постоянного тока эту функцию выполняет коллекторный узел на якоре электродвигателя.

В бесщеточном электродвигателе коллектор и щетки отсутствуют, но принцип взаимодействия постоянного магнитного поля якоря с электромагнитным полем обмоток статора остается неизменным. Только в BLDC моторе нужно подавать постоянное напряжение на обмотки статора в определенные интервалы времени, имитируя работу коллектора.

Как правило, в конструкции статора бесщеточного мотора используются три пары обмоток, и напряжение на них подается поочередно. При подаче напряжения на первую пару обмоток якорь с постоянными магнитами поворачивается, выравнивая свое положение в соответствии с направлением силовых линий возникшего магнитного поля. В этот момент напряжение с первой пары обмоток снимается и подается на вторую пару. Поскольку якорь электродвигателя обладает определенным моментом инерции, он не останавливается моментально, а продолжает свое вращение, и его магниты начинают взаимодействовать со следующим магнитным полем. Так продолжается до тех пор, пока на обмотки статора поочередно подается напряжение.

Это упрощенная схема работы Brushless мотора. На самом деле, для усиления крутящего момента и исключения «провалов» его полки, в работе постоянно находятся две пары обмоток. Одна из них притягивает постоянные магниты якоря в моменты, когда они находятся до средней линии полюса катушки, а вторая подталкивает, как только полюс катушки пройден центральной частью постоянного магнита якоря. На первую пару катушек подается напряжение прямой полярности, а на вторую — обратной.

Для определения, на какие пары катушек нужно подать напряжение и какой полярности, в системе установлен датчик положения ротора. Он состоит из трех датчиков Холла, дающих контроллеру сигнал о необходимости формирования напряжения на каждой из пар катушек статора.

На видео наглядно проиллюстрирована работа бесщеточного двигателя:

Плюсы и минусы бесщеточного шуруповерта

Производители пишут, что основная изюминка бесщеточного шуруповерта — не нужно менять щетки, которых нет. Это на самом деле так, но так ли сложно поменять щетки?

За этим «жирным» плюсом притаился довольно коварный минус. Дело в том, что более-менее нагруженный шуруповерт потребует замены щеток на второй, а то и третий год работы. Проводя их замену, бережливый владелец наверняка заглянет и в другие узлы инструмента. Обратит внимание на состояние подшипников, очистит внутренности от пыли, заложит порцию свежей смазки — в общем, проведет полное техобслуживание инструмента. В случае с бесколлекторным инструментом, о необходимости сервисного обслуживания можно просто забыть и вспомнить о нем, когда шуруповерт начнет конкретно барахлить.

Вот по-настоящему значимые преимущества бесщеточного инструмента:

  • Высокий КПД. У бесщеточного двигателя он составляет порядка 90 %, в то время как у коллекторного мотора — на уровне 60 %. Это обусловлено отсутствием потерь на трение и искрообразование, и, как следствие, повышением температуры коллекторного узла якоря мотора.
  • Быстрый выход на номинальную скорость вращения двигателя. В этом опять же заслуга высокого КПД BLDC мотора.
  • При тех же массогабаритных показателях, с вала бесщеточного электродвигателя снимается большая мощность, а это влечет получение большего крутящего момента.
  • Лучшая энергоэффективность. Благодаря отсутствию потерь в коллекторе и щеточном узле и более высокому КПД бесщеточный шуруповерт сделает больше полезной работы на одном заряде аккумулятора. Это важно профессионалам, для которых время — деньги. Эффективность бесщеточного шуруповерта в  среднем выше на 25–40 % в сравнении с его коллекторным аналогом.
  • Возможность использования во взрыво- и пожароопасных средах ввиду отсутствия искр на щеточном узле.
  • Грамотная защита от перегрузки. Плата управления электродвигателем просто не позволит нагрузить инструмент сверх меры, а вот коллекторный шуруповерт при должном старании можно перегреть и получить дымок из вентиляционных отверстий.

Но бесщеточным инструментам присущи и некоторые недостатки:

  • Высокая цена. Наличие в конструкции дорогой силовой платы управления BLDC мотором ощутимо увеличивает стоимость шуруповерта.
  • Плохая ремонтопригодность. В бесщеточном шуруповерте плата управления, кнопка включения инструмента и статор электродвигателя обычно идут единым блоком. Стоимость запчасти — от 2/3 до 3/4 стоимости нового инструмента. Если поломка произойдет по истечении гарантийного срока, то ремонтировать такой шуруповерт вряд ли целесообразно. В отличие от коллекторных экземпляров, где можно заменить кнопку или электродвигатель отдельно, и стоить это будет на порядок дешевле.

Перспективы бесщеточных шуруповертов на рынке электроинструмента

Переход на бесщеточные инструменты неизбежен, поскольку они выгодны в первую очередь самим производителям ввиду унификации производственных процессов, уменьшению количества составных частей и улучшения технических характеристик выпускаемых моделей. Конечному пользователю такой переход абсолютно ничем не грозит. Шуруповерты как закручивали винты и саморезы, так и будут, исходя из своих технических возможностей.

Для профессиональной деятельности однозначно стоит смотреть в сторону бесщеточных моделей. Они экономичней, шустрее и надежней. Каждый рубль, вложенный в их покупку, окупится сторицей.

А вот домашнему мастеру стоит взвесить все «за» и «против», реально оценить возможную загруженность инструмента и свою готовность отдать больше денег за современные технологии.

Как безопасно разрядить конденсатор Советы

Я не хочу показаться скучным, однако перед тем, как начать это руководство, я хотел бы освежить вашу память некоторыми физическими вопросами, а ниже — немного теории.

Конденсатор представляет собой устройство, состоящее из двух металлических пластин, разделенных изоляционным материалом. Это электрический и электронный компонент, который накапливает электрическую энергию во время скачков напряжения и возвращает ее в цепь, когда напряжение в цепи падает ниже значения напряжения конденсатора.Когда напряжение в цепи падает, конденсаторы могут регулировать напряжение в цепи до полного или частичного разряда.

Емкость — это способность системы накапливать электрический заряд. Фарад — это единица измерения электрической емкости.

Общеизвестно, что конденсатор может сохранять электрический заряд долгое время после выключения устройства. Чем больше конденсатор, тем больше заряда он может хранить. Работа с конденсаторами с большими значениями напряжения (особенно выше 100 В и с большой емкостью) может быть опасной, если не будут приняты некоторые меры защиты и безопасности.Поэтому, чтобы избежать любой неожиданной опасности и / или опасности поражения электрическим током для любого, кто может обслуживать устройство, все конденсаторы должны быть разряжены перед любой операцией.

Чтобы измерить значение емкости, необходимо удалить конденсатор из цепи и разрядить. После этого можно использовать мультиметр для измерения его емкости. Если значение показания 0 F, это может означать, что конденсатор сломан. Однако, если вы хотите узнать текущее рабочее напряжение конденсатора, нет необходимости удалять его из схемы.

Когда возникает необходимость разрядить конденсатор?

Необходимо разрядить любой конденсатор, требующий обслуживания, независимо от того, находится ли он в цепи или в качестве запасной части.

Какие меры безопасности следует соблюдать?

Обязательно соблюдайте некоторые меры безопасности при работе с конденсаторами или при их разрядке. Вам понадобится электрическая отвертка с изоляцией, защитные перчатки и электрические защитные очки .

Электрические изолированные отвертки и плоскогубцы

Электрические отвертки имеют маркировку максимального напряжения, которое необходимо использовать в целях безопасности.

Как разрядить конденсатор наиболее безопасным способом

В этом руководстве я покажу вам несколько способов разрядить конденсатор.

1. Разрядка конденсатора отверткой

Возможно, вы слышали, что один из самых простых способов разрядить конденсатор — это закоротить его выводы с помощью отвертки или плоскогубцев. На самом деле, большинство техников поместило бы плоскогубцы или отвертку между двумя выводами конденсатора, и работа была сделана.Этот метод отлично работает только с конденсаторами, используемыми в электронике на некоторые микрофарады и ниже 10 В .

Чтобы избежать проблем при разрядке конденсатора, делайте это технически правильно: перед использованием отвертки используйте мультиметр, чтобы узнать накопленный электрический заряд конденсатора.

  1. Начните с настройки мультиметра на максимальное значение постоянного напряжения.
  2. Подсоедините выводы конденсатора к щупам мультиметра.
  3. Возьмите щупы и прочтите числа на дисплее мультиметра.

Примечание. Если сохраненное напряжение конденсатора ниже 10 В, нет необходимости его разряжать, так как он будет разряжаться сам по себе.

Или вы можете соединить оба вывода конденсатора вместе, как показано на рисунке ниже:

Помните, что это можно сделать для конденсаторов низкого напряжения. Если показания мультиметра ниже 50V , вы можете разрядить конденсатор отверткой или замкнуть его накоротко.

  1. Возьмите изолированную отвертку в одну руку и конденсатор в другую.

Примечание : Убедитесь, что изоляция рукоятки отвертки не повреждена: на пластике или резине не должно быть видимых деформаций, трещин, отверстий или разрывов. Никогда не используйте отвертку со сломанной ручкой для любых электромонтажных работ.

  1. Поместите отвертку на оба вывода конденсатора.
  2. Будет искра. Это означает, что электрический разряд идет.

Примечание : Если заряд конденсатора превышает 50 В, вы можете стать свидетелем сильной искры, которая очень опасна и может привести к потенциальной травме глаз и лица; кроме того, наконечник отвертки может расплавиться.

  1. С помощью мультиметра еще раз проверьте накопленный заряд конденсатора. Если вы все сделали правильно, к этому моменту конденсатор должен быть полностью разряжен: на мультиметре вы увидите нулевое напряжение.

Внимание! Вы можете безопасно разрядить только низковольтный конденсатор, закоротив его клеммы отверткой!

Личное защитное снаряжение рекомендуется всегда, но может не понадобиться при малых напряжениях (ниже 10 В)

2.Разрядка конденсатора с помощью 15-ваттной электрической лампочки

Высоковольтные конденсаторы следует разряжать с помощью безопасного инструмента для разряда конденсаторов. И один из них представляет собой простую схему с использованием провода и лампочки (значения от 15 до 90 Вт для удобства пользователя) .

  1. Начните с настройки мультиметра на максимальное значение напряжения постоянного тока.
  2. Подсоедините выводы конденсатора к щупам мультиметра.
  3. Возьмите щупы и прочтите числа на дисплее мультиметра.

Примечание : Если сохраненное напряжение конденсатора выше 50 В , вы должны разрядить его с помощью безопасного инструмента. Даже не пытайтесь сделать это отверткой, как описано выше. Вы можете получить тяжелую травму во время процесса, повредить конденсатор и даже отвертку.

  1. Возьмите в одну руку газоразрядную лампу, а в другую — конденсатор.
  2. Поместите выводы лампы на выводы конденсатора и удерживайте их.
  3. Лампочка загорится. Это означает, что конденсатор содержит заряд и происходит электрический разряд.
  4. Когда лампочка не погаснет, отсоедините ее от выводов конденсатора.
  5. С помощью мультиметра еще раз проверьте накопленный заряд конденсатора. Если вы все сделали правильно, к этому моменту конденсатор должен быть полностью разряжен: на мультиметре вы увидите нулевое напряжение.

3. Разрядка конденсатора с помощью резистора

Другой безопасный способ разрядки конденсатора — через нагрузку, обычно высоковольтный резистор .Вы можете использовать 10-ваттный резистор 2,2 кОм.

  1. Начните с настройки мультиметра на максимальное значение постоянного напряжения.
  2. Подсоедините выводы конденсатора к щупам мультиметра.
  3. Возьмите щупы и прочтите числа на дисплее мультиметра.

Примечание. Если сохраненное напряжение конденсатора выше 50 В, необходимо разрядить его с помощью безопасного инструмента.

Даже не пытайтесь сделать это с помощью отвертки, как описано выше. Вы можете получить тяжелую травму во время процесса, повредить конденсатор и даже отвертку.

  1. Возьмите изолированные плоскогубцы, чтобы удерживать высоковольтный резистор посередине. Не прикасайтесь к резистору, так как он может сильно нагреться во время разрядки конденсатора.
  2. Поместите выводы высоковольтного резистора между выводами конденсатора. Не касайтесь металлических деталей голыми руками, иначе вы получите тяжелую травму (поражение электрическим током).
  3. Вскоре проверьте напряжение: вам нужно знать, держит ли конденсатор еще какой-либо заряд.Для этого снова подключите два щупа мультиметра к клеммам конденсатора. Если клемма показывает нулевое напряжение, конденсатор полностью разряжен.

Возможно ли, что конденсатор разрядится сам по себе?

Конечно, в конце концов, конденсатор разрядится сам по себе, при условии, что он был отключен от любого внешнего источника питания или любого другого зарядного устройства (например, внутренней батареи).

Вам также могут понравиться мои обзоры:

Лучшие комплекты роботов для взрослых

Как выбрать лучший портативный экстрактор сварочного дыма

Как разрядить конденсатор с помощью отвертки

Конденсаторы — это то, что вы найдете практически в любой электронике устройство.Эти маленькие штуки могут накапливать массу электрического заряда и могут стать причиной поражения электрическим током. Вы не захотите получить удар током при установке нового конденсатора для устройства.

Вот почему так важно знать, как разрядить конденсатор с помощью отвертки. Почему именно отвертку? Потому что это самый доступный инструмент в любом доме.

И если вы можете использовать его для этой задачи, зачем вам вообще нужны высокотехнологичные инструменты, верно? Итак, если вам интересно узнать об этом потенциальном взломе, не забудьте остаться с нами до конца этой статьи и изучить процесс самостоятельно.

Хотите узнать больше? Давайте погрузимся в эту статью!

Зачем нужно разряжать конденсатор?

Конденсаторы — довольно опасные объекты, так как они могут содержать электрический заряд долгое время после выключения любого устройства. Особенно когда речь идет о высоковольтных конденсаторах, необходимость их разряда после использования очень высока.

Во избежание опасности поражения электрическим током важно, чтобы конденсатор обслуживался и разряжался. Был ли этот конденсатор частью схемы или просто запасной частью, если он был запитан, его необходимо разрядить.

НЕ будьте тем парнем, который просто так бросает использованный конденсатор и не заботится о возможных авариях и опасностях.

Некоторые меры безопасности, которые необходимо соблюдать

Поскольку это довольно сложная задача, необходимо знать некоторые меры безопасности, а также знать, как разрядить конденсатор с помощью отвертки. Вы знаете, что они говорят: «Лучше перестраховаться, чем сожалеть», верно?

Есть несколько вещей, которые необходимо использовать или поддерживать при разрядке конденсатора, независимо от того, какой метод вы используете.

Убедитесь, что у вас есть надежно изолированные отвертки, а не те, которые не изолированы должным образом. Очень важно, чтобы вы проверили, надежно ли изолирована отвертка, иначе вы рискуете получить «шок» от того, что происходит!

Кроме этого, вам нужны защитные перчатки из резины или какого-либо непроводящего материала и защитные очки для глаз. И, наконец, вам могут потребоваться изолированные плоскогубцы, так что держите их под рукой, если они вам понадобятся.

Мы настоятельно рекомендуем использовать средства защиты и средства защиты. Однако, если заряд, накопленный в конденсаторе, составляет всего 10 В, вам действительно не понадобятся предохранительные устройства. Но, тем не менее, мы все равно рекомендуем действовать осторожнее.

Как разрядить конденсатор с помощью отвертки?

Теперь, когда мы убедились, что вы в безопасности при выполнении задачи, пришло время подробно объяснить весь процесс, чтобы вы не испортили его.

Настройка мультиметра

Мы знаем, мы сказали, что покажем вам, как можно разрядить конденсатор, используя только отвертку, и ничего не упомянули о мультиметре.Ну, мы сейчас, так что просто выслушайте нас.

Первое, что вам нужно сделать, это настроить мультиметр, чтобы точно видеть, сколько электрического заряда все еще находится в конденсаторе. Это важно, так как это покажет нам, сколько времени потребуется, чтобы разрядить его должным образом.

Установите на мультиметре максимальное значение постоянного напряжения и переходите к следующему шагу.

Подключите выводы

Вам нужно будет подключить выводы конденсатора к щупам мультиметра. Убедитесь, что вы надели эти защитные перчатки, так как вы рискуете получить удар током.

Технически это первый шаг, если мы думаем, что у вас может быть готовый мультиметр и он настроен ранее (да, некоторые люди так делают).

Наблюдение за дисплеем мультиметра

Удерживайте щупы мультиметра с выводами конденсатора должным образом. При этом обращайте внимание на показания, которые вы видите на дисплее мультиметра.

Примечание: если показания мультиметра меньше 50В, то только тогда действуйте так, как мы советуем — с помощью отвертки разрядите его.В противном случае следует использовать другие инструменты.

Получите изолированную отвертку

Возьмите изолированную отвертку и держите ее в одной руке, а конденсатор — в другой. Как мы уже упоминали ранее, изоляция должна быть сделана правильно. Не допускается использование сломанной или поврежденной ручки отвертки.

Итак, будьте более бдительны в отношении наличия любых трещин, разрывов, дыр или хрупкости в резине или пластике.

Поместите отвертку поперек обоих выводов

Возьмите два вывода конденсатора и поместите отвертку поперек них.Вы заметите возникновение искры, что будет означать, что процесс разряда продолжается и скоро будет завершен.

Еще одна вещь, на которую вы должны обратить внимание, это то, что искра может быть довольно сильной, если заряд превышает 50 В. Это то, к чему вы действительно должны относиться с осторожностью. Убедитесь, что вы правильно надели защитное снаряжение и не рискуете получить удар электрическим током или травмы от искр.

Еще один нюанс: при слишком высоком заряде наконечник отвертки может расплавиться.Так что будьте осторожны со своим оборудованием и больше не используйте отвертку, если вы видите, что заряд слишком высок. Мы бы посоветовали разряжать конденсатор другим способом.

Еще раз проверьте мультиметр

Мы предполагаем, что заряд был ниже 50 В, и вы продолжили разряд конденсатора с помощью отвертки. Вам придется некоторое время подержать отвертку, прикрепленную к проводам, и время от времени контролировать мультиметр.

Через некоторое время взгляните на дисплей и посмотрите, исчез ли накопленный заряд до нуля.Если вы выполнили свою работу правильно, в этот момент показания сохраненного заряда должны быть равны 0 В.

Конденсаторы разряжаются сами по себе?

Технически да, со временем. Но в первую очередь это относится к конденсаторам, в которых изначально хранится низкий заряд. Не позволяйте высоковольтному конденсатору лежать после его использования, не разрядив его вручную.

Однако, если мы говорим теоретически, все конденсаторы могут разрядиться самостоятельно после отключения от источника питания.Это постепенный процесс и может занять время, в зависимости от подаваемого на него напряжения.

Итак, если конденсатор, который вы используете, имеет очень низкое напряжение, например, ниже 10 В, вы можете технически оставить его как есть, чтобы он разряжался сам по себе. Это не будет проблемой и не причинит никакого вреда.

Заключительные слова

Было ли это слишком сложно понять? Мы надеемся, что предоставленная нами информация была достаточно полной, чтобы вы могли полностью понять процесс. На этом этапе вы должны точно знать, как разрядить конденсатор с помощью отвертки.

Обязательно соблюдайте упомянутые меры безопасности, чтобы не столкнуться с какими-либо травмами или опасностями. Предотвращение потенциальных опасностей очень важно. Помните, ребята, безопасность превыше всего!

Мы надеемся, что вы весело провели время, читая эту статью, и сочли ее достаточно информативной. Удачи в работе над вашим устройством!

Как разряжать конденсаторы в импульсном блоке питания

Вот краткое руководство о том, как разрядить конденсаторы в источнике питания, чтобы вы могли безопасно его отремонтировать:
  1. Не закорачивайте клеммы конденсатора фильтра отверткой.Это может быть опасно.
  2. Вкрутите 100-ваттную лампочку в розетку с оголенными выводами.
  3. Подсоедините по одному выводу к каждой клемме конденсатора, лампочка должна загореться.
  4. Когда лампочка погаснет, конденсатор пустой.
  5. В качестве альтернативы, вы можете замкнуть клеммы конденсатора на несколько секунд с помощью резистора большой мощности, что-то вроде 2,2 кОм, 10 Вт будет работать.

Импульсные блоки питания имеют несколько фильтрующих конденсаторов большой емкости, которые могут удерживать опасные заряды, даже если блок питания не использовался несколько дней.Эти конденсаторы фильтра обычно имеют номиналы 220 мкФ / 250 В и 330 мкФ / 400 В. Перед работой с цепями питания необходимо разрядить конденсаторы, чтобы не получить электрошок.

Существует три различных способа разряда конденсаторов фильтра большой емкости в источнике питания: отверткой, выводами 100-ваттной лампочки с розеткой и выводами резистора большой мощности.

Не рекомендуется использовать отвертку для разряда конденсатора, так как это может вызвать искру и повредить печатную плату или схему источника питания.Можно даже секцию питания взорвать. Имейте в виду, что если вы знаете, что накопленное напряжение конденсатора относительно низкое, вы можете разрядить его с помощью небольшой отвертки без чрезмерного риска.

Если конденсатор держит более сильный заряд, разрядка конденсатора может расплавить наконечник отвертки, а также медь печатной платы. Сильная искра особенно опасна: из нее могут вылететь небольшие кусочки припоя или меди из печатной платы, что может привести к травме глаз.

Второй метод заключается в размещении выводов 100-ваттной электрической лампочки с розеткой на выводе конденсатора и используется техническими специалистами по всему миру. Лампочка действует как индикатор, показывая, есть ли в конденсаторе заряд. Если есть заряд, лампочка загорится и в конечном итоге погаснет, когда конденсатор в импульсном источнике питания разрядится.

Последний метод заключается в размещении выводов резистора большой мощности на выводах конденсатора.Вы можете использовать 10-ваттный резистор 2,2 кОм для разряда высоковольтных конденсаторов в импульсном блоке питания. Это очень простой и эффективный процесс, который занимает всего несколько секунд, чтобы полностью разрядить конденсатор.

На самом деле нет причин разряжать конденсатор отверткой, если все, что вам нужно, это лампочка или резистор, так что имейте это в виду в следующий раз, когда вам понадобится разрядить конденсаторы в импульсном блоке питания.

Как безопасно разрядить конденсатор?

Конденсаторы — важные элементы во многих электронных устройствах, от вашей бытовой техники до смартфона и компьютеров.

Основная функция конденсатора — накапливать электрическую энергию, чтобы различными способами помогать электронному устройству. Какова цель этой накопленной электрической энергии?

Вкратце, конденсатор можно медленно заряжать для достижения необходимого напряжения, а затем быстро разряжать, чтобы обеспечить энергию, необходимую электрическому устройству.

Дело в том, что оставленный сам по себе заряженный конденсатор будет сохранять этот заряд на долгое время, а то и годы. Когда конденсатор отключен, мгновенное напряжение, которое он несет, сохраняется на ранее подключенных клеммах, что может быть опасно.

Вот почему очень важно, разрядить конденсатор, прежде чем отключать его, чтобы снять все заряды и соответствующее напряжение.

Разрядится ли конденсатор сам по себе?

Теоретически конденсатор будет постепенно терять заряд.

Полностью заряженный конденсатор в идеальном состоянии при отключении разряжается до 63% своего напряжения после единственной постоянной времени. Таким образом, этот конденсатор разряжается почти до 0% через 5 постоянных времени.

Все конденсаторы имеют утечку, поэтому мы можем представить, что у нас есть резистор с очень высоким сопротивлением (мегаом), параллельный конденсатору.

Когда конденсатор отключен, через этот воображаемый резистор будет сниматься напряжение. Это то, что вызывает постепенное выделение.

Однако каждый конденсатор имеет разную емкость, и для его полной разрядки потребуется другой период времени. Если это действительно большой конденсатор, то заряда может хватить на месяцы и даже годы.

Не говоря уже о том, что всегда что-то может пойти не так, даже с меньшими конденсаторами, и эти заряды останутся в конденсаторах.

Проблема в том, что эти конденсаторы не могут уведомить вас об этих зарядах до тех пор, пока они не приведут к повреждению, которое может быть опасным для жизни.

Вот почему в идеале из соображений безопасности лучше всего разряжать конденсаторы вручную.

Как безопасно разрядить конденсатор?

Прежде чем мы сможем обсудить, как безопасно разрядить конденсатор, мы должны сначала понять, как работает конденсатор.

Как работает конденсатор?

Конденсаторы состоят из двух электродов, разделенных диэлектрическим материалом. Конденсатор будет накапливать электрический заряд той же величины, и в нем накапливаются противоположные потенциалы.

На самом деле существует несколько различных типов конденсаторов, но самый простой из них сделан из двух металлов с диэлектрическим материалом (керамика, пропитанная бумага или даже воздух) между ними. Эти металлические пластины используются для хранения электрической энергии.

Когда этот конденсатор подключен к электричеству, подача напряжения начинает процесс накопления электричества на этих пластинах конденсатора.

Когда источник напряжения затем отключается (из-за электростатического притяжения), электрический заряд остается на этих пластинах конденсатора.

Накопленные заряды между двумя конденсаторами всегда имеют одинаковое значение, но с противоположными потенциалами, как в батарее.

Теперь, чтобы безопасно разрядить конденсатор, мы можем просто выполнить аналогичный процесс зарядки этого конденсатора, но он будет варьироваться в зависимости от типа и емкости конденсатора, как мы обсудим ниже.

Безопасная разрядка конденсатора

Как правило, конденсаторы с емкостью более одной фарады следует разряжать осторожно, и мы рекомендуем использовать специальные инструменты для разрядки конденсаторов (подробнее об этом мы поговорим ниже).

Как правило, безопасный разряд конденсатора связан с подключением резистивной нагрузки , которая будет способна рассеивать электрическую энергию, хранящуюся в конденсаторе.

Например, если это конденсатор на 200 В, то лампочка на 220 В может действовать как резистивная нагрузка, и конденсатор будет освещать лампочку, эффективно разряжая энергию, накопленную в конденсаторе.

После выключения лампы конденсатор полностью разряжен. Вы можете использовать для этой цели резистивный приемник, а не только лампочку, но вы должны уловить идею.

Таким образом, основные этапы разрядки конденсатора следующие:

  1. Отключить питание конденсатора полностью для обеспечения вашей безопасности.
  2. Используйте вольт / омметр или мультиметр, чтобы определить величину напряжения, которое накапливает конденсатор. Убедитесь, что вы получаете точное количество вольт.
  3. Если напряжение относительно низкое (ниже 50 В), вы можете использовать изолированную отвертку для снятия этого напряжения. Или используйте соответствующий резистивный приемник, способный выдерживать напряжение.
  4. Крепко удерживайте конденсатор. Убедитесь, что ваши руки защищены от контактов, чтобы вас не ударило током. Резистивный приемник (например, отвертка) должен контактировать с обеими клеммами конденсатора одновременно.
  5. Проверьте конденсатор еще раз, и если напряжение осталось, повторите процесс по мере необходимости.

Ниже мы обсудим более конкретные способы разрядки конденсатора с помощью различных инструментов.

Как разрядить конденсатор с помощью мультиметра?

Вы, , не можете разрядить конденсатор с помощью мультиметра, как такового, но мультиметр полезен для проверки напряжения, хранящегося в конденсаторе, чтобы мы могли выбрать подходящий резистивный материал для фактического выполнения разряда.

Во-первых, убедитесь, что вы используете правильный мультиметр, чтобы обеспечить вашу безопасность и точность, и вы можете использовать наше предыдущее руководство по лучшим мультиметрам, доступным на рынке, чтобы помочь вам выбрать подходящий мультиметр для работы.

Мы можем использовать либо аналоговый мультиметр, либо цифровой мультиметр для выполнения этой работы, просто превратите мультиметр в показания напряжения и проверьте напряжение конденсатора:

  • Установите мультиметр на максимально возможное значение постоянного напряжения
  • Подключить Проблема мультиметра с пластинами конденсатора
  • Считайте показания напряжения на дисплее мультиметра, убедитесь, что оно точное

Как разрядить конденсатор с помощью отвертки?

Как уже говорилось, вы можете использовать изолированную отвертку для безопасного разряда конденсатора , если сохраненное напряжение относительно низкое (ниже 50 В).

Во-первых, убедитесь, что вы используете качественную изолированную отвертку для обеспечения вашей безопасности. Выберите один с резиновыми пластиковыми ручками или с другими непроводящими материалами на ручках, чтобы защитить себя от поражения электрическим током.

Всегда предполагает, что все конденсаторы находятся в заряженном состоянии, и поэтому всегда удерживает корпус и не касается пластин / выводов конденсатора из соображений безопасности.

Также перед выполнением разряда проверьте состояние отвертки, не поврежден ли изолирующий материал.Это может показаться простым делом, но если вы разряжаете высоковольтный конденсатор, вам может угрожать даже небольшой разрыв изоляции отвертки.

Затем выполните следующие действия:

  1. Удерживайте корпус конденсатора активной рукой. Опять же, убедитесь, что вы не касаетесь клемм конденсатора. Убедитесь, что у вас есть достаточный контроль над захватами.
  2. Осторожно коснитесь отверткой двух пластин / выводов конденсатора одновременно .Теперь должен произойти процесс разряда.
  3. Через несколько секунд снимите отвертку с конденсатора.
  4. Снова подсоедините отвертку к пластинам, если нет искр, конденсатор полностью разряжен. При необходимости повторите процесс.

Как разрядить конденсатор с резистором?

Если сохраненное напряжение конденсатора на выше 50 В , не разряжайте его отверткой. Вы рискуете повредить конденсатор, отвертку и даже себя.

Вместо этого вы можете использовать метод лампочки, как описано выше, или использовать для работы высоковольтный резистор:

  1. Используйте изолированные плоскогубцы и удерживайте высоковольтный резистор посередине. Не прикасайтесь к резистору руками, так как в процессе разряда он может сильно нагреться.
  2. Поместите выводы резистора между двумя пластинами конденсатора. Не прикасайтесь руками к металлическим деталям, это может привести к поражению электрическим током.
  3. Используйте мультиметр и еще раз проверьте напряжение конденсатора.Если он еще не равен нулю, повторите процесс по мере необходимости.

Если клемма показывает нулевое напряжение, конденсатор полностью разряжен.

Есть ли специальный инструмент для разряда конденсатора?

Да! Вы можете использовать ручку для разряда конденсатора, такую ​​как Sparkpen Battery Capacitor Discharge Pen .

Проверить последнюю цену

При использовании ручки для разряда конденсатора вам не нужно беспокоиться о напряжении, значениях резисторов и т. Д.Просто проверьте коробку ручки, конденсаторы какого размера она может безопасно работать.

Разрядная ручка Sharkpen, например, безопасна для конденсаторов от 5 до 1000 В.

Чтобы использовать ручку, просто подключите черный вывод к катодному выводу конденсатора (символ — на корпусе конденсатора), а красный вывод / щуп к анодному выводу конденсатора (символ +).

Как определить, неисправен ли у вас конденсатор переменного тока, и как его заменить

Все мы знаем это удивительное чувство, когда вы приходите из жаркого летнего дня в свой прекрасный кондиционер.Но однажды вы можете войти и обнаружить, что ваш дом не такой крутой, как вы ожидаете.

Некоторым людям также знакомо чувство опущения при поломке блока переменного тока. Однако знать, что вам предстоит дорогостоящий ремонт, не должно быть никому.

Летом становится жарче и Июнь 2021 года бьет рекорды, нужен рабочий кондиционер.

Перед тем, как пойти и заняться серьезной работой, вам, возможно, придется задать себе вопрос: «У меня плохой конденсатор переменного тока?».Если вы это сделаете, есть хорошие новости — вы можете заменить его самостоятельно.

Ознакомьтесь с симптомами и руководством по замене, чтобы узнать, действительно ли это вы.

Предупреждения по безопасности

Многие блоки переменного тока имеют конденсаторы, которые несут достаточно высокий заряд, поэтому вы должны быть абсолютно осторожны при их замене или проверке. Однако, если вы примете разумные меры предосторожности, у вас не должно возникнуть проблем.

  • Никогда не касайтесь клемм на конце конденсатора
  • Не используйте предметы с металлической ручкой для разряда конденсатора.Используйте отвертку с изолированной ручкой и приложите металлический стержень отвертки к C к HERM и C к FAN, чтобы разрядить конденсатор.

При работе с высоковольтным оборудованием, таким как блок переменного тока, всегда убедитесь, что оно выключено. Если ваш блок переменного тока является съемным, убедитесь, что вилка полностью отключена. Если ваш AC подключен к автоматическому выключателю, убедитесь, что он отключен или выключен.

Признаки неисправности или неисправности конденсатора

Блоки переменного тока с плохими конденсаторами могут вызывать несколько интересных симптомов.Хотя это не всегда стопроцентная гарантия неисправного конденсатора переменного тока, велика вероятность того, что у вас возникнут проблемы, если вы увидите что-либо из этого.

Вы можете заметить:

  • Гудящие шумы
  • Проблемы с включением или выключением
  • Запах гари или электрического разряда
  • Счета больше, чем обычно
  • Агрегат может отключиться случайным образом
  • Без охлаждения
  • Щелчки или жужжание

Если что-то из этого звучит знакомо, есть большая вероятность, что с конденсатором переменного тока что-то не так, и вам следует подумать о его замене.

Если ни один из этих симптомов не подходит, обратитесь к нашему руководству по устранению неполадок, чтобы найти проблему.

Без охлаждения

Как только ваш кондиционер перестанет подавать холодный воздух, это верный признак того, что что-то не так. Возможно, это не долгосрочная проблема. Вы можете проверить, включив и выключив устройство снова, чтобы увидеть, исчезнет ли проблема.

Щелчки или жужжание

Это снова связано с двигателем. Когда двигатель пытается запуститься, но не может, он может издавать щелкающий или гудящий звук.Это хороший признак того, что конденсатор сломан.

Теперь, когда у вас есть хорошее представление о симптомах, которые вы можете увидеть, давайте узнаем немного о том, как работают конденсаторы. Таким образом, вы сможете понять, как их безопасно и эффективно заменить.

Счета за высокую энергию

Когда конденсатор переменного тока неисправен, двигатель вентилятора конденсатора должен работать больше и потреблять больше ампер. Поэтому, когда вы внезапно замечаете, что ваши счета за электроэнергию увеличиваются, у вас может быть плохой конденсатор. Чтобы понять, почему плохой конденсатор означает более высокий счет за электроэнергию, см. Раздел ниже о том, что делает конденсатор.

Случайные отсечки

Вы можете обнаружить, что ваш блок переменного тока отключается, и вы время от времени ничего не делаете.

Проблема с включением или выключением

Эта проблема почти всегда связана с плохим конденсатором. Когда система пытается сделать что-то, для чего требуется больше энергии, неисправный конденсатор может вызвать проблемы. Этот симптом также может проявляться в том, что устройству требуется много времени для начала работы после его включения. Конденсатор дает начальный заряд энергии, и когда он выходит из строя, блок переменного тока изо всех сил пытается запуститься.Обычный обходной путь, хотя иногда и опасный, — это толкать лопасть вентилятора палкой. Это может быть опасно и привести к повреждению устройства, поэтому следует делать это только в экстренных случаях.

Запах жжения или электрического разряда

Это немного сложнее, так как может быть много причин (ни одна из них не является хорошей), по которым ваш блок переменного тока может пахнуть гари. В вашем блоке переменного тока конденсатор приводит в движение двигатель. Когда конденсатор неисправен, двигатель имеет тенденцию к перегреву, и это может вызвать запах.

Что на самом деле делает конденсатор?

Если вы думаете о конденсаторе как о большом хранилище энергии, вы на правильном пути. Самый простой конденсатор состоит всего из нескольких компонентов. Это два проводника, которые пропускают электричество, и промежутки, которые блокируют поток электричества. Когда электричество проходит через конденсатор, электроны накапливаются в двух проводниках. Один проводник хранит отрицательно заряженные электроны, а другой — положительно заряженные.

Любой большой прибор, такой как блок переменного тока, требует много электроэнергии для работы. И когда компрессор и двигатель вентилятора запускаются, им требуется большое количество энергии. Вы не захотите постоянно платить за электроэнергию по высокой цене — здесь на помощь приходят конденсаторы.

Конденсаторы используют накопленную энергию, чтобы дать большой толчок мощности вашему компрессору и двигателю вентилятора при запуске. Возможно, вы слышали шум, когда начинается этот процесс.

После запуска устройства в конденсаторе больше нет необходимости, и он может вернуться к накоплению энергии для следующего большого толчка.

Что такое номинал конденсатора

У конденсатора много разных номиналов, но для наших целей нас интересуют только два:

  1. Рабочее напряжение
  2. Значение емкости. На вашем конденсаторе переменного тока будет 2 значения емкости. Один приводит в движение компрессор, другой — двигатель вентилятора.

Рабочее напряжение

На самом деле это просто показатель того, какое напряжение может пройти через конденсатор. Одна из причин, по которой конденсатор может выйти из строя быстрее, чем ожидалось, — это нестабильная подача электроэнергии в вашем доме.При замене конденсатора вы можете увеличить напряжение, так как это максимальное напряжение, с которым он может работать. Как правило, вы увидите конденсаторы на 370 или 440 В, но многие производители увеличивают запасы только до 440 В.

Значение емкости

Измеряется в микрофарадах и показывает, сколько энергии может хранить конденсатор. Обычно это будет написано 50 + 5 MFD или 50 + 5 μ. Здесь есть и другие сложности, но все будет в порядке, если вы можете указать микрофарады.

Примеры этикеток конденсаторов. Обратите внимание, как некоторые производители используют МФД для отображения рейтинга микрофарад, тогда как другие используют символ μ.

Как определить, неисправен ли конденсатор

Наиболее частым признаком неисправного конденсатора является гудение двигателя вентилятора конденсатора на внешнем блоке, или двигатель не запускается. В доме вы заметите, что холодный воздух не выходит из вентиляционных отверстий. Когда это происходит, конденсатор не работает и не может обеспечить достаточное количество накопленной энергии для работы двигателя вентилятора или компрессора.

Помимо всех симптомов из нашего списка, могут быть визуальные признаки того, что с конденсатором что-то не так. Если вы видите конденсатор на своем блоке переменного тока, его достаточно легко проверить на предмет повреждений или других функциональных проблем.

Визуальные признаки неисправного конденсатора

Внимательно посмотрите на конденсатор в вашем устройстве. Он выглядит гладким и безупречным? Если есть заметный прогиб или выпуклость, конденсатор необходимо заменить.Таким же образом, если масло выходит из верхней части конденсатора, срок его службы подошел к концу, и его необходимо заменить.

Пример неисправного конденсатора кондиционера: вздутие Пример неисправного конденсатора кондиционера: ржавчина

Будет ли кондиционер работать с неисправным конденсатором?

Скорее всего, вы услышите жужжащий звук, если конденсатор переменного тока неисправен и ваш переменный ток не работает. В аварийной ситуации электродвигатель вентилятора конденсатора переменного тока можно запустить с помощью джойстика до тех пор, пока не придет запасной конденсатор, однако мы не рекомендуем этого делать, поскольку вы можете вызвать дальнейшее повреждение лопасти вентилятора и / или змеевика конденсатора.Если змеевик конденсатора поврежден, то может потребоваться полная замена блока, поскольку стоимость ремонта будет слишком высокой.

Как проверить рабочий конденсатор с помощью мультиметра

Использование функции емкости на мультиметре

Включите счетчик

Поверните циферблат на функцию емкости (см. Ниже). В этом случае мы используем мультиметр Клейна, и мы должны нажимать кнопку выбора, пока не увидим, что это емкостной режим.

Установка емкости на мультиметре
Проверка секции вентилятора конденсатора конденсатора

Поместите один щуп мультиметра на C (общий)

Поместите другой датчик на ВЕНТИЛЯТОР.

Считывание емкости секции двигателя вентилятора конденсатора

Подождите несколько секунд, и на дисплее должно появиться значение емкости. При хорошем чтении микрофарады находятся в пределах 10% от указанной на этикетке спецификации.

Проверка секции вентилятора компрессора конденсатора

Поместите один щуп мультиметра на C (общий)

Поместите другой зонд на HERM. (HERM — сокращение от герметичный, что означает герметичный компрессор)

Считывание емкости компрессорной секции конденсатора

Подождите несколько секунд, и вы должны увидеть значение емкости на дисплее.При хорошем чтении микрофарады находятся в пределах 10% от указанной на этикетке спецификации.

Использование функции сопротивления на мультиметре

Конденсатор также можно проверить путем измерения сопротивления, но лучше всего это работает с аналоговым измерителем. Цифровые измерители обычно не показывают скачок вверх и вниз в омах, что указывает на исправный конденсатор.

Включите счетчик

Поверните циферблат на Ом. (Похоже на символ омега)

Быстрое считывание показаний сопротивления между клеммами

Наденьте датчик на C, а другой на ВЕНТИЛЯТОР.Вы должны увидеть значение сопротивления на стрелке прыжка и вернуться к бесконечности.

Переверните щупы и найдите такое же поведение на стрелке мультиметра.

Повторите это для C и HERM.

Получите показания в сопротивлении между выводами и корпусом конденсатора

Поместите один щуп на C, а другой на внешний металлический корпус конденсатора. Если вы получаете показания, указывающие на целостность цепи, то конденсатор неисправен.

Повторите это для терминала FAN и терминала HERM.

Проверка на короткое замыкание между выводами и корпусом конденсатора

Как заменить конденсатор кондиционера

Замена конденсатора переменного тока несложна и в большинстве моделей может быть сделана своими руками. Каждая модель отличается, поэтому процесс может немного отличаться в зависимости от вашей марки.

Основные шаги:

  1. Выключите и отсоедините блок переменного тока
  2. Откройте или удалите панель, которая дает вам доступ
  3. Обычно находится на боковой стороне устройства и имеет маркировку
  4. .
  5. Проверить, какой номинал сломанного конденсатора
  6. Снимаем старый конденсатор
  7. Установить новый конденсатор
  8. Включите блок переменного тока и протестируйте его.

Хотя это относительно простая установка, мы рекомендуем прочитать инструкции до конца.У вас будет полное представление о том, что вы будете делать таким образом.

Шаг 1: Собрать Ваши инструменты

Вам нужна отвертка, чтобы снять панель доступа? Когда вы доберетесь до снятия конденсатора, вам могут понадобиться как отвертка 1/4 дюйма, так и отвертка 5/16.

Шаг 2. Выключите и отсоедините блок переменного тока

Убедитесь, что вы правильно выключили блок переменного тока. Мы рекомендуем выключить прерыватель, который идет к сети переменного тока, и извлечь блок предохранителей из коробки отключения кондиционера.

Шаг 3. Откройте или снимите панель доступа

Это должна быть маленькая распашная дверь. Обычно он появляется сбоку или снизу блока переменного тока. Для открытия некоторых панелей требуется отвертка, в то время как у других есть защелка. Будьте осторожны при открытии панели, чтобы у вас было безопасное место для ее хранения, если она полностью выйдет наружу.

Шаг 4: Найдите конденсатор

Типичное расположение конденсатора в сплит-системе

Конденсатор в вашем блоке переменного тока будет выглядеть как металлический цилиндр.Он будет иметь две или три клеммы наверху, и к ней должны быть подключены провода.

Шаг 5: Осмотрите конденсатор

Сделайте быстрый визуальный осмотр конденсатора. Вы видите выпуклость? Нет ли утечек масла по бокам? Если что-то в конденсаторе выглядит деформированным или странным, скорее всего, это плохо.

Это также хорошее время для проверки остальных компонентов шкафа переменного тока. Есть ли на контакторе следы ожогов или точечной коррозии? Пробка компрессора в хорошем состоянии?

Шаг 6: Проверьте номинал конденсатора

Внимательно посмотрите на конденсатор.Вот пример, показывающий этикетку. Сбоку на нем должна быть этикетка, на которой будет рассказано все, что вам нужно знать о нем. Кроме того, предоставив нам вашу модель и серийный номер, мы можем помочь вам найти подходящий конденсатор для вашего кондиционера. Помните, из того, что мы видели выше; нас интересуют два рейтинга:

  1. Рабочее напряжение
  2. Емкость
Рабочее напряжение

Обычно это печатается в верхней части этикетки, а после нее идут буквы VAC.Вы можете увидеть текст, похожий на «370VAC» или «440VAC».

Номинальная емкость

Обычно он печатается под номинальным напряжением и имеет после него буквы мкФ или мкФ. Вы можете увидеть текст, похожий на «50uF» или «40 + 5MFD».

Шаг 7: Снимите старый конденсатор

Сначала сфотографируйте старый конденсатор на месте. Это поможет вам позже, когда вы вставите новую. Разъемов должно быть три — HERM, вентилятор и С.Важно, чтобы, когда вы снова вставляете новый конденсатор, вы подключаете его таким же образом.

ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ: Не прикасайтесь к клеммам конденсатора, так как он все еще может удерживать заряд.

После того, как вы сфотографировали разъемы, осторожно отключите их. Отсоединенные провода следует отложить в сторону, чтобы они не мешали.
Конденсатор должен легко сниматься. Обычно для их удаления требуется всего один или два винта, а некоторые из них являются защелкивающимися.Если винты удерживают конденсатор, убедитесь, что вы храните их в безопасном месте.

Шаг 8: Установите новый конденсатор

Один за другим присоедините провода, как на старом конденсаторе. Убедитесь, что правильные провода идут к разъемам HERM, вентилятора и C. Перед тем, как продолжить, проверьте их правильность.

Как только вы убедитесь, что у вас есть подходящие разъемы в нужном месте, пора снова установить конденсатор. Возьмите ранее снятые винты и установите конденсатор, приложив твердое усилие.Будьте осторожны, чтобы не повредить винты при установке.

Если для установки конденсатора не используются винты, он должен просто снова встать на место.

Шаг 9: Закройте и закрепите панель доступа

Не забудьте ввернуть обратно все винты, которые могли удерживать дверь закрытой. Панель с открытым доступом может быть опасной и должна быть закрыта должным образом.

Шаг 10: Включите блок переменного тока и проверьте

Пришло время вернуть все обратно.Если вы отключили прерыватель или нажали на него, подключите его снова. Если ваш блок переменного тока является вставным, снова вставьте вилку в розетку и включите ее.

Как только все вернется на свои места, вы можете включить кондиционер, как обычно, и посмотреть, работает ли он.

Шаг 11: Тестирование

Тестирование так же просто, как включение блока переменного тока и установка его на охлаждение.

Вы не должны слышать гудение или щелчки, а компрессор и двигатель вентилятора должны запускаться легко.Если эти два компонента все еще не запускаются, возможно, они были безвозвратно повреждены из-за неисправного конденсатора, который только что был заменен.

Вы должны увидеть заметную разницу. Теперь все должно работать должным образом, и ваша комната должна начать охлаждаться.

Замена конденсатора переменного тока стала проще

Итак, теперь, когда вы получили эту новую способность ремонтировать свой собственный блок переменного тока, что еще осталось? Что ж, для начала вам нужно хорошее и надежное место для замены неисправного конденсатора переменного тока.

К счастью, это действительно просто. Вы можете связаться с нашими специалистами по запасным частям или позвонить нам напрямую, чтобы поговорить с дружелюбным техником. Мы поможем вам определить, какой конденсатор вам нужен, исходя из вашей марки и модели или номинала конденсатора.

Как заряжается конденсатор? — Mvorganizing.org

Как заряжается конденсатор?

Вы можете зарядить конденсатор, просто подключив его к электрической цепи. Когда вы включаете питание, на пластинах постепенно накапливается электрический заряд.Одна пластина получает положительный заряд, а другая пластина — равный и противоположный (отрицательный) заряд.

В каком направлении течет заряд при зарядке конденсатора?

Когда конденсатор заряжается, ток течет к положительной пластине (когда к ней добавляется положительный заряд) и от отрицательной пластины. Когда конденсатор разряжается, ток течет от положительного полюса к отрицательной пластине в противоположном направлении.

Как узнать, заряжен ли конденсатор, не разряжая его?

Подключите оба вывода конденсатора к петле из проводов и лампочек.После того, как лампочки временно загорятся, конденсатор разряжен. 4. Чтобы узнать, заряжен ли уже конденсатор, не разряжая его. Подсоедините зарядную петлю (как в №2, если лампочки не горят, то конденсатор уже заряжен.

Есть ли у конденсатора положительная и отрицательная сторона?

Электролитические конденсаторы имеют положительную и отрицательную стороны. Чтобы определить, какая сторона какая, поищите большую полосу или знак минуса (или и то, и другое) на одной стороне конденсатора. Вывод, ближайший к этой полосе или знаку минус, является отрицательным, а другой вывод (без маркировки) — положительным.

В чем разница между рабочим конденсатором и пусковым конденсатором?

Пусковой конденсатор создает отставание тока от напряжения в отдельных пусковых обмотках двигателя. Ток нарастает медленно, и якорь имеет возможность начать вращаться с полем тока. Рабочий конденсатор использует заряд диэлектрика для увеличения тока, обеспечивающего питание двигателя.

Как определить неисправность конденсатора с помощью мультиметра?

Используйте мультиметр и снимите напряжение на выводах конденсатора.Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр. Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Как проверить пусковой конденсатор цифровым мультиметром?

Как измерить емкость

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено.
  2. Осмотрите конденсатор.
  3. Переведите шкалу в режим измерения емкости.
  4. Для правильного измерения необходимо удалить конденсатор из цепи.
  5. Подключите измерительные провода к клеммам конденсатора.

Должен ли конденсатор иметь целостность?

Если конденсатор не показывает никаких признаков непрерывности, конденсатор открыт. Если мультиметр издает непрерывный звуковой сигнал, конденсатор неисправен и нуждается в замене.

Как правильно разрядить конденсатор?

Другой способ разрядить конденсатор — использовать лампочку накаливания, которая может выдерживать напряжение, удерживаемое в конденсаторе.Подключите его, и как только лампочка перестанет гореть, конденсатор разрядится. Опять же, вы всегда хотите измерить напряжение после того, как оно предположительно разряжено, на всякий случай.

Зачем нужно разряжать конденсатор?

Вы должны разрядить конденсаторы перед работой с цепями электропитания, чтобы не получить электрошок. Не рекомендуется использовать отвертку для разряда конденсатора, так как это может вызвать искру и повредить печатную плату или схему источника питания.Можно даже секцию питания взорвать.

Сколько времени нужно для разрядки конденсатора?

Через 5 постоянных времени конденсатор разрядится почти до 0% от всего своего напряжения. После 5 постоянных времени, для любых целей, конденсатор разряжается почти до всего своего напряжения. Конденсатор никогда не разряжается полностью до нуля вольт, но очень близко подходит.

Можно ли получить удар от конденсатора?

Если емкость конденсатора мала, можно получить сильный шок, но этого не хватит, чтобы убить.Вы определенно можете умереть от удара током от конденсаторов, заряженных высоким напряжением. Даже высоковольтные кабели, отключенные от источника питания, могут сохранять смертельный заряд.

Можно ли разрядить конденсатор мультиметром?

Мультиметр не используется напрямую для разряда накопленной энергии конденсатора. Вместо этого люди используют его для измерения напряжения и мощности конденсатора, чтобы узнать, полностью он разряжен или нет. Для этого вы можете использовать различные инструменты, такие как лампочка или самодельный разрядный инструмент.

Может ли конденсатор разрядиться без резистора?

Конденсаторам для разряда не нужен резистор. Если у вас нет резистора, он быстро разрядится. Вы хотите замедлить его с помощью резистора. Конечно, если у вас нет другого пассивного элемента или батареи, подключенной к батарее, конденсаторам не нужен резистор для разряда, когда вы закорачиваете обе стороны конденсаторов.

Безопасно ли разрядить конденсатор отверткой?

Часто безопасно разрядить конденсатор с помощью обычной изолированной отвертки; однако обычно рекомендуется собрать инструмент для разряда конденсатора и использовать его для электроники с большими конденсаторами, например, бытовой техники.

Как объяснить влияние диэлектрика на емкость конденсатора? — Реабилитацияrobotics.net

Какое влияние диэлектрика на емкость конденсатора объяснить?

Введение диэлектрика в конденсатор уменьшает электрическое поле, что снижает напряжение, что увеличивает емкость. Конденсатор с диэлектриком сохраняет тот же заряд, что и конденсатор без диэлектрика, но при более низком напряжении. Поэтому конденсатор с диэлектриком более эффективен.

Что происходит с емкостью конденсатора, когда между его пластинами помещается диэлектрическая пластина?

Электрическое поле между пластинами конденсатора с параллельными пластинами прямо пропорционально емкости C конденсатора. Если общий заряд на пластинах поддерживается постоянным, то уменьшается разность потенциалов на пластинах конденсатора. Таким образом, диэлектрик увеличивает емкость конденсатора.

Что такое диэлектрический материал и как он влияет на конденсатор?

Диэлектрический материал используется для разделения проводящих пластин конденсатора.Этот изоляционный материал в значительной степени определяет свойства компонента. Диэлектрическая постоянная материала определяет количество энергии, которое конденсатор может хранить при приложении напряжения.

Что происходит с конденсатором при отключении аккумулятора?

Когда заряженный конденсатор отсоединяется от батареи, его энергия остается в поле в пространстве между пластинами. . Когда заряд выражается в кулонах, потенциал выражается в вольтах, а емкость выражается в фарадах, это соотношение дает энергию в джоулях.

Какое поле связано с конденсатором?

электрическое поле

Когда конденсатор подключен к батарее?

Если незаряженный конденсатор C подключен к батарее с потенциалом V, то при зарядке пластин конденсатора протекает переходный ток. Подача тока от батареи прекращается, как только заряд Q на положительной пластине достигает значения Q = C × V.

Можно ли использовать конденсатор для зарядки аккумулятора?

Да, заряженный конденсатор может заряжать батарею без всяких сомнений, если номинальное напряжение конденсатора достаточно для зарядки, но время, в течение которого он может заряжаться, зависит от емкости конденсатора.

В чем разница между конденсатором и батареей?

Потенциальная энергия в конденсаторе хранится в электрическом поле, где аккумулятор хранит свою потенциальную энергию в химической форме. Однако в целом батареи обеспечивают более высокую плотность энергии для хранения, в то время как конденсаторы обладают более быстрой способностью заряжаться и разряжаться (более высокая плотность мощности).

Сколько заряда может удерживать конденсатор?

Конденсатор емкостью 1 фарад может хранить один кулон (кулон) заряда при напряжении 1 вольт.18, или 6,25 миллиарда миллиардов) электронов. Один ампер представляет собой скорость потока электронов в 1 кулон электронов в секунду, поэтому конденсатор емкостью 1 фарад может удерживать 1 ампер-секунду электронов при напряжении 1 вольт.

Может ли конденсатор убить вас?

Конденсаторы не смертельны, они не могут убить вас. Напряжение, накопленное в конденсаторе, и ток во время разряда могут нанести вам вред. Во времена телевизоров на основе ЭЛТ в источнике высокого напряжения, который использовался в качестве фильтра, был небольшой конденсатор на 300 пФ или около того.

Зачем нужно разряжать конденсатор?

Вы должны разрядить конденсаторы перед работой с цепями электропитания, чтобы не получить электрошок.Не рекомендуется использовать отвертку для разряда конденсатора, так как это может вызвать искру и повредить печатную плату или схему источника питания. Можно даже секцию питания взорвать.

Безопасно ли разрядить конденсатор отверткой?

Часто безопасно разрядить конденсатор с помощью обычной изолированной отвертки; однако обычно рекомендуется собрать инструмент для разряда конденсатора и использовать его для электроники с большими конденсаторами, например, бытовой техники.

Как лучше всего разрядить конденсатор?

Другой способ разрядить конденсатор — использовать лампочку накаливания, которая может выдерживать напряжение, удерживаемое в конденсаторе. Подключите его, и как только лампочка перестанет гореть, конденсатор разрядится. Опять же, вы всегда хотите измерить напряжение после того, как оно предположительно разряжено, на всякий случай.

Как отличить рабочий конденсатор от пускового?

Пусковой конденсатор создает отставание тока от напряжения в отдельных пусковых обмотках двигателя.Ток нарастает медленно, и якорь имеет возможность начать вращаться с полем тока. Рабочий конденсатор использует заряд диэлектрика для увеличения тока, обеспечивающего питание двигателя.

Как проверить конденсатор мультиметром?

Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности.

Какой символ конденсатора на мультиметре?

Метод 2 из 2: Измерение. Настройте мультиметр на измерение емкости. В большинстве цифровых мультиметров используется символ, похожий на — | (- для обозначения емкости.

Что означает конденсатор?

Конденсатор представляет собой компонент с двумя выводами, обозначенный буквой C. Символ конденсатора выглядит так, как будто две параллельные пластины помещены между двумя выводами.На схеме доступны два типа обозначений конденсаторов. Один предназначен для поляризованного конденсатора, а другой — для неполяризованного конденсатора.

Какие символы на мультиметре?

Что такое напряжение, сила тока и сопротивление?

Переменная Символ Символ
Напряжение В В
Текущий я A
Сопротивление R Ом

Что происходит, если пусковой конденсатор выходит из строя?

Двигатель, подключенный к конденсатору работы и запуска, может все еще пытаться запустить, если один или оба конденсатора вышли из строя, и это приведет к тому, что двигатель будет гудеть и не будет работать долго.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.