+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Какое минимальное напряжение должно быть в сети – 220 или 230 вольт?

Какое напряжение должно быть в однофазной сети

На первый взгляд, кажется, что между этими двумя редакциями нет никакой разницы. В обеих случаях номинальным напряжением объявляется 230 В. Допустимое отклонением от номинала плюс, минус 10%. Получается, что минимальным допустимым рабочим напряжением является 207 В, а максимальным 253 вольта, но в ГОСТе от 2014 года в отличие от предыдущей редакции есть приложение “А”, в котором есть колонка “наименьшее используемое напряжение” и там стоит цифра 198 В.

Что это значит, а только одно, что стандарт допускает “проседание”, связанное с состоянием электрических сетей.

Какова действительная величина напряжения в сети в квартире

Не скажу за всю Россию, но в мой квартире это значение колеблется от 235 до 239 вольт.

Если исходить из принятых в ГОСТе определений, то 230 В, вовсе не является среднеквадратичным значением и служит только для идентификации сети т. е. говоря, “линия на 230 вольт” в этом случае можно предположить, что разговор ведётся о любом показателе в интервале 198–253 В и при любой его величине в установленных рамках, такое напряжение будет считаться “правильным”, соответствующим стандарту.

Как изменение повлияло на ресурс бытовых электроприборов

После нескольких лет эксплуатации можно сделать некоторые выводы о влиянии “нового электричества” на бытовые электроприборы, основанные на практическом опыте.

Холодильник

На шильдике, который находится внутри, внизу, слева, есть указание 220–240 вольт переменного тока, частотой 50 Гц. Что это значит? Диапазон номинальных напряжений. Если применить допустимое отклонение 10%, для нижнего значения со знаком минус, а для верхнего со знаком плюс, то получим коридор, ограниченный 198–264 вольтами. Как видите, он вполне укладывается в диапазон, предусмотренный стандартом.

Впрочем, для того кто знает об особенностях асинхронных электродвигателей, в это нет ничего удивительного.

Водонагреватель, электроплита

В моём случае, в руководствах по эксплуатации указывается номинальное значение 220 В и только для водонагревателя допуск ±10%.

Пониженное напряжение для бытовой техники, в которой используются ТЭНы, вообще, не страшно. ТЭН будет медленнее нагреваться, только и всего. Верхний предел зависит от максимальной температуры нагрева спирали, которая, в свою очередь, зависит от длины проволоки нихрома, её сечения и ещё много отчего.

Стиральная машина

Порогом нижнего предела для стиральных машин считается 190 В. При падении ниже этого порога автоматика в лучшем случае отключит привода или зависнет.

Телевизоры, компьютер

На шильдеке пишут разное: AC 230 V, 220 – 230 В, а на телевизоре (Samsug), даже так 100 – 240 В, но если кто-то сталкивался с импульсными блоками питания которыми оснащена современная аппаратура, тот знает, что перепады напряжения даже более значительные чем предусмотренные стандартом, для импульсников не проблема.

Проблема в выходной мощности, но это совсем другая история.

Приборы освещения

Единственно действительно уязвимыми для 230 вольт оказались приборы освещения. Причём все: лампы накаливания, лампы КЛЛ и драйвера светодиодов.

Видимо, в понимании производителей приборов освещения, обозначение 220–240 не означает диапазон номинальных значений, а их предел. В самом деле, что будет делать производитель, если каждая лампочка, им произведенная, будет светить 5–10 лет.

Нормы в соответствии с ГОСТом

Итак, руководствоваться мы будем ГОСТ 29322-92 в актуальной редакции (за 2014 год), согласно которому предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения:

  • для сети 230в – от 207 до 253 Вольта;
  • для сети 400в – от 360 до 440 Вольт.

Что касается допустимого отклонения напряжения у потребителей, в ГОСТе указано, что данную величину в точках общего подключения устанавливает непосредственно сетевая организация, которая в свою очередь должна удовлетворять нормы, указанные в настоящих стандартах.

Помимо этого хотелось бы отметить, что при нормальном режиме работы сети допустимое отклонение напряжения на зажимах электрических двигателей находится в диапазоне от -5 до +10%, а других аппаратов не больше, чем 5%. В то же время после возникновения аварийного режима допускается понизить нагрузку не больше, чем на 5%.

Кстати, хотелось бы дополнительно отметить, что на источнике питания в электросетях 0,4 кВ согласно нормам отклонение не должно превышать отметку в 5%, собственно, как и у самих потребителей. Итого, 5% на источнике + 5% у потребителей, имеем 10% предельно допустимого.

Немаловажно знать о причинах возникновения отклонения напряжений. Так вот основной причиной считается сезонное или суточное изменение электрической нагрузки самих потребителей. К примеру, в зимнее время все резко включают обогреватели, в результате чего параметры электросети заметно падают. О том, что делать, если низкое напряжение в сети, мы рассказывали в соответствующей статье!

Негативное влияние отклонения параметров

Чтобы вы понимали всю опасность отклонения напряжения в сети, предоставляем к прочтению следующие факты:

  1. Когда значение понижается ниже нормы, значительно снижается срок службы используемого электрооборудования и в то же время повышается вероятность возникновения аварии. Помимо этого, в технологических установках увеличивается длительность самого производственного процесса, что влечет за собой увеличение показателей себестоимости продукции.
  2. В бытовой сети, как мы уже говорили, отклонения напряжения сокращает срок службы лампочек. При повышении напряжения на 10% срок эксплуатации обычных лампочек сокращается в 4 раза. В свою очередь энергосберегающие лампы при снижении напряжения на 10% начинают мерцать, что также негативно влияет на продолжительность их работы. Об остальных причинах мерцания люминесцентных ламп вы можете узнать из нашей статьи.
  3. Что касается электрических приводов, то из-за снижения напряжения увеличивается потребляемый двигателем тока. В свою очередь это уменьшает срок службы двигателя. Если же напряжение будет даже на незначительных казалось бы 1% выше нормы, реактивная мощность, которую потребляет электродвигатель, может увеличиться до 7%.

Двигаясь ближе к концу, хотелось бы отметить, что существует несколько современных способов решения проблемы: снижение потерь напряжения в электрической сети, о чем мы писали в соответствующей статье, а также регулирование нагрузки на отходящих линиях и шинах подстанций.

Вот мы и рассмотрели нормы отклонения напряжение в сети по ГОСТ. Теперь вы знаете, насколько низкого или же высокого значения может достигать этот параметр в трехфазной и однофазной сети переменного тока!

Рекомендуем также прочитать:

  • Устройства защиты от перенапряжения
  • Причины перегорания светодиодных ламп
  • Причины возгорания электропроводки в квартире
  1. Статьи

Какое напряжение должно быть в сети 220В или 230В

И так вопрос: «Какое напряжение должно быть в нашей сети 220В или 230В?» На первый взгляд, очень простой вопрос. И очень простой ответ: «В сети должно быть 220В». Действительно, мы с детства знаем, что в розетке 220 Вольт и это опасно для жизни. На заводе, фабрике и в офисе на каждой розетке должна быть надпись «220В». На двери трансформаторной будки: «Не влезай — Убьет! 220В/380В».

Однако это не совсем верный ответ. В настоящее время в России стандартным напряжением в сети является напряжение 230В, но для поставщиков электроэнергии действует 220В. Действительно, ранее в Советском союзе стандартным напряжением было 220В, однако в последствии были приняты решения о переходе на общеевропейский стандарт — 230В. Согласно требований межгосударственного стандарту ГОСТ 29322-92 сетевое напряжение должно составлять 230В при частоте 50 Гц. Переход на этот стандарт напряжения должен был завершиться в 2003 году. В ГОСТ 30804.4.30-2013 так же есть упоминание о необходимости проведения измерений при стандартном напряжении 230В. ГОСТ 29322-2014 определяет стандартное напряжение 230В с возможностью использовать 220В. Электросети поставляют электроэнергию согласно действующего на сегодняшний день ГОСТ 32144-2013, устанавливающего напряжение 220В.

Изменение стандартного значения напряжения было проведено для получения полного соответствия европейским стандартам качества электроэнергии. Из всех бывших республик СССР к стандарту «230В» перешли Россия, Украина, страны Балтии.

При этом следует понимать, что электрическое оборудование, выпускаемое в России и для России должно нормально работать и при напряжении 220В, и при напряжении 230В. Для приборов, как правило, закладывается диапазон по напряжению от -15 % до +10 % от номинального.

География стран со стандартными напряжениями: 100В, 110В, 115В, 120В, 127В, 220В, 230В, 240В

В разных странах мира приняты различные стандарты сетевого напряжения. Можно встретить следующие стандарты:

  • 100В в Японии
  • 110В в Ямайке, Гаити, Гондурасе, Кубе
  • 115В в Барбадосе, Сальвадоре,Тринидаде
  • 120В в США, Канаде, Венесуэле, Эквадоре
  • 127В в Бонайре, Мексике,
  • 220В во многих странах Азии и Африки
  • 230В во многих странах Европы и части стран Азии
  • 240В в Афганистане, Гайане, Гибралтаре, Катаре, Кении, Кувейте, Ливане, Нигерии, Фиджи.
География стран, в которых приняты напряжения 220В и 230В

Наибольшее распространение получили стандарты 220В и 230В, эти стандарты приняты более чем в 150 странах мира. Ниже приводится таблица стран, в которых приняты стандарты напряжения 220В и 230В. В левой колонке находятся страны, в которых стандартное сетевое напряжение 220В, в правой колонке — страны, где напряжение 230В.

Таблица стран, в которых принято напряжение 220В и 230В

Страна Напряжение Страна Напряжение
Азербайджан 220В Австралия 230В
Азорские острова 220В Австрия 230В
Албания 220В Алжир 230В
Ангола 220В Андорра 230В
Аргентина 220В Антигуа 230В
Балеарские острова 220В Армения 230В
Бангладеш 220В Бахрейн 230В
Бенин 220В Белоруссия 230В (ранее 220В)
Босния 220В Бельгия 230В
Буркина-Фасо 220В Ботсвана 230В
Бурунди 220В Бутан 230В
Восточный Тимор 220В Вануату 230В
Вьетнам 220В Великобритания 230В
Габон 220В Венгрия 230В
Гвинея 220В Гамбия 230В
Гвинея-Бисау 220В Гана 230В
Гонконг 220В Гваделупа 230В
Гренландия 220В Германия 230В
Грузия 220В Гренада 230В
Вжибути 220В Греция 230В
Египет 220В Дания 230В
Зимбабве 220В Доминика 230В
Индонезия 220В Замбия 230В
Иран 220В Западное Самоа
230В
Кабо-Верде 220В Израиль 230В
Казахстан 220В Индия 230В
Камерун 220В Иордания 230В
Канарские острова 220В Ирак 230В
Киргизия 220В Ирландия 230В
Китай 220В Исландия 230В
Коморы 220В Испания 230В
Конго 220В Италия 230В
Корфу 220В Камбоджа 230В
Лесото 220В Лаос 230В
Литва 220В Латвия 230В (ранее 220В)
Мавритания 220В Лихтенштейн 230В
Мадейра 220В Люксембург 230В
Макао 220В Маврикий 230В
Македония 220В Малави 230В
Мартиника 220В Мальдивские острова 230В
Мозамбик 220В Мальта 230В
Нигер 220В Молдавия 230В (ранее 220В)
Новая Каледония 220В Монголия 230В
ОАЭ 220В Мьянма 230В
Парагвай 220В Непал 230В
Перу 220В Нидерланды 230В
Португалия 220В Новая Зеландия 230В
Реюньон 220В Норвегия 230В
Сан-Томе 220В Пакистан 230В
Северная Корея 220В Польша 230В
Сербия 220В Россия 230В (220В)
Сирия 220В Румыния 230В
Сомали 220В Сенегал 230В
Таджикистан 220В Сингапур 230В
Таиланд 220В Словакия 230В
Тенерифе 220В Словения 230В
Того 220В Судан 230В
Туркменистан 220В Сьерра-Леоне 230В
Узбекистан 220В Танзания 230В
Фарерские острова 220В Тунис 230В
Филиппины 220В Турция 230В
Французская Гвиана 220В Украина 230В (ранее 220В)
Чад 220В Уругвай 230В (ранее 220В)
Черногория 220В Финляндия 230В
Чили 220В Франция 230В
Экваториальная Гвинея 220В Хорватия 230В
Эфиопия 220В Чехия 230В
ЮАР 220В Швейцария 230В
Южная Корея 220В Швеция 230В
Шри Ланка 230В
Эритрея 230В
Эстония 230В

Примечание: при составлении таблицы использованы данные энциклопедии «Википедия»

Какое напряжение походит для электроприборов 220В или 230В

Нам удалось выяснить, что стандартным напряжением в России сегодня является напряжение 230В. На практике конечно напряжение в сети постоянно изменяется и зависит от многих факторов. Какое же напряжение является удовлетворительным для электроприборов, применяемых в нашем доме? Однозначного ответа на этот вопрос нет. Диапазон допустимых напряжений для каждого прибора определяется техническими данными паспорта изделия. Часто допустимый диапазон напряжений указывается на тыльной стороне изделия или на электрической вилке прибора. Так современные компьютеры могут работать при напряжении от 140 до 240 Вольт, зарядное устройство для телефона от 110 Вольт до 250 Вольт. Наиболее требовательны к качеству электропитания приборы, имеющие электродвигатели (холодильники, кондиционеры, стиральные машины, котлы отопления, насосы).
Ясно, что для любых приборов, используемых в России и напряжение 220В и напряжение 230В является хорошим.

Какие бывают отклонения в качестве электроэнергии

Хорошо известно, что в наших сетях часто бывают значительные отклонения от стандартов качества электроэнергии. И напряжение может быть значительно ниже 220В или значительно выше 230В. Причины этого явления тоже известны: старение действующих электрических сетей, плохое обслуживание сетей, высокий износ сетевого оборудования, ошибки в планирование сетей, большой рост потребления электроэнергии. К проблемам в сетях можно отнести: низкое и пониженное напряжение, высокое и повышенное напряжение, скачки напряжения. провалы напряжения, перенапряжение, изменение частоты тока.

Купить по выгодной цене стабилизаторы напряжения можно в нашем магазине с бесплатной доставкой в города: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Самара, Казань, Омск, Челябинск, Ростов-на-Дону, Уфа, Волгоград, Красноярск, Пермь, Воронеж, Саратов, Краснодар, Тольятти, Ижевск, Барнаул, Ульяновск, Тюмень, Иркутск, Владивосток, Ярославль, Хабаровск, Махачкала, Оренбург, Новокузнецк, Томск, Кемерово, Рязань, Астрахань, Пенза, Набережные Челны, Липецк, Тула, Киров, Чебоксары, Калининград, Курск, Брянск, Улан-Удэ, Магнитогорск, Иваново, Тверь, Ставрополь, Белгород, Сочи, Нижний Тагил, Архангельск, Владимир, Смоленск, Курган, Волжский, Чита, Калуга, Орёл, Сургут, Череповец, Владикавказ, Мурманск, Вологда, Саранск, Тамбов, Якутск, Грозный, Стерлитамак, Кострома, Петрозаводск, Нижневартовск, Комсомольск-на-Амуре, Таганрог, Йошкар-Ола, Новороссийск, Братск, Дзержинск, Нальчик, Сыктывкар, Шахты, Орск, Нижнекамск, Ангарск, Балашиха, Старый Оскол, Великий Новгород, Благовещенск, Химки, Прокопьевск, Бийск, Энгельс, Псков, Рыбинск, Балаково, Подольск, Северодвинск, Армавир, Королёв, Южно-Сахалинск, Петропавловск-Камчатский, Сызрань, Норильск, Люберцы, Мытищи, Златоуст, Каменск-Уральский, Новочеркасск, Волгодонск, Абакан, Уссурийск, Находка, Электросталь, Березники, Салават, Миасс, Альметьевск, Рубцовск, Коломна, Ковров, Майкоп, Пятигорск, Одинцово, Копейск, Железнодорожный, Хасавюрт, Новомосковск, Кисловодск, Черкесск, Серпухов, Первоуральск, Нефтеюганск, Новочебоксарск, Нефтекамск, Красногорск, Димитровград, Орехово-Зуево, Дербент, Камышин, Невинномысск, Муром, Батайск, Кызыл, Новый Уренгой, Октябрьский, Сергиев Посад, Новошахтинск, Щёлково, Северск, Ноябрьск, Ачинск, Новокуйбышевск, Елец, Арзамас, Жуковский, Обнинск, Элиста, Пушкино, Артём, Каспийск, Ногинск, Междуреченск, Сарапул, Ессентуки, Домодедово, Ленинск-Кузнецкий, Назрань, Бердск, Анжеро-Судженск, Белово, Великие Луки, Воркута, Воткинск, Глазов, Зеленодольск, Канск, Кинешма, Киселёвск, Магадан, Мичуринск, Новотроицк, Серов, Соликамск, Тобольск, Усолье-Сибирское, Усть-Илимск, Тимашевск, Тихорецк, Ухта, Севастополь, Симферополь, Ялта, Судак, Саки, Феодосия, Старый Крым, Алупка, Алушта.

Подробнее об этих проблемах читайте также в статьях:

  • Показатели качества электроэнергии
  • Низкое или пониженное напряжение. Как повысить напряжение в сети
  • Высокое или повышенное напряжение. Как понизить напряжение в сети

Стандарты напряжения в России.

04.05.2018

«Каким должно быть напряжение в розетке домашней электросети?» – на этот вопрос большинство ошибочно ответит: «220 Вольт». Не многие знают, что введённый в 2015 году ГОСТ 29322-2014 (IEC 60038:2009) устанавливает на территории Российской Федерации величину стандартного бытового напряжения не 220 В, а 230 В. В данной статье мы сделаем небольшой экскурс в историю электрического напряжения в России и выясним с чем связан переход к новой норме.

В СССР вплоть до 60-х годов XX века эталоном бытового напряжения считались 127 В. Это значение обязано своим появлением талантливому инженеру русско-польского происхождения Михаилу Доливо-Добровоольскому, разработавшему в конце XIX века трёхфазную систему передачи и распределения переменного тока, отличную от ранее предложенной Николой Тесла – двухфазной. Изначально в трехфазной системе Добровольского линейное напряжение (между двумя фазными проводниками) составляло 220 В. Фазное напряжение (между нейтральным и фазным проводником), которое мы используем в бытовых целях, меньше линейного на «корень из трёх» – соответственно для данного случая получаем указанные 127 В:

Дальнейшие развитие электротехники и появление новых электроизоляционных материалов привели к повышению указанных значений: сначала в Германии, а затем и во всей Европе был принят стандарт 380 В – для линейного напряжения и 220 В – для фазного (бытового). Сделано это было с целью экономии – при росте напряжения (с сохранением установленной мощности) в цепи снижается сила тока, что позволило использовать проводники с меньшей площадью сечения и сократить потери в кабельных линиях.

В Советском Союзе, несмотря на наличие прогрессивного стандарта 220/380 В, при реализации плана массовой электрификации, строили сети переменного тока преимущественно по устаревшей методике – на 127/220 В. Первые попытки перейти на напряжение европейского образца были предприняты в нашей стране ещё в 30-х годах XX века. Однако массовый переход был начат лишь в послевоенное время, его причиной стала возрастающая нагрузка на энергосистему, которая поставила инженеров перед выбором – либо увеличивать толщину кабельных линий, либо повышать номинальное напряжение. В итоге остановились на втором варианте. Определённую роль в этом сыграл не только фактор экономии материалов, но и привлечение к работе немецких специалистов, имевших прикладной опыт использования электрической энергии с напряжением 220/380 В.

Переход растянулся на десятилетия: новые подстанции строили уже под номинал 220/380 В, а большинство старых переводили лишь после плановой замены отслуживших свой срок трансформаторов. Поэтому в СССР долгое время параллельно сосуществовали два стандарта для сетей общего пользования – 127/220 В и 220/380 В. Окончательное переключение на 220 В некоторых однофазных потребителей, по свидетельствам очевидцев, произошло только в конце 80-х — начале 90-х годов.

Потребление электрического тока постоянно росло и в конце ХХ века в Европе было принято решение о дальнейшем увеличении номинальных напряжений в трехфазной системе переменного тока: линейного с 380 В до 400 В и, как следствие, фазного с 220 В до 230 В. Это позволило повысить пропускную способность существующих цепей питания и избежать массовой прокладки новых кабельных линий.

В целях унификации параметров электрических сетей новые общеевропейские стандарты были предложены Международной электротехнической комиссией и другим странам мира. Российская Федерация согласилась их принять и разработала ГОСТ 29322-92, предписывающий электроснабжающим организациям перейти на 230 В к 2003 году. ГОСТ 29322-2014, как уже выше упоминалось, устанавливает значение номинального напряжения между фазой и нейтралью в трехфазной четырехпроводной или трехпроводной системе равным 230 В, однако допускает применение и систем с 220 В.

Стоит отметить, что не все страны перешли на общий стандарт напряжения. Например, в США установленное напряжение однофазной бытовой сети – 120 В, при этом к большинству жилых домов подводятся не фаза и нейтраль, а нейтраль и две фазы, позволяющие в случае необходимости запитать мощных потребителей линейным напряжением. Кроме того, в Соединённых Штатах отлична и частота – 60 Гц, в то время как общеевропейский стандарт – 50 Гц.

Вернёмся к отечественным электросетям. Пятипроцентное изменение их номинала не должно сказаться на функционировании привычных бытовых электроприборов, так как они имеют определённый диапазон допустимых значений питающего напряжения. Обе величины – 220 и 230 В, в большинстве случаев, входят в этот диапазон. Однако определённые трудности при переходе на европейские стандарты всё-таки могут возникнуть. Они, в первую очередь, коснутся работы осветительного оборудования с лампами накаливания, рассчитанными на 220 В. Увеличение входного напряжения вызовет перенакал вольфрамовой нити, что негативно скажется на её долговечности – такие лампы будут чаще перегорать. Поэтому покупателям следует быть внимательнее и выбирать электролампы, допускающие включение в сеть 230 В (номинальное напряжение обычно указывается в маркировке прибора).

В заключение следует сказать, что различные нештатные ситуации, возникающие в отечественных электросетях (резкие перепады напряжения или прекращение подачи электричества), представляют для электрооборудования намного большую опасность, чем плановый переход на европейские стандарты электропитания. Кроме того, энергоснабжающие компании часто не соблюдают требования к качеству электроэнергии, допуская сильные отклонения от установленных номинальных значений.

Защитить современную технику от пагубных влияний различных сетевых колебаний могут специальные устройства – стабилизаторы напряжения и источники бесперебойного питания. Группа компаний «Штиль» выпускает данное оборудование с различными значения выходного напряжения: 220 В, 230 В или 240 В.

Подробнее о стабилизаторах напряжения «Штиль»:

Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

Среднее значение и частота

Основная статья: Стандарты напряжений и частот в разных странах

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Параметры сетевого напряжения в России

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220, но фактически напряжение в сети почти всегда выше этого значения и достигает 230—240 В, варьируясь от 190 до 250 В.

Номинальные напряжения бытовых сетей (низкого напряжения): Россия (СССР, СНГ)

До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.

Переменный ток 50 Гц с разделённой фазой или постоянный ток,

двух-/трёхпроводные линии

Трёхфазный переменный ток, 50 Гц
110/220 В 220/440 В 3×120 В

(треугольник)

127/220 В 220/380 В 230/400 В
Временные правила ИРТО, 1891 широко используется запрещен разрешён запрещен запрещен запрещен
Дополнение к временным правилам ИРТО от 1898 широко используется разрешён широко используется разрешён разрешён
ГОЭЛРО I очередь (1920) предпочтителен
ОСТ 569 (1928) предпочтителен предпочтителен разрешён предпочтителен
ОСТ 5155 (1932) разрешён разрешён разрешён разрешён
ГОСТ 721-41 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 5651-51 разрешён разрешён разрешён разрешён
ГОСТ 721-62 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 5651-64 разрешён разрешён разрешён
ГОСТ 721-74 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 21128-75 разрешён разрешён для ранее разработанного оборудования предпочтителен
ГОСТ 23366-78 разрешён разрешён для ранее разработанного оборудования предпочтителен
ГОСТ 21128-83 разрешён разрешён для ранее разработанного оборудования предпочтителен разрешён
ГОСТ 5651-89 разрешён разрешён
ГОСТ 29322-92 (МЭК 38-83) разрешён до 2003 года предпочтителен
ГОСТ 29322-2014 (IEC 60038:2009) в текст стандарта внесено примечание: «Однако … до сих пор продолжают применять.» предпочтителен

Примечания «Р»

  1. «Акционерное Общество Электрического Освещения 1886 года» использовало этот номинал (напряжение на зажимах трансформатора 133 В), что и было отражено в ОСТ 569. В результате гармонизации с рекомендациями МЭК в шкале стандартных напряжений ГОСТ 721 он был заменён на номинал 3×127 В, но допускалось сохранение существующих установок 3×120 В. Фактически, сети тех крупных городов, которые его использовали, уже переходили на «звезду» с номиналами 127/220 В и 220/380 В.
  2. Номинал трёхфазного переменного тока 230/400 В, начиная c ОСТ 569, 1928 года, являлся предпочтительным для источников тока (генераторов и трансформаторов).
  3. 1 2 3 4 Использование тока высокого напряжения выше ±225 В или выше ∼110 В было запрещено в бытовых сетях, не требующих квалифицированного персонала.
  4. Первоначально, в I очереди плана ГОЭЛРО было намечено строительство сетей 120/210 В, исходя из того, что в сетях некоторых крупных городов использовалось 3×120 В (треугольник), однако, при реализации, строили сети 127/220 В.
  5. 1928-1931 гг. Витебск, Вязьма, Бобруйск, Рыльск, Россошь, Златоуст, Камышин, Камень, Красноярск, Чита, Острогожск, Старобельск, Чугуев, Красноград, Хмельник, Купянск, Проскуров, Червоное … и др. См.: Гейлер Л.Б. 110 или 220 V в распределительных сетях населённых мест // Электричество. — 1933. — № 9. — С. 39.
    Впоследствии все крупные новые электросети СССР создавались на 220/380 В.
  6. 1932-40 гг., Ленэнерго, переход старых сетей 3×120 В на 127/220 В. См.: Айзенберг Б.Л., Мануйлов Р.Е. Заземление нейтрали городской кабельной сети низкого напряжения // Электричество. — 1940. — № 11. — С. 54.
  7. 1936-47 гг., Мосэнерго, переход избранных районов старых сетей 3×120 В на 127/220 В. См.: Плюснин К.Л. Низковольтная замкнутая сетка в Московской кабельной электросети // Электричество. — 1937. — № 22. — С. 7., и Куликовский А.А. Система городских распределительных сетей низкого напряжения с искусственными нейтральными точками // Электричество. — 1947. — № 9. — С. 45.
  8. В других стандартах, связанных с промышленным применением, например, ГОСТ 185-41, номинал 127/220 В остался недоступен для новых изделий.
  9. 1 2 3 Стандарты ГОСТ 5651 — «Аппаратура радиоприёмная бытовая», в частности, определяли номиналы напряжения питания радиоприёмников.
  10. 1 2 1950 г., начало перевода низковольтной сети со 127 В на 220/127 В и применения напряжения 380/220 В для электроснабжения новых жилых районов Москвы. См.: Зуев Э.Н.. Московских окон негасимый свет.
  11. 1970-79 гг., Киев, Ленинград и Харьков, в основном, перешли на 220/380 В. Хотя отдельные дома, в которых переход не завершился, встречались и позднее.

Примечания

  1. ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
  2. Грищенко А.И., Зиноватный П.С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 118.
  3. Грищенко А.И., Зиноватный П.С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 13.
  4. План электрификации РСФСР. — 2-е изд. — М.: Госполитиздат, 1955. — С. 213,355,356,361. — 660 с.
  5. Производство пара, паровые машины, пароме турбины, двигатели внутреннего сгорания, газовые турбины, ветряные двигатели, водяные двигатели, насосы и компрессоры, теплосиловое хозяйство, электротехника, освещение // Hütte Справочник для инженеров, техников и студентов. — М.-Л.: ОНТИ, 1936. — Т. 3. — С. 950.
  6. Проект общесоюзного стандарта «Номинальные напряжения стационарных установок сильного тока» (Взамен ОСТ 4760 и ОСТ 5155)(2-я редакция, Октябрь 1938 г.) // Электричество. — 1939. — № 1. — С. 30.
  7. Основные напряжения ГОСТ 721-41.
  8. Левитин Е. Государственный общесоюзный стандарт на радиовещательные приемники // Радио. — 1951. — № 9. — С. 11-13.
  9. Левитин Е.А., Левитин Л.Е. Радиовещательные приемники. — Издание второе, переработанное и дополненное. — М.: Энергия, 1967. — С. 349.
  10. Основные напряжения ГОСТ 21128-75.

«220 В» или «230 В» — стандартное напряжение в России?

Какое напряжение должно быть в сети 220В или 230В

И так вопрос: «Какое напряжение должно быть в нашей сети 220В или 230В?» На первый взгляд, очень простой вопрос. И очень простой ответ: «В сети должно быть 220В». Действительно, мы с детства знаем, что в розетке 220 Вольт и это опасно для жизни. На заводе, фабрике и в офисе на каждой розетке должна быть надпись «220В». На двери трансформаторной будки: «Не влезай — Убьет! 220В/380В».

Однако это не совсем верный ответ. В настоящее время в России стандартным напряжением в сети является напряжение 230В, но для поставщиков электроэнергии действует 220В. Действительно, ранее в Советском союзе стандартным напряжением было 220В, однако в последствии были приняты решения о переходе на общеевропейский стандарт — 230В. Согласно требований межгосударственного стандарту ГОСТ 29322-92 сетевое напряжение должно составлять 230В при частоте 50 Гц. Переход на этот стандарт напряжения должен был завершиться в 2003 году. В ГОСТ 30804.4.30-2013 так же есть упоминание о необходимости проведения измерений при стандартном напряжении 230В. ГОСТ 29322-2014 определяет стандартное напряжение 230В с возможностью использовать 220В. Электросети поставляют электроэнергию согласно действующего на сегодняшний день ГОСТ 32144-2013, устанавливающего напряжение 220В.

Изменение стандартного значения напряжения было проведено для получения полного соответствия европейским стандартам качества электроэнергии. Из всех бывших республик СССР к стандарту «230В» перешли Россия, Украина, страны Балтии.

При этом следует понимать, что электрическое оборудование, выпускаемое в России и для России должно нормально работать и при напряжении 220В, и при напряжении 230В. Для приборов, как правило, закладывается диапазон по напряжению от -15 % до +10 % от номинального.

География стран со стандартными напряжениями: 100В, 110В, 115В, 120В, 127В, 220В, 230В, 240В

В разных странах мира приняты различные стандарты сетевого напряжения. Можно встретить следующие стандарты: 

  • 100В в Японии
  • 110В в Ямайке, Гаити, Гондурасе, Кубе
  • 115В в Барбадосе, Сальвадоре,Тринидаде
  • 120В в США, Канаде, Венесуэле, Эквадоре
  • 127В в Бонайре, Мексике,
  • 220В во многих странах Азии и Африки
  • 230В во многих странах Европы и части стран Азии
  • 240В в Афганистане, Гайане, Гибралтаре, Катаре, Кении, Кувейте, Ливане, Нигерии, Фиджи.
География стран, в которых приняты напряжения 220В и 230В

Наибольшее распространение получили стандарты 220В и 230В, эти стандарты приняты более чем в 150 странах мира. Ниже приводится таблица стран, в которых приняты стандарты напряжения 220В и 230В. В левой колонке находятся страны, в которых стандартное сетевое напряжение 220В, в правой колонке — страны, где напряжение 230В.

Таблица стран, в которых принято напряжение 220В и 230В

Страна Напряжение Страна Напряжение
Азербайджан 220В Австралия 230В
Азорские острова 220В Австрия 230В
Албания 220В Алжир 230В
Ангола 220В Андорра 230В
Аргентина 220В Антигуа 230В
Балеарские острова 220В Армения 230В
Бангладеш 220В Бахрейн 230В
Бенин 220В Белоруссия 230В (ранее 220В)
Босния 220В Бельгия 230В
Буркина-Фасо 220В Ботсвана 230В
Бурунди 220В Бутан 230В
Восточный Тимор 220В Вануату 230В
Вьетнам 220В Великобритания 230В
Габон 220В Венгрия 230В
Гвинея 220В Гамбия 230В
Гвинея-Бисау 220В Гана 230В
Гонконг 220В Гваделупа 230В
Гренландия 220В Германия 230В
Грузия 220В Гренада 230В
Вжибути 220В Греция 230В
Египет 220В Дания 230В
Зимбабве 220В Доминика 230В
Индонезия 220В Замбия 230В
Иран 220В Западное Самоа 230В
Кабо-Верде 220В Израиль 230В
Казахстан 220В Индия 230В
Камерун 220В Иордания 230В
Канарские острова 220В Ирак 230В
Киргизия 220В Ирландия 230В
Китай 220В Исландия 230В
Коморы 220В Испания 230В
Конго 220В Италия 230В
Корфу 220В Камбоджа 230В
Лесото 220В Лаос 230В
Литва 220В Латвия 230В (ранее 220В)
Мавритания 220В Лихтенштейн 230В
Мадейра 220В Люксембург 230В
Макао 220В Маврикий 230В
Македония 220В Малави 230В
Мартиника 220В Мальдивские острова 230В
Мозамбик 220В Мальта 230В
Нигер 220В Молдавия 230В (ранее 220В)
Новая Каледония 220В Монголия 230В
ОАЭ 220В Мьянма 230В
Парагвай 220В Непал 230В
Перу 220В Нидерланды 230В
Португалия 220В Новая Зеландия 230В
Реюньон 220В Норвегия 230В
Сан-Томе 220В Пакистан 230В
Северная Корея 220В Польша 230В
Сербия 220В Россия 230В (220В)
Сирия 220В Румыния 230В
Сомали 220В Сенегал 230В
Таджикистан 220В Сингапур 230В
Таиланд 220В Словакия 230В
Тенерифе 220В Словения 230В
Того 220В Судан 230В
Туркменистан 220В Сьерра-Леоне 230В
Узбекистан 220В Танзания 230В
Фарерские острова 220В Тунис 230В
Филиппины 220В Турция 230В
Французская Гвиана 220В Украина 230В (ранее 220В)
Чад 220В Уругвай 230В (ранее 220В)
Черногория 220В Финляндия 230В
Чили 220В Франция 230В
Экваториальная Гвинея 220В Хорватия 230В
Эфиопия 220В Чехия 230В
ЮАР 220В Швейцария 230В
Южная Корея 220В Швеция 230В
    Шри Ланка 230В
    Эритрея 230В
    Эстония 230В

Примечание: при составлении таблицы использованы данные энциклопедии «Википедия»

Какое напряжение походит для электроприборов 220В или 230В

Нам удалось выяснить, что стандартным напряжением в России сегодня является напряжение 230В. На практике конечно напряжение в сети постоянно изменяется и зависит от многих факторов. Какое же напряжение является удовлетворительным для электроприборов, применяемых в нашем доме? Однозначного ответа на этот вопрос нет. Диапазон допустимых напряжений для каждого прибора определяется техническими данными паспорта изделия. Часто допустимый диапазон напряжений указывается на тыльной стороне изделия или на электрической вилке прибора. Так современные компьютеры могут работать при напряжении от 140 до 240 Вольт, зарядное устройство для телефона от 110 Вольт до 250 Вольт. Наиболее требовательны к качеству электропитания приборы, имеющие электродвигатели (холодильники, кондиционеры, стиральные машины, котлы отопления, насосы).
Ясно, что для любых приборов, используемых в России и напряжение 220В и напряжение 230В является хорошим.

Какие бывают отклонения в качестве электроэнергии

Хорошо известно, что в наших сетях часто бывают значительные отклонения от стандартов качества электроэнергии. И напряжение может быть значительно ниже 220В или значительно выше 230В. Причины этого явления тоже известны: старение действующих электрических сетей, плохое обслуживание сетей, высокий износ сетевого оборудования, ошибки в планирование сетей, большой рост потребления электроэнергии. К проблемам в сетях можно отнести: низкое и пониженное напряжение, высокое и повышенное напряжение, скачки напряжения. провалы напряжения, перенапряжение, изменение частоты тока.

Купить по выгодной цене стабилизаторы напряжения можно в нашем магазине с бесплатной доставкой в города: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Самара, Казань, Омск, Челябинск, Ростов-на-Дону, Уфа, Волгоград, Красноярск, Пермь, Воронеж, Саратов, Краснодар, Тольятти, Ижевск, Барнаул, Ульяновск, Тюмень, Иркутск, Владивосток, Ярославль, Хабаровск, Махачкала, Оренбург, Новокузнецк, Томск, Кемерово, Рязань, Астрахань, Пенза, Набережные Челны, Липецк, Тула, Киров, Чебоксары, Калининград, Курск, Брянск, Улан-Удэ, Магнитогорск, Иваново, Тверь, Ставрополь, Белгород, Сочи, Нижний Тагил, Архангельск, Владимир, Смоленск, Курган, Волжский, Чита, Калуга, Орёл, Сургут, Череповец, Владикавказ, Мурманск, Вологда, Саранск, Тамбов, Якутск, Грозный, Стерлитамак, Кострома, Петрозаводск, Нижневартовск, Комсомольск-на-Амуре, Таганрог, Йошкар-Ола, Новороссийск, Братск, Дзержинск, Нальчик, Сыктывкар, Шахты, Орск, Нижнекамск, Ангарск, Балашиха, Старый Оскол, Великий Новгород, Благовещенск, Химки, Прокопьевск, Бийск, Энгельс, Псков, Рыбинск, Балаково, Подольск, Северодвинск, Армавир, Королёв, Южно-Сахалинск, Петропавловск-Камчатский, Сызрань, Норильск, Люберцы, Мытищи, Златоуст, Каменск-Уральский, Новочеркасск, Волгодонск, Абакан, Уссурийск, Находка, Электросталь, Березники, Салават, Миасс, Альметьевск, Рубцовск, Коломна, Ковров, Майкоп, Пятигорск, Одинцово, Копейск, Железнодорожный, Хасавюрт, Новомосковск, Кисловодск, Черкесск, Серпухов, Первоуральск, Нефтеюганск, Новочебоксарск, Нефтекамск, Красногорск, Димитровград, Орехово-Зуево, Дербент, Камышин, Невинномысск, Муром, Батайск, Кызыл, Новый Уренгой, Октябрьский, Сергиев Посад, Новошахтинск, Щёлково, Северск, Ноябрьск, Ачинск, Новокуйбышевск, Елец, Арзамас, Жуковский, Обнинск, Элиста, Пушкино, Артём, Каспийск, Ногинск, Междуреченск, Сарапул, Ессентуки, Домодедово, Ленинск-Кузнецкий, Назрань, Бердск, Анжеро-Судженск, Белово, Великие Луки, Воркута, Воткинск, Глазов, Зеленодольск, Канск, Кинешма, Киселёвск, Магадан, Мичуринск, Новотроицк, Серов, Соликамск, Тобольск, Усолье-Сибирское, Усть-Илимск, Тимашевск, Тихорецк, Ухта, Севастополь, Симферополь, Ялта, Судак, Саки, Феодосия, Старый Крым, Алупка, Алушта.



Подробнее об этих проблемах читайте также в статьях:

Каково допустимое напряжение в сети 220 В по ГОСТу: 4 причины введения стандарта


Полные нормы напряжение в электросети: ГОСТ

Несмотря на то, что большинство обывателей и людей, не относящихся к категории осведомленных в области напряжения в их электросети, утвердительно скажет о том, что стандартным напряжением является показатель в 220 В. К их удивлению, даже несмотря на старые и привычные всем наклейки, на котором указан общепринятый стандарт, уже не актуальны.

С 2015 года в РФ действует новый стандарт – уровни 230 В и 400 В, что соответствует европейским стандартам.

Такие акты приняты также в Украине и странах Балтии, в том числе Беларуси.

К чему привело изменение стандарта:

  • Изменилось рабочее напряжение на кабеле электросети;
  • Колебания стали чуть более значимыми, нежели ранее, но все также в допустимых нормах 5% и максимальных – 10%;
  • Потенциальная оплата услуг поставки электроэнергии выросла не совершенно символическую сумму;
  • Частота подачи напряжения – 50 Гц.

Таким образом, напряжение в сети должно считаться несколько возросшим в бытовой практике. Но на деле же все иначе и это сулит наличие подводных камней в сфере поставки организациями электроэнергии. Несмотря на общепринятый стандарт, организации, поставляющие напряжение в квартиры домов, подают все по тем же меркам, принятым еще в советское время и равным 220 В. Все это происходит официально по ГОСТу 32144-2013, которым и руководствуются поставщики.

Стандартные параметры электрической сети

Нормы общепринятых стандартов регламентируют также основные параметры, присущие для электроэнергии, поставляемой в дома. С учетом того, что технический ГОСТ – это десятки и десятки страниц сложной терминологии и расчетов, здесь будут приведены общая оценка приводимых категорий. Как общепринято считать, основными параметрами, определяющими нашу бытовую электроэнергию, считаются частота и сила переменного тока и напряжение. Однако есть и ряд других, которые стоит учитывать.

Стандартные параметры электрической сети включают в себя:

  • Коэффициент временного напряжения;
  • Импульсное напряжение;
  • Отклонение частоты напряжения на кабеле электросети;
  • Диапазон изменения напряжения;
  • Длительность потери напряжения и прочие.

Все перечисленные показатели так или иначе оказывают влияние на потерю или превышение установленных норм подачи энергии в сети.

Максимальное отклонение напряжения в электросети

Ток в сети по естественным причинам непостоянен и изменяется в определенных показателях. В рамках нового стандарта 230 В/400 В номинальное отклонение допустимо в пределах 5% и максимально должны отмечаться в кратковременных промежутках не более 10%. Таким образом, такое теоретические отклонение допускается в пределах 198 В и до 242 В. Такой размах может считаться актуальным для большинства нынешних квартир.

Что влияет на сетевое колебание поставки энергии и потери напряжения:

  • Одним из самых распространенных причин является устаревание оборудования, в том числе счетчиков, электрощитов, кабелей проводки и так далее;
  • Значительные погрешности отмечаются и в плохо обслуживаемой сети;
  • Ошибки при планировке и выполнении прокладочных работ в доме;
  • Значительный рост показателей энергопотребления, превышающих установленный стандарт.

Как уже отмечалось, приемлемы перепады в сети на +-5%. Так, например, по поставляемому показателю в 220 вольт, допустимо отклонение в сети, равное 209 В и наибольшее превышение, равное 231 В.

Посадка напряжения в домашней сети

Так называемая посадка напряжения может быть чревато многими нежелательными последствиями. Причем нежелательными как самими жителями, так и организацией-поставщиком, ведь именно она будет восполнять все непредвиденные расходы. По объективным причинам, описанным ранее, посадка электроэнергии может достигать рекордных показателей.

При обнаружении таких колебаний, максимальная просадка фиксируется и с этими показателями, ссылаясь на общепринятый стандарт и качество поставляемой энергии, нужно обращаться в органы-поставщики электроэнергии.

При отсутствии желания исправлять неисправности это является основанием для подачи искового заявления в суд.

Чем чревато превышение или значительное снижение установленных норм поставки напряжения в доме:

  • Быстрее перегорают лампочки;
  • Особенно это пагубно для холодильника, стиральной машинки и прочих электробытовых приборов, требующих мощное и постоянное напряжение;
  • Срок службы любой электротехнической техники, в том числе микроволновки, тостера, телевизора, компьютеров и так далее.

Таким образом становится очевидно, что все классы электротехники страдают от сильных перепадов напряжения. Особенно это влияние деструктивно сказывается, если в сети именно низкое напряжение. И обязанность обеспечить бесперебойным, стабильным и качественным током принадлежит именно организации, которая занимается поставкой и согласно договору, должна обеспечивать ее качественное обслуживание.

Величина допустимого падения напряжения: ПУЭ

Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.

Нормальное падение работы напряжения в сети:

  • В так называемых воздушных линиях – до 8%;
  • В кабельных линиях электроснабжения – до 6%;
  • В сетях на 220 В – 380 В – в районе 4-6%.

При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.

Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.

Обязательное регулирование напряжения в электрических сетях

Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.

Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:

  1. Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
  2. Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
  3. Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
  4. Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.

Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.

Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.

Допустимое напряжение в сети 220 В по ГОСТу (видео)

На счетчиках пишется показатель сетевого напряжения, который должен учитывать каждый житель дома. Следите за своими электроприборами правильно и вовремя обращайтесь в нужные инстанции.

Нормы напряжения в сети в квартире

Автор Евгения На чтение 22 мин. Опубликовано

Нормы напряжения в сети в квартире

Какое напряжение в бытовой сети оптимальное для работы электроприборов

Уровень напряжения – одни из критериев качества электроснабжения. Каждый из бытовых электроприборов рассчитан на продолжительную нормальную работу при условии питания его от напряжения, находящегося в пределах допустимых значений. В данной статье рассмотрим вопрос о том, какое напряжение в бытовой сети является оптимальным для работы электроприборов.

Уровень напряжения в электрической сети

Прежде всего, следует отметить, что на уровень напряжения в электрической сети влияет множество различных факторов. Электричество от источника – электростанции к конечному потребителю, в частности в жилые дома, приходит, пройдя несколько этапов преобразования. На первом этапе напряжение повышается для передачи его на большие расстояния, по энергосистеме. По мере приближения к конечному потребителю, электричество проходит несколько этапов преобразования напряжения до значений, используемых в быту.

Фиксированное значения напряжения в различных участках энергосистемы невозможно обеспечить, так как в энергетической системе постоянно происходят различные процессы: увеличивается или снижается нагрузка, соответственно изменяется и количество вырабатываемой электроэнергии на электростанциях, возникают аварийные ситуации на различных участках электрической сети, которые в той или иной мере влияют на уровни напряжения. Поэтому на каждом этапе преобразования электроэнергии осуществляется регулировка уровня напряжения, как в сторону увеличения, так и в сторону уменьшения.

Основной задачей регулировки напряжения обеспечить уровень напряжения на тех или иных участках электрической сети в пределах допустимых значений. То же самое касается конечного этапа, который обеспечивает понижение напряжения величины, используемой в быту – 220/380 В.

В наиболее часто используемой для электроснабжения потребителей однофазной электрической сети напряжением 220 В нормально допустимые отклонения напряжения находятся в пределах +/- 5 %. То есть диапазон напряжения 209-231 В является нормальным, может быть постоянным, соблюдение напряжения сети в пределах данных значений является одним из критериев качественного электроснабжения.

Но, как и упоминалось выше, в электрической сети могут возникать аварийные режимы работы, которые могут влиять на уровни напряжения в электрической сети. В связи с этим существует еще одна норма – предельно допустимые отклонения напряжения, которые составляют +/- 10 % или 198-242 В.

Данные отклонения напряжения допускаются на незначительное время, как правило, на время ликвидации аварийной ситуации в электрической сети или на время оперативных переключений, в процессе которых происходит временное изменение значений напряжения электросети.

Какое напряжение в бытовой сети оптимальное для работы электроприборов?

Выше приведены общие нормы напряжения электрической сети. Что касается бытовых электроприборов, то в большинстве случаев они проектируются для нормальной работы в диапазоне предельно допустимых отклонений напряжения, то есть 198-242 В. При этом электроприборы не должны выходить из строя в случае непродолжительного превышения напряжения выше 242 В.

Если рассматривать диапазоны допустимых напряжений в паспортах бытовых электроприборов, то можно выделить две группы электроприборов. К первой группе можно отнести те электроприборы, которые меньше всего подвержены перепадам напряжения – это электрический чайник, электропечь, бойлер, электрический обогреватель и другие электроприборы, в которых основным конструктивным элементом является тепловой нагревательный элемент.

Ко второй группе можно отнести электроприборы, которые наиболее подвержены перепадам напряжения – это, прежде всего, компьютерная техника, блоки питания различной техники, аудио- и видеотехника и различные дорогостоящие электроприборы, конструктивно имеющие электронные схемы, преобразователи.

В паспорте электроприборов первой группы в большинстве случаев можно увидеть рекомендуемое рабочее напряжение 230 В. По сути данные электроприборы будут работать и при более низком напряжении, но при этом они будут работать менее эффективно.

Электроприборы второй группы, как более подверженные к перепадам напряжений, проектируется с учетом работы в широких диапазонах. Часто диапазоны рабочих напряжений выходят ниже предельно допустимых. Например, блок питания аудио- видеоаппаратуры, зарядное устройство мобильного телефона рассчитано для работы в пределах 100-240 В.

Отдельно следует выделить бытовые приборы, конструктивно имеющие электродвигатель, насос или компрессор. Перечисленные элементы рассчитаны для работы при номинальном напряжении, как правило, это 220-230 В.

В случае понижения напряжения в электрической сети увеличивается ток нагрузки в электродвигателе (насосе, компрессоре), что в свою очередь приводит к перегреву его обмоток и снижению срока службы изоляции. В данном случае, чем ниже напряжение в электрической сети, тем меньше срок службы данных электроприборов, в частности их конструктивных элементов – электродвигателей (насосов, компрессоров).

Учитывая диапазоны допустимого напряжения всех электроприборов, используемых в быту, можно сделать вывод, что наиболее оптимальным напряжением в электрической сети является напряжение величиной 230 В. При таком значении напряжения будут нормально работать электроприборы с электродвигателями, нагревательными элементами, а также электроприборы, конструктивно имеющие электронные схемы и преобразователи.

Рассматривая вопрос о том, какое напряжение в бытовой сети оптимальное для работы электроприборов, следует учитывать, что важен не только уровень напряжения, но и его стабильность.

Под стабильностью подразумевается отсутствие скачков напряжения, как в сторону увеличения, так и в сторону уменьшения. Перепады напряжения негативно влияют на работу электроприборов и, в конечном счете, могут привести к выходу их из строя.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Что делать, если напряжение электропитания в сети выше или ниже нормы

Отношения по предоставлению коммунальных услуг собственникам и пользователям помещений в многоквартирных домах, собственникам и пользователям жилых домов, в том числе отношения между исполнителями и потребителями коммунальных услуг регулируются «Правилами предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» (утв. постановлением Правительства РФ от 06.05.2011 № 354) (далее Правила). Указанные Правила устанавливают порядок контроля качества предоставления коммунальных услуг, порядок изменения размера платы за коммунальные услуги при предоставлении коммунальных услуг ненадлежащего качества, а также регламентируют вопросы, связанные с наступлением ответственности исполнителей и потребителей коммунальных услуг.

Коммунальные услуги – это осуществление деятельности исполнителя по подаче потребителям любого коммунального ресурса в отдельности или 2 и более из них в любом сочетании с целью обеспечения благоприятных и безопасных условий использования жилых, нежилых помещений, общего имущества в многоквартирном доме.

Электрическая энергия является одним из видов коммунальных ресурсов.

В соответствии с пп. «д» п. 3 Правил качество предоставляемых коммунальных услуг должно соответствовать требованиям, приведенным в приложении № 1 Правилам.

В п. 10 приложения №1 к Правилам указано, что одним из требований к качеству энергоснабжения является постоянное соответствие напряжения и частоты электрического тока требованиям законодательства РФ о техническом регулировании.

В соответствии с п. 4.2.2 ГОСТ 32144-2013 в электрических сетях низкого напряжения стандартное номинальное напряжение электропитания равно 220 В. При этом положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.

Таким образом, предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения: для сети 220 В – от 198 до 242 В.

В случае, если напряжение в сети потребителя отличается от данных значений, можно говорить о том, что качество коммунальной услуги по электроснабжению является ненадлежащим.

В Правилах прописан порядок установления факта предоставления коммунальной услуги ненадлежащего качества. Если вы обнаружили, что предоставляемая коммунальная услуга имеет ненадлежащее качество, то об этом нужно сообщить в аварийно-диспетчерскую службу исполнителя (письменно или устно, в том числе по телефону). Запишите номер заявки. Если причины нарушения качества коммунальной услуги неизвестны, то с потребителем должна быть согласована дата и время проведения проверки факта нарушения качества коммунальной услуги. Если с потребителем не согласовано иное время, то проверка назначается не позднее 2 часов с момента подачи заявки потребителем. По окончании проверки составляется акт, один экземпляр которого должен быть выдан потребителю. Если факт нарушения качества коммунальной услуги в ходе проведенной проверки подтвердился, то дата и время обращения потребителя в аварийную службу исполнителя будет считаться началом периода, в течение которого считается, что коммунальная услуга предоставляется с нарушениями качества. Период нарушения качества коммунальной услуги считается оконченным, например, с момента установления исполнителем факта возобновления предоставления коммунальной услуги надлежащего качества всем потребителям либо с момента сообщения потребителем исполнителю о возобновлении предоставления ему коммунальной услуги надлежащего качества. Если установлено, что качество предоставляемой электрической энергии было ненадлежащим, то размер платы за каждый час снабжения электрической энергией ненадлежащего качества суммарно в течение расчетного периода (месяца) снижается на 0,15 процента размера платы, определенного за такой расчетный период.

Следует знать, что исполнитель обязан выполнить требование об устранении недостатков в разумный срок, назначенный потребителем (ст. 30 Закона о защите прав потребителей). Для этого потребителю лучше оформить свое требование в виде письменного заявления, подать это заявление исполнителю. Второй экземпляр такого заявления с распиской в получении и датой нужно оставить у себя.

В соответствии с положениями ст. 13 Закона РФ «О защите прав потребителей» за нарушение прав потребителей исполнитель несет ответственность, предусмотренную законом или договором. Если иное не установлено законом, убытки, причиненные потребителю, подлежат возмещению в полной сумме сверх неустойки (пени), установленной законом или договором. Уплата неустойки (пени) и возмещение убытков не освобождают исполнителя от исполнения возложенных на него обязательств в натуре перед потребителем.

В соответствии с пп. «е» п. 33 Правил потребитель вправе требовать от исполнителя возмещения убытков и вреда, причиненного жизни, здоровью или имуществу потребителя вследствие предоставления коммунальных услуг ненадлежащего качества, а также компенсации морального вреда в соответствии с законодательством Российской Федерации.

Если в результате предоставления электрической энергии вышла из строя бытовая техника, потребитель вправе требовать возмещения причиненных убытков (стоимость восстановительного ремонта или стоимость бытовой техники).

С требованиями о предоставлении электрической энергии надлежащего качества и возмещении убытков следует обращаться к той организации, которая поставила ему электроэнергию нестандартного качества и кому он платит за потребленную энергию, т.е. на чей счет поступают денежные средства. Обращение лучше всего составить в письменном виде в виде претензии.

При отсутствии реакции на претензию и требование добровольного возмещения убытков пострадавшим потребителям следует обращаться в суд, приложив к иску все имеющие доказательства (например, акт проверки качества электроэнергии, заключение специализированной сервисной службы или экспертной организации о причинах выхода из строя техники).

В соответствии с п. 2 ст. 17 Закона РФ «О защите прав потребителей» иски о защите прав потребителей могут быть предъявлены по выбору истца в суд по месту:

нахождения организации, а если ответчиком является индивидуальный предприниматель, – его жительства;

жительства или пребывания истца;

заключения или исполнения договора.

Если иск к организации вытекает из деятельности ее филиала или представительства, он может быть предъявлен в суд по месту нахождения ее филиала или представительства.

Потребители, иные истцы по искам, связанным с нарушением прав потребителей, освобождаются от уплаты государственной пошлины в соответствии с законодательством Российской Федерации о налогах и сборах.

Важно знать, что при удовлетворении судом требований потребителя, установленных законом, суд взыскивает с исполнителя в пользу потребителя за несоблюдение в добровольном порядке удовлетворения требований потребителя штраф в размере пятьдесят процентов от суммы, присужденной судом в пользу потребителя (п. 6 ст. 13 Закона РФ «О защите прав потребителей»).

Нормы напряжения в квартире

Фотографии на тему: Нормы напряжения в квартире

Читайте также

Кто наследует квартиру после смерти собственника? Квартирный вопрос всегда был и остается одним из самых важных для всех людей. Рассмотрим ниже более подробно действующие виды наследства – наследование по закону и по завещанию.

Так как дарение недвижимости достаточно частое явление, возникает вопрос можно ли продать дарственную долю в квартире? Ввиду того, что речь идет только о части, а не едином целом объекте, решение зависит от нескольких нюансов, которые являются неотъемлемыми в подобных сделках.

Имущественный вычет при покупке квартиры в ипотеку существует для получения от государства части подоходного налога, уплаченного рабочим человеком ранее, для покупки жилища.

Часто бывает, что в напряжение в квартире “скачет”. Чтобы понять, нужно ли обращаться в обслуживающую компанию, необходимо знать нормы напряжения в квартире. В стандартном многоквартирном доме норма напряжения составляет 220В. Частота сети в норме составляет 50 Гц. Существует допустимые отклонения в 5%, то есть от 209 до 231В, также есть предельно допустимые нормы в 10% (198 – 242В).

Определить есть ли отклонение от нормы достаточно просто.

При пониженном напряжении электроприборы перестанут включаться или будут работать с перебоями. При повышенном напряжении приборы могут вовсе выйти из строя и “сгореть”. Если в квартире напряжение превышает или недотягивает до указанных предельных норм, владелец имеет право обратиться в управляющую компанию. Порядок действий:

  • Собственник обращается с жалобой в компанию, обслуживающую дом.
  • Электрик замеряет напряжение, составляет акт выполненных работ, фиксирует отклонения от нормы.
  • Владелец предоставляет акт в УК для устранения причин отклонений от нормы.
  • В случае если УК отказывает исправлять ситуацию, владелец вправе обратиться в суд.

Причин отклонения от нормы может быть много:

  • Нехватка напряжения трансформатора. Сейчас во многих домах стоят еще советские трансформаторы, их мощности не хватает для обеспечения многоквартирного дома из-за увеличившегося потребления. С появлением микроволновых печей, электрических чайников, компьютеров, пылесосов и т.д. расход электроэнергии значительно увеличился. А мощность трансформатора осталась на прежнем уровне. Компания, обслуживающая дом, должна решить эту проблему заменой трансформатора на более мощный, либо установкой дополнительного трансформатора.
  • Если проблема наблюдается у части жильцов, то причина может быть в тумблере. Часто на трансформаторах ставят специальный тумблер, с помощью которого можно регулировать напряжение. Этот тумблер может выйти из строя, за счет чего специалисты не могут отрегулировать мощность. Решается – заменой тумблера.
  • Еще одной частой причиной отклонения от нормы является перегруженность определенной фазы. При подключении электрик может допустить ошибку и подключить к одной фазе слишком много квартир. Тогда напряжение будет недостаточным.
  • Также причиной недостаточного напряжения может быть сгоревший провод. Если система электроснабжения давно не менялась, нелишним будет “прозвонить” все провода на наличие тока.

В любом случае при нестабильном напряжении тока, необходимо выяснить причину отклонения от нормы напряжения в квартире. Затем обратиться в УК для устранения проблем.

Какое отклонение напряжения в сети считается предельно допустимым

Несоответствие параметров электрической сети требуемым параметрам качества электроэнергии, установленных ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения», негативно влияет на работу электрооборудования. В быту чаще всего это отражается на сроке службы лампочек (быстрее перегорают), а также работе бытовой техники, в частности, холодильников, телевизоров, микроволновых печей. В этой статье мы рассмотрим допустимое и предельное отклонение напряжения в сети по ГОСТ, а также причины возникновения такой проблемы.

Нормы в соответствии с ГОСТом

Итак, руководствоваться мы будем, ГОСТ 32144-2013, согласно которому предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения:

  • для сети 230в – от 207 до 253 Вольта;
  • для сети 400в – от 360 до 440 Вольт.

Что касается допустимого отклонения напряжения у потребителей, в ГОСТе указано, что данную величину в точках общего подключения устанавливает непосредственно сетевая организация, которая в свою очередь должна удовлетворять нормы, указанные в настоящих стандартах.

Помимо этого хотелось бы отметить, что при нормальном режиме работы сети допустимое отклонение напряжения на зажимах электрических двигателей находится в диапазоне от -5 до +10%, а других аппаратов не больше, чем 5%. В то же время после возникновения аварийного режима допускается понизить нагрузку не больше, чем на 5%.

Кстати, хотелось бы дополнительно отметить, что на источнике питания в электросетях 0,4 кВ согласно нормам отклонение не должно превышать отметку в 5%, собственно, как и у самих потребителей. Итого, 5% на источнике + 5% у потребителей, имеем 10% предельно допустимого.

Немаловажно знать о причинах возникновения отклонения напряжений. Так вот основной причиной считается сезонное или суточное изменение электрической нагрузки самих потребителей. К примеру, в зимнее время все резко включают обогреватели, в результате чего параметры электросети заметно падают. О том, что делать, если низкое напряжение в сети, мы рассказывали в соответствующей статье!

Негативное влияние отклонения параметров

Чтобы вы понимали всю опасность отклонения напряжения в сети, предоставляем к прочтению следующие факты:

  1. Когда значение понижается ниже нормы, значительно снижается срок службы используемого электрооборудования и в то же время повышается вероятность возникновения аварии. Помимо этого, в технологических установках увеличивается длительность самого производственного процесса, что влечет за собой увеличение показателей себестоимости продукции.
  2. В бытовой сети, как мы уже говорили, отклонения напряжения сокращает срок службы лампочек. При повышении напряжения на 10% срок эксплуатации обычных лампочек сокращается в 4 раза. В свою очередь энергосберегающие лампы при снижении напряжения на 10% начинают мерцать, что также негативно влияет на продолжительность их работы. Об остальных причинах мерцания люминесцентных ламп вы можете узнать из нашей статьи.
  3. Что касается электрических приводов, то из-за снижения напряжения увеличивается потребляемый двигателем тока. В свою очередь это уменьшает срок службы двигателя. Если же напряжение будет даже на незначительных казалось бы 1% выше нормы, реактивная мощность, которую потребляет электродвигатель, может увеличиться до 7%.

Подведя итог, хотелось бы отметить, что существует несколько современных способов решения проблемы: снижение потерь напряжения в электрической сети, о чем мы писали в соответствующей статье, а также регулирование нагрузки на отходящих линиях и шинах подстанций.

Вот мы и рассмотрели нормы отклонения напряжение в сети по ГОСТ. Теперь вы знаете, насколько низкого или же высокого значения может достигать этот параметр в трехфазной и однофазной сети переменного тока!

Рекомендуем также прочитать:

Каково допустимое напряжение в сети 220 В по ГОСТу: 4 причины введения стандарта

Допустимое напряжение в сети в большинстве сооружений составляет 220 В До совсем недавнего времени в России, как и близлежащих странах СНГ действовали технические нормативно-правовые акты в сфере подачи и обслуживания электроэнергии времени существования СССР. Так, известными в этой области являются ГОСТ 29322-92 и ГОСТ 21128-83 в новой редакции 2014 года. Каждый из них закреплял известное нам всем и привычное до боли значение среднего параметра подаваемого напряжения – 220 В. Однако с недавнего времени, а именно, 2015 года, было принято решение о введении нового стандарта, который соответствует общеевропейским запросам и потребностям. О том, какое на сегодняшний день допустимое напряжение на кабеле электросети и какое наибольшее и минимальное значение должны выдавать счетчики – узнавайте в данной публикации.

Полные нормы напряжение в электросети: ГОСТ

Несмотря на то, что большинство обывателей и людей, не относящихся к категории осведомленных в области напряжения в их электросети, утвердительно скажет о том, что стандартным напряжением является показатель в 220 В. К их удивлению, даже несмотря на старые и привычные всем наклейки, на котором указан общепринятый стандарт, уже не актуальны.

С 2015 года в РФ действует новый стандарт – уровни 230 В и 400 В, что соответствует европейским стандартам.

Такие акты приняты также в Украине и странах Балтии, в том числе Беларуси.

К чему привело изменение стандарта:

  • Изменилось рабочее напряжение на кабеле электросети;
  • Колебания стали чуть более значимыми, нежели ранее, но все также в допустимых нормах 5% и максимальных – 10%;
  • Потенциальная оплата услуг поставки электроэнергии выросла не совершенно символическую сумму;
  • Частота подачи напряжения – 50 Гц.

Нормы напряжения в электросети зависят от типа назначения постройки

Таким образом, напряжение в сети должно считаться несколько возросшим в бытовой практике. Но на деле же все иначе и это сулит наличие подводных камней в сфере поставки организациями электроэнергии. Несмотря на общепринятый стандарт, организации, поставляющие напряжение в квартиры домов, подают все по тем же меркам, принятым еще в советское время и равным 220 В. Все это происходит официально по ГОСТу 32144-2013, которым и руководствуются поставщики.

Стандартные параметры электрической сети

Нормы общепринятых стандартов регламентируют также основные параметры, присущие для электроэнергии, поставляемой в дома. С учетом того, что технический ГОСТ – это десятки и десятки страниц сложной терминологии и расчетов, здесь будут приведены общая оценка приводимых категорий. Как общепринято считать, основными параметрами, определяющими нашу бытовую электроэнергию, считаются частота и сила переменного тока и напряжение. Однако есть и ряд других, которые стоит учитывать.

Стандартные параметры электрической сети включают в себя:

  • Коэффициент временного напряжения;
  • Импульсное напряжение;
  • Отклонение частоты напряжения на кабеле электросети;
  • Диапазон изменения напряжения;
  • Длительность потери напряжения и прочие.

Все перечисленные показатели так или иначе оказывают влияние на потерю или превышение установленных норм подачи энергии в сети.

Максимальное отклонение напряжения в электросети

Ток в сети по естественным причинам непостоянен и изменяется в определенных показателях. В рамках нового стандарта 230 В/400 В номинальное отклонение допустимо в пределах 5% и максимально должны отмечаться в кратковременных промежутках не более 10%. Таким образом, такое теоретические отклонение допускается в пределах 198 В и до 242 В. Такой размах может считаться актуальным для большинства нынешних квартир.

Что влияет на сетевое колебание поставки энергии и потери напряжения:

  • Одним из самых распространенных причин является устаревание оборудования, в том числе счетчиков, электрощитов, кабелей проводки и так далее;
  • Значительные погрешности отмечаются и в плохо обслуживаемой сети;
  • Ошибки при планировке и выполнении прокладочных работ в доме;
  • Значительный рост показателей энергопотребления, превышающих установленный стандарт.

Как уже отмечалось, приемлемы перепады в сети на +-5%. Так, например, по поставляемому показателю в 220 вольт, допустимо отклонение в сети, равное 209 В и наибольшее превышение, равное 231 В.

Посадка напряжения в домашней сети

Так называемая посадка напряжения может быть чревато многими нежелательными последствиями. Причем нежелательными как самими жителями, так и организацией-поставщиком, ведь именно она будет восполнять все непредвиденные расходы. По объективным причинам, описанным ранее, посадка электроэнергии может достигать рекордных показателей.

При проблемах с напряжением в домашней сети следует вызвать электрика

При обнаружении таких колебаний, максимальная просадка фиксируется и с этими показателями, ссылаясь на общепринятый стандарт и качество поставляемой энергии, нужно обращаться в органы-поставщики электроэнергии.

При отсутствии желания исправлять неисправности это является основанием для подачи искового заявления в суд.

Чем чревато превышение или значительное снижение установленных норм поставки напряжения в доме:

  • Быстрее перегорают лампочки;
  • Особенно это пагубно для холодильника, стиральной машинки и прочих электробытовых приборов, требующих мощное и постоянное напряжение;
  • Срок службы любой электротехнической техники, в том числе микроволновки, тостера, телевизора, компьютеров и так далее.

Таким образом становится очевидно, что все классы электротехники страдают от сильных перепадов напряжения. Особенно это влияние деструктивно сказывается, если в сети именно низкое напряжение. И обязанность обеспечить бесперебойным, стабильным и качественным током принадлежит именно организации, которая занимается поставкой и согласно договору, должна обеспечивать ее качественное обслуживание.

Величина допустимого падения напряжения: ПУЭ

Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.

Нормальное падение работы напряжения в сети:

  • В так называемых воздушных линиях – до 8%;
  • В кабельных линиях электроснабжения – до 6%;
  • В сетях на 220 В – 380 В – в районе 4-6%.

При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.

Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.

Обязательное регулирование напряжения в электрических сетях

Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.

Для регулировки напряжения в электрической сети используют специальные приборы

Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:

  1. Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
  2. Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
  3. Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
  4. Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.

Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.

Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.

Допустимое напряжение в сети 220 В по ГОСТу (видео)

На счетчиках пишется показатель сетевого напряжения, который должен учитывать каждый житель дома. Следите за своими электроприборами правильно и вовремя обращайтесь в нужные инстанции.

220 или 230? По новым стандартам 230 вольт « Все возможно!

На вопрос «Какое напряжение должно быть в сети 220В или 230В?» постараемся получить ответ.

Простой ответ: «В сети должно быть 220В». Но так ли это? Европейский стандарт напряжения 230 Вольт. Везде мы встречаем надписи «220 вольт» и на приборах и на наклейках на щитках. Однако это не совсем верный ответ. Сейчас напряжение по стандартам «230 вольт» для однофазных и «400 вольт» для трехфазных сетей.


Изменение стандартного значения напряжения было проведено для получения полного соответствия европейским стандартам качества электроэнергии. Из всех бывших республик СССР к стандарту «230В» перешли Россия, Украина, страны Балтии.
Электрическое оборудование, выпускаемое как в России так и в Украине должно нормально работать как при напряжении 220В, так и при напряжении 230В. Для приборов, как правило, закладывается диапазон по напряжению от -15 % до +10 % от номинального.
В российском ГОСТ 30804.4.30-2013 есть упоминание о необходимости проведения измерений при стандартном напряжении 230В. В Украине новый стандарт был принят 20 мая 2014 — международный европейский стандарт организации «CENELEC» — «EN 50160:2010». Этот стандарт вступил в силу 1 октября 2014 под названием «ДСТУ ЕN 50160:2014» — «Характеристики напряжения в системах электроснабжения общего назначения». В этом стандарте напряжения 400/230 В ± 10% официально гармонизированы со стандартами ЕС.
Таким образом нормальное напряжение в сети наших домов и квартир должно быть в пределах от 198 до 253 вольт. Если же напряжение не соответствует приведенным выше, то резонно обратиться к поставщику с претензиями. Правда, это далеко не всегда возымеет хоть какие-то ответные действия.
В любом случае это нужно знать.
Значения колебания напряжения имеют те же самые нормы, что и отклонение напряжения с единственным отличием: длительность процесса менее одной минуты.
Нормально допустимые колебания напряжения. Нормально допустимым колебанием напряжения считается диапазон в 5 %, то есть: +/-5 % (от 209 В до 231 В).
Предельно допустимые колебания напряжения. Предельно допустимым колебанием напряжения считается диапазон в 10 %, то есть: +/-10 % (от 198 В до 242 В).
Если качество сетевого напряжения не соответствует нормальным и изменить ситуация никак не удается, то имеет смысл купить и установить две вещи, первый — это реле напряжения (или другими словами «отсекатель» ценой 400-600грн) при выходе напряжения за заданные пределы реле просто отключает всю нагрузку и подключит ее только после восстановления нормального напряжения, а второй — это стабилизатор напряжения, который сгладит и выровняет напряжение до нужных параметров, цена их зависит от мощности, технологии и скорости работы и начинается от 800грн.

Перепады напряжения в электросети: как возместить ущерб

В 2018 году при решении вопроса некачественного электроснабжения украинцам следует руководствоваться «Правилами пользования электроэнергией для населения», Гражданским кодексом Украины (ГКУ) и ГОСТом 13109-97.

Портал Domik.ua сообщает, как проверить качество услуги по электроснабжению и возместить ущерб причиненный перепадами напряжения в сети.

Какие требования к качеству электричества действуют в Украине в 2018 году

Как сообщили в эксклюзивном комментарии Domik.ua в Национальной комиссии по госрегулированию в сферах энергетики и коммунальных услуг (НКРЭКУ), показатели качества электрической энергии прописаны в ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения». Утвержденные нормы вносятся в договоры на поставку электроэнергии между поставщиком энергоресурса и потребителем.

Основные показатели качества электроэнергии приведены в таблице:

Показатель

Допустимое значение показателя

Нормальное

Граничное

Отклонение напряжения

±5 * 

±10 *

Доза фликера, отн. ед.:

кратковременная

длительная

 

 

1,38

1,00

Коэффициент искажения синусоидальности кривой напряжения,%, не более

8

12

Коэффициент гармонической составляющей напряжения нечетного (четного) порядка, %, не более

5 (2)

7,5 (3)

Не симметрия напряжения, %

2

4

Продолжительность провала напряжения, с

 

30

Отклонение частоты, Гц

±0,2

±0,4

«ГОСТом определено нормально и гранично допустимые значения установленного отклонения напряжения на уровне ±5% и ±10% от номинального напряжения электрической сети», — говорится в сообщении НКРЭКУ.

В ГОСТе прописано, что оценка соответствия качества электроэнергии утвержденным параметрам проводится в течение 24-х часов.

По информации НКРЭКУ, если за указанный период суммарная продолжительность временивыхода за нормально допустимые значения составляет не более 5% или час и 12 минут, то качество услуги соответствует утвержденному. Отклонения напряжения сети более 10% — недопустимы.

Читайте также: Как рассчитывается размер штрафа за самовольное подключение к электросети в Украине в 2018 году

В каких случаях стоимость электричества должна быть ниже

Качество электроэнергии, поставляемой в жилые помещения, должно соответствовать действующему стандарту. Такая норма значится в «Правилах пользования электроэнергией для населения», утвержденных постановлением Кабмина №1357 от 26.07.1999 . Электричество поставляется бытовым потребителям согласно условиям Типового договора. Документ подписывается сроком на три года и включает в себя условия электроснабжения, в том числе и показатели качества энергоресурса, утвержденные на государственном уровне. «В п. 19 Типового договора прописано, если параметры качества электроэнергии не соответствуют прописанным в договоре, то компания-поставщик услуги должна выплатить потребителю 25% стоимости такой энергии», — указано в сообщении НКРЭКУ. Аналогичная норма прописана в п. 45 Правил. Если качество электрической энергии не соответствует прописанному в договоре, потребитель вправе оформить акт-претензию.

Как составить акт-претензию при некачественном электроснабжении

В п. 49-51 Правил значится, что при нарушении условий договора поставки электроэнергии потребителю следует вызвать представителя энергоснабжающей компании для составления акта-претензии. В акте следует указать сроки, виды, отклонения показателей по поставкам электричества.

Пример типового акта-претензии


Образец акта-претензии утвержден в Правилах пользования электроэнергией для населения

Документ должен быть подписан бытовым потребителем и представителем компании-поставщика услуги. В НКРЭКУ сообщили, если энергосберегающая компания не направила специалиста для проверки показателей качества электричества, потребитель вправе составить акт-претензию в произвольной форме. В Правилах установлены сроки, в течение которых энергопоставщик должен направить специалиста к бытовому потребителю:

  • 3 дня со дня обращения в городе;
  • 7 дней со дня обращения в сельской местности.

Акт, составленный в произвольной форме, должен быть подписан минимум тремя потребителями, или потребителем и избранным лицом домового, уличного, квартального или другого органа самоуправления.

После оформления акта, его следует направить энергоснабжающей компании. Поставщик услуги обязан в течение 10-ти дней устранить недостатки или предоставить потребителю обоснованный письменный отказ в удовлетворении претензий.

В п. 52 Правил прописано право потребителя организовать необходимые замеры параметров качества электроэнергии, если поставщик электричества отказался их выполнять. Проводить замеры разрешается компании, у которой документально оформлено право на проведение таких работ.

Если потребитель привлечет к проведению замеров стороннюю компанию, то расходы на такие работы должна возместить энергоснабжающая компания.

Читайте также: Правила подписания договора на поставку коммунальных услуг в 2018 году: Закон Украины «О ЖКУ»

Правила возмещения убытков от перепадов напряжения в сети

В НКРЭКУ сообщили, что ответственность за качество электроэнергии несет поставщик услуги согласно подписанному с потребителем договору. Решение споров относительно качества электроэнергии регламентируется нормативно-правовыми актами:

Правилами пользования электрической энергией и утвержденным типовым договором.

Гражданским кодексом Украины (ГКУ).

В п. 22 типового договора значится: «При пользовании электроэнергией споры и разногласия решаются в судебном порядке, если не будут согласованы путем переговоров между сторонами договора».

В с. 16 ГКУ предусмотрено право каждого украинца обратиться в суд по защиту своего неимущественного или имущественного права и интереса. Возмещение убытков и другого имущественного ущерба выполняется согласно ст. 22 ГКУ — убытки компенсируются в полном объеме, если договором или законом не предусмотрено возмещение в меньшем или большем размере.

В НКРЭКУ сообщили, если несоблюдение поставщика электричества договора в части качества энергоресурса привело к поломке бытовой техники, потребитель вправе обратиться в суд. Для этого необходимо предъявить документы, которые свидетельствуют о нарушениях договора поставщиком электричества, оформленные согласно требованиям Правил.

Обсудить правила предоставления услуг по электроснабжению в 2018 году и поделиться мнением по данному вопросу можно на форуме все о ЖКХ в Украине.

На какую электрическую сеть мы можем рассчитывать. Проблема качества электроэнергии

Электрические приборы становятся многофункциональнее, точнее, чувствительнее. Чувствительнее они становятся не только к входным сигналам, но и к качеству питающей сети. А усложнение аппаратуры и увеличение ее количества ухудшает качество сети.

Самым неприхотливым прибором, наверное, является нагреватель (электроплитка). Он может работать и при пониженном напряжении (отдавая меньше мощности), при бросках, провалах и любых помехах. Хотя и он при длительном повышенном напряжении выйдет из строя.

Холодильник — капризнее. Он может сгореть и при пониженном напряжении (если мотору не хватит напряжения, чтобы запуститься).

Радиоприемнику и телевизору может «не понравиться» не только повышенное или пониженное напряжение сети, но и наличие в ней помех. Эти устройства могут их показывать, воспроизводя помехи поверх полезного изображения и звука.

А устройства, имеющие сложные блоки управления, при наличии в сети помех могут сбиваться или вообще откажутся работать.

Поэтому стандартом определены требования, предъявляемые к качеству электроэнергии: ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения». И вся аппаратура должна быть приспособлена к этим параметрам.

Отклонение напряжения

По ГОСТ 21128-83 отклонение напряжения характеризуется показателем, для которого установлено следующее: нормально допустимые и предельно допустимые значения установившегося отклонения напряжения ?Up на выводах приемников электрической энергии равны соответственно ±5% и ±10% от номинального напряжения электрической сети.

Ни один из потребителей электроэнергии такого отклонения не заметит, за исключением трехфазных сетей, где автоматика может отслеживать разбаланс по фазам.

При поставке электроэнергии этот параметр качества очень часто (чаще всех других) не соответствует ни нормально допустимым, ни предельно допустимым значениям. Привести в норму этот параметр может любой стабилизатор (в пределах, отраженных в его характеристиках), если сопротивление подводящей линии достаточно мало. Но, естественно, ни один стабилизатор не поднимет напряжение с 0 В.

В паспорте на стабилизатор указывают:

  • рабочий диапазон входных напряжений, в котором они поддерживают выходное напряжение с заданной точностью;
  • предельный диапазон входных напряжений, при выходе из которого стабилизатор отключает нагрузку (или отключается полностью), так как стабилизация напряжения уже не производится.

Колебания напряжения

Колебания напряжения более опасны, чем отклонение напряжения, так как проявляются в виде таких же отклонений напряжения, но повторяющихся — через промежутки времени от 60 мс до 10 мин.

Виновником этих отклонений может быть не поставщик электроэнергии, а другие потребители, подключенные к этой линии, или плохое качество самой линии. Можно отметить, что с отклонениями, проявляющимися с большими промежутками времени (более 40–80 мс), стабилизатор справляется успешно. Период переменного напряжения в сети равен 20 мс. Поэтому стабилизатору нужно, по крайней мере, 20 мс, чтобы измерить напряжение, и какое-то время, чтобы его скорректировать.

Колебания напряжения характеризуются следующими показателями:

  • размахом изменения напряжения;
  • дозой фликера.

По ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» допускается размах изменения напряжения не более 10% от номинального, если число этих колебаний не более одного за 10 мин. Эта величина снижается до 0,4%, если частота возрастает до 1000 колебаний в минуту. А для потребителей электрической энергии, располагающих лампами накаливания, в помещениях, где требуется значительное зрительное напряжение, этот показатель уменьшается еще в 1,5 раза. Выполнить такие требования обычному стабилизатору не под силу. Из этого положения есть два выхода. Во-первых, поставить стабилизатор с двойным преобразованием и получить такое качество электроэнергии, какое необходимо.

Есть и более дешевый вариант: использовать «энергосберегающие» лампы, если надо устранить явление фликера. У этих ламп есть встроенный преобразователь. Поэтому мерцание значительно снижается ( но при больших колебаниях мерцание полностью не устраняется).

Такие колебания напряжения не нарушат нормальный режим работы бытовой и промышленной аппаратуры. Но человек, находящийся в помещении, освещаемом лампами, питающимися от такой сети, может чувствовать себя некомфортно. В связи с этим в ГОСТ 13109-97 введен термин для оценки субъективного восприятия человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники, — «фликер».

Колебания напряжения на источнике света приводят к изменению его яркости, что воспринимается как мерцание. Длительное мерцание света вызывает утомляемость.

Поэтому в ГОСТе 13109-97 введены еще два показателя качества электроэнергии:

  • Доза фликера — мера восприимчивости человека к воздействию фликера за установленный промежуток времени.
  • Время восприятия фликера — минимальное время для субъективного восприятия человеком фликера, вызванного колебаниями напряжения определенной формы.

Отклонение частоты

Нормально допустимое и предельно допустимое значения отклонения частоты равны ±0,2 и ±0,4 Гц соответственно (ГОСТ 13109-97).

Отклонение частоты (мы не рассматриваем локальное производство электроэнергии от дизель-электрических агрегатов, а только от единой энергетической системы России) поддерживается точнее предельных значений. Это самый стабильный параметр. Если же его надо исправить, то в этом помогут только устройства с двойным преобразованием. Они могут питаться очень «плохой» сетью, как правило, выпрямляют ее и затем генерируют выходное напряжение нужной частоты (и формы).

Провал напряжения

Провал напряжения определен ГОСТом 13109-97 как внезапное понижение напряжения в точке электрической сети ниже 0,9Uном, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от 10 до нескольких десятков миллисекунд.

Предельно допустимое значение длительности провала напряжения в электрических сетях напряжением до 20 кВ включительно равно 30 с (рис. 1).

Временное перенапряжение

Временное перенапряжение — повышение напряжения в точке электрической сети выше 1,1Uном продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.

Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений не превышают значений, указанных в таблице 1.

Таблица 1. Значения коэффициентов временного перенапряжения в зависимости от его длительности

В среднем за год в точке присоединения возможно около 30 временных перенапряжений.

При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухо заземленной нейтралью, возникают временные перенапряжения между фазой и «землей». Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений междуфазного напряжения. А длительность — нескольких часов (рис. 1).

Провал напряжения и временное перенапряжение — это два противоположных отклонения. Провал напряжения и временное перенапряжение — явления кратковременные и поставщику электроэнергии не подконтрольные, так как возникают при включении и выключении нагрузок, находящихся на этой же линии (фазе).

Такие отклонения стабилизатор может исправить. Провал напряжения встречается чаще и в большей или меньшей степени возникает при любом включении электродвигателя и даже ламп накаливания.

Импульс напряжения

При номинальном напряжении в сети 0,38 кВ коммутационное импульсное напряжение может составлять 4,5 кВ при длительности на уровне 0,5 амплитуды импульса, равной 1,5 мс. Значение грозовых импульсных напряжений может составлять 6 кВ. Возможная форма импульсного напряжения показана на рис. 2 (вторая половина диаграммы).

Импульсные напряжения в электрической сети бывают двух видов, различающихся по происхождению, — коммутационное и грозовое. Коммутационное импульсное напряжение возникает при включении большой нагрузки, выключении ее, при переключении нагрузки с одного источника на другой и особенно при сварке. Грозовое импульсное напряжение возникает в сети при ударах молнии вблизи электрической линии. Избавить от импульсного напряжения стабилизатор не в силах. Защитить нагрузку он может только частично с помощью варисторов, которые могут поглотить короткий импульс. От больших импульсов напряжения (и в том числе грозовых) может спасти только разрядник. В стабилизаторах разрядники, как правило, не ставят, а размещают на входе сети, чтобы защитить все приборы, подключенные после разрядника.

Для защиты стабилизатора и аппаратуры, включенной после стабилизатора, как правило, используют фильтр для защиты от синфазных помех. Источник импульсного напряжения наводит в линии импульс синфазного напряжения, так как расположен, как правило, вне линии, а не между проводами линии.

Несинусоидальность напряжения

Этот параметр характеризуется:

  • коэффициентом искажения синусоидальности кривой напряжения;
  • коэффициентом n-ой гармонической составляющей.

Первая величина имеет нормально допустимое значение — 8,0% и предельно допустимое — 12,0%.

Вторая величина имеет нормально допустимое значение — 6,6%. Предельно допустимое значение в 1,5 раза больше. С увеличением номера гармоники коэффициент n-ой гармонической составляющей уменьшается.

Источники света, как правило, могут работать и при сильных искажениях синусоидального напряжения. Но есть приборы, которые могут неправильно работать при искаженной форме синуса. Это в первую очередь приборы, которые измеряют напряжение сети.

Многие устройства измеряют значение напряжения для привязки своих настроек, и искажения синусоиды приведут к неправильной их работе. Пример несинусоидальности показан на рис. 2 (первая половина диаграммы).

Если при рассмотрении предыдущих параметров нас не интересовала форма напряжения в сети, то теперь рассмотрим ее влияниена работу аппаратуры.

Если синус без искажений, значит, в нем присутствует только первая гармоника. Чем больше искажен синус, тем больше в нем гармоник. Коэффициент гармоник отражает искажение синуса.

Говоря о напряжении в сети, равном 220 В, мы имеем в виду, что энергия, заключенная под синусоидой, совершит такую же работу, как и постоянное напряжение 220 В. При этом амплитудное значение синусоидального напряжения составит 310 В.

Электрические сигналы напряжения характеризуются мгновенным, средним, средневыпрямленным, среднеквадратическим и пиковым (для периодических сигналов — амплитудным) значениями.

Мгновенные значения наблюдают на осциллографе и определяют для каждого момента времени по осциллограмме. Все остальные значения могут быть измерены соответствующим вольтметром или вычислены по следующим формулам.

Среднее значение напряжения является среднеарифметическим за период:

Для симметричных относительно оси времени напряжений U0 равно нулю, поэтому для характеристики таких сигналов пользуются средневыпрямленным значением — средним значением модуля напряжения:

Среднеквадратическое значение напряжения за время измерения (чаще за период) вычисляется по формуле:

Закону изменения напряжения соответствуют определенные количественные соотношения между амплитудным, среднеквадратическим и средним значениями напряжений. Эти отношения оцениваются коэффициентами амплитуды:

Так, для синусоидального напряжения:

  • среднее значение напряжения равно Uср.в. = 0,637Um;
  • среднеквадратическое значение напряжения равно Uср.кв = 0,707Um.

В зависимости от системы применяемого прибора, типа и режима измерительного преобразователя и градуировки шкалы прибора его показания могут соответствовать среднему, среднеквадратическому или амплитудному значению измеряемого напряжения.

При измерении искаженного синуса появится ошибка.

На рис. 3а показано нормальное напряжение сети 220 В действующего значения (310 В — его амплитудное значение). Если произойдет ограничение синусоиды (как показано на рис. 1в), то действующее значение составит 209 В, а амплитудное — 280 В. Измеритель амплитудных значений измерит искаженный синус «В», так же как амплитудное значение «С».

То есть оно уменьшится соответственно формуле:

Этот измеритель, отградуированный в действующих значениях, ошибется на 5%. Градуировку большинства шкал вольтметров производят в среднеквадратических значениях синусоидального напряжения.

Поэтому при отличии формы напряжения от синуса измерение напряжения происходит с ошибкой. В этот процесс вмешивается и еще один фактор. Чем больше напряжение отличается от синуса, тем больше оно содержит гармоник (высокочастотных составляющих). А почти у всех измерителей точность измерения снижается с увеличением частоты.

Искажать синус могут также различные потребители электроэнергии. Больше всего это проявляется при проведении сварки. Затем идут тиристорные устройства, работающие с отсечкой. Например, электрический радиатор для обогрева помещения. Чтобы уменьшить его нагрев, тиристоры подают напряжение на нагреватель не весь полупериод, а часть полупериода. При этом на нагревателе выделяется не вся мощность, а ее часть. И так каждый полупериод: часть синуса с уменьшенной нагрузкой, часть — с увеличенной.

Даже импульсный источник питания компьютера потребляет ток неравномерно: часть полупериода меньше, часть — больше. Мощность компьютера мала, поэтому его работа на домашних приборах не сказывается. Но в компьютерных залах вольтметры разных систем покажут в сети разное напряжение (при неискаженной сети они показывают одинаковые напряжения).

В одной компании только что приобретенные стабилизаторы установили в зале с компьютерами, а на следующий день предъявили претензию, что стабилизаторы ошибаются. Выяснилось, что вольтметры, какими они пользовались, как раз измеряли амплитудное напряжение, а проградуированы были в среднеквадратичном.

С чем сталкивается потребитель электроэнергии

Источником электроэнергии для потребителей является трансформаторная подстанция, которая выдает 3-фазное напряжение 380 В (или 220 В относительно нейтрали). И если проверить качество электроэнергии на выходе подстанции, то оно будет соответствовать ГОСТу 13109-97. С удалением от подстанции качество электроэнергии будет ухудшаться. В ухудшение качества будет вносить вклад закон Ома. Как это происходит?

Рассмотрим вариант электропитания нескольких потребителей. Предположим, что от подстанции протянута линия (медным проводом или кабелем сечением 25 мм²) вдоль улицы из 10 домов (рис. 4).

Пусть расстояние между домами Ll = 20 м. Подвод электроэнергии осуществляется по двум проводам. По закону Ома, сопротивление этих проводов равно:

Если каждый потребитель включит только один электрочайник (3 кВт), ток потребления которого 13,5 А, то ток в проводах между потребителями составит величину, показанную во втором столбце таблицы 2. А ток от трансформатора будет 135 А. В первом столбце таблицы 2 отображен номер потребителя. В третьем столбце таблицы показано падение напряжения на одинаковых сопротивлениях линий между потребителями при увеличивающихся токах. В четвертом столбце приведено значение падения напряжения на линии от трансформатора до каждого из потребителей.

Таблица 2. Расчет падения напряжения в проводах между потребителями

В случае, показанном на рис. 4, у потребителя № 1 (самого дальнего от трансформаторной подстанции, ТП) будет 220 В, если у всех выключена нагрузка, то на линии никакого падения напряжения не будет. Если все включат по одному электрочайнику (20,2 В упадет на линии), то у потребителя № 1 будет на входе 200 В. Три киловатта по сегодняшним меркам — небольшая величина.

Сейчас воздушные линии имеют большее сечение, что уменьшает сопротивление проводов и падение напряжения на них, но провода используются не медные, а алюминиевые или даже стальные (что увеличивает сопротивление проводов и падение напряжения на них). Поэтому приведенный пример очень близок к реальности.

Раньше в каждой квартире или доме после счетчика стояли четыре пробки по шесть ампер (две линии по шесть ампер). На одного потребителя приходилось 12 А.

Сейчас потребление тока сильно возросло. Один электрический чайник потребляет порядка 3 кВА (13,5 А). В некоторых коттеджах потребление тока составляет 70–90 А (до 20 кВА). В этих случаях и отклонение напряжения, и колебания напряжения выйдут за пределы, регламентируемые ГОСТом 13109-97. Если потребитель находится недалеко от трансформаторной подстанции, то положение можно полностью исправить с помощью стабилизатора напряжения. В противном случае положение можно частично исправить с помощью стабилизатора напряжения. Частично — это значит, что нагрузка должна будет иметь некоторый предел, который зависит от сопротивления подводящей линии. При превышении этого предела падение напряжения на линии начнет превышать то напряжение, на которое стабилизатор его повысит. Следующий пример иллюстрирует это.

В практике авторов был такой случай. Владелец магазина приобрел однофазный стабилизатор на 21 кВА. Он имеет минимальное входное напряжение 150 В и при этом может поднять напряжение на 32 В. От трансформаторной подстанции был протянут кабель. Его сопротивление оказалось 1,4 Ом. Нагрузка представляла собой несколько промышленных холодильников. При включении нагрузки напряжение на входе составило 164 В (при токе 40 А).

Падение напряжения на кабеле составило:

ΔU = 220 – 164 = 56 B.

Стабилизатор повысил напряжение на 32 В или в 0,195 раза: (164 В + 32 В) / 164 В = 0,195.

Мощность на нагрузке увеличится по квадратичному закону: 1,1952 = 1,4³, так как P = U²/R. Во столько же раз возрастет ток в подводящей линии, и во столько же раз увеличится падение напряжения на ней.

Ток в подводящей линии: 40 А × 1,43 = 57,2 А.

Падение напряжения на подводящей линии: 57,2 А × 1,4 Ом = 80 В.

Напряжение на входе стабилизатора упадет до 220 – 80 = 140 В.

Стабилизатор отключался по нижнему пределу входного напряжения. Когда нагрузка отключалась, напряжение на входе стабилизатора повышалось. Стабилизатор обнаружил, что напряжение находится в рабочем диапазоне, и включил нагрузку. Далее процесс повторялся. В данном случае стабилизатор не справился с корректировкой напряжения.

Казалось бы, если поставить дополнительно трансформатор и повысить напряжение на 13 В, то напряжение окажется в диапазоне работы стабилизатора и проблема будет решена. Но если мы будем повышать напряжение, то по квадратичному закону будет увеличиваться входной ток и во столько же увеличится падение напряжения на кабеле. И достигнуть необходимого результата не удастся.

То есть попытка стабилизатора увеличить напряжение приведет к его уменьшению. Для каждой подводящей линии свой порог, и зависит он от сопротивления этой линии.

Поэтому выход один: надо подключаться к трем фазам. Даже если протянуть каждую фазу отдельно (со своей нейтралью) и распределить нагрузку равномерно, выигрыш будет в три раза.

Ток в подводящей линии: 40 А / 3 = 13,3 А.

Падение напряжения на подводящей линии: 13,3 А × 1,4 Ом = 18,6 В.

Напряжение на входе стабилизатора упадет до 220 – 18,6 = 201,4 В.

Если подключиться с помощью обычного четырехжильного кабеля, то, при правильно распределенной нагрузке, ток по нейтрали течь не будет, и его сопротивление можно не учитывать. Значит — падение напряжения уменьшится еще в 2 раза.

Ток в подводящей линии: 13,3 А / 2 = 6,7 А.

Падение напряжения на подводящей линии: 6,7 А × 1,4 Ом = 9,4 В.

Напряжение на входе стабилизатора упадет до 220 – 9,4 = 210,6 В.

В этом случае может не понадобиться стабилизатор напряжения.

Если руководство электрических сетей примет решение установить для потребителя отдельный трансформатор, то на его выходе можно обеспечить качество электроэнергии, оговоренное в ГОСТе 13109-97.

Такое бывает. Авторы видели высоковольтную линию, подходящую к деревне из 15 домов. На конце этой линии стоят 2 трансформатора. От одного питается деревня, от другого — только один коттедж. Только в таком случае нагрузки, включаемые соседями, не ухудшают качество электроэнергии, и это качество можно требовать с поставщика электроэнергии.

Литература

  1. ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».
  2. ГОСТ 21128-83 «Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения до 1000 В».

Сети и системы | Низковольтные сети | КРЕСТ

Сети и системы

Сети низковольтные

Внедрение фотоэлектрических систем, электромобилей и тепловых насосов имеет серьезные последствия для работы сетей низкого напряжения (НН): трехфазных цепей 400 В и однофазных цепей 230 В, которые подключаются к отдельным домам и другим зданиям. Эти сети представляют собой огромные национальные инвестиции — по большей части под землей, вне поля зрения и вне памяти.Они устанавливались в течение почти столетия и очень хорошо служили источником энергии для множества электрических приборов, которые теперь облегчают нашу повседневную жизнь. Проблема, которую представляют фотоэлектрические системы, электромобили и тепловые насосы (низкоуглеродные технологии), заключается в том, что они обладают большой мощностью и обычно работают много часов каждый день. Изолированные установки легко размещаются в существующих сетях, но массовое внедрение резко изменит потоки мощности в сетях низкого напряжения, и непривлекательный вывод упрощенного анализа состоит в том, что эти сети потребуют полной модернизации.Связанные с этим расходы и разрушения (рытье дорог) создают серьезные экономические и социальные императивы для получения максимальной отдачи от существующих сетей и точного знания того, где лучше всего направить требуемые инвестиции.

Возможно, что удивительно, но подробные сведения о работе этих сетей не совсем известны. Конечно, есть хорошо зарекомендовавшие себя методы проектирования и эксплуатационные стратегии, которые очень успешно привели к созданию высоконадежной системы, с которой мы знакомы сегодня. Но, когда мы внимательно смотрим на подробное описание работы конкретных сетей на практике, совсем не редко можно обнаружить, что что-то работает либо горячее, либо холоднее, чем ожидалось.Таким образом, оценки того, где мы можем или не можем подключать низкоуглеродные технологии, могут иметь неопределенную основу. Это может привести к неоправданно ограниченной установке низкоуглеродных технологий, плохо намеченному обновлению сети или даже к эксплуатационным трудностям, снижающим надежность сети. Наше исследование направлено на минимизацию этих неопределенностей. Мы разрабатываем детальные методы анализа, которые могут обеспечить точную оценку сетевого запаса и точек перегиба и, таким образом, обеспечить надежное представление о том, что можно установить, где и как лучше всего нацелить любое необходимое усиление сети.

Детальные исследования сетей низкого напряжения значительно усложняются (по сравнению с исследованиями сетей высокого напряжения) из-за сочетания следующих факторов.

  • Нагрузки (отдельные устройства) постоянно включаются и выключаются, что создает высокостохастические и разнообразные профили спроса в каждой точке сети. Например, исследования, в которых используются получасовые или недиверсифицированные данные о спросе, подвергаются значительному риску упустить из виду важные детали.
  • На практике нагрузки часто несбалансированы между тремя фазами, а иногда и очень несбалансированы, и это может быть значительно усугублено низкоуглеродными технологиями.Этот дисбаланс может привести к значительным токам в нейтральных проводниках, заземляющих проводах, земле, металлических трубах, других кабелях и даже строительных конструкциях, которые нелегко учесть.
  • Большая часть инфраструктуры находилась в земле в течение многих десятилетий, и подробности того, что именно связано с тем, что не всегда известно; В частности, детали фазирования и заземления могут быть неточными. Поведение кабелей в этом контексте и результирующие сетевые сопротивления упомянутых выше несимметричных токов, следовательно, являются неопределенными и могут привести к тому, что напряжения будут сильно отличаться от тех, которые предсказываются простым анализом.
  • Силовые электронные нагрузки (включая все уже подключенные к сети) могут вызывать значительно несинусоидальные токи, особенно в нейтральных проводниках.

Примеры наших публикаций в этой области:

Уркхарт, А.Дж. и Томсон, М., 2013. Допущения и приближения, обычно применяемые при моделировании сетей низкого напряжения с высоким уровнем проникновения низкоуглеродных технологий. Семинар по солнечной интеграции 2013, Лондон, 21-22 октября 2013 г., 6 стр.Доступно здесь: https://dspace.lboro.ac.uk/2134/13425

M. Thomson, D.G. Infield, 2007. Анализ сетевых потоков мощности для высокого проникновения распределенной генерации. IEEE Trans Power Syst, 22 (2007), стр. 1157–1162

«Регулирование напряжения низковольтных распределительных сетей» Маниша Махарджан

Тип документа

Диссертация — Открытый доступ

Название степени

Магистр наук

Отдел

Электротехника и информатика

Первый советник

Рейнальдо Тонкоски

Ключевые слова

сокращение активной мощности, адаптивное динамическое программирование, распределенная генерация, распределительная сеть низкого напряжения, возобновляемые источники энергии, твердотельный трансформатор

Абстрактные

Современные системы распределения напряжения состоят из распределенной генерации (ДГ), такой как фотоэлектрическая (PV) и ветровая.Эти ресурсы неисчерпаемы и экологически чисты. Существующие распределительные сети низкого напряжения (НН) обычно рассчитаны на однонаправленный поток энергии. Интеграция DG делает распределительные сети низкого напряжения подверженными трудностям, связанным с напряжением, частотой и качеством электроэнергии. Основные проблемы при интеграции DG возникают из-за прерывистого характера DG. Количество ДГ по сравнению с общим ресурсом генерации в сети энергосистемы измеряется как проникновение.Система подвергается обратному перетоку мощности при высоком проникновении ДГ и условиях низкой нагрузки в сети. Обратный поток мощности в сети отрицательно влияет на профиль напряжения в распределительных сетях низкого напряжения. Таким образом, регулирование напряжения требуется в распределительных сетях низкого напряжения для интеграции РГ. Твердотельные трансформаторы (SST) — это силовые электронные трансформаторы, которые станут жизненно важным компонентом будущей интеллектуальной сети. В будущей интеллектуальной сети будет множество DG, которые потребуют улучшенной управляемости для поддержания надлежащей координации между стохастическим DG и нагрузкой.Среди его различных уникальных особенностей возможности SST по компенсации реактивной мощности могут быть исследованы в современных распределительных системах для регулирования напряжения при высоком проникновении ДГ. SST — это силовые электронные устройства, которые демонстрируют быструю и нелинейную динамику, что означает, что имитационные модели часто сложны и требуют небольших временных шагов для точных решений. Это предотвращает моделирование больших распределительных систем в реальном времени и долгосрочное моделирование, поскольку моделирование становится недопустимым с точки зрения вычислений. В этой работе разрабатывается упрощенная эквивалентная модель SST с использованием простых источников тока и напряжения наряду с простыми уравнениями моделирования.Эти упрощенные модели могут использоваться для проведения долгосрочных исследований регулирования напряжения в распределительных системах, в которых традиционные трансформаторы заменяются SST. Стимулы к чистой энергии и постоянное падение стоимости фотоэлектрических установок привели к устойчивому росту фотоэлектрических систем в жилых домах. Одним из основных последствий более высокого проникновения фотоэлектрических модулей в распределительные сети низкого напряжения является проблема перенапряжения. Ограничение активной мощности (APC) фотоэлектрических инверторов ранее использовалось для ограничения выходной мощности инверторов ниже его рабочей точки, чтобы предотвратить такие перенапряжения.Однако APC использует подход, основанный на постоянном падении напряжения, для ограничения мощности на основе разницы между измеренным напряжением и критическим уровнем напряжения. В этом тезисе APC реализован с постоянным спадом и другими моделями спада в типичной распределительной сети LV в Северной Америке с высоким уровнем проникновения PV. Результаты моделирования показывают, что система подвергается чрезмерному сокращению, что приводит к ненужным потерям энергии. Подход на основе адаптивного спада с использованием адаптивного динамического программирования (ADP) предлагается в качестве возможного решения для минимизации общих потерь энергии в системе при сохранении напряжения системы в критических рабочих пределах.Потери энергии из-за сокращения уменьшились на 17,4% после реализации подхода на основе адаптивного спада с использованием ADP.

Предметные рубрики Библиотеки Конгресса

Низковольтные системы.
Распределенная выработка электроэнергии.
Возобновляемые источники энергии.
Перенапряжение — предотвращение.

Описание

Включает библиографические ссылки (63-67)

Издатель

Государственный университет Южной Дакоты

Рекомендуемое цитирование

Махарджан, Маниша, «Регулирование напряжения низковольтных распределительных сетей» (2017). Электронные диссертации . 1740 г.
https://openprairie.sdstate.edu/etd/1740

Диагностический центр

| Информация о CAN-шине | Центр диагностики Values ​​

| Информация о CAN-шине | Ценности | CAN высокое и CAN низкое напряжение
Содержание

Пиковое напряжение CAN

Пиковое напряжение — это самое высокое среднее напряжение, которое произошло с момента последнего. Холодный ботинок.

ПРИМЕЧАНИЕ. Холодная перезагрузка происходит после дисплей был выключен в течение 24 часов или после отключения некоммутируемого питания с дисплея.

Пиковое напряжение CAN High и Peak CAN Low обычно находится в диапазоне от 1,7 до 3,3 Вольт. Измерения напряжения усредняются каждую секунду.

Поскольку мультиметры обычно считывают средние значения напряжения, не сравнивайте мультиметр. показания с этими значениями.

Измерение напряжения с помощью мультиметра

CAN, высокое напряжение

Значение обычно должно находиться в диапазоне от 2,5 до 3,5 В. Измерено на машина, которая работает, обычно будет в диапазоне от 2.7 и 3,3 Вольт.

CAN, низкое напряжение

Значение обычно должно находиться в диапазоне от 1,5 до 2,5 В. Измерено на на работающей машине оно обычно находится в диапазоне от 1,7 до 2,3 вольт.

Поиск и устранение неисправностей

Если напряжения вне этих диапазонов, измерьте сопротивление между CAN. высокий и низкий CAN с помощью мультиметра.

Сопротивление:

60 Ом

Оба терминатора рабочие правильно.

120 Ом

Один терминатор на CANBUS работает некорректно.

0 Ом или

нет определено

Оба терминатора на CANBUS работает неправильно.

Из-за быстрых изменений напряжения мультиметр не покажет ни постоянной напряжение или точное напряжение на CAN high или CAN low.Осциллограф необходим, чтобы увидеть точные изменения, происходящие на CANBUS.

Почему, согласно Стандартам качества электроэнергии, допускается изменение напряжения только на + 6%, –6% для напряжений менее 650 В, тогда как изменение напряжения до 9% допускается в случае более высокого напряжения? — Леонардо Энергия

Ответ Романа Таргоша (PCPC)

Предмет необходимо разделить на 2 области; первый охватывает ответственность оператора распределительной системы за работу сети общего пользования до точки подключения к установке на стороне пользователя, где максимальное падение напряжения должно быть ограничено надлежащим проектированием и установкой для выбранных нагрузок.

Начиная с первой области, , европейский стандарт EN 50160 «Характеристики напряжения электроэнергии, поставляемой общедоступными электрическими сетями» определяет значение напряжения следующим образом:

При нормальных условиях эксплуатации, исключая периоды с перерывами, колебания напряжения питания не должны превышать ± 10% от номинального напряжения Un.

В случае электроснабжения сетей, не связанных с системами передачи, или для специальных удаленных пользователей сети, колебания напряжения не должны превышать +10% / -15% от Un.Пользователи сети должны быть проинформированы об условиях.

То же самое относится к среднему напряжению, но не определено для высокого напряжения, поскольку для таких уровней напряжения обычно есть точный контракт, в котором указывается значение напряжения и его допуск.

Во второй области международный стандарт IEC 60364-5-52 Электроустановки низкого напряжения — Часть 5-52: Выбор и монтаж электрооборудования — Системы электропроводки определяет максимальное падение напряжения в установках пользователя как максимум 3%. для цепей освещения и 5% для всех остальных цепей при питании от низковольтных сетей общего пользования.В случае поставки из частной сети максимально допустимые значения могут быть на 3% выше.

Основная причина ограничения колебаний значений напряжения — обеспечить правильное функционирование электрического оборудования, поскольку оно может не выдерживать напряжения, выходящего за пределы его устойчивости. Большая часть такого электрического оборудования, особенно чувствительного к изменениям напряжения, работает при низком напряжении, и поэтому его следует защищать от значений напряжения, выходящих за пределы допуска.

В соответствии с европейскими стандартами допустимые отклонения напряжения электросети общего пользования для низкого и среднего уровня одинаковы, в то время как международные требования к падению напряжения со стороны пользователя применяются только для низкого напряжения.Однако есть помещения с более жесткими допусками по низким уровням напряжения:

Значение напряжения
  • в основном зависит от изменений реактивной мощности нагрузки, и на более высоких уровнях напряжения такие изменения, связанные с мощностью короткого замыкания, могут быть более динамичными и большими по величине.
  • для данных нагрузок наиболее универсальным и эффективным способом ограничения падения напряжения в обеих областях является увеличение мощности коротких замыканий, в основном за счет уменьшения сопротивления фидеров и монтажных кабелей. На более высоких уровнях напряжения отношение X / R намного выше, чем для систем с низким напряжением, и поэтому стабильность напряжения является более сложной задачей и контролируется более сложными методами.

Потребители низкого напряжения — Руководство по устройству электроустановок

Страна Частота и допуск
(Гц и%)
Внутренний (V) коммерческий (V) Промышленное (V)
Афганистан 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Алжир 50 ± 1,5 220/127 (д)
220 (к)
380/220 (а)
220/127 (а)
10 000
5 500
6 600
380/220 (а)
Ангола 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Антигуа и Барбуда 60 240 (к)
120 (к)
400/230 (а)
120/208 (а)
400/230 (а)
120/208 (а)
Аргентина 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Армения 50 ± 5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Австралия 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
440/250 (а)
440 (м)
22 000
11 000
6 600
415/240
440/250
Австрия 50 ± 0,1 230 (к) 380/230 (а) (б)
230 (к)
5 000
380/220 (а)
Азербайджан 50 ± 0,1 208/120 (а)
240/120 (к)
208/120 (а)
240/120 (к)
Бахрейн 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11000
415/240 (а)
240 (к)
Бангладеш 50 ± 2 410/220 (а)
220 (к)
410/220 (а) 11 000
410/220 (а)
Барбадос 50 ± 6 230/115 (к)
115 (к)
230/115 (к)
200/115 (а)
220/115 (а)
230/400 (г)
230/155 (к)
Беларусь 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Бельгия 50 ± 5 230 (к)
230 (а)
3N, 400
230 (к)
230 (а)
3N, 400
6 600
10 000
11 000
15 000
Боливия 50 ± 0.5 230 (к) 400/230 (а)
230 (к)
400/230 (а)
Ботсвана 50 ± 3 220 (к) 380/220 (а) 380/220 (а)
Бразилия 60 ± 3 220 (к, а)
127 (к, а)
220/380 (а)
127/220 (а)
69 000
23 200
13 800
11 200
220/380 (а)
127/220 (а)
Бруней 50 ± 2 230 230 11 000
68 000
Болгария 50 ± 0.1 220 220/240 1 000
690
380
Камбоджа 50 ± 1 220 (к) 220/300 220/380
Камерун 50 ± 1 220/260 (к) 220/260 (к) 220/380 (а)
Канада 60 ± 0,02 120/240 (к) 347/600 (а)
480 (ж)
240 (е)
120/240 (к)
120/208 (а)
7200/12 500
347/600 (а)
120/208
600 (ж)
480 (ж)
240 (ж)
Кабо-Верде 220 220 380/400
Чад 50 ± 1 220 (к) 220 (к) 380/220 (а)
Чили 50 ± 1 220 (к) 380/220 (а) 380/220 (а)
Китай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Колумбия 60 ± 1 120/240 (г)
120 (к)
120/240 (г)
120 (к)
13 200
120/240 (г)
Конго 50 220 (к) 240/120 (к)
120 (к)
380/220 (а)
Хорватия 50 400/230 (а)
230 (к)
400/230 (а)
230 (к)
400/230 (а)
Кипр 50 ± 0.1 240 (к) 415/240 11 000
415/240
Чешская Республика 50 ± 1 230 500
230/400
400 000
220 000
110 000
35 000
22 000
10 000
6 000
3 000
Дания 50 ± 1 400/230 (а) 400/230 (а) 400/230 (а)
Джибути 50 400/230 (а) 400/230 (а)
Доминика 50 230 (к) 400/230 (а) 400/230 (а)
Египет 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
66,000
33,000
20,000
11,000
6,600
380/220 (а)
Эстония 50 ± 1 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Эфиопия 50 ± 2,5 220 (к) 380/231 (а) 15 000
380/231 (а)
Фолклендские острова 50 ± 3 230 (к) 415/230 (а) 415/230 (а)
Острова Фиджи 50 ± 2 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11 000
415/240 (а)
Финляндия 50 ± 0.1 230 (к) 400/230 (а) 690/400 (а)
400/230 (а)
Франция 50 ± 1 400/230 (а)
230 (а)
400/230
690/400
590/100
20 000
10 000
230/400
Гамбия 50 220 (к) 220/380 380
Грузия 50 ± 0,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Германия 50 ± 0.3 400/230 (а)
230 (к)
400/230 (а)
230 (к)
20 000
10 000
6 000
690/400
400/230
Гана 50 ± 5 220/240 220/240 415/240 (а)
Гибралтар 50 ± 1 415/240 (а) 415/240 (а) 415/240 (а)
Греция 50 220 (к)
230
6 000
380/220 (а)
22 000
20 000
15 000
6 600
Гранада 50 230 (к) 400/230 (а) 400/230 (а)
Гонконг 50 ± 2 220 (к) 380/220 (а)
220 (к)
11 000
386/220 (а)
Венгрия 50 ± 5 220 220 220/380
Исландия 50 ± 0.1 230 230/400 230/400
Индия 50 ± 1,5 440/250 (а)
230 (к)
440/250 (а)
230 (к)
11000
400/230 (а)
440/250 (а)
Индонезия 50 ± 2 220 (к) 380/220 (а) 150 000
20 000
380/220 (а)
Иран 50 ± 5 220 (к) 380/220 (а) 20 000
11 000
400/231 (а)
380/220 (а)
Ирак 50 220 (к) 380/220 (а) 11 000
6 600
3 000
380/220 (а)
Ирландия 50 ± 2 230 (к) 400/230 (а) 20 000
10 000
400/230 (а)
Израиль 50 ± 0.2 400/230 (а)
230 (к)
400/230 (а)
230 (к)
22 000
12 600
6 300
400/230 (а)
Италия 50 ± 0,4 400/230 (а)
230 (к)
400/230 (а) 20 000
15 000
10 000
400/230 (а)
Ямайка 50 ± 1 220/110 (г) (к) 220/110 (г) (к) 4000
2300
220/110 (г)
Япония (восток) + 0.1
— 0,3
200/100 (в) 200/100 (ч)
(до 50 кВт)
140,000
60,000
20,000
6,000
200/100 (ч)
Иордания 50 380/220 (а)
400/230 (к)
380/220 (а) 400 (а)
Казахстан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Кения 50 240 (к) 415/240 (а) 415/240 (а)
Киргизия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Корея (Северная) 60 +0, -5 220 (к) 380/220 (а) 13 600
6 800
Корея (Южная) 60 ± 0.2 220 (к) 380/220 (а) 380/220 (а)
Кувейт 50 ± 3 240 (к) 415/240 (а) 415/240 (а)
Лаос 50 ± 8 380/220 (а) 380/220 (а) 380/220 (а)
Лесото 220 (к) 380/220 (а) 380/220 (а)
Латвия 50 ± 0.4 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Ливан 50 220 (к) 380/220 (а) 380/220 (а)
Ливия 50 230 (к)
127 (к)
400/230 (а)
220/127 (а)
230 (к)
127 (к)
400/230 (а)
220/127 (а)
Литва 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Люксембург 50 ± 0,5 380/220 (а) 380/220 (а) 20 000
15 000
5 000
Македония 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Мадагаскар 50 220/110 (к) 380/220 (а) 35 000
5 000
380/220
Малайзия 50 ± 1 240 (к)
415 (а)
415/240 (а) 415/240 (а)
Малави 50 ± 2.5 230 (к) 400 (а)
230 (к)
400 (а)
Мали 50 220 (к)
127 (к)
380/220 (а)
220/127 (а)
220 (к)
127 (к)
380/220 (а)
220/127 (а)
Мальта 50 ± 2 240 (к) 415/240 (а) 415/240 (а)
Мартиника 50 127 (к) 220/127 (а)
127 (к)
220/127 (а)
Мавритания 50 ± 1 230 (к) 400/230 (а) 400/230 (а)
Мексика 60 ± 0.2 127/220 (а)
120/240 (к)
127/220 (а)
120/240 (к)
4,160
13,800
23,000
34,500
277/480 (а)
127/220 (б)
Молдавия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Марокко 50 ± 5 380/220 (а) 380/220 (а) 225 000
220/110 (а) 150 000
60 000
22 000
20 000
Мозамбик 50 380/220 (а) 380/220 (а) 6 000
10 000
Непал 50 ± 1 220 (к) 440/220 (а)
220 (к)
11 000
440/220 (а)
Нидерланды 50 ± 0.4 230/400 (а)
230 (к)
230/400 (а) 25 000
20 000
12 000
10 000
230/400
Новая Зеландия 50 ± 1,5 400/230 (д) (а)
230 (л)
460/230 (д)
400/230 (д) (а)
230 (к)
11 000
400/230 (а)
Нигер 50 ± 1 230 (к) 380/220 (а) 15 000
380/220 (а)
Нигерия 50 ± 1 230 (к)
220 (к)
400/230 (а)
380/220 (а)
15000
11000
400/230 (а)
380/220 (а)
Норвегия 50 ± 2 230/400 230/400 230/400
690
Оман 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Пакистан 50 230 (к) 400/230 (а)
230 (к)
400/230 (a)
Папуа-Новая Гвинея 50 ± 2 240 (к) 415/240 (а)
240 (к)
22 000
11 000
415/240 (а)
Парагвай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
22 000
380/220 (а)
Филиппины (Республика) 60 ± 0,16 110/220 (к) 13,800
4,160
2,400
110/220 (в)
13,800
4,160
2,400
440 (б)
110/220 (в)
Польша 50 ± 0,1 230 (к) 400/230 (а) 1000
690/400
400/230 (а)
Португалия 50 ± 1 380/220 (а)
220 (к)
15000
5000
380/220 (а)
220 (к)
15 000
5 000
380/220 (а)
Катар 50 ± 0.1 415/240 (к) 415/240 (а) 11 000
415/240 (а)
Румыния 50 ± 0,5 220 (к)
220/380 (а)
220/380 (а) 20 000
10 000
6 000
220/380 (а)
Россия 50 ± 0,2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Руанда 50 ± 1 220 (к) 380/220 (а) 15 000
6 600
380/220 (а)
Сент-Люсия 50 ± 3 240 (к) 415/240 (а) 11 000
415/240 (а)
Самоа 400/230
Сан-Марино 50 ± 1 230/220 380 15 000
380
Саудовская Аравия 60 220/127 (а) 220/127 (а)
380/220 (а)
11 000
7 200
380/220 (а)
Соломоновы Острова 50 ± 2 240 415/240 415/240
Сенегал 50 ± 5 220 (а)
127 (к)
380/220 (а)
220/127 (к)
90 000
30 000
6 600
Сербия и Черногория 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Сейшелы 50 ± 1 400/230 (а) 400/230 (а) 11 000
400/230 (а)
Сьерра-Леоне 50 ± 5 230 (к) 400/230 (а)
230 (к)
11 000
400
Сингапур 50 400/230 (а)
230 (к)
400/230 (а) 22 000
6 600
400/230 (а)
Словакия 50 ± 0.5 230 230 230/400
Словения 50 ± 0,1 220 (к) 380/220 (а) 10 000
6 600
380/220 (а)
Сомали 50 230 (к)
220 (к)
110 (к)
440/220 (к)
220/110 (к)
230 (к)
440/220 (г)
220/110 (г)
Южная Африка 50 ± 2,5 433/250 (а)
400/230 (а)
380/220 (а)
220 (к)
11000
6 600
3300
433/250 (а)
400/230 (а)
380/220 (а)
11 000
6 600
3 300
500 (б)
380/220 (а)
Испания 50 ± 3 380/220 (а) (д)
220 (л)
220/127 (а)
127 (л)
380/220 (а)
220/127 (а) (д)
15 000
11 000
380/220 (а)
Шри-Ланка 50 ± 2 230 (к) 400/230 (а)
230 (к)
11 000
400/230 (а)
Судан 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Свазиленд 50 ± 2.5 230 (к) 400/230 (а)
230 (к)
11 000
400/230 (а)
Швеция 50 ± 0,5 400/230 (а)
230 (к)
400/230 (а)
230 (к)
6 000
400/230 (а)
Швейцария 50 ± 2 400/230 (а) 400/230 (а) 20,000
10,000
3,000
1,000
690/500
Сирия 50 220 (к)
115 (к)
380/220 (а)
220 (к)
200/115 (а)
380/220 (а)
Таджикистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Танзания 50 400/230 (а) 400/230 (а) 11 000
400/230 (а)
Таиланд 50 220 (к) 380/220 (а)
220 (к)
380/220 (а)
Того 50 220 (к) 380/220 (а) 20 000
5 500
380/220 (а)
Тунис 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
30 000
15 000
10 000
380/220 (а)
Туркменистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Турция 50 ± 1 380/220 (а) 380/220 (а) 15 000
6 300
380/220 (а)
Уганда + 0.1 240 (к) 415/240 (а) 11 000
415/240 (а)
Украина + 0,2 / — 1,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
220 (к)
Объединенные Арабские Эмираты 50 ± 1 220 (к) 415/240 (а)
380/220 (а)
220 (к)
6 600
415/210 (а)
380/220 (а)
Соединенное Королевство
(кроме Северной
Ирландии)
50 ± 1 230 (к) 400/230 (а) 22 000
11 000
6 600
3 300
400/230 (а)
Соединенное Королевство
(включая Северную
Ирландию)
50 ± 0.4 230 (к)
220 (к)
400/230 (а)
380/220 (а)
400/230 (а)
380/220 (а)
Соединенные Штаты
Америка
Шарлотта
(Северная Каролина)
60 ± 0,06 120/240 (к)
120/208 (а)
265/460 (а)
120/240 (к)
120/208 (а)
14 400
7 200
2400
575 (ж)
460 (е)
240 (е)
265/460 (а)
120/240 (к)
120/208 (а)
Соединенные Штаты
Америка
Детройт (Мичиган)
60 ± 0.2 120/240 (к)
120/208 (а)
480 (ж)
120/240 (в)
120/208 (а)
13 200
4800
4 160
480 (ж)
120/240 (в)
120/208 (а)
Соединенные Штаты
Америка
Лос-Анджелес (Калифорния)
60 ± 0,2 120/240 (к) 4800
120/240 (г)
4800
120/240 (г)
Соединенные Штаты
Америка
Майами (Флорида)
60 ± 0.3 120/240 (к)
120/208 (а)
120/240 (j)
120/240 (h)
120/208 (a)
13 200
2400
480/277 (а)
120/240 (в)
Соединенные Штаты
Америка Нью-Йорк
(Нью-Йорк)
60 120/240 (к)
120/208 (а)
120/240 (к)
120/208 (а)
240 (е)
12,470
4,160
277/480 (а)
480 (ж)
Соединенные Штаты
Америка
Питтсбург
(Пенсильвания)
60 ± 0.03 120/240 (к) 265/460 (а)
120/240 (к)
120/208 (а)
460 (е)
230 (е)
13 200
11 500
2400
265/460 (а)
120/208 (а)
460 (е)
230 (е)
Соединенные Штаты
Америка
Портленд (Орегон)
60 120/240 (к) 227/480 (а)
120/240 (к)
120/208 (а)
480 (е)
240 (е)
19 900
12 000
7 200
2400
277/480 (а)
120/208 (а)
480 (е)
240 (е)
Соединенные Штаты
Америка
Сан-Франциско
(Калифорния)
60 ± 0.08 120/240 (к) 277/480 (а)
120/240 (к)
20800
12000
4,160
277/480 (а)
120/240 (г)
Соединенные Штаты
Америка
Толедо (Огайо)
60 ± 0,08 120/240 (к)
120/208 (а)
277/480 (в)
120/240 (в)
120/208 (в)
12,470
7,200
4,800
4,160
480 (ж)
277/480 (а)
120/208 (а)
Уругвай 50 ± 1 220 (б) (л) 220 (б) (л) 15 000
6 000
220 (б)
Вьетнам 50 ± 0.1 220 (к) 380/220 (а) 35 000
15 000
10 000
6 000
Йемен 50 250 (к) 440/250 (а) 440/250 (а)
Замбия 50 ± 2,5 220 (к) 380/220 (а) 380 (а)
Зимбабве 50 225 (к) 390/225 (а) 11 000
390/225 (а)

Алгоритм расширения типовых низковольтных сетей

Распределенные энергоресурсы (DER) все больше проникают в энергетическую систему, что обусловлено целями в области климата и устойчивого развития.Эти технологии в основном связаны с низковольтными электрическими сетями и меняют ситуацию со спросом и предложением в этих сетях. Это может вызвать критическое состояние сети. Топологии сети значительно различаются и зависят от нескольких условий, включая географическое положение, историческое развитие, дизайн сети или количество сетевых подключений. В прошлом только некоторые из этих аспектов принимались во внимание при оценке потребностей Германии в сетевых инвестициях на низковольтном уровне. Обычно исследуются топологии фиксированных сетей или используется подход Монте-Карло для количественной оценки инвестиционных потребностей на этом уровне напряжения.Недавние исследования показали, что DER существенно различаются между сельскими, пригородными и городскими регионами. Топологии низковольтных сетей имеют разные концепции проектирования в этих регионах, поэтому необходимо учитывать разные топологии сети при оценке потребности в расширениях сети и инвестициях из-за DER. Алгоритм расширения необходим для расчета расширений сети и потребностей в инвестициях для различных типологий типовых низковольтных сетей. Поэтому мы представляем новый алгоритм, который позволяет рассчитать расширение для типовых низковольтных сетей любой заданной топологии на основе отклонений диапазона напряжений и тепловых перегрузок.Алгоритм требует только информации о длинах линий и кабелей, их топологии и состоянии сети. Мы тестируем алгоритм на радиальной, петлевой и многоячеистой сети. Здесь мы показываем, что алгоритм работает для электрических сетей с этими топологиями. Мы обнаружили, что алгоритм может эффективно расширять различные сети, прокладывая кабели между узлами сети. Основная ценность алгоритма заключается в том, что он не требует никакой информации о маршрутах для дополнительных кабелей или позициях для дополнительных подстанций, когда дело доходит до оценки потребностей в расширении сети.

Диагностика в сетях низкого напряжения

Изображение предоставлено: Stock

Проблемы в сетях среднего напряжения обычно решаются за счет резервирования внутри сети, наряду с реализацией соответствующих мер переключения, которые обычно обеспечивают относительно бесперебойное продолжение подачи питания.

Эта статья изначально была опубликована в Smart Energy International, выпуск 2-2020. Прочтите полный диджимаг здесь или подпишитесь, чтобы получить печатную копию здесь.

Более длительное ожидание, пока неисправность не будет исправлена, в большинстве случаев приводит только к повышенному риску из-за возможности последующих сбоев. В сетях низкого напряжения, которые обычно не имеют резервного источника питания, интервалы времени до повторного подключения потребителя к источнику питания во многом зависят от скорости обнаружения неисправности. Более длительные периоды ожидания из-за более удаленной системы поиска неисправностей очень проблематичны.

Однако установка низкого напряжения также имеет свои преимущества.Расстояния относительно короткие и легко управляемые. Во многих случаях совместное положение также может быть очень четко очерчено на основе известных положений частных связей. Поскольку 80–90% повреждений кабеля происходят в стыках, возможна упреждающая локализация повреждения.

Переходные неисправности

  • Переходный процесс Неравномерные, кратковременные падения напряжения без срабатывания предохранителя
  • Прерывистый Нерегулярное срабатывание предохранителей с более длительными интервалами

Многие неисправности кабеля низкого напряжения меняются с переходных на постоянные («мерцающие огни» являются возможными признаками переходной неисправности).Кроме того, неисправности кабеля низкого напряжения часто бывают нестабильными / нелинейными и поэтому могут быть обнаружены только тогда, когда кабель находится под напряжением. Только после того, как повреждение стало постоянным, его можно обнаружить с помощью обычных методов с кабелем в обесточенном состоянии.

Для локализации всех нестабильных повреждений низковольтного кабеля требуется изменение их состояния. Единственный способ сделать это — при подключенных потребляющих устройствах — повторно подключить сетевое напряжение.

Если период между повторным включением и возникновением неисправности слишком велик, более эффективным и простым способом является повторное включение через сетевой предохранитель.Если интервалы короче и имеется достаточно места, можно использовать устройства автоматического повторного включения, такие как PowerFuse, для поддержания сетевого питания и изменения состояния неисправности.

Техническая проблема поиска неисправностей в разветвленных сетях

Поскольку для обнаружения повреждений кабеля с высоким сопротивлением необходимо использовать постоянное и импульсное напряжение, предохранители для частных подключений должны быть удалены. Проблема доступа к сервисному ящику не всегда является заданной.Реальная проблема предварительного определения места повреждения на кабелях с множеством тройников возникает из-за сильного затухания сигналов измерения отражения и сложности рефлектограммы из-за скачков импеданса на стыках и разветвлениях. Часто неисправности, возникающие после третьего или четвертого тройникового соединения, больше не распознаются из-за этих эффектов. Еще более сложной является ситуация с дефектами в соединениях ответвлений, поскольку они сами создают сильное отражение. Даже испытанный и испытанный метод отражения дуги (ARM) в равной степени подвержен этим ограничениям.

Ввиду этого даже опытным техническим специалистам сегодня часто приходится обнаруживать неисправность, измеряя различные конечные точки разветвленного кабеля. В некоторых случаях кабель действительно разрезают, чтобы ограничить испытательное растяжение.

Основные принципы

Использование тройников в сетях низкого напряжения значительно затрудняет оценку рефлектограмм. Только путем сравнительных измерений исправных и дефектных проводов можно получить поддающиеся оценке результаты.При использовании рефлектометра Telefl ex тестовые импульсы частично отражаются на тройнике с отрицательным алгебраическим знаком, в то время как продолжающиеся тестовые импульсы одновременно уменьшаются по амплитуде. Величина отражения зависит от импеданса основной и продолжающейся линий. Тройник — это, согласно теории линий передачи, параллельное переключение импеданса двух проводников.

Рисунок 1: Т-образная ветвь

При одинаковом импедансе обеих непрерывных линий Z уменьшается на 50% в тройнике.

Однако на практике это случается редко.

Как правило, основная линия имеет большее поперечное сечение, чем вторичная линия, и, следовательно, другое сопротивление.

Коэффициент отражения «r» можно получить с помощью следующего уравнения:

Результат показывает, что при одинаковом импедансе 33% тестового импульса отражается с отрицательным алгебраическим знаком, а 33% импульса продолжается в каждой из двух продолжающихся линий.

Из-за различного поперечного сечения основных и вторичных линий и, следовательно, различного импеданса, отражения на Т-образных ответвлениях обычно составляют от 10% до 30%.

Фактические результаты испытаний показывают, что в сетях с одиночным разветвлением положительные результаты могут быть достигнуты даже после 10 тройников. Однако в сетях с несколькими разветвлениями ситуация более сложная.

На этой схеме показана разветвленная низковольтная сеть с 12 Т-образными разветвлениями и двумя соединительными муфтами.

Конец красной линии соответствует расстоянию до места разлома, которое может располагаться на прямой линии или в Т-образном ответвлении.

Обнаружение неустойчивой неисправности.

Периодические неисправности очень сложно обнаружить.

Из-за большого количества стыков и соединений эти неисправности часто возникают в сетях низкого напряжения и уличного освещения. К этим неисправностям приводят коррозия в опорах светильников и плохие соединения в соединениях.

Digiflex Com и Teleflex MX

Megger оснащены «режимом IFL», и оба устройства выполняют непрерывные измерения и записывают их.

Каждое изменение импеданса, короткое замыкание и прерывание автоматически сохраняется и отображается в виде справочной кривой.

Преимущества режима IFL:

  • Синхронизация времени не требуется, каждое изменение записывается автоматически.
  • Оператор может самостоятельно выполнить измерение и определить конец строки. Рефлектометр можно подключать к неисправному кабелю в течение более длительного периода. Все события отображаются графически.
  • В «дифференциальном режиме» видны даже небольшие изменения импеданса.
  • Пусковое устройство не требуется.
  • Высокое напряжение не требуется.

Измерение сетей низкого напряжения под напряжением

Разделительные фильтры (400 В) позволяют напрямую подключать рефлектометр к низковольтной сети, находясь под напряжением.

Измерение всегда следует выполнять от конца кабеля или сервисной коробки в направлении подающей станции. Трансформаторы, распределительные устройства и распределительные коробки создают сильные отражения, которые перекрывают измерительные сигналы. Кроме того, тестовый импульс проходит через все исходящие линии, а также принимает от них несколько возвращаемых сигналов.Это значительно увеличивает сложность оценки фактических отражений неисправностей. Измерение от конца, удаленного от распределения, обычно имеет только определенное направление диффузии.

В некоторых странах такие измерения в реальном времени используются для обнаружения нелегальных потребителей. Требование к этому — сравнительное измерение с ранее записанными эталонными образцами. Измерение, проведенное в непосредственной близости от сервисного бокса и счетчика, содержит так много отражений, что обнаружение дополнительных линий и потребителей возможно только посредством сравнительного измерения.Однако такое измерение требует соблюдения определенных критериев безопасности, например: линий связи. Эти критерии безопасности описаны ниже.

Безопасность измерений в сетях под напряжением

Измерительные цепи подвержены нагрузке из-за рабочего напряжения и переходных нагрузок электрической системы, к которой они подключены во время измерения.

Использование измерительных устройств в сетях под напряжением требует определенных конструктивных мер безопасности и соответствующей маркировки.Они определены техническим стандартом VDE 0411 / IEC 61010 и разделены на категории от CAT 1 до CAT 4.

Определяющим элементом здесь является опасность, связанная с скачками и пиковыми напряжениями в соответствующем диапазоне CAT. Изоляция устройства и соответствующих измерительных линий должна надежно изолировать эти напряжения.

В случае зажигания дуги из-за перенапряжения может возникнуть несколько тысяч ампер, в зависимости от зоны подключения, прежде чем сработают вышестоящие элементы безопасности.

Категория IV Трехфазное подключение к источнику низкого напряжения, а также к воздушным линиям низкого напряжения: подходит для измерений на источнике низковольтной установки.

Примеры: счетчики и измерения первичных устройств максимальной токовой защиты и устройств контроля пульсаций.

Категория III Трехфазные распределительные сети, а также однофазные общественные / промышленные системы освещения: подходят для измерений при установке в зданиях.Примерами являются измерения распределителей, автоматических выключателей и кабелей.

Распределительные устройства железнодорожные, распределительные коробки, выключатели, розетки стационарной установки, промышленные устройства и другое оборудование, а также стационарные двигатели.

Категория I I Однофазные приложения с питанием от вилки: подходят для измерений в цепях, которые электрически напрямую связаны с сетью низкого напряжения. Примерами являются измерения на бытовых устройствах, портативных инструментах и ​​аналогичных устройствах.

Электронная система категории I: подходит для измерений в цепях, не связанных напрямую с сетью. Примерами являются измерения в цепях, которые представляют собой специально защищенные цепи, отведенные от сети.

ARM метод

Высокоомные повреждения кабеля в сетях низкого напряжения можно локализовать методом отражения дуги. Для оценки этого метода требуются как исправные, так и неисправные образцы.

Недостатки разветвленных сетей, такие как затухание тестовых импульсов в тройниках и дополнительные отражения от концов кабеля, также относятся к этому методу предварительного определения местоположения.Кабель должен быть отключен, и все предохранители должны быть удалены из сервисной коробки. Если повреждение кабеля расположено после нескольких тройников, разница между нормой и картиной повреждения очень незначительна. Увеличивая ширину импульса, можно сделать разницу более заметной. При необходимости следует внедрять систему локализации неисправностей.

В принципе, практически любая измерительная система может использоваться с методом ARM. Самый низкий доступный уровень импульсного напряжения представляет собой ограничение.

Оптимально от 3 до 4 кВ, при этом «меньше значит больше»!

Если, например, напряжение на уровне 8 кВ необходимо снизить до 3 кВ, остается доступной только ограниченная энергия перенапряжения. (W = 0,5 x C x UÇ).

Для предварительной локации это не так важно, но для точной локализации должно быть доступно не менее 300–500 Дж.

EZ Удар

Компактная и практичная система для этого применения — EZ Thump, которая предлагает полную систему поиска неисправностей.

EZ Thump имеет уровень 4 кВ (альтернативно также 12 кВ), который используется для тестирования, обнаружения поломки, предварительного определения местоположения и точного определения местоположения.

Автоматическая процедура позволяет обнаруживать неисправности, практически не разбираясь в оборудовании. Система автоматически направляет оператора через различные приложения, определяет ситуацию на тестовом объекте и соответствующим образом информирует пользователя.

Результаты теста отображаются непосредственно на дисплее в виде буквенно-цифровых значений.

Teleflex LV Monitor — онлайн-мониторинг рефлектометра

Teleflex LV Monitor служит для обнаружения всех неисправностей в сетях низкого напряжения, но особенно периодических неисправностей. При этом LV Monitor работает при пониженном напряжении, не отключая потребляющие устройства.

В режиме рефлектометра / TDR обычное измерение отражения выполняется с помощью устройства. Здесь применяются те же принципы теории линий передачи, что и в классическом измерении отражения.

В отличие от обычных устройств для определения места повреждения рефлектометра, Telefl ex LV Monitor подключается одновременно ко всем трем фазам рабочего низковольтного кабеля и позволяет оператору выполнять измерение отражения локально или удаленно на любой комбинации фаз.

На монитор Teleflex LV подается питание по линии с трехфазным подключением, в которой хотя бы одна фаза должна находиться под напряжением.

При использовании монитора Telefl ex LV измерение всегда выполняется на кабеле, находящемся под напряжением.После настройки всех основных параметров, таких как усиление, ширина импульса, диапазон измерения и выбор неисправного провода, LV Monitor непрерывно отправляет тестовые импульсы на неисправный кабель. В случае падения напряжения или срабатывания предохранителей в хронологическом порядке записываются 64 рефлектограммы вокруг события. Локализация неисправности выполняется путем сравнения измерения до события (ОК) и во время события (образец неисправности). Поскольку измерение выполняется на кабелях, находящихся под напряжением, интервалы времени для измерений между «ОК» и «типом неисправности» должны быть очень короткими, поскольку в противном случае включение мощных потребляющих устройств (короткое замыкание для импульса рефлектометра) приведет к к ложным интерпретациям.Тип напряжения и развитие неисправности отдельных фаз, а также кривую тока можно увидеть во временном окне события и включить в него для оценки.

Дополнительные методы:

Плавкий предохранитель

Powerfuse служит автоматическим резервным предохранителем и используется для предварительного обнаружения периодически возникающих неисправностей в сетях низкого напряжения с подключенными потребителями.

Низковольтные сети в значительной степени защищены предохранительными элементами NH.Если предохранитель выходит из строя из-за нарушения изоляции, клиент отключается от сети. Повторное подключение требует ручной замены неисправного предохранителя NH.

В частности, при периодических неисправностях предохранитель срабатывает нерегулярно, и его замена требует большего объема работ.

С помощью Powerfuse соответствующий участок кабеля автоматически включается.

В сочетании с рефлектометром предварительное расположение кабеля в соответствии с шаблоном исправности / неисправности может быть выполнено одновременно.

После 9 включений в течение 5 минут устройство отключается. Ток отключения можно установить постепенно от 125 до 315A. В случае неисправностей в IT-сетях, линиях управления или, например, сигнальных линиях на железных дорогах, термин, используемый для этого, означает короткое замыкание на землю, а не неисправность.

Сети

IT представляют собой специально защищенные сети, которые спроектированы таким образом, чтобы контакт с линией напряжения был безвредным (больницы) и чтобы в случае короткого замыкания на заземление не протекал ток (взрывозащита).

Особенно в промышленных системах, в которых кабели почти всегда находятся в среде с хорошей электропроводностью, короткие замыкания представляют собой одну из самых серьезных потенциальных опасностей.

Обычно в сети IT короткое замыкание на землю не приводит к срабатыванию предохранителей и, следовательно, не прерывает никаких процессов.

Однако короткое замыкание приводит к тому, что ранее незаземленная беспотенциальная система настраивается на потенциал заземления, который был создан в результате замыкания.

Как следствие, незатронутые фазы приобретают определенный потенциал относительно заземления.

Дополнительное замыкание на другую фазу (двойное замыкание на землю) теперь может вызвать настоящее короткое замыкание и, таким образом, привести к полному отказу источника питания. Это может, например, привести к остановке критических производственных процессов или возникновению дуги из-за сильного тока, что на самом деле представляет наибольшую опасность во взрывозащищенной среде.

Такие установки имеют изоляцию или систему контроля замыкания на землю, которая отображает это состояние в случае замыкания на землю, таким образом предупреждая оператора.

Таким образом, оператор может локализовать и устранить это замыкание на землю как можно быстрее, чтобы восстановить безопасность работы системы.

Обрыв нейтрального провода — измерение импеданса

N-проводник является наиболее важным проводником в сети, поскольку он необходим для всех фаз. Мерцающий свет может указывать на обрыв нейтрального проводника.

Из-за более высокого фазного напряжения не исключено повреждение пользователей.Чаще всего случаются обрывы нейтрального проводника в соединениях.

Коррозия из-за влажности на клеммах, неправильная сборка и внешние механические повреждения в результате строительных работ могут быть катализаторами и причинами этой неисправности. Обрыв нейтрального проводника является нарушением электроснабжения и приводит к сильному дисбалансу в сети.

В зависимости от типа этого повреждения, такого как контакт с землей, могут применяться следующие методы испытаний для предварительного определения местоположения:

  • Метод отражения импульса (изменение импеданса)
  • Определение места повреждения оболочки для контакта с землей
  • Измерение импеданса

Для получения дополнительной информации об этих и других методах поиска повреждений в сетях низкого напряжения, свяжитесь с Megger: www.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *