+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Основные характеристики электромагнитного излучения — Справочник химика 21

    ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ [c.9]

    Основные характеристики электромагнитного излучения [c.5]

    Основные характеристики электромагнитного излучения. Свет имеет двойственную природу волновую и корпускулярную. Волновые характеристики — это частота колебаний, длина волны и волновое число. Квантовая характеристика — это энергия квантов. Частота колебаний (V) показывает число колебаний в одну секунду и измеряется герцах, мегагерцах. Длина волны (А,) показы- [c.91]


    Основной характеристикой электромагнитного излучения яв ляется длина волны % или частота V (чаще вместо частоты ие пользуется волновое число V). Электромагнитные излучения раз личных длин волн (частот) составляют электромагнитный спектр В спектрофотометрии используются ультрафиолетовый (УФ), ви димый и инфракрасный (ИК) участки электромагнитного спектра [c.458]

    Взаимодействие излучения с химическими частицами является основой спектрохимического анализа, поэтому перед тем как приступить к изложению основных вопросов спектрохимии, необходимо понять некоторые важные характеристики электромагнитного излучения. Для этого полезно представить себе электромагнитную волну. 

[c.608]

    Частота является основной характеристикой электромагнитных волн. Каждому значению у соответствует определенное монохроматическое излучение. При различных процессах взаимодействия излучения с веществом частота луча не меняется (исключая явление Допплера) [2, 3]. [c.5]

    Основные характеристики генераторов СВЧ-диапа-зона — частота генерируемых колебаний, мощность излучения, уровень шума и диапазон перестройки частоты. Все генераторы электромагнитных колебаний могут быть разделены на три основных фуппы. [c.425]

    Природа электромагнитного излучения.

Основные характеристики [c.150]

    Фоторезисторы — полупроводниковые резисторы, изменение электрического сопротивления которых происходит под действием электромагнитного излучения. Светочувствительный элемент фоторезистора выполняется из полупроводниковых материалов на основе сернистого или селенистого свинца и кадмия в виде тонкой пленки на стеклянной подложке или прессованной таблетки. Основными характеристиками фоторезистора являются спектральная, люкс-амперная, вольт-амперная и частотная. К основным параметрам относятся кратность изменения сопротивления, темповой и световой фототок, номинальная мощность рассеяния, рабочее напряжение, постоянная времени и др. Фоторезисторы выпускаются в пластмассовых и металлических корпусах, а конструктивное исполнение некоторых типов позволяет устанавливать их в стандартные ламповые панели. [c.13]

    На рис. 22-2 приведены качественные характеристики основных областей электромагнитного спектра. Для этого использована логарифмическая шкала следует учесть, что область, воспринимаемая человеческим глазом видимый спектр), очень мала. Такие, казалось бы, непохожие на свет виды излучения, как гамма-лучи или радиоволны, отличаются от него в сущности лишь частотой и, следовательно, энергией. 

[c.99]

    Изменение электронного состояния молекул может происходить при неупругих столкновениях с заряженными частицами или при поглощении электромагнитного излучения. Существуют электронные состояния с энергией, ненамного превышающей энергию основного состояния. Реакционная способность молекул в таких состояниях может зависеть не только от энергии, но и от других характеристик. Данных по этому вопросу очень мало. Таким образом, из практических соображений широко изучались лишь электронные состояния, образовавшиеся в резуль-гате поглощения излучения с длинами волн короче инфракрасных. Нижний предел электромагнитной энергии, удобной для использования, составляет 1,5—2,0 эВ. Вследствие неупругого 

[c. 7]

    Абсорбционная молекулярная спектроскопия и.меет дело со спектрами, характеризующими способность вещества поглощать энергию электромагнитного излучения. Основным спектрофотометрическим законом современной абсорбционной спектроскопии является закон Бугера — Ламберта — Бера, связывающий интенсивности монохромат ического светового потока, падающего на образец (/о) и прошедшего через него (/) с характеристиками молекул поглощающего вещества и концентрацией его в образце  [c.5]

    Все виды взаимодействия излучений со средой можно разделить на две основные группы процессы поглощения и рассеяния. В процессах поглощения, характерных в основном для электромагнитных квантов и нейтронов, первичная падающая частица исчезает , т. е. полностью передает энергию на возбуждение атомов и молекул среды (поглощение света, захват нейтрона) либо помимо этого передает энергию еще и вторичным частицам (фотоэффект, эффект образования пар). В процессах рассеяния падающая частица также передает энергию среде при одновременном изменении направления движения, что важно с позиций пространственного распределения актов взаимодействия в среде. Процессы рассеяния делятся на две группы упругие и неупругие.. При упругих процессах кинетическая энергия системы, состоящей из взаимодействующих падающей частицы (электрона, фотона и т. д.) и атома среды (молекулы, ядра атома), в ходе взаимодействия не меняется. При неупругом рассеянии кинетическая энергия этой системы уменьшается. В процессе поглощения или неупругого рассеяния атомы и молекулы газовой среды переходят из основного в состояние с более высокой энергией (возбужденное вращательное, колебательное, электронное или ядерное) либо происходит ионизация. В конденсированной фазе, кроме того, образуются коллективные возбужденные состояния (фотоны, экси-тоны, плазмоны), а также делокализованные заряды (дырки, электроны проводимости). Детальный состав и превращения перечисленных выше активных частиц рассмотрены в гл.

2. Рассмотрим основные закономерности взаимодействия различных видов излучений и частиц с веществом, зависимости характеристик взаимодействия от энергии излучения и состава среды. [c.16]

    Рассмотрим кратко влияние свойств полупроводника и электромагнитного излучения на перечисленные характеристики фотоэлектрохимического преобразователя энергии (см. также [49]). Связь между К,нг и шириной запрещенной зоны обсуждалась выше. Величина квантового выхода фототока, как следует из уравнения (2.2), определяется соотношением между коэффициентом оптического поглощения света а, толщиной обедненного слоя и диффузионной длиной неосновных носителей Первая из перечисленных величин зависит от типа оптических переходов в полупроводнике, вторая-от концентрации основных носителей [см. уравнения (1.16) и (1.17)], которая регулируется введенными в полупроводник донорными или акцепторными примесями, третья-от совершенства кристаллической структуры материала и концентрации в нем случайных примесей и дефектов, служащих центрами рекомбинации. 

[c.57]

    Для определения толщины пластмассовых и лакокрасочных покрытий в настоящее время известен ряд методов электромагнитный, электроиндуктивный, радиоактивного излучения, ультразвуковой и др. В СССР разработано большое число приборов для измерения толщины покрытий. Однако для условий химического предприятия можно использовать лишь несколько толщиномеров. В табл. 37 приведены основные технические характеристики отечественных и зарубежных толщиномеров, применяемых в противокоррозионной технике химического предприятия. 

[c.275]

    Условия применения пленок (А) соответствуют трем иерархическим уровням типу, классу и виду. Основанием для такого деления служат последовательно конкретизируемые характеристики признака А в основном условии применения — при упаковывании изделий в пленку и хранении их в атмосфере (тип А ,, класс А ., вид А — и в дополнительном — при воздействии на упаковку физических полей, ударов, вибрации, атмосферных факторов и т. д. (А A g, A ). К типам условий применения пленок относят время (А 1), температуру (А2), среду (Аз), электрическое (А4) и магнитное (А5) поля, электромагнитное (А5) и корпускулярное A ) излучения, давление (Аз), ускорение (А9). 

[c.169]

    Все эти методы основаны на тех или иных эффектах, возникающих при взаимодействии электромагнитного излучения или потока элементарных частиц с отдельными атомами или целыми молекулами исследуемого вещества. Природа этих эффектов достаточно сложна, и поэтому связь между регистрируемыми на опыте характеристиками и искомыми структуригыми параметрами изучаемого вещества оказывается далеко не очевидной. Основные законы, описывающие взаимосвязь этих величин, составляют теории данных методов, уровень развития которых определяет количество и достоверность получаемой с помощью этих методов информации. [c.14]

    Основной характеристикой элек-фомагнитного излучения является его спектр, т.е. совокупность различных значений, которые может принимать данная физическая величина. Спектр может быть непрерывным и дискретным. Графически электромагнитный спектр можно изобразить в виде кривой, по оси абсцисс 

[c.332]

    В табл. 2.8 даны основные характеристики излучения описанных ранее ускорителей. Все ускорители, дающие пучки ускоренных электронов, можно использовать для генерирования тормозного излучения. Возникающая при этом электромагнитная радиация имеет непрерывный спектр энергии от нуля до энергии тормозящихся электронов. Энергия тормозного излучения, приведенная в таблице, соответствует максимальной или пику на кривой распределения. Термины непрерывный и пульсирующий пучок означают, что радиация может быть получена в виде пучка постоянной интенсивности или отдельными импульсами, следующими с частотой, определяемой конструкцией ускорителя. Часто пульсирующий пучок имеет интенсивность (в импульсе) гораздо большую, чем непрерывный пучок. Энергия положительных ионов в таблице относится к однозарядньш ионам.

Многозарядные ионы при тех же условиях ускорения получают энергию большую, чем однозарядные (кратную заряду иона). Свойства некоторых ускоренных частиц приведены в табл. 2.9. [c.35]

    Этot метод, основанный на квантовом эффекте резонансного поглощения электромагнитного излучения веществом, находит широкое применение в исследованиях молекулярной структуры жидкой воды. Однако при использовании этого метода возникают принципиальные трудности. Пе зная детально структуру воды и, тем более, характеристику водной системы, затруднительно использовать метод теоретического моделирования. Размытость колебательных полос жидкой воды мешает получению большинства спектральных характеристик. Сильное поглощение во всей области основных колебаний заставляет работать со слоями жидкости микронной 

[c.34]

    Фотосъемка как метод экспериментального изучения гидродинамики двухфазных систем получила широкое распространение в практике научно-исследовательской работы. Основными преимуществами этого метода являются простота реализации измерительной схемы и ее обслуживания. В ряде случаев информация о течениях в двухфазных системах, полученная с помощью фотосъемки, оказывается влолне достаточной не только для качественных оценок, но и для количественного анализа характеристик движения фаз. Фотосъемка позволяет зафиксировать мгновенное состояние исследуемого объекта ее применение предполагает, что стенки аппарата, в котором изучается гидродинамика двухфазной системы, должны быть прозрачными для электромагнитного излучения в видимой части спектра, В некоторых случаях достаточно иметь прозрачными только часть стенок аппарата. 

[c.21]

    Важным этапом в развитии учения о строении вещества явилось открытие квантовой природы лучистой энергии (Планк, 1900) и разработка квантовой теории. Все виды электромахнитного излучения могут быть описаны единой шкалой электромагнитных волн (рис. 2), основной характеристикой которых является длина волны к или частота колебаний связанные между собой простым соотношением = с, гдес—скорость света. В общем спектре электромагнитных колебаний значительный участок зани- [c.8]


Электромагнитное излучение: виды, влияние, характеристики, применение

Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

 Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

3. Длина.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте.

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а частота от 30 кГц до 300 ГГц. 19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, частота которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности.

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

• усталость;

• головную боль;

• тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека: