Основные характеристики электромагнитного излучения — Справочник химика 21
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ [c.9]Основные характеристики электромагнитного излучения [c.5]
Основные характеристики электромагнитного излучения. Свет имеет двойственную природу волновую и корпускулярную. Волновые характеристики — это частота колебаний, длина волны и волновое число. Квантовая характеристика — это энергия квантов. Частота колебаний (V) показывает число колебаний в одну секунду и измеряется герцах, мегагерцах. Длина волны (А,) показы- [c.91]
Основной характеристикой электромагнитного излучения яв ляется длина волны % или частота V (чаще вместо частоты ие пользуется волновое число V). Электромагнитные излучения раз личных длин волн (частот) составляют электромагнитный спектр В спектрофотометрии используются ультрафиолетовый (УФ), ви димый и инфракрасный (ИК) участки электромагнитного спектра
Взаимодействие излучения с химическими частицами является основой спектрохимического анализа, поэтому перед тем как приступить к изложению основных вопросов спектрохимии, необходимо понять некоторые важные характеристики электромагнитного излучения. Для этого полезно представить себе электромагнитную волну. [c.608]
Частота является основной характеристикой электромагнитных волн. Каждому значению у соответствует определенное монохроматическое излучение. При различных процессах взаимодействия излучения с веществом частота луча не меняется (исключая явление Допплера) [2, 3]. [c.5]
Основные характеристики генераторов СВЧ-диапа-зона — частота генерируемых колебаний, мощность излучения, уровень шума и диапазон перестройки частоты. Все генераторы электромагнитных колебаний могут быть разделены на три основных фуппы.
Природа электромагнитного излучения. Основные характеристики [c.150]
Фоторезисторы — полупроводниковые резисторы, изменение электрического сопротивления которых происходит под действием электромагнитного излучения. Светочувствительный элемент фоторезистора выполняется из полупроводниковых материалов на основе сернистого или селенистого свинца и кадмия в виде тонкой пленки на стеклянной подложке или прессованной таблетки. Основными характеристиками фоторезистора являются спектральная, люкс-амперная, вольт-амперная и частотная. К основным параметрам относятся кратность изменения сопротивления, темповой и световой фототок, номинальная мощность рассеяния, рабочее напряжение, постоянная времени и др. Фоторезисторы выпускаются в пластмассовых и металлических корпусах, а конструктивное исполнение некоторых типов позволяет устанавливать их в стандартные ламповые панели.
На рис. 22-2 приведены качественные характеристики основных областей электромагнитного спектра. Для этого использована логарифмическая шкала следует учесть, что область, воспринимаемая человеческим глазом видимый спектр), очень мала. Такие, казалось бы, непохожие на свет виды излучения, как гамма-лучи или радиоволны, отличаются от него в сущности лишь частотой и, следовательно, энергией.
Изменение электронного состояния молекул может происходить при неупругих столкновениях с заряженными частицами или при поглощении электромагнитного излучения. Существуют электронные состояния с энергией, ненамного превышающей энергию основного состояния. Реакционная способность молекул в таких состояниях может зависеть не только от энергии, но и от других характеристик. Данных по этому вопросу очень мало. Таким образом, из практических соображений широко изучались лишь электронные состояния, образовавшиеся в резуль-гате поглощения излучения с длинами волн короче инфракрасных. Нижний предел электромагнитной энергии, удобной для использования, составляет 1,5—2,0 эВ. Вследствие неупругого 7]
Абсорбционная молекулярная спектроскопия и.меет дело со спектрами, характеризующими способность вещества поглощать энергию электромагнитного излучения. Основным спектрофотометрическим законом современной абсорбционной спектроскопии является закон Бугера — Ламберта — Бера, связывающий интенсивности монохромат ического светового потока, падающего на образец (/о) и прошедшего через него (/) с характеристиками молекул поглощающего вещества и концентрацией его в образце
Все виды взаимодействия излучений со средой можно разделить на две основные группы процессы поглощения и рассеяния. В процессах поглощения, характерных в основном для электромагнитных квантов и нейтронов, первичная падающая частица исчезает , т. е. полностью передает энергию на возбуждение атомов и молекул среды (поглощение света, захват нейтрона) либо помимо этого передает энергию еще и вторичным частицам (фотоэффект, эффект образования пар). В процессах рассеяния падающая частица также передает энергию среде при одновременном изменении направления движения, что важно с позиций пространственного распределения актов взаимодействия в среде. Процессы рассеяния делятся на две группы упругие и неупругие.. При упругих процессах кинетическая энергия системы, состоящей из взаимодействующих падающей частицы (электрона, фотона и т. д.) и атома среды (молекулы, ядра атома), в ходе взаимодействия не меняется. При неупругом рассеянии кинетическая энергия этой системы уменьшается. В процессе поглощения или неупругого рассеяния атомы и молекулы газовой среды переходят из основного в состояние с более высокой энергией (возбужденное вращательное, колебательное, электронное или ядерное) либо происходит ионизация. В конденсированной фазе, кроме того, образуются коллективные возбужденные состояния (фотоны, экси-тоны, плазмоны), а также делокализованные заряды (дырки, электроны проводимости). Детальный состав и превращения перечисленных выше активных частиц рассмотрены в гл.
Рассмотрим кратко влияние свойств полупроводника и электромагнитного излучения на перечисленные характеристики фотоэлектрохимического преобразователя энергии (см. также [49]). Связь между К,нг и шириной запрещенной зоны обсуждалась выше. Величина квантового выхода фототока, как следует из уравнения (2.2), определяется соотношением между коэффициентом оптического поглощения света а, толщиной обедненного слоя и диффузионной длиной неосновных носителей Первая из перечисленных величин зависит от типа оптических переходов в полупроводнике, вторая-от концентрации основных носителей [см. уравнения (1.16) и (1.17)], которая регулируется введенными в полупроводник донорными или акцепторными примесями, третья-от совершенства кристаллической структуры материала и концентрации в нем случайных примесей и дефектов, служащих центрами рекомбинации.
Для определения толщины пластмассовых и лакокрасочных покрытий в настоящее время известен ряд методов электромагнитный, электроиндуктивный, радиоактивного излучения, ультразвуковой и др. В СССР разработано большое число приборов для измерения толщины покрытий. Однако для условий химического предприятия можно использовать лишь несколько толщиномеров. В табл. 37 приведены основные технические характеристики отечественных и зарубежных толщиномеров, применяемых в противокоррозионной технике химического предприятия.
Условия применения пленок (А) соответствуют трем иерархическим уровням типу, классу и виду. Основанием для такого деления служат последовательно конкретизируемые характеристики признака А в основном условии применения — при упаковывании изделий в пленку и хранении их в атмосфере (тип А ,, класс А ., вид А — и в дополнительном — при воздействии на упаковку физических полей, ударов, вибрации, атмосферных факторов и т.
Все эти методы основаны на тех или иных эффектах, возникающих при взаимодействии электромагнитного излучения или потока элементарных частиц с отдельными атомами или целыми молекулами исследуемого вещества. Природа этих эффектов достаточно сложна, и поэтому связь между регистрируемыми на опыте характеристиками и искомыми структуригыми параметрами изучаемого вещества оказывается далеко не очевидной. Основные законы, описывающие взаимосвязь этих величин, составляют теории данных методов, уровень развития которых определяет количество и достоверность получаемой с помощью этих методов информации.
Основной характеристикой элек-фомагнитного излучения является его спектр, т.е. совокупность различных значений, которые может принимать данная физическая величина. Спектр может быть непрерывным и дискретным. Графически электромагнитный спектр можно изобразить в виде кривой, по оси абсцисс [c.332]
В табл. 2.8 даны основные характеристики излучения описанных ранее ускорителей. Все ускорители, дающие пучки ускоренных электронов, можно использовать для генерирования тормозного излучения. Возникающая при этом электромагнитная радиация имеет непрерывный спектр энергии от нуля до энергии тормозящихся электронов. Энергия тормозного излучения, приведенная в таблице, соответствует максимальной или пику на кривой распределения. Термины непрерывный и пульсирующий пучок означают, что радиация может быть получена в виде пучка постоянной интенсивности или отдельными импульсами, следующими с частотой, определяемой конструкцией ускорителя. Часто пульсирующий пучок имеет интенсивность (в импульсе) гораздо большую, чем непрерывный пучок. Энергия положительных ионов в таблице относится к однозарядньш ионам. Многозарядные ионы при тех же условиях ускорения получают энергию большую, чем однозарядные (кратную заряду иона). Свойства некоторых ускоренных частиц приведены в табл. 2.9. [c.35]
Этot метод, основанный на квантовом эффекте резонансного поглощения электромагнитного излучения веществом, находит широкое применение в исследованиях молекулярной структуры жидкой воды. Однако при использовании этого метода возникают принципиальные трудности. Пе зная детально структуру воды и, тем более, характеристику водной системы, затруднительно использовать метод теоретического моделирования. Размытость колебательных полос жидкой воды мешает получению большинства спектральных характеристик. Сильное поглощение во всей области основных колебаний заставляет работать со слоями жидкости микронной [c.34]
Фотосъемка как метод экспериментального изучения гидродинамики двухфазных систем получила широкое распространение в практике научно-исследовательской работы. Основными преимуществами этого метода являются простота реализации измерительной схемы и ее обслуживания. В ряде случаев информация о течениях в двухфазных системах, полученная с помощью фотосъемки, оказывается влолне достаточной не только для качественных оценок, но и для количественного анализа характеристик движения фаз. Фотосъемка позволяет зафиксировать мгновенное состояние исследуемого объекта ее применение предполагает, что стенки аппарата, в котором изучается гидродинамика двухфазной системы, должны быть прозрачными для электромагнитного излучения в видимой части спектра, В некоторых случаях достаточно иметь прозрачными только часть стенок аппарата. [c.21]
Важным этапом в развитии учения о строении вещества явилось открытие квантовой природы лучистой энергии (Планк, 1900) и разработка квантовой теории. Все виды электромахнитного излучения могут быть описаны единой шкалой электромагнитных волн (рис. 2), основной характеристикой которых является длина волны к или частота колебаний связанные между собой простым соотношением = с, гдес—скорость света. В общем спектре электромагнитных колебаний значительный участок зани- [c.8]
Электромагнитное излучение: виды, влияние, характеристики, применение
Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.
Характеристики электромагнитного излучения
Любую электромагнитную волну описывают с помощью трех характеристик.
1. Частота.
2. Поляризация.
3. Длина.
Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.
Это явление активно используют на практике. Например, в кино при показе 3D фильмов.
С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.
Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.
Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.
Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.
Скорость распространения в вакууме равна 300 тыс. км за секунду.
Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:
Виды электромагнитных волн
Все электромагнитное излучение делят по частоте.
1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.
Длина радиоволн колеблется от 10 км до 1 мм, а частота от 30 кГц до 300 ГГц.
19 Гц, а длина порядка 10нм — 5пм.
6. Гамма волны. Сюда относят любое излучение, частота которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.
Сфера применения
Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.
Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.
Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.
Именно эти технологии сформировали информационный облик современного общества.
Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.
Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.
Рентгеновские снимки помогают определить повреждения внутренних тканей человека.
С помощью лазеров проводят ряд операций, требующих ювелирной точности.
Важность электромагнитного излучения в практической жизни человека сложно переоценить.
Советское видео о электромагнитном поле:
Возможное негативное влияние на человека
Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:
• усталость;
• головную боль;
• тошноту.
Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.
Интересное виде о влиянии ЭМ волн на человека:
youtube.com/embed/5KEXb1TdfNY» allowfullscreen=»allowfullscreen»/>
Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.
Электромагнитное излучение. Виды и применение. Влияние
Электромагнитное излучение представлено одноименными волнами, которые приводятся в возбуждение под воздействием различных объектов излучения в виде молекулярных, атомных и заряженных частиц.
Существует несколько его разновидностей:
Устройство
- Видимый свет. Это излучение, способное восприниматься человеческим зрением. Волновая длина достаточно короткая и варьируется в пределах 380-780 нанометров.
- Инфракрасное. Представляет собой что-то среднее между световым излучением и волнами радио.
- Радиоволны. Отличаются наибольшей длиной и вмещают в себя все разновидности излучения, волны которых характеризуются длиной от полумиллиметра.
- Ультрафиолетовое. Излучение, приносящее вред живому организму.
- Рентгеновское. Производится электронными частицами и нашло широкое применение в медицине.
- Гамма-излучение. Имеет самую короткую длину волн, представляя высокий уровень опасности для человеческого организма.
Характеристику любой электромагнитной волны составляют три основных параметра:
- Частота. Выражает количество гребней волны, проходящих в течение одной секунды. Мера измерения -герцы.
- Поляризация. Описывает колебания электромагнитных волн в поперечном направлении. Поляризованным излучение становится при волновых колебаниях, происходящих в одной плоскости.
На практике данное явление можно встретить в кинотеатрах на сеансах 3Д. Посредством поляризации в 3Д-очках происходит разделение картинки.
- Длина. Представляет собой расстояние, соединяющее точки электромагнитного излучения, которые колеблются в пределах одной фазы.
Распространение электромагнитного излучения возможно в любой среде, начиная плотным веществом и заканчивая вакуумом. При этом скорость распространения волны в вакуумном пространстве достигает 300 тысяч км в секунду. К примеру звуковые волны, в вакууме не распространяются.
Принцип действияЭлектромагнитное излучение имеет энергию, основной характеристикой которой является ее напряженность. Существует постоянное и переменное поле электромагнитных волн.
Первое — характеризуется напряженностью, которая обуславливается силой, оказывающей каталитическое действие на токовый проводник. В качестве единицы напряжения выступает ампер. Переменная разновидность совмещает в себе магнитную и электрическую разновидности магнитных полей, которые расширяются в пространстве в виде волн.
Область распространения включает в себя три зоны:
Свойства
- Ближнюю – индукционную.
- Промежуточную – интерференционную.
- Дальнюю — волновую.
Известно, что для электромагнитных волн характерны определенные свойства, о которых впервые заговорил Максвелл. Эти свойства обуславливаются различиями и зависимостью от параметра длины. Именно в соответствии с этими параметрами волны электромагнитных полей подразделяются на диапазоны, которые, в свою очередь, имеют достаточно условную шкалу, поскольку расположенные рядом частоты накладывают свои свойства друг на друга.
К таковым — относятся:
Применение и влияние
- Высокая проникающая способность.
- Быстрая скорость растворения в веществе.
- Негативное и благотворное влияние на человека.
Свое широкое применение электромагнитное излучение получило только в конце 19-го века, когда активно развивалась радиосвязь, посредством которой стало возможно общение на далеком расстоянии.
В качестве главных электромагнитных источников выступают крупные объекты промышленного масштаба, а также различные электрические линии передач. Помимо этого, рассматриваемый вид излучения получил активное применение в военной сфере. Там они представлены радарами и другими электрическими приборами, имеющих сложное устройство.
В медицинской области для лечения разнообразных болезней применяется инфракрасное излучение. Кроме этого:
- Посредством рентгеновского обследования становится возможным выявление внутренних повреждений в человеческом организме.
- Лазер позволяет проводить операции, которые требуют ювелирной точности и т.п.
Однако, несмотря на перечисленную выше пользу, электромагнитное излучение может спровоцировать возникновение ряда негативных признаков:
- Повышенную усталость.
- Боли в голове.
- Тошнотные позывы и т.п.
Повышенное воздействие определенных видов электромагнитных волн способно привести к повреждениям органов, расположенных внутри, и мозговой центральной нервной системы, что впоследствии чревато психическими расстройствами.
Во избежание столь отрицательных влияний существуют определенные стандарты, которые регулируют безопасность электромагнитного воздействия. Так, для каждого из видов электромагнитного излучения разработаны конкретные документы регулирующего характера в виде гигиенических норм и радиационных стандартов.
Достоинства и недостаткиЭлектромагнитное излучение влияет на человеческий организм и остается до конца неизученным, по причине чего рекомендуется свести к минимуму его воздействие.
Главным преимуществом ЭМИ является его активное применение в медицинской сфере. Посредством рентгеновского и инфракрасного излучений становится возможным обследование внутренних органов с последующим выявлением возможных заболеваний.
К недостатку же электромагнитного излучения следует отнести негативное воздействие на организм человека в случаях, когда это влияние превышает нормы.
По возможности его необходимо избегать. Более того, известен накопительный эффект биологического влияния излучения: чем он длительней, тем более негативнее последствия.
Многолетнее воздействие способно привести к:
Особенности
- Серьезным сбоям в гормональной системе.
- Злокачественным заболеваниям.
- Болезням крови и т.п.
Простым обывателям может быть непонятна схожесть между разными, на первый взгляд, объектами электромагнитного излучения, к примеру:
- Трубка рентгена.
- Печка, от которой исходит тепло.
- Фотопленка.
- Радиоприемник.
- Антенна телевизора.
Первые объекты — электромагнитные источники, вторые — представлены приемниками. Также отличается и влияние определенных видов излучения на живой организм, к примеру:
- Рентген и излучение гамма-частицами провоцируют повреждение тканевых структур и внутренних органов.
- Видимый свет при определенных условиях может негативно повлиять на зрение.
- Инфракрасные лучи могут оказывать чрезмерный нагрев на организм.
- При этом радиоволны практически никак не ощущаются.
Однако перечисленные выше отличия выступают различными аспектами одного явления. Электромагнитное излучение обладает волнами, которые имеют схожую распространительную скорость в пространстве. При этом количество колебаний в течение временной единицы может измеряться в широких диапазонных значениях. Окружающее нас пространство насыщено электромагнитным излучением, которое связано не только с радиоволнами, но и с окружающими телами.
Похожие темы:
1. ОСНОВНЫЕ ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН.
Глава 1
ОСНОВНЫЕ ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН
Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения.
Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.
Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380…780 нм (рис. 1.1). В области видимого спектра глаз ощушает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.
Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн — провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.
Электромагнитные волны имеют следующие основные характеристики.
1. Длина волны lв, — кратчайшее расстояние между двумя точками в пространстве, на котором фаза гармонической электромагнитной волны меняется на 360°. Фаза — это состояние (стадия) периодического процесса (рис. 1.2).
В наземном телевизионном вешании используются метровые (MB) и дециметровые волны (ДМВ), в спутниковом — сантиметровые волны (СМ). По мере заполнения частотного диапазона СМ будет осваиваться диапазон миллиметровых волн (Ка-bаnd).
2. Период колебания волны Т— время, в течение которого происходит одно полное изменение напряженности поля, т. е. время, за которое точка радиоволны, имеющая какую-то фиксированную фазу, проходит путь, равный длине волны lв.
3. Частота колебаний электромагнитного поля F (число колебаний поля в секунду) определяется по формуле
F=1/T, a T=1/F
Единицей измерения частоты является герц (Гц) — частота, при которой совершается одно колебание в секунд .
8/F(м/c*1/Гц)
Для больших значений частот длину волны электромагнитного колебания можно определить по формуле lв(м)=300/F(МГц) Зная длину волны электромагнитного колебания, частоту определяют по формуле F(МГц)=300/lв(м)
5. Поляризация радиоволн. Электрическая и магнитная составляющие электромагнитного поля соответственно характеризуются векторами Е и Н, которые показывают значение напряженностей полей и их направление. Поляризацией называется ориентировка вектора электрического поля Е волны относительно поверхности земли (рис. 1.2).
Вид поляризации радиоволн определяется ориентировкой (положением) передающей антенны относительно поверхности земли. Как в наземном, так и в спутниковом телевидении применяется линейная поляризация, т. е. горизонтальная Н и вертикальная V (рис. 1.3).
Радиоволны с горизонтальным вектором электрического поля называют горизонтально поляризованными, а с вертикальным — вертикально поляризованными. Плоскость поляризации у последних волн вертикальна, а вектор Н (см. рис. 1.2) находится в горизонтальной плоскости.
Если передающая антенна установлена горизонтально над поверхностью земли, то электрические силовые линии поля также будут расположены горизонтально. В этом случае поле наведет наибольшую электродвижущую силу (ЭДС) в гори-
Рис 1.4. Круговая поляризация радиоволн:
LZ— левая; RZ— правая
зонтально расположенной приемной антенне. Следовательно, при Н поляризации радиоволн приемную антенну необходимо ориентировать горизонтально. При этом приема радиоволн на вертикально расположенную антенну теоретически не будет, так как наведенная в антенне ЭДС равна нулю. И наоборот, при вертикальном положении передающей антенны приемную антенну также необходимо расположить вертикально, что позволит получить в ней наибольшую ЭДС.
При телевизионном вещании с искусственных спутников Земли (ИСЗ) кроме линейных поляризаций широко используется круговая поляризация.
Связано это, как ни странно, с теснотой в эфире, так как на орбитах находится большое количество спутников связи и ИСЗ непосредственного (прямого) телевизионного вещания.
Часто в таблицах параметров спутников дают сокращенное обозначение вида круговой поляризации — L и R. Круговую поляризацию радиоволн создает, например, коническая спираль на облучателе передающей антенны. В зависимости от направления намотки спирали круговая поляризация оказывается левой или правой (рис. 1.4).
Соответственно в облучателе наземной антенны спутникового телевидения должен быть установлен поляризатор, который реагирует на круговую поляризацию радиоволн, излучаемых передающей антенной ИСЗ.
Рассмотрим вопросы модуляции высокочастотных колебаний и их спектр при передаче с ИСЗ. Целесообразно это сделать в сравнении с наземными вещательными системами.
Разнос между несущими частотами сигналов изображения и звукового сопровождения составляет 6,5 МГц, остаток нижней боковой полосы (слева от несущей изображения) — 1,25 МГц, а ширина канала звукового сопровождения — 0,5 МГц
(рис. 1.5). С учетом этого суммарная ширина телевизионного канала принята равной 8,0 МГц (по стандартам D и К, принятым в странах СНГ).
Передающая телевизионная станция имеет в своем составе два передатчика. Один из них передает электрические сигналы изображения, а другой — звуковое сопровождение соответственно на разных несущих частотах. Изменение какого-то параметра несущего высокочастотного колебания (мощности, частоты, фазы и др.) под воздействием колебаний низкой частоты называется модуляцией. Используются два основных вида модуляции: амплитудная (AM) и частотная (ЧМ). В телевидении сигналы изображения передаются с AM, а звуковое сопровождение — с ЧМ. После модуляции электрические колебания усиливаются по мощности, затем поступают в передающую антенну и излучаются ею в пространство (эфир) в виде радиоволн.
8 наземном телевизионном вещании по ряду причин невозможно применить ЧМ для передачи сигналов изображения.
На СМ места в эфире значительно больше и такая возможность существует. В результате спутниковый канал (транспондер) занимает полосу частот в 27 МГц.
Преимущества частотной модуляции сигнала поднесущей:
меньшая по сравнению с AM чувствительность к помехам и шумам, низкая чувствительность к нелинейности динамических характеристик каналов передачи сигналов, а также стабильность передачи на далекие расстояния. Данные характеристики объясняются постоянством уровня сигнала в каналах передачи, возможностью проведения частотной коррекции предыскажений, благоприятно влияющих на отношение сигнал/шум, благодаря чему ЧМ можно значительно снизить мощность передатчика при передаче информации на одно и то же расстояние. Например, в наземных вещательных системах для передачи сигналов изображения на одной и той же телевизионной станции используются передатчики в 5 раз большей мощности, чем для передачи сигналов звукового сопровождения.
Урок 10. электромагнитные волны — Физика — 11 класс
Физика, 11 класс
Урок 10. Электромагнитные волны
Перечень вопросов, рассматриваемых на уроке:
- Основные положения электромагнитной теории Максвелла и опытное доказательство Герцем существования электромагнитных волн.
- Электромагнитная волна и её характеристики, вихревое поле, шкала электромагнитных волн.
Глоссарий по теме
Вихревым электрическим полем называется поле, силовые линии которого нигде не начинаются и не заканчиваются, представляют собой замкнутые линии.
Электромагнитное поле – особая форма материи, осуществляющая электромагнитное взаимодействие.
Электромагнитные волны – это электромагнитные колебания, распространяющееся в пространстве с конечной скоростью.
Точечный источник излучения – это источник, размеры которого много меньше расстояния, на котором оценивается его действие, и он посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью.
Плотностью потока электромагнитного излучения называют отношение электромагнитной энергии переносимой волной за время через перпендикулярную лучам поверхность площадью S, к произведению площади на время.
Основная и дополнительная литература по теме урока:
Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2016. – С. 140-150
Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.- С.20-22
Основное содержание урока
Часто вы слышите от заботливых мам: «Не клади телефон под подушку! Не сиди долго за компьютером. Не находись долго около микроволновки! Не носи телефон в кармане! Вредно для здоровья, опасно для жизни, есть риск заболеть раковыми заболеваниями, действуют электромагнитные волны».
Вселенная-это океан электромагнитных излучений. Человек живет в нем, не замечая волн, проникающих в окружающее пространство. Включив лампочку или греясь у камина, человек заставляет источник этих волн работать, не задумываясь об их свойствах. Открытие природы электромагнитного излучения, позволило человечеству в течение XX века освоить и ввести в эксплуатацию различные его виды.
Сегодня мы поговорим об электромагнитных волнах, что это? Каковы его характеристики?
Когда мы слышим слово «волна», что вы себе представляете? Волны на море, на реке, волна в ванной комнате, и т.д. это механические волны. Механика переводится как движение. Мы их видим и способны определить его характеристики. Вспомним, какие величины характеризуют механические волны.
Период – это время, за которое совершается одно колебание. Период обозначается буквой Т, измеряется в секундах. Определяется по формуле:
Частота – это число колебаний в единицу времени. Частота — обозначается буквой ν (ню), измеряется в герцах Гц и определяется по формуле:
Амплитуда – это наибольшее отклонение от положения равновесия. Амплитуда – обозначается буквой А, измеряется в метрах.
Длина волны — это кратчайшее расстояние между точками, колеблющимися в одинаковых фазах. Обозначается буквой лямбда λ, измеряется в метрах м,
Скорость — υ, м/с
Механические волны имеют много общего с электромагнитными волнами, но есть и существенные различия. Они распространяются в твердой, жидкой, газообразной среде, можем ли мы обнаружить их нашими чувствами? Да, в твердых средах-это могут быть землетрясения, колебания струн музыкальных инструментов. В жидкости — волны в море, в газах-это распространение звуков. С электромагнитными волнами не все так просто. Мы не чувствуем и не осознаем, сколько электромагнитных волн пронизывает наше пространство. Радиоволны, телевизионные волны, солнечный свет, Wi-Fi, излучение мобильного телефона и многое другое являются примерами электромагнитного излучения. Если бы мы могли видеть их, мы не смогли бы видеть друг друга за столькими электромагнитными волнами. Электромагнитные волны играют огромную роль в жизни современного человека — с их помощью мы передаем информацию, общаемся, обмениваемся данными, изучаем окружающий мир и многое другое. Сегодня мы должны понять понятие электромагнитных волн, выяснить, как получить электромагнитные волны и какими свойствами они обладают.
Какова история открытия электромагнитных волн? В 1820 году Эрстед обнаружил действие электрического тока на магнитную стрелку, что привело к возникновению новой области физики — электромагнетизма. В 1831 году Фарадей открыл явление электромагнитной индукции: переменное магнитное поле создает переменный электрический ток. В 1864 году Максвелл предположил, что при изменении электрического поля возникает вихревое магнитное поле. В 1887 году Герц экспериментально подтвердил гипотезу Максвелла о существовании электромагнитного поля.
Для подтверждения гипотезы Максвелла о существовании электромагнитного поля необходимо было экспериментально открыть электромагнитные волны. Это сделал немецкий физик Генрих Герц, который использовал устройство, названное в его честь вибратором Герца-открытый колебательный контур.
Генрих Герц
(1857–1894)
Простейшая система, в которой возникают электромагнитные колебания, называется колебательным контуром.
Для того, чтобы иметь колебания в цепи, необходимо зарядить конденсатор. В результате периодической перезарядки конденсатора в цепи возникают колебания. Между обкладками конденсатора возникает переменное электрическое поле. А вокруг него переменное магнитное поле, вихрь и вихрь переменного электрического поля и др. Таким образом, в пространстве электромагнитное поле распространяется в виде электромагнитных волн. Генри Герц измерил частоту ν гармонических колебаний в цепи и длину λ электромагнитной волны и определил скорость электромагнитной волны:
υ = λ·ν
Значение скорости электромагнитной волны, полученное в эксперименте Герца, совпало со значением скорости электромагнитной волны по гипотезе Максвелла с = 299 792 458 м = 300 000 км/с. Чтобы сделать излучение более интенсивным, необходимо увеличить циклическую частоту. По формуле: ω=1/√(L∙C) частота зависит от индуктивности катушки и емкости конденсатора. Так, необходимо уменьшить индуктивность L и электрическую емкость C. для этого необходимо уменьшить количество витков катушки и раздвинуть обкладки конденсатора. Закрытый колебательный контур превращается в открытый – прямой проводник. Проводник был разрезан, оставляя зазор, чтобы поставить шары и зарядить до высокой разности потенциалов. В результате между шариками проскакивала искра. Возбуждая в вибраторе с помощью источника высокого напряжения, серии импульсов быстроизменяющегося тока, Герц получал электромагнитные волны высокой частоты. Электромагнитные волны регистрировались Герцем с помощью приемного вибратора (резонатора), который является тем же устройством, что и излучающий вибратор
Итак, процесс взаимного порождения электрического поля переменным магнитным полем и изменение магнитного поля электрическое поле может продолжать распространяться, захватывая новые области пространства.
Переменные электрическое и магнитное поля, распространяющиеся в пространстве и генерирующие друг друга, называются электромагнитной волной.
Электромагнитное поле-особая форма материи, осуществляющая электромагнитное взаимодействие. И это поле имеет совершенно иную природу, чем электростатическое. Линии натяжения не имеют начала и конца, они замкнуты. Отсюда и название вихревого поля. Вихревое электрическое поле-это поле, силовые линии которого не начинаются и не заканчиваются нигде, а являются замкнутыми линиями.
Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Сила, действующая на заряд со стороны вихревого электрического поля, равна:
Но, в отличие от электростатического поля, работа вихревого электрического поля на замкнутой линии не равна нулю. Так как при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, потому, что сила и перемещение совпадают по направлению.
Согласно теории Максвелла, электромагнитная волна переносит энергию. Энергия электромагнитного поля волны в данный момент времени меняется периодически в пространстве с изменением векторов и Электрическое и магнитное поля в электромагнитной волне перпендикулярны друг к другу, причем каждое из них перпендикулярно к направлению распространения волны:
Таким образом, электромагнитная волна является поперечной волной. Электромагнитная волна излучается колеблющимися зарядами, при этом важно, чтобы заряды двигались с ускорением. Электромагнитная волна, как и механическая, характеризуется периодом и частотой колебаний, длиной волны и скоростью распространения. Период Т – это время одного колебания. Частота ν – это число колебаний за одну секунду. Длина волны λ — это расстояние, на которое распространяется электромагнитная волна за время одного периода. В вакууме для электромагнитной волны период Т и частота ν и длина волны λ связаны соотношениями:
Герц не только открыл электромагнитные волны, но и показал, что они ведут себя подобно другим волнам.
Они поглощаются, отражаются, преломляются, наблюдаются явления интерференции и дифракции волн. Вычисленная на основании гипотезы Максвелла скорость электромагнитной волны совпала с наблюдаемой в опытах скоростью света. Это совпадение позволило предположить, что свет является одним из видов электромагнитных волн.
Свойства электромагнитных волн:
Отражение электромагнитных волн: волны хорошо отражаются от металлического листа, причем угол падения равен углу отражения;
Поглощение волн: электромагнитные волны частично поглощаются при переходе через диэлектрик;
Преломление волн: электромагнитные волны меняют свое направление при переходе из воздуха в диэлектрик;
Интерференция волн: сложение волн от когерентных источников;
Дифракция волн: отгибание волнами препятствий.
Фронтом волны называется геометрическое место точек, до которых дошли возмущения в данный момент времени. Поверхность равной фазы называется волновой поверхностью. Плоской волной называется волна, у которой волновая поверхность — плоскость. Линия, перпендикулярная волновой поверхности, называется лучом. Электромагнитная волна, как мы уже сказали, переносит энергию. Луч указывает направление, в котором волна переносит энергию. Тогда для плоской электромагнитной волны скорость, которой перпендикулярна поверхности площадью s, то можно ввести понятие плотность потока излучения. Плотностью потока электромагнитного излучения называют отношение электромагнитной энергии переносимой волной за время через перпендикулярную лучам поверхность площадью S, к произведению площади на время.
Иногда ее называют интенсивностью волны. Плотностью потока электромагнитного излучения пропорциональна четвертой степени циклической частоты.
Источники излучения электромагнитных волн разнообразны, но самым простым является точечный источник. Точечный источник излучения – это источник, размеры которого много меньше расстояния, на котором оценивается его действие, и он посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью (например, звёзды).
Длина электромагнитных волн различна: от значений порядка 1013 м (низкочастотные колебания) до 10-10 м (γ-лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Принято выделять низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение. Атомные ядра испускают самое коротковолновое -излучение. Особого различия между отдельными излучениями нет. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации. Электромагнитные волны обнаруживаются, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений.
Сегодня мы знаем, что к опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны. Распределение электромагнитных излучений по диапазонам условное и резкой границы между областями нет. Вся шкала электромагнитных волн является подтверждением того, что все излучения обладают одновременно квантовыми и волновыми свойствами.
В зависимости от своей частоты или длины волны электромагнитные волны имеют различное применение. Они несут людям пользу и вред. Бытовые обогревательные приборы, приборы для приготовления еды, телефоны, компьютеры, вышки сотовой связи и телебашни, электропровода излучают электромагнитные волны. Больше других источников электромагнитные волны у нас дома излучают мобильные телефоны, микроволновые печи, холодильники, электрические кухонные плиты. Самым мощным источником излучения являются линии электропередач, и строить жилые дома под ними, воспрещено. Антенны радиопередатчиков нельзя устанавливать на сооружениях, в которых живут люди.
Эмбрионы и ткани, находящиеся в стадии роста, больше всего подвержены влиянию волн, воздействуют электромагнитное поле на центральную нервную систему и мышцы тела. Это влияние становится причиной бессонницы и дисфункций в неврологической области, нарушения частоты биений сердца и скачков давления. Но есть, и полезные свойства электромагнитных волн. Их используют в физиотерапевтическом лечении некоторых болезней так как они способствуют быстрому заживлению тканей, останавливает развитие воспалительных процессов. Мы сегодня исключить полностью общение с электромагнитными волнами не можем, но чтобы обезопасить себя дома, надо грамотно устанавливать бытовые устройства в комнатах.
Итак, свойства электромагнитных волн:
1. Электромагнитная волна представляет собой распространение в пространстве с течением времени переменных (вихревых) электрических и магнитных полей.
2. Электромагнитные волны излучаются зарядами, которые движутся с ускорением, например, при колебаниях. Причем, чем больше ускорение колеблющихся зарядов, тем больше интенсивность излучения волны.
3. Векторы и в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны.
4.Электромагнитная волна является поперечной.
Разбор тренировочного задания
1. Определить, на какой частоте работает передатчик, если длина излучаемых им волн равна 200 м.
Дано:
𝛌=200 м
с=3·108 м/с
𝞶 -?
Решение:
Частоту выражаем через длину волны и скорость.
Ответ:
2. Ёмкость конденсатора колебательного контура Какова индуктивность катушки контура, если идет прием станции, работающей на длине волны 1000 метров?
Дано:
𝛌= 1000 м
с=3·108 м/с
L- ?
Решение:
Формула Томсона для периода колебаний:
Период колебаний выражаем через длину волны и скорость:
Ответ:
Основные характеристики электромагнитного излучения
Содержание:
Основные характеристики электромагнитного излучения
- Основные характеристики электромагнитного излучения Спектральный и другие оптические методы анализа основаны на использовании различных явлений и эффектов, возникающих в результате взаимодействия вещества с электромагнитным излучением.
пр = 6,1014 Гц. Обратная величина длины волны называется волновым числом v и обычно выражается в обратных сантиметрах (см -1). о * я Энергия электромагнитного излучения определяется соотношением E = HV Где h — постоянная Планка, равная 6,62-IG-34 Дж-с. Чтобы получить 1 моль энергии, это значение должно быть умножено на число Авогадро. E = 6,62,10 «34 • 6,02 • 1023v = 3,99-10», 0v, где £ выражено в Дж / моль.
Например, для зеленого света, v ‘= 1 5 = 2 -104 см-1. Людмила ФирмальСмотрите также:
Решение задач по аналитической химии
Краткая характеристика видов электромагнитного излучения
Электромагнитное излучение — это очень интересное и одновременно сложное физическое явление, исследование которого началось еще в далекие годы XVII века. Первые волновые теории света (старые варианты электромагнитного излучения) восходят к временам Гюйгенса. Плодотворным периодом, с точки зрения интенсивного исследования и развития электромагнитного излучения является XVIII-XIX вв., поскольку именно в это время были изобретены инфракрасное, ультрафиолетовое, рентгеновское и гамма-излучения, была построена теория электромагнитного поля классической физики, а также начато изучение квантовой физики др.
Подробнее о измерении электромагнитного излучения в квартире
Электромагнитное излучение подразделяется на радиоволны, видимый свет, терагерцовое, инфракрасное, ультрафиолетовое, рентгеновское излучение и жесткое (гамма-излучение).
Радиоволны — электромагнитные волны с длиной волны> 500 мкм (частотой <6×10 12 гц). Они обладают многофункциональным применением: радиовещание, радиотелефонная связь, телевидение, радиолокация, радиометрология др. Во всех перечисленных случаях радиоволны являются средством передачи на расстояние без проводов той или иной информации: речи, телеграфных сигналов, изображения.
Видимый свет — область спектра электромагнитных волн, которая непосредственно воспринимается человеческим глазом.
Волны с длиной меньше 380 нм называют ультрафиолетовыми, больше 750 нм — инфракрасными. Чувствительность человеческого глаза к волнам разной частоты в видимом диапазоне разная. Она имеет максимум в середине диапазона (зеленый цвет) и уменьшается в направлении границ. Это значит, что среди источников света одинаковой интенсивности, зеленый источник казаться ярче, чем красный или голубой.
Терагерцовое излучение — вид электромагнитного излучения, спектр частот которого расположен между инфракрасным и сверхвысокочастотным диапазонами. Данный вид излучения уже находит применение в некоторых отраслях народного хозяйства и повседневной жизни людей. Например, в системах безопасности используется терагерцовое излучение для сканирования багажа и людей, которое, в отличие от рентгеновского, не наносит вреда организму. С его помощью можно разглядеть спрятанные под одеждой человека металлические, керамические, пластиковые и другие предметы на расстояниях до десятков метров. Очень важным является его использование в медицинской практике, в частности, внедрение терагерцовых томографов с помощью которых можно исследовать верхние слои тела — кожу, сосуды, мышцы — до глубины в несколько сантиметров.
Инфракрасное излучение — оптическое излучение с длиной волны больше, чем у видимого излучения, соответствующего длине волны, превышающей примерно 750 нм. Человеческий глаз не видит инфракрасного излучения, органы чувств некоторых других животных, например, змей и летучих мышей, воспринимают инфракрасное излучение, что помогает им хорошо ориентироваться в темноте. Инфракрасные лучи излучаются всеми телами, имеющими температуру выше абсолютного нуля, максимум интенсивности излучения зависит от температуры.
Ультрафиолетовое излучение — спектр электромагнитных колебаний, которое составляет около 5% плотности потока солнечного излучения и является жизненно необходимым фактором, оказывающий благотворное влияние на организм, снижает чувствительность организма к некоторым воздействиям.
Оптимальные дозы лучей активизируют действие сердца, обмен веществ, повышают активность ферментов дыхания, улучшают кровообразование, оказывают антирахитическое и бактерицидное действие. Продолжительность воздействия больших доз излучения может привести к поражениям кожи и органов зрения. Эффективным методом защиты от ультрафиолетового излучения является экранирование источников излучения. Рабочие места ограждают ширмами, щитами, оборудуют кабины, как средства индивидуальной защиты используют спецодежду, спецобувь, перчатки, защитные очки и щитки со светофильтрами.
Рентгеновское излучение, пулюевское излучение или Х-лучи — коротковолновое электромагнитное излучение с длиной волны от 10 нм до 0.01 нм. В электромагнитном спектре диапазон частот рентгеновского излучения лежит между ультрафиолетом и гамма-лучами. Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и попадая потом на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачны для него части объекта дают более светлые участки на фотографии, чем те, по которым излучение проникает хорошо.
Жесткое (гамма-излучение) — электромагнитное излучение высокой энергии с длиной волны менее 1 ангстрем. Образуется в реакциях с участием атомных ядер и элементарных частиц. Гамма-лучи имеют наибольшую проницаемость из всех видов радиации, соответственно, от них труднее защититься. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так, выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков) и растений.
Влияние радиации на живой организм вызывает в нем различные оборотные и не оборотные биологические изменения (подробнее о измерении уровня радиации в кравтире). И эти изменения делятся на две категории — соматические, вызванные непосредственно у человека, и генетические, возникающие у потомков. Тяжесть воздействия радиации на организм человека зависит от того, как происходит это влияние — сразу или порциями. Большинство органов успевает восстановиться, поэтому они лучше переносят серию кратковременных доз, по сравнению с той же суммарной дозой облучения за один раз.
Обзор электромагнитных волн Рона Куртуса
SfC Home> Физика> Электромагнитные волны>
Рона Куртуса (от 15 февраля 2016 г.)
Электромагнитные волны состоят из колеблющихся электрических и магнитных полей, действующих перпендикулярно друг другу. Хотя визуализировать этот сценарий сложно, форма волны действительно имеет характеристики, аналогичные другим типам волн.
Различные диапазоны электромагнитных волн или их можно классифицировать в зависимости от их характеристик и того, как они взаимодействуют с веществом.Некоторые группы в электромагнитном спектре включают радиоволны, микроволны, рентгеновские лучи и видимый свет.
Различные эффекты определяют создание и обнаружение для диапазона длин волн.
Вопросы, которые могут у вас возникнуть:
- Что такое электромагнитная волна?
- Как создаются эти волны?
- Каковы характеристики электромагнитных волн?
- Как создаются и обнаруживаются эти волны?
Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц
Описание электромагнитной волны
Электромагнитная волна состоит из колеблющегося электрического поля и соответствующего магнитного поля под прямым углом к
Классически электромагнитное излучение состоит из электромагнитных волн , которые представляют собой синхронизированные колебания электрического и магнитного полей, распространяющиеся со скоростью света в вакууме.
Колебания двух полей перпендикулярны друг другу и перпендикулярны направлению распространения энергии и волны, образуя поперечную волну.
Электромагнитный спектр
Диапазон длин электромагнитных волн — от очень длинных до очень коротких — называется электромагнитным спектром:
Radio и TV Волны являются самыми длинными используемыми волнами, имеющими длину волны 1 милю (1,5 километра) или более.
Микроволны используются в телекоммуникациях, а также для приготовления пищи.
Инфракрасное излучение почти не видно.Это темно-красные лучи, которые дает тепловая лампа.
Видимый свет волны — это излучение, которое вы можете видеть своими глазами. Их длины волн находятся в диапазоне 1/1000 сантиметра.
Ультрафиолетовые лучи вызывают солнечный ожог и используются в «черных огнях», заставляющих предметы светиться.
Рентгеновские лучи проходят через тело и используются в медицинских целях.
Гамма-лучи — опасные лучи, исходящие от ядерных реакторов и атомных бомб.У них самая короткая длина волны в электромагнитном спектре — около 1/10 000 000 сантиметра.
Характеристики электромагнитных волн
Электромагнитные волны — это поперечные волны, похожие на волны воды в океане или волны на гитарной струне. Это в отличие от волн сжатия звука. Как вы узнали из «Волнового движения», все волны имеют амплитуду, длину, скорость и частоту.
Амплитуда
Амплитуда электромагнитных волн зависит от их интенсивности или яркости (как в случае видимого света).
Яркость видимого света обычно измеряется в люменах. Для других длин волн используется интенсивность излучения, которая представляет собой мощность на единицу площади или ватт на квадратный метр. Квадрат амплитуды волны — это интенсивность.
Длина волны
Длины волн электромагнитных волн варьируются от очень длинных до очень коротких и все, что находится между ними.
Длины волн определяют, как вещество реагирует на электромагнитную волну, и эти характеристики определяют название, которое мы даем этой конкретной группе длин волн.
Скорость
Скорость электромагнитных волн в вакууме составляет приблизительно 186 000 миль в секунду или 300 000 километров в секунду, что равно скорости света. Когда эти волны проходят через вещество, они немного замедляются в зависимости от их длины.
Частота
Частота любой формы волны равна скорости, деленной на длину волны. Единицы измерения — циклы в секунду или герцы.
Создание и обнаружение
Когда электроны движутся, они создают магнитное поле.Когда электроны движутся вперед и назад или колеблются, их электрическое и магнитное поля изменяются вместе, образуя электромагнитную волну. Это колебание может исходить от атомов, которые нагреваются и поэтому быстро движутся, или от электричества переменного тока.
Обратный эффект возникает, когда электромагнитная волна ударяет по материи. В таком случае он может заставить атомы вибрировать, выделяя тепло, или может заставить электроны колебаться, в зависимости от длины волны излучения.
Источники электромагнитного излучения
Электромагнитное излучение исходит от всего вещества с температурой выше абсолютного нуля.Температура — это мера средней энергии колеблющихся атомов, и эта вибрация заставляет их испускать электромагнитное излучение. По мере повышения температуры испускается больше излучения и более короткие волны электромагнитного излучения.
Источники длинных волн
Электронные устройства излучают микроволны, радио и телевизионные волны. Искры и переменный ток вызывают колебания соответствующей частоты.
Источники видимого света
Видимый свет излучается материей, температура которой превышает 700 градусов Цельсия.Этот предмет считается раскаленным. Солнце, огонь и обычная лампочка — это источники света накаливания.
Когда элемент в электрической плите нагревается, он испускает инфракрасное излучение, а затем, когда он становится горячее, чем 700 градусов, он начинает светиться.
Видимый свет излучается горячим элементом.
(Дополнительную информацию см. В разделе «Видимый свет».)
Источники коротких волн
Разбивая электроны высокой энергии на другие частицы, такие как атомы металла, создаются рентгеновские лучи.
(Для получения дополнительной информации см. Рентгеновские снимки.)
Гамма-лучи излучаются ядерными реакциями, атомными бомбами и взрывами на Солнце и других звездах.
Детекторы электромагнитного излучения
Существует ряд различных типов детекторов электромагнитного излучения. Мы знаем общие для обнаружения видимого света: глаз, фотопленку и детекторы на некоторых калькуляторах. Ваша кожа также может обнаруживать как видимый свет, так и инфракрасные тепловые лучи.
Электронные устройства необходимы для обнаружения большинства более длинных волн, например радиоволн. Специальная пленка может обнаруживать более короткие волны, такие как рентгеновские лучи
Сводка
Электромагнитные волны — это поперечные волны, движущиеся со скоростью света. Спектр их длин волн дает волны, которые используются во многих наших полезных устройствах. Волны создаются теплом, электроникой и ядерными силами.
Научиться мыслить логически
Ресурсы и ссылки
Полномочия Рона Куртуса
Сайты
Электромагнитное излучение — Википедия
Ресурсы электромагнитных волн
Физические ресурсы
Книги
Лучшие книги по электромагнитным волнам
Вопросы и комментарии
Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.
Поделиться страницей
Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:
Студенты и исследователи
Веб-адрес этой страницы:
www.school-for-champions.com/science/
электромагнитный_waves.htmПожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.
Авторские права © Ограничения
Где ты сейчас?
Школа чемпионов
Физические темы
Обзор электромагнитных волн
Характеристики электромагнитных волн
Существуют следующие характеристики электромагнитных волн.
Поле электромагнитной волны
Есть два поля электромагнитных волн
Электрическое поле
Магнитное поле
Угол поля электромагнитной волны
В электромагнитных волнах угол между электрическим полем и магнитным полем составляет 90 градусов, или магнитное и электрическое поля перпендикулярны друг другу.
Направление электромагнитной волны во время распространения
Электрическое поле и магнитное поле перпендикулярны направлению распространения
Отражение электромагнитных волн
Электромагнитная волна имеет характеристики отражения, как и световые волны. Это означает, что когда электромагнитные волны падают на поверхность проводящего материала, они отражаются обратно, как показано на данной диаграмме.
Преломление электромагнитных волн
Электромагнитные волны также обладают характеристиками отражения. Это означает, что когда электромагнитные волны проникают из одной среды в другую, они отклоняются к нормали или от нормали при перемещении в следующей среде. Когда электромагнитные волны взаимодействуют между редкой средой и плотной средой, она отклоняется к нормали, а когда электромагнитная среда соединяется с редкой средой, она отклоняется от нормали.
Интенсивность электромагнитных волн
Интенсивность электромагнитных волн зависит от напряженности электрического поля волны.
Это означает, что чем больше напряженность поля электромагнитных волн, тем больше будет и его напряженность, и наоборот.
Напряженность электрического поля измеряется в В / м вольт на метр. Для микроволн это измеряется в микровольтах на метр мкВ / м.Затухание электромагнитных волн
Когда электромагнитная волна распространяется, ее энергия расходуется впустую при переходе от источника к нагрузке.Эта потеря энергии известна как ослабление электромагнитных волн. Затухание происходит из-за зданий, деревьев, холмов, рек и т. Д., Которые наблюдают за электромагнитной энергией во время распространения.
Поляризация электромагнитных волн
Различают следующие типы поляризации электромагнитных волн.
Вертикальная поляризация
Если во время распространения электрическое поле расположено вертикально по отношению к земле, это называется вертикальной поляризацией электромагнитных волн.
Горизонтальная поляризация
Если во время распространения электрическое поле расположено горизонтально относительно земли, это называется горизонтальной поляризацией электромагнитных волн.
Линейная поляризация
Если положение электрического поля иногда вертикальное, а иногда горизонтальное с равными интервалами и направление распространения не меняется, это называется линейной поляризацией.
Круговая поляризация
Если положение электрического поля непрерывно изменяется во время распространения электромагнитных волн, а его интенсивность остается неизменной, это называется круговой поляризацией.
Эллиптическая поляризация
Если положение и напряженность электрического поля непрерывно изменяются во время распространения, это называется эллиптической поляризацией.
Положение электромагнитных волн в поле
Поскольку мы знаем, что электрическое поле и магнитное поле перпендикулярны друг другу, и в то же время эти поля перпендикулярны направлению распространения, изменение направления любого поля приводит к соответствующему изменению другого поля.
Это означает, что если E-поле вертикальное, H-поле будет горизонтальным. Теперь, если мы изменим положение E-поля с вертикального на горизонтальное, положение H0field (магнитного поля) также изменится с горизонтального на вертикальное. Если мы изменим направление E-поля или H-поля, направление распространения также изменится, если мы изменим направление E0field и H-поля одновременно, направление распространения останется прежним.
Скорость электромагнитных волн
Скорость электромагнитных волн в воздухе равна скорости света.Это 3 X 10 8 м / с или 3 X 10 10 см / с.
Разделение полей E.M Wave
Электрическое поле и магнитное поле всегда связаны друг с другом, и всякий раз, когда есть электрическое поле, магнитное поле также будет присутствовать там.
Энергия волн Э.М.
Когда электромагнитные волны распространяются, энергия этих волн равномерно распределяется в электрическом поле и магнитном поле на всем протяжении распространения.
Электромагнитный спектр | Введение в химию
Цель обучения
- Вычислить частоту или энергию фотона, определить три физических свойства электромагнитных волн
Ключевые моменты
- Электромагнитный спектр включает обычные режимы, такие как ультрафиолетовый, видимый, микроволновый и радиоволны.
- Электромагнитные волны обычно описываются одним из следующих трех физических свойств: частотой (f), длиной волны (λ) или интенсивностью (I).Кванты света обычно описываются частотой (f), длиной волны (λ) или энергией фотона (E). Спектр можно упорядочить по частоте или длине волны.
- Электромагнитное излучение по-разному взаимодействует с веществом в разных частях спектра. Типы взаимодействия могут варьироваться от электронного возбуждения до молекулярной вибрации в зависимости от различных типов излучения, таких как ультрафиолетовое, рентгеновское, микроволны и инфракрасное излучение.
Условия
- спектр: Диапазон цветов, представляющих свет (электромагнитное излучение) смежных частот; отсюда электромагнитный спектр, видимый спектр, ультрафиолетовый спектр и т. д.
- фотон — квант света и другой электромагнитной энергии, рассматриваемый как дискретная частица, имеющая нулевую массу покоя, отсутствие электрического заряда и неопределенно долгое время жизни.
- гамма-излучениеЭлектромагнитное излучение высокой частоты и, следовательно, высокой энергии на фотон.
Диапазон электромагнитного спектра
Электромагнитный спектр — это диапазон всех возможных частот электромагнитного излучения. Электромагнитный спектр объекта имеет другое значение: это характерное распределение электромагнитного излучения, испускаемого или поглощаемого этим конкретным объектом.
Свойства электромагнитного спектра Длины волн в различных областях электромагнитного спектра показаны вместе с приблизительным представителем размера длины волны.Электромагнитный спектр простирается от нижних частот, используемых для современной радиосвязи, до гамма-излучения на коротковолновой (высокочастотной) стороне, охватывая длины волн от тысяч километров до доли размера атома. Предел для длинных волн — это размер самой Вселенной, в то время как считается, что предел для коротких волн находится в окрестности планковской длины (1.616 x 10 -35 м), хотя в принципе спектр бесконечен и непрерывен.
Большая часть электромагнитного спектра используется в науке для спектроскопических и других зондирующих взаимодействий, как способов изучения и определения характеристик материи. В общем, если длина волны электромагнитного излучения аналогична длине волны конкретного объекта (атома, электрона и т. Д.), То можно исследовать этот объект с помощью этой частоты света. Кроме того, было обнаружено, что излучение из различных частей спектра имеет много других применений в связи и производстве.
Энергия фотона
Электромагнитные волны обычно описываются одним из следующих трех физических свойств: частотой (f) (также иногда обозначаемой греческой буквой nu, ν), длиной волны (λ) или энергией фотона (E). Частоты, наблюдаемые в астрономии, варьируются от 2,4 × 10 23 Гц (гамма-лучи 1 ГэВ) до локальной плазменной частоты ионизированной межзвездной среды (~ 1 кГц). Длина волны обратно пропорциональна частоте волны; следовательно, гамма-лучи имеют очень короткие длины волн, которые составляют часть размера атомов, тогда как другие длины волн могут быть такими же длинными, как и Вселенная.Энергия фотона прямо пропорциональна частоте волны, поэтому фотоны гамма-излучения имеют самую высокую энергию (около миллиарда электрон-вольт), в то время как радиоволновые фотоны имеют очень низкую энергию (около фемтоэлектронвольт). Эти отношения иллюстрируются следующими уравнениями:
[латекс] f = \ frac {c} {\ lambda} или f = \ frac {E} {h} или E = \ frac {hc} {\ lambda} [/ latex]
c = 299 792 458 м / с — скорость света в вакууме
h = 6,62606896 (33) × 10 −34 Дж s = 4.13566733 (10) × 10 −15 эВ · с = постоянная Планка.
Когда электромагнитные волны существуют в среде с веществом, их длина уменьшается. Длины волн электромагнитного излучения, независимо от того, через какую среду они проходят, обычно указываются в терминах длины волны вакуума, хотя это не всегда указывается явно. Обычно электромагнитное излучение классифицируется по длине волны на радиоволны, микроволны, терагерцовое (или субмиллиметровое) излучение, инфракрасное, видимую область, которую мы воспринимаем как свет, ультрафиолет, рентгеновские лучи и гамма-лучи.Поведение электромагнитного излучения зависит от его длины волны. Когда электромагнитное излучение взаимодействует с отдельными атомами и молекулами, его поведение также зависит от количества энергии на квант (фотон), которое оно несет.
A.2.1 Описание электромагнитного спектра IB Chemistry SL — YouTube На этот раз с помощью уравнений! Число волны = 1 / длина волны в см.Скорость света = длина волны x частота. Энергия = постоянная Планка x частота. Доктор Аткинсон вскоре перешел к ненужным гамма-лучам и улучшил их до дельта-лучей!
Взаимодействие электромагнитного излучения с веществом
Электромагнитное излучение по-разному взаимодействует с веществом в разных частях спектра.Типы взаимодействия могут быть настолько разными, что кажется оправданным относить к разным видам излучения. В то же время существует континуум, содержащий все эти различных вида электромагнитного излучения. Таким образом, мы говорим о спектре, но разделяем его на основе различных взаимодействий с материей. Ниже приведены области спектра и их основные взаимодействия с веществом:
- Радио: Коллективные колебания носителей заряда в массивном материале (плазменные колебания).Примером может служить колебание электронов в антенне.
- Микроволновое излучение через дальний инфракрасный диапазон: колебания плазмы, вращение молекул.
- Ближний инфракрасный свет: молекулярная вибрация, плазменная вибрация (только для металлов).
- Видимый: молекулярное электронное возбуждение (включая молекулы пигмента, обнаруженные в сетчатке глаза человека), плазменные колебания (только для металлов).
- Ультрафиолет: возбуждение молекулярных и атомных валентных электронов, включая выброс электронов (фотоэлектрический эффект).
- Рентгеновские лучи: возбуждение и выброс остовных атомных электронов, комптоновское рассеяние (для малых атомных номеров).
- Гамма-лучи: энергетический выброс остовных электронов в тяжелых элементах, комптоновское рассеяние (для всех атомных номеров), возбуждение атомных ядер, включая диссоциацию ядер.
- Гамма-лучи высоких энергий: Создание пар частица-античастица. При очень высоких энергиях одиночный фотон может создать поток высокоэнергетических частиц и античастиц при взаимодействии с веществом.
Эта классификация идет в порядке возрастания частоты и порядка убывания длины волны, что характерно для типа излучения.
Показать источникиХотя в целом схема классификации точна, в действительности часто существует некоторое перекрытие между соседними типами электромагнитной энергии. Например, радиоволны SLF с частотой 60 Гц могут приниматься и изучаться астрономами или могут передаваться по проводам в качестве электроэнергии, хотя последнее, в строгом смысле, вовсе не является электромагнитным излучением.
Boundless проверяет и курирует высококачественный контент с открытой лицензией из Интернета. Этот конкретный ресурс использовал следующие источники:
(PDF) Основные характеристики электромагнитного излучения
тормозного фотона. После прохождения длины ‘
f
электрон и испущенный
фотон можно рассматривать как независимые частицы.Оценку этого пространственного масштаба можно найти из классической электродинамики
(см., Например, [5]).При таком подходе заряд, который проходит через довольно небольшую область
и где сосредоточены внешние поля, излучает электромагнитную волну длиной k без заметного искажения траектории заряда
и изменения его энергии. (см. рис. 2.1).
Определение длины формации следует из фазовых соотношений:
на длине ‘
f
, которую заряд проходит после области поля со скоростью b, фронта
волны, испускаемой в угол h, должен « отставать » за длину волны:
‘f
b’fcos h¼k; ð2: 3: 1Þ
и (2.3.1) непосредственно приводит к формуле для длины формации:
‘f¼k
1 = bcos h: ð2: 3: 2Þ
В ультрарелятивистском подходе 1 = b1þc2 = 2ðÞдля «прямого» ‘
излучения имеем
‘ f¼2c2k: ð2: 3: 3Þ
Если следующая область концентрации поля расположена вдоль траектории на расстоянии
L \ ‘f (см. Рис. 2.1), то в этом если электромагнитные волны, излучаемые зарядом
в двух областях внешнего поля, будут мешать разрушительным образом,
i.е. интенсивность результирующего излучения будет меньше суммы интенсивностей от
двух независимых источников.
Проведем квантовое рассмотрение проблемы длины формации на примере тормозного излучения
, следуя Тер-Микаеляну [4].
Оценим минимальное значение продольного импульса отдачи q
l
,
, которое передается ядру в процессе тормозного излучения ультрарелятивистского электрона
с энергией e
1
.Такая ситуация реализуется для коллинеарной геометрии
, когда конечный электрон с энергией e
2
и фотон с энергией hx
движутся вдоль направления исходного электрона:
qlmin ¼p1p2k: ð2 : 3: 4Þ
Рис. 2.1 Схема
иллюстрирует концепцию длины формации
2.3 Длина формирования излучения заряженной частицей 11
Электромагнитное излучение | Спектр, примеры и типы
Электромагнитное излучение , в классической физике, поток энергии с универсальной скоростью света через свободное пространство или через материальную среду в виде электрических и магнитных полей, которые составляют электромагнитные волны, такие как радиоволны, видимый свет, и гамма-лучи.В такой волне изменяющиеся во времени электрическое и магнитное поля взаимно связаны друг с другом под прямым углом и перпендикулярно направлению движения. Электромагнитная волна характеризуется своей интенсивностью и частотой ν изменения электрического и магнитного полей во времени.
Британская викторина
36 вопросов из самых популярных научных викторин «Британники»
Насколько хорошо вы знаете астрономию? А как насчет квантовой механики? В этой викторине вы ответите на 36 самых сложных вопросов из самых популярных викторин Britannica о науках.Его завершат только лучшие мастера викторины.
С точки зрения современной квантовой теории электромагнитное излучение — это поток фотонов (также называемых квантами света) через пространство.
Фотоны — это пакеты с энергией h ν, которые всегда движутся с универсальной скоростью света. Символ h — это постоянная Планка, а значение ν такое же, как и частота электромагнитной волны в классической теории. Фотоны с одинаковой энергией h ν все похожи, и их плотность числа соответствует интенсивности излучения.Электромагнитное излучение проявляет множество явлений при взаимодействии с заряженными частицами в атомах, молекулах и более крупных материальных объектах. Эти явления, а также способы создания и наблюдения электромагнитного излучения, способ, которым такое излучение встречается в природе, и его технологические применения зависят от его частоты ν. Спектр частот электромагнитного излучения простирается от очень низких значений в диапазоне радиоволн, телевизионных волн и микроволн до видимого света и за его пределами до значительно более высоких значений ультрафиолетового света, рентгеновских лучей и гамма-лучей.
В этой статье обсуждаются основные свойства и поведение электромагнитного излучения, а также его различные формы, включая их источники, отличительные характеристики и практическое применение. В статье также прослеживается развитие как классической, так и квантовой теории излучения.
Общие соображения
Возникновение и важность
Около 0,01 процента массы / энергии всей Вселенной происходит в форме электромагнитного излучения.В нее погружена вся человеческая жизнь, и современные коммуникационные технологии и медицинские услуги особенно зависят от той или иной ее формы. Фактически, все живые существа на Земле зависят от электромагнитного излучения, получаемого от Солнца, и от преобразования солнечной энергии путем фотосинтеза в растения или путем биосинтеза в зоопланктон, основной этап пищевой цепи в океанах. Глаза многих животных, в том числе человека, приспособлены к тому, чтобы быть чувствительными и, следовательно, видеть самую обильную часть электромагнитного излучения Солнца, а именно свет, который составляет видимую часть его широкого диапазона частот.
фотосинтезЗеленые растения также обладают высокой чувствительностью к максимальной интенсивности солнечного электромагнитного излучения, которое поглощается хлорофиллом, который необходим для роста растений посредством фотосинтеза.
Схема фотосинтеза, показывающая, как вода, свет и углекислый газ поглощаются растением, чтобы произвести кислород, сахар и больше углекислого газа.
Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишись сейчасПрактически все виды топлива, которые использует современное общество — газ, нефть и уголь — представляют собой запасенные формы энергии, полученные от Солнца в виде электромагнитного излучения миллионы лет назад. Только энергия ядерных реакторов исходит не от Солнца.
Повседневная жизнь наполнена искусственно созданным электромагнитным излучением: пища нагревается в микроволновых печах, самолеты управляются радиолокационными волнами, телевизоры принимают электромагнитные волны, передаваемые радиовещательными станциями, а инфракрасные волны от обогревателей согревают.Инфракрасные волны также излучаются и принимаются автоматическими самофокусирующимися камерами, которые с помощью электроники измеряют и устанавливают правильное расстояние до объекта, который нужно сфотографировать. Как только солнце садится, включаются лампы накаливания или люминесцентные лампы для искусственного освещения, и города ярко светятся красочными люминесцентными и неоновыми лампами рекламных вывесок. Знакомо и ультрафиолетовое излучение, которое глаза не видят, но действие которого ощущается как боль от солнечного ожога. Ультрафиолетовый свет представляет собой разновидность электромагнитного излучения, которое может быть опасным для жизни.То же самое можно сказать и о рентгеновских лучах, которые важны в медицине, поскольку они позволяют врачам наблюдать за внутренними частями тела, но воздействие на которые должно быть сведено к минимуму.
Менее известны гамма-лучи, которые возникают в результате ядерных реакций и радиоактивного распада и являются частью вредного высокоэнергетического излучения радиоактивных материалов и ядерного оружия.
электромагнитное излучение | Спектр, примеры и типы
Электромагнитное излучение , в классической физике, поток энергии с универсальной скоростью света через свободное пространство или через материальную среду в виде электрических и магнитных полей, которые составляют электромагнитные волны, такие как радиоволны, видимый свет, и гамма-лучи.В такой волне изменяющиеся во времени электрическое и магнитное поля взаимно связаны друг с другом под прямым углом и перпендикулярно направлению движения. Электромагнитная волна характеризуется своей интенсивностью и частотой ν изменения электрического и магнитного полей во времени.
Британская викторина
Тест «Дело и другое»
Согласно Британнике, физика фокусируется на «структуре материи и взаимодействиях между фундаментальными составляющими наблюдаемой Вселенной.”Проверьте свои знания о материи и многом другом с помощью этой викторины.
С точки зрения современной квантовой теории электромагнитное излучение — это поток фотонов (также называемых квантами света) через пространство. Фотоны — это пакеты с энергией h ν, которые всегда движутся с универсальной скоростью света. Символ h — это постоянная Планка, а значение ν такое же, как и частота электромагнитной волны в классической теории. Фотоны с одинаковой энергией h ν все похожи, и их плотность числа соответствует интенсивности излучения.Электромагнитное излучение проявляет множество явлений при взаимодействии с заряженными частицами в атомах, молекулах и более крупных материальных объектах.
Эти явления, а также способы создания и наблюдения электромагнитного излучения, способ, которым такое излучение встречается в природе, и его технологические применения зависят от его частоты ν. Спектр частот электромагнитного излучения простирается от очень низких значений в диапазоне радиоволн, телевизионных волн и микроволн до видимого света и за его пределами до значительно более высоких значений ультрафиолетового света, рентгеновских лучей и гамма-лучей.
В этой статье обсуждаются основные свойства и поведение электромагнитного излучения, а также его различные формы, включая их источники, отличительные характеристики и практическое применение. В статье также прослеживается развитие как классической, так и квантовой теории излучения.
Общие соображения
Возникновение и важность
Около 0,01 процента массы / энергии всей Вселенной происходит в форме электромагнитного излучения.В нее погружена вся человеческая жизнь, и современные коммуникационные технологии и медицинские услуги особенно зависят от той или иной ее формы. Фактически, все живые существа на Земле зависят от электромагнитного излучения, получаемого от Солнца, и от преобразования солнечной энергии путем фотосинтеза в растения или путем биосинтеза в зоопланктон, основной этап пищевой цепи в океанах. Глаза многих животных, в том числе человека, приспособлены к тому, чтобы быть чувствительными и, следовательно, видеть самую обильную часть электромагнитного излучения Солнца, а именно свет, который составляет видимую часть его широкого диапазона частот.Зеленые растения также обладают высокой чувствительностью к максимальной интенсивности солнечного электромагнитного излучения, которое поглощается хлорофиллом, который необходим для роста растений посредством фотосинтеза.
фотосинтезСхема фотосинтеза, показывающая, как вода, свет и углекислый газ поглощаются растением, чтобы произвести кислород, сахар и больше углекислого газа.
Британская энциклопедия, Inc.Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишись сейчас
Практически все виды топлива, которые использует современное общество — газ, нефть и уголь — представляют собой запасенные формы энергии, полученные от Солнца в виде электромагнитного излучения миллионы лет назад. Только энергия ядерных реакторов исходит не от Солнца.
Повседневная жизнь наполнена искусственно созданным электромагнитным излучением: пища нагревается в микроволновых печах, самолеты управляются радиолокационными волнами, телевизоры принимают электромагнитные волны, передаваемые радиовещательными станциями, а инфракрасные волны от обогревателей согревают.Инфракрасные волны также излучаются и принимаются автоматическими самофокусирующимися камерами, которые с помощью электроники измеряют и устанавливают правильное расстояние до объекта, который нужно сфотографировать. Как только солнце садится, включаются лампы накаливания или люминесцентные лампы для искусственного освещения, и города ярко светятся красочными люминесцентными и неоновыми лампами рекламных вывесок. Знакомо и ультрафиолетовое излучение, которое глаза не видят, но действие которого ощущается как боль от солнечного ожога. Ультрафиолетовый свет представляет собой разновидность электромагнитного излучения, которое может быть опасным для жизни.То же самое можно сказать и о рентгеновских лучах, которые важны в медицине, поскольку они позволяют врачам наблюдать за внутренними частями тела, но воздействие на которые должно быть сведено к минимуму. Менее известны гамма-лучи, которые возникают в результате ядерных реакций и радиоактивного распада и являются частью вредного высокоэнергетического излучения радиоактивных материалов и ядерного оружия.
Волны и электромагнитное излучение
Ученые открыли многое из того, что мы знаем о структуре атома, наблюдая за взаимодействием атомов с различными формами излучаемой или передаваемой энергии, такой как энергия, связанная с видимым светом, который мы обнаруживаем с помощью наши глаза, инфракрасное излучение, которое мы ощущаем как тепло, ультрафиолетовый свет, вызывающий солнечный ожог, и рентгеновские лучи, которые создают изображения наших зубов или костей.
Все эти формы лучистой энергии должны быть вам знакомы. Мы начинаем обсуждение развития нашей нынешней модели атома с описания свойств волн и различных форм электромагнитного излучения.
Свойства волн
Волна Периодическое колебание, передающее энергию через пространство. представляет собой периодическое колебание, передающее энергию через пространство. Любой, кто побывал на пляже или уронил камень в лужу, видел волны, движущиеся в воде (рис.6.1 «Волна в воде»). Эти волны возникают, когда ветер, камень или какое-либо другое возмущение, такое как проплывающая лодка, передает энергию воде, заставляя поверхность колебаться вверх и вниз по мере того, как энергия распространяется наружу от точки ее происхождения. Когда волна проходит через определенную точку на поверхности воды, все, что там плавает, движется вверх и вниз.
Рисунок 6.2 Важные свойства волн
(a) Длина волны (λ), частота (ν, обозначенная в Гц) и амплитуда указаны на этом рисунке волны.(b) Волна с самой короткой длиной волны имеет наибольшее количество длин волн в единицу времени (т. е. наибольшую частоту). Если две волны имеют одинаковую частоту и скорость, волна с большей амплитудой имеет более высокую энергию.
Волны обладают характерными свойствами (Рисунок 6.2 «Важные свойства волн»). Как вы могли заметить на рис. 6.1 «Волна в воде», волны — это периодические явления, такие как волны, которые регулярно повторяются как в пространстве, так и во времени; то есть они регулярно повторяются как в пространстве, так и во времени.Расстояние между двумя соответствующими точками в волне — между серединами двух пиков, например, или двух впадин — это длина волны (λ). Расстояние между двумя соответствующими точками в волне — между серединами двух пиков или двух впадин. Длины волн описываются единицей расстояния, обычно метрами. Частота (ν) Количество колебаний (т. Е. Волны), которые проходят определенную точку за данный период времени.
.волны — это количество колебаний, которые проходят определенную точку за данный период времени.Обычными единицами измерения являются колебания в секунду (1 / с = с -1 ), что в системе СИ называется герцами (Гц). Амплитуда: Вертикальная высота волны, которая определяется как половина высоты от пика до впадины, или вертикальная высота волны определяется как половина высоты от пика до впадины; по мере увеличения амплитуды волны с данной частотой увеличивается и ее энергия. Как вы можете видеть на Рисунке 6.2 «Важные свойства волн», две волны могут иметь одинаковую амплитуду, но разные длины волн, и наоборот.Расстояние, пройденное волной за единицу времени, — это ее скорость ( v ). Расстояние, пройденное волной за единицу времени, обычно измеряется в метрах в секунду (м / с). Скорость волны равна произведению ее длины волны и частоты:
Уравнение 6.1
(длина волны) (частота) = скорость λν = v (метровая волна) (волна-секунда) = метр-секундаВодные волны медленнее звуковых волн, которые могут проходить через твердые тела, жидкости и газы.В то время как водные волны могут распространяться со скоростью несколько метров в секунду, скорость звука в сухом воздухе при 20 ° C составляет 343,5 м / с. Ультразвуковые волны, которые распространяются с еще большей скоростью (> 1500 м / с) и имеют большую частоту, используются в таких разнообразных приложениях, как определение местоположения подводных объектов и получение медицинских изображений внутренних органов.
Электромагнитное излучение
Волны на воде передают энергию в пространстве посредством периодических колебаний материи (воды). Напротив, энергия, которая передается или излучается в пространстве в виде периодических колебаний электрических и магнитных полей, известна как электромагнитное излучение. Энергия, которая передается или излучается в пространстве в форме периодических колебаний электрических и магнитных полей.
(Рисунок 6.3 «Природа электромагнитного излучения»). Некоторые формы электромагнитного излучения показаны на Рисунке 6.4 «Электромагнитный спектр». В вакууме все формы электромагнитного излучения — будь то микроволны, видимый свет или гамма-лучи — распространяются со скоростью света ( c ). Скорость, с которой все формы электромагнитного излучения распространяются в вакууме, фундаментальная физическая константа. со значением 2,99792458 × 10 8 м / с (что составляет примерно 3,00 × 10 8 м / с или 1.86 × 10 5 миль / с). Это примерно в миллион раз быстрее скорости звука.
Рисунок 6.3 Природа электромагнитного излучения
Все формы электромагнитного излучения состоят из перпендикулярных колеблющихся электрических и магнитных полей.
Поскольку разные виды электромагнитного излучения имеют одинаковую скорость ( c ), они различаются только длиной волны и частотой. Как показано на рисунке 6.4 «Электромагнитный спектр» и таблица 6.1 «Единицы измерения общей длины волны для электромагнитного излучения», длины волн знакомого электромагнитного излучения находятся в диапазоне от 10 1 м для радиоволн до 10 −12 м для гамма-лучей, испускаемых ядерной энергетикой. реакции. Заменив v на c в уравнении 6.1, мы можем показать, что частота электромагнитного излучения обратно пропорциональна его длине волны:
Уравнение 6.2
c = λνν = cλНапример, частота радиоволн составляет около 10 8 Гц, тогда как частота гамма-лучей составляет около 10 20 Гц. Видимый свет, который представляет собой электромагнитное излучение, которое может быть обнаружено человеческим глазом, имеет длины волн примерно от 7 × 10 −7 м (700 нм, или 4,3 × 10 14 Гц) до 4 × 10 −7 м. (400 нм, или 7,5 × 10 14 Гц).
В этом диапазоне глаз воспринимает излучение разных длин волн (или частот) как свет разных цветов, от красного до фиолетового в порядке убывания длины волны.Компоненты белого света — смесь всех частот видимого света — могут быть разделены призмой, как показано в части (b) на рисунке 6.4 «Электромагнитный спектр». Подобное явление создает радугу, где водяные капли, взвешенные в воздухе, действуют как крошечные призмы.
Рисунок 6.4 Электромагнитный спектр
(a) На этой диаграмме показаны длины волн и частотные диапазоны электромагнитного излучения. Видимая часть электромагнитного спектра — это узкая область с длинами волн примерно от 400 до 700 нм.(b) Когда белый свет проходит через призму, он разделяется на свет с разной длиной волны, цвета которого соответствуют видимому спектру.
Таблица 6.1 Стандартные единицы длины волны для электромагнитного излучения
Установка Символ Длина волны (м) Тип излучения пикометр вечера 10 −12 гамма-луч ангстрем Å 10 −10 рентгеновский снимок нм нм 10 −9 рентгеновский снимок микрометр мкм 10 −6 инфракрасный миллиметр мм 10 −3 инфракрасный сантиметр см 10 −2 микроволновая печь метр м 10 0 радио Как вы скоро увидите, энергия электромагнитного излучения прямо пропорциональна его частоте и обратно пропорциональна его длине волны:
В то время как видимый свет практически безвреден для нашей кожи, ультрафиолетовый свет с длинами волн ≤ 400 нм обладает достаточной энергией, чтобы вызвать серьезные повреждения нашей кожи в виде солнечных ожогов.
Поскольку озоновый слой, описанный в главе 3 «Химические реакции», поглощает солнечный свет с длинами волн менее 350 нм, он защищает нас от разрушительного воздействия высокоэнергетического ультрафиолетового излучения.
Обратите внимание на узор
Энергия электромагнитного излучения увеличивается с увеличением частоты и уменьшением длины волны.
Пример 1
Ваша любимая FM-радиостанция, WXYZ, вещает на частоте 101.1 МГц. Какая длина волны этого излучения?
Дано: частота
Запрошено: длина волны
Стратегия:
Подставьте значение скорости света в метрах в секунду в уравнение 6.2, чтобы вычислить длину волны в метрах.
Решение:
Из уравнения 6.2, мы знаем, что произведение длины волны и частоты — это скорость волны, которая для электромагнитного излучения составляет 2,998 × 10 8 м / с:
λν = c = 2,998 × 10 8 м / сТаким образом, длина волны λ равна
λ = cν = (2,998 × 108 м / с · 101,1 МГц) (1 МГц · 106 с − 1) = 2,965 мУпражнение
Когда полицейский составлял ваш штраф за превышение скорости, она упомянула, что использовала современный радар, действующий на 35.5 ГГц. Какова длина волны излучения, испускаемого радаром?
Ответ: 8,45 мм
В Разделе 6.2 «Квантование энергии» и Разделе 6.3 «Атомные спектры и модели атома» мы описываем, как ученые развили наше нынешнее понимание структуры атомов, используя научный метод, описанный в главе 1 «Введение в химию».
Вы узнаете, почему ученым пришлось переосмыслить свое классическое понимание природы электромагнитной энергии, которое четко различало поведение частиц материи и волнообразную природу энергии.
Ключевые уравнения
соотношение между длиной волны, частотой и скоростью волны
Уравнение 6.1: λν = v
взаимосвязь между длиной волны, частотой и скоростью электромагнитного излучения
Уравнение 6.2: c = λν
Сводка
Базовые знания электронной структуры атомов требуют понимания свойств волн и электромагнитного излучения.Волна — это периодические колебания, с помощью которых энергия передается в пространстве. Все волны периодические , регулярно повторяющиеся как в пространстве, так и во времени. Волны характеризуются несколькими взаимосвязанными свойствами: длина волны (λ) , расстояние между последовательными волнами; частота (ν) , количество волн, которые проходят фиксированную точку за единицу времени; скорость ( v ) , скорость, с которой волна распространяется в пространстве; и амплитуда , величина колебания относительно среднего положения.Скорость волны равна произведению ее длины волны и частоты. Электромагнитное излучение состоит из двух перпендикулярных волн, одной электрической и одной магнитной, распространяющихся со скоростью света ( c ) . Электромагнитное излучение — это лучистая энергия, которая включает радиоволны, микроволны, видимый свет, рентгеновские лучи и гамма-лучи, которые различаются только своей частотой и длиной волны.
Ключевые вынос
- Понимание электронной структуры атомов требует понимания свойств волн и электромагнитного излучения.
Концептуальные проблемы
Каковы характеристики волны? Какая связь между электромагнитным излучением и энергией волны?
Какое влияние увеличение частоты волны на ее скорость при постоянной длине волны? его амплитуда?
Перечислите следующие формы электромагнитного излучения в порядке увеличения длины волны: рентгеновские лучи, радиоволны, инфракрасные волны, микроволны, ультрафиолетовые волны, видимые волны и гамма-лучи.Перечислите их в порядке возрастания частоты. У кого самая высокая энергия?
Крупная промышленность сосредоточена на разработке продуктов по уходу за кожей, таких как лосьоны для загара и косметика, которые не проникают через ультрафиолетовое излучение. Как длина волны видимого света соотносится с длиной волны ультрафиолетового света? Как энергия видимого света сравнивается с энергией ультрафиолетового света? Почему эта отрасль сосредоточена на блокировании ультрафиолетового, а не видимого света?
Числовые задачи
Человеческий глаз чувствителен к какой части электромагнитного спектра, если принять типичный спектральный диапазон от 10 4 до 10 20 Гц? Если бы мы прилетели с планеты Криптон и имели рентгеновское зрение (т.е., если бы наши глаза были чувствительны к рентгеновским лучам в дополнение к видимому свету), как бы эта доля изменилась?
Какая частота в мегагерцах соответствует каждой длине волны?
- 755 м
- 6,73 нм
- 1,77 × 10 3 км
- 9.
88 Å
- 3,7 × 10 −10 м
Какая частота в мегагерцах соответствует каждой длине волны?
- 5,8 × 10 −7 м
- 2,3 Å
- 8,6 × 10 7 м
- 6.2 мм
- 3,7 нм
Линейчатые спектры наблюдаются также для молекулярных частиц. Учитывая следующие характерные длины волн для каждого вида, определите спектральную область (ультрафиолетовая, видимая и т. Д.), В которой будут возникать следующие линейчатые спектры. Учитывая 1,00 моль каждого соединения и длину волны поглощенного или излучаемого света, сколько энергии это соответствует?
- NH 3 , 1.0 × 10 −2 м
- CH 3 CH 2 OH, 9.0 мкм
- Атом Мо, 7.1 Å
Какова скорость волны в метрах в секунду с длиной волны 1250 м и частотой 2,36 × 10 5 с -1 ?
Волна распространяется на 3.70 м / с при частоте 4,599 × 10 7 Гц и амплитуде 1,0 м. Какова его длина волны в нанометрах?
Радиостанция AM вещает на длине волны 248,0 м. Какая частота вещания станции в килогерцах? AM-станция имеет диапазон вещания 92,6 МГц.