+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Аудиофильские конденсаторы Nichicon KZ (MUSE) 47 мкф 50 вольт, собираем Hi-End усилитель для наушников.

Привет!

Тема усилителей для наушников для меня новая, я считала что зачем такой усилитель вообще, но когда мне на обзор прислали наушники БлитцВульф, и встроенная звуковая карта не смогла раскачать их, я призадумалась, а не собрать ли мне хороший усилитель для наушников, чтоб и выглядел хорошо, и «раскачать» мог всё. К процессу «разработки» подключилась Нино, и мы вместе сделали что-то красивое и хорошо звучащее)))))))

Обозреваемые конденсаторы — это специальные «Аудиофильские» конденсаторы, где конструкция и состав электролита оптимизированы для качественной передачи звука. Во всяком случае, так утверждает производитель. Со своей стороны, хочу сказать что качество звука хорошее, и визуально конденсаторы очень красивые, заняли почётное место в моих аудиофильских конденсаторах.

Измерила емкость и ESR всех 10 штук.

Минимальная емкость была 45.6мкф, максимальная — 51. ESR — 0-0.02 ohm.

Пересмотрев в интернете множество схем, выбрала сравнительно простую, но надёжную и эффективную схему, которую взяла тут:

sound.whsites.net/project113.htm

Я внесла в схему небольшие изменения; Поменяла входной конденсатор на конденсатор в 47мкф (обозреваемый), резистор в обратной связи усиления поставила 5.1к, так как с 3.3к было очень тихо, а с 20к было очень громко и шумно, и выходные транзисторы поставила KSD1691, KSB1151 (других попросту не было).

Все остальные изменения косметические, но греют душу)))) поставила красивые, красные диоды ITT, красную кроватку DIP-8 для операционного усилителя NE5532 и все конденсаторы применила высококачественные, LowESR Matsushita и Nichicon в цепях питания, Wima MKP в фильтрах, и Philips PC в качестве входных. Разумеется, переменный резистор тоже оригинальный японский ALPS.

С чёрным текстолитом я работаю давно, но как красиво платы не собирай, всё равно чего-то не хватает, нет законченности и «профессиональности».

Сравнивая с заводскими, не сразу и догадалась в чём разница, но потом заметила, у меня нет шелкографии и надписей на платах, а у заводских есть, вот и вся разница. Сидим с Нино вместе в кафешке, поделилась своей проблемой, и у Нино возникла «отличная» идея, давай мол сделаем как переводную татуировку? напечатаем и приклеим? я ей и говорю, молодец, ты «изобрела» метод ЛУТ, которым платы делаются, но у которого есть один минус для нашего применения — тонер то в принтере чёрный, а у нас текстолит тоже чёрный, ничего не будет видно, так что совет хороший, но не поможет он мне никак. Но что-то мучало меня, и я стала развивать мысль, а что если напечатать трафарет, и через него наносить краску кисточкой? но должны же быть замкнутые области, как же трафарет в них удержать? и тут я вспомнила, как клеили буквы на стекло рекламщики. У них на листе уже было собрано слово из букв, они на эти буквы наклеили сверху прозрачный скотчеподобный материал, с помощью которого и перенесли буквы на стекло! Это мне показалось вполне реализуемым, пошла в рекламную компанию, где на плоттере мне вырезали нужный трафарет, который перенесла на плату, а потом мы с Нино, используя акриловую краску и кисточки, заполнили прорези в трафарете, подсушили плату в термостате, чтоб краска закрепилась, потом отодрали трафарет, и запекли плату на 250С на один час. В результате чего, акрил окаменел и он визуально стал похожим на обычную шелкографию. А впрочем, чего я всё пишу, посмотрите сами!

Красота, от заводской и не отличишь! (но это экземпляр №5, до этого 4 штуки испортили, то перегрели, то недогрели, то пальцем мазанули) И заодно свой «бренд» «изобрели». Рисую плату в очередной раз, и тут Нино говорит, а что у тебя всё красиво, но несимметрично? сделай такие же три точки слева, как у тебя справа есть, получится бабочка. Я ей и говорю, это вход усилителя, зачем их делать два? ну тогда что-то нарисуй, чтоб пусто не было. Я подумала нарисовать Мисс Пакман, с бантиком, и как будто она пиксели есть, но потом решила, а пусть будет у нас свое лого, и «Придумала» — «ACE SOUND», если по короткому то «ACE SND» Пришлось его делать «Векторным», тонкостенным, так как акрилом покрыть большие плоскости красиво не получается, он начинает ужиматься при высыхании.

Раз «технологию» освоили, то сделали и плату блока питания, сразу с прорезями, как у «взрослых»

Схема обычная, два трансформатора, два моста, два стабилизатора на 12 вольт, и получаем двух полярный источник питания. У меня были стабилизаторы на 12 вольт в корпусе ТО-3, решила использовать их, но не ставить на радиаторы, а сделать подложку из молочно-белого оргстекла, и подсветить его снизу оранжевым светодиодом.

Получилось классно! и глаза не режет, но всё равно подсветка заметна!

Сделала и входной фильтр, и включатель и предохранитель, а для подключения к корпусу стабилизатора использовала позолоченные винты и гайки, всё как у настоящих аудиофилов)))))))

Всё наконец то собрано, подключила и работает! всё работает, ничего не горит, дыма нет, ничего не взорвалось, ура! Да вот на радостях встал вопрос, а как всё это с друг-другом соединить, чтоб было красиво? и где входные и выходные разъёмы, куда спрашивается глаза смотрели, когда плату рисовала? и много других горестных слов в свой адрес(((((( Но выход был найден! решила делать дополнительную, коммутационную плату, на которой и разместила и входные и выходные разъёмы, и индикатор наличия питания, и заодно сделала регулятор выходного импеданса, поставила переключатель, который последовательно с выходом включает резисторы на 16 ом, это если наушники будут очень низкоомные.

Теперь дело осталось за малым, сделать корпус. Я думаю сделать передную и задную панель из дерева, низ и бока из чёрного оргстекла с перфорацией, а верх — из дымчатого оргстекла, чтоб вся красота внутри была видна))))) Вот только книжку дочитаю, и сразу примусь за дело))))))

[Архивное фото — «Лаборант А, Саркисян знакомится с описанием современного вычислительного устройства Videoton»]

Некоторые просили в конце обзора поставить фото зверюшек. У меня дома зверюшек нет, был хомяк, но умер от старости.

Надеюсь, вам было интересно!

С Уважением,

Анна.

Конденсаторы для усилителей — AudioKiller’s site

1. Всякие неэлектролиты

Началось все с того, что мне не понравилось звучание одного из моих усилителей, а я уже давно подзревал, что конденсатор, включенный на его вход, вносит нелинейные искажения. После того, как при исследовании усилителя на микросхеме TDA7294 я обнаружил рост искажений на низких частотах, причем при увеличении емкости искажения уменьшались (тут все понятно — чем больше емкость, тем меньше сопротивление конденсатора, и тем меньше его влияние на сигнал, а значит, и искажения), мои подозрения перешли в уверенность. И я решил измерить, какие же искажения вносят конденсаторы. И сравнить несколько наиболее распространенных типов. Ведь на качество звучания усилителей конденсаторы оказывают большое влияние!

Должен сразу предупредить, что это не совсем верное сравнение — я использовал конденсаторы, которые у меня были. Они имели разные емкости, поэтому я с ними работал на разных частотах и напряжения на них подавались не совсем одинаковые. А по хорошему, нужно было провести измерения в абсолютно одинаковых условиях: и частота, и напряжение должны быть одинаковыми. И измерять нужно было на нескольких частотах и с разными напряжениями. Да и нужно было взять по нескольку штук одинаковых конденсаторов — вдруг мне какой-то из них немного бракованный попался. То есть результаты измерения не являются «истиной в последней инстанции» при сравнении конденсаторов. Если результаты различаются сильно, то можно с уверенностью говорить о том, что какой-то из конденсаторов лучше другого. А вот если различие маленькое, то вполне возможно, что тот, который в моем случае был чуть лучше, на другой частоте будет работать немного хуже.

И потом, ведь я измерял только коэффициент гармоник, а остальные параметры качества не мерял!!! Хотя с точки зрения влияния на звук проходных конденсаторов, 

качество конденсаторов большей частью зависит от их линейности. Согласитесь, что если после конденсатора стоИт резистор в десятки килоом, то нет никакой разницы между конденсатором с ESR=0,01 Ом и конденсатором с ESR=0,001 Ом! Эти доли ома потеряются уже на фоне сопротивления выводов, пайки и дорожек! А вот если Кг усилителя наполовину состоит из Кг конденсатора, то это нехорошо.

Тем не менее, результаты я бы назвал ошеломляющими. Есть конденсаторы хорошие и плохие, а есть вообще ужасные!!! Я знал, что керамические конденсаторы с диэлектриком, имеющим плохой ТКЕ, нелинейные, но не думал, что настолько! 

Все измерения проводились точно, правильно и корректно, без методических погрешностей. Схема измерения приведена на рисунке 1.

Рис. 1.

Со звуковой карты подавалось синусоидальное напряжение максимальной амплитуды (2В эфф.), резистор подбирался так, чтобы напряжение на конденсаторе было в пределах 2…2,5 В амплитудного (т.е. примерно 1,5 вольта действующего) значения. Кроме напряжения на конденсаторе, измерялось и выходное напряжение звуковой карты, чтобы контролировать ее искажения. Из измерений видно, что искажения самой карты намного меньше, и не влияют на точность (искажения карты вычитались из результатов, вычитание было абсолютно правильным: корень квадратный из разности квадратов амплитуд соответствующей гармоники).

Для того, чтобы показать точность измерений, приведу два спектра тока конденсатора (а таким способом я измеряю именно ток). Дальше эти спектры будут обработаны для большей наглядности. В рассчетах учитывались только гармоники, помехи, если и были (надите помехи на рисунках!), не учитывались.

Рис. 2. Рис. 3.

Еще один важный момент — вычисление коэффициента гармоник Кг. Кроме обычного способа (рис.4 а), я пользовался нормированным к номеру гармонинки (рис.4.б).

Рис. 4.

Этот способ нормирования придумали инженеры из лаборатории английской компании ВВС в 50-х годах ХХ века. И такой способ, когда напряжение гармоники умножается на квадрат ее номера, позволяет учесть ширину спектра гармоник. Зачем это нужно? А затем, что чем больше порядок нелинейности и шире спектр гармоник, тем хуже звук. Вот пример на рисунке 5:

Рис. 5.

Все три варианта спектра искажений дают одинаковый Кг=0,1%. Но зеленый спектр содержит только две гармоники, и значит на слух такие искажения заметны меньше. Красный спектр содержит гармоники вплоть до 10-й, и на слух самый плохой. А Кг у них у всех одинаковый и не позволяет эти спектры различить. А нормированный К’г даст для этих спектров такие значения: 0,12%; 0,18% и 0,33%. Почувствуйте разницу!

Хочу сказать, что это не «Очередной Самый Новый Великий и Точный Метод Измерения Искажений»! Это просто модификация (и вполне законная) обычного метода, но более совершенная: если традиционный Кг позволяет учитывать только среднюю величину нелинейности передаточной характеристики (это как средняя температура по всей больнице, включая морг), то нормированный позволяет учесть и порядок этой нелинейности. И, несмотря на то, что он очень далек от совершенства и не очень хорошо соответствует слуховым ощущениям, он все же лучше, чем простой Кг. Т.е можно посмотреть с другой стороны: обычный Кг еще меньше коррелирует с субъективными ощущениями, чем нормированный. Коэффициент нормирован ко второй гармонике и его физический смысл — показать среднюю нелинейность, учитывая, насколько высшие гармоники хуже второй.

И такой подход принес пользу.  Дальше будет видно, что у конденсаторв EPKOS и К73-16 Кг одинаков и равен 0,0017%. Значит ли это, что конденсаторы одинаковы? Очень может быть, что и нет. А вот если посмотреть на нормированные коэффициенты, то у EPKOSа К’г=0,0053%, а у К73-16 К’г=0,0091%. Т.е. отечественный лавсановый конденсатор имеет более широкий спектр гармоник и хуже звучит, чем импортный полипропиленовый. Но для того, чтобы не лишать читателей привычных ориентиров, я привожу и обычные Кг.

Пора перейти от затянувшегося вступления к делу и представить сегодняшних участников конкурса «мистер конденсатор» (рис.6).

Рис. 6.

Конденсаторы керамические К10-17а и КМ-5 (скорее всего это импортный аналог наших К10-17б или К10-17в; недавно видел точно такой же отечественый конденсатор типа К10-73, но по тексту я так и оставлю наименование КМ-5, т.к. от КМ-5 они все произошли), лавсановые пленочные К73-16 и К73-17, фторопластовый ФТ1 и полипропиленовые отечественные К78-2, К78-19 и импортный EPCOS. Марку конденсатора, расположенного в центре верхнего ряда я не знаю. Подозреваю, что это пленочный, но какой? Это, скорее всего, импортный (такие стоят в мультимедийных колонках, например), он на самом деле темно-зеленого цвета (на фото не получился), поэтому я его буду называть «зеленый». Когда узнаю тип — впишу сюда.

Итак, поехали! На спектрограммах красный спектр — ток конденсатора, синий — выход звуковухи (т.к. подключение конденсатора, как нелинейной нагрузки, приводит к искажениям; я уже писал выше, что эти искажения учитывались при вычислении коэффициентов гармоник).

1. Керамический К10-17а

Кг = 0,83% , К’г = 2,2%

Страшно? Мне тоже. Я любил эти конденсаторы за хороший ТКЕ (температурный коэффициент емкости), а искажениями не интересовался (для звука использовал нечасто). А оно вон как плохо. Причем спектр гармоник очень широкий.

Вывод: не использовать для звука!

2. Керамический КМ-5 [К10-73] (класс Н90)

Кг = 2,1% , К’г = 6,1%

Это вообще какой-то кошмар! Я подозревал, что это плохие конденсаторы, думал, что их искажения такие большие, что могут быть даже с полпроцента. Но оказалось, что все намного-намного хуже! А если учесть, что их емкость очень сильно зависит от температуры…

Обратите внимание — подключение этого конденсатора на выход звуковухи сразу создает ей нехилую кучу гармоник! Т.е. и выходное напряжение искажается из-за этого конденсатора!

Вывод: держать подальше от звуковых схем, желательно в другом шкафу и в другой комнате! Также не рекомендуется в цепях питания звуковых устройств.

Важное замечание
На мой взгляд, у нас в стране действует совершенно дурацкая система обозначений керамических конденсаторов. Дело в том, что в них используется совершенно разная керамика: если емкость маленькая, то керамика довольно качественная, с хорошей линейностью и температурной стабильностью. Когда же нужно получить высокую емкость при малых габаритах, то используют керамику просто отвратительную — и линейность очень плохая, и термостабильности никакой (при нагреве на 20 градусов емкость может измениться в 2…3 раза!), и еще и сегнетоэлектрический эффект присутствует — конденсатор работает и как пьезо-динамик, и как пьезо-микрофон!Причем заразы-производители никому не говорят в каком именно конденсаторе какая керамика. Типа догадайся сам. Я бы на их месте не стал бы все валить в одну кучу, а давал бы разные типы в зависимости от типа диэлектрика. Тогда все было бы понятно — у конденсаторов этого типа емкость небольшая, зато стабильность и линейность хорошие, а у конденсаторов другого типа емкость высокая, но за счет качества. Так нет же! Специально запутывают, наверное, чтобы шпиёны не догадались! 

Почему я раньше любил конденсаторы К10-7а? У них большой корпус по сравнению с КМ-5 (К10-73) и хороший ТКЕ. Поэтому я думал, что этот большой корпус заполнен большим количеством качественной керамики. Но оказалось, что там керамика хоть и лучше, чем у КМ-5, но все же дерьмецо. Для интереса я разломал пару конденсаторов (каждый из них 0,1 мкФ), чтобы посмотреть, что там внутри:

Душераздирающее зрелище: в таком большом корпусе такой масенький кристалл! Теперь понятно, почему линейность плохая — я-то думал, что стенки у корпуса тоненькие, а внутри сплошь потроха. Ан нет… Зато мое предположение, что больший по размерам конденсатор (при той же емкости) может иметь более высокое рабочее напряжение, вроде подтверждается — кристалл там побольше, наверное из-за большей толщины диэлктрика. Но точный ответ даст микроскоп, а его нет у меня.

Обязательно найду и померяю конденсатор такого типа, но небольшой емкости с хорошим диэлектриком! Чтобы сравнить…

3. Пленочный К73-16 (лавсан)

Кг = 0,0017% , К’г = 0,0091%

Ну это совсем другое дело! Если бы еще не было этого «хвоста» из гармоник довольно высокого порядка…

Вывод: Используйте на здоровье.

4. Пленочный К73-17 (лавсан)

Кг = 0,0019% , К’г = 0,0074%

Вот тут интересно: обычный Кг у него выше, чем у предыдущего, а нормированный — меньше. Это потому, что 3-я, 4-я и 5-я гармоники у него чуть-чуть выше, а зато 11-й нет совсем! Да и «нехорошие» 8-я и 9-я заметно меньше.

Вывод: похоже, что «народный» конденсатор чуть лучше, чем К73-16, несмотря на то, что К73-16 военный (5-й приемки). Но может это случайность — разница ведь небольшая…

5. Фторопластовый ФТ-1

Кг = 0,0023% , К’г = 0,0098%

Хороший, в общем-то конденсатор. У фторопласта есть ряд преимуществ (например, максимальная пропускаемая реактивная мощность на высокой частоте), но они максимально раскрываются в других местах, например в фильтрах колонок.

Вывод: нормалёк.

6. Пленочный К78-2 (полипропилен)

Кг = 0,0022% , К’г = 0,0064%

Самый низкий пока что нормированный коэффициент гармоник. По обычному Кг проигрывает конденсатору К73-16, но, сравнив спектры, понимаешь, что использовать для оценки линейности именно нормированный коэффициент К’г — лучше! Максимум, что нашлось — это 5-я гармоника. Более высоких нет.

Вывод: очень линейный конденсатор.

7. Пленочный К78-19 (полипропилен) 

Кг = 0,0015% , К’г = 0,0049%

Та же картина, только немного лучше!

Вывод: самый линейный конденсатор в обзоре! Уж «звучать» он будет!…

8. Пленочный EPCOS (полипропилен)

Кг = 0,0017% , К’г = 0,0053%

Наш оказался даже лучше! Правда это на пределе точности, и на одной частоте. Откуда вылезла 11-я гармоника напряжения, и почему нет соответствующей ей 11-й гармоники тока я не знаю. Может какая-то хитрая особенность конденсатора. Я несколько раз перемерял в разных условиях — результат тот же.

Вывод: не зря за него берут столько денег. Но хорошо бы внимательнее приглядеться в нашему К78-19 — похоже, что он не уступает буржуйскому (а по этим измерениям — даже лучше)! А дешевле.

9. Пленочный «зеленый»

Кг = 0,0025% , К’г = 0,024%

В принципе неплохой, если бы не непонятно откуда взявшиеся «отдельно стоящие» 12-я, 14-я и 17-я гармоники. Хоть и маленькие, а есть. Их тут же уловил чуткий к таким безобразиям К’г, который сразу вырос из-за них в 10 раз (кто-то все еще сомневается в его пользе?).

Вывод: можно использовать для питания и для неответственных цепей. Например, в той же мультимедийной акустике (в усилителе).

10. Импортный «К73»

По сравнению с «обычными» конденсаторами К73-17, эти (по-видимому) импортные (пока не знаю их марки) имеют меньшие габариты, и продаются на напряжения от 100 вольт и выше. На напряжение меньше 100 вольт не встречал. Причем их появляется все больше и больше за последние год-два. Посмотрим, что за птица.

Кг = 0,0027% , К’г = 0,012%

Линеность чуть хуже, чем у К73-16 и К73-17. Наверное это расплата за меньшие габариты. Но в принципе неплохо.

Вывод: можно использовать, но наш К73-17 лучше. Зато в цепях питания эти конденсаторы получаются выгоднее — при напряжениях выше 50 вольт К73-17 на 63 вольта уже использовать не стОит. А эти запросто пойдут и по габаритам будут меньше (значит на то же место можно поставить большую емкость!).

Награждение победителей

Расставим конденсаторы по местам, учитывая, что у нас два оценочных коэффициента, и таблица рекордов тоже получается двойная (интересно, что в правой половине все первые места заняли полипропиленовые конденсаторы, которые и по субъективным оценкам всегда ставят на первое место. Значит ли это, что нормированный К’г ближе к субъективным ощущениям?..)

МестоТип «Обычный» Кг, %МестоТип Нормированный К’г, %
1К78-190,0015 1К78-190,0049
2EPCOS0,0017 2EPCOS0,0053
3К73-160,0017 3К78-20,0064
4К73-170,0019 4К73-170,0074
5К78-20,0022 5К73-160,0091
6ФТ-10,0023 6ФТ-10,0098
7«Зеленый»0,0025 7Импортный «К73»0,012
8Импортный «К73»0,0027 8«Зеленый»0,024
9К10-17а0,83 9К10-17а2,2
10КМ-52,1 10КМ-56,1

Думаю, комментарии излишни.

2. Для вас, аудиофилы!

Сегодня мы рассмотрим «аудиофильские» конденсаторы. Это довольно непростое дело — ведь некоторые считают, что самые лучшие конденсаторы это «Телефункен», добываемые из приемников, выпущеных в Германии в период с 1934 по 1944 года (т.е. при Гитлере). Некоторые считают, что конденсаторы нужно мотать самому из серебряной фольги и «правильного» диэлектрика 13-го числа в новолуние, повернувшись лицом на юг. К сожалению, ни первых, ни вторых конденсаторов я не только не имею, я их в жизни не видел. Поэтому сегодня всего три претендента:

Металлобумажные конденсаторы К42У-2 и их устаревший (зато хорошо «прогретый» за 30 лет) вариант МБМ. Считается, что бумага — очень хорошо «звучащий» диэлектрик, т.к. она изготовлена из живых существ и «откликается» на красивую музыку (как откликается на музыку соседская собака — я хорошо знаю, а вот как откликается бумага — ну никак не пойму!). Тем не менее, считается, что бумажные конденсаторы для усилителей — это кошерно.

И полистирольные конденсаторы К71-7. Полистирол — очень удачный диэлектрик с хорошими свойствами. Большой плюс этих конденсаторов — низкий разброс емкости — у моих он составляет всего лишь 0,5% (у металлобумажных соседей разброс емкости 10%, т.е. намного хуже). Такие конденсаторы хорошо применять в генераторах и точных (и сложных) фильтрах. Недостаток — большие габариты. Зато и качество конденсаторов — на высоте (и измерения это еще раз подтверждают).

При измерениях такого рода (практически на пределе точности измерительной системы) встает вопрос повторяемости измерений. Не секрет, что за прошедшие с прошлого раза два месяца что-то в (домашних) условиях измерений могло измениться. И действительно изменилось. Я повторил некоторые из прошлых опытов — значения получились чуть-чуть другими! Но не намного, в третей значимой цифре, так что новые результаты практически сравнимы с предыдущими. Так что если «аудиофильские» конденсаторы получились хуже — то это так и есть, измерения тут непричем! В доказательство привожу результат сравнения конденсатора К73-16, участвовшего в прошлом тесте и К42У-2 — нового участника. Эти измерения выполнены практичеки одновременно (с интервалом 5 минут на перепайку конденсаторов и собственно измерение) и в абсолютно одинаковых условиях. Хорошо видно разницу:

Вот этот же график, только рафинированный:

Так что по крайней мере по линейности бумага наверное чуть хуже, чем лавсан.

1. Металлобумажный К42У-2

Кг = 0.0023% , К’г = 0.0078%

Не очень плохо, но и не очень хорошо. Может в чем-то и у них есть своя хорошая сторона, но здесь ее не видно.

Вывод: для себя я ничего интересного не нашел.

2. Металлобумажный МБМ

Кг = 0.0014% , К’г = 0.0067%

Несмотря на то, что спектр гармоник несколько шире, их амплитуда меньше, поэтому старый получился лучше нового. Напоминаю, что я беру по одному конденсатору, а значит не застрахован от неудачных экземпляров. Может это получилось потому, что за 30 лет «прогрева» ток через конденсатор шел только в «правильном» направлении? 

Вывод: «С этой стороны — ничуть не лучше!» (Ослик Иа).

3. Полистирольный К71-7

Кг = 0.0016% , К’г = 0.0061%

А вот это уже совсем неплохо! Даже хорошо. Кг в основном состоит из третей гармоники. И спектр гармоник узкий, что свидетельствует о хорошей линейности.

Вывод: Очень хорошее качество при просто обалденной точности. Конденсаторов с лучшим показателем качество-точность, я просто и не знаю.

Награждение победителей (продолжается)

Ввиду явного преимущества полистирольного конденсатора, я не буду проводить местный рейтинг, и сразу дам общий результат.

МестоТип «Обычный» Кг, %МестоТип Нормированный К’г, %
1МБМ0,0014 1К78-190,0049
2К78-190,0015 2EPCOS0,0053
3К71-70,0016 3К71-70,0061
4EPCOS0,0017 4К78-20,0064
5К73-160,0017 5МБМ0,0067
6К73-170,0019 6К73-170,0074
7К78-20,0022 7К40У-20,0078
8ФТ-10,0023 8К73-160,0091
9К40У-20,0023 9ФТ-10,0098
10«Зеленый»0,0025 10Импортный «К73»0,012
11Импортный «К73»0,0027 11«Зеленый»0,024
12К10-17а0,83 12К10-17а2,2
13КМ-52,1 13КМ-56,1

3. Разборки с керамикой

Керамические конденсаторы — самые «противные» из всех. Про них заранее ничего неизвестно — ведь конденсаторы одного и того же типа могут быть изготовлены из разной керамики с совершенно различными свойствами!  Существует «закон рычага мироздания»: выигрывая в чем-то одном, обычно проигрываешь в чем-то другом. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности, т.к. в качестве диэлектрика используется сегнетокерамика. Причем по техническим условиям нормируется только ТКЕ (температурный коэффициент емкости), а вот линейность похоже никого не интересует. И распространено мнение, что термостабильные конденсаторы линейны, а вот нетермостабильные…

Только вот выходит, что и термостабильные керамические конденсаторы весьма и весьма нелинейны. Я наскреб по сусекам горсть конденсаторов и продолжаю их измерять. На это раз я попытаюсь найти связь между линейностью конденсатора и его остальными свойствами. К сожалению, тип конденсаторов продолжает оставаться неизвестным (за исключением К10-17а), поэтому вот их групповой портрет (рядом с каждым — порядковый номер, а конденсаторы одинаковой емкости разных типов имеют двойную нумерацию). Емкости от 1 мкФ до 750 пФ.

Я предположил, что линейность конденсаторов должна зависеть от их емкости (ведь маленькую емкость при маленьких габаритах получить легко, это для большой емкости приходится изворачиваться, запихивая ее в маленький корпус), типа и размера (ну тут тоже понятно: если не нужно миниатюрить — ставим качественную керамику). Особенно это относится к конденсаторам К10-17а — у них в одинаковых корпусах «помещаются» емкости от 100 пФ до 1 мкФ!!! А в корпусах разного размера сами «кристаллы» конденсаторов тоже разные (оба конденсатора по 0,1 мкФ; точно такие здесь исследуются, их номера 2-5 и 2-3):

Кроме того, конденсаторы разных типов (а типов этих промышленность выпускает немеряно! причем непонятно, в чем между ними разница, в справочниках — на эту тему ни гу-гу) могут иметь разные свойства.

Важно! Все конденсаторы измерены практически в одинаковых условиях (напряжение/частота)!

Поэтому все измерения сводим в общую таблицу (Внимание! на фото в таблице масштаб не соблюден! Реальные размеры — см. общее фото!).

№ п/пЕмкостьВнешний видКг, К’гСпектр искажений (в %)ТКЕ, %/градус
1-11 мкФКг = 2,7% К’г = 6,5%-1,7
1-21 мкФКг = 0,64% К’г = 2,2%-1,15
1-31 мкФКг = 0,51% К’г = 1,15%-1,05
2-10,1 мкФКг = 1,57% К’г = 4,3%-0,59
2-20,1 мкФКг = 0,68% К’г = 1,4%-1,4
2-30,1 мкФКг = 0,44% К’г = 1,16%-1,73
2-40,1 мкФКг = 0,51% К’г = 1,27%-1,15
2-50,1 мкФКг = 0,026% К’г = 0,057%-0,18
3-10,022 мкФКг = 1,17% К’г = 6,5%
3-20,022 мкФКг = 0,88% К’г = 2,1%
3-30,022 мкФКг = 0,16% К’г = 0,36%-0,094
410 нФКг = 0,08% К’г = 0,18%-0,078
55,6 нФКг = 0,0023% К’г = 0,009%-0,1
63 нФКг = 0,0018% К’г = 0,007%
7892,4 нФ1,5 нФ750 пФКг = 0,0017% К’г = 0,007%

Значения ТКЕ я измерил не для всех конденсаторов, но и этих чисел достаточно для предварительных выводов. Знак «минус» означает, что с ростом температуры емкость падает.

Выводы

1. Действительно, чем больше емкость и при этом чем меньше габариты, тем хуже линейность. Вот зависимость искажений от емкости для конденсаторов К10-17а, имеющих корпуса практически одинаковых размеров:

2. Конденсаторы небольшой емкости (менее 5 нФ) имеют хорошую линейность. Причем их искажения (в пределах моей погрешности измерений) от емкости не зависят. Наверное, там используется другой диэлектрик?

3. Конденсаторы в больших корпусах более линейны. Сравните 2-3 и 2-5 (именно они показаны в разломанном виде на фото вверху). Объем корпуса, а главное — объем «кристалла» в несколько раз больше, и искажения различаются более чем на порядок!

4. Конденсаторы разных типов имеют разные характеристики при одной и той же емкости. (Ну это и так понятно, непонятно зачем их столько разных вообще выпускают?!)

5. Интересно, что же происходит в SMD конденсаторах, которые еще меньше по размерам?

6. Зависимость «чем лучше ТКЕ, тем лучше линейность» (а это широко распространенное мнение) в общем случае подтверждается, но не совсем однозначно. Где-то так, а где-то и наоборот. По-видимому все зависит от свойств диэлектрика, причем если ТКЕ нормируется производителями и ТУ, то линейность — нет. Но чтобы хорошенько разобраться в вопросе, нужно провести много экспериментов с конденсаторами разных групп ТКЕ, а это пока не представляется возможным.

7. Качество звучания усилителя с проходыми керамическими конденсаторами большой емкости будет подпорчено.

Что делать?

Один из двух «классических русских вопросов» (второй вопрос: «Кто виноват?»).

  • По возможности меньше пользоваться керамическими конденсаторами в тракте сигнала (да и питания). Пленочные — лучше.
  • Если же пользоваться — то не гнаться за миниатюрностью. С другой стороны, не нужно впадать в крайности и использовать огромные высоковольтные конденсаторы, все должно быть разумно. Огромные и высоковольтные могут быть сделаны из какой-то специальной керамики, которая может оказаться еще хуже «обыкновенной».
  • Конденсаторы малой емкости (< 2000 пФ) ведут себя пристойно. Но за все их типы я не ручаюсь.

Но все не так плохо, как кажется на первый взгляд. Даже с плохими конденсаторами можно иметь дело, приняв меры, чтобы не испортить ими звук (разве что совсем чуть-чуть). Об этом обязательно, но позже. Продолжение следует!

12.03.2008

Total Page Visits: 4010 — Today Page Visits: 18

Лучшие аудио конденсаторы | ARCADIY

Опубликовано в Профессиональное аудио Апгрейд

Как улучшить железо, или выбор конденсаторов для звука. Лучшие электролитические конденсаторы для апгрейда домашней и студийной аудиотехники в 2019-м году.

Так как я не только много менял и слушал конденсаторы в течении 2018 года, но и много читал форумы и статьи — опишу характер звучания электролитов не только своими впечатлениями, но и добавлю общее впечатление, часто совпадающее у различных людей из разноязычных форумов, по поводу звучания конденсаторов и их применения. Начну от самых лучших по звуку и от них опущусь к более простым:

  1. Black Gate — ровное звучание по АЧХ, теплое и яркое, детальное. Яркость и окрас самые точные понятия применимые к звуку BG. У большинства слушателей именно это и вызывает ощущение живости звука и присутствия рядом с исполнителем.

  2. Elna Silmic II — менее яркие, не окрашенные, но более динамичные и с большей сценой. Уровень баса тот же, бас не такой плотный как у Nichicon KZ, но мелодичный — шире чем у BG. Эти конденсаторы любят и выбирают за максимально живые средние частоты среди электролитов, после BG.

    Elna Cerafine — относительно Silmic легче бас и более подчеркнуты высокие. Высокие подчеркнуты в хорошем смысле и они лучше чем у Silmic II. Поэтому многие предпочитают керафайны силмикам и я оставляю обе серии на 2-м месте. У Elna есть еще несколько серий, которые так же активно используются для аудио, но найти и купить их оригинал не так просто.

  3. Nichicon KZ (Muse) — относительно Elna хуже высокие, что создаёт ощущение закрытости и меньшей сцены, но выигрывает у Elna по басу и динамике. Очень плотный бас и ощутимое его превосходство. KZ на 50 вольт ощутимо лучше.

  4. Nichicon FG, FW, ES — относительно KZ более зернистые, но менее детальные, есть легкая пелена — звук бледнее, бас слабже, но все еще довольно музыкально. Серия ES (Muse) является биполярным (неполярным) поэтому пелена в звуке с ним малозаметна. FG схож с FW, но чуть лучше по всем показателям.

  5. Vishay Sprague 515D — относительно бюджетных электролитов имеет хороший уровень баса, и хорошую динамику, детальность хуже чем у FG и FW (больше зернистость), но очень хорошо передает средние.

  6. Panasonic ECA M-series — также довольно зернистые как и Sprague, дают меньше бас но более теплый и живой верх, в остальном схожи со Sprague.

Все эти типы конденсаторов отлично подойдут, если в вашем устройстве не импульсный блок питания, а классический с большим тороидальным или квадратным (броневым) трасформатором.

Но так как на дворе 2019 год и огромная доля техники, включая аудио, сделана с импульсными блоками питания (мелкие квадратные трансформаторы), то к таким БП, как правило, требуются более выносливые 105-градусные конденсаторы со своими особенностями, такие как Nichicon UPW — он же просто PW.

Nichicon PW — это упругий бас, чистый голос и даже высокие, ровная АЧХ. Его проблема лишь в отсутствии теплоты — оставляет четкую оболочку звука, но лишает наполнения. Похожее звучание с небольшой разницей и у других высокотемпературных электролитов 105C и низким ESR, а именно:

  • Panasonic FC
  • Panasonic FM
  • Rubycon Z, ZL
  • Nichicon HE

Как правило, эти электролиты производители студийной и качественной домашней техники используют в комбинации с конденсаторами 85C Elna, либо Nichicon, так делает и производитель топового студийного железа и аудио апгрейдов компания Black Lion, сочетая Nichicon PW с 85-градусными Nichicon FW.

Другой производитель крутых студийных пультов-компания Audient использует в своих консолях(пультах) сочетание 105-градусных Panasonic FM и 85-градусных Vishay Sprague

Компания Panasonic в дорогих сериях своих домашних кинотеатров сочетает Nichicon PW с 85-градусными Panasonic m-series и Elna. В комбинации это означает, что в импульсный блок питания устройств ставятся Nichicon PW, в непосредственной близости к импульсному трансформатору, а в остальные цепи устройства 85-градусные Nichicon, Elna и прочие. Поэтому эксперименты с этими 105-градусными конденсаторами, даже если у вас не импульсный блок питания, могут дать очень приятный результат в звуке. Чаще всего экспериментируют как раз с Nichicon PW и Panasonic FM (рекордсмен с самым низким ESR).

Пожалуй, это наиболее стоящие электролиты для аудио апгрейдов. Да, я знаю что Black Gate очень сложно достать, но не упомянуть его я не мог, поскольку люди с деньгами все же могут найти и побаловать себя ярким звуком.

Самыми выгодными по сочетанию цена/качество являются Nichicon FW и потому это выбор американской компании Black Lion, занимающейся апгрейдами и производством собственного студийного оборудования.

И самое главное, что теперь вы захотели узнать — где эти конденсаторы можно купить?
Black Gate покупают кто где сможет и многие натыкаются на подделки, одна позиция на данный момент есть здесь

Elna я заказываю на сайте www.audiomania.ru. И есть еще одна серия Elna ROD на сайте www.chipdip.ru. Nichicon всех серий есть там же на сайте www.chipdip.ru. Там же вы сможете заказать Vishay и Panasonic.

Покупать на aliexpress и китайских аккаунтах ebay я категорически не советую, так как это чистая лотерея!

Конденсаторы для ВЧ/СВЧ. Часть 3 Пленочные и электролитические

Часть 1.
Часть 2.
Часть 3.
Часть 4.

Особенности конструкции и применения

Необходимо сказать о том, как свойства органических вообще и пленочных диэлектриков в частности определили конструктивные особенности и сферы применения конденсаторов этого типа. Пожалуй, главным фактором, определившим современный набор конструктивных исполнений органических конденсаторов, является неширокий по сравнению с керамическими конденсаторами температурный диапазон применения органических полимеров. Это резко снизило возможности использования полимеров в чип-конденсаторах. Речь, прежде всего, идет о процессе пайки, в результате которого может происходить температурное разрушение либо деградация конденсаторов. Дополнительные сложности в «жизнь» органических чип-конденсаторов внесло появление требований RoHS по пайке бессвинцовыми припоями. Поскольку температура плавления таких припоев выше, чем свинцовосодержащих, значительная часть известных серий, в частности пленочных конденсаторов, имеет ограничения при пайке. Часто это невозможность использовать технологию двухволновой пайки либо ограничения по времени прохождения волны припоя. Многолетняя статистика рынка, собранная в основном по пленочным конденсаторам, показывает, что 80–90% таких конденсаторов выпускается в выводном исполнении. Пайка выводов не ухудшает свойств собственно конденсатора.

 

Органические конденсаторы для ВЧ/СВЧ

Несмотря на то, что признанным лидером в области высокочастотных приложений принято считать керамические конденсаторы, органические полимеры успешно осваивают этот специфический диапазон. Говоря о применении полимерных конденсаторов на высоких частотах, можно упомянуть об авторской технологии AVX — многослойных органических структурах MLO (Multilayer Organic). Эта технология появилась именно как результат усилий по расширению частотного диапазона применения полимерных устройств. Суть ее заключается в том, что из полимерных материалов и посредством отработанных пленочных технологий создается многослойная подложка, стек слоев которой содержит один или несколько уровней полимера с малыми потерями на высоких частотах. Эти слои «зажаты» между слоями металлизации и разделительными. Слои металлизации используются для формирования стандартных компонентов, посредством трассировки соединяемых в целевые устройства. Стандартный стек слоев подложек первого поколения описан в [1] и представлен на рис. 1.

Рис. 1. Подложка MLO с шестью слоями металлизации

Синим цветом на рис. 1 обозначены переходные отверстия между слоями. Основной проблемой при создании этого типа подложек был поиск полимерного материала, имеющего малые потери на высоких частотах и при этом высокую диэлектрическую проницаемость для формирования значительной емкости в малых габаритах. В настоящее время в качестве таких материалов для high-Q‑слоев используются политетрафторэтилен (PTFE) и жидкокристаллические полимеры (LCP). Высокочастотные полимерные подложки MLO стали исключительно благодатной средой для размещения в них стандартных компонентов для повсеместно используемых радиотехнологий: беспроводных сетей многих протоколов, широковещательных спутниковых систем, автомобильных радиосистем и т. п. По технологии MLO выполняются конденсаторы, индуктивности, диплексеры, согласующие четвертьволновые трансформаторы, фильтры, ответвители и другие компоненты, вплоть до радиочастотных микросхем (RFIC). При этом на наружных металлизированных слоях подложек может выполняться стандартная трассировка для SMT-компонентов. Дополнительным бонусом MLO-подложек является их полная совместимость с широко применяемым материалом для печатных плат — FR4. Оба материала имеют одинаковое температурное расширение, и при закреплении MLO-компонентов на печатных платах они не создают дополнительных термических нагрузок на платы. Специалисты фирмы AVX отмечают очень хорошие показатели MLO по диэлектрической абсорбции [2]. По данным [2], этот показатель для MLO составляет 0,0015%, что на порядки лучше абсорбции, например, для керамики NP0 — 0,6%. Это свойство MLO, конечно, весьма востребовано в устройствах выборки/хранения. В качестве практического решения AVX предлагает представленный в [3] MLO-конденсатор формата 0603 (EIA) с диапазоном емкостей 0,1–5,1 пФ, рабочим напряжением 50–250 В. Изделие имеет допуск по номиналу ±0,02 пФ и может применяться в диапазоне частот до 20 ГГц.

Вообще необходимо отметить, что технология сложных подложек переживает период стремительного развития не только в области пленочных технологий. Для керамики примером тому служат 3D однослойные конденсаторы фирмы IPDiA, речь о которых пойдет ниже. А наиболее полным конструктивным аналогом MLO-подложек от AVX являются сложные керамические подложки CapStrate фирмы Johanson Dielectrics.

 

Типы пленочных конденсаторов и основные материалы для их производства

Конструкция пленочного (как поясняется в сноске в начале обзора) конденсатора схожа с конструкцией многослойного керамического конденсатора или с конструкцией оксидного (электролитического) конденсатора, с тем отличием, что рулон диэлектрика с металлизацией укладывается прямоугольным брикетом. Конструкция пленочного конденсатора компании Wima приведена на рис. 2.

Рис. 2. Конструкция пленочного конденсатора компании Wima

Так же как и в ситуации с MLCC, пленочные конденсаторы имеют большое количество конструктивных исполнений, в основном разделенных на три большие группы c корпусами для поверхностного монтажа (SMD) и выводными корпусами с радиальным (Radial) и аксиальным (Axial) расположением выводов. На рис. 3 представлены некоторые примеры исполнений по информационным материалам фирмы Kemet и промышленной группы Exxelia.

Рис. 3. Виды корпусов пленочных конденсаторов от Kemet и Exxelia:
а) SMD-исполнение от Kemet с размерами 12,7×11,5×6,5 мм;
б) SMD Kemet в корпусе DIL6 с минимальными размерами 11×12,2×6,05 мм;
в) низкоиндуктивные SMD-конденсаторы с самовосстановлением от Exxelia;
г) SMD высокочастотные SMPS Exxelia;
д) радиальный конденсатор с сериальным резистором от Kemet;
е) радиальный Exxelia, выводы с резьбой или в виде контактного лепестка;
ж) радиальный высоковольтный до 1000 В, Exxelia;
з) точный радиальный от Exxelia, каждая обкладка соединена с двумя выводами;
и) аксиальный от Kemet для SMPS-применений;
к) аксиальный низкоиндуктивный от Exxelia;
л) аксиальный высоковольтный до 2200 В от Exxelia;
м) аксиальный Exxelia, имеется исполнение, при котором один из выводов соединен с корпусом

Пленочные конденсаторы применяются, как правило, в сильноточных импульсных устройствах, в том числе работающих в нагруженных режимах с малыми скважностями. Хотя эта область электронной техники напрямую не связана с заявленной темой статьи, тем не менее краткий экскурс в нее оправдан, поскольку в развитии электронной индустрии виден процесс конвергенции, при котором высокочастотные устройства становятся сильноточными, а импульсная техника работает на все больших частотах.

В качестве диэлектрика в них чаще всего применяются поликарбонат, полиэстер и полипропилен, которые называют «большой тройкой» пленочных конденсаторов. Эти диэлектрики применяет большинство фирм — производителей пленочных конденсаторов. Хотя в последнее время на первое место выходит полифенилен сульфид (PPS), который активно замещает конденсаторы из поликарбоната [4]. Достаточно распространены на рынке и конденсаторы с диэлектриком из пропитанной бумаги.

Класс пленочных конденсаторов условно делится на два основных типа. Те конденсаторы, у которых металлические обкладки выполняются из фольги (например, тонкой фольги хрома), называются фольговыми. В англоязычной литературе принят термин all-film либо foiled. Встречается также термин film/foil. Ко второму типу относятся конденсаторы, чьи обкладки выполняются непосредственным напылением на пленку диэлектрика тонкой пленки металла. Это металлизированные конденсаторы, или metallized. В количественном соотношении металлизированные конденсаторы выпускаются в значительно больших объемах, чем фольговые. При этом фирмы-производители стараются разрабатывать и использовать проприетарные технологии изготовления для продвижения своей продукции. Так, перед напылением металлической пленки компания AVX проводит обработку диэлектрика коронным разрядом для лучшего сцепления полимера и металла. О причинах количественного неравенства между фольговыми и металлизированными конденсаторами будет сказано ниже.

В зависимости от типа полимера, который используется в качестве диэлектрика, пленочные конденсаторы можно разбить на три большие группы:

  • Поликарбонат. Этот материал имеет низкий температурный дрейф (ниже, чем у других материалов), малый коэффициент рассеяния и диэлектрической абсорбции. Конденсаторы на основе поликарбоната применяются в импульсных цепях и прецизионных аналоговых устройствах в тех случаях, когда требуется хорошая температурная стабильность и высокий температурный коэффициент. В отличие от других диэлектриков имеет низкую устойчивость к влажности, что весьма критично в некоторых областях применения. Конденсаторы из поликарбоната имеют высокое тепловое сопротивление (до +125 °C), но плохо подходят для поверхностного монтажа. Большинство производителей рекомендует использовать поликарбонатные пленочные конденсаторы в автомобильных приложениях. Наиболее известные производители конденсаторов этого типа — Kemet PN, Electronic Concepts Inc, American Capacitor Corporation, EFC Wesko.
  • Полиэстер. Этот материал, вероятно, самый популярный в пленочных конденсаторах, во всяком случае для монтажа на плату. Полиэстер — другое название класса аналогичных полимеров на основе полиэтилена терефталата. Европейское название — милар, PET, PETE или PETP. Высокий коэффициент рассеяния, особенно с ростом частоты, позволяет применять конденсаторы на основе полиэстера в цепях постоянного тока, в низкочастотных импульсных цепях с малым током или в источниках питания. Конденсаторы на основе полиэстера имеют высокий температурный дрейф, но их совместное подключение с конденсаторами на основе полипропилена позволяет выравнивать температурную кривую. Конденсаторы этого типа имеют номиналы 1 нФ – 10 мкФ и выше (речь идет в основном о конденсаторах до 1000 В). Высокое тепловое сопротивление позволяет применять их для поверхностного монтажа. Наиболее известные производители конденсаторов на основе полиэстера — EFC Wesko, Richey, Southern Electronics Inc.
  • Полипропилен. Конденсаторы на основе полипропилена (РР) являются самым распространенным типом пленочных конденсаторов. Они выпускаются в очень широком диапазоне размеров и рабочих напряжений и применяются во многих электрических цепях. РР имеет низкий коэффициент рассеяния во всем диапазоне рабочих температур и в широком диапазоне частот. Это позволяет применять данный тип конденсаторов в высокочастотных цепях и в цепях с высоким током нагрузки, например в импульсных источниках питания. Некоторые типы конденсаторов имеют рабочее напряжение выше 400 кВ переменного тока. Они предназначены для замены старых моделей электролитических и бумажно-масляных конденсаторов. Конденсаторы данного типа имеют номиналы емкостей 100 пФ – 10 мкФ. Малая утечка и низкий коэффициент диэлектрической абсорбции позволяют применять полипропиленовые конденсаторы в интегрирующих цепях и в цепях выборки и хранения. Влияние влажности незначительное. По температурному дрейфу они немногим превосходят конденсаторы на основе полиэстера, поэтому их эксплуатация ограничена температурой +105 °C и делает невозможным их применение для поверхностного монтажа. Наиболее известные производители конденсаторов на основе полипропилена — Susco, RTI Electronics, TSC Electronics, Suntan.

Интересно практическое количественное сравнение различных типов диэлектриков, данное в материалах фирмы Kemet [4] (табл. 1). Отметим, что в таблице сопротивление изоляции представлено в виде постоянной времени саморазряда конденсатора (секунды) после минутного заряда напряжением 100 или 500 В, в зависимости от типа испытуемого конденсатора.

Таблица 1. Сравнение типов диэлектриков (Kemet)

Материал

диэлектрика

Аббревиатура

Минимальная толщина, мкм

Диэлектрическая константа

(1 кГц, +23 °C)

Нормальная рабочая температура, °C (расширенная)

Температурный коэффициент, ppm/°C

Тангенс угла потерь
(1 кГц, +23 °C), %

Сопротивление изоляции, с

Диэлектрическая абсорбция, %

Полиэстер

PET

0,9

3,3

–55…+100 (+125)

+400 (±200)

0,5

25 000

0,5

Полиэтилен нафталат

PEN

1,4

3

–55…+125 (+150)

+200 (±150)

0,4

25 000

1,2

Поликарбонат

PC

2

2,8

–55…+125

0 (±100) нелинейно

0,15

25 000

0,06

Полифенилен сульфид

PPS

1,2

3

–55…+125 (+175)

0 (–50)…+100 °C

0,06

50 000

0,05

Полипропилен

PP

2,4

2,2

–55…+105 (+125)

–200 почти линейно

0,03

100 000

0,01

Пропитанная бумага

P

8

5,5

–40…+115

+1200 (±200)

0,8

15 000

 

Сильноточные и высоковольтные

Еще одно эксклюзивное свойство пленочных конденсаторов, не присущее другим видам, — так называемое управляемое самовосстановление после пробоя (self-healing). Оно определяется не только и не столько свойствами пленки, сколько уже в целом конструкцией конденсатора. Свойством самовосстановления обладают только металлизированные конденсаторы. Суть его заключается в том, что в случае пробоя диэлектрика (в силу разных причин) ток короткого замыкания локализуется в определенном месте диэлектрика, где возник дефект, уменьшивший сопротивление слоя изоляции. При этом плотность тока такова, что происходит испарение металлизированного слоя в локальной области на двух прилежащих обкладках конденсатора. Испарение металла изолирует проблемную область диэлектрика. Лавинного пробоя не происходит. Работоспособность восстанавливается. Этот процесс иллюстрирует рис. 4 из материалов фирмы Wima.

Рис. 4. Процесс управляемого самовосстановления (Wima)

Как следует из данных производителя, локальные дефекты сопротивления изоляции чаще всего возникают в местах сгиба металлизированной пленки при формировании объема конденсатора вследствие механических напряжений. На рис. 5 представлена микрофотография участка пробоя.

Рис. 5. Участок пробоя (Wima)

Надежная система самовосстановления создает своеобразный синергетический эффект, поскольку позволяет повысить энергетическую эффективность металлизированных конденсаторов за счет увеличения рабочей напряженности электрического поля.

Общепринятая практика рекомендует завершение эксплуатации конденсатора после изменения емкости более чем на 2% (из-за локальных пробоев). При этом понятно, что по достижении такой величины падения емкости конденсатор по-прежнему работоспособен и, следовательно, решение о продлении эксплуатации принимает техперсонал объекта. Такая возможность увеличивает выгоды применения пленочных конденсаторов.

Наличие эффекта самовосстановления в немалой степени способствовало использованию пленочных конденсаторов в сильно-
точной, высоковольтной и импульсной технике. С ним же связано и количественное преобладание на рынке металлизированных конденсаторов по сравнению с фольговыми.

Однако необходимо отметить, что фольговые конденсаторы имеют достаточно устойчивую нишу применения. Это связано с некоторыми параметрами данных конденсаторов, которые лучше, чем у металлизированных. Так, именно из-за применения фольги, значительно более толстой, чем напыляемая пленка, снижается переходное сопротивление в области соединения обкладок с внешним выводом. Благодаря этому фольговые конденсаторы часто предпочтительнее металлизированных в импульсных устройствах. Второй важный плюс фольговых конденсаторов — низкий ток утечки неметаллизированной пленки.

Опять же для сравнения отметим, что фольговые конденсаторы не имеют процесса восстановления после пробоя в том виде, как это только что описано для металлизированных конденсаторов. Это связано с тем, что толщина фольги в фольговом конденсаторе может до 1000 раз превышать толщину металлической пленки в металлизированном конденсаторе. При пробое фольгового конденсатора утилизирующейся в канал пробоя энергии недостаточно для испарения металла, именно из-за его толщины. Происходит сплавление двух обкладок конденсатора.

Тем не менее в фольговых конденсаторах также используются технологии самовосстановления. Примером тому может служить продукция немецкой фирмы Electronicon. Речь идет об их силовых высоковольтных косинусных конденсаторах [5]. Эти изделия выполнены по all-film-технологии и представляют собой набор однотипных спирально намотанных секций, помещенных в общий корпус и имеющих смешанное последовательно-параллельное соединение (рис. 6).

Рис. 6. Схема соединений высоковольтного конденсатора и принцип самовосстановления

Как видно на рис. 6, каждая из параллельно включенных секций защищена плавкой вставкой, представляющей собой медную проволоку диаметром 0,25–0,35 мм. В случае пробоя с последующим коротким замыканием предохранитель отключает неисправную секцию. Конденсатор сохраняет работоспособность с потерей емкости в пределах 1,5–5%. На рис. 6 представлен пример того, как изменится емкость конденсатора в случае перегорания предохранителей в двух секциях изделия. Красной стрелкой показано снижение емкости и реактивной мощности.

Системы внутренней защиты в изделиях компании Electronicon отслеживают состояние конденсатора на протяжении всего жизненного цикла. Известно, что в конце срока службы при большом количестве самовосстанавливающихся пробоев в металлизированных конденсаторах или в результате перегрузок по напряжению или температуре внутри корпуса конденсатора может возникнуть избыточное давление с возможностью катастрофического отказа. Защитой в таких случаях является предохранитель-прерыватель избыточного давления [6], используемый в сериях E62, E63, E65 (рис. 7).

Рис. 7. Предохранитель-прерыватель (Electronicon)

Корпус конденсатора оснащен элементом защиты от повышенного давления. В качестве такового может работать либо гибкая крышка корпуса, либо зигованный желоб на корпусе изделия. Один из выводов конденсатора выполняется внутри корпуса в виде струны с ослабленным участком. При повышении давления и появлении выпуклости на крышке либо растяжении зиговки происходит обрыв проводника в месте тарированного ослабления.

Как мы уже убедились, пленочным конденсаторам в высокой степени свойственны технологии внутренней защиты и поддержания работоспособности.

Вкратце отметим основные исполнения выводных пленочных конденсаторов. В современной практике конденсаторы средней мощности чаще всего изготавливаются по сухой технологии (газонаполненные), а высокой мощности делают маслонаполненными. Для многих приложений используется заполнение корпуса конденсатора полиуретановыми смолами (твердый наполнитель). В качестве жидкого наполнителя наиболее часто применяется рапсовое масло. Применение наполнителей (кроме газа) позволяет повысить пробивное напряжение конденсатора, увеличить работоспособность при низких температурах, улучшить экологические параметры производства, эксплуатации и утилизации конденсаторов.

Необходимо обратить внимание на тот факт, что все перечисленные достоинства пленочных конденсаторов стимулируют замену электролитических конденсаторов пленочными. Процесс этот идет достаточно давно и замедляется только тем, что оксидные конденсаторы пока еще часто выигрывают в ценовом отношении (табл. 2).

Таблица 2. Сравнение основных параметров пленочных и оксидных конденсаторов [7]

Пленочные конденсаторы

Электролитические конденсаторы

Допускается двукратная перегрузка

по напряжению

Максимальная перегрузка в 1,2 раза

Выдерживают броски

обратного напряжения

Нет

Выдерживают быстрый разряд

Нет

Обеспечивают эффективный ток

до ~1 Аrms/мкФ

Примерно в 40 раз меньше

Нет риска выбросов вредных веществ

Используется кислота

Высокая надежность

Средний срок службы меньше

в 10 раз, чем у пленочных

В конце срока службы

максимальное уменьшение емкости 5%.

Можно использовать

и после заявленного срока службы

Снижение емкости до 30%

Длительное хранение не влияет

на характеристики

После длительного хранения
необходимо их восстановление

 

Заключение

В завершение разговора об органических полимерных конденсаторах отметим, что полимерные и основанные на сходных технологиях конденсаторы имеют широчайшую область, точнее, даже области применения. Граница разделения тут в основном проходит по типу корпуса. Чипированные изделия применяются в индустрии ВЧ, в то время как основная область применения выводных конденсаторов — это сильноточная техника. Силовые приводы электротранспорта, генераторы энергии, мощные импульсные устройства, источники питания, промышленные индукционные установки и сварка, мощные лазеры и сильноточная техника военного применения.

Основными производителями полимерных конденсаторов являются AVX и его подразделение TPC (Thomson Passive Component), Spectrum Advanced Specialty Products, Pilkor Electronics Co., Elpac Components, Wima, Eurofarad, Vishay Intertechnology, Seacor, Kemet, Faratronic Co. Ltd., Ixis, Cornell Dubilier, Epcos, TDK, JARO Components Ink., Electronicon Kondensatoren Gmbh., Exxelia, Sprague-Goodman Electronics Inc., Electronic Concepts Inc., American Capacitor Corporation, EFC Wesko, Richey, Southern Electronics Inc., Susco, RTI Electronics, TSC Electronics, Suntan.

Статья опубликована в №6’2020 журнала «Компоненты и технологии»

Литература
  1. Stratigos J. Capabilities of Multi-Layer Organic Packaging // Microwave Jornal. 2007. September.
  2. Menendez E. Dielectric Absorption of Multilayer Organic (MLO) Capacitors. US, AVX. 2014.
  3. RF Passive Components Made Using Multi-Layer Organic Technology.
  4. kemet.com/Lists/ProductCatalog/Attachments/155/F9000_GenInfo_SMD.pdf
  5. Шишкин С., Юшков А. Новое поколение косинусных конденсаторов среднего напряжения компании Electronicon // Силовая электроника. 2007. № 2.
  6. electronicon.com/fileadmin/inhalte/pdfs/produkte/leistungselektronik/allgemein/PEC_application_notes.pdf
  7. Самойлова М. Пленочные конденсаторы AVX/TPC // Компоненты и технологии. 2007. № 5.

Пленочные чип конденсаторы vs керамические конденсаторы

Пленочные чип конденсаторы необоснованно получили свое забвение уступив место бюджетным керамическим (MLCC) конденсаторам сери X7R, X5R, Y5R и др.

Попробуем восстановить статус-кво пленочных конденсаторов, описав их преимущества в сравнении с керамическими конденсаторами и побудить инженеров-электронщиков к более активному применению пленочных чип конденсаторов Panasonic.

Пленочные конденсаторы в чип корпусах, как и керамические (MLCC) конденсаторы, имеют многослойную структуру. Несмотря на схожую структуру пленочных конденсаторов с керамическими, пленочные конденсаторы обладают рядом преимуществ в сравнении с последними.

Рисунок 1. Структура пленочного чип конденсатора

Пленочные чип конденсаторы Panasonic изготавливаются на основе диэлектриков Полифениленсульфид (Polyphenylene sulfide (PPS)), Полиэтиленнафталат (Polyethylene naphthalate (PEN)) или Акрилового пластика (Acrylic resin).

Компания Panasonic предлагает 6 серий пленочных чип конденсаторов. В серии ECHU(X), ECHU(C) применен PPS материал, в сериях ECWU(X), ECWU(C), ECWU(V16) – PEN, и в серии ECPU(A) используется акриловый пластик.

Керамические конденсаторы в сравнении с пленочными конденсаторами имеют бОльшую удельную емкость, но в силу свойств бюджетной керамики, и наличия паразитных эффектов, таких как эффект DC-Bias (зависимость емкости от приложенного напряжения), зависимость емкости от температуры, которые нивелируют это преимущество. Принимая это во внимание, пленочные конденсаторы, обладающие меньшей удельной емкостью, но стабильной во всем диапазоне температур и рабочих напряжений, в ряде случаев могут конкурировать с MLCC.

Рисунок 2. Эффект DC-Bias (зависимость емкости от приложенного напряжения) керамического конденсатора

Рисунок 3. Зависимость емкости от температуры MLCC и пленочного конденсатора

Есть и еще один фактор, ограничивающий более широкое применение пленочных чип конденсаторов Panasonic, их рабочие напряжения не превышают 630 вольт прямого тока (VDC), в то время как керамические чип конденсаторы, представленные на рынке, имеют рабочие напряжения в единицы киловольт. Однако эффект DC-Bias и высокий коэффициент абсорбции керамических конденсаторов, в ряде случаев вызывают ограничения по их применению, особенно в высоковольтных цепях.

Рисунок 4. Диэлектрическая абсорбция пленочных и керамического конденсатора

Поэтому, применение пленочных чип конденсаторов в высоковольтных цепях полностью себя оправдывает, а их способность самовосстановления позволяет обеспечить максимальные уровни защиты высоковольтных цепей.

Рисунок 5. Тангенс угла потерь керамического и пленочного конденсатора

Отменные частотные характеристики пленочных конденсаторов обеспечиваются применением материалов, обладающих малым фактором рассеяния (Dissipation Factor) и малым тангенсом угла потерь, позволяющие сохранять основные характеристики в диапазоне частот до 10 МГц.

Рисунок 6. Зависимость импеданса пленочных конденсаторов от частоты

Стабильные частотные характеристики пленочных конденсаторов обеспечивают меньшие уровни искажения третьих гармоник, уменьшают уровни шума в широкой полосе частот и соответственно обеспечивают более высокую стабильность работы схемы.

Рисунок 7. Уровень искажения третьих гармоник керамического и пленочного конденсатора

Пленочные чип конденсаторы практически не заменимы в цепях ФАПЧ, так как имеют преимущества перед керамическими конденсаторами, в силу отсутствия пьезоэлектрического эффекта, не создают шум, они не поляризованы и как результат приводят к более быстрому времени блокировки сигнала (lockup time).

Рисунок 8. Время закрытия конденсаторов

Проблема пьезоэффекта, чувствительность к вибрациям, и механическая прочность керамических конденсаторов, может стать сильной «головной болью» разработчиков электроники. Обнаружить пьезоэффект и устранить проблему бывает не очень легко, а определить внутренне механическое повреждение керамического конденсатора, без применения специального оборудования невозможно. Причем механические повреждения керамических конденсаторов могут возникнуть как в ходе производства, транспортировки, так и в ходе пайки печатной платы и подготовки устройств к серийному выпуску.

Рисунок 9. Рентгеновский снимок дефекта керамического конденсатора

По данным исследовательского центра Eptac 30% выходящих из строя в процессе эксплуатации компонентов являются конденсаторы. При этом около 34% брака керамических конденсаторов отсеивается уже на производстве, около 25% керамических конденсаторов выходят из строя при механическом воздействии на конденсатор, 23% конденсаторов теряют свои функции в процессе пайки.

Мероприятия по дополнительному входному контролю конденсаторов и выходному контролю готовых плат или серийно выпускаемых устройств, а также сервисное обслуживание готовых устройств несут дополнительные временные и финансовые затраты, которые зачастую не учитываются при расчете стоимости комплектующих и могут составлять в разы более высокие фактические затраты.

Рисунок 10. Пьезоэффект керамических конденсаторов

Многие керамические материалы, используемые в качестве диэлектрика в бюджетных конденсаторах, включают титанат бария (BaTiOз), обладающий высокой диэлектрической проницаемостью и могут генерировать напряжение (проявлять пьезоэффект) при механических деформациях или акустических шумах. Многослойная структура пленочных чип конденсаторов Panasonic включают в себя слои алюминиевой фольги с прослойками диэлектрика из Полифениленсульфида, Полиэтиленнафталата или Акрилового пластика, исключающих пьезоэффект.

Рисунок 11. Ударные шумы (пьезоэффект) керамического конденсатора

Так, например, применение пленочных конденсаторов в аудиотрактах, является абсолютно оправданным. Пленочные конденсаторы обладают низкими гармоническими искажениями (Total Harmonic Distortion (THD)) и низкими уровнями шумов звукового диапазона, в сравнении с керамическими конденсаторами, что позволяет достигнуть высочайшего уровня звука аудиоустройств и применять пленочные конденсаторы в высококачественных устройствах класса D.

Рисунок 12. Шум керамического конденсатора в цепях переменного тока.

Рисунок 13. Уровень общих гармонических искажений конденсаторов (THD)

Уровень последовательно сопротивления (ESR) пленочных чип конденсаторов сопоставим с ESR керамических конденсаторов, что в свою очередь определяет допустимые значения тока пульсации и ограничения, связанные с тепловыделением конденсаторов. Взаимосвязанные с этим сроки жизни конденсаторов, позволяют смело утверждать о высокой надежности и длительном сроке жизни пленочных конденсаторов.

Срок жизни пленочных конденсаторов рассчитывается по формуле:

В качестве примера сделаем расчет времени жизни пленочного конденсатор используя следующие параметры:

  • Vs = 60% номинального напряжения, при температуре 65°C
  • Vo = 1.4Vs, при 85°C, время тестирования 1000 часов

В результате полученных расчетов срок жизни пленочного конденсатора при температуре 65°C, составляет более 150 000 часов. Полученные расчеты показывают, что пленочные конденсаторы Panasonic при достаточно жестких условиях эксплуатации, способны обеспечить надежную работу устройства в течение 17 лет.

Конечно, пленочные конденсаторы не могут в полной мере заменить керамические конденсаторы, в том числе и в силу разницы удельной емкости. Но во многих случаях, таких как, фильтрация пульсаций в DC/DC преобразователях, цепи сопряжения аудио трактов, ФАПЧ схемы высокочастотных трактов, схемs фильтрации и др., применение пленочных конденсаторов полностью обосновано.

Обладая высокой точностью, низкими токами утечки, высоким сопротивлением изоляции, низкой величиной абсорбции, высокой температурной стабильностью, пленочные конденсаторы могут применяются во времязадающих цепях, устройствах выборки и хранения или в системах с низким энергопотреблением.

Пленочные конденсаторы превосходят керамические конденсаторы по надежности, стабильности характеристик в широком частотном, температурном диапазоне и сохраняют свои свойства на протяжении всего срока жизни, что позволяет создавать высоконадежные устройства с гарантированно большим сроком эксплуатации, что особенно важно в ряде промышленных применений.

Краткие технические характеристики пленочных чип конденсаторов Panasonic

Серия

Емкость, uF

Напряжение, VDC

Точность, %

Тип диэлектрика

Рабочий диапазон температур, °C

Корпус

Размер, мм

ECWU(V16)

0. 001…0.12

250

5

PEN

-55…+85

4833 (1913)

6041 (2416)

6050 (2420)

4.8×3.3

6.0×4.1

6.0×5.0

ECHU(X)

0.0001…0.22

16/50

2/5

PPS

-55…+125

1608 (0603)

2012 (0805)

3216 (1206)

3225 (1210)

4833 (1913)

6041 (2416)

1.6×0.8

2.0×1.2

3.2×1.6

3.2×2.5

4.8×3.3

6.0×4.1

ECHU(C)

0.01…0.22

100

2/5

PPS

-55…+105

4833 (1913)

6041 (2416)

7150 (2820)

7163 (2825)

4.8×3.3

6.0×4.1

7.1×5.0

7.1×6.3

ECWU(X)

0.001…0.01

100

5

PEN

-55…+105

3216 (1206)

3225 (1210)

3.2×1.6

3.2×2.5

ECWU(C)

0.001…1.0

100/250/630

5/10

PEN

-40…+85

4833 (1913)

6041 (2416)

6050 (2420)

7150 (2820)

7163 (2825)

7755 (3022)

9863 (3925)

4.8×3.3

6. 0x4.1

6.0×5.0

7.1×5.0

7.1×6.3

7.7×5.5

9.8×6.3

ECPU(A)

0.1…1.0

16/50

20

Acrylic resin

-40…+105

2012 (0805)

3216 (1206)

3225 (1210)

2.0×1.2

3.2×1.6

3.2×2.5

Доступность:

Пленочные чип конденсаторы Panasonic серий ECHU(X), ECHU(C), ECWU(X), ECWU(C), ECWU(V16), ECPU(A) находятся в массовом производстве и доступны для заказа с короткими сроками поставок.

Ресурсы:

 

Что такое твердотельный конденсатор — Ответы на вопросы

Твердотельный конденсатор — электролитический конденсатор, в котором вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер (PEDT) или полимеризованный органический полупроводник (TCNQ).

Также используются названия OS-CON, AO-CAPS, OC-CON, FPCAP.

Отличия от конденсаторов с жидким электролитом:

• Значительно больший срок службы
• Время наработки на отказ составляет порядка 50000 часов при температуре 85 °С
• Тем не менее, при максимально допустимой температуре (105 °С) заявленный срок службы полимерных конденсаторов такой же, как у традиционных электролитических конденсаторов и составляет 2000—5000 часов
• Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) меньше по величине по сравнению с сопротивлением жидко-электролитического конденсатора и слабо зависит от температуры
• Поэтому необходима меньшая ёмкость для использования твердотельного конденсатора в качестве шунтирующего (по переменной составляющей)
• Тем не менее не все модели имеют ЭПС меньшее, чем у аналогичных жидко-электролитических
• Рабочие напряжения до 35 Вольт
• Более высокая цена.

Конструкция:

• Катод — алюминиевая или танталовая фольга
• Прокладка пропитанная электролитом
• Анод — алюминиевая или танталовая фольга с оксидным слоем
• Лента свёртывается в рулон и упаковывается в корпус (с выводами или для поверхностного монтажа)
• Твердотельные конденсаторы (за редким исключением) не имеют клапана или насечки на корпусе, так как твёрдый электролит не способен вскипеть и вызвать взрыв корпуса.

Чем эти конденсаторы лучше обычных.

Во-первых, в них вместо жидкого электролита, использован твёрдый полимерный электролит, что исключает его испарение и протекание в наружу.

Во-вторых, эквивалентное последовательное сопротивление (ESR) ниже, что позволяет использовать в тех же условиях, конденсаторы меньшей емкости и меньшего размера.

И в третьих они мало чувствительны к перепаду температур.

Всё это позволяет твердотельным конденсаторам, безотказно работать в шесть раз дольше обычных!
А значит и аппаратура служит дольше и работает стабильней.
Ведь зависания и артефакты на экране могут быть не только следствием неправильной работы программного обеспечения, но и неисправности самого оборудования.

Итак, может ли это стать основным критерием при выборе аппаратуры для долговечных и надежных систем?
Однозначно да.

Цветовая раскраска никаких технологических характеристик не обозначает, просто разные производители используют разные цвета, например:

Зеленовато-голубой — Chemicon
Сиреневый — Sanyo
Красный — Fujitsu
Синий — Nichicon

В то же время компания MSI считает, что твердотельным конденсатором осталось не так уж много времени, и в скором будущем их заменят на что-то более современное.
Это мнение подтверждает тот факт, что MSI уже начала использовать новые конденсаторы под названием Hi-c CAP.

Этот набор букв расшифровывается как Highly-Conductive Polymerized Capacitor (полимерный конденсатор с высокой проводимостью).

Такие конденсаторы наделены сердцевиной из тантала, считающегося довольно редким металлом.

Они служат намного дольше обычных твердотельных конденсаторов и обладают очень высокой проводимости из-за низкого ESR.
На работоспособность конденсаторов Hi-c CAP никак не влияют изменения температуры, что на руку настоящим оверклокерам, любящим разгонять железо.

Если обратиться к сравнительному анализу, то конденсаторы типа Hi-c CAP имеют в 8 раз более длительный срок службы в сравнении с обычными твердотельными конденсаторами, обладают в 15 раз меньшими токами утечки и способны работать в течение 16 лет подряд даже при температуре 85 градусов Цельсия.

И еще одно преимущество конденсаторов Hi-c CAP — это их плоская форма.
Благодаря этому, они никоим образом не препятствуют потокам воздуха внутри системного блока и, соответственно, не являются косвенной причиной перегрева, скажем, видеокарты или процессора.

Массив электролитических конденсаторов | MyElectrons.ru

Вместе нам веселей,
Вместе мы вдвое сильней!

Насколько массив электролитических конденсаторов целесообразней, чем один большой конденсатор?

Первым толчком к изучению вопроса, как водится, послужила извечная лень:

  • Во-первых, мне было никак не подобрать желаемые номиналы за разумные деньги;
  • Во-вторых, конструктивные изыски по монтажу разнокалиберных банок совершенно не радовали.

На тот момент я всё-же раскошелился на огромные банки от Kemet, и лишь чуть позже мне попался сюжет от Дэйва, где он разъясняет популярно (на Английском), почему несколько электролитов в параллель может оказаться лучшим решением. Ниже перечислю основные моменты в моей собственной интерпретации.

Паразитное сопротивление в разы ниже (Low ESR)

В простейшем случае эквивалентную схему конденсатора представляют из последовательно включённых идеальных конденсатора, индуктивности и активного сопротивления. Эту аппроксимацию можно усложнять добавляя сопротивление утечки, потери в диэлектрике, эффекты памяти и т. д. Но для наших целей упрощённой модели достаточно. Очевидно, что соединяя параллельно сопротивления и индуктивности мы в результате получаем суммарные значения во столько раз меньше, сколько конденсаторов мы соединили в параллель.

ESR большого элктролитического конденсатора высокого качества будет в районе одного-двух десятков миллиОм. ESR конденсаторов поменьше, но тоже приличного качества, обычно находится в пределах двух-трёх десятков миллиОм. Итого массив из десятка таких небольших конденсаторов по идее мог бы иметь ESR не более трёх-пяти миллиОм.

К сожалению, в данном случае начинают влиять сопротивление и индуктивность соединителей (об этом ниже). Дабы не сесть в ту же лужу, что большинство, мы берём двустороннюю плату с двойной толщиной меди, и для соединения конденсаторов в массив используем сплошную проводящую поверхность, покрывающую всю площадь, занимаемую конденсаторами. Проводящая поверхность на одной стороне платы подключена к положительным выводам, на другой — к отрицательным.

Рабочие токи в разы выше (High Ripple Current)

Сравним 9.1А Ripple Current одного большого электролита, и 3.2А маленького (здесь и далее все примеры из конкретных спецификаций, большой конденсатор близкий по ёмкости к сумме маленьких, и на такое же рабочее напряжение). Маленьких много (в нашем случае девять штук), они равномерно «разбирают» каждый по приблизительно одинаковому «кусочку» общего тока. Итого на всех получаем 28А. Это вряд-ли когда нам понадобится в реальной жизни, но чем больше запас — тем надёжней аппарат.

Улучшеный тепловой режим

Чем меньше греется электролитический конденсатор — тем больше срок его безотказной работы.

На низких частотах нагрев происходит в основном из-за выделения тепла от протекания тока через последовательное паразитное сопротивление. Как мы уже выяснили, суммарное ESR массива конденсаторов меньше, нежели одного большого. Отсюда автоматом получаем меньший нагрев.

Теперь посмотрим, как охлаждается конденсатор. Основной вклад в охлаждение вносят излучение и обдув воздухом. У большого конденсатора поверхность существенно меньше (он ближе по форме к фигуре с минимальным отношением поверхности к объёму — шару), нежели у стайки маленьких. В итоге у массива больше площать поверхности — лучше отдача тепла как излучением, так и через конвекцию и/или обдув.

Повышенная надёжность

Высыхание электролита, брак изготовителя, или нарушение контакта при монтаже — и один электролитический конденсатор уже в поле не воин. Если же не повезло одному из десятка, то отряд и не заметит потери бойца.

Упомяну ещё один, скорее эмпирический, но всё же фактор риска для больших электролитов: весьма велик шанс отломать, или повредить и не заметить этого, крепёж / контакты — и провода толстые, и сам конденсатор велик и создаёт больше усилия при всевозможных ускорениях (вибрациях). Тогда как распайка небольших колбочек на печатную плату ни у кого не вызывает особых затруднений.

Ниже стоимость

Если выбирать качественные компоненты, то сильно снизить стоимость не получается. И всё же выгода есть. Эффекта здесь два срабатывают:

  1. Количество одновременно закупаемых небольших конденсаторов велико и уже даёт ощутимую оптовую скидку у серьёзных поставщиков. Обычно от 10 штук уже дешевле, а если брать сотню и более — так и очень «вкусно» бывает 🙂
  2. Большие электролитические конденсаторы товар практически штучный, производители партии выпускают небольшие, в подтверждение можно посмотреть объёмы на складах крупных поставщиков. Тиражи же производства небольших конденсаторов гораздо выше — их потребляют все подряд: компьютеры, бытовая техника, промышленная автоматика, автомобильная электроника, всего и не перечислишь. При массовом производстве цена (при пересчёте на ту же ёмкость и напряжение — столько же фольги и изолятора) натурально снижается.

К сожалению, печатная плата и необходимость сборки отъедают свою долю в финальном ценнике. Но не стоит забывать и про весомый вклад, если не в цену, то во время разработки (а моё время дорогого стоит), всех плясок с бубном вокруг монтажа больших электролитов.

Удобство монтажа

Признаюсь как на духу (вы уже наверняка догадались 🙂 ), жуть как невзлюбил я монтировать большие электролиты с самого начала моей карьеры в электронике:

  • Нужно изобрести, как его прикрепить к корпусу;
  • И даже когда в комплекте идут крепёжные пояса или придумал удобную держалку — попробуй найди ему подходящее место;
  • При подключении проводов под винт необходимо разделать провода и, что самое главное, не свернуть при этом бошку клеммы этому самому дорогущему кондею;
  • Если же выводы под пайку — то и того хуже: перегреть нельзя, провода (а мы же здесь все как-никак за High-End’ом собрались 😉 ) так и норовят выломать выводы на корню. Если печать — то каждый раз разводи под хитровыдуманные размеры 😉

Печатную плату под массив можно изготовить произвольных размеров, с удобным размещением крепёжных отверстий. Так, к примеру, мой вариант согласуется по крепежу с фильтрами питания. К тому же несколько таких плат легко собрать в компактную этажерку.

На той же плате предусмотрены как крепления провода под винт, так и колодки-терминалы. Да и шунтирующие плёночные конденсаторы нашли себе местечко, и нет необходимости их городить на проводах.

Доступность

Только что проверил на Mouser:

  • 2200uF 63V — 24 разновидности (18, если ограничиться габаритами, под которые у меня плата разведена)
  • 22000uF 63V — лишь один тип в наличии

Несколько мешков с самыми ходовыми небольшими электролитами покроют подавляющее большинство нужд разработчика, особенно когда под рукой есть платка, на которой их можно собрать в массив. Большими же конденсаторами на все случаи жизни, увы, не напасёшься.

Неожиданный эффект

Вопрос:

Заменил в питании усилителя старые полудохлые конденсаторы на Ваш массив с новейшими электролитами, а усилитель стал гудеть ещё больше, чем то было раньше!

Ответ:

В обычной схеме трансформаторного источника питания заряд накопительного конденсатора происходит не всё время, а только в моменты, когда выпрямленное напряжение с моста превышает оставшееся к тому моменту напряжение на конденсаторе. В момент включения диодов ток весьма резко возрастает от нуля до максимума, и ограничен лишь активным сопротивлением обмоток трансформатора, да паразитными сопротивлениями выпрямителя и конденсаторов. Внутреннее паразитное Последовательное Сопротивление (ESR) старых электролитов играло роль демпфера, смягчало эти броски зарядного тока. С новым, качественным накопительным конденсатором, ESR которого может быть на порядки ниже старого, броски зарядного тока могут увеличиться в разы. И если есть пути проникновения этих помех в сигнал (а очевидно всё было не очень хорошо и ранее, раз усилитель заметно гудел и до обновления конденсаторов), то с новыми конденсаторами всё стало лишь хуже. Возможные пути устранения проблемы:

  1. Убирать пути проникновения помехи из питания в сигнал (детали опустим для краткости, тема достойна отдельного опуса)
  2. Искусственно ввести сопротивление, ограничивающее броски зарядного тока.

Пункт №2 — мой излюбленный приём 🙂 Мы как бы добавляем обратно паразитное сопротивление конденсатора, но лишь со стороны зарядного тока. Нагрузке же (усилителю) предоставляем низкий импеданс качественного конденсатора во всей красе!

Для скептиков

На просторах Сети встретилась мне на первый взгляд грамотная статья: «Массив конденсаторов – мифы и реальность». Автор сего опуса очевидно знаком с измерениями, и весьма старателен. Странно только, что он ходит по тем граблям, которые сам же тщательно вымеряет и разъясняет: печатная плата под массив разведена «гребёнкой». Сопротивление и индуктивность длинных «зубчиков» этой гребёнки на печатной плате губят на корню основные преимущества массива.

Анекдот:
— Вы любите кошек?
— Нет.
— Просто Вы не умеете их готовить!

В погоне за дешевизной (за счёт применения односторонней печатной платы), подобные гребёнки лепят все подряд любители сэкономить, особенно те, что родом из Клуба_Недоучек_Радиогубителей. Вот ещё пример такого же безграмотного  массива электролитов, который между прочим идёт как горячие пирожки на Алибабе:

Увы, сейчас подобных плат множество на сайтах типа иБэй и Алибаба. Будьте осторожны — не ведитесь на безграмотную дешёвку!

Эффективное решение

Для компенсатора постоянной составляющей как раз необходимы мне были конденсаторы на десятки тысяч микрофарад, при чём высокая надёжность была одним из основных требований. Очень хотелось так же, чтобы компенсатор удобно крепился в паре с моими фильтрами питания. Разработал я плату, набрав необходимую ёмкость в каждом плече из девяти небольших электролитов в параллель. Посмотрел на сие творение и тут же понял, что уникального от компенсатора постоянки там лишь три диодика, остальное — отличный массив электролитических конденсаторов. Причём полезное место не пропадает зря: на место зенеров прекрасно встают плёночные шунтирующие конденсаторы.

На фото ниже детали ещё не напаяны на плату, просто собраны для проверки компоновки. Диаметр конденсаторов 18мм.

Печатная плата представляет собой по сути четыре проводника: по две полосы шириною в половину платы с каждой стороны. Толщина меди 70µm. Обработка контактных площадок — позолота ENIG.

Конденсаторы можно применять с расстоянием между выводами 3.5мм, 5мм, и 7.5мм.

Coda Effects — Лучшие конденсаторы для гитарных педалей: какой выбрать?

Я люблю говорить, что электроника похожа на лего.

Если наступить на него, будет больно! Шучу, он серьезно работает как Лего! 😃

Вы должны выбрать разные блоки (электронные компоненты: резисторы, конденсаторы, диоды, ИС …) и собрать их все, следуя схеме.

Единственная проблема: подобно тому, как кирпичи лего бывают разных цветов, электронные компоненты отклоняются в разных версиях с одинаковой стоимостью.

Например, можно найти много разных конденсаторов с одинаковым значением емкости: Panasonic SMF, Wima MKP2, FKP2, стандарт MKT … Какой беспорядок! Давайте попробуем навести порядок во всем этом и посмотреть, какие конденсаторы лучше всего подходят для нашего использования (гитарные педали).

6 элементов конденсаторов В мире существует 6 основных типов конденсаторов: электролитических, керамических, пленочных, танталовых, полистирольных и серебряно-слюдяных конденсаторов.

Тип конденсатора — это просто описание того, из чего он сделан.

Вам также следует проверить рабочее напряжение конденсатора (подробнее об этом чуть позже). Допуск конденсатора — это максимальная разница между теоретическим значением конденсатора и его реальным значением. Вы всегда должны искать это тоже; некоторые конденсаторы могут иметь допуски до 40%!

Чем меньше допуск, тем лучше. 😊

Вот несколько примеров сквозных конденсаторов . Слева направо: керамический конденсатор 150 пФ, танталовый конденсатор 1 мкФ, пленочный конденсатор SMF Panasonic 10 нФ, электролитический конденсатор Panasonic FC 10 мкФ и 0.Пленочный конденсатор Wima MKP2 емкостью 33 мкФ.


Начнем:
  • Конденсаторы электролитические: они цилиндрические. Обычно они имеют высокое значение емкости, поэтому я бы посоветовал использовать такие конденсаторы для любых значений выше 1 мкФ.
    Они также большую часть времени поляризованы, поэтому будьте осторожны с ориентацией. Хорошая модель, которую я часто использую, — это серия Panasonic FC: высшего качества и красивого черно-золотого цвета!
  • Керамические конденсаторы: используются для малых значений емкости, около 10-500 пФ.Они не очень ценятся аудиофилами, потому что не пропускают некоторые низкие частоты: они работают как фильтр высоких частот на 100 Гц.
    Если вы пропустите гитарный сигнал через такой конденсатор без какого-либо альтернативного решения (например, через другой конденсатор, подключенный параллельно), вы потеряете басы. Однако, когда они размещены в стратегических точках схемы, они очень практичны, чтобы выбрать, сколько высоких частот вы хотите пройти. Обычно они имеют высокий допуск, поэтому я рекомендую присматривать за моделями с низким допуском.
  • Пленочно-слюдяные конденсаторы: они используются для низких значений пФ как керамика. Они лучше керамики, но намного крупнее и дороже. Я бы посоветовал остановиться на керамике и сэкономить!
  • Танталовые конденсаторы: каплевидных конденсаторов, используемых для значений порядка мкФ. Они не очень хороши для звука и довольно дороги. Единственное преимущество по сравнению с другими конденсаторами того же номинала (электролитические, пленочные колпачки) — это экономия места.Иногда их дефекты в звуке могут быть полезны для создания резкого звука, подходящего для какого-то грязного пуха, такого как большая муфта (например, фараоновый пух в черных тонах использует танталовые конденсаторы).