+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как измерить сопротивление изоляции: формула, физический смысл, прибор

Прибор, который используется для определения сопротивления изоляции называется мегомметром, он известен с конца позапрошлого (XIX) века.

На рисунке ниже схематически представлен участок изоляции И, вверху находится корпус машины К, внизу- изолируемый проводник П. Далее представлена схема замещения.

Предположим, что напряжение постоянного тока толчком приложено между проводником и корпусом, и рассмотрим возникающие после этого явления. Вся конструкция в целом (корпус, изоляция, обмотка) представляет собой конденсатор сложной формы. Емкость такого конденсатора определяется размерами поверхности его обкладок, в данном случае — наружной и внутренней поверхностью соприкосновения изоляции с корпусом и обмоткой электрической машины- и свойствами изоляции- ее толщиной и диэлектрической проницаемостью.

При приложении напряжения эта емкость (С~) заряжается. Заряд происходит за очень короткое время, много меньшее периода промышленной частоты. В результате этого на поверхностях корпуса машины и проводников обмотки сосредоточатся положительные и отрицательные заряды, создающие в изоляции электрическое поле, под их действием в толще изоляции возникнут поляризационные явления- электроны и ионы устремятся к полюсам противоположных знаков, дипольные молекулы изоляции начнут поворачиваться так, чтобы их заряды ориентировались по направлениям линий электрического поля; в слоистой изоляции внутренние слои, являющиеся своеобразными последовательно включенными емкостями, станут заряжаться через очень большие сопротивления смежных слоев. Эти процессы сопровождаются накапливанием в слоях изоляции зарядов, вследствие чего от источника постоянного тока через емкости слоев потекут токи.

Описанные физические процессы могут быть отражены схемой замещения на рис. 4. В этой схеме имеются три параллельные цепи.

Одна цепь с емкостью С отражает заряд геометрической емкости и электронную и ионную поляризацию; соответствующие этим явлениям токи протекают одинаково быстро, поэтому обобщены в одну цепь.

Вторая цепь- последовательно включенные емкость С и сопротивление r, эквивалентные емкостям и сопротивлениям последовательно включенных емкостей и сопротивлений по числу слоев.

Третья цепь — сопротивление R соответствует сквозной проводимости.

Через измерительный прибор потечет ток, равный сумме токов трех ветвей:

i, iабс, iпр. Первый ток не отразится на показаниях прибора, т.к. он быстро затухает; ток сквозной проводимости iпр останется постоянным в продолжение всего процесса. Его величина определит установившееся значение показаний прибора. ток поляризации — ток абсорбции iабс является затухающим. Время его затухания зависит от свойств изоляции. Ток абсорбции изменяется по экспоненциальному закону с постоянной времени , т.е. он тем медленнее убывает, чем больше сопротивление тех слоев изоляции, через которые заряжается межслоевая емкость. Сопротивление слоя зависит от его увлажнения – чем суше изоляция, тем медленнее затухает ток абсорбции.

На рис. 5 показано изменение токов и сопротивления изоляции во времени. Прибор градуируется в единицах сопротивления.

Чтобы судить о быстроте спада , снимают показания прибора через 15 и 60 с после приложения напряжения и берут их отношение, называемое коэффициентом абсорбции:

При сухой изоляции = 2 — 2.5, при влажной 1 (рис.6).

Коэффициент абсорбции служит для характеристики внутреннего увлажнения изоляции, он не зависит от наружного увлажнения.

Большая зависимость сопротивления изоляции от увлажнения вызывает и не меньшую зависимость сопротивления изоляции от температуры, т. к. при повышении температуры вода и ее пары проникают во внутренние слои изоляции, образуют непрерывные проводящие цепочки и снижают сопротивление изоляции

Можно определить, что

ГОСТ на электрические машины требует, чтобы сопротивление изоляции, МОм, при температуре +75 °С было больше

Здесь Uном -номинальное напряжение машины, В; — номинальная мощность машины, кВт.

Если измерение производится при отличной от 75°С температуре, необходимо воспользоваться формулой пересчета или специальными кривыми. Значение коэффициента абсорбции практически не зависит от температуры.

Как правило, сопротивление изоляции большинства машин выше. Для того, чтобы установить, не произошло ли каких-либо изменений в изоляции, целесообразно сопоставлять результаты вновь производимых измерений с прежними. Значение нормируется ТУ и «Нормами испытания оборудования», как правило, оно должно быть не меньше 1,2 — 1,3.

Измерение сопротивления изоляции мегаомметром

Как пользоваться мегаомметром, измерение сопротивления изоляции мегаомметром

 

Все мегаомметры в каталоге. Мегаомметр прибор для измерения сопротивления изоляции кабеля, изоляцию обмотки двигателя, диэлектрических материалов приборов.

Современные мегаомметры позволяют вычеслять сразу коэффициент абсорбции и поляризации. Коэффициент абсорбции показывает степень увлажнения изоляции кабелей, трансформаторов, электродвигателей. Коэффициент поляризации показывает степень старения изоляции. Работа мегаомметра основана на измерении протекающего тока, при подаче стабильного высокого напряжения. У цифровых мегаомметров переключение диапазонов и определение единиц измерения производятся автоматически. Мегаомметры с испытательным напряжение которое создает ШИМ преобразователь не могут измерять сопротивления изоляции обмоток двигателя, цепи с высокой индуктивностью, например промышленный магнит.

 

 

При коэффициенте поляризации менее 1 изоляция проводника изношенная необходимо заменить, при значении от 1 до 2 проводник изношенный, но эксплуатация возможна. При значении более 2 эксплуатация проводника разрешена. Коэффициент абсорбции вычисляется измерением скорости заряда абсорбционной емкости изоляции при приложении испытательного напряжения.

Если коэффициент абсорбции меньше 1,3 изоляция считается неудовлетворительной, необходимо сушить изоляцию.

 

Для работы с мегаомметром необходимо:

  1. выбрать испытательное напряжение в настройках прибора, чем больше испытательное напряжение чем больше максимальное значение сопротивления;
  2. выбрать время измерения. Из-за нестабильности сопротивления требуется проводить измерения не менее 1 минуты.

 

Клемму «минус», «GUARD», «0 V» необходимо подключать к тому проводнику, который заземлен. Измерения рекомендуется проводить дважды со сменной полярности испытательного напряжения для получения среднего результата. Полярность испытательного напряжения указана на гнёздах мегаомметра. Результаты измерений может выглядеть как на картинке ниже. Минимальное сопротивления изоляции проводки для бытовой сети 0,5 МОм, а для промышленной сети и производственного оборудования 1 МОм. 

 

Для измерения сопротивления изоляции двухжильного кабеля необходимо клеммы плюс и минус мегаомметра подсоединить к проводникам. Если кабель одножильный тогда клеммы плюс и минус мегаомметра подключают к проводнику и экрану соответственно. При измерении сопротивления более 10 ГОм необходимо использовать экранированный измерительный кабель, экран измерительного кабеля подключается в соответствующее гнездо. 

 

Если изоляция кабеля загрязненная и при больших значения сопротивления изоляции более 10 ГОм, для исключения влияния поверхностных токов утечки необходимо использовать схему подключения с тремя измерительными кабелями. Или экраннированным кабелем как у мегаомметра Е6-32, в комплекте не поставляется. К изоляции одного из проводников необходимо намотать колечко из фольги, обжать крокодилом и подключить крокодил к клемме заземления мегаомметра. При измерении сопротивления изоляции обмотки трансформатора, для исключения влияния поверхностных токов утечки так же необходимо использовать схему подключения с тремя измерительными кабелями. Клемма заземления в данном случае подключается к сердечнику трансформатора.

 

Нормы сопротивления изоляции. Измерения необходимо производить при нормальных климатических условиях при температуре 25±10 °С и влажности воздуха не более 80%. Если в кабеле провода без экрана, то сопротивление изоляции измереяется между жилами проводов. Если провода с экраном в виде оплетки или фольги, то тогда сопротивление изоляции измеряется между жилой и экраном. Испытания проводят при отключеных электроустановках. 

Электроустановки

Значение сопротивления,

не менее

Испытательное

напряжение

Указания

до 500 В

более 0,5 Мом

500 В 

Сопротивление изоляции должно быть стабильным 1 минуту

500 .

.. 1000 В

более 1 Мом

1000 В

Сопротивление изоляции должно быть стабильным 1 минуту

 

Все мегаомметры в каталоге. 

Сопротивление изоляции электродвигателя: измерения и нормы

Современное электротехническое оборудование, как правило, содержит медные токопроводы, надежно защищенные изоляционной оболочкой. Используемые в промышленности и в быту электродвигатели не является исключением. Но для эффективной работы этих агрегатов важно следить за тем, чтобы изоляция проводников поддерживалась в идеальном состоянии и сохраняла свои защитные свойства.

Для чего нужна проверка сопротивления изоляции

Если регулярно не проверять

сопротивление изоляции электродвигателей – через какое-то время она может высохнуть или сильно износиться и перестать выполнять свои защитные функции. А такое положение чревато серьезными последствиями, из которых короткое замыкание – самое неприятное. Следствием его нередко становится возгорание изоляции и других горючих материалов, постепенно перерастающее в полномасштабный пожар.

Измерение сопротивления изоляции электродвигателя

Именно поэтому организация и проведение измерений сопротивления изоляции электродвигателя – первостепенная задача служб, ответственных за поддержание электротехнического оборудования в рабочем состоянии. Ее своевременное проведение в соответствие с утвержденным рабочим графиком позволит избежать серьезных последствий (предотвратит выход из строя дорогостоящего оборудования).

Нормы сопротивления изоляции

Как и для других элементов электротехнического оборудования – для электродвигателей и схожих с ними по устройству машин постоянного тока предусмотрены предельные величины по проводимости защитной изоляции. Если реальный показатель оказывается при измерении ниже допустимого предела – агрегат снимается с эксплуатации.

Нормы для асинхронных двигателей

Согласно ПУЭ при измерении сопротивления изоляции обмоток электродвигателя следует учитывать специфику конструкции и заявленную мощность агрегата. Только после того, как учтены все эти факторы – можно начать измерять контролируемый параметр

С учетом этих факторов проверяемый показатель должен соответствовать следующим значениям:

  • Для статорных обмоток – не менее 0,5 мОм;
  • Для ротора двигателя – не менее 0,2 мОм;
  • Показатель для термических датчиков не нормируется.

Дополнительная информация: Приблизительная оценка, нередко используемая в практике измерений, исходит из значения этого показателя не ниже 1мОм.

Его снижение до 0,5 мОм, например, свидетельствует о незначительных отклонениях от нормы, которые, тем не менее, со временем приводят к серьезным последствиям. При обнаружении существенного снижения этого показателя, вызывающий сомнение агрегат лучше всего отправить на обследование в специализированную мастерскую.

Нормы для машин постоянного тока

Методики проверки для машин постоянного тока несколько отличаются от уже рассмотренных процедур для асинхронных двигателей. Здесь сначала потребуется снять щетки из щеткодержателей (как вариант – подложить под их корпус кусочек изоляционного материала).

Проверка минимального сопротивления изоляции организуется между следующими узлами и элементами схемы:

  • между всеми возбуждающими обмотками и коллектором;
  • между щеткодержателем и основанием (корпусом) агрегата;
  • между коллектором якоря и основанием;
  • а также между возбуждающими обмотками и корпусом агрегата.

Важно! В ходе проверки катушки возбуждения электрически отключаются от других узлов и проверяются каждая по отдельности.

Допустимое сопротивление изоляции определяется рядом факторов, основные из которых – это рабочего напряжение агрегата и температура воздуха. При среднем показателе в 20°С оно соответствует следующим значениям:

  1. при 220 Вольтах питания – 1,85мОм;
  2. при 380 или 440 Вольтах – 3,7мОм;
  3. в случае напряжения в 660 Вольт – 5,45 мОм (этот же показатель предусмотрен для высоковольтных машин на 6 кВ или 10 кВ).

Помимо рассмотренных узлов контролируется сопротивление бандажей. Оно меряется между им самим и корпусом, и, кроме того, между им и фиксируемой обмоткой двигателя. Это показатель не может быть менее 0,5 мОм.

Методы обследования

При проведении испытаний асинхронных двигателей статорные обмотки, включенные по схемам «звезда» или «треугольник» потребуется демонтировать и проверить все входящие в их состав катушки. Вслед за этим производятся замеры нужного параметра по отношению к корпусу и между собой. Для этого применяются различные методы, основные из которых перечислены ниже:

  • Использование специального измерительного прибора – мегаомметра.
  • Посредством вольтметра и аналогового амперметра.
  • С применением измерительного моста или современного цифрового омметра.
  • Испытание напряжением высокой величины.
  • Использование обычного мультиметра.

Каждый из этих способов нуждается в подробном рассмотрении.

Мегаомметр

Проверка мегомметром проводится с соблюдением следующих условий:

  • при питающем напряжении до 500 Вольт используется прибор с соответствующим номиналом;
  • при больших напряжениях выбирается мегаомметр с рабочими значениями до 1000 Вольт.

Обратите внимание: Если электротехническое оборудование рассчитано на 600 Вольт – предписывается применять прибор на 2500 Вольт.

Проверки по отношению к корпусу двигателя и между обмотками осуществляются по очереди для каждой из цепей с разными выводами. При этом все остальные концы соединяются с корпусом агрегата. Те же процедуры для обмоток трехфазного двигателя, включенных звездой или треугольником, проводится для всех трех составляющих.

Измерение сопротивления изоляции электродвигателя мегаомметром

Имеющиеся в схеме элементы, постоянно подсоединенные к корпусу агрегата (защитные конденсаторы или изолированные обмотки, например) на время испытаний отсоединяются. Для измерений, проводимых с электродвигателями, обмотки которых имеют водяное охлаждение, потребуется прибор с защитным экраном. Его зажимы перед снятием показаний присоединяются к стационарному или переносному . По завершении измерений с каждой из проверяемых цепей снимается остаточный заряд путем прикосновения ее к заземленному корпусу машины.

Измерительный мост и цифровой омметр

Измерения по этой методике поводятся согласно прилагаемой к приборам инструкции. Схема измерительного моста содержит два постоянных резистора и один переменный. Они соединены таким образом, что образуют два своеобразных «плеча» в виде 2-х цепочек На незанятое место во второй половинке включается сопротивление, которое нужно измерить.

Измерительный мост постоянного тока

В диагональ моста включен стрелочный измерительный прибор. Изменяя величину переменного сопротивления оператор добивается баланса двух цепочек, когда через плечи течет одинаковый ток. Искомое сопротивление определяется из соотношения, в которое подставляются значения трех

Цифровой омметр СО 3001

сопротивлений (2-х постоянных и одного переменного, полученного в результате измерений).

Цифровой омметр – это современный электронный прибор, позволяющий измерять сопротивление в широких пределах (фото справа).

Использование амперметра плюс вольтметр

Достаточно точно найти искомые значения для обмоток можно методом измерения напряжения и тока. С этой целью придется проделать следующие операции:

  1. Подключить между центральной жилой обмотки двигателя и его корпусом вольтметр, а последовательно в эту цепочку установить амперметр.
  2. Подать на полученную схему небольшое напряжение, а затем измерить ток и напряжение в ней.
  3. По классической формуле R=U/I определить сопротивление.
  4. Проделать те же операции, постепенно повышая напряжение до предельного значения.
  5. На основе полученных данных рассчитать среднеарифметический показатель.
Измерение сопротивления изоляции электродвигателя с помощью амперметра и вольтметра

Затем нужно проделать те же операции для других обмоток и элементов электродвигателя.

Использование повышенного переменного напряжения

Для проведения таких испытаний потребуется повышенное напряжение, получаемое с линейного преобразователя (трансформатора). Последний оснащен устройством регулировки, позволяющим получать нужный уровень испытательного потенциала. Кроме того, в схему установки входит выключатель с видимым разрывом и устройство токовой защиты. С его помощью трансформатор автоматически отключается при пробое в цепях вторичной обметки или при разрушении изоляционной защиты.

Схема испытания изоляции электродвигателя повышенным напряжением переменного тока.

Время приложения напряжения при проведении испытаний выбирается равным 1-ой минуте для основной изоляции и 5 минутам – для межвитковой. Кратковременное приложение высоковольтного потенциала на сказывается на состоянии изоляции (не ухудшает ее защитных свойств).

Важно! Повышать напряжение до 1/3 испытательной величины можно произвольно, не учитывая динамику процесса.

По достижении этого уровня его следует наращивать плавно, со скоростью, позволяющей снимать показания со стрелочных шкал визуально. При тех ж операциях с электрическими машинами время наращивания напряжения от 1/2 до максимального значения не может быть менее 10 секунд.

Мультиметр

С помощью мультиметра точно измерить изоляцию обмоток двигателя не получится. При его наличии удается только приблизительно оценить ее качество. Другими словами – в данном случае можно убедиться только в том, что нет короткого замыкания, например. О снятии точных значений искомого показателя в этой ситуации не может быть и речи.

Причины низкого сопротивления

В нормальных условиях сопротивление изоляции проводов электродвигателя, покрытых защитной пленкой, сохраняет свое значение в течение длительного времени. Но в ходе эксплуатации на нее воздействует ряд разрушающих факторов, основными из которых являются:

  • Механические напряжения.
  • Повышенная влажность окружающей среды.
  • Воздействие содержащихся в ней агрессивных веществ.
  • Резкие колебания температуры.

Дополнительная информация: Существенное влияние на состояние защитной оболочки оказывает и перегрев двигателя, работающего во внештатном режиме.

Все перечисленные факторы приводят к снижению сопротивления изоляции с возможностью последующего пробоя обмотки на корпус или межфазного замыкания.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Помогла32Не помогла2

Методика измерения сопротивления изоляции

Измерение сопротивления электрической изоляции – наиболее частое измерение при проведении электротехнических работ. Основная цель данного вида измерений – определение пригодности к эксплуатации электрических проводников, электрических машин, электрических аппаратов и электрооборудования в целом.  

Сопротивление изоляции зависит от различных факторов. Это и температура окружающей среды, и влажность воздуха, и материал изоляции и т. д. Единица измерения сопротивления – Ом. При замерах сопротивления изоляции величиной обычно является килоОм (1кОм) и мегаОм (1МОм).

Сопротивление изоляции чаще всего измеряют у электрических кабелей, электрической проводки, электродвигателей, автоматических выключателей, силовых трансформаторов, распределительных устройств. Основным прибором для замеров является мегаомметр (мегомметр). Мегаомметры бывают двух основных видов – стрелочные с ручным приводом и электронные с цифровым дисплеем.

В процессе измерений мегаомметр генерирует испытательное напряжение. Стандартные напряжения мегаомметров – 100В, 250В, 500В, 1000В, 2500В. Чаще всего используют мегаомметры на напряжение 1000В и 2500В, реже на 500В.

Проверка исправности мегаомметра

Перед выполнением замеров, необходимо проверить исправность используемого прибора. Для этого выполняется два контрольных замера. Первое измерение проводится при закороченных между собой проводах мегаомметра. В этом случае измеряемая величина должна быть равна нулю. Второе контрольное измерение выполняется при разомкнутых проводах. Измеряемая величина сопротивления должна стремиться к бесконечно большому значению.

Техника безопасности при проведении измерений

При замерах сопротивления изоляции необходимо соблюдать технику безопасности. Во-первых, пользоваться неисправным мегаомметром категорически запрещается. Во-вторых, перед измерением необходимо проверить индикатором или указателем отсутствие напряжения на электрическом кабеле, двигателе или электрооборудовании. При отсутствии напряжения снимается остаточный заряд путём кратковременного заземления тех частей кабеля, двигателя или электрооборудования, которые в рабочем режиме находились под напряжением. Действия по снятию электрического заряда следует также проводить и после каждого замера.

Измерение сопротивления изоляции силовых электрических кабелей и электропроводки

Изоляция электрических кабелей и электрических проводов проверяется сначала на заводе изготовителе, затем перед непосредственной прокладкой, ну и после окончания электромонтажных работ. Количество замеров зависит от количества жил кабеля или провода.

Силовые электрические кабели и провода бывают трёхжильными, четырёхжильными и пятижильными. Три жилы – это или фаза, ноль и провод заземления, или три фазы «A», «B», «C». Четыре жилы – это три фазы плюс ноль (провод заземления или комбинированная жила PEN). Пять жил – это три фазы, нулевой проводник и провод заземления.

Замеры сопротивления изоляции трёхжильного кабеля или провода выполняют следующим образом. Каждая из трёх жил проверяется по отношению к двум другим заземлённым жилам. В итоге получается три замера. Кроме того, можно проверять сопротивление сначала между каждыми двумя жилами, а затем между каждой жилой и «землёй». В этом случае получается шесть замеров.

В случае с четырёхжильным или пятижильным электрическим кабелем (проводом) методика замеров аналогична измерениям трёхжильного проводника, только количество замеров будет несколько больше.

Для того, чтобы измеряемое значение соответствовало действительности, замер выполняется в течение одной минуты. Величина сопротивления изоляции электрического проводника должна быть в пределах государственных норм. Обычно для низковольтных кабелей 220В или 380В она составляет 0,5МОм или 1МОм.

Измерение сопротивления изоляции электрических двигателей

Для электродвигателей проверяется изоляция обмоток статора. В настоящее время наибольшее распространение получили трёхфазные электродвигатели с короткозамкнутым ротором на рабочее напряжение 380В.

У таких двигателей имеется три обмотки статора, которые соединяются между собой либо по схеме треугольника, либо по схеме звезды. Соединение выполняется или внутри корпуса двигателя, или в соединительной коробке двигателя, которая называется «борно». Т.к. в первом случае отсоединить обмотки друг от друга не представляется возможным, то измерение сводится к замеру изоляции всех трёх соединённых обмоток по отношению к корпусу двигателя. Во втором варианте обмотки можно отсоединить друг от друга, после чего выполняется проверка изоляции между обмотками, а также проверка изоляции каждой обмотки по отношению к металлическому корпусу двигателя. Каждый замер выполняется в течение одной минуты. Конечное значение величины должно также соответствовать государственным нормам.

На производстве очень часто применяются достаточно мощные высоковольтные электродвигатели. Замер сопротивления изоляции обмоток таких двигателей часто сводится к определению коэффициента абсорбции, т.е. к определению увлажнённости обмоток. Для этого фиксируется значение после 15 секунд измерения и после 60 секунд. Значение коэффициента абсорбции — это отношение сопротивления R60 к сопротивлению R15. Величина не должна быть менее 1,3.

Измерение сопротивления изоляции силовых трансформаторов

В настоящее время единственным устройством, преобразующим электрическое напряжение из одной величины в другую, является трансформатор. Практически ни одно производство не обходится без силовых питающих трансформаторов. Перед пуском в эксплуатацию каждый такой трансформатор должен пройти высоковольтные испытания. Перед тем, как будут произведены высоковольтные испытания, необходимо выполнить замеры сопротивления изоляции обмоток.

Т.к. у трансформатора есть первичная и вторичная обмотка (обмотки), то проверяется изоляция каждой обмотки по отношению к другой, которая на момент замера должна быть заземлена. Также выполняется замер между первичной и вторичной обмоткой.

Достаточно часто необходимо определить увлажнённость обмоток трансформатора. В таком случае также как и с высоковольтным двигателем, определяется коэффициент абсорбции.

Сопротивление изоляции кабеля

 

Наша электролаборатория оказывает услуги проведения различных электротехнических измерений. Мы располагаем штатом квалифицированных специалистов и полным набором испытательного и измерительного оборудования. Наша аккредитация и сертификаты позволяют выдавать протоколы и акты установленного образца. Мы оперативно откликаемся на обращения наших клиентов, быстро и качественно выполняем заказы.

Измерение сопротивления изоляции кабеля. Прибор MIC-2500

Существует множество ситуаций, когда требуется произвести измерение сопротивления изоляции кабельных линий. Одно дело, когда такие измерения проводятся собственным электротехническим персоналом предприятия или организации для того, чтобы убедиться в исправности кабельной линии. Совсем другое дело, когда на выходе должен появиться юридический документ, именуемый «протоколом проверки сопротивления изоляции проводов и кабелей».

Такой документ будет иметь юридическую силу только в случае, если его выдала электролаборатория прошедшая аккредитацию в уполномоченном государственном органе (Росаккредитация) и имеющая соответствующий аттестат. Например, такой протокол может затребовать энергоснабжающая организация в случае аварийного отключения кабельной линии перед повторным её включением.

Ещё протоколы предоставляются в органы Энергонадзора для приёмки в эксплуатацию вновь смонтированных или реконструируемых электроустановок, при подключении их к электросети энергоснабжающей организации. Требования ПТЭЭП предписывают производить замеры изоляции не реже одного раза в год. Такие протоколы должны хранится у лица ответственного за электрохозяйство. К ним очень «неравнодушны» пожарные инспектора.

Меры безопасности при проведении измерений

Организационные и технических мероприятия, обеспечивающие безопасность персонала во время измерений и испытаний кабельных линий, регламентируются «Правилами по охране труда» Эти правила определяют порядок оформления работ, состав бригады и квалификацию персонала производящего замеры и испытания в зависимости от категории электроустановки. Стоит заметить, что даже измерение изоляции кабельных линий и электропроводки 0.4 кВ с помощью мегомметра должны производить специалисты прошедшие обучение и имеющие соответствующую группу допуска по электробезопасности.

Инженер электролаборатории проводит измерение сопротивления изоляции кабеля. Прибор MIC-2500

Нормы сопротивления изоляции

Параметры изоляции кабелей определяются требованиями пункта 1.8.40 ПУЭ (Правил устройства электроустановок). Для силовых кабелей, осветительных электропроводок, цепей вторичной коммутации до 1000 В. нормой являются 0.5 Мом и выше для каждой жилы кабеля между фазными проводами, по отношению к нулевому проводу и проводу защитного заземления.

Для кабельных линий напряжением выше 1000 В сопротивление не нормируется. Для определения соответствия нормам ПУЭ применяется другой параметр – ток утечки, измеряемый в миллиамперах. Испытания проводят на основе методик, утверждённых Ростехнадзором. Величина испытательного напряжения, величина допустимого тока утечки зависят от рабочего напряжения кабеля и типа его изоляции. Кратность испытательного напряжения зависит от рода тока испытательной установки. С помощью мегомметра можно только оценить качество изоляции высоковольтного кабеля.

Электрики в повседневной практике считают нормальной изоляцию в 1 Мом на каждый киловольт рабочего напряжения. Так сопротивление изоляции кабеля 10 кВ можно считать нормальным, если оно превышает 10 Мом измеренных мегомметром на 2.5 кВ.

Вам нужно провести измерения? Обращайтесь к нам!

Наша электролаборатория аккредитована и имеет свидетельство регистрации электролаборатории в Ростехнадзоре в установленном порядке и проводит все необходимые электротехнические измерения. Например, такие, как измерение сопротивления изоляции электропроводок и кабелей, измерение сопротивления цепи фаза-ноль, измерения связанные с сетью заземления.

Мы оказываем услуги клиентам, расположенным в Москве и Подмосковье. Сфера наших возможностей не ограничивается только измерениями. Еще мы занимаемся проектированием электроустановок и их ремонтом. Обо всем этом вы можете узнать на нашем сайте. Связавшись с нами, вы получите компетентные консультации по всем интересующим вас вопросам.

Похожие статьи

Поддержите наш проект, поделитесь ссылкой!

Измерение сопротивления изоляции электрооборудования и сетей лифта

Изоляция под воздействием окружающей среды, механических напряжений, влаги, пыли, температуры и других факторов постоянно разрушается. Предупредить нарушение изоляции, а следовательно, и появление опасности поражения людей электрическим током, предупредить отключение установки или выход ее из строя — основная цель измерения сопротивления изоляции электрических цепей и оборудования лифта.

Изоляция испытывается на вновь сооружаемых и реконструируемых лифтах, при капитальном ремонте и не реже 1 раза в год в условиях эксплуатации. Проверке подвергается изоляция обмоток электродвигателей, электроаппаратуры и всех участков цепи лифта.

Для испытания изоляции электрооборудования лифта применяются два метода: измерение сопротивления изоляции и испытание изоляции повышенным напряжением. Первый метод применяется при всех проверках, второй — в тех случаях, когда сопротивление изоляции испытываемого участка окажется менее величины, предусмотренной нормами.

Сопротивление изоляции измеряют переносным магнито-электрическим мегомметром М-1101 с рабочим напряжением 500 и 1000 В. Изоляцию повышенным напряжением на лифтах удобно испытывать мегомметром МС-05 на 2500 В.

Всякое электрическое сопротивление, в том числе и сопротивление изоляции, измеряется в омах (мегомах).

У электрических двигателей в холодном состоянии сопротивление изоляции обмоток должно быть не менее 1 МОм при температуре свыше +60° С — не менее 0,5 МОм. Сопротивление изоляции электроаппаратуры и проводки должно быть не менее 0,5 МОм, причем сопротивление изоляции цепи управления — не менее 1 МОм. Сопротивление изоляции — один из главных показателей технического состояния лифта и его безопасности. Периодическая проверка изоляции, контроль за ее исправностью являются обязательными. Без проверки состояния изоляции лифт не может быть включен в работу.

Сопротивление изоляции: методика измерения, используемые приборы

Как любое оборудование, техника, со временем из строя начинают выходить и электрические кабели различных видов. Одной из методик определение запаса прочности кабеля и выявления дефектов является измерение сопротивления изоляции. В этой статье рассказывается о том, что это, когда и как оно проводится.

Обследование электропроводки

В каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.

Что такое измерение сопротивления изоляции

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Допустимое сопротивление для различного оборудования

Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.

 

Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.

Вопрос электробезопасности

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Итог

Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.

Испытание сопротивления изоляции | Цветность

При испытании сопротивления изоляции (IR) измеряется общее сопротивление между любыми двумя точками, разделенными электрической изоляцией. Таким образом, испытание определяет, насколько эффективно диэлектрик (изоляция) сопротивляется прохождению электрического тока. Такие испытания полезны для проверки качества изоляции не только при первом производстве продукта, но и в течение долгого времени по мере его использования.

Выполнение таких испытаний через регулярные промежутки времени может обнаружить надвигающиеся нарушения изоляции до того, как они произойдут, и предотвратить несчастные случаи с пользователем или дорогостоящий ремонт изделия.

Как показано на Рисунке 15, двухпроводное незаземленное соединение является рекомендуемой установкой для тестирования незаземленных компонентов. Это наиболее распространенная конфигурация для тестирования 2-контактных устройств, таких как конденсаторы, резисторы и другие дискретные компоненты.

Как показано на Рисунке 16, 2-проводное заземленное соединение является рекомендуемым подключением для тестирования заземленных компонентов. Заземленный компонент — это компонент, в котором одно из его соединений идет на землю, тогда как незаземленный компонент — это компонент, в котором ни одно соединение не идет на землю.Измерение сопротивления изоляции кабеля в водяной бане является типичным применением 2-проводного заземленного соединения.

Процедура измерения

Проверка сопротивления изоляции обычно состоит из четырех этапов: зарядки, выдержки, измерения и разрядки. Во время фазы заряда напряжение нарастает от нуля до выбранного напряжения, что обеспечивает время стабилизации и ограничивает пусковой ток тестируемого устройства. Как только напряжение достигнет выбранного значения,

Затем можно позволить напряжению

оставаться на этом уровне до начала измерений.

После измерения сопротивления в течение выбранного времени тестируемое устройство снова разряжается до 0 В во время последней фазы.

Измерители сопротивления изоляции

обычно имеют 4 выходных соединения — заземление, экран, (+) и (-) — для различных применений. Выходное напряжение обычно находится в диапазоне от 50 до 1000 вольт постоянного тока. При выполнении теста оператор сначала подключает тестируемое устройство, как показано на рисунках 15 или 16.

Прибор измеряет и отображает измеренное сопротивление.При подаче напряжения через изоляцию сразу же начинает течь ток. Этот ток имеет три компонента: ток «диэлектрического поглощения», зарядный ток и ток утечки.

Диэлектрическое поглощение

Диэлектрическое поглощение — это физическое явление, при котором изоляция медленно «поглощает» и сохраняет электрический заряд с течением времени. Это демонстрируется приложением напряжения к конденсатору в течение длительного периода времени, а затем его быстрой разрядкой до нулевого напряжения.Если конденсатор оставить разомкнутым в течение длительного периода, а затем подключить к вольтметру, измеритель покажет небольшое напряжение. Это остаточное напряжение вызвано «диэлектрическим поглощением». Это явление обычно связано с электролитическими конденсаторами.

При измерении ИК-излучения различных пластиковых материалов это явление приводит к увеличению значения ИК-излучения с течением времени. Завышенное значение ИК-излучения вызвано тем, что материал медленно поглощает заряд с течением времени. Этот поглощенный заряд выглядит как утечка.

Зарядный ток

Поскольку любое изолированное изделие демонстрирует основные характеристики конденсатора, то есть два проводника, разделенных диэлектриком, приложение напряжения через изоляцию вызывает протекание тока по мере зарядки конденсатора. В зависимости от емкости продукта этот ток мгновенно повышается до высокого значения при приложении напряжения, а затем быстро спадает экспоненциально до нуля, когда продукт становится полностью заряженным. Зарядный ток спадает до нуля намного быстрее, чем ток диэлектрического поглощения.

Ток утечки

Установившийся ток, протекающий через изоляцию, называется током утечки. Оно равно приложенному напряжению, деленному на сопротивление изоляции. Цель теста — измерить сопротивление изоляции. Чтобы рассчитать значение IR, подайте напряжение, измерьте установившийся ток утечки (после того, как токи диэлектрической абсорбции и зарядки снизятся до нуля), а затем разделите напряжение на ток. Если сопротивление изоляции соответствует требуемому значению или превышает его, испытание считается успешным.В противном случае тест не пройден.

Основы испытания сопротивления изоляции

Главная »Новости» Испытание изоляции: мегомметр или тестер Hipot

Отправлено: автор: p1ws

Существует два распространенных метода проверки изоляции кабелей, проводки и электрического оборудования. Для измерения сопротивления изоляции используется мегомметр. Другой использует тестер для проверки изоляции.Оба подают высокое напряжение переменного или постоянного тока на тестируемое устройство (DUT) и измеряют результирующий ток.

Мегаомметры
Современный мегомметр (или мегомметр) подает постоянное напряжение на тестируемое устройство и измеряет постоянный ток (наноампер или микроампер). Применяя закон Ома, соответствующее значение сопротивления отображается на аналоговом или цифровом дисплее измерителя. Этот инструмент часто называют мегомметром, что является товарным знаком Megger Group в 1907 году.

В типичном мегомметре пользователь может выбрать один из нескольких уровней напряжения.Для кабелей или оборудования с номинальным напряжением до 500 В максимальный испытательный уровень постоянного тока обычно вдвое превышает номинальное напряжение. При номинальном напряжении выше 500 В максимальный уровень ближе к номинальному напряжению (например, 5000 В для системы 4100 В). У производителя оборудования могут быть более конкретные рекомендации по тестированию.

Из-за емкостных и диэлектрических эффектов в ИУ требуется время, чтобы показания стабилизировались после подачи напряжения. Первоначально в показаниях преобладает заряд емкости. Токи поглощения могут быть значительными в течение 20 секунд и более.Обычно показания ИК-излучения снимаются через 60 секунд, чтобы эти эффекты исчезли.

Методы
Два метода могут помочь в оценке состояния изоляции. Во-первых, пошагово подавать напряжение. Ухудшенная изоляция будет показывать уменьшение значения IR по мере увеличения испытательного напряжения. Для получения точных результатов следует контролировать время выдержки на каждом этапе. Чтобы упростить эту проверку, некоторые мегомметры включают функцию автоматического повышения напряжения через запрограммированные интервалы.

Другой метод оценки — сравнение показаний ИК-излучения с результатами предыдущих испытаний. Поскольку в мегомметре используется очень низкий испытательный ток, он не повреждает изоляцию. Периодические ИК-испытания позволят выявить ухудшение изоляции с течением времени и необходимость профилактического обслуживания. Для точного сравнения требуются измерения при одинаковом напряжении и времени выдержки. Влага влияет на показания ИК-излучения, поэтому следует соблюдать осторожность, чтобы проводить испытания в аналогичных условиях температуры и влажности.

Параметры
Два параметра, полученные из измерений сопротивления изоляции, — это коэффициент диэлектрического поглощения (DAR) и индекс поляризации (PI). Усовершенствованные цифровые мегомметры имеют специальные функции для измерения и отображения этих параметров. DAR — это ИК через 60 секунд, разделенный на ИК через 30 секунд. Значение меньше 1 показывает, что сопротивление уменьшается со временем, что указывает на отказ DUT. Индекс поляризации используется на двигателях и генераторах для оценки количества примесей в обмотках и их чистоты.PI — это IR за 10 минут, деленное на IR за 1 минуту. В некоторых стандартах на оборудование указываются минимальные значения PI. Как правило, достаточно отношения, превышающего 1,5.

Переносные мегаомметры с напряжением до 1000 В доступны от нескольких производителей. Переносные блоки могут питать до 15 кВ. Многоцелевые приборы сочетают ИК-измерения с другими функциями тестирования, такими как мультиметр. На этой фотографии показан типичный портативный мегомметр, портативный мегомметр, мегомметр / цифровой мультиметр и тестер hipot.


Hipot Tester
Тест Hipot (сокращенно от «высокого потенциала») определяет способность электрической изоляции выдерживать обычно возникающие переходные процессы перенапряжения.Тестер hipot подает высокое напряжение на изоляционный барьер DUT и проверяет отсутствие пробоя. Это простой тест типа «прошел / не прошел», выполняемый как типовое испытание на репрезентативной пробной единице или как стандартное производственное испытание. Максимально допустимая утечка обычно находится в диапазоне от 0,1 до 5 мА или в соответствии с требованиями стандарта на испытания. Фактическое значение утечки для каждого DUT может быть записано для обеспечения качества.

Многие стандарты (например, IEC 60950) определяют испытательное напряжение переменного тока, которое в два раза превышает рабочее напряжение плюс 1000 В.Большинство из них допускают использование переменного или постоянного напряжения. Испытательная установка и процедуры идентичны для переменного и постоянного тока, хотя уровень постоянного тока должен быть равен пику переменного напряжения. Время проверки обычно составляет 1 минуту, но в некоторых ситуациях, например, при крупносерийных производственных испытаниях, может быть разрешено более короткое время проверки при более высоком напряжении.

Как правило, проверка высокого напряжения выполняется на сетевой проводке электрооборудования. Один вывод тестера подключен к защитному заземлению (заземлению). Другой вывод подключается к проводу питания и нейтрали.Часто тестер hipot имеет встроенную розетку переменного тока для этих подключений (как показано на фото).

Если в тестируемой цепи есть фильтр линии питания, тестер переменного тока может указать неисправность из-за протекания тока на землю через Y-конденсаторы. Стандарт безопасности обычно позволяет пользователю отключать эти конденсаторы перед испытанием или увеличивать верхний предел тока, чтобы компенсировать дополнительную утечку. В качестве альтернативы можно использовать испытательное напряжение постоянного тока. Большинство тестеров hipot также включают нижний предел, чтобы гарантировать сбой теста, если тестируемое устройство не подключено или тест прерывается.В отличие от мегомметров, которые обычно питаются от батарей, почти всем тестерам требуется питание переменного тока.

Таким образом, сопротивление изоляции обычно является полевым измерением для оценки качества изоляции. Hipot-тестирование обычно представляет собой проверку безопасности, выполняемую на заводе для проверки конструкции продукта и производственного процесса. Эта разница определяет, является ли мегомметр или высоковольтный тестер подходящим инструментом для проверки изоляции.

Как измерить сопротивление изоляции электродвигателя ~ Изучение электротехники

Пользовательский поиск

Чтобы продлить срок службы электрических систем и двигателей, необходимо регулярно проверять сопротивление изоляции.Спустя годы, после многих циклов эксплуатации, электродвигатели подвергаются воздействию таких факторов окружающей среды, как грязь, жир, температура, напряжение и вибрация. Эти условия могут привести к нарушению изоляции, что может привести к производственным потерям или даже пожарам.

Эффективная система сопротивления изоляции двигателя имеет высокое сопротивление, обычно (при абсолютном минимуме) более нескольких мегаом (МОм). Плохая система изоляции имеет более низкое сопротивление изоляции. Оптимальное сопротивление изоляции электродвигателя часто определяется спецификациями производителя, критичностью области применения, в которой используется электродвигатель, и окружающей средой, в которой он расположен.

Практически невозможно определить
правила для фактического минимального значения сопротивления изоляции электродвигателя, поскольку сопротивление зависит от метода конструкции, состояния используемого изоляционного материала, номинального напряжения, размера и типа. Общее практическое правило — 10 МОм или более. Система изоляции электродвигателя считается в хорошем состоянии, если:

Измеренное сопротивление изоляции больше или равно 10 МОм

Типичный уровень сопротивления изоляции для электродвигателей
Нет правил для определения минимального значения сопротивления изоляции для двигателя.Большинство доступных данных являются эмпирическими. Ниже перечислены двигатели от компании grundfos, ведущего производителя электродвигателей:


Уровень сопротивления изоляции

Уровень изоляции

2 МОм или меньше

Плохо
2 — 5 МОм
Критическое
5-10 МОм
Ненормальное

10-50 МОм

Хорошо
50-100 МОм
Очень хорошо
100 МОм или более
Отлично

Как измерить сопротивление изоляции двигателя
Измерение сопротивления изоляции осуществляется с помощью мегаомметра — омметра с высоким сопротивлением.Для измерения сопротивления изоляции между обмотками и землей двигателя прикладывается постоянное напряжение 500 В или 1000 В, как показано ниже:

Во время измерения и сразу после него не прикасайтесь к клеммам двигателя, так как некоторые из них находятся под опасным напряжением, которое может быть фатальным.
Минимальное сопротивление изоляции двигателя, измеренное относительно земли при 500 В, может быть измерено при температуре обмотки от -15 ° C до 20 ° C. Максимальное сопротивление изоляции может быть измерено при 500 В с рабочей температурой обмоток 80-120 ° C в зависимости от типа двигателя и КПД

Как рассчитать минимальное сопротивление изоляции двигателей
Минимальное сопротивление изоляции любого двигателя, Rmin, может быть рассчитывается путем умножения номинального напряжения VR на постоянный коэффициент 0.5 МОм / кВ:


Регулярные проверки сопротивления изоляции двигателя Ключом к продлению срока службы любого электрического устройства являются периодические проверки и техническое обслуживание. Сопротивление изоляции хранящихся и действующих двигателей следует регулярно проверять:
(a) Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, хранившегося в течение некоторого времени, меньше 10 МОм, причина может заключаться в том, что обмотки влажный и необходимо сушить.
(b) Для работающего двигателя минимальное сопротивление изоляции может упасть до критического уровня.Если измеренное значение сопротивления изоляции превышает расчетное значение минимального сопротивления изоляции, двигатель может продолжать работать. Однако, если оно упадет ниже этого предела, двигатель должен быть немедленно остановлен, чтобы предотвратить повреждение персонала из-за высокого напряжения утечки

Процедуры испытания сопротивления изоляции

или мегомметра с принципиальной схемой

В этой статье мы рассмотрим тест мегомметра, прежде всего, я хочу сказать, что и тесты сопротивления изоляции, и тест мегомметра одинаковы.обычно выполняется для поиска изоляции обмоток различных машин, проводов, проводов, обмоток генератора и т. д.



Прибор для тестирования Megger
  • Прибор для тестирования Megger представляет собой омметр высокого сопротивления со встроенным генератором


  • Оснащен тремя соединениями: линейный терминал (L), заземляющий терминал (E) и защитный терминал (G)
  • Сопротивление измеряется между клеммами линии и заземления
  • Клемма «Guard» предназначена для специальных тестовых ситуаций, когда одно сопротивление должно быть изолировано от другого.
  • Генератор может запускаться вручную или работать от сети для выработки высокого постоянного напряжения, которое вызывает небольшой ток через поверхности проверяемой изоляции
  • который равен , измеренному омметром , имеющему шкалу индикатора
Важность испытания сопротивления изоляции или испытания мегомметром
  • Испытание изоляции проводится для проверки целостности изоляции между проводниками.
  • Который помогает найти проблемы короткого замыкания в цепи
  • Он также служит лучшим ориентиром для определения исправности оборудования

Процедура испытания изоляции

  • Проверьте мегомметр перед использованием, дает ли он значение INFINITY , когда он не подключен, и НУЛЬ, когда два терминала соединены вместе и ручка вращается.
  • Для проведения теста убедитесь, что кабель отключен от любых устройств (мегомметр обычно работает с тестерами на 500 В, 1000 В для тестирования более высокого напряжения).
  • Убедитесь, что в устройстве нет вихревых токов, заземлив его. (Очень важно)
  • Прибор должен иметь нормальную рабочую температуру, поскольку сопротивление зависит от температуры.
  • Убедитесь, что оба конца кабелей отделены друг от друга (при необходимости подключите один конец к клеммной колодке).
  • Теперь подключите клеммы мегомметра к проводам, которые необходимо измерить.
  • Затем вручную проворачивайте генератор и генерирует высокое постоянное напряжение , которое вызывает небольшой ток через поверхности проверяемой изоляции.
  • Если показание показывает «Бесконечность», это означает, что проводники имеют хорошую изоляцию.
Здесь показана принципиальная схема мегомметра



Изображение предоставлено: tpub.com, electric-engineering-portal.com



▷ Важность испытаний изоляции

Изоляционный материал — это материал, который очень сильно сопротивляется прохождению через него электрического тока.Электроизоляция состоит из смеси материалов, таких как ПВХ, стекло, смола, лак, керамика, стекловолокно и т. Д., Цель которых — предотвратить протекание электрического тока там, где он не нужен.

Прочтите советы своего коллеги Джинни по тестированию изоляции ниже!

Старение электрической изоляции ухудшает ее характеристики, вызывая широкий спектр последствий от повреждения электрических компонентов до смертельных травм или смерти человека, поэтому испытания изоляции так необходимы и должны проводиться периодически, чтобы проводить профилактическое обслуживание и проверки контроля качества.

Задача при испытании изоляции состоит в том, чтобы знать, что измерять, как это измерять и интерпретировать результаты.

Какое оборудование следует использовать для проверки изоляции?

Megger и Doble (показаны на рисунках 1 и 2 соответственно) являются наиболее часто используемыми мегомметрами для проверки изоляции, но мы должны быть осторожны, поскольку каждый из них измеряет разные параметры.

Рисунок 1. Megger

Рисунок 2.Добль

Для измерения изоляции мегомметр подает напряжение постоянного тока, предварительно установленное пользователем, и результаты будут связаны с моделью изоляции постоянного тока испытываемого электрического оборудования. Этот прибор довольно прост в использовании, но результаты не очень точные, учитывая, что сторона постоянного тока измеряет ток проводимости, который составляет лишь небольшой процент (1%) от общего тока утечки.

Чтобы узнать фактическое состояние изоляции, нам необходимо принять во внимание часть переменного тока, которую можно измерить с помощью Doble.Этот прибор намного сложнее использовать, и вам необходимо знать модель изоляции проверяемого электрооборудования, чтобы знать, что вы измеряете, какой режим тестирования следует использовать (да, этот инструмент имеет несколько режимов тестирования) и проверить результаты.

Как интерпретировать результаты?

Если вы используете Megger, у вас есть несколько индексов, которые можно использовать для определения целостности изоляции. Например, индекс поляризации (PI) — это отношение мегаомов, измеренных через десять минут, к мегамам через одну минуту, и он в основном используется для проверки изоляции двигателей и генераторов.

Кроме того, у нас есть тест на коэффициент диэлектрической абсорбции (DAR), который представляет собой отношение мегаомов, измеренных через одну минуту, к мегамам через 30 секунд, и он широко используется для тестирования трансформаторов.

При использовании Doble рекомендуется проверить результаты, сравнив их со значениями, предоставленными производителем, если таковые имеются.

Как проверить изоляцию?

Одна важная вещь, которую вы должны знать об испытании электрической изоляции, заключается в том, что процедуры различаются в зависимости от элемента, который вы пытаетесь проверить, все это имеет смысл, учитывая, что каждый элемент работает по-разному, но то, что вы измеряете, одинаково : электрическое сопротивление.

При работе с однофазными трансформаторами необходимо проверить изоляцию между обмоткой и землей. Если вы имеете дело с трехфазным трансформатором, вам необходимо измерить электрическое сопротивление между фазами для трансформаторов, соединенных по схеме треугольник, и между фазой и землей для трансформаторов в звезду. Необходимо внимательно изучить другие типы трансформаторов.

Как и в случае с трансформаторами, испытание двигателей и генераторов заключается в измерении электрического сопротивления между обмотками и обмотками относительно земли, когда машина полностью отключена.Если вы тестируете машину постоянного тока, вы должны учитывать, что ваши результаты могут включать сопротивление щеток.

Во избежание каких-либо неудобств, вызванных повреждением изоляции, существует множество типов оборудования и электрических элементов, которые требуют периодических испытаний изоляции, и каждый из них должен выполняться в соответствии с различными процедурами, поэтому для получения точных результатов необходимо предварительное исследование нужно сделать, чтобы убедиться, что мы все сделаем правильно.

Спасибо, что прочитали статью Джинни.Вы также можете отправить свой, отправив нам письмо. Если стесняетесь, просто отреагируйте на эту статью 🙂

Тестирование сопротивления изоляции с помощью Masterflex

Тестеры сопротивления изоляции Fluke


Тестеры сопротивления изоляции могут использоваться для определения целостности обмоток или кабелей в двигателях, трансформаторах. и электрические установки.Метод испытания определяется типом испытываемого оборудования и причиной испытаний. Например, при испытании электрических кабелей или распределительного устройства (оборудование с низкой емкостью) зависящие от времени емкостные токи утечки и поглощения становятся незначительными и почти мгновенно уменьшаются до нуля. Устойчивый ток проводящей утечки достигается почти мгновенно (минута или меньше), обеспечивая идеальные условия для точечного считывания / кратковременного испытания сопротивления. (Более подробную информацию о токах утечки и испытаниях сопротивления см. В следующих разделах: Что такое сопротивление изоляции и токи утечки и тесты профилактического обслуживания) .С другой стороны, когда тестируемое оборудование представляет собой длинный кабель, большой двигатель или генератор (оборудование с высокой емкостью), зависящие от времени токи сохраняются в течение нескольких часов. Эти токи будут вызывать постоянное изменение показаний счетчика, делая невозможным получение точных устойчивых показаний. Это условие можно преодолеть с помощью теста, который устанавливает тенденцию между показаниями, например, ступенчатого напряжения или теста на диэлектрическую абсорбцию. Эти тесты зависят не от одного показания, а от набора относительных показаний.Было бы напрасной тратой времени проводить эти испытания на оборудовании с малой емкостью, поскольку зависящие от времени токи быстро уменьшаются, в результате чего все измерения остаются одинаковыми.


Самая важная причина тестирования изоляции — обеспечение общественной и личной безопасности. Выполняя испытание высоким постоянным напряжением между обесточенными токоведущими (горячими), заземленными проводниками и заземляющими проводниками, вы можете исключить возможность опасного для жизни короткого замыкания или замыкания на землю.Этот тест обычно выполняется после первоначальной установки оборудования. Этот процесс защитит систему от неправильно подключенного и неисправного оборудования, а также обеспечит высокое качество установки, удовлетворение потребностей клиентов и защиту от пожара или поражения электрическим током.


Вторая по важности причина проверки изоляции — защита и продление срока службы электрических систем и двигателей. На протяжении многих лет электрические системы подвергаются воздействию таких факторов окружающей среды, как грязь, жир, температура, напряжение и вибрация.Эти условия могут привести к нарушению изоляции, что может привести к производственным потерям или даже пожарам. Периодические эксплуатационные испытания могут предоставить ценную информацию о состоянии износа и помочь в прогнозировании возможного отказа системы. Устранение проблем не только приведет к безотказной работе системы, но также продлит срок службы различного оборудования.


Чтобы получить достоверные результаты измерения сопротивления изоляции, электрик должен внимательно осмотреть тестируемую систему.Наилучшие результаты достигаются, когда:

  1. Система или оборудование выводятся из эксплуатации и отсоединяются от всех других цепей, переключателей, конденсаторов, щеток, грозовых разрядников и автоматических выключателей. Убедитесь, что на измерения не влияет ток утечки через переключатели и устройства защиты от сверхтоков.
  2. Температура проводника выше точки росы окружающего воздуха. В противном случае на поверхности изоляции образуется влага, которая в некоторых случаях поглощается материалом.
  3. Поверхность проводника не содержит углерода и других посторонних веществ, которые могут стать проводящими во влажных условиях.
  4. Приложенное напряжение не слишком высокое. При испытании низковольтных систем; слишком высокое напряжение может вызвать перенапряжение или повреждение изоляции.
  5. Тестируемая система полностью разряжена на землю. Время разряда заземления должно примерно в пять раз превышать время испытательного заряда.
  6. Учитывается влияние температуры. Поскольку сопротивление изоляции обратно пропорционально температуре изоляции (сопротивление уменьшается при повышении температуры), зарегистрированные показания изменяются из-за изменений температуры изоляционного материала.Рекомендуется проводить испытания при стандартной температуре проводника 20 ° C (68 ° F). Как показывает практика, при сравнении показаний с базовой температурой 20 ° C удваивайте сопротивление на каждые 10 ° C (18 ° F) выше 20 ° C или уменьшайте сопротивление вдвое на каждые 10 ° C ниже 20 ° C при температуре. Например, сопротивление 1 МОм при 40 ° C (104 ° F) будет преобразовано в сопротивление 4 МОм при 20 ° C (68 ° F). Для измерения температуры проводника используйте бесконтактный инфракрасный термометр, такой как Fluke 65.


Безопасность — это ответственность каждого, но в конечном итоге она находится в ваших руках. Никакой инструмент сам по себе не может гарантировать вашу безопасность. Это сочетание инструмента и безопасных методов работы, обеспечивающих максимальную защиту. Вот несколько советов по безопасности, которым вы должны следовать:

  • По возможности работайте с обесточенными цепями. Используйте надлежащие процедуры блокировки / маркировки. Если эти процедуры не выполняются или не выполняются, предположите, что цепь находится под напряжением.
  • В цепях под напряжением используйте защитное снаряжение:
    • Используйте изолированные инструменты
    • Наденьте огнестойкую одежду, защитные очки и изоляционные перчатки
    • Снимите часы или другие украшения
    • Встаньте на изоляционный коврик
  • При измерении напряжения в цепях под напряжением:
    • Зацепите сначала зажим заземления, затем прикоснитесь к горячему проводу.Сначала отсоедините горячий провод, а потом — заземляющий.
    • По возможности повесьте или оставьте глюкометр. Старайтесь не держать его в руках, чтобы свести к минимуму воздействие переходных процессов.
    • Используйте метод трехточечного тестирования, особенно при проверке, не обесточена ли цепь. Сначала проверьте известную цепь под напряжением. Во-вторых, проверьте целевую схему. В-третьих, снова проверьте цепь под напряжением. Это подтверждает правильность работы вашего глюкометра до и после измерения.
    • Используйте старый трюк электриков: держать одну руку в кармане.Это снижает вероятность замкнутого контура через грудь и сердце.
  • При проведении испытаний изоляции и сопротивления:
    • Никогда не подключайте тестер изоляции к проводам под напряжением или оборудованию под напряжением и всегда следуйте рекомендациям производителя.
    • Выключите тестируемое оборудование, отключив предохранители, переключатели и автоматические выключатели.
    • Отсоедините проводники параллельной цепи, заземленные проводники, заземляющие проводники и все другое оборудование от тестируемого устройства.
    • Емкость разрядного проводника до и после испытания. Некоторые инструменты могут иметь функции автоматического разряда.
    • Проверьте отсутствие тока утечки через предохранители, переключатели и прерыватели в обесточенных цепях. Ток утечки может привести к непоследовательным и неправильным показаниям.
    • Не используйте тестер изоляции в опасной или взрывоопасной атмосфере, так как прибор может вызвать искрение в поврежденной изоляции.
    • Используйте изолированные резиновые перчатки при подключении измерительных проводов.


Во время процедуры тестирования высокое постоянное напряжение, генерируемое при нажатии кнопки тестирования, вызовет протекание небольшого (в микроамперах) тока через проводник и изоляцию. Величина тока зависит от величины приложенного напряжения, емкости системы, общего сопротивления и температуры материала. Для фиксированного напряжения, чем выше ток, тем меньше сопротивление (E = IR, R = E / I). Общее сопротивление — это сумма внутреннего сопротивления проводника (небольшое значение) плюс сопротивление изоляции в МО.

Значение сопротивления изоляции, считываемое измерителем, будет функцией следующих трех независимых субтоков.

Ток утечки проводимости (I L ) Ток проводимости — это небольшая (в микроампер) величина тока, которая обычно протекает через изоляцию, между проводниками или от проводника к земле. Этот ток увеличивается по мере разрушения изоляции и становится преобладающим после того, как ток поглощения (см. Рисунок 1) исчезает. Поскольку он довольно устойчивый и не зависит от времени, это наиболее важный ток для измерения сопротивления изоляции.

Емкостный ток утечки заряда (I C ) Когда два или более проводника соединяются вместе в дорожке качения, они действуют как конденсатор. Из-за этого емкостного эффекта через изоляцию проводника протекает ток утечки. Этот ток длится всего несколько секунд при приложении постоянного напряжения и пропадает после того, как изоляция заряжена до полного испытательного напряжения. В оборудовании с малой емкостью емкостной ток выше, чем ток проводящей утечки, но обычно исчезает к тому времени, когда мы начинаем запись данных.По этой причине важно дать показаниям «стабилизироваться» перед их записью. С другой стороны, при испытании оборудования с высокой емкостью ток утечки емкостного заряда может длиться очень долго, прежде чем исчезнет.

Поляризационный ток утечки поглощения (I A )
Ток поглощения вызван поляризацией молекул внутри диэлектрического материала. В оборудовании с малой емкостью ток в течение первых нескольких секунд велик и медленно снижается почти до нуля.При работе с оборудованием с высокой емкостью или влажной и загрязненной изоляцией в течение длительного времени не будет снижения тока поглощения.

Проверка установки


Электрики и инженеры проводят контрольные испытания, чтобы убедиться в правильности установки и целостности проводников. Контрольное испытание — это простой быстрый тест, используемый для определения мгновенного состояния изоляции. Он не предоставляет диагностических данных, а используемые испытательные напряжения намного выше, чем напряжения, используемые при профилактических проверках.Контрольное испытание иногда называют ТЕСТОМ ГОТОВ / НЕ ПРОДОЛЖАЕТ, потому что он проверяет кабельные системы на наличие ошибок обслуживания, неправильной установки, серьезного ухудшения характеристик или загрязнения. Установка считается приемлемой, если во время испытаний не произойдет поломки. Выбор испытательного напряжения Контрольное испытание может быть выполнено на оборудовании любой емкости. Он выполняется с одним напряжением, обычно от 500 до 5000 В, в течение примерно одной минуты. Обычно изоляция нагружается при превышении нормального рабочего напряжения, чтобы обнаружить небольшие слабые места в изоляции.Для нового оборудования испытание должно проводиться при напряжении от 60% до 80% заводского испытательного напряжения производителя (выше номинального напряжения и доступно у производителя кабеля). Если вы не знаете заводское испытательное напряжение, попробуйте использовать напряжение, которое примерно в два раза превышает номинальное напряжение кабеля плюс 1000 вольт. Номинальное напряжение — это максимальное значение напряжения, которому может подвергаться проводник в течение продолжительного времени, обычно указываемое на проводе. Для однофазных, двухфазных или трехфазных систем кабель рассчитан на фазу-фаза.Этот ранее упомянутый метод следует использовать только для тестирования небольших и новых устройств из-за его способности выдерживать более высокие напряжения. Для более крупного или старого оборудования или проводов используйте испытательное напряжение постоянного тока (см. Таблицу 3). Стандартные контрольные испытательные напряжения постоянного тока (не испытательные напряжения изготовителя), используемые для испытания вращающегося оборудования, показаны в таблице 1.


Контрольные испытания могут проводиться на оборудовании любой емкости. Он выполняется с одним напряжением, обычно от 500 до 5000 В, в течение примерно одной минуты.Обычно изоляция нагружается при превышении нормального рабочего напряжения, чтобы обнаружить небольшие слабые места в изоляции. Для нового оборудования испытание должно проводиться при напряжении от 60% до 80% заводского испытательного напряжения производителя (выше номинального напряжения и доступно у производителя кабеля). Если вы не знаете заводское испытательное напряжение, попробуйте использовать напряжение, которое примерно в два раза превышает номинальное напряжение кабеля плюс 1000 вольт. Номинальное напряжение — это максимальное значение напряжения, которому может подвергаться проводник в течение продолжительного времени, обычно указываемое на проводе.Для однофазных, двухфазных или трехфазных систем кабель рассчитан на фазу-фаза. Этот ранее упомянутый метод следует использовать только для тестирования небольших и новых устройств из-за его способности выдерживать более высокие напряжения. Для более крупного или старого оборудования или проводов используйте испытательное напряжение постоянного тока (см. Таблицу 3). Стандартные испытательные напряжения постоянного тока (не испытательные напряжения производителя), используемые для тестирования вращающегося оборудования, показаны в таблице 1.


Для проведения контрольных испытаний установки используйте следующую процедуру:

  • Используйте мультиметр или функцию измерения напряжения. на мегомметре, чтобы убедиться в отсутствии напряжения в проверяемой цепи.
  • Выберите подходящий уровень напряжения.
  • Подключите один конец черного щупа к общей клемме на измерителе и прикоснитесь щупом к заземлению или другому проводнику. Иногда бывает полезно заземлить все проводники, не участвующие в испытании. Зажимы типа «крокодил» упрощают и повышают точность измерений.
  • Подключите один конец красного щупа к клемме вольт / ом на измерителе и подсоедините щуп к проверяемому проводу.
  • Нажмите кнопку тестирования, чтобы подать желаемое напряжение и считать сопротивление, отображаемое на измерителе.Для стабилизации показаний может потребоваться несколько секунд. Чем выше сопротивление, тем лучше.
  • Проверьте каждый проводник относительно земли и всех других проводов, присутствующих в кабелепроводе. Храните датированные записи измеренных значений в надежном месте.
  • Если некоторые из проводов не прошли проверку, определите проблему или повторно потяните за проводники. Влага, вода или грязь могут привести к снижению сопротивления.

Тесты на техническое обслуживание могут предоставить важную информацию о настоящем и будущем состоянии проводов, генераторов, трансформаторов и двигателей.Ключ к эффективному тестированию обслуживания — хороший сбор данных. Изучение собранных данных поможет в планировании диагностических и ремонтных работ, что сократит время простоя из-за неожиданных сбоев. Ниже приведены наиболее часто применяемые испытательные напряжения постоянного тока и выполняемые испытания при техническом обслуживании:

Во время кратковременного испытания мегомметр подключается непосредственно к тестируемому оборудованию, и испытательное напряжение подается в течение примерно 60 секунд. Чтобы получить стабильные показания изоляции примерно за одну минуту, испытание следует проводить только на оборудовании с низкой емкостью.Основная процедура подключения такая же, как и для контрольного испытания, а приложенное напряжение рассчитывается по формулам испытательного напряжения постоянного тока. При тестировании хорошего оборудования вы должны заметить устойчивое увеличение сопротивления изоляции из-за уменьшения емкостных токов и токов поглощения. Поскольку температура и влажность могут влиять на показания, измерения предпочтительно проводить выше точки росы при стандартной температуре, примерно 20 ° C / 68 ° F. Для оборудования с номинальным напряжением 1000 В или ниже показание изоляции должно быть не менее 1 МОм.Для оборудования с номинальным напряжением выше 1000 вольт ожидаемое сопротивление должно увеличиваться до одного МОм на 1000 приложенных вольт. Обычно измеренное сопротивление изоляции будет немного меньше, чем значения, зарегистрированные ранее, что приводит к постепенному снижению, как показано на Рисунке 6. Нисходящий наклон является нормальным признаком старения изоляции. Резкий наклон вниз будет указывать на нарушение изоляции или предупреждение о предстоящих проблемах.

DCt — испытательное напряжение постоянного тока, связанное с максимальной изоляцией
Напряжение при нормальной работе переменного тока

E pp — Номинальное межфазное напряжение

E pn — Номинальное напряжение между фазами


Испытание ступенчатым напряжением включает испытание сопротивления при различных настройках напряжения.В этом тесте вы прикладываете каждое испытательное напряжение в течение одного и того же периода времени (обычно 60 секунд), отображая записанное сопротивление изоляции. При ступенчатом приложении возрастающих напряжений изоляция подвергается повышенному электрическому напряжению, которое может выявить информацию о дефектах изоляции, таких как проколы, физические повреждения или хрупкость. Хорошая изоляция должна выдерживать увеличение перенапряжения, а ее сопротивление должно оставаться примерно одинаковым во время испытаний с разными уровнями напряжения.С другой стороны, особенно при более высоких уровнях напряжения, поврежденная, потрескавшаяся или загрязненная изоляция будет испытывать повышенный ток, что приведет к снижению сопротивления изоляции. Этот тест не зависит от изоляционного материала, емкости оборудования и температурного воздействия. Поскольку для запуска требуется больше времени, его следует выполнять только после того, как проверка изоляции на месте окажется безрезультатной. Точечный тест имеет дело с абсолютным изменением сопротивления (однократное считывание) во времени, в то время как тест ступенчатого напряжения ищет тенденции сопротивления по отношению к изменяющимся тестовым напряжениям.

Испытание на временное сопротивление не зависит от размера оборудования и температуры. Он сравнивает абсорбционные характеристики загрязненной изоляции с абсорбционными характеристиками хорошей изоляции. Испытательное напряжение прикладывают в течение 10 минут, данные записываются каждые 10 секунд в течение первой минуты, а затем каждую минуту после этого. Интерпретация наклона построенного графика определит состояние изоляции. Постоянное увеличение сопротивления на графике указывает на хорошую изоляцию.Плоская или нисходящая кривая указывает на треснувшую или загрязненную изоляцию.

Другим методом определения качества изоляции является использование теста индекса поляризации (PI). Это особенно ценно для обнаружения попадания влаги и масла, которые оказывают сглаживающее действие на кривую PI, вызывая ток утечки и, в конечном итоге, закорачивают обмотки. Индекс поляризации — это отношение двух показаний сопротивления времени: одно снято через 1 минуту, а другое — через 10 минут. При хорошей изоляции сопротивление изоляции вначале будет низким и будет расти по мере уменьшения емкостного тока утечки и тока поглощения.Результаты получают путем деления значения 10-минутного теста на значение одноминутного теста. Низкий индекс поляризации обычно указывает на проблемы с изоляцией. Когда время тестирования ограничено, сокращенным способом тестирования индекса поляризации является второй тест на коэффициент диэлектрического поглощения (60/30).

Для проверки сопротивления изоляции генераторов, трансформаторов, двигателей и электропроводки мы можем использовать любые из ранее упомянутых тестов профилактического обслуживания.Выберем ли мы точечное считывание, ступенчатое напряжение или испытание на временное сопротивление, зависит от причины тестирования и достоверности полученных данных. При тестировании генераторов, двигателей или трансформаторов каждую обмотку / фазу следует тестировать последовательно и отдельно, в то время как все остальные обмотки заземлены. Таким образом также проверяется изоляция между фазами.

Для проверки сопротивления изоляции якоря и обмотки возбуждения при различных температурах IEEE рекомендует следующую формулу сопротивления изоляции.

Rm — Минимальное сопротивление изоляции, скорректированное до 40 ° C (104 ° F) в MO

Kt — Температурный коэффициент сопротивления изоляции при температуре обмотки, полученный из рисунка 10

кВ — Номинальное напряжение между клеммами машины и клеммами в киловольтах

Для трехфазной системы, испытанной с заземленными двумя другими фазами, зарегистрированное сопротивление каждой фазы следует разделить на два. Затем полученное значение можно сравнить с рекомендованным минимальным сопротивлением изоляции (Rm).


При проверке сопротивления обмоток статора убедитесь, что обмотка статора и фазы отключены. Измерьте сопротивление изоляции между обмотками и обмотками относительно земли. Кроме того, при испытании генераторов или двигателей постоянного тока щетки должны быть подняты, чтобы катушки можно было испытывать отдельно от якоря. В следующей таблице перечислены рекомендуемые минимальные значения сопротивления для различных номинальных напряжений двигателя.


При проверке однофазных трансформаторов проверяйте обмотку на обмотку, обмотку на землю или проверяйте одну обмотку за раз, когда все остальные заземлены.Для трехфазных трансформаторов замените E на EP-P (для трансформаторов, соединенных треугольником) или Ep-n (для трансформаторов со звездой), а кВА на номинальное значение кВА3Ø тестируемой обмотки. Для определения минимального сопротивления изоляции используйте следующую формулу.

R — Минимальное сопротивление изоляции 500 В постоянного тока в течение одной минуты в мегаомах C — Постоянное значение для измерений при 20 ° C (68 ° F) (см. Ниже) E — Номинальное напряжение обмотки. КВА — номинальная мощность испытуемой обмотки. Для трехфазных блоков kVA3Ø = v3 x kVA1Ø


При проверке проводов или кабелей их следует отсоединять от панелей и оборудования, чтобы они были изолированы.Провода и кабели должны быть проверены относительно друг друга и относительно земли (см. Рисунок 4 на странице 4). Ассоциация инженеров по изолированным силовым кабелям (IPCEA) предлагает следующую формулу, которая предлагает минимальные значения сопротивления изоляции.

R — МО на 1000 футов (305 метров) кабеля. На основе испытательного потенциала постоянного тока 500 В, приложенного в течение одной минуты при температуре 15,6 ° C (60 ° F))

K — Постоянная изоляционного материала. (Например: пропитанная бумага-2640, лакированная Cambric-2460, термопластичный полиэтилен-50000, композитный полиэтилен-30000)

D — Наружный диаметр изоляции жилы для одножильного провода и кабеля D = d 2c 2b диаметр одножильного кабеля

d — Диаметр жилы

c — Толщина изоляции жилы

b — Толщина изоляции оболочки

Например, тысяча футов числа 6 A.W.G. Жаростойкий многожильный провод с изоляцией из натурального каучука с толщиной изоляции 0,125 будет иметь K = 10 560 и Log10 (D / d) = 0,373 дюйма. Согласно формуле (R = K x Log10 (D / d), R = 10 560 x 0,373 = 3939 МОм на 1000 футов) ожидаемое минимальное сопротивление изоляции для одиночного проводника на тысячу футов при температуре 60 ° F будет 3939 МОм.

TIDA-00440 Эталонный проект измерения тока утечки для определения сопротивления изоляции


См. Важное примечание и Заявление об ограничении ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

Основной документ

Описание

Эта конструкция TI представляет собой эталонное решение для измерения сопротивления изоляции до 100 МОм. Он имеет встроенный изолированный источник питания 500 В постоянного тока и изолированную схему преобразования сигнала для измерения тока утечки. Эта конструкция полезна для поиска утечек из-за пробоя изоляции в обмотках трансформатора и двигателя.

Характеристики
  • Схема измерения тока утечки с опцией для: Программируемого усилителя считывания тока и переключаемых шунтирующих резисторов
  • Диапазон измерения: от 0 до 100 МОм с точностью 5% (без калибровки)
  • Уровень испытательного напряжения, полученный из IEEE 43-2000 («Рекомендуемая практика для тестирования
  • Сопротивление изоляции вращающегося оборудования «)
  • Бортовой изолированный источник питания 500 В для измерения сопротивления изоляции
  • Положение для калибровочного резистора на плате
  • Аппаратная поддержка для обнаружения начала кадра позволяет реализовать IEEE1588 PTP

См. Важное примечание и заявление об ограничении ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

Схема / блок-схема

Быстро понять общую функциональность системы.

Скачать схему

Данные испытаний

Получайте результаты быстрее благодаря проверенным данным испытаний и моделирования.

Скачать тестовые данные


Устройства TI (8)

Закажите образцы, получите инструменты и найдите дополнительную информацию о продуктах TI в этом справочном дизайне.

Образец и покупка Конструкторские комплекты и оценочные модули
CSD13202Q2 12-В, N-канальный силовой МОП-транзистор NexFET ™, одиночный SON 2 мм x 2 мм, 9,3 мОм МОП-транзисторы Образец и покупка Нет в наличии
INA225 Двунаправленный токовый усилитель, 36 В, с четырьмя переключаемыми контактами Усилители считывания тока Образец и покупка Посмотреть комплекты для проектирования и оценочные модули
INA333 Маломощный прецизионный инструментальный усилитель с нулевым дрейфом Усилители Образец и покупка Посмотреть комплекты для проектирования и оценочные модули
ISO7640FM Четырехканальный, 4/0, 150 Мбит / с, выходной низкий цифровой изолятор по умолчанию Изоляция Образец и покупка Посмотреть комплекты для проектирования и оценочные модули
LM5160A LM5160A Синхронный понижающий / Fly-Buck ™ преобразователь с широким входом, 65 В, 2 А Автономные и изолированные контроллеры и преобразователи постоянного / постоянного тока Образец и покупка Посмотреть комплекты для проектирования и оценочные модули
LP2985-N 150 мА, 16 В, стабилизатор напряжения с малым падением напряжения с включением Управление питанием Образец и покупка Посмотреть комплекты для проектирования и оценочные модули
TS5A23157 5-В, 2: 1 (SPDT), 2-канальный аналоговый переключатель Коммутаторы и мультиплексоры Образец и покупка Посмотреть комплекты для проектирования и оценочные модули
UCC28711 Постоянное напряжение, постоянный ток ШИМ с PSR, переключением впадин, опцией NTC и кабельным соединением 0 мВ. Автономные и изолированные контроллеры и преобразователи постоянного / постоянного тока Образец и покупка Посмотреть комплекты для проектирования и оценочные модули

Символы CAD / CAE

Texas Instruments и Accelerated Designs, Inc. сотрудничали друг с другом, чтобы предоставить клиентам TI схематические символы и посадочные места на печатных платах для продуктов TI.

Шаг 1 : Загрузите и установите бесплатную загрузку.

Шаг 2 : Загрузите символ и посадочное место из таблицы файла CAD.bxl.

Texas Instruments и Accelerated Designs, Inc. сотрудничали друг с другом, чтобы предоставить клиентам TI схематические символы и посадочные места на печатных платах для продуктов TI.

Шаг 1 : Загрузите и установите бесплатную загрузку.

Шаг 2 : Загрузите символ и посадочное место из таблицы файла CAD.bxl.

Шаг 3 : Откройте файл .bxl с помощью программного обеспечения Ultra Librarian.

Вы всегда можете получить доступ к полной базе данных символов CAD / CAE по адресу https://webench.ti.com/cad/

Посадочные места печатной платы и условные обозначения доступны для загрузки в формате, не зависящем от производителя, который затем может быть экспортирован в ведущие инструменты проектирования EDA CAD / CAE с помощью Ultra Librarian Reader.Ридер доступен в виде (скачать бесплатно).

UL Reader — это подмножество набора инструментов Ultra Librarian, которое может создавать, импортировать и экспортировать компоненты и их атрибуты практически в любом формате EDA CAD / CAE.


Техническая документация

См. Важное примечание и Заявление об ограничении ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

Руководство пользователя (1)
Руководство по выбору (1)
Файлы дизайна (6)
Сопутствующие инструменты и программное обеспечение

Поддержка и обучение

Выполните поиск в нашей обширной онлайн-базе знаний, где доступны миллионы технических вопросов и ответов круглосуточно и без выходных.

Найдите ответы от экспертов TI

Контент предоставляется «КАК ЕСТЬ» соответствующими участниками TI и сообщества и не является спецификациями TI.
См. Условия использования.

Если у вас есть вопросы о качестве, упаковке или заказе продукции TI, посетите нашу страницу поддержки.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *