+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как определить силу тока. Как узнать, вычислить какой ток в схеме, цепи.

 

 

 

Тема: по какой формуле можно найти силу тока, как правильно измерить ток.

 

Известно, что электрический ток заряженных частиц лежит в основе работы всей электротехники. Знание его величины дает понимание о режиме работы той или иной цепи, схемы. Если для специалиста электрика, электронщика не составит особого труда определить силу тока, то для новичка это может оказаться проблемой. В этой теме давайте с вами рассмотрим, какими именно способами можно узнать, вычислить, найти электрический ток используя как непосредственные измерения так и формулы.

 

Основными электрическими величинами являются напряжение, ток, сопротивление, мощность. Пожалуй главной формулой электрика является формула закона Ома. Она имеет вид I=U/R (ток равен напряжение деленное на сопротивление). Данную формулу приходится использовать повсеместно. Из нее можно вывести две другие: R=U/I и U=I*R. Зная любые две величины всегда можно вычислить третью. Напомню, что при использовании формул нужно пользоваться основными единицами измерения. Для тока это амперы, для напряжения это вольты и для сопротивления это омы.

 

К примеру, вам нужно быстро определить силу тока, которую потребляем электрочайник. Напряжение нам известно, это 220 вольт. Берем в руки мультиметр, электронный тестер, меряем сопротивление в омах. Далее мы просто напряжение перемножаем на это сопротивление. В итоге мы получаем искомую силу тока в амперах. Хочу уточнить, что данная форума работает только для цепей с активной нагрузкой (обычные нагреватели, лампы накаливания, светодиоды и т.д.). Для реактивной нагрузки формула имеет иной вид, где уже используется такие величины как индуктивность, емкость, частота.

 

 

 

 

Силу тока можно определить и по другой формуле, которая в себе содержит напряжение и мощность. Она имеет вид: I=P/U (сила тока равна электрическая мощность деленная на напряжение).

То есть, 1 ампер равен 1 ватт деленный на 1 вольт. Две других формулы, выходящие из этой, имеют такой вид: P=U*I и U=P/I. Если вам известны любые две величины из тока, напряжения и мощности, всегда можно вычислить третью.

 

Помимо формул силу тока можно определить и практическим путем, через обычное измерение тестером, мультиметром. Для новичков сообщаю, что силу тока нужно измерять в разрыв электрической цепи. То есть, к примеру, у нас схема, прибор, с него выходит кабель с двумя проводами питания. Берем измеритель, выставляем на нем нужный диапазон измерения. Далее, один щуп измерителя мы прикладываем к одному из проводов питания устройства, а другой щуп измерителя к одному из контактов самого электропитания. Ну, и оставшийся провод, идущий от устройства мы также подсоединяем ко второму контакту питания. После включения самого устройства на измерителе появится величина тока, которую он потребляет при своей работе.

 

При измерении силы тока нужно помнить, что имеет значение какой вид тока течет по цепи (переменный или постоянный). Допустим, на большинство электротехники подается переменное напряжение, следовательно и измерять на входе ток нужно переменного типа. Внутри устройств обычно стоят блоки питания, которые снижают сетевое напряжение до меньших величин и делают его постоянным. Значит ту часть электрической цепи, что стоит после выпрямляющего диодного моста (делающая из переменного тока постоянный) уже нужно измерять как постоянный ток. Если вы попытаетесь измерить силу тока не своего типа, то и показания вы получите неверные.

 

Напряжение измеряют по другому. Измерительные щупы уже прикладываются не в разрыв цепи, как это делается у тока, а параллельно контактам питания. И в этом случае тип напряжения имеет значение (переменное или постоянное). Так что будьте внимательны, когда выставляете тип тока (напряжения) и их предел на тестере.

 

P.S. Именно сила тока в электротехнике делает всю работу, что мы воспринимаем как свет, тепло, звук, движение и т.д. Для облегчения понимания, что такое ток, а что такое напряжение можно привести аналогию с обычной водой. Так вот давление в воды в водопроводе будет соответствовать примерно электрическому напряжению, а движение самой воды это будет ток.

 

Как рассчитать потребляемый ток

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен. Если электрического подключения нет, целостности объекта ничто не угрожает. Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Далее из статьи наши читатели получат информацию о том, как правильно сделать расчет мощности по току и напряжению, чтобы электрические цепи работали исправно и продолжительно.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке.

Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая — это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению. Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U — это абсолютно бесполезное устройство. Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока. Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов. Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров. Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его — это активная и реактивная составляющие, а третья — их сумма. Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало. Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности. По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора. При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U. Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных. Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие. Они обусловлены углом φ, который показан выше на изображениях треугольников.

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ.

После этого по формулам

я вычислю искомый параметр электрической цепи. Но следует учесть то, что каждый из параметров, рассчитанный по этим формулам, из-за U, постоянно изменяющегося по законам гармонических колебаний, может принимать либо мгновенное, либо среднеквадратичное, либо промежуточное значение. Три формулы, показанные выше, справедливы при среднеквадратичных значениях силы электротока и U. Каждое из двух остальных значений является результатом расчетной процедуры с использованием другой формулы, учитывающей ход времени t:

Но и это еще не все нюансы. Например, для линий электропередачи применяются формулы, в которых фигурируют волновые процессы. И выглядят они по-другому. Но это уже совсем другая история…

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Как рассчитать максимальную силу переменного тока на входе

Как рассчитать максимальную силу переменного тока на входе
УП-21

Знать максимальный входной ток источника питания полезно при выборе требований к электросети, аварийного выключателя, кабеля питания переменного тока, разъемов и даже изолирующего трансформатора в плавучих блоках. Рассчитать максимальную силу входного тока довольно просто, зная несколько основных параметров и простых математических действий.

Номинальная мощность источника питания высокого напряжения
Для всех источников питания компании Spellman указана номинальная максимальная мощность в ваттах. Это первый нужный нам параметр; получить его можно из техпаспорта изделия. У большей части источников питания компании Spellman максимальная номинальная мощность указана в номере модели. Например, SL30P300/115 — источник питания напряжением 30 кВ с положительной полярностью и максимальной мощностью 300 Вт, работающий от входного напряжения переменного тока 115 В.

КПД источника питания
КПД источника питания — отношение мощности на входе к мощности на выходе. КПД обычно указывается в процентном виде или в виде десятичной дроби меньше 1, например, 80 % или 0,8. Чтобы узнать входную мощность, поделим максимальную выходную мощность на КПД:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности — отношение реальной мощности к фиксируемой. Обычно он выражается в виде десятичной дроби меньше 1. Реальная мощность указывается в ваттах, а фиксируемая — в вольт-амперах (ВА). У однофазных импульсных источников питания без коррекции коэффициент мощности обычно довольно низок, например, 0,65. Импульсные источники питания без коррекции обладают более высоким коэффициентом мощности, например, 0,85. Блоки питания с активной коррекцией коэффициента мощности могут обладать очень высоким коэффициентом мощности, к примеру, 0,98. В приведенном выше примере используется источник питания без коррекции с питанием от однофазной линии, таким образом:

375 Вт / 0,65 = 577 ВА

Напряжение на входе
Нам необходимо знать входное напряжение переменного тока, для которого предназначен источник питания. В приведенном выше примере оно составляет 115 В. Это номинальное напряжение, в реальности оно указывается с допуском ±10 %. Чтобы предусмотреть наихудший случай с низким напряжением в сети, отнимем 10 %:

115 В – 10 % = 103,5 В

Максимальная сила переменного тока на входе
Взяв 577 ВА и разделив ее на 103,5 В, получаем:

577 ВА / 103,5 В = 5,57 А

Если напряжение на входе однофазное, наш ответ — 5,57 А.

Трехфазное входное напряжение
Источники питания с трехфазным напряжением на входе обладают более высоким коэффициент мощности, чем однофазные. Кроме того, по причине наличия трех фаз, питающих источник, фазовая сила тока будет меньшей. Чтобы узнать силу тока одной фазы, поделим рассчитанную нами силу тока на входе на √3 (1,73).

Рассчитаем данные для следующего примера: STR10N6/208. Из технического паспорта STR узнаем, что максимальная мощность — 6000 Вт, КПД 90 %, а коэффициент мощности 0,85. И хотя STR в силу своей конструкции будет работать с напряжением до 180 В переменного тока, в данном примере его питание будет поступать от трехфазной сети 208 В. Максимальную силу входного тока на одну фазу получаем следующим образом:

КПД источника питания:
6000 Вт / 0,9 = 6666 Вт

Коэффициент мощности:
6666 Вт / 0,85 = 7843 ВА

Напряжение на входе:
208 В – 10 % = 187 В

Максимальная сила переменного тока на входе:
7843 ВА / 187 В = 41,94 А (если бы сеть была однофазной)

Пересчет для трех фаз на входе:
41,94 А / √3 (1,73) = 24,21 А на фазу

Таким образом, у нас есть два уравнения, одно для однофазного и одно для трехфазного напряжения на входе:

Уравнение для максимальной силы однофазного входного тока
Входной ток = максимальная мощность/(КПД)(коэффициент мощности)(максимальное входное напряжение)

Уравнение для максимальной силы трехфазного входного тока
Входной ток = максимальная мощность/(КПД)(коэффициент мощности)(максимальное входное напряжение)(√3)

Данные расчеты входного тока предусматривают наихудший случай, исходя из того, что источник питания работает на максимальной мощности с низким напряжением в линии, а также с учетом КПД и коэффициента мощности.

Закон Ома — физика процесса на примере движения воды. Формулы зависимости сопротивления, напряжения, силы тока и мощности

Существует всего 2 базовых формулы которые помогут вам понять взаимосвязь между силой тока(Амер), напряжением(Вольт), сопротивлением (Ом) и мощностью (Ватт).
Зная хотя бы два из перечисленных параметра вы всегда можете рассчитать два других.
 

ЗАКОН ОМА

Базовая формула P=I*E E=I*R  
Расчет напряжения E=P/I E=I*R E=SQR(P*R)
Расчет силы тока I=P/E I=E/R I=SQR(P/R)
Расчет мощности P=I*E P=E 2 /R P=I 2 *R
Расчет сопротивления R=E 2 /P R=E/I R=P/I 2
P — Мощность (Ватт)
E — Напряжение (Вольт)
I — Сила тока (Ампер)
R — Электрическое сопротивление (Ом)
SQR — квадратный корень

 


Для справки:

Мы используем переменную E для обозначения напряжения, иногда вы можете встретить  обозначение V для напряжения. Не дайте себя запутать названиям переменных.

Изменение сопротивления:

На следующей схеме вы видите разность сопротивлений между системами изображенными на правой и левой стороне рисунка. Сопротивление давлению воды в кране противодействует задвижка, в зависимости от степени открытия задвижки изменяется сопротивление.

Сопротивление в проводнике изображено в виде сужения проводника, чем более узкий проводник тем больше он противодействует прохождению тока.

Вы можете заметить что на правой и на левой стороне схемы напряжение и давление воды одинаково.

Вам необходимо обратить внимание на самый важный факт.

В зависимости от сопротивления  увеличивается и уменьшается сила тока.

Слева при полностью открытой задвижке мы видим самый большой поток воды. И при самом низком сопротивлении, видим самый большой поток электронов (Ампераж) в проводнике.

Справа задвижка закрыта намного больше и поток воды тоже стал намного больше.

ужение проводника тоже уменьшилось вдвое, я значит вдвое увеличилось сопротивление протеканию тока. Как мы видим через проводник из за выского сопротивления протекает в два раза меньше электронов.


Для справки

Обратите внимание что сужение проводника изображенное на схеме используется только для примера сопротивления протеканию тока. В реальных условиях сужения проводника не сильно влияет на протекающий ток. Значительно большее сопротивление могут оказывать полупроводники и диэлектрики.

Сужающийся проводник на схеме изображен лишь для примера, для понимания сути происходящего процесса.

Формула закона Ома — зависимость сопротивления и силы тока

I = E/R

Как вы видите из формулы, сила тока обратнапропорциональна сопротивлению цепи.

Больше сопротивление = Меньше ток

 

* при условии что напряжение постоянно.
 

Изменение напряжения.

На изображенной схеме во всех системах сопротивление имеет одинаковую величину.
В этот раз на картинке изменяется сопротивление/давление.

Вы можете увидеть что при увеличении напряжения приводит к увеличению протекающего тока даже при постоянном сопротивлении.

Формула закона Ома — зависимость напряжения и силы тока

I = E/R

Обратите внимание что сила тока протекающего в проводнике прямопропорциональна напряжению.

Больше напряжение = Больше сила тока

 

* при условии что сопротивление постоянно.
 

Математический рассчет


Рассмотрим пример.
У нас есть аккумуляторная батарея с напряжением питания 12 Вольт. К ней напрямую подключен резистор (сопротивление) 10 Ом. Для того что бы рассчитать какая мощность приложена к нашему резистору, можно воспользоваться формулой.

P = E2/R
P = 122/10
P = 144/10.
P = 14.4 watts

Мощность рассеиваемая на резисторе состовляет 14,4 Ватта.

Если вы хотите определить величину тока протекающего через проводник, мы используем другую формулу

I = E/R
I = 12/10
I = 1.2 amps

Сила тока протекающего через цепь составляет 1,2 Ампера
—————-
Калькуляторы зависимости напряжения, силы тока и сопротивления.
 

1. Калькулятор рассеиваемой мощности  и протекающей силы тока в зависимости от сопротивления и приложенного напряжения.

 


Демо закона Ома в реальном времени.

Для справки
В данном примере вы можете увеличивать напряжение и сопротивление цепи. Данные изменения в реальном времени будут изменять силу тока протекающего в цепи и мощность рассеиваемую на сопротивлении.

Если рассматривать аудио системы — вы должны помнить что усилитель выдает определенное напряжение на определенную нагрузку (сопротивление). Соотношение двух этих величин определяет мощность.
Усилитель может выдать ограниченную величину напряжения в зависимости от внутреннего блока питания и источника тока. Так же точно ограничена и мощность которую может подать усилитель на определенную нагрузку (к примеру 4 Ома).
Для того что бы получить больше мощности, вы можете подключить к усилителю нагрузку с меньшим сопротивлением (к примеру 2 Ома). Учтите что при использовании нагрузки с меньшим сопротивлением — скажем в два раза (было 4 Ома, стало 2 Ома) — мощность тоже возрастет в два раза.(при условии что данную мощность может обеспечить внутренний блок питания и источник тока).
Если мы возьмем для примера моно усилитель мощностью 100 Ватт на нагрузку 4 Ома, зная что он может выдать напряжение не более 20 Вольт на нагрузку.
Если вы поставите на нашем калькуляторе бегунки
Напряжение 20 Вольт
Сопротивление 4 Ома
Вы получите
Мощность 100 Ватт  
 
Если вы сдвинете бегунок сопротивления на величину 2 Ома, вы увидите как мощность удвоится и составит 200 Ватт.

В общем примере источником тока является аккумуляторная батарея (а не усилитель звука) но зависимости силы тока, напряжения, сопротивления и сопротивления одинаковы во всех цепях.
 

 

формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Труд электричества

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q. Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I. Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.

В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:

  1. Активная.
  2. Реактивная.
  3. Полная.

Активный компонент

Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.

В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.

Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.

В полную силу

Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).

С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.

Критерий полезности

Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.

В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.

Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.