+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Катушка Тесла. Устройство и виды. Работа и применение

Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.

Разновидности

Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.

SGTC – катушка, работающая на искровом разряде, имеет классическое устройство, используемое самим Теслой. В этой конструкции элементом коммутации является разрядник. У маломощных устройств разрядник выполнен в виде двух отрезков толстого проводника, находящихся на определенном расстоянии. В устройствах большей мощности используются вращающиеся разрядники сложной конструкции с применением электродвигателей. Такие трансформаторы производят при необходимости получения стримера большой длины, без каких-либо эффектов.

VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.

SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.

DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов.

При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.

Устройство и работа

Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.

Тороид выполняет несколько функций:
  • Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
  • Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
  • Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.

Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.

Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.

Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.

Первичная обмотка чаще всего выполняется из медной трубки, применяемой в кондиционерах. Сопротивление первичной обмотки должно быть небольшим, так как по ней будет проходить большая сила тока. Трубку чаще всего выбирают толщиной 6 мм. Также можно использовать для намотки проводники большого сечения. Первичная обмотка является своеобразным элементом подстройки в таких катушках Тесла, в которых первый контур резонансный. Поэтому место подключения питания выполняют с учетом его перемещения, с помощью которого меняют частоту резонанса первого контура.

Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.

Катушка Тесла должна иметь заземление. Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.

Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.

В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.

При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.

Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.

Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
  • Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Малоизвестные эффекты катушки Тесла

Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.

Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Применение
  • Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
  • Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
  • Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
  • Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Катушка Тесла на будущее

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.

Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

Похожие темы

Страничка эмбеддера » Как работает трансформатор Тесла на пальцах. Часть 1.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают принцип ее работы.

Я планирую целый цикл статей по поводу устройства и работы трансформатора теслы. В этой части я помогу вам разобраться – какие виды тесел бывают, что у них общего и в чем они отличаются.

Как читать эту статью.

Эта статья предполагает, что вы знаете, что такое электрический ток и чем конденсатор отличается от катушки. Я буду стараться излагать все, как можно проще, но, к сожалению, я не всесилен. Если какие-либо моменты останутся непонятными, прошу прочитать еще раз, если и это не поможет, прошу оставить комментарий.

Для того, чтобы не прерывать рассказ ненужными подробностями, но оставаться политкорректным, я буду делать сноски. Сноска будет обозначаться таким образом — [12].

 

Как правильно называть это устройство

Существует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”, хотя я не стесняюсь использовать и другие, такие как

Замечу, что имя Тесла не склоняется, тоесть грамматически не верно говорить “Трансформатор Теслы”, хотя, если вы так скажите, все вас поймут.

Также существуют сленговые названия трансформатора Тесла, некоторые из них

Часто трансформатор называют его типом – СГТЦ, ССТЦ итп.

 

Принцип работы Трансформатора Тесла.

Трансформатор Тесла состоит из двух обмоток[1] – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле.  При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

Подробнее про колебательный контур можно почитать по ссылкам: Статья, очень просто описывающая колебательный контур, Wikipedia, Yandex, Google.

Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.

Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Есть одна очень хорошая аналогия —

 

Аналогия с качелями

Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качель – это ток в во вторичной обмотке, а высота подъема  – наше долгожданное напряжение.

Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха и мы видим наши красивущий стример.

Естественно, раскачивать качели нужно не абы-как, а в точном согласии с их собственными колебаниями.  Количество колебаний качель в секунду называется “резонансная частота”.

Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице.  Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.

Теперь рассмотрим ситуация, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний.

Такие качели и есть аналогом трансформатора Тесла.

Итак, чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.

Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качель (максимальной длинны стримера).

Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем.

 

Основные виды катушек тесла

Сам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ). С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла. Типы катушек принято называть из английскими аббревиатурами. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода.

Самые распространенные типы катушек тесла:

  • SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор тесла на разряднике. Самая первая и “классическая” конструкция (ее использовал сам Тесла). В качестве ключевого элемента использует разрядник. В маломощных конструкциях разрядник – просто два куска провода, находящихся на некотором расстоянии, а в мощных – сложные вращающиеся разрядники. Трансформаторы этого типа идеальны если вам нужна только большая длинна стримера.

  • VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор тесла на лампе. В качестве ключевого элемента используется мощная радиолампа. Такие трансформаторы могут работать в непрерывном режиме и выдавать толстые, “жирные” стримеры. Этот тип чаще всего используют для высокочастотных тесел, которые из-за характерного вида своих стримеров получили название “факельник”.

  • SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор тесла, в котором в качестве ключевого элемента используются полупроводники. Обычно это MOSFET или IGBT транзисторы. Этот тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых этой катушкой может быть самый различный. Этим типом Тесел проще всего управлять (играть музыку, к примеру).

  • DRSSTC (ДРССТЦ, ДРка, Dual Resonant Solid State Tesla Coil) – трансформатор с двумя резонансными контурами, в котором в качестве ключей используются полупроводники, в подавляющем большинстве случаев, это IGBT транзисторы. ДРССТЦ – самый сложный в изготовлении и настройке тип трансформаторов тесла. Характерная длинна стримеров трансформатора этого типа немного меньше чем у SGTC, а управляемость немногим хуже, чем у SSTC.

Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.

 

 

Основные детали катушки тесла

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажу о основных деталях теслы сверху вниз.

  • Тороид – выполняет три функции.

    Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

    Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии  и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом,  увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

    Третяя – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

    От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички [4].

    Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий, ознакомиться с которыми можно тут.

  • Вторичка – основная деталь теслы.

    Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1. 

    Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу [5].

    Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

    Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

    С нюансами вторичных обмоток можно ознакомиться тут

  • Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичка). Защитное кольцо заземляется на общее заземление отдельным проводом.

  • Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

    Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

    Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

    Первичные обмотки обычно делают цилиндрическими, плоскими или  коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC  и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

     

    Тема на форуме про первичные обмотки

  • Заземление – как не странно, тоже очень важная деталь теслы.

    Очень часто мне задают вопрос – куда же бьют стримеры? Я эту картинку я уже показывал в статье про плазменный шар, но покажу еще раз, и отвечу на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.
    Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться  в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно [2][3].

[1]: Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

[2]: Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

[3]: теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало.  Внимание! Изготовление тесел с противовесами представляет намного большую опасность, чем тесел с простым заземлением, потому как вся конструкция находится под высоким относительно земли потенциалом. А относительно большая емкость между противовесом и окружающими предметами способна негативно на них повлиять.

[4]: Это правило справедливо для “пней” – вторичных обмоток с отношением длинны к диаметру до 5:1

[5]: Это правило справедливо для тесел с мощностью меньше 20кВА

Задать вопросы по статье можно, оставив комментарий, методические-же вопросы обсуждаются в Этой ветке форума flyback.org.ru. 

 

Следующая часть >>

Катушка Тесла своими руками. Схема, принцип работы

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

 

 

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

 

 

Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

 

 

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии  контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор.

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.

 

  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

 

 

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Катушка Тесла своими руками

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

 

 

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мерах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка Тесла

 

 

Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.

Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.

Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Катушка Тесла

Описание
Никола Тесла – гениальный физик, инженер, изобретатель в области электротехники и радиотехники. А в школе о нем упоминается только когда говорят о единице индуктивности. Поэтому было принято решение сделать кое-что по «рецептам» Тесла – катушку Тесла. С помощью катушки Тесла в процессе изучения физики можно демонстрировать удивительные электрические явления, что сделает обучение наглядным и понятным.
Катушка Тесла – резонансный трансформатор, производящий высокое напряжение высокой частоты. Состоит из двух катушек, у которых нет общего железного сердечника. Первичная обмотка – несколько витков провода большого диаметра, а вторичная – несколько тысяч витков провода меньшего диаметра.
Созданная модель с первичной катушкой из 7 витков и вторичной  из 2160 витков была использована на уроке физике при изучении газовых разрядов.
Работа над проектом проходила с июня по ноябрь 2016 г.

Цель
Изготовить катушку Тесла, которую можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений.

Задачи:
1. Исследовать материал по данной теме.
2. Познакомиться с принципом работы катушки Тесла.
3. Создать действующую модель катушки Тесла
4. Провести опыты, демонстрирующие работу катушки Тесла.

Результаты
Коэффициент трансформации данной модели трансформатора Тесла K≈ N1/N2 =7/2160=0,003.
При входном напряжении в 90 по расчетам с учетом коэффициента трансформации выходное напряжение составляет 30 000 В. Поле определяется детектором даже на расстоянии одного метра.
Таким образом, вокруг установки существует электромагнитное поле высокой напряженности.
С помощью изготовленной модели катушки Тесла можно продемонстрировать следующие эффектные эксперименты:
1. Тлеющий разряд – свечение спектральных трубок, наполненных инертными газами: гелием, криптоном, неоном.
2. Разряд в люминесцентной лампе.
3. При близком поднесении металлического проводника к терминалу трансформатора между ним и терминалом возникает разряд, при этом разряд ударяется о проводник, а проводник остается холодным.
Собранная модель катушки Тесла является простым и очень дешевым устройством, так как все, что нужно для сборки, можно достать в любом магазине электротехнических товаров.

Оснащение и оборудование, использованное при создании работы
1. Изолированный эмалированный медный  
провод диаметра 1,2 мм
2. Изолированный медный эмалированный
провод диаметром 0,2 мм
3. Резистор 15 Ом
4. Переменный резистор B50K
5. Транзистор 13007A
6. Радиатор
7. 10 батареек типа «Крона»
8. Клеевой пистолет
9. Паяльник
10. Люминесцентная лампа
11. Газоразрядные трубки

Работа была представлена:
— Конкурс исследовательских работ и творческих проектов обучающихся колледжей и старших школьников «Искусство познания» – 1 место.
— Московский городской конкурс научно-исследовательских и проектных работ обучающихся – призер финала.
— Научно-практическая конференции «Инженеры будущего» – победитель.
— 21-я Региональная научно-практическая конференция школьников «Творчество юных» – 3 место.

Перспективы развития результатов работы
Собранную модель можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений. С помощью данного устройства можно проводить эффектные эксперименты, которые вызовут интерес обучающихся, повысят их познавательную активность, позволят обучение сделать наглядным, понятным, интересным. 

Особое мнение

«Участие в конференции «Инженеры будущего» стало очень значимым для меня, я получил опыт выступления, опыт стендовой защиты, опыт участия в мероприятии такого высокого уровня», – говорит автор работы.

Принцип работы музыкальных Катушек Тесла

Любой звук это механическая волна в воздухе, которая характеризуется амплитудой и частотой. Определенной музыкальной ноте, которую играет музыкальный инструмент, соответствует своя частота, амплитуда при этом определяет громкость ноты. Например, ноте ДО малой октавы соответствует частота 130,81Гц, а ноте ЛЯ первой октавы соответствует частота 440Гц.

Любой повторяющийся процесс с частотой 440Гц, который вызовет колебания воздуха, будет восприниматься ухом похожим на ноту ЛЯ. Музыкальная Катушка Тесла работает именно по этому принципу.

При включении Катушка Тесла генерирует электрический разряд в воздухе, который вызывает фактическую детонацию и последующую звуковую волну. Используя описанный принцип и включая Катушку Тесла с нужной нам частотой, мы можем проигрывать музыкальные ноты последовательностью «микровзрывов». Пояснения этого процесса изображено на рисунке ниже. Для проигрывания ноты ЛЯ, с частотой 440Гц необходимо включать Катушку Тесла с частотой 880Гц т.е. в два раза большей, т.к. синусоидальная звуковая волна имеет положительную и отрицательную амплитуду за один период.

При этом Катушка Тесла играет некие «псевдо» ноты, что создает неповторимое электрическое звучание. Из рисунка видно что, чем ниже нота, тем реже включается Катушка Тесла и тем меньше потребляемая мощность, следовательно, разряд уменьшается и больше ветвится, а на высоких частотах разряд обретает мощь и громкость. Чередую высокие и низкие частоты можно добиться лучшего визуального восприятия композиции. Чтобы создать симметрию и разнообразие необходимо несколько раз играть высокие ноты на одной Катушке Тесла, а низкие на другой, а затем менять их местами.

Для проигрывания практически любой мелодии достаточно двух Катушек Тесла, каждая из которых независимо воспроизводит свою ноту, создавая стереозвучание.

ВАЖНО! В один момент времени одна Катушка Тесла может воспроизводить только одну ноту, это следует помнить при написании музыки (при этом возможно проигрывать на одной Катушке Тесла несколько нот одновременно, но это искажает звук и усложняет проект, поэтому этот режим не используется).

Как проигрывается музыка?

Для работы двух Катушек Тесла используется два миди канала — первый и второй. Каждая Катушка Тесла воспроизводит по одной ноте последовательно из своей миди дорожки.

Ноты поступают в пульт управления Катушками Тесла по миди кабелю. При этом пульт можно подключить к миди-синтезатору и проигрывать музыку в реальном времени, или подключить к компьютеру и проигрывать заранее записанные миди треки.

Катушки Тесла имеют ограниченный диапазон проигрывания нот. Рекомендуется использовать ноты от С1 (ДО контроктавы) до h5 (CИ первой октавы). Ноты в других октавах проигрываться пультом не будут. Это связано с плохим восприятием на слух очень низких нот и очень большой нагрузкой по мощности при более высоких нотах.

Рекомендуется оставлять оригинальный музыкальный трек, который будет воспроизводиться параллельно через мощные колонки. Это позволяет заполнить паузы, добавить басы и повысить узнаваемость мелодии.

Пример создания композиции в программе Cubase

Для примера ниже показаны обработанная композиция Баха Токката и фуга ре минор и видео с исполнением этой композиции.

Делаем простой тесла генератор , катушка Теслы своими руками

 Сегодня я собираюсь показать вам, как я построить простую катушку Тесла! Вы могли видеть такую катушку в каком то магическом шоу или телевизионном фильме . Если мы будем игнорировать мистическую составляющую  вокруг катушки Тесла, это просто высоковольтный резонансный трансформатор который работает без сердечника. Так, чтобы не заскучать от скачка теории давайте перейдем к практике.

Схема данного устройства очень простая — показана на рисунке .

Для создания нам нужны следующие компоненты :

— источник питания, 9-21V , это может быть любой блок питания 

— маленький радиатор

— транзистор 13009 или 13007, или почти любые транзисторы NPN с аналогичными параметрами

— переменный резистор 50kohm

— 180Ohm резистор

— катушка с проводом  0,1-0,3, я использовал 0. 19mm,, около 200 метров.

Для намотки нужен  каркас , это может быть любой диэлектический материал —  цилиндр примерно 5 см и длиной 20 см. В моем случае это часть 1-1 / 2 дюйма ПВХ трубы из строительного магазина .

Начнем с самой сложной части — вторичной обмотки. Он имеет 500-1500 мотков катушки , мой около 1000 оборотов. Закрепить начало провода с выводом и начать наматывать основной слой — для ускорения процесса можно это делать шуруповертом .Так же желательно вспрыснуть уже намотаную катушку лаком .

Первичная катушка намного проще, я положил бумажную ленту липкой стороной наружу, в случае, чтобы сохранить способность передвигать позицию  и намотайте ее на 10 витков провода.

Вся схема собрана на макетной плате. Будьте осторожны при пайке переменного резистора! 9/10 катушки не работает из-за неправильно припаянного резистора . Подключение первичных и вторичных обмоток тоже не легкий процесс ,  т.к изоляция последних имеет специальное покрытие , которое должно быть зачищено перед пайкой .

Таким образом, мы сделали катушку Теслы . Перед тем, как включить питание в первый раз, поместите переменный резистор в среднем положении и поставите лампочку вблизи катушки, и тогда вы сможете увидеть эффект беспроводной передачи энергии . Включите питание, и медленно поворачивайте переменный резистор. Это довольно слабая катушка, но каким-либо образом бытдьте осторожны и не размещайте  рядом  электронные устройства: такие как сотовые телефоны, компьютеры и т.д.  с рабочей зоной  катушки .

Спасибо за внимание 

Так же не забываем о экономии при покупке товаров на Алиєкспресс с помощью кэшбэка 

Для веб администраторов и владельцев пабликов  главная страница ePN

Для пользователей покупающих на Алиэкспресс с быстрым выводом % главная страница ePN Cashback

Удобный плагин кэшбеэка браузерный плагин ePN Cashback

Применение катушки тесла.

Трансформатор Тесла из Китая Эксперименты с катушками тесла схемы

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

О сколько нам открытий чудныхГотовят просвещенья духИ опыт, сын ошибок трудных,И гений, парадоксов друг,И случай, бог изобретатель…

А.С. Пушкин

Введение

Актуальность темы

Экспериментальная физика имеет огромное значение в развитии науки. Лучше один раз увидеть, чем сто раз услышать. Никто не будет спорить с тем, что эксперимент — это мощный импульс к пониманию сущности явлений в природе.

В наше время остро стоит вопрос о передаче энергии на расстояние, в частности передача энергии беспроводным способом. Здесь можно вспомнить идеи великого ученого Николы Тесла, который занимался этими вопросами еще в 1900х годах и добился внушительного успеха, построив свой знаменитый резонансный трансформатор — катушку Тесла. Вот и я решил разобраться в этом вопросе самостоятельно, попытавшись повторить эти эксперименты.

Цели исследовательской работы

Собрать действующие катушки Тесла по транзисторной технологии (Class-E SSTC) и по ламповой технологии (VTTC)

Пронаблюдать образование различных видов разрядов и выяснить, насколько они опасны.

Передать энергию беспроводным способом, при помощи катушки Тесла

Изучить свойства электромагнитного поля, генерируемого катушкой Тесла

Изучить практическое применение катушки Тесла

Предмет исследования:

Две катушки Тесла, собранные по разным технологиям, поля и разряды, генерируемые этими катушками.

Методы исследования:

Эмпирические: наблюдение высокочастотных электрических разрядов, исследование, эксперимент.

Теоретические: конструирование катушки Тесла, анализ литературы и возможных электрических схем сборки катушки.

Этапы исследования:

Теоретическая часть. Изучение литературы по проблеме исследования.

Практическая часть. Изготовление трансформаторов Тесла и проведение опытов с построенным оборудованием.

Теоретическая часть

Изобретения Николы Тесла

Никола Тесла — изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. Именем Н. Тесла названа единица измерения плотности магнитного потока. Современники-биографы считали Тесла «человеком, который изобрёл XX век» и «святым заступником» современного электричества. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В свободное время Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

В 1885 году Никола представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром метрового диаметра. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 метров, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является трансформатор (катушка) Тесла.

Трансформатор Тесла, также катушка Тесла — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

Практическая часть.

Катушка Тесла (Class-ESSTC )

Резонансный трансформатор состоит из двух катушек, у которых нет общего железного сердечника, — это нужно для создания низкого коэффициента связи. На первичной обмотке находится несколько витков толстого провода. На вторичную обмотку наматывают от 500 до 1500 витков. За счет такой конструкции катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на вторичной обмотке к количеству витков на первичной. При этом должно соблюдаться условие возникновения резонанса между первичным и вторичным колебательными контурами. Напряжение на выходе такого трансформатора может превышать несколько миллионов Вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Я выбрал одну из схем.

Установку я собирал сам на основе вышеуказанной схемы (Рис. 1). Катушка, намотанная на каркасе от пластмассовой (сантехнической) трубы с диаметром 80 мм. Первичная обмотка содержит всего 7 витков, провод диаметром 1 мм, был использован одножильный медный провод МГТФ. Вторичная обмотка содержит около 1000 витков обмоточного провода диаметром 0,15 мм. Вторичная обмотка мотается аккуратно, виток к витку. В результате получилось устройство производящее высокое напряжение при высокой частоте. (Рис.2)

Большая катушка Тесла (VTTC )

Эта катушка собрана на базе генераторного пентода гу-81м по автогенераторной схеме, т.е. с самовозбуждением тока сетки лампы.

Как видно по схеме (Рис.3), лампа подключена как триод, т.е. все сетки объединены между собой. Конденсатор C1 и диод VD1 образуют однополупериодный удвоитель. Резистор R1 и конденсатор C3 нужны для регулировки режима работы лампы. Катушка L2 нужна для возбуждения тока сетки. Первичный колебательный контур образуется из конденсатора C2 и катушки L1. Вторичный колебательный контур образован катушкой L3 и ее собственной межвитковой емкостью. Первичная обмотка на каркасе диаметром 16 см содержит 40 витков с отводами от 30, 32, 34, 36 и 38 витков, для подстройки резонанса. Вторичная обмотка содержит около 900 витков на каркасе диаметром 11см. Сверху вторичной обмотки находится тороид, — он необходим для накопления электрических зарядов.

Обе этих установки (Рис.2 и Рис.3) предназначены для демонстрации высокочастотных токов высокого напряжения и способов их создания. Также катушки могут быть использованы для беспроводной передачи электрического тока. В ходе работы я продемонстрирую действие и возможности изготовленных мною катушек Тесла.

Экспериментальные опыты применения катушки Тесла

С готовой катушкой Тесла можно провести ряд интересных опытов, однако необходимо соблюдать правила безопасности. Для проведения опытов должна быть очень надежная проводка, вблизи катушки не должно быть предметов, должна быть возможность аварийно обесточить оборудование.

Во время работы катушка Тесла создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Обычно люди собирают эти катушки для того, чтобы посмотреть на эти впечатляющие, красивые явления.

Катушка Тесла может создавать несколько видов разрядов:

-Спарки — это искровые разряды между катушкой, и каким либо предметом, производит характерный хлопок, из-за резкого расширения газового канала, как при природной молнии, но в меньшем масштабе.

-Стримеры — тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Протекает от терминала катушки прямо в воздух, не уходя в землю. Стример — это видимая ионизация воздуха. Т.е. свечение ионов, которые образует высокое напряжение трансформатора.

-Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг высоковольтных частей конструкции с сильной кривизной поверхности.

-Дуговой разряд — образуется при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет. Между ним и терминалом загорается дуга.

Некоторые химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет голубоватый цвет разряда на оранжевый, бор — на зелёный, марганец — на синий, а литий — на малиновый окрас.

При помощи данных катушек можно провести ряд довольно интересных, красивых и эффектных экспериментов. Итак, начнем:

Опыт 1: Демонстрация газовых разрядов. Стример, спарк, дуговой разряд

Оборудование : катушка Тесла, толстая медная проволока.

Рис.4 и Рис.5

При включении катушки, с терминала начинает выходить разряд, который в длину 5-7мм

Опыт 2: Демонстрация разряда в люминесцентной лампе

Оборудование : катушка Тесла, люминесцентная лампа (лампа дневного света).

Рис.6 Рис.7

Наблюдается свечение в люминесцентной лампе на расстоянии до 1 м. от установки.

Опыт 3: Эксперимент с бумагой

Оборудование : катушка Тесла, бумага.

Рис.8 Рис.9

При внесении бумаги в разряд, стример быстро охватывает ее поверхность и через несколько секунд бумага загорается

Опыт 4: «Дерево» из плазмы

Оборудование : катушка Тесла, тонкий многожильный провод.

Разветвляем жилы у заранее зачищенного от изоляции провода, и, прикручиваем к терминалу, в результате получаем «дерево» из плазмы.

Опыт 5: Демонстрация газовых разрядов на большой катушке Тесла. Стример, спарк, дуговой разряд

Оборудование

Рис.11 Рис.12 Рис.13

При включении катушки, с терминала начинает выходить разряд, который в длину 45-50см, при поднесении предмета к тороиду — загорается дуга

Опыт 6: Разряды в руку

Оборудование : большая катушка Тесла, рука.

Рис.14 Рис.15

При поднесении руки к стримеру разряды начинают бить в руку, не причиняя боль

Опыт 7: Демонстрация газовых разрядов из предмета, находящегося в поле катушки Тесла.

Оборудование : большая катушка Тесла, толстая медная проволока.

Рис.16 Рис.17

Рис.18 Рис.19

При внесении медной проволоки в поле катушки Тесла (с убранным терминалом), происходит появление разряда из проволоки в сторону тороида.

Опыт 8: Демонстрация разряда в шаре, наполненного разреженным газом, в поле катушки Тесла

Оборудование : большая катушка Тесла, шар наполненный разреженным газом.

Рис.20 Рис.21

Рис.22 Рис.23

При внесении шара в поле катушки Тесла загорается разряд внутри шара.

Опыт 9: Демонстрация разряда в неоновых и люминисцентных лампах.

Оборудование : большая катушка Тесла, неоновые и люминисцентные лампы.

Рис.24 Рис.25

При внесении лампы в поле катушки Тесла загорается разряд внутри неоновых и люминисцентных ламп на расстоянии до 1,5 м..

Опыт 10: Разряды из руки

Оборудование : большая катушка Тесла, рука с напальчниками из фольги.

Рис.26 Рис.27 Рис.28

При внесении руки в поле катушки Тесла (с убранным терминалом), происходит появление разряда с напальчников в сторону тороида.

Заключение

Все поставленные цели выполнены. Я построил 2 катушки и на их примере доказал следующие гипотезы:

Катушка Тесла может генерировать реальные электрические разряды различных видов.

Разряды, создаваемые катушкой тесла, безопасны для человека и не могут нанести ему урон путем удара электрическим током. К выходной катушке высокого напряжения можно даже прикоснуться куском металла или рукой. Почему при прикосновении к источнику напряжения 1 000 000 В высокой частоты с человеком ничего не случается? Потому что при протекании тока высокой частоты наблюдается так называемый скин-эффект, т.е. заряды текут только по краям проводника, не трогая сердцевину.

Ток протекает по коже, и не касается внутренних органов. Именно поэтому можно безопасно касаться этих молний.

Катушка Тесла может передавать энергию без проводов путем создания электромагнитного поля.

Энергия этого поля может передаваться как на любые предметы в этом поле, от разреженных газов, до человека.

Современное применение идей Николы Тесла:

Переменный ток является основным способом передачи электроэнергии на большие расстояния.

Электрогенераторы являются основными элементами в генерации электроэнергии на электростанциях турбинного типа (ГЭС, АЭС, ТЭС).

Электродвигатели переменного тока, впервые созданные Николой Тесла, используются во всех современных станках, электропоездах, электромобилях, трамваях, троллейбусах.

Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран и т. п.

Беспроводные заряжающие устройства уже используются для зарядки мобильных телефонов.

Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния

Использование в развлекательных целях и шоу.

В фильмах эпизоды строятся на демонстрации трансформатора Тесла, в компьютерных играх.

В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам, оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

Ошибочно мнение, что катушки Тесла не имеют широкого практического применения. Основное их использование приходится на развлекательно-медийную сферу развлечений и шоу. При этом сами катушки или устройства, использующие принципы работы катушек, довольно распространены в нашей жизни, о чем свидетельствуют вышеприведенные примеры.

Литература

    Пиштало В. Никола Тесла. Портрет среди масок. — М: Азбука-классика, 2010

    Ржонсницкий Б. Н. Никола Тесла. Жизнь замечательных людей. Серия биографий. Выпуск 12. — М: Молодая гвардия, 1959.

    Фейгин О. Никола Тесла: Наследие великого изобретателя. — М.: Альпина нон-фикшн, 2012.

    Тесла и его изобретения. http://www.374.ru/index.php?x=2007-11-19-20

    Цверава Г. К. Никола Тесла, 1856-1943. — Ленинград. Наука. 1974.

    Википедия https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D1%81%D0%BB%D0%B0,_%D0%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0

7. Никола Тесла: биография http://www.people.su/107683

Трансформатор Тесла своими руками

Наша рабочая модель самодельного трансформатора Тесла в действии

1. Описание: катушки Тесла- это простейший трансформатор, состоящий из двух катушек без общего сердечника. Первичная обмотка (первичка) имеет несколько (3-10) витков толстого провода. Вторичная (высоковольтная) обмотка содержит намного больше витков, порядка 1000. Трансформатор Тесла обладает коэффициентом трансформации в 10-50 раз выше отношения числа витков вторичной обмотки к числу витков первичной. Выходное напряжение трансформатора Тесла может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь значительную длину, в зависимости от мощности конечно.

применение простейшей катушки Тесла в быту.

2. Изобретение: «Трансформатор Тесла» в том виде, который нам известен, стал итогом одного из экспериментов в Колорадо-Спрингс (США) проходивших в далёком 1899 году. Предвестником изобретения стало открытие, сделанное Николой Тесла в 1888 году явления вращающегося магнитного поля и строительство электрогенератора высокой и сверхвысокой частот. В 1891 году учёный создаёт резонансный трансформатор, позволяющий получать высокочастотное напряжение с амплитудой до нескольких миллионов вольт. В своих изысканий Никола Тесла доказал возможность создания стоячей электромагнитной волны. Само изобретение наружу кажется очень простым и незамысловатым, в действительности самое сложное в трансформаторе Тесла, — это цепь питания для первичной обмотки трансформатора.

3. Эксперимент: работая с гигантской катушкой, Тесла дошёл до строительства целой башни высотой в несколько десятков метров, которую венчала большая медная полусфера, и при включении установки возникали искровые разряды длиной до сорока метров. Молнии сопровождались громовыми раскатами, слышимыми за 24 километра. Вокруг самой башни, во время её работы, пылал огромный световой шар. Идущие по улице, люди испуганно шарахались с ужасом наблюдая, как между их ногами и землёй проскакивают искры. Лошади получали электрошоковые удары через железные подковы. На многих, в том числе значительно удалённых, металлических предметах возникали синие ореолы – «огни святого Эльма».

Башня Ворденклиф при лаборатории Николы Тесла 1901-1917- первая беспроводная телекоммуникационная башня

Человек, устроивший всю эту электрическую фантасмагорию в 1899 году из своей лаборатории в Колорадо-Спрингс, вовсе не собирался пугать людей. Его цель была иной, и она была достигнута: за двадцать пять миль от башни под аплодисменты наблюдателей разом загорелись 200 электрических лампочек. Электрический заряд был передан без всяких проводов.

4. Как сделать простейшую катушку Тесла: Берём любой источник высокого напряжения (МИНИМУМ 1.5кВ и вообще привыкайте, что теперь вольтов не существует, есть только кВ, а 1.5кВ так же мало, как 1.5В в обычной жизни) лучше брать не меньше 5 кВ, его подключаем к любому конденсатору на нужное напряжение (если ёмкость слишком большая, то нужен будет ещё и диодный мост, но для начала лучше экспериментировать с малыми емкостями).

Затем через искровой промежуток — два провода, смотанные изолентой, так что их оголённые концы смотрят в одну сторону (подгибая проволоку провода регулируем зазор, настроенный на пробой при напряжении чуть выше напряжения источника, ток-то переменный, так что в пике напряжение выше номинального), подключаете это дело к первичной обмотке катушки (для наших параметров лучше брать 5-6 витков). Для вторичной обмотки достаточно будет 150 витков (можно намотать на обычную картонную трубку) и, если Вы всё сделали правильно, то получите разряд в 1см если приблизить выводы катушки и довольно заметную корону, если их развести. Да, не забудьте один нижний вывод вторичной обмотки хорошенько заземлить.

Простейший трансформатор Тесла в работе. Для его создания понадобился высоковольтный источник питания.

Цель данной стать

и- показать как своими руками можно сделать настоящую трансформатор (катушку) Тесла с нуля. Итак, начнём!

5. Требования к оборудованию: для Теслы, которую не стыдно показать, уже нужно попотеть.

а) Входное напряжение нужно МИНИМУМ 6кВ, иначе искровик стабильно работать не будет (настройка будет сбиваться).
б) Искровик должен быть из масивных кусков меди, желательна их честкая фиксация в нужном положении.
в) Мощность на входе не ниже 50Вт, но лучше 100+.
г) Конденсатор и первичная обмотка должны образовывать колебательный контур, попадающий в резонанс со вторичной обмоткой. Вторичная обмотка может иметь много кратных резонансов (например, в нашей схеме резонирует на 200, 400, 800 и 1200кГц, почему так — не знаю, но это проверено экспериментально на точном оборудовании), причём одни сильнее, а другие слабее (первый не обязательно самый сильный) и они зависят от расположения первичной обмотки. Как определить эти частоты без генератора частот не знаю — придётся использовать метод «научного тыка”, перематывая первичную обмотку и меняя ёмкость конденсатора.
д) Ещё потребуется либо относительно маленькая ёмкость конденсатора (чтобы он до большого напряжения переменным током заряжался), либо диодный мост выпрямления тока (с мостом мне как-то спокойнее — можно любую ёмкость подключать, но там нужен резистор для её разрядки, после выключения питания либо в ручную его закорачивать, а то он ОЧЕНЬ больно бьёт током).
е) Первичная обмотка должна быть хорошо заизолирована от вторичной, иначе пробьёт на неё. Вторичная обмотка также должна иметь хорошую межвитковую изоляцию, иначе из каждой царапины на лаке будет идти корона, либо вообще вся катушка будет светиться.

А теперь поговорим о том, как создать катушку, подобную той, что изображена на самом верху!

6.СХЕМА ТРАНСФОРМАТОРА ТЕСЛА

Принципиальная схема трансформатора Тесла, по которой собрана наша катушка.

Как Вы видите, в данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить! Начнём по-порядку.

7. Принципы безопасности:

Прежде чем начинать какую либо практическую работу связанную с электричеством, очень важно для себя оценить всю его опасность и предупредить возможные риски. Помните, что смертельный ток для человека это жалкие 0,1 Ампера, а неотпускающий – переменный ток, который за счет периодических импульсов вызывает прилипание человека к источнику тока, возникает при силе от 0,025 ампер;

Помните про опасность при работе с электричеством!

При попадании под электрическое напряжение пострадавший всегда получает шок, а вот его последствия могут быть различными: от судорог пальцев конечностей и их дрожи, от неприятных ощущений нагревания и жжения до остановки дыхания и фибрилляции сердца (бессистемного сокращения) и полной его остановки. В последнем случае кровь перестает перемещаться по сосудам, отчего человек умирает. Кроме того, электрический ток является опасным для человека, поскольку при определенных значениях его силы создается эффект прилипания к оголенным проводам из-за чрезмерного стимулирования электричеством нервных волокон. Одной из причин смерти от удара током может стать механическая травма в результате непроизвольного сокращения мышц. Может наступить потеря зрения из-за воздействия на сетчатку глаза образовавшейся электрической дуги. И, если вы не обладаете должным практическим навыком работы, то потренируйтесь сначала на более простых вещах, прежде чем начинать подобный этому большой проект.

8. Схема питания трансформатора Тесла:

8.1. МОТЫ: такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению. Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

МОТ — силовой трансформатор.

У всех МОТов первичка намотана внизу, вторичка сверху. Делается это для хорошей изоляции обмоток. На вторичке, а иногда и на первичке намотана накальная обмотка магнетрона, около 3,6 вольт. Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты. Основное их назначение — замкнуть на себя часть создаваемого первичкой магнитного потока и таким образом ограничить магнитный поток через вторичку и её выходной ток на некотором уровне. Делается это из-за того, что при отсутствии шунтов при коротком замыкании во вторичке (при дуге) ток через первичку многократно возрастает и ограничивается лишь её сопротивлением, которое и так очень мало.

Таким образом, шунты не дают трансу быстро перегреться при подключенной нагрузке. Хотя МОТ и греется, но в печке ставят вентилятор для его охлаждения и он не сдыхает. Если же шунты удалить, то мощность, отдаваемая трансом, повышается, но перегрев происходит гораздо быстрее. Шунты у импортных МОТов обычно хорошо залиты эпоксидкой и их не так просто удалить. Но сделать это всё-же желательно, уменьшится просадка под нагрузкой. Для уменьшения нагрева могу посоветовать погрузить МОТ в масло, но сделать это таким образом, чтобы масло в случае перегрева или даже возгорания не могло причинить вреда.

Батарея из трансформаторов МОТ для питания нашей катушки Тесла

Мы использовали батарею из четырёх МОТов, собранную аналогичным нашей схеме. Помните. что напряжение на вторичной обмотке многократно превышает сетевое и смертельно опасно, опасайтесь дуговых разрядов и не работайте без снятия напряжения!

8.2. Конденсаторный блок — Капы: Под Капами подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 -для установок высокой частоты!) Самое сложное в капах- это найти их.

Капы -высоковольтный конденсаторный блок

8.3. Фильтр от ВЧ: соответственно две катушки, выполняющие функцию фильтров от напряжения высокой частоты. В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

Фильтр высокой частоты и конденсаторный блок

Фильтр ВЧ и КАПы- конденсаторный блок для питания Теслы

8.4. Искровик: Искровик нужен для коммутации питания и возбуждения колебаний в контуре. Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание! Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания. Поэтому ставят балласт в виде дросселей — когда искровик замкнут дроссель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью. И да, если бы в розетке было 200 кГц, разрядник естественно был бы не нужен.

Искровик для возбуждения колебаний в контуре катушки Тесла

Искровик для возбуждения колебаний в цепи питания катушки Тесла

8.5. Тор и катушка Тесла: Наконец-то очередь дошла и до самого трансформатора Тесла. Первичная обмотка катушки Тесла состоит из 7-9 витков провода очень большого сечения, впрочем подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться. На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) . Тор, своеобразный токопроводящий бублик можно изготовить из обычной вентиляционной гофры.

Намотка катушки Тесла трудоёмкое и медитативное занятие

катушка Тесла перед сборкой

8.6. Небольшое видео про нашу самодельную катушку Тесла:

9. Практическое применение. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление) , беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняли вреда внутренним органам (см. : скин-эффект, Дарсонвализация) , оказывая при этом «тонизирующее» и «оздоравливающее» влияние. Похожая на этот трансформатор схема используется в системах зажигания двигателей внутреннего сгорания, но там она низкочастотная.

В наши дни трансформатор Тесла не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных (в том числе неисправных) ламп и для поиска течей в вакуумных системах. Есть теория, что его использовали для создания радиопомех.

Некоторые создают аттракционы, другие светильники и фокусы. один чудак и вовсе умудрился создать новогоднюю ёлку. Цвета у него получились благодаря нанесению разных веществ на излучатель. Например если нанести раствор какой нибудь борной кислоты, то будет корона зеленая. Если марганца,то вроде ярко синяя, если лития, то малиновый. Так что, катушка Тесла в руках современного человека превратилась в игрушку и только.

Применение катушки Тесла

Это должно изображать сигнализацию. Хотя совершенно очевидно, что такая близость может оказаться фатальной для электрооборудования автомобиля =)

У меня есть своя идея по применению трансформатора Тесла, но об этом в другой раз. 🙂

________________________________________________________________________

П.С. Выражаю благодарность создателю нашей катушки Тесла,

Ларионову А.

за предоставленные материалы!

Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.

Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

Принцип действия трансформатора Тесла похож на работу обычного . Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.


колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали и конструкции трансформатора Тесла


Конструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.


Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!

Стримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3. На транзисторах.

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Видео: Трансформатор Тесла

Пошаговое объяснение процесса сборки и запуска одного из самых мощных трансформаторов Тесла в России. Конструктор: Блотнер Борис

«Человек, который изобрёл 20 век!» — так Теслу называют современные биографы, и делают они это без каких-либо преувеличений. Свою известность он получил благодаря прогрессивным взглядам и умению доказывать их состоятельность. Тесла проводил опаснейшие эксперименты во имя науки, и в определённых кругах считается фигурой, связанной с мистикой. В последнем случае, скорее всего, мы имеем дело с домыслами, но что известно точно, так это то, что изобретения Николы Теслы способствовали прогрессу во всём мире.

Наследие Николы Теслы

Сначала рассмотрим важные с научной точки зрения изобретения, но редко встречающиеся в повседневной жизни современного человека.

Речь пойдёт об одном из самых известных и зрелищных изобретений Николы. Катушка Теслы является разновидностью резонансной трансформаторной схемы. Использовалось это приспособление для производства высокого напряжения высокой частоты .


Катушка Теслы была одним из инструментов изучения природы электрического тока и возможностей его использования

Тесла задействовал катушки во время проведения инновационных экспериментов в области:

  • электрического освещения;
  • фосфоресценции;
  • рентгеновской генерации;
  • высокочастотного переменного тока;
  • электротерапии;
  • радиотехники;
  • передачи электрической энергии без проводов.

Кстати, Никола Тесла был одним из тех людей, кто предсказал появление Интернета и современных гаджетов.

Катушка Теслы является ранним предшественником (наряду с индукционной катушкой) более современного устройства, называемого трансформатором обратного хода. Он обеспечивает напряжение, необходимое для питания электронно-лучевой трубки телевизоров и компьютерных мониторов. Версии этой катушки широко используются сегодня в радио, телевидении и другом электронном оборудовании.

В всей красе катушку можно увидеть в научных музеях или на специальных шоу.

Катушка Теслы в действии – это всегда зрелище:

Эта конструкция, известная также как Башня Теслы, была построена с целью осуществления беспроводной телекоммуникации и демонстрации возможности передачи электроэнергии без проводов .

По задумке Теслы Башня Ворденклиф должна была стать шагом к созданию Всемирной беспроводной системы . В его планах было установить несколько десятков приемо-передающих станций по всему миру. Таким образом, отпала бы необходимость использования высоковольтных линий электропередач. То есть фактически мы получили бы одну всемирную электростанцию. К слову, Тесле удавалось передавать электричество «по воздуху» от одной катушке к другой, так что его амбиции были небезосновательны.

Сегодня Ворденклиф – закрытый объект

Проект Ворденклиф требовал больших капиталовложений и на начальных этапах получил поддержку влиятельных инвесторов. Однако, когда работа над строительством башни была практически завершена, Тесла лишился финансирования и оказался на гране банкротства. А всё потому, что Ворденклиф могла быть предпосылкой к бесплатным поставкам электричества по всему миру, а это могло разорить некоторых инвесторов, чей бизнес был завязан на продаже электроэнергии.

Любители различных теорий заговоров связывают падение Тунгусского метеорита в Сибири и эксперименты Теслы с Башней.

Рентгеновские лучи

Вильгельм Рентген 8 ноября 1895 года официально открыл излучение, названное в честь его. Но фактически это явление первым наблюдал Никола Тесла. Ещё в 1887 году он начал проводить исследования с использованием вакуумных трубок. В ходе экспериментов Тесла фиксировал «особые лучи», способные «просвечивать» предметы . Поначалу учёный не предавал особого значения этому явлению, учитывая, что длительное воздействие рентгеновских лучей опасно для человека.


Никола Тесла первым обратил внимание на опасность рентгеновского излучения

Однако Тесла продолжал исследования в этом направлении и даже провел несколько экспериментов до открытия Вильгема Рентгена, включая фотографирование костей его руки.

К сожалению, в марте 1895 года в лаборатории Теслы произошёл пожар, и записи об этих исследованиях были утрачены. После открытия Рентгена, Никола, используя устройство с вакуумными трубками, сделал снимок своей ноги и отправил коллеге вместе с поздравлениями. Рентген похвалил Теслу за качественную фотографию.


Тот самый снимок ноги в ботинке

Вопреки расхожему мнению, Вильгем Рентген не был знаком с работами Теслы и к своему открытию пришёл самостоятельно, чего не скажешь о Гульельмо Маркони…

Радио и дистанционное управление

Инженеры разных стран работали над технологией радиосвязи, при этом исследования были независимыми друг от друга. Самый яркий пример: советский физик Александр Попов и итальянский инженер Гульельмо Маркони, которые в своих странах считаются изобретателями радио. Однако Маркони получил большую мировую известность, впервые установив радиосвязь между двумя материками (1901 г.) и получив патент на изобретение (1905 г.). Поэтому считается, что он в развитие радиосвязи внёс наибольший вклад. Но причём тут Тесла?

Радиоволны сегодня повсюду

Как выяснилось, первым природу радиосигналов выявил именно он и в 1897 году запатентовал передатчик и приёмник . Маркони взял за основу технологию Теслы и совершил свою знаменитую демонстрацию в 1901 году. Уже в 1904 году Патентное бюро лишает патента на радио Николу, а через год присуждает его Маркони. Судя по всему, тут не обошлось без финансового влияния Томаса Эдисона и Эндрю Карнеги, которые были в конфронтации с Теслой.

В 1943 году, уже после смерти Николы Теслы, Верховный суд США разобрался в ситуации и признал более значительный вклад этого учёного в качестве изобретателя радиотехнологий.

Отмотаем немного назад. В 1898 году на электротехнической выставке в Мэдисон-Сквер-Гарден Тесла продемонстрировал изобретение, которое он назвал «телеавтоматикой». Фактически это была модель лодки, перемещением которой можно управлять дистанционно через пульт.

Так выглядела радиоуправляемая лодка Теслы

Никола Тесла на деле показал возможности использования технологии передачи радиоволн. Сегодня дистанционное управление сплошь и рядом, начиная от телевизионного пульта и заканчивая полётами беспилотников.

Асинхронный двигатель и электромобиль Теслы

В 1888 году Тесла получил патент на электрическую машину, в которой под воздействием переменного тока создаётся вращение.

Не будем вдаваться в технические особенности работы асинхронного двигателя – те, кому это интересно, могут ознакомиться с соответствующим материалом на Википедии . О чём нужно знать, так это о том, что двигатель имеет простую конструкцию, не требует высоких затрат на изготовление и надёжен в эксплуатации.

Тесла намеревался использовать своё изобретение как альтернативу двигателям внутреннего сгорания . Но так уж случилось, что в этот период никто в подобных инновациях не был заинтересован, да и финансовое положение самого учёного не позволяло ему особо разгуляться.

Интересный факт! В Силиконовой долине великому изобретателю установлен памятник. Символично, что он раздаёт бесплатный Wi-Fi.

Нельзя не упомянуть и об окутанном тайной электромобиле Теслы . Именно из-за сомнительности этой истории не будем выводить её отдельным пунктом. Тем более, что тут не обошлось без электродвигателя.

1931 год, Нью-Йорк. Никола Тесла провёл демонстрацию работы автомобиля, в котором якобы вместо двигателя внутреннего сгорания был установлен двигатель переменного тока мощностью 80 л.с. Учёный колесил на нём около недели, разгоняясь до 150 км/ч. А загвоздка в следующем: двигатель работал без видимого источника питания , да и на подзарядку машина якобы никогда не ставилась. Единственное, к чему мотор был подключён, это коробочка, собранная из лампочек и транзисторов, которые Тесла купил в ближайшем магазине радиоэлектроники.


Для демонстрации был использован автомобиль Pierce Arrow1931 года

На все расспросы Никола отвечал, что энергия берётся из эфира. Газетные скептики начали обвинять его чуть ли не в чёрной магии, и раздосадованный гений, забрав свою коробочку, вообще отказался что-либо комментировать и объяснять.

Подобное событие в биографии Теслы действительно имеет место, но всё же эксперты ставят под сомнение, что он нашёл способ получать энергию для авто из «воздуха». Во-первых, в записях учёного нет и намёка на двигатель, работавший от эфира, а во-вторых, есть предположения, что Никола таким образом одурачил общественность, чтобы привлечь внимание к самой идее электрических автомобилей. А непосредственно для передвижения данного прототипа мог использоваться либо скрытый аккумулятор, либо ДВС с модернизированной системой выхлопа.

Как бы там ни было, сегодня существует компания, в каком-то смысле реализующая эту идею Теслы. Названа она именем изобретателя.

Переменный ток

Так или иначе, перечисленные выше изобретения Николы Теслы связанны с переменным током – типом эклектического тока, способного изменять направление и величину в определённые промежутки времени. Подробнее об отличиях постоянного тока от переменного можете почитать в учебнике по физике.

В нашем случае нужно знать, что при передаче переменного тока от станции к потребителю энергопотери значительно ниже, да и трансформировать его гораздо проще. Таким образом, переменный ток можно назвать более практичным в плане распространения . На этом и настаивал Тесла.

Томас Эдисон как сторонник постоянного тока и как человек, зарабатывающий на этом деньги, всячески очернял идею использования переменного тока. Он говорил об опасности этого решения и даже убивал животных переменным током. Но справедливость восторжествовала, и сегодня по проводам вашего города проходит переменный ток.

Эпилог

Изначально задумывалось, что в этой статье будут кратко освещены важнейшие изобретения Николы Теслы. Но в ходе её написания выяснилось, что весь гений этого человека невозможно раскрыть в двух словах. Тесла действительно имел прогрессивные взгляды и удивлял мир своими открытиями. К сожалению, у него не всегда получалось доносить до общественности значимость его идей, особенно в условиях давления со стороны недоброжелателей.

Резонансный генератор, катушка или трансформатор Теслы — гениальное изобретение великого хорватского изобретателя, физика и инженера. В статье будет рассмотрен один из простых вариантов реализации проекта — трансформатор Тесла.
В конструкции не использован МОТ трансформатор (почти во всех схемах трансформатора Теслы, именно МОТ служит источником питания), пришлось также создать отдельную схему преобразователя, но обо всем по порядку.

Основные части:
1) Блок питания
2) Преобразователь напряжения и высоковольтная цепь

Блок питания

Для питания такой схемы нужен достаточно мощный блок питания. К счастью, уже имелся готовый блок питания на 500 Ватт. Напряжение на вторичной обмотке трансформатора 14 Вольт, при токе в 20 Ампер. Для запитки устройства не желательно использовать импульсные источники питания.

Диодный выпрямитель использован готовый, хотя можно собрать мост из мощных отечественных диодов серии КД2010, укрепленных на теплоотвод. Для сглаживания помех использован конденсатор на 25 Вольт 2200 микрофарад (этого хватит, поскольку на схеме преобразователя уже есть конденсатор на 4700 микрофарад и дроссель для сглаживания высокочастотных помех). Подойдут похожие трансформаторы от 300 до 600-700 Ватт.

Преобразователь и высоковольтная цепь

Увидев схему преобразователя, многие зададут себе вопрос — зачем умощнять однотактный преобразователь, если можно сделать двухтактный? Вопрос конечно к месту, если бы не одно но! Дело в том, что в интернете нигде ранее не опубликованы варианты умощнения обратноходовых преобразователей, вот и было решено совместить этот вариант и найти устройству практическое применение. В итоге был собран высококачественный преобразователь с мощностью порядка 180-200 ватт и более.
Сердцем преобразователя является генератор импульсов, построенный на ШИМ контролере серииUC3845, ранее уже были предложены версии преобразователей на этой микросхеме (), но как правило стандартная схема обладала мощностью 80 ватт на пиках, и вот после недолгих экспериментов, был разработан нижеприведенный вариант.

Предварительно сигнал от микросхемы усиливается каскадом на комплементарной паре, которая построена на отечественных транзисторах серии КТ 816/817, это необходимо, поскольку начальный уровень сигнала иногда недостаточен для срабатывания полевых транзисторов. В схеме использовались три полевика серии IRL3705, при таком мощном источнике, на транзисторах рассеивается большая мощность, поэтому их нужно укрепить на теплоотводы и дополнить кулерами от компьютерных блоков питания. Частота работы преобразователя 60 килогерц, его можно изменить играя с емкостью конденсатора 4.7нФ и подбором сопротивления резистора 6. 8 кОм на схеме, уменьшая емкость и увеличивая сопротивление резистора, можно увеличить частоту преобразователя, при обратном процессе, частота работы преобразователь уменьшается.

В качестве повышающего трансформатора удобно использовать трансформатор строчной развертки от отечественных телевизоров, для получения максимальной мощности желательно использовать два строчника, высоковольтные обмотки которых, нужно соединить последовательно.

Первичная обмотка мотается на свободной стороне П-образного феррита и содержит 4-5 витков провода 3мм, для удобства намотки можно использовать несколько жил, или же многожильный провод в силиконовой или резиновой изоляции, как в данном случае. Использовать самодельные трансформаторы не желательно, поскольку они редко способны выдержать такую мощность.
Дуга на выходе высоковольтной обмотки трансформатора имеет достаточно большую силу тока, поэтому для его выпрямления использовались 4 диода серии КЦ106.

Предварительно, диоды по 2 штуки соединены параллельно, затем блоки из двух параллельно соединенных диодов соединены последовательным образом.

В накопительной части использован конденсатор на 5 киловольт с емкостью 1 микрофарад, можно использовать также блок конденсаторов, емкость и напряжение не критично и можно отклонится от указанного номинала на 10 — 15%

Искровый разрядник, или просто искровик — предназначен для разряжения емкости конденсатора на первичную обмотку катушки, его можно сделать из двух болтов, или же применить готовых вакуумный разрядник фирмы ЭПОКС с напряжением пробоя 3 – 3.5 кВ на 5 -10 ампер. Самодельный искровик из болтов удобен тем, что зазор, а следовательно и частоту разрядов можно регулировать.

Катушка намотана на каркасе от канализационной трубы с диаметром 12 см, высота 50 — 65 см, подойдут также близкие по параметрам пластмассовые трубы. ВАЖНО! Не использовать трубы из металлопластмассы. Первичная обмотка содержит всего 5 витков, провод с диаметром 3-5 мм, был использован одножильный алюминиевый провод в резиновой изоляции. Расстояние между витками 2 см.

Вторичная обмотка содержит 700-900 витков провода 0.5-0.7 мм. Вторичная обмотка мотается аккуратно, виток к витку, при ручной намотке процесс отнимает 5 часов, поэтому удобно использовать намоточный станок (хотя в моем случае катушка моталась вручную). При передышке, нужно приклеить последний виток к каркасу.

Возможности

Катушка Теслы — это демонстрационный генератор высокочастотных токов высокого напряжения. Устройство может быть использовано для беспроводной передачи электрического тока, на большие расстояния. В дальнейшем устройство будет переделано, в частности будет перемотан, точнее изменен первичный контур, если есть возможность желательно использовать медную трубу, таким образом мощность катушки резко возрастет.

Опыты с катушкой теслы

С готовой катушкой можно провести ряд интересных опытов, конечно при этом нужно соблюдать все правила безопасности.

Опыт 1. Нужен медный провод с диаметром 0.2 – 0.8 мм, который нужно намотать на каркас от широкого прозрачного скотча, или же на литровую банку. Контур содержит 15-20 витков, после чего каркас вынимаем, а витки контура закрепляем друг к другу при помощи ниток или скотча. Затем берите обычный светодиод (желательно белый или синий) и выводы светодиода припаяйте к контуру. Включите трансформатор. Контур со светодиодом отдалите от включенного трансформатора на пару метров. Можно наблюдать за свечением светодиода, без какой-либо проводной связи с источником питания. Это основной опыт, который демонстрирует возможности трансформатора Теслы.

Опыт 2. Свечение ламп дневного света на расстоянии. Это один из наиболее распространенных опытов с катушкой Теслы. Все виды подобных ламп, светятся на небольшом расстоянии от включенного трансформатора.

Правила безопасности

Трансформатор Теслы — высоковольтный генератор, нужно помнить, что на выходе устройства и в высоковольтной цепи образуется смертельно опасное напряжение (особенно на высоковольтном конденсаторе). При ведении монтажных работ, нужно заранее убедится, что контурный конденсатор полностью разряжен, использовать толстые резиновые перчатки, и не приближаться к включенному устройству. Все опыты делать вдали от цифровых устройств, высоковольтные разряды могут повредить электронику! Запомните это не качер! Играть с дугой строго запрещено! Особо опасна высоковольтная часть и высоковольтная обмотка преобразователя.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Преобразователь
ШИМ контроллер

UC3845

1 В блокнот
Биполярный транзистор

КТ817А

1 В блокнот
Биполярный транзистор

КТ816А

1 В блокнот
MOSFET-транзистор

IRF3205

2 В блокнот
Выпрямительный диод

UF4007

1 В блокнот
10 мкФ 3 В блокнот
4. 7 нФ 1 В блокнот
Электролитический конденсатор 4700 мкФ 1 В блокнот
Резистор

6.8 кОм

1 В блокнот
Резистор

5.1 кОм

1 В блокнот
Резистор

820 Ом

1 В блокнот
Резистор

5 Ом

2 В блокнот
DR Катушка индуктивности 1

Беспроводное электричество? Как работает катушка Тесла

Среди своих многочисленных инноваций Никола Тесла мечтал создать способ подачи энергии в мир без прокладки проводов по всему миру. Изобретатель был близок к этому, когда его эксперименты «безумного ученого» с электричеством привели к созданию катушки Тесла.

Катушка Тесла, первая система, которая могла передавать электричество по беспроводной сети, была поистине революционным изобретением. Ранние радиоантенны и телеграфия использовали изобретение, но вариации катушки также могут делать вещи, которые просто классные — например, стрелять молнией, посылать электрические токи через тело и создавать электронные ветры.

Тесла разработал катушку в 1891 году, до того, как обычные трансформаторы с железным сердечником стали использоваться для питания таких вещей, как системы освещения и телефонные цепи. Эти обычные трансформаторы не могут выдерживать высокую частоту и высокое напряжение, которые могут выдерживать более свободные катушки в изобретении Теслы. Концепция катушки на самом деле довольно проста и использует электромагнитную силу и резонанс. Используя медную проволоку и стеклянные бутылки, электрик-любитель может построить катушку Тесла, которая может вырабатывать четверть миллиона вольт. [Инфографика: Как работает катушка Тесла]

Установка

Катушка Тесла состоит из двух частей: первичной катушки и вторичной катушки, каждая со своим собственным конденсатором. (Конденсаторы хранят электрическую энергию так же, как батареи.) Две катушки и конденсаторы соединены искровым разрядником — воздушным зазором между двумя электродами, который генерирует электрическую искру. Внешний источник, подключенный к трансформатору, питает всю систему. По сути, катушка Тесла — это две разомкнутые электрические цепи, подключенные к искровому разряднику.

Катушка Тесла требует источника питания высокого напряжения. Обычный источник питания, питаемый через трансформатор, может производить ток необходимой мощности (не менее тысячи вольт).

В этом случае трансформатор может преобразовывать низкое напряжение основной мощности в высокое напряжение.

Как катушки Тесла генерируют электрические поля высокого напряжения. (Изображение предоставлено Россом Торо, художником по инфографике)

Как это работает

Источник питания подключен к первичной катушке. Конденсатор первичной катушки действует как губка и впитывает заряд. Сама первичная обмотка должна выдерживать большие заряды и сильные скачки тока, поэтому обмотка обычно делается из меди, которая хорошо проводит электричество. В конце концов, конденсатор накапливает такой заряд, что нарушает сопротивление воздуха в искровом промежутке. Затем, подобно выдавливанию намокшей губки, ток течет из конденсатора по первичной катушке и создает магнитное поле.

Огромное количество энергии заставляет магнитное поле быстро разрушаться и генерировать электрический ток во вторичной катушке.Напряжение, проносящееся по воздуху между двумя катушками, создает искры в искровом промежутке. Энергия колеблется между двумя катушками несколько сотен раз в секунду и накапливается во вторичной катушке и конденсаторе. В конце концов, заряд вторичного конденсатора становится настолько высоким, что он вырывается в результате впечатляющего выброса электрического тока.

Результирующее высокочастотное напряжение может осветить люминесцентные лампы на расстоянии нескольких футов без подключения электрического провода. [Фото: Историческая лаборатория Николы Теслы в Уорденклиффе]

В идеально спроектированной катушке Тесла, когда вторичная катушка достигает своего максимального заряда, весь процесс должен начинаться заново, и устройство должно стать самоподдерживающимся.Однако на практике этого не происходит. Нагретый воздух в искровом промежутке отводит часть электричества от вторичной катушки обратно в зазор, поэтому в конечном итоге в катушке Тесла закончится энергия. Вот почему катушку необходимо подключить к внешнему источнику питания.

Принцип, лежащий в основе катушки Тесла, заключается в достижении явления, называемого резонансом. Это происходит, когда первичная обмотка направляет ток во вторичную обмотку в нужное время, чтобы максимизировать энергию, передаваемую вторичной обмотке.Думайте об этом как о времени, когда нужно подтолкнуть кого-то на качели, чтобы заставить их взлететь как можно выше.

Установка катушки Тесла с регулируемым вращающимся искровым промежутком дает оператору больше контроля над напряжением производимого ею тока. Вот как катушки могут создавать сумасшедшие молнии и даже могут быть настроены для воспроизведения музыки, приуроченной к всплескам тока.

Хотя катушка Тесла больше не имеет большого практического применения, изобретение Теслы полностью изменило представление о понимании и использовании электричества.Радиоприемники и телевизоры до сих пор используют вариации катушки Тесла.

Следуйте за Келли Дикерсон в Twitter . Следуйте за нами @livescience , Facebook и Google+ . Оригинальная статья о Live Science .

Как работают катушки Тесла | RealClearScience

Тесла на заднем плане изучает хвастовство. (Фото: Wikimedia)

Представьте себе затворника, который всю ночь капает потом в темной лаборатории, освещенный только потрескивающими искрами, которые вылетают из огромных машин и бросают лиловое сияние на его лицо.Это Никола Тесла, архетип безумного ученого. Его изобретения наполняют мир вокруг нас; они играют важную роль в нашей современной электросети. Это тихие, надежные, незаметные машины.

Но, пожалуй, его самым известным изобретением является катушка Тесла (см. Фото выше), устройство, которое производит красивые летающие дуги электрической энергии. Как это работает?

Принципы работы катушки Тесла относительно просты. Просто имейте в виду, что электрический ток — это поток электронов, а разница в электрическом потенциале (напряжении) между двумя точками — это то, что толкает этот ток.Ток подобен воде, а напряжение — холму. Большое напряжение — это крутой холм, по которому потечет поток электронов. Небольшое напряжение похоже на почти плоскую равнину, где почти нет потока воды.

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией , то есть изменяющееся магнитное поле создает электрический потенциал, который заставляет ток течь. И наоборот, протекающий электрический ток создает магнитное поле. Когда электричество течет через намотанную катушку с проволокой, оно генерирует магнитное поле, которое заполняет область вокруг катушки по определенной схеме, показанной линиями ниже:

Фотография изменена из Национальной лаборатории Лос-Аламоса.

Аналогичным образом, если магнитное поле протекает через центр свернутого в спираль провода, в проводе генерируется напряжение, которое вызывает протекание электрического тока.

Электрический потенциал («холм»), создаваемый в катушке с проволокой магнитным полем, проходящим через ее центр, увеличивается с увеличением количества витков проволоки. Изменяющееся магнитное поле внутри катушки из 50 витков будет генерировать в десять раз большее напряжение, чем в катушке всего из пяти витков. (Однако меньший ток может фактически протекать через более высокий потенциал, чтобы сохранить энергию.)

Именно так работает обычный электрический трансформатор переменного тока, который можно найти в каждом доме. Постоянно колеблющийся электрический ток, протекающий из электросети, наматывается через серию витков вокруг железного кольца для создания магнитного поля. Железо обладает магнитной проницаемостью, поэтому магнитное поле почти полностью содержится в железе. Кольцо направляет магнитное поле (обозначено зеленым цветом ниже) вокруг и через центр противоположной катушки с проводом.

Фото: Викимедиа

Соотношение катушек на одной стороне к другой определяет изменение напряжения.Чтобы перейти от напряжения домашней стены 120 В до, скажем, 20 В для использования в адаптере питания ноутбука, на выходной стороне катушки будет в 6 раз меньше витков, чтобы снизить напряжение до одной шестой от исходного уровня.

Катушки Тесла

делают то же самое, но с гораздо более резким изменением напряжения. Во-первых, они используют предварительно изготовленный высоковольтный трансформатор с железным сердечником для перехода от настенного тока со 120 В до примерно 10 000 В. Провод с напряжением 10 000 вольт наматывается на одну очень большую (первичную) катушку всего с несколькими витками.Вторичная обмотка содержит тысячи витков тонкой проволоки. Это увеличивает напряжение от 100000 до одного миллиона вольт. Этот потенциал настолько велик, что железный сердечник обычного трансформатора не может его вместить. Вместо этого между катушками есть только воздух, что можно увидеть на катушке Тесла ниже:

Большая (первичная) катушка с несколькими витками находится внизу. Вторичная катушка с тысячами витков — это вертикально стоящий цилиндр, отделенный от нижней катушки воздухом.(Фото: Wikimedia)

Катушка Тесла требует еще одного: конденсатора для хранения заряда и зажигания всего его одной огромной искрой. Схема катушки содержит конденсатор и небольшое отверстие, называемое искровым разрядником. Когда катушка включена, электричество течет по цепи и заполняет конденсатор электронами, как аккумулятор. Этот заряд создает в цепи собственный электрический потенциал, который пытается перейти через искровой промежуток. Это может произойти только тогда, когда в конденсаторе накоплен очень большой заряд.

В конце концов, накопилось столько заряда, что нарушается электрическая нейтральность воздуха в середине искрового промежутка. Цепь замыкается на мгновение, и огромное количество тока вырывается из конденсатора и проходит через катушки. Это создает очень сильное магнитное поле в первичной катушке.

Вторичная проволочная катушка использует электромагнитную индукцию для преобразования этого магнитного поля в электрический потенциал, настолько высокий, что он может легко разорвать молекулы воздуха на концах и толкнуть их электроны по дуге, создавая огромные пурпурные искры.Купол в верхней части устройства позволяет вторичной катушке с проводами более полно получать энергию от первой катушки. С помощью некоторых тщательных математических расчетов количество передаваемой электроэнергии может быть максимизировано.

Летающие синие стримеры электронов стекают с катушки в горячий воздух в поисках проводящего места для приземления. Они нагревают воздух и превращают его в плазму светящихся ионных нитей, прежде чем рассеяться в воздухе или попасть в ближайший проводник.

Создается потрясающее световое шоу, а также громкое жужжание и потрескивание, которые можно использовать для воспроизведения музыки.Электрическое зрелище настолько ошеломляет, что Тесла, как известно, использовал свое устройство, чтобы пугать и гипнотизировать посетителей своей лаборатории.

Тесла, возможно, не изобрел луч смерти или бесплатную бесконечную силу, но он разработал простую, но блестящую машину, чтобы продемонстрировать чистую мощь и красоту электричества.

Как работает катушка Тесла

Катушка Тесла хорошо известна тем, что вырабатывает чрезвычайно высокое напряжение. В этом разделе мы объясним, как катушка oneTesla 10 дюймов может достигать напряжения более четверти миллиона вольт, используя связанные резонансные цепи.Мы будем опираться на основы, чтобы дать вам подробное объяснение того, что происходит.

Содержание:

Ток, магнитные поля и индукция

Начнем с основ электромагнетизма. Одно из уравнений Максвелла, закон Ампера, говорит нам, что ток, протекающий по проводу, создает вокруг него магнитное поле.

Если мы хотим использовать это магическое поле в своих интересах, как мы это делаем в электромагните, мы скручиваем провод.Магнитные поля от отдельных витков складываются в центре.

Постоянный ток создает статическое магнитное поле. Что происходит, если мы пропускаем через провод изменяющийся ток? Другое уравнение Максвелла, закон индукции Фарадея, говорит нам, что магнитное поле, изменяющееся во времени, индуцирует на проводе напряжение, пропорциональное скорости изменения магнитного поля:

Если ток внезапно отключается, закон Фарадея сообщает нам, что произойдет резкий скачок напряжения.Если через катушку протекает осциллирующий ток, он индуцирует в ней колеблющееся магнитное поле. Это, в свою очередь, индуцирует напряжение на катушке, которое стремится противодействовать току возбуждения. Интуитивно понятно, что магнитное поле является «упорным», вызывая напряжение, которое препятствует любому изменению поля.

Трансформаторы

Трансформатор использует закон индукции для повышения или понижения переменного напряжения. Он состоит из двух витков проволоки вокруг сердечника. Сердечник — это мягкое железо или феррит, материалы, которые легко намагничиваются и размагничиваются.

Колебательный ток в первичной обмотке создает колеблющееся магнитное поле в сердечнике. Ядро концентрирует поле, гарантируя, что большая часть его проходит через вторичный. Когда магнитное поле колеблется, оно индуцирует колебательный ток во вторичной катушке. Напряжение на каждом витке провода одинаковое, поэтому общее напряжение на катушках пропорционально количеству витков:

Поскольку энергия сохраняется, ток на стороне трансформатора с более высоким напряжением меньше в той же пропорции.

Катушка Тесла — очень мощный трансформатор. Давайте кратко рассмотрим, что было бы, если бы это был идеальный трансформатор. Первичная обмотка имеет шесть витков, а вторичная — около 1800 витков. На первичную обмотку подается напряжение 340 вольт, поэтому вторичная будет иметь напряжение 340 В x 300 = 102 кВ. Это много! Но не совсем четверть миллиона. Кроме того, поскольку катушка Тесла имеет воздушный сердечник, а катушки расположены относительно далеко друг от друга, только небольшая часть магнитного поля, создаваемого первичной обмоткой, на самом деле связана с вторичной.Чтобы лучше понять, что происходит, нам нужно ввести резонансные цепи.

Резонансные цепи

Резонансный контур подобен камертону: он имеет очень сильный амплитудный отклик на одной конкретной частоте, называемой резонансной или собственной частотой. В случае камертона зубцы сильно вибрируют при возбуждении с частотой, определяемой его размерами и свойствами материала. Резонансный контур достигает самых высоких напряжений при работе на его собственной частоте, которая определяется стоимостью его компонентов.

В резонансных цепях используются конденсаторы и катушки индуктивности, поэтому их также называют LC-цепями. Они также известны как «резервуарные контуры» из-за присутствующих элементов накопления энергии.

Конденсаторы хранят энергию в виде электрического поля между двумя пластинами, разделенными изолятором, известным как диэлектрик. Размер конденсатора зависит от размера пластин, расстояния между ними и свойств диэлектрика. Интересно, что верхняя нагрузка на катушку Тесла действует как однопластинчатый конденсатор, а земля, окружающая катушку, действует как противоположная пластина.Емкость верхней нагрузки определяется ее размерами и близостью к другим объектам.

Катушки индуктивности накапливают энергию в виде магнитного поля вокруг провода или в середине петли из провода. Первичный индуктор в катушке oneTesla 10 ”состоит из шести витков провода AWG14, а вторичный — примерно 1800 витков провода AWG36.

LC-цепь может иметь катушку индуктивности и конденсатор, включенные последовательно или параллельно. Здесь мы используем последовательные LC-цепи, например:

Подумайте, что происходит, когда вы не управляете цепью (предположим, что источник переменного тока на приведенном выше рисунке заменен проводом), а начинаете с заряженного конденсатора.Конденсатор хочет разрядиться, поэтому заряд течет по цепи через катушку индуктивности к другой пластине. При этом внутри индуктора создается магнитное поле. Когда заряд на каждой пластине конденсатора равен нулю, ток перестает течь. Но на данный момент индуктор имеет энергию, накопленную в магнитном поле, которое имеет тенденцию противодействовать изменениям. Магнитное поле схлопывается, вызывая продолжающийся ток в том же направлении, тем самым перезаряжая конденсатор и возобновляя цикл в противоположном направлении.

Резонансная частота LC-контура или частота, при которой энергия циклически изменяется между конденсатором и катушкой индуктивности, как описано выше, составляет:

Приведение цепи в резонансную частоту добавляет энергии в течение каждого цикла. Обеспечивая последовательность своевременных толчков, мы можем создавать чрезвычайно высокие напряжения! В катушке Тесла вспыхивает искра и разряжает цепь, когда напряжение становится достаточно высоким.

DRSSTC

Катушка oneTesla 10 ”использует топологию двойного резонанса, отсюда и название — твердотельная катушка Тесла с двойным резонансом, или DRSSTC.В DRSSTC цепь, управляющая вторичной LC-цепью, представляет собой другую LC-цепь, настроенную на ту же резонансную частоту. На следующей диаграмме L pri и L sec являются первичной и вторичной индукторами соответственно. Они слабо связаны, связывая примерно одну десятую своего магнитного поля.

Есть несколько причин, по которым катушки Тесла не используют магнитный сердечник. Прежде всего, напряжение в катушке Тесла настолько велико, что сердечник быстро насыщается, а это означает, что он больше не будет намагничиваться после определенной точки.Кроме того, большинство материалов создают сопротивление и нагреваются в магнитном поле, которое быстро переключается, как в случае катушки. Высокое напряжение, создаваемое катушкой, также может вызвать дугу в сердечнике. Но самое главное, очень важно, чтобы первичная и вторичная обмотки были слабо связаны, чтобы вторичная обмотка не нагружалась первичной.

Полумост

Как нам провести праймериз? Мы используем источник постоянного напряжения и подаем напряжение попеременно на первичную обмотку.

Переключатели, которые мы используем для подачи постоянного напряжения в переменном направлении через первичную обмотку, — это IGBT, сокращение от биполярных транзисторов с изолированным затвором. IGBT — это транзистор, способный управлять очень высокими напряжениями и токами. Это его схематическое обозначение:

.

Его выводы помечены как коллектор, затвор и эмиттер как пережиток электронных ламп до эры транзисторов. Упрощенная модель IGBT представляет собой нормально разомкнутый переключатель, который замыкается при приложении положительного напряжения затвора (VGE).На следующей схеме полумоста S1 и S2 представляют транзисторы IGBT. Они попеременно включаются и выключаются, что переключает полярность шины V /2 между первичной обмоткой L и первичной обмоткой C , первичной катушкой индуктивности и конденсатором. Катушка oneTesla 10 ”питается от шины напряжением 340 В постоянного тока, которое мы получаем от выпрямленного и удвоенного линейного напряжения.

На плате управления мы получаем напряжение шины из преобразованного и удвоенного линейного напряжения. Подробнее об этой части схемы мы поговорим позже.

Коммутация при нулевом токе

Когда IGBT полностью включены (переключатели замкнуты), они почти идеальные проводники. Когда они полностью выключены (переключатели полностью разомкнуты), они почти идеальные изоляторы. Однако, когда они находятся в переходном состоянии между полностью открытыми и полностью закрытыми или наоборот, они ведут себя как резисторы. Напомним, что количество мощности, рассеиваемой в цепи, равно P = VI.Если мы попытаемся переключить IGBT при большом токе в цепи, он сильно нагреется! Мы должны синхронизировать переключение IGBT с естественным переходом через ноль первичной LC-цепи. На плате oneTesla мы добиваемся переключения при нулевом токе, измеряя первичный ток и используя управляющую логику, чтобы гарантировать, что транзисторы переключаются в правильное время.

Привод ворот

БТИЗ — далеко не идеальные переключатели. Мы хотим, чтобы они переключались быстро, чтобы минимизировать время, в течение которого они обладают сопротивлением и рассеивают мощность.Проблема с быстрым переключением затворов заключается в том, что они имеют значительную внутреннюю емкость, и требуется много заряда, чтобы заполнить эту емкость и достичь напряжения включения на затворе (напряжение конденсатора определяется как V = Q / C ).

Чтобы зарядить CGE как можно быстрее, мы хотим использовать короткий сильноточный импульс. ИС привода затвора предназначены именно для этого. Мы используем микросхемы UCC3732x, которые могут подавать короткие импульсы до 9А. Логическая схема, предшествующая драйверам затвора, даже близко не способна обеспечить достаточный ток для быстрого включения затвора, поэтому драйверы затвора являются важными компонентами.Наконец, нам нужно изолировать драйверы затвора от IGBT с помощью трансформаторов управления затвором (GDT). Для включения каждого IGBT необходимо приложить напряжение затвора между его затвором и эмиттером. Это легко сделать с нижним (нижним) IGBT — его эмиттер всегда находится на земле, а это означает, что его затвор нужно только поднять до +15 В. С верхним (верхним) IGBT все не так просто, потому что его эмиттер связан с коллектором нижнего IBGT, узлом, который колеблется между 0 и V , шина /2 (что в нашем случае составляет 170 В. ).Это означает, что нам нужно подвести затвор верхнего IGBT к шине V /2 + 15 В, чтобы включить его.

К счастью, есть простой способ обойти это! Мы можем управлять первичной обмоткой трансформатора 1: 1: 1 с помощью (биполярного) управляющего сигнала, полученного от двухтактной пары UCC. Более конкретно, мы управляем первичной обмоткой трансформатора с разницей выходов инвертирующего и неинвертирующего драйвера затвора. Это гарантирует, что в половине случаев этот сигнал будет положительным, а в половине случаев — отрицательным.Благодаря действию трансформатора, напряжение на каждой вторичной обмотке GDT гарантированно повторяет напряжение на первичной обмотке, независимо от того, где мы соединяем концы. Это означает, что мы можем просто подключить вторичную обмотку через затвор и эмиттер каждого IGBT и гарантировать, что напряжение V ge всегда будет колебаться между 0 и 15 В (независимо от потенциала эмиттера).

Выпрямитель и удвоитель

Полумост в oneTesla приводится в действие удваивающим выпрямителем, как показано на схеме выше.Этот выпрямитель поочередно заряжает каждый конденсатор в чередующихся полупериодах входного переменного тока, что приводит к удвоению напряжения источника на нагрузке. В положительной части цикла верхний диод проводит и заряжает верхний конденсатор.

В отрицательной части цикла нижний диод проводит и заряжает нижний конденсатор. Напряжение на нагрузке — это сумма напряжений на каждом конденсаторе.

Логика
Как упоминалось ранее, логика управления необходима для определения первичного тока и предотвращения включения и выключения IGBT, пока через них проходит ток. Давайте рассмотрим приведенную выше схему слева направо. (Обратите внимание, что номера деталей на схеме не соответствуют номерам на плате, но мы используем их здесь только в пояснительных целях. Для получения полной информации см. Файлы Eagle, доступные по адресу http://onetesla.com/downloads. схема.)

Трансформатор тока снижает первичный ток до безопасного уровня для использования в логической части платы. R1 — это резистор мощностью 5 Вт, который нагружает трансформатор и ограничивает ток. D1 начинает проводить, когда сигнал превышает 5,7 В, что представляет собой напряжение шины плюс прямое падение напряжения на диоде, что эффективно предотвращает превышение сигналом 5,7 В. D2 начинает проводить, когда сигнал составляет -0,7 В. Вместе D1 и D2 представляют собой защитные диоды, которые ограничивают сигнал и предотвращают повреждение логических микросхем, если сигнал от трансформатора тока слишком высокий.Затем G1 и G2 — это инверторы, которые выравнивают сигнал для последующих ИС.

Оптический приемник выдает 5 В или 0 В в зависимости от сигнала от прерывателя. R1, R2 и R3 образуют сеть резисторов, которая гарантирует, что катушка может быть запущена в работу только сигналом прерывателя при запуске, в отсутствие формы сигнала обратной связи. Когда катушка только запускается, сигнал обратной связи отсутствует, но сигнал прерывателя проходит через UCC. Когда катушка работает, сигнал обратной связи преобладает в верхней части пути прохождения сигнала.

Инвертированный сигнал прерывателя и прямоугольная волна из возведенного в квадрат сигнала первичного тока затем подаются в триггер D-типа, который выполняет логику, определяющую, когда драйверы затвора получают сигнал. Они включаются только тогда, когда есть переход через ноль, а также сигнал от прерывателя. D-триггер ведет себя согласно следующей таблице истинности:

В нашей схеме \ PRE и D вытянуты высоко. Инвертированный сигнал прерывателя, который подается в \ CLR, устанавливает высокий уровень \ Q, когда прерыватель включен.Когда прерыватель выключается, \ Q остается на высоком уровне до следующего спада CLK (который синхронизируется с переходами через ноль первичного тока), после чего он переключается на низкий уровень.

Инвертирующий драйвер затвора включается, когда IN высокий, а EN низкий. Драйвер неинвертирующего затвора включается, когда IN высокий, а EN высокий.

Прерыватель
Прерыватель oneTesla — это устройство на базе микроконтроллера, которое преобразует входящий поток MIDI-команд в поток импульсов для катушки Тесла.Эти импульсы включают или выключают всю катушку, тем самым контролируя как мощность, так и воспроизводя музыку.

MIDI-команды принимаются через входной MIDI-разъем. Согласно спецификации MIDI, оптоизолятор 4N25 обеспечивает изоляцию, необходимую для устранения контуров заземления. Когда микроконтроллер получает команду включения ноты, он начинает выводить поток импульсов с частотой ноты. Длина этих импульсов указывается в справочной таблице в прошивке. Прерыватель использует отдельные MIDI-каналы для одновременного воспроизведения нескольких нот — для воспроизведения двух каналов программа просто генерирует последовательности импульсов, соответствующие каждому каналу, а затем выполняет логическую функцию ИЛИ над последовательностями импульсов перед их выводом.Ограничение максимальной ширины импульса гарантирует, что результирующий поток не будет иметь слишком длинных импульсов.

Регулятор мощности линейно масштабирует ширину импульса в зависимости от положения потенциометра. Хотя это не дает линейной длины искры, у него есть преимущество предсказуемого масштабирования энергопотребления катушки, что было бы потеряно, если бы кривые масштабирования были настроены для линейного роста искры.

Так как же он делает музыку?

Звук — это волна давления.Его высота определяется частотой волны. Мы можем издавать звук разными способами: обычные динамики создают вибрацию мембраны, а катушки Тесла используют расширение и сжатие воздуха из-за нагрева от плазмы.

Резонансная частота вторичной обмотки составляет около 230 кГц, что намного выше звукового диапазона. Мы можем использовать всплески искр с частотой 230 кГц, чтобы создать волны давления на звуковой частоте. Вспышка искр загорается на каждом пике звукового сигнала. Быстрое зажигание искр происходит быстрее, чем ваш глаз может различить, поэтому он выглядит непрерывным, но на самом деле искра формируется и гаснет с интервалами звуковой частоты.Этот метод модуляции известен как модуляция плотности импульсов (PDM) или модуляция с повторением импульсов (PRM).

Ток в первичной обмотке продолжает увеличиваться во время работы моста. Важно сделать импульсы достаточно короткими, чтобы IGBT не перегревались. За один цикл ток на первичной обмотке за короткое время может достигать сотен ампер. Из-за тепловых причин максимальный рабочий цикл моста составляет примерно 10%. В микропрограммном обеспечении прерывателя есть справочная таблица частот и времени включения, которые определяются эмпирически путем изменения ширины импульса и наблюдения за характеристиками искры.

Как работает катушка Тесла ?. Катушка Тесла может быть одной из самых… | Джон Палмер | skillbodyshop

Катушка Тесла может быть одним из самых интересных изобретений всех времен. Эти устройства, изобретенные Николой Тесла, представляют собой одну из первых попыток использовать силу электричества. Хотя эти устройства больше не используются для многих целей, у них есть большой потенциал для дальнейшего развития. Конечно, все это не имеет значения, если вы даже не знаете, как это работает, поэтому давайте попробуем объяснить это относительно просто.

Никола Тесла родился в Австрии, получил образование в области инженерии и физики. Он получил большую известность, когда переехал в Америку. Никола Тесла больше, чем кто-либо другой, несет ответственность за распространение электроэнергии по всему миру. Хотя когда-то он работал у Томаса Эдисона, вскоре он ушел, чтобы создать свою собственную компанию.

В свое время Тесла считался «безумным ученым» за свои эксперименты с беспроводной передачей энергии, некоторые из которых были невероятно драматичными. Хотя он, как правило, не получает должного признания, в его честь названо подразделение силы.Тесла — стандартные единицы измерения плотности магнитного потока.

Во времена Теслы электричество было не очень хорошо изучено. Ученые выяснили, как создать небольшое количество этой силы, но, похоже, никто не мог использовать ее для чего-нибудь практического. Однако они все же выяснили связь между электричеством и магнетизмом.

Каждый раз, когда вы пропускаете электрический ток через провод, вокруг этого провода создается магнитное поле. Итак, если вы скрутите провод в катушку, эти магнитные поля будут перекрываться.Таким образом, каждое магнитное поле может усиливать другое, что приводит к гораздо более сильным полям. Все это вызвано движением крошечных частиц, называемых электронами. Проще говоря: магниты могут перемещать и манипулировать электронами, что приводит к производству электричества.

В то же время люди выяснили, что магнитные поля могут производить электричество. Да, это работает в обоих направлениях. Любой, кто когда-либо исследовал работу газового генератора, может сказать вам, что он работает, перемещая катушки медного провода через большой магнит.Поскольку этот обмен энергией может происходить в обоих направлениях, легко понять, почему Тесла хотел сделать электроэнергию бесплатной и доступной для всех.

Катушка Тесла — это устройство, которое не поддается классификации, вероятно, потому, что оно было изобретено до того, как категории существовали. Некоторые описывают его как радиочастотный генератор, а другие просто описывают его как большой трансформатор. В некотором смысле его также можно назвать электрическим усилителем. В любом случае, это устройство, которое использует две катушки для генерации высокого напряжения при очень низком токе.

Катушка Тесла названа неправильно, потому что на самом деле она состоит из двух катушек. Подавая мощность на одну катушку, а затем позволяя ей проскакивать через искровой промежуток, вырабатывается много энергии. Когда он достигает верхней части второй катушки, он ионизирует окружающий воздух. Как только воздух ионизируется, он становится проводником, и электричество из катушки выстреливает наружу на дисплее, который очень похож на миниатюрные молнии.

Вот сумасшедшая деталь: из-за низкого тока (измеряется в амперах) к этому виду электричества можно прикоснуться, не опасаясь поражения электрическим током.Эдисон попытался дискредитировать своего бывшего сотрудника, убив животных электрическим током посреди улицы. Он утверждал, что переменный ток Теслы небезопасен по своей природе, но катушка Тесла доказывает, насколько он ошибался. Независимо от того, используете ли вы постоянный или переменный ток, электричество с малым током не опасно для большинства живых существ.

Катушка Тесла состоит из двух катушек, которые обычно сделаны из намотанной медной проволоки. Помимо этого, он содержит первичный конденсатор, вторичный конденсатор и какой-то каркас или корпус, чтобы удерживать все вместе.

Устройство получает энергию от источника питания (например, аккумулятора) и увеличивает ее с помощью специального трансформатора. Затем эта энергия отправляется в первичную катушку. Поскольку конденсатор может накапливать заряд (что-то вроде батареи), входящая мощность обычно идет туда первой. Когда конденсатор заполнится, электричеству некуда будет уходить, кроме первичной обмотки. Когда эта катушка также заполнена электричеством, мощность передается на искровой разрядник.

Чтобы понять эту часть, подумайте о соединении двух соединительных кабелей.Это часто делается для проверки жизнеспособности автомобильного аккумулятора, поэтому вы все должны быть с ним знакомы. Электричество работает, замыкая цепь, и, естественно, она хочет замкнуть эту цепь. Таким образом, избыточная мощность «перепрыгнет зазор» и переместится на вторую катушку.

Как вы могли догадаться, ток быстро заполнит вторую катушку, не оставив ей никуда, кроме открытого воздуха. Вот почему катушки Тесла создают красивые и эффектные изображения искусственной молнии. Некоторые люди даже придумали способы управлять катушкой Тесла с помощью музыки и звука.В этом есть большой смысл, потому что звук существует на частотах так же, как и электричество.

Работа Теслы, несомненно, опередила свое время. Фактически, некоторые его работы до сих пор плохо изучены. Катушка Тесла стала более известной в последнее десятилетие или около того, но в основном она использовалась для публичных демонстраций и научных демонстраций. И все же Тесла считал, что это устройство является ключом к безграничной беспроводной передаче электроэнергии. Если бы ему только позволили закончить его гигантскую катушку Тесла в Уорденделффе, его мечта могла бы стать реальностью.

PBS: Tesla — Мастер молнии: Катушка Тесла

Чтобы исследовать электрическую сферу высоких частот и высокого напряжения, Тесла изобрел устройство, которое раздвинуло границы понимания электричества.Ни один из типичных компонентов схемы в то время не был неизвестен, но ее конструкция и работа вместе дали уникальные результаты — не в последнюю очередь благодаря мастерским усовершенствованиям Tesla в конструкции ключевых элементов, в частности специального трансформатора или катушки, которая находится в сердце производительности схемы.

Такое устройство впервые появилось в патенте США № 454 622 Теслы (1891 г.) для использования в новых, более эффективных системах освещения. В своей основной форме схема требует источника питания, большого конденсатора, самой катушки (трансформатора) и регулируемых электродов искрового разрядника.Для чего нужны эти компоненты и для чего они нужны?

Осцилляторы

Конденсаторы (или конденсаторы) и индукторы (или катушки), электрически говоря, несколько противоположны в работе. В то время как ток в конденсаторе быстро нарастает по мере его зарядки, напряжение падает. В индукторе напряжение ощущается немедленно, в то время как ток замедляется, поскольку он работает против магнитного поля, создаваемого его собственным проходом в катушке.Если размеры катушки и конденсатора выбраны и выбраны так, чтобы они действовали с точно противоположной синхронизацией — с пиком напряжения в катушке так же, как оно достигает минимума в конденсаторе, — тогда схема может никогда не достичь электрически тихого, стабильного состояния. Немного похоже на плескание воды в ванне, ток и напряжение могут гоняться друг за другом взад и вперед, от конца до конца цепи. (Такой генератор часто называют контуром резервуара .)

Искровые разрядники

Чтобы заставить свой генератор «звенеть», Тесла использовал внезапные разряды, искры, через регулируемый зазор между двумя электродами.Напряжение на конденсаторе нарастает до тех пор, пока не достигнет уровня, при котором воздух в зазоре разрушается как изолятор. (Прецизионные винты устанавливают зазор зазора, так что больший или меньший зазор выбирает большее или меньшее напряжение пробоя.)

Начальный импульс очень мощный — вся энергия, накопленная в течение нескольких микросекунд, высвобождается в порыве, и этот импульс сам преобразуется в несколько более высокое напряжение при переходе от первичных обмоток катушки к вторичным обмоткам.Это, конечно, завершает лишь один цикл работы схемы. Воздушный зазор восстанавливается как изолятор, и конденсатор начинает заряжаться, пока снова не достигнет значения пробоя. Весь процесс может повторяться много тысяч раз в секунду.

Вторичная обмотка трансформатора тоже довольно особенная, она разработана Tesla для быстрой реакции на внезапный всплеск энергии и, что наиболее важно, для концентрации напряжения на одном конце в виде стоячей волны .Его длина рассчитана таким образом, чтобы гребни волн, достигая конца и отражаясь назад, встречались и точно усиливали волны позади них. Чистый эффект — волна, пик напряжения, который кажется неподвижным.

Приложения

Если, как это произошло на практике, Тесла сделал антенну из высоковольтного конца своей вторичной обмотки, она превратилась в мощный радиопередатчик. Фактически, в первые десятилетия развития радио большинство практичных радиоприемников использовали катушки Тесла в своих передающих антеннах.Сам Тесла использовал большие или меньшие версии своего изобретения для исследования флуоресценции, рентгеновских лучей, радио, беспроводной связи, биологических эффектов и даже электромагнитной природы Земли и ее атмосферы.

Сегодня такие устройства часто эксплуатируются в высоковольтных лабораториях, а энтузиасты-любители по всему миру строят устройства меньшего размера для создания искрящихся потоковых электрических дисплеев — нетрудно достичь четверти миллиона вольт. (Один из самых первых ускорителей частиц, разработанный Рольфом Видеро в 1928 году, генерировал высокое напряжение в катушке Тесла.Катушка стала обычным явлением в электронике и используется для подачи высокого напряжения на переднюю часть кинескопов телевизора в форме, известной как обратный трансформатор.

Внутри лаборатории Указатель

Принцип работы, схема и приложения

Мир беспроводных технологий уже здесь! Бесчисленные беспроводные приложения, такие как освещение с беспроводным питанием, беспроводные умные дома, беспроводные зарядные устройства и т. Д., Развиваются благодаря беспроводной технологии.В 1891 году самое известное открытие катушки Тесла было изобретено изобретателем Никола Тесла. Тесла был одержим беспроводной передачей энергии, что привело к изобретению катушки Тесла. Эта катушка не требует сложной схемы и поэтому является частью нашей повседневной жизни, такой как дистанционное управление, смартфоны, компьютеры, рентгеновские лучи, неоновые и флуоресцентные лампы и так далее.

Что такое катушка Тесла?

Определение: Катушка Тесла — это радиочастотный генератор, который управляет двойным резонансным трансформатором с воздушным сердечником для получения высокого напряжения с низким током.


катушка тесла

Чтобы лучше понять, давайте определим, что такое радиочастотный генератор. В первую очередь, мы знаем, что электронный генератор — это устройство, которое выдает электрические сигналы либо синусоидальной, либо прямоугольной формы. Этот электронный генератор генерирует сигналы в радиочастотном диапазоне от 20 кГц до 100 ГГц, известный как радиочастотный генератор.

Принцип работы катушки Тесла

Эта катушка способна создавать выходное напряжение до нескольких миллионов вольт в зависимости от размера катушки.Катушка Тесла работает по принципу достижения состояния, называемого резонансом. Здесь первичная обмотка испускает огромное количество тока во вторичную обмотку, чтобы управлять вторичной цепью с максимальной энергией. Точно настроенная схема помогает передавать ток из первичной во вторичную цепь с настроенной резонансной частотой.

Схема катушки Тесла

Эта катушка состоит из двух основных частей — первичной катушки и вторичной катушки, причем каждая катушка имеет свой собственный конденсатор. Искровой разрядник соединяет катушки и конденсаторы.Функция искрового разрядника заключается в генерации искры для возбуждения системы. Принципиальная схема катушки Тесла

Работа катушки Тесла

В этой катушке используется специальный трансформатор, называемый резонансным трансформатором, радиочастотным трансформатором или колебательным трансформатором.

Первичная катушка подключена к источнику питания, а вторичная катушка трансформатора слабо соединена, чтобы обеспечить ее резонанс. Конденсатор, подключенный параллельно цепи трансформатора, действует как схема настройки или LC-цепь для генерации сигналов с определенной частотой.

Первичная обмотка трансформатора, иначе называемая резонансным трансформатором, повышается для генерирования очень высоких уровней напряжения в диапазоне от 2 кВ до 30 кВ, которое, в свою очередь, заряжает конденсатор. При накоплении огромного количества заряда в конденсаторе, в конечном итоге, пробивается воздух искрового промежутка. Конденсатор испускает огромное количество тока через катушку Тесла (L1, L2), которая, в свою очередь, генерирует высокое напряжение на выходе.

Частота колебаний

Комбинация конденсатора и первичной обмотки «L1» схемы образует настроенную схему.Эта настроенная схема гарантирует, что первичная и вторичная цепи точно настроены для резонанса на одной и той же частоте. Резонансные частоты первичного ‘f1’ и вторичного контуров ‘f2’ и равны:

f1 = 1 / 2π L1C1 и f2 = 1 / 2π L2C2

Поскольку вторичный контур не может быть отрегулирован, подвижный отвод на «L1» используется для настройки первичного контура до тех пор, пока оба контура не будут резонировать на одной и той же частоте.Следовательно, частота первичной обмотки такая же, как и вторичной.

f = 1 / 2π√L1C1 = 1 / 2π L2C2

Условие для первичного и вторичного резонанса на одной и той же частоте:

L1C1 = L2C2

Выход Напряжение в резонансном трансформаторе не зависит от отношения числа витков, как в обычном трансформаторе. Как только цикл начинается и лонжерон срабатывает, энергия первичной цепи накапливается в первичном конденсаторе «C1», а напряжение, при котором искра гаснет, составляет «V1».

W1 = 1 / 2C1V1 2

Точно так же энергия во вторичной катушке определяется как,

W2 = 1 / 2C2V2 2

Предполагая, что потери энергии нет, W2 = W1. Упрощая приведенное выше уравнение, мы получаем

V2 = V1√C1 / C2 = V1√L2 / L1

В приведенном выше уравнении пиковое напряжение может быть достигнуто, когда пробой воздуха не происходит. Пиковое напряжение — это напряжение, при котором воздух разрушается и начинает проводить.

Преимущества / недостатки катушки Тесла

Преимущества

  • Позволяет равномерно распределять напряжение по катушкам обмотки.
  • Повышает напряжение в медленном темпе и, следовательно, без повреждений.
  • Отличная производительность.
  • Использование трехфазных выпрямителей для более высоких мощностей может обеспечить колоссальное распределение нагрузки.

Недостатки:

  • Катушка Тесла представляет несколько опасностей для здоровья из-за высокочастотного излучения высокого напряжения, включая ожог кожи, повреждение нервной системы и сердца.
  • Влечет за собой высокие затраты на покупку большого сглаживающего конденсатора постоянного тока.
  • Построение цепи занимает много времени, поскольку она должна быть идеальной для резонанса.

Применение катушки Тесла

В настоящее время этим катушкам не требуются большие сложные схемы для выработки высокого напряжения. Тем не менее, небольшие катушки Тесла находят свое применение в целом ряде секторов.

  • Сварка алюминия
  • Эти катушки используются в автомобилях для зажигания свечей зажигания
  • Созданные вентиляторы катушек Тесла, используемые для создания искусственного освещения, звуков, подобных музыке Катушки Тесла в индустрии развлечений и образования используются в качестве аттракционов на ярмарках электроники и научных музеях
  • Высоковакуумные системы и зажигалки
  • Детекторы утечки вакуумной системы

Часто задаваемые вопросы

1).Что делают катушки Тесла?

Эта катушка представляет собой радиочастотный генератор, который приводит в действие резонансный трансформатор для генерации высокого напряжения при низком токе.

2). Может ли катушка Тесла заряжать телефон?

В наши дни смартфоны выпускаются со встроенной беспроводной зарядкой, в которой используется принцип катушки Тесла.

3). Катушка Тесла опасна?

Катушка и ее оборудование очень опасны, так как они создают очень высокие напряжения и токи, которые не могут быть обеспечены человеческим телом

4).Почему катушки тесла создают музыку?

Обычно эта катушка преобразует воздух вокруг себя в плазму, которая изменяет громкость и заставляет волны распространяться во всех направлениях, создавая звук / музыку. Это происходит на высокой частоте от 20 до 100 кГц.

5). Как Tesla передавала электричество по беспроводной сети?

Искровой разрядник используется для соединения конденсаторов и двух катушек. Поскольку мощность подается через трансформатор, он вырабатывает необходимый ток и питает всю цепь.

Таким образом, это все об обзоре катушки Тесла, которую можно использовать для выработки электричества высокого напряжения, низкого тока и высокой частоты. Катушка Tesla может передавать электричество по беспроводной сети на расстояние до нескольких километров. Мы позаботились о том, чтобы эта статья дала читателю представление о работе катушки Тесла, ее преимуществах и недостатках, а также о ее применении. Поистине, его изобретение беспроводной передачи электроэнергии изменило способ общения в мире.

История катушек Тесла и принцип их работы

Электричество было открыто еще в 1800-х годах, поэтому во времена Николы Теслы (1856-1943) оно не считалось новинкой.Люди уже изучили методы хранения, усиления и начали разрабатывать способы передачи электрического тока. Затем в 1891 году были представлены катушки Тесла.

Катушки

Тесла — это высокочастотные трансформаторы, которые могут генерировать очень высокое напряжение с низким током. Тесла создал несколько вариаций этих трансформаторов. Но как работают эти катушки?

Как работают катушки Тесла?

Согласно LiveScience, источник питания катушек Тесла присоединен к первичной катушке, которая действует как губка и поглощает электрический заряд.Первичная обмотка обычно изготавливается из меди, поскольку она хорошо проводит электричество. Это означает, что он может выдерживать большие заряды и сильные скачки тока.

Конденсатор накапливает слишком большой заряд, нарушая сопротивление воздуха в искровом промежутке. Электрический ток выдавливается из конденсатора вниз к первичной катушке, создавая магнитное поле. Но он легко разрушается огромным количеством энергии и генерирует электричество во вторичной катушке.

Напряжение между двумя катушками создает искры, а энергия движется вперед и назад между первичной и вторичной катушками так быстро и накапливается во второй катушке и конденсаторе.Электрический заряд во вторичной катушке в конечном итоге станет настолько высоким, что вырвется наружу в виде впечатляющего электрического шоу.

Высокочастотное напряжение от катушек позволяет питать несколько люминесцентных ламп без использования проводов. В идеально спроектированной катушке Тесла весь процесс начинается снова, когда вторичные катушки достигают максимального заряда, и устройство становится самоподдерживающимся.

Однако в реальной жизни этого не происходит, потому что в катушках Тесла в конечном итоге заканчивается энергия, поскольку нагретый воздух в искровом промежутке забирает больше энергии из вторичной катушки.Вот почему вторичная обмотка должна быть подключена к внешнему источнику питания.

Читайте также: Устройство генерации воздуха вырабатывает электричество «из разреженного воздуха»

Принцип, лежащий в основе катушки Тесла

Принцип, лежащий в основе катушки Тесла, называется резонансом, или, как словарь Мерриама-Вебстера определяет его как «вибрацию большой амплитуды в механической или электрической системе, вызванную относительно небольшим периодическим стимулом того же или почти такого же периода, что и естественный период колебаний системы.«

Другими словами, это происходит, когда электричество от первичной катушки передается вторичной катушке в нужное время, чтобы максимизировать энергию вторичной катушки. Это все равно, что толкнуть кого-то на качели, чтобы они поднялись как можно выше.

Катушки Тесла

могут создавать удивительные световые эффекты и иногда воспроизводить музыку из-за регулируемой вращающейся искры, которая позволяет оператору контролировать напряжение производимого ею тока.

Хотя Tesla больше не имеет практического применения, ее концепция произвела революцию в понимании и использовании электричества.Лучшими примерами разновидностей катушек Тесла сегодня являются радио и телевизоры.

Подробнее: прозрачные солнечные элементы скоро сделают возможным производство энергии на месте

Узнайте больше новостей и информации о Energy на Science Times.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *