+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Теория радиоволн: антенны / Хабр

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.


Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.

Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны

Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.

Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Диаграмма направленности следующая:

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны

Также имеет название — антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Направленность — двулепестковая

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность — рамочная антенна с рефлектором:

Логопериодическая антенна

Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация

Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:

Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

Как устроены антенны | NNTF

Антенны излучают и принимают радиоволны, которые являются частным случаем электромагнитных волн.

Радиоволны возникают там, где есть ускоренное движение электронов. В природе самым ярким примером этого являются молнии. Сама вспышка молнии – это огромная искра между облаком и землёй или между двумя облаками. Эта искра и есть движение электронов с ускорением, которое порождает радиоволну. Радиоволна от молнии очень мощная, и она вызывает помехи в работе электронного оборудования.

Радиоволны существуют в пространстве и свободно перемещаются на любые расстояния со скоростью 300 000 километров в секунду.

Природа радиоволны и природа электрического тока очень тесно связаны. Электрический ток – это движение заряженных частиц – электронов. Чтобы получить радиоволну, необходимо заставить электроны не просто двигаться, а двигаться с ускорением.

Для искусственного превращения электрического тока в радиоволну используют антенны. Самая простая антенна – штыревая (их можно увидеть на некоторых автомобилях и почти на всех такси). В ней радиоволна возникает так: электрический ток от передатчика бежит по проводу, добегает до антенны и, так как антенна, по сути, является обрывом провода, ток начинает в ней тормозиться, то есть электроны начинают двигаться с ускорением. А ускоренное движение электронов рождает радиоволну.

Резонансная частота – это самая важная характеристика любой антенны. Каждая антенна, по большому счёту, излучает и поглощает радиоволны любой частоты, но у каждой антенны есть одна вполне определённая частота, работа на которой у этой антенны самая лучшая и самая эффективная. Так, для GSM антенн резонансной частотой является частота 1800 МГц, для Wi-Fi антенн это 2450 МГц.

Наличие у каждой антенны резонансной частоты можно сравнить с гитарой, у которой каждая струна звучит по-своему. Чем толще и чем короче струна, тем ниже её звучание. Так же и резонансная частота штыревой антенны зависит от её длины: чем короче антенна, тем более высокочастотные радиоволны способна принимать и передавать антенна.

Любая антенна может как передавать, так и принимать радиоволны. В окружающем антенну пространстве всегда присутствует большое количество радиоволн различных частот от множества источников. Когда на антенну попадает такой «винегрет» из радиоволн, антенна из всего этого «винегрета» ловит только радиоволну, имеющую резонансную с антенной частоту. Эта радиоволна вызывает в антенне ускоренное движение электронов – по антенне начинает течь электрический ток. Этот ток течёт по проводу от антенны к приёмнику и усиливается в нём, затем ток преобразуется, например, в звуки радиоприёмника, или в телевизионное изображение, или в голос в мобильном телефоне.

Антенны бывают не только штыревые. Они могут иметь очень сложную форму, состоять из плоских или объёмных конструкций, содержать десятки, сотни или даже тысячи улавливающих радиоволны элементов. Параметры антенны всегда рассчитываются так, чтобы при передаче как можно больше энергии электрического тока преобразовывалось в радиоволну, и чтобы при приёме радиоволна с нужной частотой была в резонансе с антенной.

Автомобильная антенна своими руками: разновидности и создание

Автомобильные антенны сегодня расходятся предназначением. В боевых условиях ловят связь, в мирных – каналы вещания, навигационную информацию. Автомобильная антенна представляет собой четвертьволновый вибратор, дополненный согласующими устройствами. Сигнальная линия, землей послужит корпус автомобиля. За счет двух этих составляющих становится возможен прием сигнала. Ввиду простоты конструкции изготавливают автомобильную антенну своими руками. Определите вначале назначение устройства, диапазон волн, тип модуляции. Три основные составляющие, закладываемые конструкцией.

Разновидности автомобильных антенн

Упоминали разновидности автомобильных антенн, приведем избыточную классификацию:

  1. Прием радиовещания.
  2. Прием телевещания.
  3. Прием спутниковой информации систем навигации.
  4. Связные автомобильные антенны.
  • Способ установки антенн на авто:
  1. Магнитные.
  2. На присоске.
  3. Врезные.
  4. Резьбовое соединение.
  5. На струбцине.
  6. Встраиваемые.

Схема подключения автомобильной антенны под заднее крыло

  • По месту размещения:
  1. Наружные автомобильные антенны.
  2. Салонные (внутренние).
  • Типу усиления:
  1. Активные.
  2. Пассивные.

Наверняка опытный автолюбитель сможет добавить пару-тройку признаков, ограничимся указанной классификацией. FM-антенны умещаются внутри салона. Любители изготавливают аксессуары собственноручно, используя отрезки кабеля волновым сопротивлением 50 Ом. Оплетка электрически объединяется с корпусом авто (массой). Опасайтесь словить молнию, проезжая полем. Гроза выбирает максимально близкую небу точку.

Величина автомобильной антенны зависит от диапазона. Связные (рации частоты 27 МГц) большого размера. Мощные разновидности достигают длины 2-х метров (ставят на грузовики), по науке следовало бы изготовить выше на 50 см. Для согласования отличий между действительным размером, четвертью длины волны «удлиняющая» катушка в основании. Для использования установка автомобильной антенны для связи ведется вертикально. Обусловлено типом поляризации. Связная антенна может наклоняться посредством барашка, рычага, чтобы не сломать, проезжая лесом, преодолевая пролеты низкого моста. Связными антеннами пользуются по большей части водители крупногабаритных фур. Допускается оснащение джипов, гражданских авто, временами вид получится неказистый.

Примечание. Заводские антенны настраиваются на длину волны. Укорачивается ус, снабженный на конце защитным колпачком. Операция проводится согласно инструкции. Руководство включает график рекомендуемых размеров. Нарушение вызывает падение чувствительности приема.

Комплект авторации

Цифровая автомобильная антенна приема ТВ выглядит подобно милицейской мигалке, выполнена в другом цветовом решении. Устройстве лишено излишних наворотов, принимает частоту сотни МГц. Первый мультиплекс Москвы облюбовал 559 МГц. Цифровая автомобильная антенна на магните размещается наверху (крыша), провод проходит над дверцей без доработок. Сигнал горизонтальной поляризации, задача устройства принимать произвольный азимут.

Антенны радиовещания редко прихвастнут большим размером, поскольку длина волны повыше, габариты поболее. Небольшой высоты штыри, наподобие украшающих переносные рации. Остерегайтесь случайно купить антенну для автомагнитолы, предназначенную изготовителями украсить телевизионный приемник. Боясь ошибиться, читайте в магазине технические характеристики:

  1. Радио обозначается, FM, AM (частоты 70 — 108 МГц).
  2. Телевидение — DVB – T (частоты ниже 900 МГц).
  3. Навигация – GPS (порядка 400 МГц).
  4. Радиосвязь – СВ (27 МГц).

Иногда дилеры забывают указать возможности антенны. Приведен диапазон 400 – 530 МГц, упомянуто, “доступна опция приема сигналов GPS”. Остается догадываться, что умеет экземпляр, первый московский мультиплекс проходит мимо. Частоты выше 400 МГц использованы портативными рациями, ведомственной связью МВД.

Осталось обратить внимание на разъем. Совпадает с подавляющим большинством устройств, для которых предназначен, выверить вопрос совместимости будет нелишним. Говорят, внешняя автомобильная антенна лучше ловит, вопрос касается преимущественно городского приема. Мчась трассой, стекла типичной легковушки не создадут серьезных препятствий прохождению электромагнитного излучения. Внутрисалонные автомобильные антенны монтажом попроще. Аксессуары стоят ниже наружных, отсюда худшее качество.

Магазине предоставит всяческие гибридные модели, включая варианта а-ля Все в одном. Можно переключать прием с городского на шоссейный. Отличается чувствительностью, особенностями подавления помех. Загородная дальность приема увеличивается, составляя 80 км. Продают своеобразные тандемы. Выложена пара видом похожих штырей, один из которых ловит телевещание, другой – радио, связь. Использование прелестей набора, требует приобретения соответствующего приемного оборудования.

Создание автомобильной антенны своими руками

Сложность единственная: корпус авто непрерывно движется. Традиционные наземные бытовые антенны в этом случае будут образовывать мертвые зоны приема. Возникнут продолжительные промежутки времени при маневрировании, когда прием отсутствует. Касается горизонтальной поляризации, не вертикальной! В последнем случае антенне безразличен азимут поступления сигнала. Мачта стоит вертикально! Это обсуждали обыкновенные рамочные биквадратные антенны, четвертьволновые вертикальные вибраторы. Посмотрим, что еще природе полезного.

Зануление оплетки посредством массы

Как сделать автомобильную антенну своими руками, чтобы:

  • не вызвала нареканий сотрудников ГИБДД за излишнюю доработку корпуса;
  • встала в салоне;
  • обеспечила надежный прием частот радиосвязи;
  • обладала высоким КПД (так как нужно работать на передачу).

Четвертьволновый вибратор подходит названному случаю плохо. Сложен в изготовлении, снабжен сравнительно большими размерами (см. выше), сложно крепится, мешает езде. Вот придумка шоферов автомобилей ВАЗ 2106 (опытный радиолюбитель переделает концепцию, абстрагируясь от марки машины).

Используется рамочная конструкция, прокладываемая под уплотнителем заднего стекла авто. Чуть заужена кверху, немного иных размеров, нежели требуются частотой 27 МГц, в центре расположился конденсатор, которым выполняется настройка автомобильной антенны в резонанс на нужном канале. Обратите внимание, приемных частот две:

  1. 27; 65 МГц.
  2. 28,2; 68 МГц.

Верхний резонанс приходится на нижний диапазон вещания радио. Схема автомобильной антенны проста:

  • Необходимо выложить проводом МГТФ 0,5 периметр заднего стекла трапецией:
  1. Верхняя грань 56,5 + 56,5 см.
  2. Нижняя грань 66,5 + 66,5 см.
  3. Боковины 22,5 + 22,5 и 45 см.

Спиральный участок снижает общую длину антенны

  • Плюсы стоят, где будем добавлять провода согласующего конденсатора, снимаем сигнал кабелем РК – 50.
  • Посередине стекла вертикально идут к центру два провода, где крепится ровно по оси подстроечный конденсатор (5 – 25 пф). Длиной 45 см каждый. Поэтому придется свить зигзагом, уложить под изоляционную трубку.
  • Кабель паяем с той боковины, где провод посередине обрезан. С противоположной стороны разрыва быть не должно.

Подключение автомобильной антенны идет через разъем, используемый связным оборудованием. Длина кабеля небольшая, точнее – следует взять поменьше. Поскольку антенна пассивная, в тракте до приемника сигнал будет сильно затухать. Если реально связное оборудование поставить у заднего стекла, так стоит сделать.

Преимущества самодельной рамочной автомобильной антенны

Смотрите преимущество. Едва ли наша антенна для авто своими руками будет отличаться слишком большой дальностью действия, выказывать чудеса приема, но конкурентоспособна некоторым заводским моделям, монтируемым на крышу, имеют высоту большую, нежели легковая машина. Плюс в лесу, городу не помешает. К тому же отпадает надобность мотать согласующее устройство. Это непросто, помимо точной выдержки количества, шага витков необходимо будет найти нужную толщину провода. Конструкцию придется герметизировать, мероприятие потребует покупки ряда дополнительных материалов.

Поймет смысл единожды державший руками рацию. Антенна покрыта плотным герметиком, приборы позволят вещать в лучшем случае на пару километров. Если местность не пересеченная. В нашем случае достигаются простота монтажа, легкость конструирования, доступность для рядового пользователя.

Конденсатор необходим: контур укороченный. По утверждениям автора идеи, коэффициент составляет 0,3. Серединными шлейфами выполняется электрическое удлинение рамки до нужного размера, конденсатор гасит реактивное сопротивление для согласования с кабелем РК – 50 и позволит настроить систему в резонанс. Автор утверждает, что антенна широкополосна. В большинстве случаев можно выполнить монтаж на заднее стекло любого авто без серьезных изменений в конструкции. Настройка ведется по минимуму коэффициента стоячей волны.

В некоторых случаях купить антенну для автомобиля и установить выйдет дороже, сложнее и обеспечит меньшим качеством приема. В приведенной же конструкции нет ничего трудного, и на досуге аксессуар может попробовать в деле каждый автолюбитель. Мачта под два метра не подойдет легковой машине, больше уместна на танке! Которые, как известно, грязи не боятся.

» Простая в изготовлении всенаправленная Wi-Fi антенна

Все счастливые обладатели беспроводных устройств на базе технологии Wi-Fi очень часто сталкиваются с низким уровнем приема сигнала. Особенно часто проблема уверенного приема возникает в квартире или загородном доме, где на пути распространения Wi-Fi сигнала встречается множество преград в виде стен, мебели и т.д. В результате мы имеем множество мертвых зон, где порой нам необходим уверенный WiFi сигнал. Самое простое, что можно предпринять — это купить простенькую Wi-Fi антенну с чуть более высоким коэффициентом усиления чем у штатной антенны. Да, это просто, но иногда требуется быстрый и недорогой способ поправить положение. В данном случае мы будем делать простую всенаправленную WiFi антенну для дома.

В сети множество видов коллинеарных антенн, но большинство из них трудоемки в изготовлении, поэтому выбор пал на omni 6dbi. Пропущу пункт о необходимых инструментах и материалах, тут ничего сложного нет.
Собственно сам эскиз с размерами:


Берем одножильный медный провод диаметром 1 — 1,5мм, один конец которого припаиваем к коннектору или сразу к кабелю. Отмеряем первый отрезок в 61мм и в этом месте делаем петлю.

Петлю диамметром 10мм проще сделать на подходящей оправке в виде трубки.

Опять отмеряем второй участок 91.5мм и делаем вторую петлю. Оставив после второй петли оставляем 83мм, а остальное откусываем кусачками.

Чтобы защитить нашу конструкцию и придать более эстетический вид, можно уложить антенну в ПВХ трубку.

Аккуратно собранная антенна будет иметь усиление 5-6dbi, в отличии от штатной 2dbi.

Этим летом я ездил отдыхать в Азербайджан, сразу отмечу, что власти усиленно развивают туризм и каждый отдыхающий зарядится массой впечатлений! Остановился я в городе Баку, где много исторических памятников и достопримечательностей азербайджана с живописным побережьем каспийского моря. Места отдыха в избытке для тех, кто любит горы или море, причем горная местность по красоте ничуть не уступает Швейцарии.

Поделиться записью


Мощная вай фай антенна своими руками. Антенна вай-фай своими руками: схема, инструкция, описание работ

Это простоя в изготовлении и очень мощная как пушка Wi-Fi антенна. С помощью неё можно принимать и передавать Wi-Fi сигнал не то что на сотни метров, а на несколько километров!
Антенна-пушка напоминает вид космического бластера и так же как это фантастическое оружие имеет направленное и очень мощное действие.

Это направленная антенна. И именно это свойство дает большое расстояние приема из-за большой концентрации сигнала в одном направлении.

Схема-чертеж антенны


На чертеже представлены размеры между элементами антенны. Её резонансная частота настроена на середину частоты Wi-Fi 2,4 ГГц.

Для изготовления антенны понадобится

  • Длинная шпилька с гайками.
  • Металлический лист, я взял медный, так как он очень просто режется. Вообще можно взять и жесть от консервных банок.
  • . Но можно подключить уже к имеющемуся роутеру.

Изготовление мощной Wi-Fi антенны-пушки

Прежде чем приступить к изготовлению антенны, нужно знать, что любое отклонение от заданных размеров сильно ухудшит ее характеристики. Поэтому все нужно делать максимально точно.
Берем лист металла и примерно размечаем центры диаметров кругов. Затем сверлим центра. Для точности, место перед сверлением керним или проходимся тонким сверло, а затем толстым. В итоге диаметр отверстия должен быть чуть больше шпильки.


Затем берем циркуль и вычерчиваем кругляши на металле.


Вырезаем сначала квадрат.


Потом вырезаем аккуратно круг.


Получились круги для антенны.


Взял длинную шпильку. Обрезал лишнее по длине антенны, учитывая ширину гайки.


Вот и готовый комплект для сборки.


Собираем антенну. Все очень просто, как конструктор в детстве.


Для контроля размеров рекомендую использовать металлическую линейку, так как она более точная.


В последних двух дисках необходимо сделать отверстия для подключения кабеля.


Разъем с кабелем мы сделаем из старой антенны от роутера или адаптера.


Снимаем верхний кожух.


Срезаем изоляцию. Антенна отцепилась сама, потому что была запрессована.


Далее отпаиваем металлический колпак.


И разъем для подключения готов.


Лудим диски. Медь в этом плане отличная штука. Как-то я делал такую антенну из корпуса старого компьютера, так там приходилось лудить с кислотой.


Пропускаем через отверстие последнего круга кабель и припаиваем экранирующую обмотку к диску.


Теперь среднюю жилу пропускаем в отверстие второго диска и припаиваем.


Антенна почти готова. Я установлю ее на кронштейн от фотоаппарата. Будет такой домашний вариант.


К выходу разъема прикручиваем .


Можно примотать его изолентой или скотчем к кронштейну.


Я поставлю антенну на окошко и направлю на объекты, где может быть сигнал.


Ого, сколько сетей появилось. Хотя раньше я ловил сигнал только своего роутера. В нашем городе не много точек для доступа.


Результат поразительный.


Количество сетей превысило все мои ожидания.

Результат

Результат был таков, что на однотипную антенну можно без особых проблем связаться на расстояние около 10 километров! И это без всяких усилителей и специального оборудования.
С помощью такой мощной Wi-Fi пушки — антенны можно передать сигнал в гараж, на работу, в школу, на дачу. Все материалы доступны абсолютно каждому, а делается все очень просто.Более подробную инструкцию по сборке можно узнать посмотрев видео ниже. Так же там показаны более широкие испытания этой мощной Wi-Fi антенны.

PS: Если вы будете делать уличный вариант, то для изоляции и от коррозии всю антенну будет неплохо покрасить обычной краской по металлу.

Добрый день уважаемые читатели блога сайт Совсем недавно я рассказывал о возможности увеличить зону охвата за счет установки . Однако не всем такая ситуация по душе, а многие попросту не хотят отдавать лишние деньги. Именно поэтому решил описать, что же такое усиленная wifi антенна для роутера своими руками.

Необходимость увеличить зону охвата или добиться более устойчивого сигнала приходит именно в тот момент, когда пользователь попросту не может подключиться к в удаленной части своей квартиры либо по беспроводной сети в несколько раз. Самый доступный способ решить данную проблему перенести беспроводной маршрутизатор ближе к приемнику. Однако мы не ищем легких путей и сделаем усиленную wifi антенну для роутера своими руками.

К сожалению, данный способ подходит только для моделей с внешними антеннами.

В моем арсенале есть несколько способов изготовления улучшенной антенны для wifi роутера. Я же постараюсь подробно рассказать о трех вариантах самодельных вай фай усилителей.

Усиленная wifi антенна из коробки от CD дисков

Как бы нелепо это не звучало, но такой вариант изготовления антенны для роутера своими руками действительно дает довольно хороший результат. Для изготовления нам понадобится:

  • Коробка для дисков на 25 штук
  • Ненужный CD диск
  • Медная проволока, сантиметров 30, сечением 2 кв/мм (можно и больше, но не переборщите с толщиной)
  • Коаксиальный кабель для подключения
  • Инструмент (паяльник, пассатижи, клей и напильник)
  • Дополнительный SMA разъем

Открываем коробку и отрезаем направляющую на расстоянии около 20 мм

Затем используя напильник, делаем углубления в виде крестовины, для последующей установки ромба.

Благодаря пассатижам из подготовленной заранее медной проволоки создаем двойной ромб. Длинна каждой стороны отдельного ромба, не должна превышать трех сантиметров. Вид получившегося изделия можно увидеть на рисунке ниже.

Концы проволоки должны сходится в середине.

В месте соединения концов производим пайку провода и самих концов соответственно.

Следующим шагом необходимо просунуть коаксиальный кабель через отверстие направляющей в коробочке. Затем используя клеевой состав зафиксировать получившийся ромб в пазах направляющей.

Для лучшей фиксации советую все свободно перемещаемые части зафиксировать клеем.

Закрываем крышкой получившуюся конструкцию усиленной антенны беспроводного маршрутизатора и используя разъем SMA подключаем ее к самому роутеру.

На этом наша wifi антенна для роутера готова. Когда я лично решил протестировать полученный результат, то был очень приятно удивлен. Мощность сигнала в удаленных помещениях заметно увеличилась.

Коробку из-под дисков всегда можно заменить листовым железом. А вместо пластиковой направляющей использовать припаянную металлическую трубку. Возможностей для доработки огромное множество.

Усиленная антенна для роутера своими руками из жестяной банки

Из названия уже можно понять, что данный способ примитивен до безобразия и тратить деньги на покупку дополнительных материалов вовсе не надо.

В магазине достаточно купить банку газировки (или пива) и после того как она будет опустошена можно приступать к изготовлению самодельного wifi усилителя для роутера.

Для начала стоит ее сполоснуть и просушить, чтобы избавиться от остатков содержимого. Затем используя ножницы, прокалываем банку в нижней части, рядом с изгибом переходящим в донышко, и отрезаем его. Затем вдоль всей длины делаем разрез до изгиба переходящего в верхнюю часть. После чего по окружности с обеих сторон от продольного разреза почти до самого конца отрезаем крышку, но при этом оставляя небольшой участок для устойчивости нашего экрана. Нагляднее будет понятно, если посмотреть на рисунок ниже.

Для большей жесткости нашей конструкции можно не отрезать дно банки, а поступить также, как мы поступили с крышкой, что не позволит экрану произвольно загибаться.

Следующим шагом будет крепление антенны. Насаживаем нашу конструкцию на антенну, а для лучшей фиксации берем пластилин. Он не позволит перемещаться всему этому добру в пространстве.

Если ваш роутер имеет не один, а два передатчика, то такой усилитель нужно сделать для каждого, что позволит направлять более мощный сигнал в несколько сторон одновременно.

На первый взгляд такое приспособление выглядит очень элементарно и ненадежно. Однако эффект усиления дает понять что и простая конструкция может давать отличный результат.

К сожалению два способа, приведенных выше предназначены для улучшения направленного сигнала . Такая схема подойдет тем пользователям, которые установили беспроводной маршрутизатор в углу помещения и «раздавать wifi» соседям нет необходимости.

Самодельная усиливающая насадка на роутер

Еще один довольно простой способ усилить сигнал вай фай своими руками это использовать так называемую насадку. Принцип изготовления прост до безобразия. У вас под рукой должна быть проволока сечением 1.5 – 2.5 мм, кусок картона, пассатижи и ножницы.

В первую очередь нарезаем из проволоки несколько кусков разной длины (начиная с меньшей и постепенно увеличивая на 4 мм.). Количество таких кусков будет зависеть от того, какую wifi антенну вы хотите получить.

Вырезаем кусок картона такой длины и ширины, чтобы под весом проволоки он не согнулся. Далее крепим проволоку к картону прокалывая его на равных участках.

Используя ножницы вырезаем отверстие для крепления. Вид получившейся конструкции очень похож на .

Естественно если ваш маршрутизатор имеет несколько передатчиков, то такую насадку делаем для каждого из них.

Такая конструкция действительно поможет увеличить зону покрытия и усилить передачу сигнала.

Все описанные способы изготовления антенны для роутера своими руками довольно просты и не потребуют дополнительных навыков. Однако если в ходе работ возникнут какие-то вопросы или появится предложение по дополнению настоящей статьи, то не стесняйтесь оставлять их в комментариях.

Для лучшего закрепления прочитанного материала, предлагаю посмотреть соответствующее видео.

Беспроводной интернет – это одна из тех вещей, без которых уже нельзя представить себе жизнь. Теперь можно пользоваться из любой точки дома и офиса гаджетами, игровыми приставками, интернет-бытовой техникой. Но для одновременного запуска всех этих вещей нужен хороший потенциал.

Самый простейший способ усилить беспроводной сигнал – это использование внешнего усилителя для роутера, который можно купить, или сделать антенну своими руками. Приобретая опыт и усваивая основы, лучше начинаешь понимать, как сделать правильный выбор.

Поляризация антенн

Связь Wi-Fi зависит от радиочастотной энергии, которая передается и принимается по антеннам.

Приёмные и передающие антенны – это устройства, которые излучают радиоволны при подаче электрической энергии. Радиоволны, как и все волны в электромагнитном спектре, измеряются в единицах частоты Герцах. При упоминании радиоволн часто применяется термин «длина волны». Длина волны (в метрах) = 300 / частота (в МГц). Эта взаимосвязь между частотой и длиной волны особенно важна для расчётов и создания антенной конструкции.

Ориентация антенны относительно земной поверхности называется ее «поляризацией». Конструкции, которые предназначены для радиоволн, ориентированные, в основном, параллельно земной поверхности, называются «горизонтальными». Если воздействие направлено под прямым углом к ​​земной поверхности, то речь идёт о «вертикальных» конструкциях.

Некоторые антенны могут быть использованы в любой поляризации путем простого изменения положения. Факторы, связанные с выбором одной поляризации над другой, включают рабочую частоту, желаемый охват, механические ограничения и обычную практику.

Очень важно учитывать, что все антенны в системе связи должны использовать одну и ту же поляризацию. Для максимизации совместимости иногда находят применение круговой или эллиптической поляризации.

Усиление мощности приема и сигнала роутера

Антенна передаёт (и принимает) радиоволны лучше в определенных направлениях, тем самым увеличивая эффективную излучаемую мощность.

Обратите внимание! Полная излучаемая мощность не увеличивается, а просто становится сильнее в одном или нескольких направлениях и слабее в других направлениях.

Такое «усиление» применяется как к переданному, так и принятому сигналу. Единицей измерения количественного усиления является децибел или дБ, который был назван в честь Александра Грэма Белла.

Важно! Более высокие значения дБ показывают более высокий коэффициент усиления.

Основные виды антенн

Что нужно учитывать при создании антенны? Для работы над усилением сигнала всегда важно помнить о некоторых особенностях передачи сигнала на расстояния. Выбор типа антенного устройства может значительно повлиять на дальность и устойчивость связи.

Все Wi Fi антенны делятся на два вида:

  1. направленные,
  2. всенаправленные.

Которые, в свою очередь, бывают:

  • внутренними,
  • наружными.

Кроме того, при установке устройства нужно учитывать следующее: несовпадение поляризаций точек доступа приведет к тому, что в одном из положений уровень качества увеличится, а в другом – вообще пропадёт.

Всенаправленные

Наилучшим вариантом расширить диапазон домашней интернет-системы является установка внешней антенны с хорошими коэффициентами усиления и всенаправленности. Всенаправленная антенна обычно является антенной вертикальной поляризации. В удаленной местности, где сотовая связь слабая, устанавливать такое устройство – смысла нет. Вариант больше применим в городских условиях.

Помните! Модели всенаправленных антенн, естественно, мешают друг другу при неправильном размещении в непосредственной близости от обычного маршрутизатора.

Одной из разновидностей всенаправленной антенной с повышенным коэффициентом усиления является вертикальная коллинеарная wi fi антенна с одной точкой питания и фазированием элементов.

Направленные

Антенна является пассивным устройством, которое сигналу не добавляет мощности. Тем не менее, есть методы повышения доли энергии, передаваемой в определенном направлении, за счет уменьшения доли энергии, передаваемой в остальных направлениях.

Если применить направленные антенные усилители, то можно значительно улучшить зону покрытия вай фаем.

Одним из наименее распространенных (за счёт своей дороговизны) типов антенн в сотовой связи являются секторные антенны. Устройства позволяют обеспечить высокий уровень интернет-соединения, если использовать схемы многопанельной установки. Вертикальная и горизонтальная фокусировка лучей (90, 120 градусов) позволяет предотвратить помехи от других антенн.

Как подключить бесплатный интернет вай фай

Существует несколько способов усиления сигнала настолько, чтобы можно было подключиться к доступным точкам или к роутеру соседа, который делится своим паролем для вай фай.

Мощная антенна своими руками

Сделать wifi антенный усилитель направленного действия можно и самостоятельно, благо, что в сегодняшнем интернете много подобных схем. Например, антенну двойной биквадрат, усиление которой составляет 12 дБ. Для сборки понадобится медная проволока диаметром от 2 до 3 мм и длиной 300 мм.

В качестве рефлектора можно использовать пластину из фольгированного гетинакса. Фольгированный гетинакс – это прессованная бумага, пропитанная клеящим составом и покрытая медной фольгой. Если такого нет, то можно применить любой металл, например, крышку старого системника или обычную пивную банку.

Первое, с чего нужно начать, – это согнуть двойную восьмёрку из провода со сторонами квадратов 30 мм. Для этого провод нужно разметить на 8 равных частей, согнуть его в отмеченных местах под углом 90 градусов при помощи плоскогубцев. В результате должна получиться антенна в виде восьмёрки.

Дальше нужно вырезать рефлектор из пластины гетинакса. Отметить центр на пластине и просверлить на ней два отверстия: для антенны и выхода провода. Расстояние между проволокой и пластиной должно быть не менее 15 мм.

Далее понадобится wi fi адаптер, вернее его маленькая антеннка. Просверлив отверстие в корпусе адаптера, выводится провод. Центральный провод припаивается к восьмёрке, а обмотка к ножке. Так устроена антенна wifi двойной биквадрат. Осталось подключить к ноутбуку, и посмотреть, как она ловит сигналы. По сравнению со встроенной антенна для роутера своими руками – это просто wi fi пушка!

Сверхдальняя wi fi антенна своими руками

Для изготовления конструкции антенны для сверхдальней связи в первую очередь понадобится лист фольгированного (хотя бы с одной стороны) гетинакса или стеклотекстолита. Материал должен быть в хорошем состоянии, достаточного размера и толщины. Также нужны будут виниловые самоклеящиеся трафареты с монтажной пленкой, которые защитят упомянутые листы от травления.

Задняя стенка-отражатель может быть изготовлена из любого ровного металлического листа, хоть из фольги, главное ровной и плоской.

Текстолит сначала размечается, затем разрезается болгаркой на две части размером 450х350 мм. Перед травлением лист зачищается мелкой шкуркой, что довольно важно.

Между отражателем, который тоже вырезается из гетинакса, и самой платой должно быть строго 9 мм. Эти 9 мм можно сделать с помощью ровного пластика. Дальнейшая сборка заключается в склеивании полученных деталей, предварительно оставляются отверстия в мягком пластике, чтобы потом подпаять провод. Провод и разъём покупаются на радиорынке. Разъём подбирается по антеннам роутера.

В результате получается сверхдальняя антенна для wi-fi роутера. На расстоянии одного км от точки доступа эта мощная самодельная антенна имеет усиление 80 дБ.

Травление печатной платы с помощью раствора

Травление – довольно непростая задача. Сложность заключается в поиске емкости для больших листов. Если таковой нет, можно сделать опять же своими руками. Для изготовления самодельной емкости понадобится каркас из четырёх реек и плёнка в несколько слоёв. Плёнка накрывается и закрепляется саморезами.

Хлорное железо – это самый простой и наиболее часто используемый метод для травления печатной платы.

  1. хлорным железом пользоваться в замкнутом небольшом пространстве;
  2. трогать раствор голыми руками;
  3. использовать металлическую посуду или металл для процесса смешивания;
  4. использовать стеклянные или пластиковые лотки в процессе травления;
  5. после использования бросать раствор в землю или куда-нибудь.
  • прикрывать нос и глаза во время травления;
  • после травления раствор один раз можно повторно использовать, но хранить нужно в прохладном месте вдали от солнечного света.

В интернете приведено много занятных вариантов, как сделать wifi антенну, которые можно взять на вооружение. Например, можно сделать модель направленного действия из всенаправленной антенны. Для этого достаточно прикрепить за ней отражающий экран, например, из того же листа фольги.

Осталось только подобрать подходящую wifi антенну, увеличить дальность сети и не расставаться с вай фаем ни на секунду.

Видео

Настройка сетей Wi-Fi достаточно много нюансов демонстрирует. Сталкивался пытающийся расшарить интернет домашним пользователям. Один компьютер подключен к провайдеру через кабель. Создается режим точки доступа, выбираются протокол защиты, пароль. Домашние пользователи пользуются интернетом параллельно. Методика упирается рогом, спасибо провайдеру, использующему приватную линию. Выход находится. Препоны, стоящие меж людьми и скоростным интернетом, бессильны помешать самодельной антенне Wi-Fi улучшить прием-передачу сигнала, закономерно возрастают дальность связи, скорость.

Назначение самодельных антенн Wi-Fi

Антенны украшают многие устройства. Перечислим:

  1. Планшет.
  2. IPhone.
  3. Ноутбуки.
  4. Модемы Wi-Fi.
  5. Роутеры Wi-Fi, точки доступа.
  6. Вышки сотовой связи.

Самодельная антенна для Wi-Fi адаптера расширит возможности электроники. Точка доступа отличается способностью передать сигнал всенаправленно. Мощность расползается, заполоняя азимуты. Дополняя точку доступа специальной внешней покупной, самодельной антенной, может придать направленные свойства излучению. Увеличит дальность уверенного приема по выбранному азимуту.

Повремените ломать смартфоны, подключая внешнюю антенну, соберите своими руками для точки доступа. Большинство антенн, продаваемых магазинами, обладают круговой диаграммой направленности, излучают одинаково, всенаправленно, деля мощность по азимутам.

Мощные самодельные Wi-Fi антенны имеют гораздо меньший сектор обзора, обеспечат в некоторых случаях более уверенный прием. Оснащенные рефлектором устройства снабжены диаграммой направленности, снабженной одним центральным лепестком. Отражатель убрать – получится восьмерка. В плоскости расположения излучателя будет мертвая зона, сигнал отсутствует. Принимать с направления самодельная антенна для Wi-Fi-роутера неспособна. Схема установки точки доступа ведется следующим образом:

  1. Устройство подключается к компьютеру (электросети).
  2. Выбирается канал.
  3. Выполняется настройка на полную мощность.
  4. Выбирается тип протокола.
  5. Устанавливаются пароль, имя сети.

Народы ходят довольные новой доступной точкой. Давайте рассмотрим процесс поближе, повременим браться за паяльник, плоскогубцы. Подобно передатчику, радиоэлектронному устройству, антенна, роутер обладают неким пиком возможностей в середине диапазона. Например, на 2,4 ГГц зачастую имеется 14 каналов. Мощность передаваемого сигнала выше посередине, например, шестой канал. Хотя каждая линия занимает в спектре 22 МГц, измерение проводится по уровню поля 0,707 (√2/2) максимума в обе стороны несущей частоты.

Для справки. Определено типом модуляции, иногда остаются только пилот-сигнал, одна полоса. Прямоугольные импульсы, компьютерные сигналы именно такие, имеют выраженный максимум, кучу боковых лепестков. В результате ширина спектра реального сигнала равна бесконечности. Ограничена полоса циклического напряжения, к которому процесс, излучаемый протоколом Wi-Fi, близко не относится.

Самодельная всенаправленная Wi-Fi антенна не лучший вариант. Ничего не изменится. Самодельная направленная антенна Wi-Fi лучше, будем делать из проволоки, фольгированного текстолита, медной трубки. Чувствительные такие. Передаваемая, принимаемая мощности сосредотачиваются узким сектором. Позволит повысить качество передачи, продуманно расположив пользователей, точку доступа. О том, насколько важна расстановка, судите по одному любопытному случаю:

  • Офис вызвал мастера. Сказали: в период 12.00 – 14.00 точка доступа коллапсирует. Техник достал специальный прибор оценки занимаемых частот, начал исследование. Подобные программы предоставляются ОС Андроид смартфонов. Пользуйтесь, выбирая канал перед установкой. Ведите исследование на протяжении дня несколько суток подряд, избегая казуса. Доводим обнаруженное мастером: соседний офисе, отделенный стеной, расписал обед. Поочередно работники пользовались микроволновкой (пользуется частотой 2,4 ГГц). Плохая изоляция бытовой техники, отсутствие заземления позволило излучению выставить узкополосную помеху на частоте работы магнетрона. Решение проблемы оказалось простым: точку доступа перенесли на противоположный конец офиса.

Имейся под рукой простейшая самодельная Wi-Fi антенна из банки пивной с рефлектором, герои могли не узнать, что по соседству мощный источник вредного излучения. Отражатель придает точке доступа направленность, погасит излучение, идущее из-за стены. Очередной плюс направленных антенн, которые сегодня будем делать своими руками. Кстати, покупая микроволновку, попробуйте определить безопасность. Нужно включить прибор в заземленную розетку, положить в рабочий отсек сотовый телефон, закрыть дверцу, набрать номер. Сигнал проходит – наружу выйдет вредное излучение магнетрона. Избегайте садиться рядом. Обсудим, как сделать самодельную Wi-Fi антенну.

Направленная Wi-Fi антенна своими руками

Понадобятся инструменты:

  1. Паяльник (припой, канифоль, подставка).
  2. Плоскогубцы.
  3. Отвертка плоская маленькая.
  4. Штангенциркуль, линейка.
  5. Дрель со сверлом под медную трубку.

Из материалов потребуются:

  1. Кусок фольгированного двухстороннего текстолита в качестве рефлектора.
  2. Проволока медная диаметром 1,2 мм и длиной 30 см (понадобятся из них только 26 см).
  3. Кабель РК-50 не слишком длинный, чтобы не гасить сигнал.
  4. Кусок медной трубки длиной 10 см, чтобы внутрь прошел кабель РК-50.

Начнем медной трубкой. Один конец пропиливаем на 1,5 мм, удаляя две трети стенки. К оставшемуся кусочку будет припаяна антенна. Создаем из проволоки биквадратный контур стороной 30,5 мм. Размер выбран из условия настройки диапазона 2,4 ГГц.

Подобным образом можно изготовить любую антенну сигнала горизонтальной или вертикальной поляризации. Включая телевизионную. Подойдет самодельная Wi-Fi антенна планшету, телефону, модему. Если знать, куда вести подключение.

Обратите внимание, сторона квадратов дана по серединному сечению проволоки. Между ближайшими краями будет 30,5 – 1,2 = 29,3 мм. Можете взять на вооружение. Гнуть начинаем, находя середину. Используем ребро линейки опорой, определяем состояние, когда отрез начнет балансировать. Делаем перегиб на 90 градусов, сие будет точка, куда подключится центральная жила РК-50. Догибаем проволоку, получая «квадратную восьмерку», оба конца должны строго симметрично вернуться. Обрезаем, пару миллиметров не доходя начального изгиба. Лудим концы, откладываем восьмерку в сторону.

Размечаем середину текстолита, сверлим дырку, чтобы еле входила медная трубка. Лудим обе стороны. Берем медную трубку, лудим внешний край тонкой стенки, оставленной первым этапом. Восьмерка отстоит от рефлектора на 1,5 см. Лудим трубку кругом, ободом на указанному расстоянии от края (без учета тонкой стенки). Припаиваем трубку к плате, желательно под углом 90 градусов. На тонкую стенку сажаем оба конца восьмерки, чтобы начальный изгиб не касался трубки. Ориентируем восьмерки параллельно большей стороне текстолита на расстоянии 1,5 см. Теперь рефлектор заземлен.

Кабель РК-50 протаскивается внутрь, экран сажается на медную трубку, жила – на начальный изгиб восьмерки. На противоположный конец монтируем разъем, просто припаиваем отрез к нужным контактам модема, телефона, любого другого устройства. Начинаем тест. Восьмерка должна быть установлена вертикально для горизонтальной поляризации. Если работает, находим силиконовый герметик, не боящийся мороза, осадков, заливаем место выхода кабеля на антенну добрым слоем. После застывания антенна будет успешно противостоять дождю.

Если заменить проволоку толстой жилой ПВ1 достаточно большого сечения (2,5 мм 2), оплетку зачистим в точке начального изгиба и на концах. Самодельная Wi-Fi антенна для ноутбука будет защищена против непогоды. Сегодня выпускают термоусадочные материалы. Нагретая пленка плотно обтягивает изделие, предохраняя от капризов непогоды.

Делаем Wi-Fi антенну своими руками.

Технология беспроводной передачи данных Wi-Fi заполонила мир. Практически в каждом доме и каждой квартире есть устройства, поддерживающие работу с этим стандартом. Например, маршрутизаторы (роутеры) «раздающие» сигнал Wi-Fi по квартире или дому.

К сожалению, мощность данных устройств не всегда достаточна для того, чтобы обеспечить более-менее приемлемую силу сигнала во всех помещениях и комнатах квартир, а особенно домов. К примеру, используемый мною роутер TP-LINK находится в угловой комнате и обеспечивает для самых дальних от него комнат уровень сигнала практически на минимальном пределе. Оно и не удивительно-сигналу приходится пробиваться через четыре стенки.

Что делать в таких случаях, для того чтобы повысить уровень Wi-Fi сигнала роутера до приемлемых значений?? Правильно- изготовить своими руками антенну Wi-Fi диапазона.

В сети полно конструкций таких антенн. Более эффективны те антенны, которые можно подключить вместо штатных штыревых антенн роутеров.

Для меня такой вариант не подходит. Антенна моего роутера несьемная, лезть вовнутрь роутера для подпайки кабеля самодельной антенны не хочется-роутер еще на гарантии.

Поэтому находим иной вариант- антенна-насадка.

Эта антенна-насадка просто надевается на штатную штыревую антенну роутера (маршрутизатора). Никуда ничего не нужно подпаивать.

Антенна-насадка представляет собой шестиэлементный «волновой канал», имеет направленные свойства. Обеспечивает максимум усиления в направлении, совпадающем с продольной осью антенны. Кроме того, в некоторой степени задавливается (уменьшается) задний лепесток излучения. Антенна имеет пять директорных элементов и один рефлектор.

Эскиз антенны:

Для изготовления траверсы выбран стеклотекстолит толщиной 2 мм.

Штатная штыревая антенна моего роутера TP-LINK имеет в поперечном сечении неправильную геометрическую форму, в полном соответствии с извращенными вкусами современных дизайнеров-конструкторов))).

Изготовленная траверса выглядит так:

Излучающие элементы антенны-насадки изготовлены из медной проволоки в эмалевой изоляции диаметром 0,96 мм. Диаметр проволоки достаточно критичен и должен быть в пределах 0,8…0,95мм, в противном случае параметры антенны изменятся, и антенна-насадка будет настроена на частоты отличные от частот диапазона Wi-Fi.

Длины излучающих элементов также нужно выдерживать с точностью +/- 0,5 мм. Это же относится и к расстоянию между элементами.

Элементы антенны:

Для установки излучающих элементов в стеклотекстолитовой траверсе сверлятся отверствия диаметром чуть больше чем диаметр проволочных элементов. Проволочные элементы я зафиксировал небольшими капельками цианакрилатного клея.

Антенна-насадка в сборе выглядит так:

Вот так выглядит Wi-Fi антенна установленная на штатной антенне роутера:

Для достижения максимальной эффективности этой Wi-Fi антенны необходима небольшая настройка: Wi-Fi антенна должна быть размещена в точке где имеется максимальный ВЧ ток штатной штыревой антенны роутера.

Для этого нужно перемещать Wi-Fi антенну по высоте, начиная от верхнего кончика штатной антенны роутера. Проверку эффективности можно производить или каким-либо индикатором напряженности поля, или проверяя силу сигнала планшетом, смартфоном и т.п. в самых дальних от роутера помещениях.

В моем случае, наиболее эффективно изготовленная Wi-Fi антенна работает при установке её на 25 мм ниже верхнего кончика штатного штыря роутера. Данная антенна дала прибавку в одно деление по индикатору силы сигнала в тех помещениях, где сигнал был на самом минимуме.

FAQ по антеннам GSM 3G 4G MIMO

Вопрос: После замеров телефоном у меня 3G работает на 900-й частоте. Подойдет ли мне простая антенна GSM 900 ?

Ответ: Да подойдет, антенна пропускает определенные частоты, а какой стандарт связи на этой частоте — антенне абсолютно всё равно ))

___

Вопрос: Зачем мне измерять телефоном на какой частоте работает 3G или 4G, ведь не проще ли купить мультидиапазонную антенну?

Ответ: В большинстве случаев, когда у Вас на улице перед домом или на втором этаже дома сигнал присутствует стабильно на 1-2 палочки, то можно брать мультидиапазонную антенну и действительно вопрос решится просто! Но если сигнал очень слабый или практически нету, то стоит взять антенну на определенный диапазон, т.к. коэффициент усиления однодиапазонной антенны гораздо выше!

___

Вопрос: Для чего нужны антенны MIMO с двумя разъёмами?

Ответ: Технология MIMO (маймо) на практике позволяет увеличить скорость интернета на скачивании на 20%, а на отдачу до 100%. То есть, если Вы пользуетесь интернетом как обычный пользователь, то можно брать обычную антенну. А  если Вам необходимо закачивать в сеть большой объём информации , например, видео или у себя на даче хотите поставить удаленноё видеонаблюдение, то стоит взять MIMO антенну.

___

Вопрос:  Зачем нужна направленная антенна ? Можно ли взять всенаправленную антенну для простоты установки ?

Ответ: В городе, где базовые станции сотовых операторов находятся почти на каждой второй крыше и, соответственно, сигнал от этих баз хороший, то можно брать всенаправленную антенну. А если у вас загородный дом за чертой леса, то для хорошего результата рекомендуется брать направленную антенну, т.к. у неё коэффициент усиления как минимум на 10 дБ будет больше!

___

Вопрос: Зачем мне нужна мачта для установки внешней антенны на даче ? Ведь можно воспользоваться кронштейном.

Ответ: Чем выше установлена внешняя антенна, тем лучше сигнал от базовых станций сотовых операторов! Например, если на даче антенну установить за окном второго этажа, то скорость интернета будет 5 Мбит/сек, если на кирпичном воздуховоде на крыше — 10 Мбит/сек, а если на крыше установить 6 метровую мачту, то скорость интернета будет 15-20 Мбит/сек.  А дальше выбирайте какой вариант подойдет именно для Вас.

___

Вопрос: Не будет ли молния бить в мою мачту с антенной ?

Ответ: Теоретически возможно! По статистике в нашей стране молния бьёт 3 раза в год на 1 квадратный километр. То есть вероятность очень низкая. А если при этом еще рядом есть строения или деревья выше вашей антенны, то вероятность попадания молнии становится 1 к миллиону.

___

Вопрос: у меня на даче телефоне иногда показывает знак 4G, но сигнал очень слабый. Какую антенну мне посоветуете ?

Ответ: 4G связь в нашей стране работает в трех частотных диапазонах — это 800, 1800 и 2600 МГц. В идеале провести замеры вашим телефоном и точно определить частоту. Как это сделать можно прочитать ТУТ. Как определите частоту — зайдите в раздел ОБОРУДОВАНИЕ и найдите соответствующий раздел по антеннам, например, АНТЕННЫ 2100. Ну или свяжитесь с нашим специалистами удобным для Вас способом.

Антенна GSM/GPS/Глонасс — НПП ДонКонт

Антенна GSM/3G/4G/GPS/ЭРА-Глонасс 900/1800 МГц


(с креплением на двухсторонний скотч)

Антенна GSM/GPS/Глонасс производства ООО «НПП «Донконт» обеспечит уверенную связь любому устройству работающему в указанном частотном диапазоне. Изделие зарекомендовало себя, как надёжное изделие и рекомендуется к использованию в промышленных радиомодулях GSM-связи, RF-модемах, радиолюбительских конструкциях, мобильных GSM-модемах, автомобилях, оборудованных системой ЭРА-Глонасс или GPS, терминалов оплаты, банкоматах и прочих POS системах.

Возможно предоставление антенны для проведения тестовой эксплуатации на ваших объектах сроком до одного месяца.

Мы являемся производителем антенны поэтому имеем возможность предложить очень интересные финансовые условия и сроки поставки. На данный момент на складе в Ростове-на-Дону находится более 1000 антенн готовых к отгрузке. Наше предложение устойчиво к колебаниям валют и ситуации на мировом рынке, т.к. у нас большие складские запасы элементной базы.

Удобство нашей антенны, в том, что теперь не нужно использовать две разные антенны для стандарта GSM и GPS. Мастер-установщик никогда не перепутает какую антенну использовать. Наша антенна подходит для обоих стандартов за счёт работы в широком частотном диапазоне.

Технические характеристики:
Тип антенны…………………………………………………………….. ½ длины волны, диполь
Частотный диапазон, МГц………………………………………. 824…960/ 1770…1880
Полоса пропускания, МГц…………………………………………. 136/280
Поляризация………………………………………………………………. Вертикальная
Импеданс, Ом…………………………………………………………….. 50
Максимальная излучаемая мощность, Вт………………. 60
КСВ…………………………………………………………………………… ≤1,5
Способ крепления……………………………………………………. Двухсторонний скотч 3М
Коэффициент усиления, dBi……………………………………. ≥2,5
Типы разъёма……………………………………………………………. SMA-M, FME
Длина кабеля, м…………………………………………………………. 3,0
Материал корпуса…………………………………………………….. Полиэтилен
Тип кабеля………………………………………………………………….. RG174U/A (крайне низкие потери)
Температура эксплуатации, ºС…………………………………. -40… +60
Габаритные размеры антенны ДхШхВ, мм……………… 100х15х6
Вес, г…………………………………………………………………………… 84

Высококачественный разъём SMA-M (male) позволяет обеспечить надёжное крепление к устройству и бесперебойное усиление сигнала

 

Прочный клеевой слой монтажной ленты 3M надёжно фиксирует антенну на любой поверхности

 

Возможно изготовление антенн с длинной кабеля до 10 метров и различными разъёмами. На фотографии 5-ти метровая антенна с разъёмом FME

 

Антенна комплектуется подробной инструкцией и спиртовой салфеткой для обезжиривания места монтажа

Диаграммы направленности:

1990 МГц


824 МГц


Руководство по эксплуатации антенны GSM (открывается в новой вкладке)

Добро пожаловать в Антенны 101 | Электронный дизайн

>> Ресурсы веб-сайта
.. >> Библиотека: TechXchange
.. .. >> TechXchange: Дизайн антенны 101

Загрузить статью в формате .PDF

Антенны — это гораздо больше, чем простые устройства, подключенные к каждому радио. Это преобразователи, которые преобразуют напряжение передатчика в радиосигнал. И они собирают радиосигналы из воздуха и преобразуют их в напряжение для восстановления в приемнике.

Обычно принимаемые как должное и оставляемые на последнюю минуту в конструкции, антенны, тем не менее, имеют решающее значение для установления и поддержания надежной радиосвязи. Они могут показаться сложными и загадочными для большинства инженеров, особенно для EE, впервые работающих с беспроводными приложениями, не говоря уже о том, что они бывают бесконечного разнообразия размеров и форм. Однако краткий обзор основ может помочь развеять любые дизайнерские заботы.

Что такое радиоволна?
Радиоволна — это комбинация магнитного поля, расположенного под прямым углом к ​​электрическому полю.Оба колеблются с определенной частотой и движутся вместе в направлении, перпендикулярном обоим полям ( Рис. 1, ). Эти электромагнитные поля движутся со скоростью света (около 300 миллионов метров в секунду или около 186 400 миль в секунду) через свободное пространство. Согласно хорошо известным уравнениям Максвелла, они поддерживают и восстанавливают друг друга по пути, но ослабевают на расстоянии.

1. Антенна создает электрические и магнитные поля, перпендикулярные друг другу, а также направлению распространения.

Каковы некоторые характеристики радиоволны?
Одна из ключевых особенностей — ориентация полей относительно земли. Это называется поляризацией. Антенна имеет вертикальную поляризацию, если электрическое поле вертикально по отношению к поверхности земли. Антенна имеет горизонтальную поляризацию, если она горизонтальна по отношению к поверхности земли.

Есть ли другие важные особенности радиоволны?
Обычно радиоволны имеют ближнее и дальнее поле.Ближнее поле близко к антенне, обычно в пределах нескольких длин волн (?). Дальнее поле составляет около 10 длин волн или более от антенны. Дальнее поле отделяется от антенны и становится радиосигналом.

В таких приложениях, как радиочастотная связь (RFID) и связь в ближнем поле (NFC), используется ближнее поле, которое больше похоже на магнитное поле вокруг первичной обмотки трансформатора. Но в целом дальнее поле — самая полезная радиоволна.

Как работает антенна?
Антенна передатчика генерирует радиоволны.На антенну подается напряжение желаемой частоты. Напряжение на элементах антенны и ток через них создают соответственно электрические и магнитные волны. В приемнике электромагнитная волна, проходящая через антенну, вызывает небольшое напряжение. Таким образом, антенна становится источником сигнала для входа приемника.

Будет ли одна и та же антенна работать и для передачи, и для приема?
Да. Мы называем это антенной взаимностью. Любая антенна будет работать как на передачу, так и на прием.Во многих беспроводных приложениях антенна переключается между передатчиком и приемником.

Будет ли вертикальная антенна принимать сигнал с горизонтальной поляризацией или наоборот?
В большинстве случаев да. Реальные антенны редко бывают идеально горизонтальными или вертикальными, поэтому некоторый сигнал принимается. Кроме того, большинство сигналов претерпевают сдвиги поляризации на пути передачи из-за отражений и других условий многолучевого распространения. Тем не менее, это несоответствие ориентации антенны вносит некоторое ослабление.

При более точном управлении поляризация может использоваться для мультиплексирования двух сигналов на одной и той же частоте. В некоторых спутниках антенна с вертикальной поляризацией может передавать один сигнал, одновременно передавая или принимая на отдельной антенне с горизонтальной поляризацией на той же частоте. Если поляризация является проблемой в приложении, круговая поляризация может предложить решение.

Что такое круговая поляризация?
Как следует из названия, поляризация непрерывно вращается во время передачи, что позволяет использовать для приема как горизонтальные, так и вертикальные антенны.Для максимального приема необходима приемная антенна с круговой поляризацией.

У вас также может быть антенна, обеспечивающая правую или левую круговую поляризацию (RHCP или LHCP). Это снова позволяет повторно использовать частоту за счет использования разных поляризаций для двух разных сигналов. Часто используется спиральная антенна из спирального проводника и рефлектора. Круговая поляризация чаще всего встречается у спутников.

Как радиосигнал распространяется от передатчика к приемнику?
Сигналы передаются от одной антенны к другой несколькими способами в зависимости от частоты радиоволн.На низких частотах (менее 3 МГц) распространяется земная волна, когда сигнал касается поверхности земли. Расстояние ограничено сотней миль или около того. Радиоволны AM являются хорошим примером распространения низких частот.

На частотах в диапазоне от 3 до 30 МГц (короткие волны) сигналы проходят от 30 до 250 миль в ионосферу, где они преломляются обратно на Землю. Это похоже на излучение сигнала так, что кажется, что он отражается от проводящей поверхности. Могут быть достигнуты очень большие расстояния, поскольку сигналы могут совершать несколько прыжков от Земли до ионосферы и обратно несколько раз.

Однако для большинства современных беспроводных коммуникаций диапазон сигналов составляет от 100 МГц до 10 ГГц. Эти сигналы, называемые небесными волнами, распространяются по прямой линии, как световые волны. Чтобы установить соединение, вам потребуется прямой путь прямой видимости (LOS) от одной антенны к другой. Таким образом, очевидно, что дальность действия сигнала во многом зависит от высоты антенны.

Какая форма антенн наиболее распространена?
Диполь состоит из двух линейных проводников встык длиной в полдлины волны (? / 2) ( Рис.2а ). Здесь одна длина волны (?) Равна 300 / f МГц в метрах. Одна половина длины волны в футах составляет 468 / f МГц или 5616 / f МГц в дюймах. Член f — это рабочая частота в мегагерцах.

Конструкция диполя состоит из двух непрерывных элементов λ / 4, несколько из которых расположены в центре линии передачи (а). В резонансе антенна представляет собой резистор сопротивлением 73 Ом. Горизонтальная диаграмма направленности диполя выглядит как цифра 8 сверху (b). В 3D шаблон имеет форму бублика с максимальным излучением, перпендикулярным длине антенны.

Передатчик или приемник подключается к центру антенны, как правило, с помощью линии передачи, такой как коаксиальный кабель. В этот момент антенна имеет эквивалентное резистивное сопротивление 73 Ом. Однако это будет зависеть от высоты антенны и станет сложным импедансом выше или ниже рабочей частоты. Таким образом, антенна действует как резонансный контур.

Какие другие характеристики диполя?
Обычно диполь ориентирован горизонтально по отношению к Земле, что дает ему горизонтально поляризованную волну.Кроме того, излучение от антенны неоднородно во всех направлениях. Идеальная антенна, называемая изотропным источником, излучает сферически или одинаково хорошо во всех направлениях.

В диполе диаграмма направленности имеет форму бублика. Посмотрев на антенну, вы увидите диаграмму направленности в форме цифры 8 ( Рис. 2b, ). Наибольшее излучение или лучший прием происходит под прямым углом к ​​антенне. На диаграмму направленности сильно влияют находящиеся поблизости проводящие и непроводящие объекты.

Какие еще есть физические формы антенн?
Популярной разновидностью диполя является заземленная антенна или антенна Маркони. Он состоит из одного элемента? / 4, который установлен вертикально и работает с землей или металлическим основанием, называемым заземляющим слоем ( Рис. 3 ). Антенна на плоскости заземления — это всего лишь половина диполя, а другой элемент диполя представлен плоскостью заземления. Поляризация вертикальная, диаграмма направленности круговая или всенаправленная.

% {[data-embed-type = «image» data-embed-id = «5ee007a85553df29008b45f1» data-embed-element = «span» data-embed-size = «640w» data-embed-alt = «3. Антенна на плоскости заземления представляет собой вертикальный элемент & lambda; / 4, который работает против плоскости заземления, большой металлической поверхности, земли или, в некоторых случаях, массива проводников, называемых радиальными. Полное сопротивление в основании составляет около 36 Ом; и обычно используется коаксиальный кабель 50 Ом ». data-embed-src = «https://base.imgix.net/files/base/ebm/electronicdesign/image/2020/06/Antenna_101_Fig_3.5ee007a757bd2.png? Auto = format & fit = max & w = 1440 «data-embed-caption =» 3. Антенна на плоскости земли — это вертикальный элемент λ / 4, который работает против плоскости земли, большой металлической поверхности, земли или, в некоторых случаях, массива проводников. называется радиальными. Импеданс в базе составляет около 36 Ом, а 50 Ом. коаксиальный кабель обычно используется для его управления. «]}%

Есть ли другие распространенные формы?
Да. Патч или микрополосковая антенна распространены на микроволновых частотах (более 1 ГГц).Это квадратное или круглое пятно из проводящего материала шириной примерно в одну половину длины волны. Создать его легко, потому что он обычно реализуется на печатной плате (PCB) ( Рис. 4 ). Рамочная антенна также популярна в некоторых некритических приложениях. Это просто непрерывная петля из проводника, провода или дорожки печатной платы с окружностью 0,1? до 1.0?.

4. Патч или микрополосковая антенна изготавливается на печатной плате. На микроволновых частотах легко создавать массивы пятен, чтобы сформировать фазированную решетку, которая будет иметь усиление, направленность и возможность включать формирование луча и управление.

Могут ли антенны показывать усиление?
Конечно. Антенна может повысить мощность сигнала так же эффективно, как если бы сигнал был усилен электронным усилителем. Он не усиливается как таковой, но усиление формируется в результате концентрации сигнала в более узком луче. Антенна становится более направленной.

Например, диполь концентрирует сигнал в двух лепестках. Следовательно, диполь имеет усиление мощности 1,64 дБ по сравнению с изотропной антенной.Это называется усилением в дБи по отношению к изотропному источнику. Но поскольку в реальной жизни не бывает изотропных источников, мы обычно относим любое усиление антенны к усилению диполя (дБд). Например, 0 дБд = 2,15 дБи.

Как выражается усиление антенны?
Обычно выражается в мощности диполя в дБ. Другим выражением является эффективная излучаемая мощность (ERP) — фактическое количество мощности, которое диполь должен излучать, чтобы произвести тот же эффект, что и усиленная антенна.Вы вычисляете ERP, умножая выходную мощность передатчика на усиление антенны, где усиление — это отношение мощностей, эквивалентное коэффициенту усиления в дБ. Иногда эталон усиления относится к изотропному излучателю, а не к диполю. В этом случае подходящим термином является эффективная изотропная излучаемая мощность (EIRP).

Какую антенну вы используете для усиления?
Есть много разных способов получения прироста. Большинство конфигураций основано на использовании нескольких антенных элементов, таких как несколько диполей или диполь плюс один или несколько паразитных элементов, на которые сигнал не подается напрямую.Знакомый пример — популярный Яги ( рис. 5, ).

5. Яги Уда, японский ученый, изобрел антенну Яги. Он состоит из центральной стрелы, прикрепленной к ведомому элементу, рефлектора и одного или нескольких направляющих (а). Чем больше количество элементов, тем больше усиление и направленность. Диаграмма направленности наиболее сильна на конце стрелы рядом с директорами (b). Добавление большего количества директоров сужает луч и увеличивает усиление.

Управляемый элемент — диполь.Он используется с немного более длинным элементом, называемым рефлектором, и тремя более короткими элементами, называемыми директорами. Паразитные элементы фокусируют луч вперед с направлением излучения от директора. Такая антенна может обеспечить эффективное усиление мощности около 10 дБ.

Если добавить больше директоров, можно добиться еще большей выгоды. С семью или более директорами возможно усиление до 20 дБ. Ширина луча излучения очень мала, что может помочь минимизировать помехи от других станций поблизости.

Как работает параболическая или тарелочная антенна?
Антенна с максимальным направленным усилением, тарелка, использует диполь или аналогичную антенну, но добавляет параболическую тарелку в качестве отражателя. Размещение антенны в фокусе параболы заставляет тарелку фокусировать входящий сигнал на антенне или сигнал, излучаемый диполем, фокусируется тарелкой в ​​очень узкий луч ( рис. 6, ).

6. В параболической тарелке антенна располагается в фокусе.Это может быть диполь и рупор или антенна любого другого типа. Параболическая антенна фокусирует сигнал в очень узкий луч, что дает огромное усиление.

Обычно ширина луча составляет менее 1 °. В зависимости от диаметра тарелки усиление может составлять более 50 дБ. Этот вид антенны отлично подходит для очень слабых сигналов, например, от спутников.

Есть ли другие распространенные направленные антенны?
Другой превосходной антенной с направленным усилением является фазированная антенная решетка, которая представляет собой группу диполей или эквивалентных антенн (патч, щель и т. Д.).) смонтированы в виде прямоугольного массива. Типичные решетки могут быть четыре на четыре или 16 на 16. На антенны подаются линии передачи определенной длины для создания синфазных сигналов на антенных элементах. Добавление задержек или фазовых сдвигов дает сигналы на каждой антенне, которые могут помогать друг другу или подавлять друг друга. Это позволяет формировать, перемещать или иным образом управлять диаграммой направленности антенны.

Управляя фазами антенн, можно управлять диаграммой направленности в широком диапазоне ширины луча.С помощью специальных регулируемых фазовращателей луч антенны может быть расширен, сужен или направлен в определенном направлении. Это называется формированием луча. Фазированные решетки широко используются в военных радарах, но эти методы также применяются для сотовой радиосвязи для управления направленностью антенн сотовой связи с целью улучшения качества сигнала.

Если антенна действует как настроенная цепь, как я могу быть уверен, что у нее есть необходимая полоса пропускания?
Антенны резонансные, поэтому у них есть добротность и соответствующая ширина полосы (BW).Для большинства антенн эта полоса пропускания составляет примерно от 10% до 15% резонансной частоты. Важно, чтобы антенна имела достаточно широкий отклик, чтобы пропускать все необходимые боковые полосы, чтобы избежать искажений. Большинство антенн являются селективными, поэтому они могут избавиться от шума и некоторых гармоник, но вам не нужно обрезание боковой полосы. Если вы используете коммерческую антенну, посмотрите характеристики селективности или полосы пропускания, чтобы убедиться, что она подходит. В конструкции антенны физические размеры влияют на ширину полосы пропускания.

Если сделать элементы дипольной антенны очень тонкими с помощью проволоки, получится очень узкая полоса пропускания.Но расширение их с помощью трубок или разветвление, скажем, в конфигурации «бабочка» значительно увеличивает пропускную способность.

Как антенна подключается к передатчику или приемнику?
Линия передачи соединяет антенну с передатчиком или приемником. Для коротких расстояний это, вероятно, будет короткая микрополосковая линия или полосковая линия на печатной плате. Коаксиальный кабель обычно используется на больших расстояниях в несколько футов и более. Импеданс линии передачи должен соответствовать импедансу антенны и передатчика / приемника, чтобы обеспечить передачу максимальной мощности.

Большинство цепей рассчитаны на импеданс 50 Ом, который хорошо сочетается с коаксиальным кабелем 50 Ом. С помощью микрополосковой линии вы можете придать линии любой желаемый характеристический импеданс. Сложная часть — это согласование линии с антенной, сопротивление которой может составлять от нескольких Ом до нескольких тысяч Ом, в зависимости от типа и других условий. В большинстве приложений для согласования антенны с линией или линии с цепью используется некоторая форма цепи согласования импеданса LC.

Если импедансы не согласованы, будут отражения и высокий коэффициент стоячей волны (КСВ), что приведет к значительным потерям.Также старайтесь избегать использования коаксиального кабеля, потому что его затухание очень велико на микроволновых частотах. Доступен кабель с низкими потерями, но он по-прежнему сильно ослабляет сигнал. Сохраняйте максимально короткую длину и компенсируйте в передатчике или приемнике потери в кабеле с большим усилением.

Что такое КПД антенны?
Эффективность антенны похожа на эффективность в целом — отношение выходной мощности к входящей. Однако это обозначается по-разному. В большинстве случаев КПД учитывает потери I2R, потери в любом диэлектрике и потери, основанные на связи с другими устройствами.Что не может быть включено, так это любые потери, связанные с потерями рассогласования антенны и линии передачи, что приводит к отраженной мощности и более высокому КСВ.

Тем не менее, некоторые меры коэффициента полезного действия при любом изменении сопротивления излучения антенны. Большинство маленьких антенн не так эффективны. Все, что выше 50–60%, обычно хорошо, но всегда старайтесь улучшить это, если можете.

Стоит ли создавать собственные антенны?
Если вы не инженер по радиотехнике, то, наверное, нет.Конструкция антенны очень специфична и более чем сложна. Это также одна из тех ниш, где кажется, что работает черная магия. Проектирование антенны является очень теоретическим, но в значительной степени оно основано на эмпирической работе и большом количестве экспериментов.

Если антенна простая, например диполь, заземляющий провод или петля, это может сработать для вас. В остальном, на рынке есть тонны коммерческих антенн, способных удовлетворить практически любые потребности. В приложениях с большим объемом, вы даже можете получить специальную антенну.Для достижения наилучших результатов лучше покупать, а не строить.

7. Керамические антенны Savvi от Ethertronics доступны для большинства стандартов беспроводной связи, таких как Bluetooth, Wi-Fi, WiMAX и некоторых диапазонов сотовой связи. Длина варьируется от примерно 4 мм до примерно 14 мм.

ССЫЛКИ
American Radio Relay League, The ARRL Antenna Book , 1991

Frenzel, Louis, E., Principles of Electronic Communications Systems , 3rd edition, McGraw Hill, 2008

Волакис, Джон Л., Справочник по проектированию антенн , 4-е издание, McGraw Hill, 2007 г.

>> Ресурсы веб-сайта
.. >> Библиотека: TechXchange
.. .. >> TechXchange: Дизайн антенны 101

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система. Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад.Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии. Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслируйте свои программы в мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию.Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир). Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед.Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн. Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой).Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда простирающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния. (Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта имеет высоту 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способа распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света.В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния. Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю.Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы. Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, необходимо устанавливать на высоких башнях, как это.Вы можете увидеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе. Фото Пьера-Этьена Куртеджуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны.Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция). В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны.Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее. Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать.Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию.Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник. Схема реагирует (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого.Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная антенна AM внутри типичного транзисторного радиоприемника. очень компактный и очень направленный. Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень).Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна на 300 м (0.2 мили) долго, чтобы забрать их? Что ж, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, АМ-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом обладать отличным качеством. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Много Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольоподобная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие на под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше явно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, вы найдете себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, куда бы он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите гораздо лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Любезно предоставлено Управлением по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году, и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «На этом этапе Лодж не знал, что Гульельмо Маркони проводил свои собственные эксперименты. в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги

  • Теория антенн: анализ и разработка Константина А.Баланис. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику. Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (изд.). Макгроу-Хилл, 2007.Огромное исчерпывающее теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи. New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс.IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон. Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • В лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм.The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Усиление сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г. Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится жестче, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что вы должны знать о телевизионных антеннах Роберт Херцберг, Popular Science, декабрь 1950 г. Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Поделиться страницей

Сохраните эту страницу на будущее или поделитесь ею, добавив в закладки:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система.Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад. Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии.Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслируйте свои программы в мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию. Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир).Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед. Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн.Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой). Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда простирающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния.(Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта имеет высоту 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способа распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния.Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы.Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, необходимо устанавливать на высоких башнях, как это. Вы можете увидеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе.Фото Пьера-Этьена Куртеджуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция).В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее.Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать. Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию. Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник.Схема реагирует (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого. Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная антенна AM внутри типичного транзисторного радиоприемника. очень компактный и очень направленный.Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень). Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна длиной 300 м (0,2 мили), чтобы принимать их? Что ж, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, АМ-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом обладать отличным качеством. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Много Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольоподобная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие на под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше явно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, вы найдете себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, куда бы он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите гораздо лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Любезно предоставлено Управлением по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году, и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «На этом этапе Лодж не знал, что Гульельмо Маркони проводил свои собственные эксперименты. в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги

  • Теория антенн: анализ и разработка Константина А.Баланис. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику. Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (изд.). Макгроу-Хилл, 2007.Огромное исчерпывающее теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи. New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс.IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон. Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • В лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм.The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Усиление сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г. Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится жестче, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что вы должны знать о телевизионных антеннах Роберт Херцберг, Popular Science, декабрь 1950 г. Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Поделиться страницей

Сохраните эту страницу на будущее или поделитесь ею, добавив в закладки:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система.Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад. Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии.Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслируйте свои программы в мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию. Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир).Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед. Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн.Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой). Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда простирающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния.(Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта имеет высоту 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способа распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния.Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы.Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, необходимо устанавливать на высоких башнях, как это. Вы можете увидеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе.Фото Пьера-Этьена Куртеджуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция).В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее.Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать. Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию. Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник.Схема реагирует (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого. Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная антенна AM внутри типичного транзисторного радиоприемника. очень компактный и очень направленный.Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень). Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна длиной 300 м (0,2 мили), чтобы принимать их? Что ж, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, АМ-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом обладать отличным качеством. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Много Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольоподобная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие на под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше явно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, вы найдете себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, куда бы он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите гораздо лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Любезно предоставлено Управлением по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году, и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «На этом этапе Лодж не знал, что Гульельмо Маркони проводил свои собственные эксперименты. в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги

  • Теория антенн: анализ и разработка Константина А.Баланис. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику. Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (изд.). Макгроу-Хилл, 2007.Огромное исчерпывающее теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи. New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс.IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон. Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • В лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм.The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Усиление сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г. Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится жестче, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что вы должны знать о телевизионных антеннах Роберт Херцберг, Popular Science, декабрь 1950 г. Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Поделиться страницей

Сохраните эту страницу на будущее или поделитесь ею, добавив в закладки:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система.Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад. Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии.Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслируйте свои программы в мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию. Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир).Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед. Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн.Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой). Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда простирающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния.(Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта имеет высоту 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способа распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния.Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы.Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, необходимо устанавливать на высоких башнях, как это. Вы можете увидеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе.Фото Пьера-Этьена Куртеджуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция).В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее.Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать. Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию. Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник.Схема реагирует (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого. Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная антенна AM внутри типичного транзисторного радиоприемника. очень компактный и очень направленный.Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень). Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна длиной 300 м (0,2 мили), чтобы принимать их? Что ж, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, АМ-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом обладать отличным качеством. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Много Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольоподобная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие на под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше явно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, вы найдете себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, куда бы он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите гораздо лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Любезно предоставлено Управлением по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году, и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «На этом этапе Лодж не знал, что Гульельмо Маркони проводил свои собственные эксперименты. в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги

  • Теория антенн: анализ и разработка Константина А.Баланис. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику. Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (изд.). Макгроу-Хилл, 2007.Огромное исчерпывающее теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи. New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс.IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон. Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • В лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм.The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Усиление сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г. Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится жестче, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что вы должны знать о телевизионных антеннах Роберт Херцберг, Popular Science, декабрь 1950 г. Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Поделиться страницей

Сохраните эту страницу на будущее или поделитесь ею, добавив в закладки:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны | Мобильные системы

Представьте, что вы протягиваете руку и ловите проходящие мимо слова, картинки и информацию. Это примерно то же самое, что и антенна (иногда называемая антенной): это металлический стержень или тарелка, которая улавливает радиоволны и превращает их в электрические сигналы, поступающие в что-то вроде радио, телевидения или телефонной системы. Такие антенны иногда называют приемниками. Передатчик — это антенна другого типа, которая выполняет функции, противоположные приемнику: она превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда на тысячи километров вокруг Земли или даже в космос и обратно.Антенны и передатчики являются ключом практически ко всем формам современной электросвязи. Давайте подробнее разберемся, что это такое и как работают!

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслировать свои программы на весь мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и превращать их в электрическую энергию. Вы берете это электричество и, грубо говоря, заставляете его течь по высокой металлической антенне (многократно увеличивая ее мощность, чтобы она могла путешествовать так далеко, как вам нужно).Когда электроны (крошечные частицы внутри атомов) в электрическом токе движутся вперед и назад вдоль антенны, они создают невидимое электромагнитное излучение в форме радиоволн. Эти волны распространяются со скоростью света, унося с собой вашу радиопрограмму. Что произойдет, если я включу радио у себя дома в нескольких милях от вас? Радиоволны, которые вы посылаете, проходят через металлическую антенну и заставляют электроны раскачиваться взад и вперед. Это генерирует электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова превращаются в звук, который я слышу.

Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи по конструкции.Например, если вы используете что-то вроде спутникового телефона, который может отправлять и принимать видеотелефонные вызовы в любое другое место на Земле с помощью космических спутников, все передаваемые и принимаемые вами сигналы проходят через одну спутниковую тарелку особого вида. антенны в форме чаши (технически известной как параболический отражатель, потому что тарелка изгибается в форме графика, называемого параболой). Однако часто передатчики и приемники выглядят по-разному. Антенны теле- или радиовещания — это огромные мачты, иногда поднимающиеся в воздух на сотни метров, потому что они должны посылать мощные сигналы на большие расстояния.Но вам не нужно ничего такого большого на вашем телевизоре или радио дома: антенна гораздо меньшего размера отлично справится с этой задачей.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способа распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старых сетях междугородной телефонной связи микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками.
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния. Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы. Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.

Какой длины должна быть антенна?

Фото: Эта телескопическая антенна FM-радио выдвигается на длину примерно 1-2 м (3-6 футов или около того), что примерно вдвое меньше длины радиоволн, которую она пытается уловить.

Самая простая антенна — это кусок металлического провода, прикрепленный к радиоприемнику. Первое радио, которое я когда-либо построил, когда мне было 11 или 12, было на кристалле с длинной петлей из медного провода, выступающей в качестве антенны. Я проложил антенну прямо вокруг потолка моей спальни, так что в целом она должна была быть около 20–30 метров (60–100 футов) в длину!

Фото: Антенны, которые используют связь прямой видимости, должны быть установлены на высоких башнях, как это.Вы можете видеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе. Фото Пьера-Этьена Куртеджуа любезно предоставлено Армией США.

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из них — длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотной модуляции). Другой — это антенна внутри корпуса, обычно прикрепленная к основной плате, и она принимает сигналы AM (амплитудной модуляции).(Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы в этих разных диапазонах волн передаются радиоволнами разной частоты и длины волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные сигналы FM имеют частоту около 100 МГц (мегагерц), поэтому они вибрируют примерно в сто раз быстрее. Поскольку все радиоволны распространяются с одинаковой скоростью (скорость света, которая составляет 300 000 км / с или 186 000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем сигналы FM.Вам нужны две антенны, потому что одна антенна не может улавливать столь сильно различающиеся диапазоны длин волн. Длина (или частота, если хотите) радиоволн, которые вы пытаетесь обнаружить, определяет длину антенны, которую вам нужно использовать. Вообще говоря, длина антенны должна составлять примерно половину длины волны радиоволн, которую вы пытаетесь принять (также можно сделать антенны, длина которых составляет четверть длины волны, хотя мы не будем здесь вдаваться в подробности). .

Руководство для новичков о том, как работает антенна

Возможность подключения в нашем мире поистине удивительна.Многие из нас считают само собой разумеющимся изощренность отправки сообщений по всему миру с поразительной скоростью.

Большая часть технологического мира обязана своим нынешним состоянием существованию антенн. Мы собираемся дать вам руководство для начинающих по работе с антеннами. Надеюсь, мы сможем понять их важность и ценность.

Понимание того, как работает антенна, может открыть двери для понимания большего объема современных средств массовой информации. Приступим:

Как работает антенна: Руководство для начинающих

Для начала мы поговорим об основных функциях антенн на простом примере.Мы рассмотрим другие приложения после того, как определим основные процессы антенн.

Хотя глобальное взаимодействие — это сложный процесс, основы радиосвязи относительно просты и лежат в основе всей системы. Итак, начнем с основ.

Передатчики и приемники

В основе радиосвязи лежит использование передатчиков и приемников. Сигналы отправляются от передатчика и движутся по пути к приемнику, который принимает сигнал и модулирует его, чтобы восстановить сообщение.

Оба этих устройства состоят из разных частей, всегда включая антенну. Антенна, которая может потребоваться для приема спутникового телевидения, автомобильного радио или чего-либо еще, является приемником.

Размер, форма и объем этих антенн будут зависеть от целей отправителя и расстояния, на которое должен пройти сигнал.

Основы передачи

Фактический процесс передачи включает в себя несколько технических идей, и обычно люди предпочитают прекращать обучение.Однако мы заверяем вас, что понять основы не так уж сложно.

Чтобы передатчик мог посылать сигнал через антенну, через антенну должен проходить электрический ток и генерировать магнитное поле. Вместо того, чтобы просто посылать сигнал на определенной частоте, антенна отправляет сигналы, модулированные по частоте или амплитуде.

Частотная модуляция (FM) и амплитудная модуляция (AM) — два наиболее распространенных способа упаковки информации в радиоволнах.

Когда вы разбиваете частоту вашей любимой радиостанции, вы замечаете, что в вашей стереосистеме содержится много информации, скажем, на канале 99.9.

Сигнал модулируется, чтобы содержать монофоническую звуковую информацию (левый и правый динамики), пилот-сигнал, информацию о подавленной несущей AM и текстовую информацию.

Прием

Этот модулированный сигнал передается по воздуху, распространяется на очень определенных длинах волн и принимается антенной, которую вы используете.

Сигнал с информацией называется сигналом несущей. Когда сигнал был модулирован и передан в эфир, мы называем его сигналом несущей, потому что он несет информацию вместе с ним.

Подобно тому, как сигнал должен быть модулирован, чтобы стать сигналом несущей, он должен быть демодулирован, когда он достигает приемника. Другими словами, сигнал сводится к соответствующей информации.

Затем эта информация передается в аудиосистему вашего автомобиля и отправляется через акустическую систему.Когда дело доходит до других видов мультимедиа, таких как видео, сигнал должен быть оцифрован.

Как перемещаются волны

Есть несколько способов, которыми радиоволны могут парить в воздухе.

Некоторые волны проходят прямо от передатчика к приемнику. Это просто называется «прямой видимостью». Микроволны использовались для передачи телефонных звонков в режиме прямой видимости.

Линия прямой видимости была фактически устранена в 60-х годах, когда оптоволоконные кабели были основным методом передачи телефонных звонков.Волоконно-оптические кабели кодируют информацию в световой луч, который проходит через стеклянную трубу.

Сигналы, отправляемые на низких частотах, чаще всего АМ-станции, для работы полагаются на использование распространения земной волны. Сигналы наземных волн используют пространство между Землей и ионосферой Земли для передачи сигналов.

Эти земные волны могут распространяться на большие расстояния при использовании в более низких частотах спектра. Ряд сигналов должен зависеть от передачи земной волны, потому что некоторые волны испытывают прерывание из-за воздействия света на D-область ионосферы.

Воздействие ионосферы

Последний метод, который мы обсудим, — это использование ионосферы для направления и усиления сигналов. Ионосфера — это электрически заряженный слой атмосферы нашей планеты, и он сильно влияет на распространение радиосигналов на огромные расстояния.

Ионосфера является домом для свободных электронов, которые помогают отражать сигналы и позволяют передавать сообщения по всему земному шару. Чтобы помочь вам представить себе важность ионосферы, представьте наш мир до появления спутников.

Спутники летают по нашему небу и принимают, а затем передают сигналы обратно, используя свой прицел для отправки сообщений на расстояния, которые наши предки никогда не могли себе представить.

Когда вы представляете себе путь сообщения, оно поднимается вверх, вероятно, под углом, принимается, а затем передается получателю. Он образует своего рода треугольник, основание которого может охватывать более половины земного шара.

Ионосфера выполняет аналогичную роль. Представьте, что у вас есть сообщение, которое вы можете отправить так далеко, как захотите, но только в одном направлении без влияния гравитации.Другими словами, вы могли бы направить это послание на своего друга в Ирландии, но в конечном итоге оно вылетело бы прямо на край кривизны Земли и сбилось бы с пути.

Ионосфера позволяет вам эффективно «пропустить» это сообщение с точки в небе обратно туда, где находится ваш друг. До появления спутниковой технологии мы использовали этот метод для организации первых трансляций по всему миру.

Хотите узнать больше?

Понимание того, как работает антенна, — важный первый шаг к пониманию того, как устроен наш мир.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *