+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Теория радиоволн: антенны / Habr

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.


Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.

Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны

Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.

Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Диаграмма направленности следующая:

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.

Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны

Также имеет название — антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Направленность — двулепестковая

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность — рамочная антенна с рефлектором:

Логопериодическая антенна

Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация

Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.

Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:

Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

habr.com

ТВ антенна. Виды и конструкция. Работа и применение. Особенности

ТВ антенна – это устройство для улучшения качества приема волн телевизионных каналов. Принятый с ее помощью сигнал передается на телевизор по коаксиальному кабелю, который обеспечивает минимальное искажение. Антенны могут использоваться для приема аналогового, цифрового либо спутникового сигнала, что зависит от их конструктивных особенностей. На данный момент на территории России самыми распространенными являются антенны аналогового телевидения. Его трансляцию ведет Останкинская башня, используя метровые и дециметровые волны.

Виды телевизионных антенн

Устройство является очень распространенным, поскольку практически ни один телевизор не сможет работать без антенны, за исключением тех, которые подключаются к кабельному телевидению. Различные населенные пункты имеют разную удаленность от ретранслятора. Одни дома могут быть расположены в сотнях километрах от них, а другие всего в нескольких шагах. Этот фактор напрямую влияет на мощность антенны, которая позволит принимать сигнал приемлемого качества, компенсируя удаленность.

Все ТВ антенны можно разделить на 3 категории:
  • Комнатные.
  • Уличные.
  • Спутниковые.
Комнатная ТВ антенна

Эти устройства устанавливаются внутри помещения. Они самые дешевые, а кроме этого не требуют сложного монтажа. При выборе в их пользу не придется прокладывать коаксиальный кабель на улицу, проделывая сквозное отверстие в фасадной стене или раме окна. Огромным недостатком данной конструкции является слабый сигнал. В связи с этим их устанавливают только в зонах с расстоянием до 30 км от телецентра или ретранслятора. На более дальней дистанции получаемый сигнал будет иметь сильное искажение, что не позволит просматривать качественную картинку телепередач.

Комнатные антенны также могут оснащаться усилителем сигнала. Чем дальше от ретранслятора, тем более мощный усилитель потребуется. Данные устройства по конструкции разделяют на два вида:
  • Стержневые.
  • Рамочные.
Стержневые

Это самые слабые комнатные устройства. Они имеют 2 или 4 телескопических усов-вибраторов, которые и улавливают сигналы. Их длина обычно не превышает 1 м. Они подключаются к специальной подставке, которая внутри имеет согласующий трансформатор, передающий сигнал на коаксиальный кабель и дальше на телевизор. Использование такой конструкции имеет свои преимущества. Она легкая, а благодаря телескопическим усам может компактно складываться для транспортировки.

Если ретранслятор сигнала находится близко, усы можно сделать короткими, чтобы они не занимали полезное пространство. При отдаленности телебашни их высота ставится на максимум, что позволяет компенсировать расстояние. Зачастую стержневая ТВ антенна идет в комплекте с телевизором. Большинству она известна под народным названием «рожки». Такие антенны хорошо принимают волны в метровом диапазоне. Для проведения их настройки необходимо менять не только высоту, но и расстояние между усами, для чего предусматривается их крепление с помощью шарниров. Большим недостатком стержневой антенны является отсутствие универсальной настройки. Выставив положение усов для хорошего приема одного канала, второй начнет транслироваться на экране с помехами.

Рамочные

Более или менее совершенными являются устройства рамочного типа. Они улавливают сигналы в дециметровом диапазоне. Эти устройства имеют металлический контур, выполненный в виде рамки, которая закреплена на подставке. Такое оборудование все же лучше чем стержневое, но все равно далеко от идеала. Его не получится использовать при значительной удаленности от ретранслятора или телебашни.

Уличная ТВ антенна

Более мощными являются наружные антенны для приема телевизионного сигнала. Они устанавливаются на возвышении в зонах открытой видимости. Зачастую такие антенны можно увидеть на крышах многоэтажных домов. Жители частного сектора устанавливают их на вершине высокой металлической трубы зафиксированной вертикально. В этом случае обеспечивается возвышение на 10-15 м, что позволяет компенсировать искажение волн стенами домов и ветвями деревьев. Фактически, чем больше вокруг преград для сигнала, тем на более высокое расстояние необходимо поднять антенну.

Данные устройства бывают различной внешней конструкции, но все они разделяются на 2 вида по принципу действия:
  • Активные.
  • Пассивные.
Активная конструкция

Такая ТВ антенна имеет усилитель мощности, что позволяет принимать сигналы намного качественнее и компенсировать помехи. Подобные устройства выбираются в том случае, если ретранслятор находится далеко, а перед антенной имеются серьезные преграды рассеивающие сигналы, такие как дома, лесные массивы и линии электропередач. Также активное устройство потребуется, если установка ведется на низине, когда нет прямой видимости между источником трансляции и точкой приема.

Активные антенны могут передавать сигнал на несколько телевизоров. Для этого необходимо просто использовать специальный тройник для коаксиального кабеля. Применяемый у них усилитель требует отдельного источника питания. Для этого предусматривается понижающий блок на 12 вольт. Он подключается к коаксиальному кабелю у телевизора и подает напряжение к точке приема к усикам-вибраторам, возле которых находится скрытая в герметичном корпусе плата усилителя.

Пассивные устройства

Такие антенны стоят дешевле, но их можно выбирать только в том случае, если имеется прямая видимость без препятствий между точкой приема и оборудованием трансляции. В таких условиях использование усилителя не нужно. Жители отдельных домов могут проживать слишком близко к транслирующей башне, поэтому им нужна именно такая антенна. Но даже она может принимать сигнал с искажением от того, что он слишком сильный. В этом случае потребуется установка специального оборудования – аттенюатора. Он позволяет компенсировать этот недостаток, уменьшив силу сигнала до приемлемого для телевизора уровня.

Спутниковая антенна

Безусловно, самым лучшим оборудованием для получения телевизионного сигнала является спутниковая ТВ антенна. Она улавливает трансляцию не от расположенной на земле телебашни, а со спутника. Это массивная конструкция, которая стоит в разы дороже, чем уличные и тем более комнатные устройства. Антенна состоит из большой тарелки из металла окрашенной в белый цвет, которая выступает в роли экрана для фокусировки спутниковой трансляции. Попавшие на нее волны улавливаются конвертером, который выполнен в виде небольшой головки размером немного меньше кулака. Он настраивается на определенный спутник и принимает все телеканалы, которые тот передает. Количество конверторов на антенне отличается в зависимости от региона, но редко превышает 3 штуки.

Сигналы обычных трансляторов на земле и спутниковых отличаются, поэтому телевизор не может их воспринимать. В связи с этим между инвертором и телевизионным экраном устанавливается ресивер. Он представляет собой небольшое устройство, габариты которого немного меньше чем DVD приставки. Его задача заключается в трансформации спутникового сигнала в стандартный для телевизора.

Обычно, если в доме имеется два телевизора, то для каждого из них потребуется отдельная ТВ антенна, что обусловлено спецификой конвертера. При приеме одного канала со спутника он не может одновременно обрабатывать другой канал. Иными словами, если провести такое подключение, то все телевизоры будут показывать один телеканал.

Сравнительно недавно данная проблема была решена. Появились универсальные конвертеры, которые позволяют проводить подключение к двум телевизорам, сохранив возможность просмотра разных каналов. В их конструкции предусматривается два входа для подключения коаксиального кабеля. К сожалению, конструкция не идеальна. При выборе такого конвертера, будет использоваться одна ТВ антенна, но все равно к каждому телевизору потребуется подключить по ресиверу.

Спутниковые устройства передают на телевизор намного более качественный сигнал, чем наземные станции, поэтому пользуются большой популярностью, особенно в регионах, где трансляторы находится очень далеко. Даже вместе с очень сложным рельефом удастся смотреть телевизионные программы с идеальной картинкой, что было бы невозможно при использовании наружной антенны. Помехи при трансляции со спутника могут возникать только в случае сильной грозы или интенсивного снегопада.

Спутниковые антенны имеют массу преимуществ. Они безусловно лучше остальных видов, но у них имеется и недостаток. Помимо большей стоимости, они требуют квалифицированного обслуживания. Провести их установку самостоятельно вряд ли удастся, поскольку нужно изначально проверить качество сигнала и выставить тарелку в правильном направлении под нужным углом. Кроме этого, чтобы ресивер работал правильно, необходимо записать частоты каналов трансляции, которые периодически меняются. После прошивки можно будет просматривать все каналы на протяжении нескольких месяцев, после чего некоторые из них начнут исчезать, пока из сотен не останется всего несколько штук. Потребуется снова проводить перепрошивку. Сделать это самостоятельно сложно, потому что требуется специальный кабель и программное обеспечение с кодами каналов. Придется периодически обращаться в специализированные сервисные центры, услуги которых не бесплатны.

Если при нормальных погодных условиях спутниковая ТВ антенна начинает транслировать сигнал с помехами, то скорее всего это связано с отсутствием прямой видимости между тарелкой и спутником. Обычно это связано с разрастанием деревьев. Достаточно обрезать ветки и качество сигнала восстанавливается. Кроме этого, проблема может заключаться в изменение положения конвертера. При монтаже антенны он выставляется под правильным углом относительно расположение спутника. Если угол немного меняется, то качество приема искажается. Обычно во время сильного ветра плохо закрепленная тарелка может немного повернуться, буквально на несколько сантиметров. В этом случае требуется ее перенастройка. Это довольно сложно сделать без специального диагностического оборудования.

Похожие темы:

electrosam.ru

конструкция, принцип работы и изготовление своими руками

Электромагнитные волны образуются при изменении электрического поля. А оно меняется, когда движутся электрические заряды. Чтобы электромагнитное поле образовывалось постоянно, и изменение зарядов должно происходить непрерывно. Самое распространенное движение зарядов — это движение по кругу. И в этом случае электромагнитное поле становится периодическим, синусоидальным, а вокруг оно будет распространяться в виде волн, как рябь на водной поверхности.

Электромагнитные волны
Электромагнитные волны Электромагнитные волны

То, что болтается в серединке, обычно называют осциллятором, это если взять небольшой  материальный предмет и придать ему колебательное движение на водной поверхности. Тогда и получится примерно такая картина волн.

Волны на воде

Даже если бросить в воду камень, то есть выполнить одиночное воздействие, все равно вокруг разойдется не одна волна, а целый пакет волн. Отсюда следует, что сама природа волн именно колебательная, и так волны и расходятся вокруг — затухая, но не меняя своей колебательной натуры.

Свойства волн

При встрече с волнами объектов нашего материального мира наблюдаются сразу несколько явлений:

  • отражение волн от препятствий;
  • прохождение сквозь препятствие;
  • поглощение волн средой прохождения;
  • огибание волнами препятствий.

Последнее явление относится уже к взаимодействию волн друг с другом. Когда волны встречают другие волны, то они накладываются друг на друга и складываются и вычитаются. Это называется интерференцией волн.

Появление волн Волны

Но волна может интерферировать не только с другой волной — волной от другого источника — она может то же самое делать и с самой собой, когда какое-то препятствие разделяет одну волну на два потока. При прохождении препятствия волна снова объединяется и постепенно «забывает» о препятствии, когда полосы усилений и ослаблений за препятствием гаснут и сходят на нет.

Все эти явления присущи всем волнам, и механическим, таким как на поверхности воды или как акустические волны в воздухе, и электромагнитным, пронизывающим и воздушное пространство, и безвоздушное.

Электромагнитные волны и мы

К электромагнитным волновым явлениям мы привыкли относить совсем разные для нас и нашего восприятия феномены. Своими глазами мы ощущаем видимый свет, кожей — тепло от инфракрасного излучения, наша кожа почти без ощущений может загореть от ультрафиолета, а рентгеновские лучи нами совсем не ощущаются, но именно их работу мы видим на рентгеновском снимке нашего тела, который нам могут сделать в больнице. Радиоволны знаем по работе множества самых разных технических средств.

Различие между ними очень простое — это все разные диапазоны длин волн, или диапазоны частот излучателей, которые изменяются в очень широких пределах. Сами частоты порождаются физическими размерами излучающих тел и скоростями электрических процессов, в них протекающими. А длины получающихся волн при распространении взаимодействуют с встречающимися им объектами тоже по принципу близости длин волн физическим размерам препятствий. Разумеется, не только этим. Еще влияет материал, с которым встречается волна, — материал среды и препятствий. Так как волны электромагнитные, то играют роль именно электрические свойства. Более-менее электрически инертные среды — диэлектрики — с электромагнитными волнами взаимодействуют слабо, остальные среды, проводящие электричество, — сильно. Отсюда диэлектрики часто бывают прозрачными, а металлы все непрозрачны и сильно отражают свет, отчего и блестят металлическим блеском.

Они активно и отражают, и поглощают волны, а также могут внутри себя создавать вторичные электрические явления. На этом основаны вся наша наука о радиоволнах, а также техника использования радио, телевидения, связи и всего такого прочего.

Радиоволны

Достаточно представить, что оба процесса симметричны: когда волны излучаются и когда они улавливаются и превращаются в электрический сигнал. Чтобы волны излучать, используется источник, а чтобы принимать — приемник. И в обоих случаях используется антенна материальная, геометрическая часть радиоприбора. Она при излучении придает волне определенные пространственные свойства, а в случае приемника — «снимает» из пространства электромагнитную волну, формируя сигнал «уверенного приема», то есть такой, чтобы его можно было отделить от прочего радиофона. Отделить и усилить.

Принцип работы волн

При этом размеры антенн или их деталей как раз и получаются зависимыми от длин принимаемых волн. Часто антенны выглядят как некоторые повторяющиеся в пространстве композиции из проводников. Это делается для резонансного взаимодействия в них волн с возникающим переменным электрическим током, что делается для усиления радиосигнала именно конкретных длин волны.
Другой характеристикой антенны является направленность. Она или излучает, или принимает сигналы преимущественно с некоторого направления, что тоже способствует выделению именно этого сигнала от конкретного излучающего устройства.

Диапазоны электромагнитных волн

Вообще полезно представлять весь спектр диапазонов электромагнитных волн и уметь сопоставлять волны с объектами нашего материального мира.

Радиодиапазон делится на несколько других по длинам волн.

Как видим, диапазоны радиоволн как раз и охватывают всю нашу обыденность от звездочек дальних до самого человека и его органов. А также всех предметов нашего быта.

Например, желаете горячий бутерброд? — одну минуточку в микроволновке.

А вот УКВ еще подразделяются на:

Каждый из этих поддиапазонов по-своему интересен, но нам нужны именно дециметровые волны.

Дециметровые волны

Дециметровые волны, в отличие от всех остальных, работают только по прямой видимости. Они не отражаются ионосферой как короткие волны — ионосфера для них прозрачна; они не огибают препятствия, как длинные волны. Препятствия, которые они могут обойти, пользуясь своей дифракцией, сопоставимы с нашими обычными объектами, то есть человека или табуретку они обойдут, а вот дом — уже тяжко. Зато от больших для них объектов они отражаются и могут зайти, например, через окно, отразившись от соседнего дома. То есть, ведут себя почти как люди с хулиганскими наклонностями. Чем нам близки и по-своему дороги.

Самостоятельное изготовление

 Для приема волн, чья длина вполне соизмерима с предметами нашего окружения, и антенна получится такой, что впишется в наше окружение. Следовательно, в этом плане возможно изготовление, не просто, несомненно, полезного предмета, но даже и детали, говорящей многое о характере и вкусах хозяина. И которую часто можно называть уже деталью архитектурной, а иногда даже и фэн-шуйной.

Важно знать принцип построения ДМВ-антенны

Антенна ДЦМ укрепляется на вертикальной обычно деревянной рейке-основании и состоит из нескольких металлических частей.

В направлении предполагаемого прохождения волн антенна дециметрового диапазона протягивает металлическую несущую пластину, которая называется траверса.

Поперек нее, то есть параллельно фронту волны, на ней устанавливается несколько пластин-резонаторов. Один обычно активный, от него отводят провод антенны, ставится посредине. Два других ставят один перед ним (в направлении излучателя), другой после него. Который перед ним, называется директором, его роль — создать препятствие волне, заставив ее его огибать, заставляя волну создавать дифракционную картину, то есть волне входить в резонанс самой с собой (см. рисунок вначале).

ДМВ-антенна

Та пластина, которая ставится после активного резонатора, называется рефлектором, то есть отражателем. Она отражает волну назад, на активную пластину, также усиливая сигнал. Понятно, что такие воздействия на волну возможны при четком соблюдении размеров пластин, так, чтобы они соответствовали длинам принимаемых волн. Длины пластин делают в размер полуволны — 0,5 λ. Активный элемент, равный полуволне, рефлектор чуть больше, директор чуть меньше. Расстояние между резонаторами — четверть длины волны, 0,25 λ .

Часто можно видеть не три пластины, а множество. Это говорит о том, что и волны можно принимать не одной длины, а нескольких длин. Такие антенны называют «многоволновыми» или даже «всеволновыми». Но мы-то знаем, что волны имеются в виду только нашего, дециметрового диапазона.

 Такие антенны можно конструировать и устанавливать в собственное удовольствие, пользуясь тем, что невидимые нами радиоволны создают в пространстве весьма замысловатые картины отражений, дифракций и интерференций. И если поместить пластины-вибраторы в точки максимумов волн, то можно добиться хорошего резонанса, который заметно усилит сигнал. По такому принципу строится логопериодическая антенна, в которой резонаторы с двух сторон — справа и слева — попеременно включены в две шины в шахматном порядке.

Логопериодическая антенна. Многочисленные резонаторы, установленные на разных расстояниях, делают ДМВ-антенну многоволновой

Две шины кабеля подключены к двум рядам резонаторов в шахматном порядке

Самодельный вариант

Из подручных материалов вполне получается комнатная антенна — ДМВ-антенна т2. Например, из двух компьютерных дискет, если вынуть из конверта собственно магнитные поверхности дисков, легко получится антенна чебурашка — этакое глазастое создание, если иметь чуточку воображения.

Антенна-чебурашка (чертеж) Антенна-чебурашка

Возможен и наружный вариант чебурашки, тогда стоит подумать о более прочном креплении всех деталей и кабеля.

Антенна наружного исполнения Антенна наружного исполнения

Нужна, кроме дискет, еще палка-стойка, кусок кабеля и несколько гвоздиков или шурупов.

Похожие статьи:

domelectrik.ru

Справочник по антеннам для радаров / Habr

Статья на перевод предложена alessandro893. Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.


Слева – изотропная антенна, справа – направленная




Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности


Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.


Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности



Антенна Яги – направленная антенна, состоящая из нескольких параллельных элементов, расположенных на одной линии. Часто состоят из одного элемента-облучателя, обычно диполя или петлевого вибратора. Только этот элемент испытывает возбуждение. Остальные элементы паразитные – они отражают или помогают передавать энергию в нужном направлении. Облучатель (активный вибратор) обычно находится вторым с конца, как на картинке ниже. Её размер подбирается с целью достижения резонанса при наличии паразитных элементов (для диполя это обычно 0,45 – 0,48 от длины волны). Элемент слева от облучателя – отражатель (рефлектор). Он обычно длиннее облучателя. Отражатель обычно один, поскольку добавление дополнительных отражателей мало влияет на эффективность. Он влияет на отношение мощностей сигналов антенны, излучаемых в направлениях назад/вперед (усиление в максимальном направлении по отношению к противоположному). Справа от облучателя находятся элементы-директоры, которые обычно короче облучателя. У антенны Яги очень узкий диапазон рабочих частот, а максимальное усиление составляет примерно 17 дБ.

Диаграмма направленности



Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности


Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов


Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности



Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности



Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности


Двумерная антенная решётка


Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов — 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности



Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности



Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности



Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности




Слева – антенна Грегори, справа — Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.


Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной


Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.


Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности


Пассивная фазированная антенная решётка (ПФАР) [passive electronically scanned array, PESA]



Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой


Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель


Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор


Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот


Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка [Active Electronically Scanned Array, AESA]


Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Во-вторых, у обычного радара возможность уменьшения паразитной интерференции ограничена ошибками нестабильности аппаратуры. Больше всего в эти ошибки вносят вклад аналого-цифровой преобразователь, преобразователь с понижением частоты, усилителей высокой мощности, усилители слабых сигналов и генератор волн. У АФАР с распределённой группой усилителей высокой мощности и усилителей слабых сигналов такие ошибки можно уменьшать. В результате у АФАР повышается чувствительность в шумных условиях.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

habr.com

Спутниковая антенна — Википедия

Антенны оператора сети спутниковой связи

Спутниковая антенна (антенна спутниковой связи) — антенна, используемая для приёма и (или) передачи радиосигналов между наземными станциями и искусственными спутниками Земли, в более узком значении — антенна, используемая при организации связи с ретрансляцией через спутники. В спутниковой связи используются различные типы антенн, самый известный — зеркальные параболические антенны («спутниковые тарелки»), массово применяемые для приёма спутникового ТВ-вещания и в спутниковой связи. В зависимости от назначения системы спутниковой связи могут применяться и другие типы антенн.

Типы антенн земных станций спутниковой связи[править | править код]

На земных станциях спутниковой связи применяются антенны различных типов. Конкретный тип антенны зависит от диапазона, в котором организуется связь, от требуемого усиления антенной системы и от её назначения.

Слабонаправленные антенны[править | править код]

Слабонаправленные (также всенаправленные[en]) антенны[1] используются для связи через низкоорбитальные и геостационарные спутники в спутниковых телефонах, спутниковом радио, приёме сигналов систем спутниковой навигации и других приложениях, где нет возможности непрерывно ориентировать антенну. Такие антенны имеют широкую диаграмму направленности, что приводит к приёму большого количества шумов (высокой шумовой температуре антенны) и малому отношению сигнал/шум для полезного сигнала на входе приёмника, а следовательно и к низкой пропускной способности системы в целом.

  • Антенна терминала мобильной спутниковой связи Иридиум

  • Спутниковый телефон Inmarsat

Антенны бегущей волны[править | править код]

Антенны бегущей волны[2] и близкие к ним (спиральные, волновой канал, логопериодические и т. д.), применяются в диапазонах метровых (англ. VHF) и дециметровых (англ. UHF) волн[3] для приёма телеметрии и связи со спутниками на низких орбитах, обмена информацией с метеорологическими спутниками, в любительской радиосвязи через спутники, для некоторых специальных видов спутниковой связи.

  • Терминал тактической спутниковой связи

  • Антенна УКВ-связи с космическими кораблями

  • Антенна приёма телеметрии и слежения за спутниками

Зеркальные антенны[править | править код]

Зеркальные антенны[4] — наиболее распространенный класс спутниковых антенн[5]. Применяются в различных диапазонах, от дециметровых волн до Ka-диапазона, и на различных типах станций — от систем индивидуального ТВ-приёма до центров космической связи. Могут иметь размер от десятков сантиметров[6] до десятков метров[7]. Усиление зеркальной антенны зависит от отношения её апертуры к длине волны, точности изготовления зеркала (чем выше частоты, на которых работает антенна, тем большая точность требуется), коэффициента использования поверхности, зависящего от выбранной конструкции антенны и характеристик её облучателя, точности установки частей антенны (зеркала, облучателя, контррефлектора, если есть) относительно друг друга[8].

Один и тот же рефлектор (зеркало) может использоваться в различных диапазонах частот при установке на него различных облучателей и выполнения требований по точности изготовления зеркала для самого высокочастотного (коротковолнового) из используемых диапазонов. Чем в более высокочастотном диапазоне используется антенна, тем у́же её диаграмма направленности и выше усиление при одном и том же размере зеркала.

Кроме рефлектора и облучателя, в состав антенны входит опорно-поворотное устройство, с помощью которого производится наведение антенны на спутник.

Осесимметричные антенны[править | править код]

Осесимметричные антенны имеют симметричное зеркало, фокус которого расположен на оси симметрии. У прямофокусной антенны (англ. Prime Focus) облучатель устанавливается в точке фокуса, перед зеркалом. Также используются двухзеркальные схемы, в которых на оси антенны устанавливается небольшое дополнительное зеркало-контррефлектор, а облучатель располагается со стороны зеркала в фокусе контррефлектора. Схемы с контррефлектором сложнее в расчете, изготовлении и настройке, но позволяют уменьшить шумовую температуру антенны, в некоторых случаях улучшить коэффициент использования поверхности и сделать антенну более компактной. Облучатель или контррефлектор и его крепления затеняют часть зеркала антенны, что приводит к уменьшению эффективной апертуры. Поэтому такие схемы применяют в основном на достаточно больших (диаметром от 1,5 — 1,8 метра) антеннах, процент затеняемой площади которых невелик.

Осесимметричные схемы применяются также для антенн малого диаметра мобильных спутниковых станций[9][10][11]. На таких антеннах часто используется двухзеркальная схема с «кольцевым фокусом»[12], позволяющая исключить из конструкции растяжки крепления контррефлектора, уменьшить затенение основного зеркала и увеличить коэффициент использования поверхности, упростить сборку антенны и сделать её более компактной[13].

Офсетные антенны[править | править код]

Офсетные антенны, или антенны со смещённым облучателем, получаются путем вырезки из параболического зеркала. Диаграмма направленности такой антенны смещена относительно оси её зеркала на угол, называемый углом офсета (или углом смещения).

Основное преимущество офсетных антенн в том, что облучатель и элементы его крепления не перекрывают собой направление на спутник и не затеняют зеркало антенны, что позволяет увеличить коэффициент использования поверхности. Дополнительное преимущество — такая антенна при наведении на спутник устанавливается под меньшим углом к вертикали, чем осесимметричная, что уменьшает влияние на неё атмосферных осадков (налипание снега, льда).

По офсетной схеме построены большинство антенн небольшого размера (до 2,5 метров), используемых в приёме спутникового ТВ и спутниковой связи, поскольку на таких размерах возможность полного использования зеркала антенны, без затенения его облучателем, дает заметный выигрыш в усилении.

Офсетная конструкция имеет и ряд недостатков[14]. Офсетные антенны имеют худший уровень поляризационной развязки[15], что может приводить к увеличению уровня помех от сигналов соседней поляризации на том же спутнике. При работе с круговой поляризацией диаграмма направленности офсетной антенны отличается для левой и правой поляризаций, причем эффект тем заметнее, чем больше размер зеркала. Офсетные зеркала большого размера сложнее в изготовлении и сборке, чем осесимметричные.

При малых углах вертикального наведения наклон офсетной антенны к вертикали становится отрицательным — зеркало «смотрит в землю», хотя нацелено на спутник, находящийся выше горизонта. При этом конструкция опорно-поворотного устройства может ограничивать минимальный угол наведения. Минимальный угол видимости спутника над горизонтом для различных офсетных антенн составляет от 0 до 10 градусов[16][17][18].

  • Офсетные антенны VSAT Ku-диапазона

  • Офсетная антенна для приёма спутникового ТВ

  • Офсетная антенна при малом угле возвышения на спутник

Фазированные антенные решетки[править | править код]

Фазированные антенные решетки (ФАР) используются для создания компактных антенн различных диапазонов.

На основе ФАР строятся в основном спутниковые антенны с малой апертурой[13]. Такие антенны имеют ряд ограничений[13][19]. Они могут работать только в одном узком диапазоне частот (например, работа во всем диапазоне от 10,7 до 12,75 ГГц с одной антенной на базе ФАР невозможна), сложны в разработке и изготовлении и имеют более высокую цену. В то же время на базе ФАР возможно создавать компактные спутниковые терминалы, они используются в составе носимых и подвижных станций[20] диапазонов Ku и Ka, портативных терминалов Inmarsat BGAN[en] (L-диапазон)[21], носимых спутниковых станций специального назначения[22].

Также на базе ФАР выпускаются плоские компактные антенны для домашнего приёма спутникового ТВ[19][23], которые требуют для установки гораздо меньше места, чем классические «тарелки» сравнимой апертуры. Это позволяет размещать их не только на улице, но и в помещении (на окне, балконе, лоджии и т. п.) при условии, что место установки обеспечивает видимость спутника[24].

  • Плоская антенна приёма спутникового ТВ на базе ФАР

  • Терминал системы спутниковой связи Inmarsat BGAN[en]

Для работы через спутник прежде всего необходимо, чтобы между антенной и спутником обеспечивалась прямая видимость (не было препятствий, мешающих прохождению радиосигнала). При выполнении этого условия слабонаправленные антенны наведения не требуют. Направленная антенна должна быть ориентирована таким образом, чтобы направление на спутник совпадало с максимумом её диаграммы направленности. Малые антенны в низкочастотных диапазонах (L,C) имеют широкую диаграмму направленности. Например, для портативного терминала Inmarsat BGAN ширина ДН от 30 до 60 градусов[21]. Такую антенну достаточно грубо сориентировать в нужном направлении, чтобы спутник попадал в ограниченный её диаграммой сектор. Антенны с узкой диаграммой направленности и высоким усилением требуют максимально точного наведения.

Фиксированное наведение на геостационарные спутники[править | править код]

Геостационарные спутники расположены над экватором и обращаются вокруг Земли с периодом, равным периоду вращения Земли. В идеальном случае геостационарный спутник абсолютно неподвижен относительно земного наблюдателя, и сопровождение антенной спутника не требуется. Антенну достаточно навести один раз и зафиксировать, дополнительное наведение потребуется только в случае смещения антенны. В реальности геостационарные спутники удерживаются в своей точке стояния с определённой точностью, составляющей для современных аппаратов примерно 0,1o[25]. Если диаграмма направленности антенны в несколько раз шире, чем максимальное отклонение аппарата от точки стояния, то видимым смещением спутника можно пренебречь и считать его неподвижным. Например, ширина главного лепестка диаграммы направленности в Ku-диапазоне для антенны диаметром 2,4 метра — около 0,7o[26], для антенн диаметром 0,9 метра — более 1,5o[27], для антенн меньшего размера — ещё больше. С такими антеннами, используемыми на VSAT-станциях и при приёме спутникового ТВ, дополнительного сопровождения спутника после наведения не требуется.

Для наведения антенны нужно установить углы места (возвышения над горизонтом) и азимута, определяющие направление на спутник[28]. При установке осесимметричной антенны угол наклона плоскости антенны к вертикали равен углу места. При установке офсетной антенны угол наклона её плоскости к вертикали меньше, чем угол места, на величину офсета. Для линейной поляризации требуется установка третьего параметра — угла поворота поляризации, который также зависит от взаимного расположения антенны и спутника. Для каждой точки на земной поверхности требуемые углы места, азимута и поворота поляризации рассчитываются, исходя из географических координат антенны и точки стояния спутника. Для расчета могут использоваться специальные программы или сайты, на которых направление на спутник отображается на карте. После установки расчетных углов наведения и захвата сигнала производится точная подстройка положения антенны до достижения максимального уровня приёма.

Многолучевые антенны[править | править код]

Многолучевые системы позволяют формировать на одной антенне несколько диаграмм направленности и работать с несколькими спутниками на геостационарной орбите без поворота антенны. Многолучевые антенны могут строиться на базе стандартных параболических зеркал (мультифид), на базе зеркал сферического[5][19] и тороидального (тороидально-параболического) профиля, на базе фазированных антенных решеток[19][29][30].

Мультифид[править | править код]
«Мультифид» — несколько облучателей на одной антенне

При смещении облучателя в фокальной плоскости параболического зеркала диаграмма направленности антенны отклоняется в противоположную сторону с одновременным уменьшением усиления, тем бо́льшим, чем сильнее смещён облучатель. На этом основана многолучевая система на основе стандартной зеркальной антенны — «мультифид». Система строится из нескольких облучателей (конвертеров), расположенных со смещением от фокуса параболической антенны таким образом, что каждый принимает сигнал со спутников в разных орбитальных позициях. «Мультифидом» также называют конструктивный элемент (кронштейн), на котором крепятся дополнительные конвертеры. Максимально возможное отклонение облучателя от точки фокуса параболической антенны составляет около 10o[5].

Тороидальная антенна[править | править код]

Для одновременной работы со многими спутниками в широком секторе геостационарной орбиты используются тороидальные антенны[31]. Тороидальные антенны Simulsat[32] или Vertex Model 700-70TCK[33] позволяют одновременно принимать до 35 спутников, расположенных на дуге шириной 70o. При домашнем приёме спутникового ТВ могут использоваться тороидальные антенны WaveFrontier[34] или аналогичные, позволяющие принимать сигнал с 16 спутников на дуге в 40o.

Моторизованные антенны[править | править код]

Моторизованные приводы наведения антенн используются в следующих случаях:

  • Автоматическое перенаведение антенны на различные спутники
  • Автоматическое наведение на спутник при развёртывании антенны
  • Автоматическое сопровождение спутника
Антенна на полярном подвесе
Перенаведение между спутниками[править | править код]

Автоматическое перенаведение антенны между спутниками используется в спутниковом телевидении для увеличения количества принимаемых программ. При этом используется полярный подвес[en][35], позволяющий с помощью одного привода одновременно изменять углы азимута и возвышения так, что антенна движется вдоль «дуги Кларка» (линии, на которой находятся все геостационарные спутники при взгляде с Земли). Ось вращения антенны при этом параллельна оси вращения Земли. Использование полярного подвеса требует тщательной предварительной работы по его установке и настройке. Управление приводом полярного подвеса производится стандартным набором команд USALS или Diseqc, поддерживаемом спутниковыми ресиверами и компьтерными спутниковыми тюнерами.

Автоматическое развёртывание и наведение[править | править код]

Автоматическое наведение используется в возимых или переносных мобильных спутниковых станциях для быстрого установления связи. Для наведения используется отдельное устройство — контроллер[11][36], определяющий координаты антенны с помощью системы спутникового позиционирования (GPS, Глонасс) и вычисляющий углы азимута, места и поворота поляризации для наведения на требуемый спутник. На основании вычисленных углов контроллер устанавливает положение антенны, проверяет захват сигнала со спутника и производит точное донаведение по его максимуму. При необходимости возможно перенаведение с одного спутника на другой, параметры которого также должны иметься в контроллере.

Автоматическое сопровождение спутника[править | править код]

Автоматическое сопровождение спутника — непрерывное удержание его в максимуме диаграммы направленности при движении относительно антенны. Автосопровождение может осуществляться как моторными приводами антенны, так и электронным управлением диаграммой направленности[37]. Для автосопровождения требуется контроллер, управляющий наведением антенны. Автосопровождение применяется в следующих случаях:

  • Станции для связи в движении, устанавливаемые на транспортных средствах (автомобилях, поездах, судах, самолетах). При движении положение антенны относительно спутника непрерывно меняется и требуется её удержание (стабилизация) в нужном направлении. Для удержания направления на спутник на движущихся объектах используются два метода[38]. Первый — непрерывное определение направления, в котором смещается спутник относительно антенны, путем постоянного сканирования (отклонения диаграммы направленности) в узком секторе, не приводящем к существенному ухудшению сигнала. Второй — удержание положения антенны с помощью гироскопов и датчиков ускорений.
  • Большие антенны, ширина диаграммы направленности которых сравнима с возможным отклонением геостационарного спутника от точки стояния[39][40]. При использовании такой антенны без системы сопровождения уровень сигнала будет меняться в течение суток в соответствии с видимым движением спутника на небосклоне. Контроллер автосопровождения отслеживает уровень принимаемого со спутника сигнала и подводит антенну так, чтобы он был максимальным. Для стабильного удержания используется программное предсказание видимого смещения спутника на основании ранее накопленных данных и элементов его орбиты[41].
  • Антенны для работы со спутниками на негеостационарных орбитах. Спутник, находящийся на любой орбите, кроме геостационарной, непрерывно движется относительно земного наблюдателя. Скорость и траектория движения зависят от параметров орбиты. При использовании направленных антенн для работы с такими спутниками требуется их постоянное сопровождение, которое осуществляется на основе информации о местоположении станции и элементах орбиты спутника и может корректироваться по принимаемому сигналу[42].
  1. ↑ Mobile Antenna Systems Handbook, 2008, OMNIDIRECTIONAL ANTENNAS FOR MOBILE SATELLITE COMMUNICATIONS.
  2. Jack Browne. Traveling-Wave Antenna Feeds Space Applications (неопр.). Microwaves and RF.
  3. ↑ RADIO FREQUENCIES FOR SPACE COMMUNICATION (неопр.). THE AUSTRALIAN SPACE ACADEMY.
  4. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008.
  5. 1 2 3 С. П. Гeруни, Д.М. Сазонов. Шестнадцать антенн в одной (неопр.). Телеспутник.
  6. ↑ Антенна СТВ-0,4-1,1 0,55 St АУМ (неопр.). Супрал.
  7. В.И. Катаев. Строительство ЦКС «Дубна» (неопр.). «Встреча», городская газета г.Дубна.
  8. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Влияние конструктивных элементов антенны на параметры излучения.
  9. ↑ Marine SAT Systems — VSAT Antennas (неопр.). EPAK.
  10. ↑ ON-THE-MOVE (неопр.). GD SATCOM.
  11. 1 2 Носимый комплекс спутниковой связи (неопр.). Race Communications.
  12. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Двухзеркальные антенны с кольцевым фокусом.
  13. 1 2 3 Dr. Andrew Slaney. The Challenges Of Micro-VSAT Design (неопр.). SatMagazine.
  14. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Сравнение однозеркальных осесимметричных антенн и антенн типа офсет.
  15. А.Киселев , В.Нагорнов , В.Бобков , М.Ефимов. ПОЛЯРИЗАЦИОННАЯ РАЗВЯЗКА: ВЗГЛЯД ЭКСПЕРТА (неопр.). Connect!.
  16. ↑ Комплект оборудования StarBlazer Tandem. Технические характеристики внешнего блока (неопр.).
  17. ↑ 1.8 Meter Offset VSAT Antenna (неопр.). GD SATCOM.
  18. ↑ 1.2M Offset VSAT Dish (неопр.). Antesky.
  19. 1 2 3 4 А.Бителева. Антенны для телевизионного приема в СВЧ диапазоне (неопр.). Телеспутник.
  20. ↑ APPLICATIONS OF HYBRID PHASED ARRAY ANTENNAS FOR MOBILE SATELLITE BROADBAND COMMUNICATION USER TERMINALS (неопр.). ESA ESTEC.
  21. 1 2 Low Profile BGAN (неопр.). Inmarsat.
  22. ↑ АБОНЕНТСКИЕ НОСИМЫЕ РАДИОСТАНЦИИ Р-438 и Р-438М (неопр.). промкаталог.рф.
  23. М. Парнес. Фазированные антенные решетки (неопр.). Телеспутник.
  24. SELFSAT. Flat Satellite Antenna (неопр.).
  25. ↑ Спутниковая группировка ГПКС (неопр.).
  26. ↑ 2.4M C & KU-BAND SERIES 1252 (неопр.). Prodelin.
  27. ↑ 96 cm Rx/Tx Antenna System (неопр.). Skyware Global.
  28. ↑ Самостоятельное наведение антенны на спутник (неопр.). StarBlazer.
  29. Слюсар, В.И. Thuraya-1 сквозь призму технических новшеств. // Телемультимедиа. – 2001. — № 5(9). (неопр.) 13 – 18. (2001).
  30. Слюсар, В.И. Фазированная антенная решетка системы Thuraya. //Сети и телекоммуникации. – 2002. — № 5 (24). (неопр.) 54 – 58. (2002).
  31. ↑ Распространение радиоволн и антенны спутниковых систем связи, 2015, Тороидальные многолучевые антенны.
  32. ↑ SIMULSAT Multibeam Earth Station (неопр.). ATCi.
  33. ↑ Torus Multiple Band Antenna (неопр.). GD SATCOM.
  34. ↑ WaveFrontier Toroidal (неопр.).
  35. В. Лощинин. Настройка «полярки» — это технология (неопр.). Телеспутник.
  36. ↑ Satellite Antenna Controllers (неопр.). Research Concepts.
  37. ↑ ELECTRONICALLY STEERABLE ANTENNAS FOR SATELLITE COMMUNICATIONS (неопр.).
  38. ↑ COMMERCIAL KU-BAND SATCOM ON-THE-MOVE USING A HYBRID TRACKING SCHEME (неопр.). MITRE Corporation.
  39. ↑ 5.6 Meter Earth Station Antenna (неопр.). ASC Signal.
  40. ↑ 7.3 Meter Earth Station Antenna (неопр.). ViaSat.
  41. ↑ Earth Station Antenna Tracking System Introduction (неопр.). Antesky.
  42. Е.А. Паниди. Технология приёма данных дистанционного зондирования с искусственных спутников Земли с использованием приемной станции УНИСКАН-24 (неопр.). СПбГУ.Научный парк.
  • О.П.Фролов, В.П.Вальд. Зеркальные антенны для земных станций спутниковой связи. — Горячая Линия — Телеком, 2008. — ISBN 978-5-9912-0002-8.
  • Kyohei Fujimoto, J. R. James. Antennas for Mobile Satellite Systems // Mobile Antenna Systems Handbook. — ARTECH HOUSE, 2008. — ISBN

ru.wikipedia.org

Простая, но эффективная комнатная антенна для приема цифрового телевидения


В далекие семидесятые смастерить антенну для теле — приемника своими руками было делом весьма престижным и указывало на высокий уровень мастера, в наш, напичканный всевозможной электроникой, век заинтересованность к «самопальным» антеннам не утихает и многие умельцы мастерят ТВ антенны сами. Производители же, как промышленного оборудования, так и разнообразные предприниматели приспособились к изменившимся условиям приема сигналов телевидения тем, что просто подключают современную электронную начинку к стандартным конструкциям антенн, игнорируя то, что главным в нормальной работе любой антенны есть и будет ее взаимодействие и согласование с приемным сигналом. Чем и обладает зигзагообразная антенна, предложенная еще в 1961 году инженером Харченко.

Мой дом находится от передающего ретранслятора в пяти километрах, наружная ТВ антенна требует капитальный ремонт и реконструкцию, но 67 — летнему инвалиду по старой шиферной крыше добраться до конька очень проблематично. С «восьмерочкой» знаком давно и не понаслышке, потому и выбран был ее комнатный вариант до лучших времен. Чтобы знать каналы, на которых работают мультиплексы моего ретранслятора, посетил ресурс rtrs.ru, вставил в калькулятор данные своих каналов и получил эскиз с размерами цифровой индивидуальной антенны.

Отличным материалом для антенны является медь, за неимением которой пошел на хитрость. Нашелся метровый кусочек старого телевизионного кабеля,


с которого ножиком

осторожно снял верхнюю оболочку,

медную экранную оплетку собрал в гармошку

и освободил от центральной жилы с ее оболочкой. Вместо нее засунул алюминиевый провод диаметром 3 мм нужного мне размера,

один конец оплетки пропаял

и с натягом натянул на алюминиевый провод — получился медный пруток диаметром чуть больше 4 мм.

С помощью пассатижей,

и угольника
выгнул два квадрата в виде восьмерки, но последний угол загибать пока не стал.

У меня сохранился тонкий ТВ кабель около трех метров,

решил использовать его для подключения антенны к телевизору. У последних сторон квадрата опять собрал оплетку в гармошку, в нижнем углу антенны шилом

проделал отверстие и протянул кончик кабеля внутри оплетки, чтоб он находился вместе с алюминиевым проводом, но на два сантиметра длиннее. Снял с кабеля верхнюю оболочку на два сантиметра, натянул оплетку на алюминиевый провод вместе с кабелем, конец оплетки скрутил с экраном кабеля и пропаял.

Выгнул последний угол, залуженные концы антенны укоротил до 5 миллиметров и спаял вместе. Центральный провод припаял к противоположному внутреннему углу восьмерки, выдерживая расстояние в 10 миллиметров. Антенна, прекрасно согласованная с кабелем, готова,

цифровой антенной можно пользоваться и в таком состоянии; припаять на другом конце кабеля штекер

для подключения к телевизору и подключить устройство к цифровой теле — приставке. Подвешиваю нашу антенну в удобном месте, направив ее на телевышку и настраиваю на прием пока 10 работающих каналов.
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Волновой канал — Википедия

Антенна «волновой канал», известная также как антенна Яги-Уда, или антенна Яги (англ. Yagi antenna), — антенна, состоящая из расположенных вдоль линии излучения параллельно друг другу активного и нескольких пассивных вибраторов. Волновой канал относится к классу антенн бегущей волны. В советской литературе применялось название «волновой канал», которое и осталось распространённым в русскоязычной литературе; в англоязычной литературе используют названия по именам изобретателей.

Схема антенны «волновой канал»: Излучение активного диполя (красного цвета) возбуждает ток в пассивном директоре, который переизлучает волну (синего цвета), имеющую конкретный сдвиг фазы (см. пояснение в тексте). В результате суммарное излучение активного вибратора и директора (зелёного цвета) в направлении рефлектора складывается в противофазе, а в направлении директора — в фазе, что приводит ослаблению излучения в направлении рефлектора и его усилению в направлении директора.

Антенна состоит из расположенных на траве́рсе (на рисунке — Т) активного (A) и ряда пассивных вибраторов — рефлекторов (R), расположенных относительно направления излучения за активным вибратором, а также директоров (D), расположенных перед активным вибратором. Чаще всего применяется один рефлектор, число директоров меняется от нуля до десятков. Активный вибратор имеет длину около полуволны (0,5 λ), рефлектор — длину, немного большую 0,5 λ, а директоры имеют длину, меньшую 0,5 λ. Расстояния от активного вибратора до рефлектора и до первого директора составляют около 0,25 λ.

Излучение антенны можно рассматривать как сумму излучений всех составляющих её вибраторов. Ток, наведённый излучением активного вибратора в рефлекторе, наводит в нём напряжение. Для рефлектора, сопротивление которого носит индуктивный характер за счёт длины, большей 0,5 λ, напряжение отстаёт по фазе от напряжения в активном вибраторе на 270°. В результате излучение активного вибратора и рефлектора в направлении рефлектора складывается в противофазе, а в направлении активного вибратора — в фазе, что приводит к усилению излучения в направлении активного вибратора приблизительно вдвое. Аналогично рефлектору работают директоры, однако из-за ёмкостного характера их сопротивления (что определяется их меньшей длиной) излучение усиливается в направлении директоров. Каждый дополнительный рефлектор или директор дают прибавку усиления, но меньшую, чем предыдущий рефлектор и директор, причём для рефлектора эффект ослабления действия дополнительных элементов намного более выражен, поэтому более одного рефлектора применяют достаточно редко.

Трёхэлементный волновой канал имеет усиление около 5—6 dBd, шестиэлементный — около 9 dBd, десятиэлементный — около 11 dBd. Для длинных (более 15 элементов) антенн можно считать, что усиление увеличивается примерно на 2,2 dB на каждое удвоение длины антенны. Антенна обладает высоким коэффициентом направленного действия, при этом достаточно проста, имеет относительно небольшую массу, а отсутствие сплошных поверхностей обеспечивает малую парусность.

Слева направо на траве́рсе смонтированы рефлектор, активный вибратор и директор (рефлектор несколько длиннее активного вибратора, а директор — короче)

Антенны «волновой канал» широко применяются в качестве приёмных телевизионных, в качестве приёмных и передающих в системах беспроводной передачи данных, в радиолюбительской связи, в прочих системах связи, в радиолокации. Широкому их распространению способствуют высокое усиление, хорошая направленность, компактность, простота, небольшая масса. Антенну применяют на диапазонах, начиная с коротких волн, в диапазонах метровых и дециметровых волн и на более высоких частотах.

Антенна «волновой канал» была изобретена в 1926 году Синтаро Уда из Университета Тохоку, расположенного в городе Сендай в Японии, в работе принимал участие также Хидэцугу Яги, его коллега. Яги опубликовал первое описание антенны на английском языке, в связи с чем в западных странах она стала ассоциироваться с его именем. Яги, впрочем, всегда упоминал принципиально важную роль Уда в изобретении антенны, в связи с чем правильное название — «антенна Яги-Уда».

Антенна получила широкое распространение во время Второй мировой войны в качестве антенны радаров ПВО благодаря её простоте и хорошей направленности. Японские военные впервые узнали об антенне после битвы при Сингапуре, когда к ним попали записки английского радиоинженера, упоминавшего «антенну яги». Японские офицеры разведки не поняли в этом контексте, что Яги — это фамилия создателя.

Несмотря на то, что антенна была изобретена в Японии, она оставалась неизвестной большинству японских разработчиков радаров в течение большой части военного периода, из-за противоречий между флотом и армией.

Антенну горизонтальной поляризации можно видеть под левым крылом самолётов, базирующихся на авианосцах, — Grumman F4F Wildcat, F6F Hellcat, TBF Avenger. Антенну вертикальной поляризации можно видеть на носовом обтекателе многих истребителей Второй мировой войны.

28 января 2016 года на главной странице Google появился дудл, посвященный 130-летию Хидэцугу Яги[1].

  • Карл Ротхаммель «Антенны» ISBN 3-440-07018-2 ISBN 985-6487-15-3
  • H .Yagi, Beam transmission of ultra-shortwaves, Proceedings ofTheА the IRE, vol. 16, pp. 715–740, June 1928. The URL is to a 1997 IEEE reprint of the classic article. См. также Beam Transmission Of Ultra Short Waves: An Introduction To The Classic Paper By H. Yagi by D.M. Pozar, in Proceedings of the IEEE, Volume 85, Issue 11, Nov. 1997 Page(s):1857 — 1863.
  • «Scanning the Past: A History of Electrical Engineering from the Past». Proceedings of the IEEE Vol. 81, No. 6, 1993.
  • Shozo Usami and Gentei Sato, «Directive Short Wave Antenna, 1924». IEEE Milestones, IEEE History Center, IEEE, 2005.
  • D. Jefferies, «Yagi-Uda antennas». 2004.

ru.wikipedia.org

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *