+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как работает конденсатор — пояснение простым языком | ASUTPP

Конденсатор – небольшой элемент, присутствующий практически в любой электронной схеме. Его значимость безусловна, но вот принцип работы описать могут не многие. Но основной функционал стандартного конденсатора можно описать вполне простыми словами, и сперва необходимо понять, что такое конденсатор, и из чего он состоит.

Рисунок 1: Маркировка конденсаторов и обозначение электродов

Рисунок 1: Маркировка конденсаторов и обозначение электродов

Из чего состоит простой конденсатор?

Временно отложив в сторону сложные, многофункциональные конденсаторы, применяющиеся в промышленности и автоматизации некоторых система, необходимо ответить на простой вопрос: «Из каких элементов состоит конденсатор»?

Рисунок 3: Структура конденсатора

Рисунок 3: Структура конденсатора

Структура конденсатора:

  1. Первая металлическая пластина, к которой подаётся «+».
  2. Диэлектрический материал. Это такой материал, который не проводит электрический ток. К наиболее популярным диэлектрикам относятся: стекло, картон, фарфор, резина, некоторые виды смол, дерево.
  3. Вторая металлическая пластина, на которую приходит «-».

Современный конденсатор по своей форме представляет небольшой бочонок с двумя выводами. При выборе такого бочонка необходимо точно знать его ёмкость – основной рабочий параметр любого конденсатора.

Как работает конденсатор?

При подаче напряжения на конденсатор создаётся электрическое поле на металлических пластинах и элемент заряжается как аккумуляторная батарея небольшой ёмкости. Совсем небольшой ёмкости. Диэлектрик, расположенный между пластинами, не позволяет замкнуть цепь и соединиться зарядам. Получается, что каждый конденсатор является накопительным элементам, так как после отключения напряжения, заряды некоторое время остаются на металлических пластинах.

Рисунок 2: Пример простого полимерного конденсатора

Рисунок 2: Пример простого полимерного конденсатора

Чтобы высвободить накопившийся заряд, выводы обкладок (металлических пластин) конденсатора необходимо замкнуть.

Современные конденсаторы только внешне могут быть выполнены в виде бочонков, но внутри пластины имеют часто очень разнообразную форму. Например, уникальные спиралевидные или сферические обкладки. Такая форма пластин позволяет в несколько раз увеличить ёмкость элемента без изменения его внешних габаритов.

Зачем применяют конденсаторы

Если устройство и принцип действия конденсатора стали немного понятны, то вопрос «зачем?» остаётся открытым.

Конденсаторы применяются с целью:

  • Поддержания разницы потенциалов на другом элементе. Например, есть микроконтроллер – элемент, очень чувствительный к просадкам напряжения и если вольтаж падает, то он автоматически перезапускается. Конденсатор способен поддерживать напряжение именно в такие моменты, продолжая работу микроконтроллера без перерывов.
  • Фильтрования. Данный вопрос куда сложнее предыдущего, так как здесь чаще всего задействованы низкие и высокие частоты. Сказать можно одно: конденсаторы применяются с целью фильтрования как высоких, так и низких частот.

Конденсаторы применяются практически во всех современных электронных изделиях. От простого блока питания для смартфона или небольшой коробки управления ёлочной гирляндой и до автоматических шкафов управления серьёзными производственными конвейерами. Следует сразу уточнить, что при неисправности электронной схемы, первое место, куда необходимо обратить своё внимание – это именно конденсаторы.

Чтобы более подробно ознакомиться с работой конденсаторов, надо более глубоко окунуться в дебри электроники, но лучше всего познакомиться с другими элементами, такими как резисторы и диоды. Достаточно сказать, что стоимость конденсатора минимальна, но починка всего устройства иногда выходит в очень крупную сумму.

P.S. Более подробнее в моей новой статье — https://www.asutpp.ru/chto-takoe-kondensator.html

Как устроен конденсатор. История изобретения электрического конденсатора

История конденсаторов начинается вместе с первыми попытками изучения электричества. Я уподобляю их первым шагам авиации, когда люди изготавливали самолёты из дерева и ткани и пытались подпрыгнуть вверх, в воздух, не понимая в аэродинамике достаточно для того, чтобы понять, как остаться наверху. В изучении электричества был похожий период. Ко времени открытия конденсатора наше понимание было настолько примитивным, что считалось, будто электричество представляет собой жидкость, существующую в двух формах – стеклообразной и смолистой. И, как вы увидите дальше, всё поменялось в ранние годы развития конденсаторов.

История берёт начало в 1745 году. В то время электричество можно было создавать только электростатическим генератором. Стеклянный шар вращался со скоростью нескольких сотен оборотов в минуту, а экспериментатор прикасался к нему руками. Накопленное на нём электричество можно было разрядить. Сегодня мы называем этот эффект трибоэлектрическим – , как с его помощью можно запитать LCD-экран.


В 1745-м Эвальд Юрген фон Клейст из Померании (Германия) попробовал хранить электричество в алкоголе, решив, что может перевести электричество по проводнику от генератора в стеклянный медицинский сосуд. Поскольку электричество считалось жидкостью, такой подход выглядел разумным. Он считал, что стекло помешает электрической жидкости убежать из алкоголя. Он делал это примерно так же, как показано на картинке, пропустив гвоздь через пробку и опустив его в алкоголь, держа стеклянную бутылку одной рукой. О важной роли руки он в тот момент не догадывался. Фон Клейст обнаружил, что может получить искру, если прикоснётся к проводу, более мощную, чем если бы он использовал только один генератор.

Он сообщил о своём открытии группе немецких учёных в конце 1745 года, и новости дошли до Лейденского университета в Нидерландах, но по пути были перевраны. В 1746 Питер ван Мушенбрук со своим студентом Андреасом Кунэусом удачно повторил эксперимент, только с водой. Мушенбрук сообщил широкой французской научной общественности о результатах эксперимента. Считается, что Мушенбрук сделал это открытие независимо. Но это было только началом.

Жан-Антуан Ноле (известный также как аббат Ноле), французский экспериментатор, окрестил сосуд Лейденским и продавал его как особый вид бутылей богатым людям, интересовавшимся наукой.

Именно в Лейденском университете обнаружили, что эксперимент работает, только если держать контейнер рукой, а не поддерживать его изолирующим материалом.

Сегодня мы понимаем, что жидкость, контактировавшая со стеклом, работала как одна пластина конденсатора, а рука – как другая, стекло же было диэлектриком. Источником высокого напряжения был генератор, а рука и тело обеспечивали заземление.

Даниэль Гралат, физик и мэр Гданьска (Польша) первым объединил несколько сосудов параллельно, чем увеличил количество хранимого заряда.

В 1740-х и 1750-х Бенджамин Франклин на территории, вскоре превратившейся в Соединённые Штаты Америки, также экспериментировал с лейденскими банками и назвал коллекцию из нескольких банок батареей, из-за сходства с батареей орудий.



батарея Лейденских банок



разбираем банку



разобранная банка

Франклин экспериментировал с водой в бутылках и с фольгой, выстилавшей бутылки, и решил, что заряд хранится в стекле, а не в воде. Он работал с разборными лейденскими банками, у которых внешняя и внутренняя фольга снималась со стекла. Позже было доказано, что он неправ. Франклин работал с гигроскопичным стеклом, и когда он убирал фольгу, заряд перемещался через коронный разряд во влагу в стекле. Если использовать ёмкость из твёрдого парафина или закалённого стекла, заряд остаётся на металлических пластинах. Существует ещё один эффект, диэлектрическое поглощение , происходящий из-за диполей в диэлектрике, в результате которого конденсатор сохраняет заряд даже после закорачивания пластин.

Франклин работал с плоскими стеклянными пластинами, с фольгой с обеих сторон, описав конструкцию из нескольких таких конденсаторов в одном из писем.

Примерно в то же время другие эксперименты Франклина показали, что за переноску заряда отвечает лишь одна субстанция, хотя её по-прежнему считали жидкостью – открытию электрона суждено было случиться только в районе 1800 года. Он обнаружил, что в заряженном объекте имеется либо избыток этой «жидкости», либо недостаток. Это опровергло гипотезу о двух видах электричества.

В 1776 году Алессандро Вольта, работая с различными методами измерения электрического потенциала, или напряжения (V) и заряда (Q), открыл, что для заданного объекта V и Q пропорциональны, назвав это “законом ёмкости”. Благодаря этому исследованию единицу напряжения назвали в его честь.

Термин «конденсатор» не использовался до 1920-х. Долгое время их называли конденсорами, и до сих пор называют так в некоторых странах и для некоторых целей [например, у нас – по-английски их зовут «capacitor» от слова «capacity» – «ёмкость» / прим.

перев.]. Термин конденсор был предложен Вольтой в 1782 году, и происходил он от итальянского condensatore. Название обозначало возможность устройства хранить большую плотность заряда, чем изолированный проводник.



Аппарат Фарадея

В 1830-х Майкл Фарадей проводил эксперименты, определившие, что материал, находящийся между пластинами конденсатора, влияет на количество заряда, сохраняющегося на пластинах. Он экспериментировал со сферическими конденсаторами – две концентрические металлические сферы, между которыми мог быть воздух, стекло, воск, шеллак (смола) или другие материалы. Используя крутильные весы Кулона , он измерял заряд конденсатора, когда в промежутке между сферами был воздух. Затем, сохраняя напряжение без изменений, он измерял заряд, заполняя промежуток другими материалами. Он обнаружил, что заряд был больше, если вместо воздуха использовались другие материалы. Он назвал это особой индуктивной ёмкостью, и из-за этой его работы единицы заряда называют фарадами.

Термин «диэлектрик» впервые был использован в письме от Уильяма Уивела к Фарадею, где он описывал, как Фарадей придумал термин «димагнетик» по аналогии с «диэлекриком», и что наверно нужно было бы использовать термин «диамагнетник», но тогда было бы неудобно использовать термин «диаэлектрик» из-за трёх гласных подряд.



Генератор Уимсхёрста

Лейденские банки и конденсаторы, изготовленные из плоского стекла и фольги, использовались для искровых трансмиттеров и медицинской электротерапии до конца 18 века. С изобретением радио конденсаторы стали постепенно принимать современный вид, в основном из-за необходимости уменьшения индуктивности, для работы на высоких частотах. Мелкие конденсаторы делали из гибких листов диэлектрика, таких, как промасленная бумага, часто закрученная, с фольгой с двух сторон. История современных конденсаторов описывается отдельным постом.

Интересно, что ранние конденсаторы очень похожи на самоделки, и некоторые действительно делались энтузиастами. Лейденские банки и сейчас используются любителями высоких напряжений, как в этом генераторе Уимсхёрста, напечатанном на 3D-принтере , и как в этом развлечении с «

Слово конденсатор уже достаточно прочно вошло в язык всех аудиофилов. Действительно, сейчас мало кого встретишь без сего девайса. Попробуем разобраться, что же это такое, как оно работает, зачем он нужен, нужно ли его устанавливать и самое главное, как его устанавливать.

Обо всем по порядку, и сразу хочется заметить, что с технической точки зрения, не правильно называть героя нашей темы – конденсатор. Здесь все довольно просто: и формы, и параметры, и функциональность достаточно схожи, но название все таки приелось. Конденсатором в автозвуке, на самом деле является ионистор.
Немного теории. Как мы знаем (или вспомним) из школьного курса физики, конденсатор представляет собой две пластины (обкладки), между которыми размещен диэлектрик, чья толщина меньше размера пластин. Диэлектрик не позволяет пластинам обмениваться электронами, за то позволяет им их накапливать, в результате чего образуется ёмкость, именно то, что мы привыкли называть конденсатором, кондером, кондеем итд.

Ионистор же представляет собой нечто среднее между конденсатором и хим. источником тока. Диэлектриком (обкладкой) в нем служит двойной диэлектрический слой, иначе говоря ионистор способен накапливать гораздо больший заряд при тех же размерах, что и конденсатор.
Зачем он нужен? Если коротко, то функция кондера в автозвуке – разгрузить аккумулятор, генератор и сгладить частотную характеристику акустики в пике.
Простой пример: вы поставили в машину несколько мощных сабвуферов, аля Kicker SL7, мощные усилители и хорошую акустику. При любой попытке послушать музыку громче, вы будете наблюдать цветомузыку в салоне своего авто (это как минимум) в такт ритму, звук будет явно далек от ожидаемого, басы будут «рваными», а в худших случаях будете вынуждены постоянно менять аккумулятор или же кончите генератор. Все дело в том, что ни тот ни другой не способны мгновенно вырабатывать и отдавать энергию , однако это способен взять на себя наш герой, в силу своей большой емкости.
Итак, даже человеку не разбирающемуся в технической составляющей станут ясны все плюсы и минусы.
Если у вас достаточно сложная или мощная акустическая система — имеет смысл установка и на моноблок и на многоканальные усилители.
С установкой могут возникнуть несколько проблем: куда поставить, каким образом, как подключить. Здесь тоже все по порядку. Перед началом не поленитесь отключить АКБ. Располагать нужно строго рядом с усилителем, так, чтобы длинна силовых проводов была как можно меньше. Используя крепления, идущие в комплекте, как вариант, прикрутить к корпусу сабвуфера, подиума или акустической полки. Возможно, придется попотеть, но если этот пункт миновали, то дальше можно расслабиться. Прокладываем силовой провод ( +) от аккумулятора до места крепления конденсатора, клемму пока не накидываем. Проводом покороче соединяем отрицательный вывод емкости с корпусом автомобиля. С обоих выводов, парой коротких проводов подключаем усилитель Теперь самое интересное: в установочном комплекте, если вы бдительны, можно заметить небольшой резистор. Он нужен для зарядки конденсатора. Не стоит пытаться просто накинуть положительную клемму на него и ждать зарядки, скорее всего перегорит предохранитель. Прикручиваем резистор к клемме (+) провода и кладем на клемму (+) кондея. Через некоторое время загорится цифровое табло, значение на котором будет постепенно расти. Это показатель заряда. Как только значение окончательно установилось – зарядка закончена. Снимаем резистор и делаем оставшиеся, понятные, манипуляции с подключением. Все готово!

Вопросы и ответы.

В: у меня в комплекте нет резистора. Как зарядить?
О: в качестве резистора можно использовать обычную автомобильную лампу накаливания, желательно с патроном (для удобства подключения).

В: я слышал, что автомобильные конденсаторы, да и вообще конденсаторы взрываются, так ли это?
О: взорваться могут конденсаторы, при не соблюдении полярности. О взрыве в авто мне пока ничего не известно. Но в любом случае, строго рекомендую соблюдать полярность.

В: вольтметр показывает не правильное значение. Что делать?
О: снимите крышку (или же рядом может быть отверстие) вы увидите небольшой потенциометр, вращая который можно установить требуемое значение.

В: правда, что емкость должна рассчитываться по пропорции, на 1кВт приходится 1фД?
О: конденсатор – не батарейка. Установка даже на 10кВт полу-фарадного принесет свою пользу. Конкретной зависимости нет, да и трудно найти емкость меньше 1фД.

Интересные факты: при отрицательных температурах емкость конденсатора\ионистора способна увеличиваться, хотя и не значительно.
В продаже существуют такие емкости, которые способны обеспечить пуск двигателя.

История конденсаторов начинается вместе с первыми попытками изучения электричества. Я уподобляю их первым шагам авиации, когда люди изготавливали самолёты из дерева и ткани и пытались подпрыгнуть вверх, в воздух, не понимая в аэродинамике достаточно для того, чтобы понять, как остаться наверху. В изучении электричества был похожий период. Ко времени открытия конденсатора наше понимание было настолько примитивным, что считалось, будто электричество представляет собой жидкость, существующую в двух формах – стеклообразной и смолистой. И, как вы увидите дальше, всё поменялось в ранние годы развития конденсаторов.

История берёт начало в 1745 году. В то время электричество можно было создавать только электростатическим генератором. Стеклянный шар вращался со скоростью нескольких сотен оборотов в минуту, а экспериментатор прикасался к нему руками. Накопленное на нём электричество можно было разрядить. Сегодня мы называем этот эффект трибоэлектрическим – , как с его помощью можно запитать LCD-экран.

В 1745-м Эвальд Юрген фон Клейст из Померании (Германия) попробовал хранить электричество в алкоголе, решив, что может перевести электричество по проводнику от генератора в стеклянный медицинский сосуд. Поскольку электричество считалось жидкостью, такой подход выглядел разумным. Он считал, что стекло помешает электрической жидкости убежать из алкоголя. Он делал это примерно так же, как показано на картинке, пропустив гвоздь через пробку и опустив его в алкоголь, держа стеклянную бутылку одной рукой. О важной роли руки он в тот момент не догадывался. Фон Клейст обнаружил, что может получить искру, если прикоснётся к проводу, более мощную, чем если бы он использовал только один генератор.

Он сообщил о своём открытии группе немецких учёных в конце 1745 года, и новости дошли до Лейденского университета в Нидерландах, но по пути были перевраны. В 1746 Питер ван Мушенбрук со своим студентом Андреасом Кунэусом удачно повторил эксперимент, только с водой. Мушенбрук сообщил широкой французской научной общественности о результатах эксперимента. Считается, что Мушенбрук сделал это открытие независимо. Но это было только началом.

Жан-Антуан Ноле (известный также как аббат Ноле), французский экспериментатор, окрестил сосуд Лейденским и продавал его как особый вид бутылей богатым людям, интересовавшимся наукой.

Именно в Лейденском университете обнаружили, что эксперимент работает, только если держать контейнер рукой, а не поддерживать его изолирующим материалом.

Сегодня мы понимаем, что жидкость, контактировавшая со стеклом, работала как одна пластина конденсатора, а рука – как другая, стекло же было диэлектриком. Источником высокого напряжения был генератор, а рука и тело обеспечивали заземление.

Даниэль Гралат, физик и мэр Гданьска (Польша) первым объединил несколько сосудов параллельно, чем увеличил количество хранимого заряда. В 1740-х и 1750-х Бенджамин Франклин на территории, вскоре превратившейся в Соединённые Штаты Америки, также экспериментировал с лейденскими банками и назвал коллекцию из нескольких банок батареей, из-за сходства с батареей орудий.


батарея Лейденских банок


разбираем банку


разобранная банка

Франклин экспериментировал с водой в бутылках и с фольгой, выстилавшей бутылки, и решил, что заряд хранится в стекле, а не в воде. Он работал с разборными лейденскими банками, у которых внешняя и внутренняя фольга снималась со стекла. Позже было доказано, что он неправ. Франклин работал с гигроскопичным стеклом, и когда он убирал фольгу, заряд перемещался через коронный разряд во влагу в стекле. Если использовать ёмкость из твёрдого парафина или закалённого стекла, заряд остаётся на металлических пластинах. Существует ещё один эффект, диэлектрическое поглощение , происходящий из-за диполей в диэлектрике, в результате которого конденсатор сохраняет заряд даже после закорачивания пластин.

Франклин работал с плоскими стеклянными пластинами, с фольгой с обеих сторон, описав конструкцию из нескольких таких конденсаторов в одном из писем.

Примерно в то же время другие эксперименты Франклина показали, что за переноску заряда отвечает лишь одна субстанция, хотя её по-прежнему считали жидкостью – открытию электрона суждено было случиться только в районе 1800 года. Он обнаружил, что в заряженном объекте имеется либо избыток этой «жидкости», либо недостаток. Это опровергло гипотезу о двух видах электричества.

В 1776 году Алессандро Вольта, работая с различными методами измерения электрического потенциала, или напряжения (V) и заряда (Q), открыл, что для заданного объекта V и Q пропорциональны, назвав это “законом ёмкости”. Благодаря этому исследованию единицу напряжения назвали в его честь.

Термин «конденсатор» не использовался до 1920-х. Долгое время их называли конденсорами, и до сих пор называют так в некоторых странах и для некоторых целей [например, у нас – по-английски их зовут «capacitor» от слова «capacity» – «ёмкость» / прим. перев.]. Термин конденсор был предложен Вольтой в 1782 году, и происходил он от итальянского condensatore. Название обозначало возможность устройства хранить большую плотность заряда, чем изолированный проводник.


Аппарат Фарадея

В 1830-х Майкл Фарадей проводил эксперименты, определившие, что материал, находящийся между пластинами конденсатора, влияет на количество заряда, сохраняющегося на пластинах. Он экспериментировал со сферическими конденсаторами – две концентрические металлические сферы, между которыми мог быть воздух, стекло, воск, шеллак (смола) или другие материалы. Используя крутильные весы Кулона , он измерял заряд конденсатора, когда в промежутке между сферами был воздух. Затем, сохраняя напряжение без изменений, он измерял заряд, заполняя промежуток другими материалами. Он обнаружил, что заряд был больше, если вместо воздуха использовались другие материалы. Он назвал это особой индуктивной ёмкостью, и из-за этой его работы единицы ёмкости называют фарадами.

Термин «диэлектрик» впервые был использован в письме от Уильяма Уивела к Фарадею, где он описывал, как Фарадей придумал термин «димагнетик» по аналогии с «диэлекриком», и что наверно нужно было бы использовать термин «диамагнетник», но тогда было бы неудобно использовать термин «диаэлектрик» из-за трёх гласных подряд.


Генератор Уимсхёрста

Лейденские банки и конденсаторы, изготовленные из плоского стекла и фольги, использовались для искровых передатчиков и медицинской электротерапии до конца 18 века. С изобретением радио конденсаторы стали постепенно принимать современный вид, в основном из-за необходимости уменьшения индуктивности, для работы на высоких частотах. Мелкие конденсаторы делали из гибких листов диэлектрика, таких, как промасленная бумага, часто закрученная, с фольгой с двух сторон. История современных конденсаторов описывается отдельным постом.

Интересно, что ранние конденсаторы очень похожи на самоделки, и некоторые действительно делались энтузиастами. Лейденские банки и сейчас используются любителями высоких напряжений, как в этом генераторе Уимсхёрста, напечатанном на 3D-принтере , и как в этом развлечении с «

Еще в древние времена люди заметили, что в условиях низких температур пища сохраняется намного дольше. Поэтому в течение достаточно длительного периода своей истории человечество было занято поисками способа поддержания низкой температуры в .

В древние времена истории, когда еще не было конденсаторов и другого холодильного оборудования, для охлаждения и заморозки продуктов использовали натуральный источник холода – лед. Однако такой способ требовал больших материальных затрат, а сам процесс добычи и транспортировки естественного льда был весьма трудоемким.

Поэтому параллельно с использованием естественного охлаждения при помощи льда неоднократно предпринимали попытки создания технического устройства для охлаждения и заморозки продуктов. Первые исследования и эксперименты в истории по созданию холодильных установок были направлены на получение льда искусственным путем. Такие установки работали на абсорбционном принципе, а снижение температуры достигалось путем растворения в воде нитрата аммония, смеси селитры со льдом и другие химические соединения. Однако такой способ все равно оставался достаточно затратным и позволял добиться снижения температуры на 10 – 15 0С.

Появление первых конденсаторов

Мощный толчок в своем развитии холодильные установки получили с изобретением паровых машин, которые функционировали за счет движущей силы пара. Именно в паровых машинах были применены первые конденсаторы, которые служили для преобразования отработанного пара в жидкость, что давало возможность ее повторного использования. Можно считать, что история создания конденсаторов началась именно с XVII века. .

Впервые идею об использовании конденсатора в качестве отдельного блока паровой машины высказал французский ученый Жан Хатефиле в 1678 году. И лишь спустя почти 90 лет, в 1765 году Джеймс Уатт создал паровую машину, на которой был установлен первый конденсатор.


В это же время другие ученые и изобретатели трудились над созданием холодильных агрегатов. Так, в 1748 году профессор медицины Уильям Каллен создал установку, которая охлаждала жидкости за счет испарения эфира. В своем изобретении Кален также использовал простейший конденсатор, который представлял собой отдельную емкость, куда поступал отработанный эфир. Эта установка доказала на практике возможность реализации циклического процесса испарения и конденсации эфира, что приводит к охлаждению воздуха или жидкости в заданном объеме.

Рывок в развитии конденсаторов

После эксперимента Калена многие инженеры создавали установки, работающие по этому принципу. Отличительной особенностью таких машин являлось наличие замкнутого контура, в котором циркулировал эфир, а также внедрение в конструкцию компрессора. В 1834 году Якоб Перкинс впервые запатентовал парокомпрессионный холодильный агрегат, работающий на эфире.

Однако официально история создания первых конденсаторов началась в 1842 году, когда Джон Эриксон сконструировал первый поверхностный конденсатор с водяным охлаждением, оборудованный компрессором. Это дало толчок к дальнейшему развитию холодильной техники. В том числе стало возможным создание больших холодильных установок для складских помещений, корабельных трюмов и т.д. Такие холодильные машины были созданы братьями Карре (1846 год) и Карлом фон Линде (1874 – 1876 годы).

Дальнейшая история развития конденсаторов была тесно связана с развитием холодильной техники. В период с 1895 года по 1923 год были изобретено и запатентовано большое количество различных конструкций конденсаторов, многие из которых используются до сих пор.

Современные модели

На сегодняшний день конденсаторы прошли длинный путь развития, и являются одной из основных частей любого холодильного оборудования. Также все чаще многие используются как самостоятельные холодильные установки, которые применяются для охлаждения воздуха в производственных и складских помещениях.

Изобретатель : Юрген фон Клейст, Питер ван Мушенбрук
Страна : Голландия
Время изобретения : 1745 г.

Первая половина XVIII века была временем быстрого накопления опытных фактов об явлениях. Именно в это время, например, выяснилось, что существуют два рода электричества. Однако само явление электризации тел, природа электричества оставались совершенно загадочными.

Обычно считалось, что электричество — это особая жидкость, содержащаяся в каждом заряженном теле. А наблюдавшееся уменьшение заряда на телах естественно трактовалось как «испарение» этой электрической жидкости. Столь же естественной была идея попытаться предотвратить такое «испарение», поместив заряженное тело в … , выбрав в качестве заряженного тела воду.

Такой именно опыт поставил в 1745 году настоятель одного из соборов в Померании Юрген фон Клейст (по другим сведениям опыт был поставлен с целью получить заряженную воду, якобы полезную для здоровья). Он наполнил водой бутылку, закрыл ее пробкой, а через ввел в воду металлический стержень (попросту гвоздь).

Присоединив внешний конец стержня к электрической машине, которая в те времена представляла собой вращающийся шар, о который терлась рука экспериментатора, Клейст сообщил воде значительный электрический заряд. И тут случилось непредвиденное.

Взяв одной рукой бутылку, он имел неосторожность прикоснуться другой рукой к выступавшему из пробки концу гвоздя, и при этом ощутил в руках и плечах сильнейший удар, вызвавший онемение мышц. Потрясенный случившимся, он сообщил об этом в письме одному из своих друзей.

По случайному совпадению, почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком. Только вместо толстостенной бутылки Мушенброк воспользовался тонкостенной стеклянной банкой. Зарядив воду и взяв банку в одну руку, он тоже прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде.

При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя. Сообщая об этом «приключении» в письме своему французскому корреспонденту, Мушенбрук добавляет, что не согласился бы повторить опыт, даже если бы ему было обещано французское королевство!

Сначала наблюдения Клейста и Мушенбрука были понятны, как проявления так называемого «живого электричества», поскольку в этих опытах такую важную роль играли руки человека. Но довольно скоро стало ясно, что рука, держащая банку, и заряженная жидкость в ней являются, как мы теперь говорим, обкладками конденсатора и что еще более эффективный прибор получится, если внешнюю и внутреннюю поверхности стенок банки покрыть слоем металла, например, оловянной фольги.

Виды переменных конденсаторов. Электрический конденсатор

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой — станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S — площадь пластин в квадратных метрах, d — расстояние между пластинами в метрах, C — емкость в фарадах, ε — диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC — цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки — тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда — разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор — ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе — изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье — .


Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги.
    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.

  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
  • зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространенные низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.
  • Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

    Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

    Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

    Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

    К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

    У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

    Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

    Неполярный конденсатор изображение на схеме

    На фото ниже изображены пленочный и керамический конденсаторы:

    Пленочный


    Керамический

    Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

    На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

    Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

    Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

    Переменные конденсаторы


    Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

    Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

    На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

    На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

    Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

    На следующем рисунке изображено строение подстроечного конденсатора:

    Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

    Обсудить статью КОНДЕНСАТОР

    Как устроен конденсатор кондиционера.

    Главная страница
    Компания «ВИПТЕК»
    г. Москва, Локомотивный пр-д,
    дом 21, корпус 5



    режим работы: 9.00-21.00 


    вентиляция
    воздуховоды

    кондиционеры
    типы и характеристики систем кондиционирования

    устройство кондиционера
    устройство вентилятора
    классификация теплоутилизаторов кондиционера
    регуляторы потока в кондиционере

    канальные кондиционеры

    прямоточные и рециркуляционные системы кондиционеров
    кондиционеры с частичной рециркуляцией
    центральные кондиционеры

    местные системы кондиционирования
    местные неавтономные кондиционеры
    местные автономные кондиционеры
    местные автономные сплит-системы
    оконные кондиционеры

    кондиционеры с воздушным и водным охлаждением
    канальные кондиционеры для загородных домов

    общие сведения о кондиционировании
    подготовка кондиционеров к установке
    обзорные статьи по кондиционерам


    

    Как устроен конденсатор кондиционера.

    Как известно, кондиционер состоит из следующих основных узлов и элементов: конденсатора, испарителя, компрессора, регулятора потока (капиллярной трубки), вентиляторов и соединительных трубопроводов. В этой статье будет дан более подробный анализ конструктивных особенностей конденсаторов для кондиционеров и ситуаций их применения. Итак, конденсатор – устройство, отбирающее тепло у хладагента, и передающее его окружающей среде или охлаждающей жидкости.

    Конденсатор с воздушным охлаждением состоит из теплообменника и вентиляторов. Теплообменники по своей конструкции и функциональному назначению весьма напоминают автомобильные радиаторы и состоят из трубок с оребрением. Пластины оребрения в местах касания с трубкой имеют бортик, служащий для увеличения площади контакта и улучшения теплопередачи. С этой же целью на пластинах оребрения используются насечки, создающие турбулентный воздушный поток, улучшающий обдув пластин.

    Трубки располагаются в шахматном порядке в несколько рядов во избежание появления аэродинамической тени. Хладагент подается сверху вниз, так как в верхней части охлаждение из-за большей разницы температур происходит более интенсивно. В средней части теплообменника температура хладагента почти не меняется, происходит лишь процесс конденсации паров фреона.

    Температура конденсации колеблется от плюс 42 до плюс 55 градусов по Цельсию. Воздух к теплообменнику подают вентиляторы. Основным недостатком конденсаторов с воздушным охлаждением является выброс тепла «на ветер» — плакали ваши денежки! Возможность обогрева атмосферы вам будет гарантирована. В этом случае необходима установка рекуператора.

    Кожухотрубные конденсаторы представляют собой стальной кожух, являющийся емкостью для поступающего хладагента, и расположенные внутри него крепежные элементы с медными трубками, по которым снизу вверх подается вода. Горячий парообразный хладагент поступает сверху и, остывая, конденсируется на дне. В качестве охлаждающей жидкости может использоваться вода из системы оборотного водоснабжения, что позволяет утилизировать тепло, подогревая воду для бытовых нужд.

    Конденсатор типа «труба в трубе». Конструктивно представляет собой два спиралевидных трубопровода, вставленные один в другой таким образом, что в сечении образуются две концентрические окружности. Хладагент может находиться как во внешней трубке, так и во внутренней – разницы нет никакой. Принципиальна только необходимость встречного движения хладагента и воды. Конденсаторы данного типа компактны и легки, используются в кондиционерах малой мощности.

    Пластинчатые конденсаторы имеют два изолированных циркуляционных контура. Границей между контурами является изогнутая «елочкой» стальная пластина, хладагент и вода перемещаются навстречу друг другу. Площадь контакта достаточно велика и обеспечивает прекрасные характеристики по теплопередаче и скорости конденсации, поэтому этот тип конденсаторов получил наибольшее распространение. Компактность и высокий КПД обусловили применение пластинчатых конденсаторов в кондиционерах малой и средней мощности. 

    Керамические конденсаторы, теория и примеры

    Определение и общие сведения о керамических конденсаторах

    В настоящее время существует широкий выбор разных типов конденсаторов. Каждый из этих типов имеет свои преимущества и недостатки. Некоторые из них имеют большую емкость, другие работают при высоких напряжениях, третьи имеют малый ток утечки, четвертые обладают небольшой индуктивностью. Преимущества того или иного типа конденсатора определяет их области использования.

    Когда говорят о керамике в конденсаторах, то имеют в виду материалы, которые имеют структуру схожую с обожженной глиной, однако глины в таких материалах нет или ее крайне мало. В керамических конденсаторах диэлектриком в настоящее время часто является высококачественная керамика: ультрафарфор, тиконд, ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность.

    Керамические конденсаторы стали обычным элементом для почти любой электронной схемы. Их используют там, где необходимо работать с сигналами изменяющейся полярности, важны частотные характеристики, небольшие потери при утечке, малые размеры и невысокая стоимость.

    Керамические конденсаторы делят на конденсаторы с постоянной емкостью и подстроечные.

    Большую группу конденсаторов составляют керамические конденсаторы с сегнетоэлектриком в качестве диэлектрика, который имеет высокую диэлектрическую проницаемость. Дисковые сегнетоэлектрические керамические конденсаторы изготавливают в виде круглых керамических пластинок, имеющих обкладки из тонкого слоя серебра. Имеются керамические трубчатые конденсаторы, которые представляют собой трубку с тонкими стенками, поверхности которой покрывают слоем серебра.

    Керамические конденсаторы используют в разделительных цепях усилителей высокой частоты. Керамические конденсаторы устойчивые к перепадам температуры применяют в контурах генераторов.

    Подстроечные керамические конденсаторы служат для подстройки колебательных контуров. Такой конденсатор имеет в составе основание (статор) из керамики и керамический ротор (подвижный диск). Ротор при помощи оси прикрепляется к статору и может вращаться. Обкладки из серебра имеют форму секторов, их наносят и на статор и на ротор. Емкость такого конденсатора изменяется при вращении обкладок. Существуют керамические подстроечные конденсаторы и в виде трубки. Одна из обкладок трубчатого построечного конденсатора — это стационарный металлический стержень с винтовой нарезкой, который наносят на внутреннюю поверхность трубки. Емкость такого конденсатора изменяют за счет ввода (вывода) стержня из трубки при помощи отвертки.

    Долгое время керамические конденсаторы были приборами с малой емкостью из-за проблем технологии производства.

    Керамические конденсаторы могут короткое время выдерживать перегрузки по напряжению, которые во много раз превышают номинальное рабочее напряжение.

    К недостаткам керамических конденсаторов относят: сильную зависимость диэлектрической проницаемости (соответственно емкости) от температуры и разности потенциалов на обкладках. В настоящее время существуют керамические конденсаторы с диэлектриком (X7R), который позволяет работать элементу в диапазоне температур от -55oС до 125oС, но такой конденсатор является довольно дорогостоящим на сегодняшний момент.

    Керамические однослойные конденсаторы

    Керамические однослойные конденсаторы встречаются обычно в виде дисков. Они имеют относительно большую емкость при малых размерах. Она составляет от 1пФ до 220 нФ. Максимальное рабочее напряжение обычно составляет не более 50 В . Такие конденсаторы имеют малый ток утечки и низкую индуктивность, могут работать при высокой частоте и имеют большую стабильность емкости при повышении температуры. Данные конденсаторы можно применять в цепях постоянного, переменного и импульсного тока.

    Керамические многослойные конденсаторы

    Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

       

    где S – площадь активной части одного электрода. Из выражения (1) следует, что ёмкость многослойного конденсатора можно увеличивать, если уменьшать толщину слоев диэлектрика (керамических пластин), увеличивая число слоев, диэлектрическую проницаемость керамики, активную площадь. Можно создавать конденсаторы с несколькими выводами. При этом следует учесть, что уменьшение единичного слоя диэлектрика ведет к барьера напряжения для пробоя. Увеличение активной площади неизбежно ведет к росту габаритов конденсатора. Кроме того, увеличение диэлектрической проницаемости керамики ухудшает температурную стабильность и вызывает существенную зависимость емкости конденсатора от напряжения.

    Многослойные керамические конденсаторы используют для поверхностного монтажа в схемах для подавления пульсаций, деления электрического сигнала на постоянную и переменную компоненты.

    Для создания малых многослойных конденсаторов применяют керамику на основе и .

    Примеры решения задач

    Физика 9 кл. Конденсатор — Класс!ная физика

    Физика 9 кл. Конденсатор

    Подробности
    Просмотров: 168

     

    1. Для чего предназначен конденсатор?

    Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля.

    2. Что представляет собой простейший конденсатор? Как обозначается на схемах?

    Конденсатор представляет собой устройство из двух одинаковых металлических пластин (обкладок), которые расположены параллельно и разделены диэлектриком.
    Обозначение конденсатора на электрических схемах:

    3. Что понимают под зарядом конденсатора?

    Под зарядом конденсатора понимается величина заряда q на одной из его обкладок.


    4. Как зарядить конденсатор?

    Чтобы зарядить конденсатор, надо соединить обкладки конденсатора с источником постоянного напряжения.
    При этом обкладки конденсатора заряжаются равными по величине, но противоположными по знаку зарядами (+q и ~q).

    5. Чему равен заряд q конденсатора?

    Заряд q конденсатора прямо пропорционален напряжению U между обкладками конденсатора и емкости конденсатора:

    6. Что называется емкостью конденсатора?


    Коэффициент пропорциональности С называется электрической емкостью (электроемкостью, емкостью) конденсатора.
    Единица электроемкости в СИ — 1 Фарад (Ф) — получила свое название в честь Майкла Фарадея.

    1 Ф равен емкости такого конденсатора, между обкладками которого возникает напряжение 1 В при сообщении конденсатору заряда 1 Кл.

    7. От чего и как зависит емкость конденсатора?


    Емкость конденсатора зависит от площади пластин (S) конденсатора и расстояния между ними.
    Емкость конденсатора зависит также от свойств используемого диэлектрика между обкладками конденсатора.
    Чем больше площадь пластин (S) и чем меньше расстояние между ними (d), тем больше емкость конденсатора (С).

    8. Как включать несколько конденсаторов в электрическую цепь?

    Иногда для получения требуемой емкости несколько конденсаторов соединяют в батарею.

    а) Конденсаторы можно включать в электрическую цепь параллельно.

    Общая емкость конденсаторов, включенных в электрическую цепт параллельно, равна сумме емкостей отдельных конденсаторов:

    С = С1 + С2 + С3

    б) Конденсаторы можно включать в электрическую цепь последовательно.


    Общая емкость конденсаторов, включенных в электрическую цепь последовательно, рассчитывается, исходя из формулы:

    1/С = 1/С1 + 1/С2 + 1/С3

    Здесь общая емкость включенных конденсаторов всегда меньше, чем наименьшая емкость любого из них.

    9. Как выглядит электрическое поле между обкладками конденсатора?


    Электрическое поле конденсатора сосредоточено между его обкладками, если их размеры значительно больше расстояния между ними.
    Линии электрического поля плоского конденсатора параллельны и расположены на одинаковом расстоянии друг от друга.
    Значит поле такого конденсатора однородно.

    10. По какой формуле определяется энергия заряженного тденсатора?

    При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов.
    По закону сохранения энергии работа внешних сил равна энергии поля конденсатора.
    При разрядке конденсатора за счет этой энергии может быть совершена работа.

    Энергию электрического поля конденсатора можно рассчитать по формуле:


    Энергия конденсатора данной емкости тем больше, чем больше его заряд.

    11. Как на опыте доказать, что благодаря запасенной энергии конденсатора можно совершить работу?

    Чтобы зарядить конденсатор, подключим его к источнику тока, поставив переключатель в положение 1.
    При зарядке конденсатора внешними силами в цепи совершается работа по разделению положительных и отрицательных зарядов.
    По закону сохранения энергии работа внешних сил равна энергии поля конденсатора.
    Конденсатор зарядился — конденсатор накопил энергию.

    Через некоторое время переведем переключатель в положение 2, замкнув цепь с конденсатором и лампой.
    В результате разрядки конденсатора через лампу пройдет ток, и возникнет кратковременная вспышка.
    При вспышке раскаленная током нить лампы выделяет энергию в виде света и тепла.
    Это потенциальная энергия электрического поля конденсатора преобразовалась во внутреннюю энергию нити накала и излучилась в виде света и тепла.
    То есть при разрядке конденсатора за счет энергии конденсатора была совершена работа.

    12. Как устроен конденсатор переменной емкости? Где он нашел наиболее широкое применение?


    В радиотехнических устройствах часто используются конденсаторы переменной емкости.
    Конденсатор переменной емкости состоит из системы подвижных и неподвижных пластин.
    Подвижные пластины, можно вращать вокруг оси, меняя тем самым емкость конденсатора.
    Для увеличения емкости подвижные пластины вдвигают в пространство между неподвижными пластинами.
    Для уменьшения емкости подвижные пластины выдвигают из пространство между неподвижными пластинами.
    При этом изменение емкости переменного конденсатора достигается изменением суммарной площади обкладок.

    Следующая страница — смотреть

    Назад в «Оглавление» — смотреть

    Зачем нужны конденсаторы? Подключение конденсатора. Что такое конденсатор и для чего он нужен

    Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

    При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

    Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

    Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой — станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

    Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

    В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

    Как устроен конденсатор

    Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

    Рисунок 1. Устройство плоского конденсатора

    Здесь S — площадь пластин в квадратных метрах, d — расстояние между пластинами в метрах, C — емкость в фарадах, ε — диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

    Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

    На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

    Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

    Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

    Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

    Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC — цепочка, показанная на рисунке 2.

    Рисунок 2.

    На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

    Исторический факт

    Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки — тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

    Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

    За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

    Немножко о диэлектриках

    Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

    Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

    Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

    Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

    На рисунке 3 показан один из таких конденсаторов.

    Рисунок 3. Электролитический конденсатор

    Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

    В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

    Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

    Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

    Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

    Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

    Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

    Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

    Конденсатор может накапливать энергию

    Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

    Рисунок 4. Схема с конденсатором

    Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда — разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

    Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

    Итак, схема собрана. Как она работает?

    В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

    Рисунок 5. Процесс заряда конденсатора

    На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

    Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

    Постоянная времени «тау» τ = R*C

    В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

    Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

    Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

    Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

    Рисунок 6. График разряда конденсатора

    Конденсатор не пропускает постоянный ток

    Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

    Рисунок 7. Схема с конденсатором в цепи постоянного тока

    Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

    Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

    Конденсатор в фильтрах питания

    Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

    Рисунок 8. Схемы выпрямителей

    Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

    Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

    C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

    Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

    C = 1000000 * Po / U*f*dU,

    а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

    Суперконденсатор — ионистор

    В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

    Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе — изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

    Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

    Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

    Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

    Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье — .

    В электротехнике и радиоэлектронике широкое распространение получили различные виды конденсаторов. Каждый из них представляет собой устройство с двумя полюсами, имеющее определенное или переменное значение емкости и очень малую проводимость. Самый простой вариант конденсатора включает в себя два электрода в виде пластин или обкладок, где накапливаются разряды с противоположным значением. Чтобы избежать замыкания, они разделяются между собой тонкими .

    Стандартный выпускаемый конденсатор состоит из электродов в виде многослойного рулона лент, разделяемых диэлектриком. Конфигурация конденсатора, чаще всего, представляет собой параллелепипед или цилиндр.

    Как работает конденсатор

    В сравнении с обычной батареей, конденсатор имеет существенные отличия. У него совершенно другая максимальная емкость, а также скорость зарядки и разрядки.

    При подключении к источнику питания в самом начале ток зарядки будет иметь максимальное значение. Однако, по мере того, как заряд накапливается, наблюдается постепенное уменьшение тока, который полностью пропадает при полном заряде. Напряжение во время зарядки, наоборот, увеличивается и по окончании процесса становится равным напряжению в источнике питания.

    Обозначение конденсаторов на схеме.

    В случае подключения нагрузки при отключенном источнике питания, конденсатор сам становится источником тока. В этот момент, между пластинами происходит образование цепи. Через нагрузку происходит движение отрицательно заряженных электронов к ионам, обладающим положительным зарядом. В данном случае, вступает в силу закон притяжения разноименных зарядов. При прохождении тока через нагрузку происходит постепенная потеря заряда и, в конечном итоге, разрядка конденсатора. Одновременно, снижается напряжение и ток. Процесс разрядки считается завершенным, когда напряжение на электродах будет равным нулю.

    Время зарядки полностью зависит от величины , а время его разрядки находится в зависимости от величины подключаемой нагрузки.

    Применение конденсаторов

    Конденсаторы, так же как транзисторы и , нашли широкое применение для электронных и радиотехнических схем. В электрических цепях они играют роль емкостного сопротивления. Благодаря способности к быстрой разрядке и созданию импульсов, они применяются в конструкциях фотовспышек, лазерах и ускорителях электромагнитного типа.

    Очень эффективны конденсаторы при переключении электродвигателя с 380 на 220 вольт. Во время переключения к третьему выводу, происходит сдвиг фазы на 90 градусов. Таким образом, появляется возможность подключения трехфазного двигателя в однофазную сеть.

    В мощных автомобильных аудиосистемах нередко можно встретить такой элемент как буферный конденсатор. Зачем он нужен и что собой представляет? Давайте разбираться.

    А ОНО ВООБЩЕ НАДО?
    Для начала давайте вспомним, что такое конденсатор вообще. Конденсатор — это устройство, которое может накапливать электрический заряд, держать его в себе, и при необходимости отдавать. Емкость конденсаторов измеряется в Фарадах. 1 Фарад — это, кстати, весьма приличная величина. Чтобы конденсатор работал, его необходимо подключить параллельно аккумулятору (плюс к плюсу и минус к минусу). Про такое подключение обычно говорят «включен в буфер с аккумулятором», отсюда и название — буферный конденсатор. Ставят их, как правило, поближе к усилителям.
    Итак, зачем он нужен? Он не является дополнительным источником питания, а просто держит в себе электрический заряд, поэтому на первый взгляд вроде бы абсолютно бесполезен. Но, тем не менее, польза от него есть, и немалая.
    В каждый момент времени усилитель потребляет разный ток. Например, когда лабух по бас-бочке шарахает или в клубной музыке сочные басовые удары отбивают ритм, то это сопровождается скачками потребления тока. Поскольку питающие кабели имеют определенное сопротивление (это мы подробно разжевали в прошлом номере), то из-за него в эти моменты напряжение на клеммах усилителя неизбежно подсаживается. Такая нестабильность питания — причина искажений звукового сигнала и всех остальных сопутствующих неприятностей.
    Что же изменится, если мы подключим параллельно клеммам усилителя конденсатор? А изменится следующее — конденсатор будет накапливать от аккумулятора заряд в те моменты, когда усилитель потребляет маленький ток, и будет быстро отдавать его, когда усилителю понадобится большой ток, компенсируя этим самым просадку напряжения на кабеле. В итоге усилитель получает более стабильное питание, а, значит, и искажений становится меньше, бас сочнее, все счастливы.
    Впрочем, тут, наверняка, последуют возражения, мол, если провод будет достаточно толстый, то и потерь на нем будет мало, и зачем тогда конденсатор? Но конденсатор и в этом случае окажется нелишним. Токопотребление усилителя обычно изменяется очень резко, а любой обычный аккумулятор относительно инертен. Он, несомненно, способен отдать большой заряд, но он не может делать это мгновенно, так, как это бывает нужно усилителю. Следствие этой тормознутости — опять же нехватка питания в самые начальные моменты резких пиков токопотребления. Конденсатор же способен отдавать заряд очень быстро, гораздо быстрее, чем аккумулятор. Он компенсирует эту аккумуляторную медлительность, и усилитель снова получает полноценное питание.

    Конденсатор компенсирует негативное влияние сопротивления питающего кабеля, но для этого он должен быть установлен как можно ближе к самому усилителю, в идеале между ним и усилителем вообще должно быть не больше 10-20 см питающего провода. Иначе эффект от его применения сводится практически к нулю.


    ИЗ ИСТОРИИ

    Прародитель современных конденсаторов — лейденская банка, изобретенная в 1745 году голландским ученым Мушенбруком и его учеником Кюнеусом, живших в городе Лейден. Параллельно и независимо от них похожее устройство под названием „медицинская банка»изобрел немецкий учёный Клейст. Устройства были способны накапливать заряд, и с их помощью впервые удалось получить искусственным путем электрическую искру.

    КСТАТИ
    В одной из инсталляций мной было подсмотрено одно интересное решение — в непосредственной близости к усилителю установлена самодельная батарея из конденсаторов небольшой емкости. Для еще большего улучшения скорострельности они были шунтированы совсем мелкими конденсаторами, емкостью всего лишь 0,1-1 микрофарад. Система была рассчитана не на громкость, а на качество звука. Результат весьма впечатлил, конденсатор повлиял на звучание не только низких, но и даже средних частот.


    Выбирая конденсатор для своей аудиосистемы, придерживайтесь правила — 1 фарад на каждые 1000 Вт RMS мощности усилителя.

    Емкость конденсаторов измеряется в фарадах. 1 фарад — это очень большая емкость. Такой емкостью обладал бы шар, радиус которого был бы равен 13 (!) радиусам Солнца. Для сравнения, емкость нашей Земли (вернее шара размером с Землю, как отдельного уединенного проводника) составляет всего около 700 микрофарад.

    ЛУЧШЕ МЕНЬШЕ, ДА ЛУЧШЕ
    Рынок предлагает немало моделей -от относительно небольших „кондеров», емкостью 0,5 фарад, до монструозных агрегатов емкостью в десятки фарад. Какой выбрать? Всегда ли большая емкость — это хорошо?
    Выбирать подходящий конденсатор нужно в соответствии с мощностью усилителей. Можно исходить из экспериментально установленного правила „1 фарад на 1000 Вт» (естественно, имеются ввиду не какие-нибудь максимальные 1000 Вт, измеренные черт знает как, а 1000 Вт RMS мощности). Скажем, питание одноканального басового усилителя мощностью 700 Вт вполне можно подпереть 1-фарадным конденсатором, а к 4-канальнику с номиналом 4×100 Вт вполне подойдет емкость 0,5 фарад.
    А можно ли установить конденсатор большей емкости? Можно, но все дело в том, что большие конденсаторы обычно менее скорострельны — они больше будут похожи просто на еще один дополнительный медлительный аккумулятор, чем на быстрый конденсатор. Поэтому их есть смысл использовать, только если вы строите действительно мощную аудиосистему, рассчитанную на „колбасную» музыку с тяжелыми басами и не слишком быстрой атакой звука, например, клубной музыки. Способность конденсатора быстро отдавать заряд при этом отходит на второй план.
    Правда, если вы собираетесь на соревнования по SPL (неограниченному звуковому давлению) или просто любитель громкой музыки с очень низкими и протяжными басами, то особо на поддержку конденсатора можете не рассчитывать. Ведь весь принцип его работы заключается в отдаче накопленного заряда в самый первый момент токопотребления усилителя. Дальше „пустая банка», включенная параллельно усилителю, может принести больше вреда, чем пользы.
    Если же вы считаете, что большой конденсатор вам ну просто ужас как необходим, но вы не хотите терять в скорости его реакции на изменения сигнала, то нужную емкость можно набрать параллельным включением нескольких небольших конденсаторов.

    КСТАТИ


    В продаже можно встретить не только „чистые» конденсаторы, но и гибриды „конденсатор плюс небольшой аккумулятор». По задумке разработчиков аккумулятор должен обеспечить емкость как у больших конденсаторов, а входящий в состав устройства небольшой конденсатор должен обеспечить быстроту реакции устройства на изменяющееся токопотребление усилителя.

    КАК ПРАВИЛЬНО ЗАРЯДИТЬ КОНДЕНСАТОР?
    Не секрет, что ковыряться в проводке и подключать всякие девайсы нужно при скинутых с аккумулятора клеммах, это обычное правило безопасности. Но допустим, вы все установили, подключили и решили, что пора уже включать. И все бы ничего, но многие при этом забывают, что при самом первом включении конденсатор пока еще разряжен. А ведь это устройство, которое способно не только отдавать, но и накапливать заряд очень быстро. Так что как только клеммы коснутся аккумулятора, пустая „банка» сразу же начнет заряжаться, через конденсатор лотечет огромный ток, и на несколько секунд он просто станет перемычкой, закоротив „+» и „-» аккумулятора. Как минимум, пострадают клеммы, став на время подобием сварочных электродов, ну а о предохранителях, наверное, и вовсе уж говорить не стоит. Что же делать? Как правильно зарядить конденсатор, чтобы избежать этого?
    Самый простой вариант- использовать любую 12-вольтовую лампочку. Перед тем, как накидывать клемму, просто на несколько секунд включите ее между аккумуляторной и накидываемой клеммами. Конденсатор начнет заряжаться, но резкого броска тока уже не произойдет. Конденсатор будет спокойно заряжаться через лампочку, по мере заряда она будет светить все тусклее и тусклее, и когда совсем погаснет, то это и будет означать, что конденсатор зарядился, и можно спокойно одевать и фиксировать клемму.

    При параллельном включении конденсаторов их емкость складывается

    КСТАТИ

    Многие конденсаторы оснащены схемами „мягкого заряда». Они имеют неоспоримое преимущество -их не нужно заряжать через лампочку, схема исключает бросок тока при подключении „пустого» конденсатора. Удобно? Безусловно. Но такая схема — это лишнее сопротивление в силовой цепи, которое делает конденсатор, к сожалению, практически бесполезным. Однажды для журнала Car Music мы проводили сравнительный тест конденсаторов. Брали усилитель, подключали его заведомо тонким проводом, „грузили» его сложным сигналом (кому интересно — последовательности 50-герцовых импульсов с частотой 130 ударов в минуту) и следили, при каком уровне этого сигнала напряжение питания усилителя „просядет» до порога его отключения. Так вот, когда мы подключали конденсаторы с такой схемой soft charge, то разницы практически не было. Зато аскетичные „банки», у которых не было вообще ничего лишнего, позволяли повысить уровень сигнала, прежде, чем усилитель начнет вырубаться, до 2,5-3 дБ, а это почти в два раза! Так что десять раз подумайте, прежде чем купить „удобный кондер с наворотами», эти навороты могут принести больше вреда, чем пользы.

    Текст и рисунки Антон Николаев, фото из разных источников.

    Конденсатор, видимо, есть самый первый прибор, с помощью которого научились достаточно долго удерживать электрические заряды в одном месте.

    Если зарядить какой-нибудь диэлектрик трением, например, ту же классическую расческу, потерев ее шерстью, то заряд на ее поверхности останется на некоторое время. Однако ни накопить его, ни как-то использовать не удастся: кроме пары-тройки фокусов с притягиванием к расческе всякого мусора, ничего не выйдет. Металл же зарядить трением вообще невозможно. Все заряды, которые были бы как-то им приняты, на поверхности не удерживаются, а разбегаются сразу по всей массе применяемого металла. Или сбегают с него, благодаря большой площади контакта с воздухом, всегда содержащим влагу, что делает задачу невозможной.

    Удалось придумать накопление электричества благодаря свойству притяжения друг к другу зарядов разного знака. Если два листочка из фольги прижать друг к другу, проложив между ними тонкий слой хорошего диэлектрика, то такой сэндвич можно зарядить, прикоснувшись телами, содержащими заряды разного знака, к разным листочкам фольги. Заряды разного знака притягиваются друг к другу и обязательно побегут в фольге навстречу друг другу. Они бы и разрядились, не будь между слоями фольги диэлектрика. И заряды только растекутся каждый по своему листу фольги и, притягиваясь друг к другу, будут находиться в ней достаточно долго.

    Вот это и называется конденсатор. Чем больше площадь фольги — тем больше емкость. Чтобы добиться большой площади, фольгу с изолятором сворачивают рулоном — две ленты фольги и две ленты бумаги — и помещают в банку, выводя наружу от каждой ленты по контакту. Снаружи банка запаивается, чтобы предотвратить поступление влаги внутрь. Вездесущая влага же и является причиной, по которой бумажную ленту пропитывают парафином.

    а) устройство, б) внешний вид

    1 – фольговые обкладки, 2 – внутренние выводы обкладок,
    3 – парафинированная бумага, 4 – металлический корпус, 5 – провод

    На рисунке изображено, как устроен простейший фольговый автомобильный конденсатор. У него один контакт выведен от одной обкладки наружу проводом, а другим является металлический корпус, внутри присоединенный ко второй обкладке.

    Работа конденсатора в электрической цепи

    Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.

    Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.

    Зарядка конденсатора

    Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.

    ε c – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель

    Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.

    Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.

    Разрядка конденсатора

    Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.

    Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.

    У ситуации, описанной в этих двух случаях, есть интересные особенности:

    1. Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
    2. Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
    3. В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.

    Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы. После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R. Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.

    Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:

    Произведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах.

    Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.

    U c – напряжение на конденсаторе (вольт), U 0 – первоначальное напряжение заряженного конденсатора, t – время (сек)

    На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки. Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени. С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.

    Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.

    Принцип работы на переменном напряжении

    Так же, как в механике масса обладает свойством инерции, в электричестве заряд в конденсаторе тоже проявляет инерционность. Действительно, при любых электрических процессах он начинает подзаряжаться (если напряжение на его контактах имеет такую же полярность, как и заряд в нем) или разряжаться (если полярность противоположная). Это влияет на картину токов в цепи, а на синусоидальном токе проявляется как сдвиг фазы между напряжением и током.

    Фактически в цепи переменного тока непрерывно происходит переходный процесс.

    Переменное напряжение U то подзаряжает, то разряжает конденсатор, в результате этого в нем течет ток I, сдвинутый по времени на 90° от периода колебаний напряжения.

    Считается, что конденсатор пропускает переменный ток, причем введен параметр «кажущееся сопротивление конденсатора». Он зависит от емкости конденсатора С и от частоты переменного напряжения ω.

    Это реактивное сопротивление, которое используется в расчетах цепей, содержащих инерционные, реактивные компоненты. То есть везде, где применяются конденсаторы и катушки индуктивности.

    Назначение компонента

    Из рассмотренных свойств ясно, что нужны конденсаторы не как источники электрического питания, а именно как реактивные элементы схем, чтобы создавать определенные режимы переменного/импульсного тока.

    Используются конденсаторы настолько многообразно, что здесь, на уровне «конденсатор для чайников», можно перечислить только бегло их применение:

    • В выпрямителях служат для сглаживания пульсаций тока.
    • В фильтрах (совместно с резисторами и/или индуктивностями) выступают в роли частотно зависимого элемента для выделения или гашения определенной полосы частот.
    • В колебательных контурах используется конденсатор, работающий при генерации синусоидального напряжения.
    • Несут функцию накопителя в устройствах, где нужно обеспечить мгновенное выделение большой энергии в виде импульса — например, в фотовспышках, лазерах и т.д.
    • Используются в схемах точного управления временными событиями с использованием простейших по строению RC-цепей — реле времени, генераторы одиночных импульсов и т.д.
    • Фазосдвигающий конденсатор применяется в схемах питания синхронных и асинхронных, а также однофазных и трехфазных двигателей переменного тока.

    Кроме собственно прибора «конденсатор», вполне успешно используются в технике явления, в основе которых лежит электрическая емкость.

    Уровень можно измерить, используя факт того, что жидкость, поднимаясь в датчике между проводниками, играющими роль обкладок, меняет диэлектрическую проницаемость среды, а, следовательно, и емкость прибора, что он и показывает как изменение уровня.

    Аналогично этому, сверхмалые толщины можно измерять, меняя расстояние между двумя проводниками-обкладками или их эффективную площадь.

    С тех пор, как фон Клейст – не военачальник, священник – решил ухватить рукой банку (бутылку), заполненную водой, с опущенным туда электродом, прошло немало времени. Конструкций конденсаторов сегодня великое множество. Бессильны обещать рассмотреть 100%, дадим понятие о принципах работы конденсатора, технических характеристиках. Надеемся, обзор выйдет удачным.

    Осторожно, работает конденсатор: история лейденской банки

    Проще начать статическим зарядом. Отмечено учеными, проводник способен накапливать поверхностью электричество. Плотность распределения одинакова по площади. Ключевое отличие металлов от диэлектриков, накапливающих заряд. Обживая кусок железа, носители тока стремятся занять крайнее положение, отталкиваясь взаимно. В результате скапливаются равномерно по поверхности.

    На принципе созданы генераторы, способные копить заряд потенциалом единицы миллионов вольт. При прикосновении к токонесущей части человек попросту испепелится. Аналогично действуют конденсаторы. Сформированы проводниками, площадь которых сильно увеличена. Достигается различными методами. В электролитических конденсаторах алюминиевая фольга скатывается рулоном. Небольшой цилиндр содержит метры металлической ленты.

    Поясним работу. Когда на металлической (проводящей поверхности) появляется заряд, начинается поверхностное распределение. В 1745 году священник-юрист Эвальд Юрген фон Клейст обнаружил: удерживая в руках банку с водой, запасает внутри электричество. Ладонь служит проводящей обкладкой, объем жидкости (по внешней поверхности) — другой. Стекло выступает диэлектрическим барьером. При опускании в воду электрода носители стремятся занять крайнее положение, бороздя поверхность. Через стекло поле действует на ладонь, ответно начинаются схожие процессы (заряд притягивает носители противоположного знака).

    Позже емкость догадались обернуть фольгой, получилась лейденская банка – первый дееспособный конденсатор на Земле, изобретенный человеком. Произошло, когда Питер ван Мушенбрук впечатлился силой полученного в процессе опыта ударом электричества. Стало понятно: опыты небезопасны, руку следует заменить. Ученые писал: второй раз избегает испытывать судьбу ради королевства Франции. Датчанин Даниэль Гралат стал первым догадавшимся соединить лейденские банки параллельно, обеспечивая более высокую емкость системе. Напоминает современный свинцовый аккумулятор задумкой.

    Смешно, подобные устройства использовались вплоть до 1900 года, входящая в обиход радиосвязь вынудила искать новые пути решения проблемы, использовались сравнительно высокие частоты электрических сигналов. В результате появились первые бумажные конденсаторы, маслянистое полотно отделяло друг от друга две обкладки свернутой цилиндром фольги. Постепенно с развитием производства в качестве изоляторов стали применяться иные материалы:

    1. Керамика;
    2. Слюда;
    3. Бумага.

    Истинный прорыв в конструировании конденсаторов произошел, когда люди догадались диэлектрик заменить слоем оксида окисленной поверхности металла. Сказанное касается электролитических конденсаторов. Один цилиндр фольги покрыт оксидом. Чаще сегодня используется травление (намеренное окисление материала действием агрессивных сред), если требования технических характеристик велики, применяется анодирование. Позволяя получить гладкую поверхность, плотно прилегающую к электроду противоположного знака.

    Обкладками выступают оксидированная фольга и бумага, пропитанная электролитом. Разделены тончайшим слоем оксида, позволяя получить потрясающие емкости, единицы-десятки микрофарад сравнительно малого объема. Технические характеристики конденсаторов просто потрясающие. Второй рулон алюминиевой фольги послужит простым проводником электричества, считается одним контактом. Оксид характеризуется удивительным свойством – проводит ток в одном направлении. При подключении электролитического конденсатора неправильной стороной происходит взрыв (разрушение диэлектрика, закипание электролита, образование пара, разрыв корпуса).

    Отказываясь служить диэлектриком, разделяющий слой становится проводником. Из-за резкого повышения температуры области начинается лавинообразная реакция меж металлом и электролитом, конденсатор взбухает. Видели многие радиолюбители, избегаем рассказывать, процессе мало веселого предоставит внимательному зрителю.

    Зачем конденсатору диэлектрик

    Было замечено: если поместить меж пластинами конденсатора изолирующий материал, емкость возрастает. Долго ломали головы ученые мужи, было раскрыто понятие диэлектрической проницаемости. Оказывается, согласно теореме Гаусса можно связать с емкостью конденсатора напряженность поля обкладок. Получается, изолятор обеспечивает накопление зарядов металлами, собирая поверхностью носители противоположного знака. Полагаем, читатели догадались: те создают поле, направленное навстречу исходному, вызывая ослабление, повышающее вместимость конструкции.

    Диэлектрик конденсатора

    Таблицы показывают: бумага, керамика выглядят не лучшими материалами. Значения серной кислоты достигают 150 единиц, почти на два порядка выше. Причем в чистом виде вещество признано изолятором. Вероятно, настанет день, когда принцип действия конденсатора будет реализован не раствором, а серной кислотой. Известные свинцовые аккумуляторы по-другому запасают энергию (реакция). Рассмотренные варианты не единственные, распространены шире.

    Глобально конденсаторы поделим двумя семействами:

    1. Электролитические (полярные).
    2. Неполярные.

    Рассказывали обустройство первых. Разница ограничивается материалом обкладок. Оксид титана снабжен диэлектрической проницаемостью близкой сотне. Понятно, материал предпочтительней для создания высококлассных изделий. Стоимость кусается. Титанат бария демонстрирует диэлектрическую проницаемость повыше. Практически любой конденсатор сформирован обкладками. Диэлектрик добавляет емкости изделию. Чаще лучшие модели конденсаторов содержат ценные металлы: палладий, платину.

    Маркировка, технические характеристики конденсаторов

    Маркировка конденсаторов содержит параметр максимально допустимого рабочего напряжения. Обозначение приводится согласно ГОСТ 25486, затем уточнения достигают отраслевых стандартов. Например, номинал проставляется согласно ГОСТ 28364. Отдельного стандарта по электролитическим конденсаторам найти практически невозможно. Однако авторы сделали, читателям предлагаем проштудировать ГОСТ 27550. На корпусе любые виды конденсаторов содержат маркировку:

    Маркировка корпуса

    • Логотип изготовителя.
    • Тип конденсатора.

    Сложно сказать определенно, большинство электролитических конденсаторов снабжены маркировкой-литерой К, несколькими цифрами, часто разделенными дефисом. Следуя логике, найдем в интернете соответствующий стандарт либо другие материалы.

    • По правилам ГОСТ 28364, номинал состоит из 3-5 символов, присутствует буква.

    П означает приставку пико, н – нано, мк – микро. Если номинал дополнен дробной частью, занимает последнее место, вослед литере. Емкостной ряд (неполный) значений приводится ГОСТ 28364 на примерах. Выполняются нормы этого стандарта практически? Не для электролитических конденсаторов. Вызвано, по-видимому, большими номиналами. Запросто на К50-6 встретите надпись наподобие 2000 мкФ. Согласно ГОСТ 28364, должно выглядеть наподобие 2м0. Для электролитических конденсаторов применяется ГОСТ 11076. Наряду с кодированными обозначениями (ГОСТ 28364) допускается традиционная запись (2000 мкФ). Видите, назначение конденсаторов часто определяет способ маркировки. Электролитические часто выступают составной частью фильтров цепи питания. Здесь нужен больший номинал, функциональность сильно отличается принципа действия конденсаторов разделительных ветвей цепей переменного тока.

    • Если по былым нормам рабочее напряжение маркировкой конденсатора ставилось на первое место, в современных моделях наоборот. Обозначение выражено вольтами.

    Обозначения электролитического конденсатора

    Подразумевается рабочее напряжение, не пробивное. Конденсаторные установки легко сгорают, сожженные повышенными значениями. Тоньше слой диэлектрика, проще происходит пробой. Существует противоречие между дистанцией, разделяющей обкладки (меньше — выше номинал) и желанием повысить рабочее напряжение.

    • Допустимое отклонение емкости чаще замалчиваются.

    Процесс старения выводит номинал за рабочие пределы. Можно сказать, что то, для чего нужен конденсатор, не изготовишь при помощи просроченных изделий. Однако радиолюбители делают по-своему. Прозванивают конденсатор, определяют новый номинал, заручившись помощью тестера, пользуются.

    • Литера В стоит для конденсаторов всеклиматического исполнения.
    • Перед зарядкой конденсатора попробуйте понять, полярный ли (электролитический).

    Изделие способно взорваться. Разумеется, полярный конденсатор нельзя включать в цепь переменного тока. Единого типа маркировки не предусмотрено, оговаривается бумаги: требования могут быть указаны отраслевыми техническими условиями. Например, знаки плюса/минуса. На импортных изделиях отрицательный полюс помечается светлой полосой темного корпуса.

    • Обозначение довершается датой выпуска (месяц, год), ценой.

    Понятно, последнее при современных экономических условиях неактуально.

    Обратите внимание, конденсатор способен долго хранить заряд. Чревато опасностью получить удар током. Любой ремонтник, работающий с радиоаппаратурой, знает: началу ремонта импульсного блока питания предшествует процесс разрядки конденсатора. Чаще делается при помощи запрещенной стандартами лампочки, вкрученной в патрон. Два оголенных провода замыкают на токонесущие части цепи, импульс на короткое время зажигает спираль. Кстати, конструкцию часто вставляют взамен предохранителей, чтобы понять, по-прежнему ли ток велик в цепи (означает наличие неисправности, вызывает необходимость дальнейшей диагностики).

    Выявление неисправности конденсатора требует сноровки, при наличии специфических знаний осуществимо. Нужно иметь на руках простейший мультиметр. Уже рассказывали, как проверить конденсатор при помощи тестера, направляем читателей на соответствующий обзор, сами с позволения почтенной публики спешим откланяться.

    Рекомендуем также

    Как работает конденсатор?

    Вы часто задаетесь вопросом, «как работает конденсатор»?

    По крайней мере, я задавал себе это много раз, когда был моложе.

    Мне никогда не нравились «физические объяснения».

    В нем говорится что-то вроде «конденсатор работает, накапливая энергию электростатически в электрическом поле» .

    Не знаю, как вы, но это предложение не сделало меня мудрее, когда я только начинал заниматься электроникой.

    Мне нравится отвечать на вопрос «как работает конденсатор?» говоря, что конденсатор работает как крошечная перезаряжаемая батарея с очень-очень низкой емкостью.

    Время, необходимое для разряда конденсатора, обычно составляет доли секунды. Настало время подзарядить его.

    БЕСПЛАТНО Бонус: Загрузите основные электронные компоненты [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

    Что такое конденсатор?

    Значит, конденсатор может накапливать заряд. И он может освободить заряд при необходимости. Но как это сделать? Как конденсатор работает на более глубоком уровне?

    Конденсатор состоит из двух металлических пластин. С диэлектрическим материалом между пластинами.

    Когда вы прикладываете напряжение к двум пластинам, создается электрическое поле. Положительный заряд будет накапливаться на одной пластине, а отрицательный — на другой.

    И это то, что имеют в виду физики, когда говорят, что «конденсатор работает, накапливая энергию электростатически в электрическом поле».

    Существует много разных типов конденсаторов.

    Для чего нужен конденсатор?

    Для фильтрации обычно используется конденсатор

    А. Но что такое фильтрация?

    Аналог батареи

    Рассмотрим пример с аккумулятором.

    Многие будильники получают питание от розетки на стене в доме. Иногда отключается электричество. У большинства будильников есть резервная батарея, которая берет на себя и питает будильник до тех пор, пока питание не вернется, чтобы время не сбрасывалось.

    Ну, в электронных схемах точно так же можно использовать конденсаторы.

    Конденсаторы развязки

    Например, если у вас есть схема с микроконтроллером, на котором выполняется какая-то программа. Если напряжение на микроконтроллере падает всего на долю секунды, микроконтроллер перезапускается. А ты этого не хочешь.

    При использовании конденсатора конденсатор может подавать питание на микроконтроллер за доли секунды, когда напряжение падает, так что микроконтроллер не перезапускается.Таким образом, он отфильтрует «шум» в линии электропередачи.

    Этот тип фильтрации называется «развязкой». И конденсатор, используемый для этой цели, называется «развязывающим конденсатором». Его также называют «байпасным конденсатором».

    Использование конденсаторов для фильтров

    Вы также можете комбинировать конденсаторы и резисторы, чтобы сформировать фильтры, нацеленные на определенные частоты. Например, в аудиосистеме вы можете настроить таргетинг на высокие частоты, чтобы удалить их (например, в сабвуфере).Это называется фильтром нижних частот.

    Возврат из «Как работают конденсаторы?» в «Электронные компоненты онлайн»

    Конденсатор

    — Конструкция и работа

    Что такое конденсатор?

    Конденсаторы

    являются наиболее широко используемыми электронные компоненты после резисторов. Мы находим конденсаторы в телевизорах, компьютерах и во всех электронных устройствах. схемы. Конденсатор — это электронное устройство, которое хранит электрический заряд или электричество при подаче напряжения и при необходимости высвобождает накопленный электрический заряд.

    Конденсатор действует как небольшая батарея, которая быстро заряжается и разряжается. Любой объект, на котором можно хранить электрический заряд, представляет собой конденсатор. Конденсатор тоже иногда называется конденсатор.

    Что такое электрический заряд?

    Электрический заряд — основное свойство частицы, такие как электроны и протоны. Этот электрический заряд заставляет их испытывать притягательную или отталкивающую силу, когда помещен в электромагнитное поле.

    Электрические заряды бывают двух типов: положительные. и отрицательный. Электроны имеют отрицательный заряд, а протоны имеют отрицательный заряд. положительный заряд.

    Как гравитационная энергия, присутствующая вокруг планет, таких как Земля, электрическая энергия присутствует вокруг заряженные частицы, такие как электроны и протоны. Однако заряженные частицы проявляют силу только на небольшом расстоянии вокруг их и сверх того они не могут применить силу.Область до сила, действующая на заряженные частицы, называется электрической поле. Если мы поместим любую заряженную частицу внутрь этого регион, он испытает силу. Эта сила может быть отталкивающей или притягательной.

    Электроэнергия или электрический заряд присутствующий вокруг заряженной частицы представлен электрическим силовые линии. Направление этих электрических линий сила различна для положительного и отрицательного заряда.Для положительный заряд, электрические силовые линии начинаются от центр заряженной частицы и улетает от него. Для отрицательный заряд, электрические силовые линии начинаются вдали от заряженная частица и движется к ее центру. В В электронике дырка считается положительным зарядом.

    Когда отрицательно заряженная частица (электрон) находится в электрическом поле положительно заряженного частица (протон), она притягивается.С другой стороны, когда положительно заряженная частица (протон) помещается в электрическое поле другого протона, он отталкивается. В простом словами, противоположные электрические заряды притягиваются друг к другу и одинаковы электрические заряды отталкивают друг друга.

    Строительство конденсатора

    Базовая конструкция всех конденсаторов похожий.Конструкция конденсатора очень проста. А Конденсатор состоит из двух электропроводящих пластин, размещенных близко друг к другу, но не касаются друг друга. Эти проводящие пластины обычно изготавливаются из таких материалов, как алюминий, латунь или медь.

    Проводящие пластины конденсатора разделены небольшим расстоянием. Пустое пространство между этими пластины заполнены непроводящим материалом или электрическим изолятор или диэлектрическая область.Непроводящий материал или область между двумя пластинами может быть воздухом, вакуумом, стеклом, жидкий или твердый. Этот непроводящий материал называется диэлектрик.

    Две токопроводящие пластины конденсатора хорошие проводники электричества. Поэтому они легко могут пропускают через них электрический ток. Электропроводящие пластины конденсатор также удерживает электрический заряд.В конденсаторах эти пластины в основном используются для удержания или хранения электрических плата.

    Плохой диэлектрический материал или среда проводник электричества. Они не могут пропускать электрический ток через них. В конденсаторах диэлектрическая среда или материал блокировать поток носителей заряда (особенно электронов) между проводящие пластины. В результате электрические заряды, которые попытаться перейти с одной пластины на другую пластина будет в ловушке внутри пластины из-за сильного сопротивления со стороны диэлектрик.

    Если поместить проводящую среду между эти пластины, электрические заряды легко перетекают от одной пластины к другая тарелка. Однако между пластинами течет электрический ток. не желательно. Это указывает на выход из строя конденсатора.

    Мы знаем, что электрический ток — это поток носителями заряда, тогда как электрическая сила или электрическое поле являются свойство электрических зарядов.Диэлектрический материал не позволяет поток носителей заряда, но они допускают электрическую силу, электрический заряд или электрическое поле, создаваемое заряженным частицы (электроны). В результате при накоплении заряда на две пластины, сильное электрическое поле создается между две тарелки.

    Как конденсатор работает?

    Конденсатор без источника напряжения

    Когда на конденсатор не подается напряжение, общее количество электронов и протонов в левой пластине конденсатор равны.Мы знаем, что любой объект, имеющий равное количество электронов и протонов считается электрически нейтральный. Следовательно, полный заряд левой пластины компенсирует и становится электрически нейтральным. Следовательно, левая пластина конденсатор называется электрической нейтралью.

    С другой стороны, правая пластина также имеет равное количество электронов и протонов.Таким образом, общая заряд правой пластины отменяется и становится электрически нейтральный.

    Отсутствие электрического заряда означает отсутствие электрического поля. Следовательно, конденсатор не накапливает заряд при отсутствии напряжения. применяется.

    Зарядка конденсатор

    Заряд будет построен на объекте, имеющем избыточное количество электронов или протонов.Чтобы произвести избыточное количество электронов или протонов, нам нужно подать напряжение на конденсатор.

    Когда напряжение подается на конденсатор таким образом, чтобы положительный полюс аккумуляторной батареи подключен к левой стороне пластина конденсатора и отрицательный вывод аккумуляторной батареи подключен к правой боковой пластине конденсатора, происходит зарядка конденсатора.

    Из-за этого напряжения питания большое количество электронов начинают двигаться от отрицательной клеммы аккумулятор через токопроводящий провод. Когда эти электроны достигают правой боковой пластины конденсатора, они испытывают сильное сопротивление диэлектрического материала. Диэлектрик материал или среда, присутствующие между пластинами, будут сильно противодействовать движению электронов с правой боковой пластины.Как в результате большое количество электронов захватывается или накапливается на правая боковая пластина конденсатора.

    Из-за накопления избыточных электронов извне количество электронов (отрицательных носителей заряда) на правой боковой пластине станет больше, чем количество протоны (носители положительного заряда). В итоге правая сторона пластина конденсатора заряжается отрицательно.

    С другой стороны, электроны слева боковая пластина испытывает сильную притягивающую силу от положительный полюс аккумуляторной батареи. В результате электроны оставьте левую боковую пластину и привлечете или переместите в сторону положительный полюс аккумуляторной батареи.

    Отрицательный заряд на правой стороне пластина создает сильное отрицательное электрическое поле.Этот сильный отрицательное электрическое поле также толкает подобные заряды или электроны на левой пластине.

    Из-за потери большого количества электронов с левой боковой пластины, количество протонов (носителей положительного заряда) станет больше, чем количество электроны (носители отрицательного заряда). В результате левая сторона пластина конденсатора заряжается положительно.Таким образом, оба проводящие пластины конденсатора заряжены.

    Положительный и отрицательный заряды на обоих пластины оказывают друг на друга силу. Однако они не трогают друг с другом.

    Из-за избыточного количества электронов на одна пластина и нехватка электронов на другой пластине, разность потенциалов или напряжение устанавливается между тарелки.Как конденсатор продолжает заряжаться, напряжение между пластинами увеличивается.

    Напряжение между пластинами противостоит источнику напряжения. В результате, когда конденсатор полностью заряжен (напряжение между пластинами равно источнику напряжение) конденсатор перестает заряжаться. Потому что на данный момент энергия напряжения источника и напряжение конденсатора равны равный.В результате электроны или электрическое поле справа боковая пластина отталкивает электроны, идущие от источника напряжения.

    Поэтому для дальнейшей зарядки конденсатора нам нужно увеличить напряжение на более высокий уровень. Когда напряжение подается на конденсатор повышен до более высокого уровня. Зарядка снова начинается наращивая проводящие пластины конденсатора, пока он выходит на новый уровень напряжения.Когда напряжение между пластины достигают нового уровня напряжения источника, он снова останавливается зарядка. Конденсаторы

    спроектированы и изготовлены для работают при определенном максимальном напряжении. Если напряжение приложено к конденсатор превышает максимальное напряжение, электроны начинают перемещение между пластинами. Это приведет к необратимому повреждению конденсатора.

    Разрядка конденсатор

    Если внешний источник напряжения подключен к конденсатор удаляется, конденсатор остается заряженным.Однако, когда конденсатор подключен к любому электрическому устройству например, электрическая лампочка через проводящий провод, он запускается разрядка.

    Когда конденсатор подключен к электрическая лампочка через проводящий провод, электроны захвачены на правой боковой пластине начинает протекать контур. Мы знать, что электрический ток — это поток носителей заряда (бесплатно электроны).Следовательно, когда свободные электроны или электрические ток достигает лампочки, она светится с большой силой.

    Электроны, которые начали вытекать из правая боковая пластина через проводящий провод, наконец, достигла левую боковую пластину и заполните отверстия левой боковой пластины. Как В результате заряд на левой боковой пластине и правой боковой пластине начинает уменьшаться.Это снижает интенсивность электрического лампочку, потому что электрический ток, протекающий через электрическую лампочка уменьшается.

    Наконец заряд хранится на левой пластине и правая пластина полностью освобождается. В результате лампочка выключится, потому что электрический ток не течет через лампочка. Таким образом, заряд хранится на левой пластине, а на правой. пластина конденсатора разряжена.

    Конденсатор условное обозначение

    Обозначение схемы основного конденсатора: показано на рисунке ниже. Обозначение конденсатора представлено проведя две параллельные линии близко друг к другу, но не трогательно. Он состоит из двух терминалов. Эти терминалы используются подключить в схему.

    Емкость

    Способность конденсатора накапливать электрическую заряд называется емкостью.Конденсаторы с большой емкостью будет хранить большое количество электрического заряда, тогда как конденсаторы с низкой емкостью сохранят небольшое количество электрический заряд.

    Емкость конденсатора может быть по сравнению с размером резервуара для воды: чем больше объем воды резервуар, тем больше воды он может вместить. Аналогичным образом чем больше емкость, тем больше электрического заряда или электричества он может хранить.

    Емкость конденсатора в основном зависит от размера плит, обращенных друг к другу, расстояние между двумя проводящими пластинами, а диэлектрическая проницаемость материал между пластинами.

    Емкость конденсатора напрямую пропорционально размеру токопроводящих пластин и обратно пропорционально пропорционально расстоянию между двумя пластинами.

    Другими словами, конденсатор с большой проводящие пластины хранят большое количество электрического заряда, тогда как конденсатор с небольшими токопроводящими пластинами накапливает небольшое количество электрического заряда. С другой стороны, конденсатор с большой расстояние между пластинами имеет низкую емкость (малая накопитель заряда), тогда как конденсатор с малым разделением расстояние между пластинами имеет высокую емкость (высокий заряд место хранения).

    Емкость конденсатора измеряется в фарад. Он представлен символом Ф. Фарад назван в честь Английский физик Майкл Фарадей. Заряженный конденсатор емкостью 1 фарад с 1 кулоном электрического заряда имеет разность потенциалов или напряжение между его пластинами 1 вольт.

    Один фарад — очень большая сумма емкость. Следовательно, в большинстве случаев мы используем очень маленькую единицу емкость.Наиболее распространенные единицы емкости, которые мы используем сегодня микрофарады (мкФ), нано фарад (нФ), пикофарад (пФ) и фемофарад (фФ).

    1 микрофарад = 10 -6 фарад

    1 нанофарад = 10 -9 фарад

    1 пикофарад = 10 -12 фарад

    1 фемофарад = 10 -15 фарад

    Заряд на конденсаторе

    Электрический заряд, накопленный конденсатором. зависит от напряжения, приложенного к конденсатору.

    Если на конденсатор подается высокое напряжение, большой заряд передается пластинам конденсатора. В результате конденсатор накапливает большой заряд.

    С другой стороны, если подается низкое напряжение на конденсатор передается только небольшой заряд к обкладкам конденсатора. В результате конденсатор хранит только небольшая сумма заряда.Однако емкость конденсатор остается постоянным. Мы не можем увеличить емкость конденсатора.

    Взаимосвязь заряда, напряжения и емкость можно математически записать в трех формах:



    Объяснение

    конденсаторов — Инженерное мышление

    Объяснение конденсаторов

    .Узнайте, как работают конденсаторы, где мы их используем и почему они важны.

    Прокрутите вниз, чтобы просмотреть руководство YouTube.

    Помните, что электричество опасно и может привести к летальному исходу. Вы должны быть квалифицированными и компетентными для выполнения электромонтажных работ. Не прикасайтесь к клеммам конденсатора, так как это может вызвать поражение электрическим током.

    Что такое конденсатор?

    Конденсатор и батарея

    Конденсатор накапливает электрический заряд. Это немного похоже на батарею, за исключением того, что она по-другому накапливает энергию.Он не может хранить столько энергии, хотя может заряжаться и высвобождать свою энергию намного быстрее. Это очень полезно, поэтому конденсаторы можно встретить практически на каждой печатной плате.

    Как работает конденсатор?

    Я хочу, чтобы вы сначала представили водопроводную трубу, по которой течет вода. Вода будет продолжать течь, пока мы не закроем вентиль. Тогда вода не сможет течь.

    Если после клапана мы позволим воде течь в резервуар, тогда резервуар будет хранить часть воды, но мы продолжаем получать воду, вытекающую из трубы.Когда мы закроем вентиль, вода перестанет поступать в резервуар, но мы все равно будем получать постоянный приток воды, пока резервуар не опустеет. Как только резервуар снова наполнится, мы можем открывать и закрывать клапан, и пока мы не опорожняем резервуар полностью, мы получаем непрерывную подачу воды из конца трубы. Таким образом, мы можем использовать резервуар для воды для хранения воды и сглаживания перебоев в подаче.

    В электрических цепях конденсатор действует как резервуар для воды и накапливает энергию. Он может освободить его, чтобы сгладить перебои в подаче электроэнергии.

    Если мы очень быстро выключим простую схему без конденсатора, то свет будет мигать. Но если мы подключим конденсатор в цепь, то свет будет оставаться включенным во время прерываний, по крайней мере, на короткое время, потому что теперь конденсатор разряжается и питает цепь.

    Внутри основного конденсатора у нас есть две проводящие металлические пластины, которые обычно изготавливаются из алюминия или алюминия, как его называют американцы. Они будут разделены диэлектрическим изоляционным материалом, например керамикой.Диэлектрик означает, что материал поляризуется при контакте с электрическим полем. Мы скоро увидим, что это значит.

    Внутри конденсатора

    Одна сторона конденсатора подключена к положительной стороне схемы, а другая сторона — к отрицательной. На стороне конденсатора вы можете увидеть полоску и символ, указывающие, какая сторона у отрицательного полюса, кроме того, отрицательная сторона будет короче.

    Если подключить конденсатор к аккумулятору. Напряжение подталкивает электроны от отрицательного вывода к конденсатору.Электроны накапливаются на одной пластине конденсатора, в то время как другая пластина, в свою очередь, высвобождает некоторые электроны. Электроны не могут проходить через конденсатор из-за изоляционного материала. В конце концов, конденсатор имеет то же напряжение, что и батарея, и электроны больше не будут течь.

    Теперь с одной стороны скопилось скопление электронов, это означает, что мы накопили энергию и можем высвободить ее, когда это необходимо. Поскольку на одной стороне больше электронов по сравнению с другой, и электроны заряжены отрицательно, это означает, что у нас есть одна сторона, которая является отрицательной, а другая — положительной, поэтому между ними есть разница в потенциале или разница напряжений.Мы можем измерить это с помощью мультиметра.

    Что такое напряжение?

    Напряжение похоже на давление: когда мы измеряем напряжение, мы измеряем разность или разность потенциалов между двумя точками. Если вы представите трубу с водой под давлением, мы сможем увидеть давление с помощью манометра. Манометр также сравнивает две разные точки: давление внутри трубы по сравнению с атмосферным давлением снаружи трубы. Когда резервуар пуст, манометр показывает ноль, потому что давление внутри резервуара равно давлению снаружи резервуара, поэтому манометру не с чем сравнивать.Оба давления одинаковы. То же самое и с напряжением, мы сравниваем разницу между двумя точками. Если мы измеряем через батарею 1,5 В, то мы читаем разницу в 1,5 В между каждым концом, но если мы измеряем один и тот же конец, мы читаем ноль, потому что разницы нет, это то же самое.

    Хотите изучить основы электричества? НАЖМИТЕ ЗДЕСЬ

    Возвращаясь к конденсатору, мы измеряем и считываем разницу напряжений между ними из-за скопления электронов. Мы все еще получаем это показание, даже когда отсоединяем аккумулятор.

    Если вы помните, с магнитами противоположности притягиваются и притягиваются друг к другу. То же самое происходит с накоплением отрицательно заряженных электронов, они притягиваются к положительно заряженным частицам атомов на противоположной пластине, но никогда не могут добраться до них из-за изоляционного материала. Это притяжение между двумя сторонами представляет собой электрическое поле, которое удерживает электроны на месте, пока не появится другой путь.

    Объяснение основ работы с конденсаторами

    Если мы затем поместим в цепь небольшую лампу, то теперь существует путь, по которому электроны могут течь и достигать противоположной стороны.Таким образом, электроны будут проходить через лампу, питая ее, и электроны достигнут другой стороны конденсатора. Это будет длиться недолго, пока количество электронов не выровняется с каждой стороны. Тогда напряжение равно нулю, поэтому нет толкающей силы и нет потока электронов.
    Как только мы снова подключим аккумулятор, конденсатор начнет заряжаться. Это позволяет нам прервать подачу питания, и конденсатор будет обеспечивать питание во время этих прерываний.

    Примеры

    Мы везде используем конденсаторы.Они выглядят немного иначе, но их легко заметить. На печатных платах они, как правило, выглядят примерно так, и мы можем видеть их на инженерных чертежах вот так. Мы также можем получить конденсаторы большего размера, которые используются, например, в асинхронных двигателях, потолочных вентиляторах или установках кондиционирования воздуха, и мы можем даже получить такие огромные конденсаторы, которые используются для коррекции низкого коэффициента мощности в больших зданиях.

    Пример обозначения конденсатора

    На стороне конденсатора мы найдем два значения.Это будут емкость и напряжение. Мы измеряем емкость конденсатора в единицах фарад, которые мы показываем с заглавной буквы F, хотя мы обычно измеряем конденсатор в микрофарадах, поэтому у нас есть микро-символ непосредственно перед этим, который выглядит примерно как буква U с хвостом.

    Пример емкости

    Другое значение — это наше напряжение, которое мы измеряем в вольтах с заглавной буквой V, на конденсаторе значение напряжения — это максимальное напряжение, которое может выдержать конденсатор.

    Этот конденсатор рассчитан на определенное напряжение, и если я превышу это значение, он взорвется.

    Пример напряжения конденсатора

    Большинство конденсаторов имеют положительную и отрицательную клеммы. Нам нужно убедиться, что конденсатор правильно включен в схему.

    Пример платы конденсатора

    Почему мы их используем

    Одно из наиболее распространенных применений конденсаторов в больших зданиях — это коррекция коэффициента мощности. Когда в цепь помещается слишком много индуктивных нагрузок, формы сигналов тока и напряжения не будут синхронизироваться друг с другом, и ток будет отставать от напряжения.Затем мы используем батареи конденсаторов, чтобы противодействовать этому и вернуть их в соответствие.

    Другое распространенное применение — сглаживание пиков при преобразовании переменного тока в постоянный.
    Когда мы используем полный мостовой выпрямитель, синусоидальная волна переменного тока переворачивается, чтобы заставить отрицательный цикл течь в положительном направлении, это заставит схему думать, что она получает постоянный ток.

    через GIPHY

    Но, одна из проблем этого метода — промежутки между пиками. Поэтому мы используем конденсатор, чтобы выделять энергию в цепь во время этих прерываний, и это сгладит подачу питания, чтобы она больше походила на постоянный ток.

    Как измерить емкость мультиметром

    Мы можем измерить емкость и накопленное напряжение с помощью мультиметра. Не все мультиметры имеют функцию измерения емкости.

    Вы должны быть очень осторожны с конденсаторами, поскольку они накапливают энергию и могут удерживать высокие значения напряжения в течение длительного времени, даже когда они отключены от цепи. Чтобы проверить напряжение, мы переключаемся на постоянное напряжение на нашем измерителе, а затем подключаем красный провод к положительной стороне конденсатора, а черный провод к отрицательной стороне.Если мы получаем показание в несколько вольт или более, мы должны разрядить его, безопасно подключив клеммы к резистору, и продолжить считывание напряжения. Мы хотим убедиться, что он упал до диапазона милливольт, прежде чем обращаться с ним, иначе мы можем получить шок.

    Чтобы измерить емкость, мы просто переключаем измеритель на функцию конденсатора. Подключаем красный провод к положительной стороне, а черный провод к отрицательной стороне. После небольшой задержки счетчик покажет нам показания.Вероятно, мы получим значение, близкое к заявленному, но не точное.

    Например, этот показатель рассчитан на 1000 микрофарад, но мы читаем около 946.

    Пример показания 1000 мкФ на конденсаторе

    Этот конденсатор рассчитан на 33 мкФ, но мы измеряем около 36.

    Пример конденсатора

    Конденсатор

    Basic: как работают конденсаторы?

    Конденсаторы накапливают электрическую энергию, накапливая заряды на электродах, и обычно используются вместе с индукторами для формирования контура LC-генератора.Принцип работы конденсатора заключается в том, что электрический заряд перемещается под действием силы электрического поля. Когда между проводниками находится среда, электрический заряд не может двигаться, и электрический заряд будет накапливаться на проводнике, что приведет к накоплению электрического заряда.

    Каталог

    Ⅰ Введение

    Принцип работы конденсатора заключается в накоплении электрической энергии путем накопления заряда на электроде, и он обычно используется вместе с индуктором для формирования колебательного контура LC.Принцип работы конденсатора заключается в том, что заряд будет двигаться под действием электрического поля. Когда между проводниками находится среда, это будет препятствовать движению заряда и заставит заряд накапливаться на проводнике, что приведет к накоплению заряда. Конденсаторы являются одним из электронных компонентов, используемых в большом количестве электронного оборудования, поэтому они широко используются для блокировки постоянного тока, связи, байпаса, фильтрации, контура настройки, преобразования энергии, схемы управления и т. Д.

    В некотором смысле конденсаторы немного похожи на батареи. Хотя они работают по-разному, они оба могут накапливать электрическую энергию. Если вы узнали принцип работы аккумулятора, то должны знать, что аккумулятор имеет два электрода. Внутри батареи химическая реакция заставляет один электрод генерировать электроны, а другой электрод поглощает электроны. Конденсатор намного проще, и он не может производить электроны — он просто накапливает их.

    Конденсаторы, резисторы и катушки индуктивности также называют тремя основными пассивными компонентами, и их годовой объем производства достиг примерно 2 триллионов единиц по всему миру.Чаще всего используются керамические конденсаторы. В то же время различные типы конденсаторов, такие как пленочные конденсаторы с превосходной изоляцией и стабильностью, электролитические конденсаторы, известные своей большой емкостью и т. Д., Также используются людьми с их соответствующими преимуществами и характеристиками.

    Ⅱ Как работают конденсаторы?

    Как и батарея, конденсатор также имеет два электрода. Внутри конденсатора эти два электрода соединены с двумя металлическими пластинами, разделенными диэлектриком.Диэлектрик может быть воздухом, бумагой, пластиком или любым другим материалом, который не проводит электричество и предотвращает контакт двух металлических полюсов друг с другом. Используя два куска алюминиевой фольги и лист бумаги, вы легко можете сделать конденсатор. Хотя изготовленный вами конденсатор не идеален с точки зрения емкости, он работает.

    Основная конструкция конденсатора

    Основная конструкция конденсатора — это два электрода (металлические пластины), обращенные друг к другу.При приложении постоянного напряжения (В) к двум электродам электроны мгновенно собираются на одном из электродов, электрод заряжается отрицательно, а другой электрод находится в состоянии недостаточного количества электронов, который заряжен положительно. Это состояние все еще существует после снятия напряжения постоянного тока. То есть между двумя электродами накапливается электрический заряд (Q). Между электродами вставлен диэлектрик (керамика, полиэтиленовая пленка и т. Д.). Поляризация диэлектрика увеличивает накопленный заряд.Индекс, показывающий, сколько заряда хранится в конденсаторе, называется емкостью (C).

    Конденсатор в электронной схеме показан на рисунке:

    Давайте посмотрим, что произойдет, когда мы соединим конденсатор и батарею вместе:

    Металлическая пластина на конденсаторе, подключенная к отрицательному электроду аккумулятор поглотит электроны, генерируемые аккумулятором; Металлическая пластина на конденсаторе, подключенном к положительному электроду батареи, будет выпускать электроны в батарею.

    В цепи движение заряда образует ток. Из-за отталкивающего эффекта изоэлектрического заряда ток наибольший в начале движения заряда, а затем постепенно уменьшается; и заряд конденсатора наименьший в начале движения заряда, который равен нулю. Емкость заряда постепенно увеличивается, а напряжение между двумя металлическими пластинами постепенно увеличивается. Когда оно увеличивается до уровня напряжения источника питания, зарядка завершается, и ток уменьшается до нуля.

    После зарядки конденсатор и аккумулятор имеют одинаковое напряжение (если напряжение аккумулятора составляет 1,5 В, напряжение конденсатора также 1,5 В). Маленькие конденсаторы имеют меньшую емкость, но большие конденсаторы могут удерживать много зарядов. Например, конденсатор размером с банку из-под газировки может удерживать достаточно заряда, чтобы зажечь лампочку фонарика в течение нескольких минут. Когда вы видите молнию в небе, вы видите огромный конденсатор, один из которых — темное облако в небе, а другой — земля. Молния — это явление высвобождения заряда между двумя «полюсами» темного облака и землей.Очевидно, такой огромный конденсатор может удерживать много зарядов!

    Далее предположим, что вы подключаете конденсатор к цепи следующим образом:

    У вас есть аккумулятор, лампочка и конденсатор. Если конденсатор очень большой, то вы увидите, что после подключения аккумулятора ток течет от аккумулятора к конденсатору для его зарядки, и лампочка загорится. Лампа будет постепенно тускнеть, и, наконец, как только конденсатор достигнет своей емкости, лампочка немедленно погаснет.Затем вы можете извлечь аккумулятор и заменить его куском провода. Ток будет течь от одного полюса конденсатора к другому. В этот момент лампочка снова загорится ярко, но вскоре лампочка постепенно потускнеет. Наконец, конденсатор разряжается (количество электронов на двух полюсах конденсатора одинаково), и лампочка снова гаснет.

    В цепи движение заряда образует ток. Из-за притяжения противоположного заряда ток наибольший в начале процесса разряда, а затем постепенно уменьшается; зарядная емкость конденсатора является наибольшей в начале процесса разряда и затем постепенно уменьшается.Когда мощность снижается до нуля, разряд завершается, и ток снижается до нуля.

    После того, как конденсатор заряжен, в цепи не течет ток, поэтому конденсатор может играть роль в блокировке постоянного тока. В цепи постоянного тока его можно рассматривать как обрыв.

    Процесс зарядки конденсатора — это процесс накопления заряда. Когда конденсатор подключен к источнику питания постоянного тока, заряд на металлической пластине, подключенной к положительному электроду источника питания, будет двигаться к металлической пластине, подключенной к отрицательному электроду источника питания, под действием силы электрического поля.Так что металлическая пластина, подключенная к положительному полюсу блока питания, теряет заряд и заряжается положительно. Металлическая пластина, подключенная к отрицательному полюсу источника питания, заряжается отрицательно (заряды двух металлических пластин равны, а знаки противоположны), и конденсатор начинает заряжаться.

    Процесс разрядки — это процесс высвобождения накопленного заряда конденсатором. Когда заряженный конденсатор находится на замкнутом пути без питания, заряд на отрицательно заряженной металлической пластине будет направлен к положительно заряженному металлу под действием силы электрического поля.Пластина убегает, так что положительный и отрицательный заряды нейтрализуются, и конденсатор начинает разряжаться.

    Заряд, накопленный в конденсаторе

    Роль конденсатора можно визуально описать с помощью водонапорной башни, подключенной к водопроводу. Водонапорная башня может использоваться для «хранения» давления воды — когда вода, подаваемая водяным насосом системы водоснабжения, превышает количество воды, необходимое городу, избыток воды будет храниться в водонапорной башне.18, или 62,5 миллиарда) электронов. 1 ампер представляет собой скорость потока электронов, проходящих через 1 кулон электронов в секунду. Следовательно, конденсатор емкостью 1Ф может хранить 1 ампер-секунду электронов при напряжении 1 вольт.

    Конденсатор емкостью 1Ф обычно довольно большой. В зависимости от допуска напряжения конденсатора он может быть размером с банку тунца или 1-литровую бутылку содовой. Поэтому конденсаторы, которые вы видите, обычно измеряются в микрофарадах (частях на миллион).

    Чтобы понять, насколько велик метод 1, его можно рассчитать следующим образом:

    В типичной щелочной батарее AA вмещается около 2 штук.Электричество 8 ампер-часов. Это означает, что батарея AA может производить ток 2,8 ампера в течение 1 часа при 1,5 вольтах (около 4,2 ватт-часов, то есть батарея AA может поддерживать непрерывное горение 4-ваттной лампочки в течение чуть более часа).

    Для удобства расчета мы просто посчитали напряжение батареи АА как 1 вольт. Для хранения энергии одной батареи AA в конденсаторе необходим конденсатор емкостью 3600 * 2,8 = 10080F, потому что 1 ампер-час эквивалентен 3600 ампер-секундам.

    Если емкость 1 метода должна быть сохранена с помощью конденсатора размером с тунца, то размер батареи AA ничто по сравнению с размером конденсатора метода 10080! Очевидно, что если конденсатор не имеет высокого выдерживаемого напряжения, использовать конденсатор для хранения большого количества энергии непрактично.

    Ⅳ Основное применение конденсаторов

    1. Фильтрация

    Конденсатор, подключенный между положительным и отрицательным полюсами выхода постоянного тока модуля питания, может отфильтровывать ненужные компоненты переменного тока в модуле постоянного тока, что может мощность постоянного тока более плавная.

    2. Развязка

    Конденсатор, подключенный между положительным и отрицательным полюсами источника питания схемы усилителя, может предотвратить паразитные колебания, вызванные положительной обратной связью, образованной внутренним сопротивлением источника питания.

    3. Шунтирование

    В цепи сигналов переменного и постоянного тока подключите конденсатор параллельно двум концам резистора или выполните переход на общий потенциал с определенной точки цепи.Вы можете установить путь для сигнала переменного тока или импульсного сигнала, чтобы избежать компонентов сигнала переменного тока. Ослабление падения напряжения из-за сопротивления.

    4. Соединение

    В схеме обработки сигнала переменного тока он используется для соединения источника сигнала и схемы обработки сигнала или в качестве межкаскадного соединения двух усилителей. Он используется для отключения постоянного тока, поэтому сигнал переменного тока или импульсный сигнал будет проходить. И рабочие точки постоянного тока передних и задних цепей усилителя не влияют друг на друга.

    5. Настройка

    Конденсатор подключен к обоим концам колебательной катушки резонансного контура, который играет роль выбора частоты колебаний.

    6. Компенсация

    Вспомогательные конденсаторы подключены параллельно основному конденсатору резонансного контура. Регулировка этого конденсатора позволяет расширить частотный диапазон колебательного сигнала.

    7. Нейтрализация

    Конденсаторы, подключенные параллельно между базой и эмиттером триодного усилителя, образуют цепь отрицательной обратной связи для подавления автоколебаний, вызванных емкостью между триодами.

    8. Стабилизация частоты

    Конденсатор играет роль в стабилизации частоты колебаний в колебательном контуре.

    9. Синхронизация

    Конденсатор, включенный последовательно с резистором R в цепи постоянной времени RC, может определять время заряда и разряда.

    10. Ускорение

    Подключение к цепи обратной связи генератора для ускорения процесса положительной обратной связи и увеличения амплитуды колебательного сигнала.

    11. Запуск

    Соединены последовательно со вспомогательной обмоткой однофазного двигателя для обеспечения пускового сдвинутого по фазе переменного напряжения для двигателя и отключаются от вспомогательной обмотки после нормальной работы двигателя .

    12. Эксплуатация

    Соединены последовательно с вторичной обмоткой однофазного двигателя для обеспечения фазосдвинутого переменного тока для вторичной обмотки двигателя.Когда двигатель работает нормально, он включен последовательно со вспомогательной обмоткой.

    Рекомендуемый артикул:

    Что такое разделительный конденсатор?

    Основные сведения о пленочных конденсаторах

    Конденсатор: что это, что он делает и как работает, апрель 1960 г. Популярная электроника

    Апрель 1960 г. Популярная электроника

    Стол содержания

    Воск, ностальгирующий по истории ранней электроники.См. Статьи с Популярная электроника, опубликовано с октября 1954 года по апрель 1985 года. Настоящим подтверждаются все авторские права.

    Вот очень красивый праймер на конденсаторах, которые появились в апрельском выпуске журнала Popular Electronics за 1960 год. Охватывается много вопросов, включая историю, форм-факторы, типы диэлектриков (керамические упоминается как новая разновидность в то время), приложения и т. д. Интересно, что единицы пикофарад (пФ) все еще назывались мкфарадами.Фактически, поскольку не еще много работы было сделано в области гигагерц (ГГц), было не так много используйте для pF, кроме, возможно, настройки отклика фильтра. Автор Кен Гилмор раскрывает смысл юмора при написании ранних экспериментов с емкостью, как он говорит: «Поскольку они не могли думать о многом, что делать с лейденской банкой, кроме как стоять и шокировать друг друга, у них не было необходимости в точной системе измерения накопленного заряда, или емкость банки.«

    Конденсатор: что это такое, для чего он нужен и как работает

    Кен Гилмор,

    Конденсатор был изобретен в 1745 году экспериментаторами, искавшими способ чтобы «конденсировать» и хранить это недавно открытое любопытство, электричество. Хотя многие их идеи были ошибочными, они были очень близки к тому, чтобы сделать то, что намеревались сделать! Сегодняшние конденсаторы бывают тысяч разных размеров, форм и цветов. Это жизненно важно в эксплуатации всего, от семейного автомобиля до управляемые ракеты; но он делает то же самое и работает по тому же принципу как его далекий предок обнаружил в лаборатории Лейденского университета над два века назад.

    Хранение заряда — что такое конденсатор?

    Огромная молния падает на землю с оглушительным ударом грома. Возможно, это. самая яркая демонстрация емкости в действии.

    Управляемая ракета устремляется в небеса на столбе пламени. Без конденсаторов выполняя сотни различных работ над системами наведения, управления и стрельбы, он никогда не оторвался бы от земли.

    Ваши радиоприемники и телевизоры изобилуют конденсаторами, которые используются в десятках различных способами.Радиостанции и телеканалы используют тысячи из них.

    Ни ваш электрический холодильник, ни ваш машина заводилась без конденсаторов; ваши флуоресцентные лампы останутся темными.

    Конденсаторы выделяют лампы-вспышки фотографов, помогают эффективно подавать электроэнергию к вашему дому, автоматически запускайте фонтаны с водой и открывайте двери при приближении их.

    Что это за странное явление емкости, которое окружает нас повсюду? Как это работает? Что вызывает это? Что оно делает?

    Ответ кажется слишком простым.Конденсатор — это устройство, которое может хранить электрический заряд. Благодаря этому, казалось бы, скромному достижению, он может выполнять удивительное разнообразие рабочих мест и является одним из самых важных в нашей электротехнической и электронные слуги.

    Емкостный режим — Принцип работы конденсатора

    Вы когда-нибудь ходили по ковру в прохладный и сухой день и чувствовали, как из него прыгает искра? ваши пальцы на дверной ручке, когда вы потянулись, чтобы открыть дверь? Знали ли вы это или нет, ваше тело было частью заряженного конденсатора; стены комнаты — включая дверь и дверную ручку — были другой частью.Вы создали электрическую зарядить, пройдя по коврику. Трение между вашей обувью и ковриком отложилось избыток электронов на вашем теле, каждый из которых помогает накапливать все больше и больше отрицательный заряд. Одновременно положительный заряд точно такой же силы скапливался на стенах.

    Когда вы подошли к двери, конденсатор разрядился. Избыточные электроны в вашем теле перепрыгнул через пространство между пальцами и дверной ручкой, чтобы нейтрализовать заряд.

    Конденсатор, образованный вашим телом и комнатой, сильно отличается от тех. используется в радио, но работает точно так же. Радиоконденсатор обычно изготовлены из двух или более металлических пластин, параллельных друг другу, но не соприкасающихся. Они заряжаются, а не тереться о ковер (это можно было бы сделать так, но есть способ получше), но подключив их к батарее переключателем как показано на диаграмме справа.

    Зарядка конденсатора

    При разомкнутом переключателе нет заряда тарелки.Когда переключатель замкнут, положительный полюс батареи начинает притягивают свободные электроны от присоединенной к ней пластины, в то же время отрицательный вывод начинает вытеснять большое количество лишних электронов на пластину подключен к нему. Все больше и больше электронов накапливаются на пластине, заставляя ее непрерывно Батарею еще труднее насаживать на нее. Таким образом, одна тарелка занимает на отрицательном заряде, другой — на положительном.

    Вскоре батарея переместила все электроны, на которые она могла.Поток прекращается; конденсатор полностью заряжен. Если бы теперь он был отключен и измерялось напряжение на нем, с помощью измерителя с очень высоким импедансом оно будет равно напряжению батареи.

    Конденсатор фактически накапливает энергию в своем диэлектрике, то есть в изоляционном материал между металлическими пластинами. Диэлектрик может быть воздушным или любым другим изолятором.

    Практические конденсаторы производятся с десятками различных видов диэлектриков, Это теоретическое представление показывает, как хранится заряд.В незаряженном конденсаторе количество свободных электронов в обеих пластинах одинаково. Электроны в молекулах диэлектрика можно увидеть, вращаясь вокруг своих ядер.

    При подаче заряда картинка меняется. На отрицательной пластине теперь есть все свободных электронов. Поскольку это основной закон электричества, который как заряд отталкиваются друг от друга и, в отличие от зарядов, притягиваются, вращающиеся электроны в диэлектрике отталкиваются отрицательной пластиной и притягиваются к положительной.Они двигаются как можно дальше к положительной пластине, которая растягивает молекулы диэлектрик не по форме. Эти деформированные молекулы подобны пружинам, находящимся под напряжением: они пытаются вернуться к своей нормальной форме.

    Пока подано напряжение зарядки, они ничего не могут сделать. Но если проводник Между двумя пластинами проходит путь, молекулы диэлектрика отрываются, выталкивание лишних электронов из отрицательной пластины и разряд конденсатора.

    Способность конденсатора сохранять напряжение называется емкостью. Вы можете иногда слышу, что это называется емкостью, но емкость грамматически верна.

    Сжигание лампы-вспышки

    Какая практическая польза от способности конденсатора накапливать заряд? Фотографов используйте его одним из самых простых и очевидных способов. В одном из типов вспышек они зарядите конденсатор, затем подключите лампу-вспышку к заряженным пластинам.Все электроны, накопленные на отрицательной стороне, пытаются за один раз устремиться к положительной пластине, через лампу-вспышку. Этот всплеск тока зажигает лампочку. (См. Схемы вверху следующей страницы.)

    Почему бы не подключить аккумулятор напрямую к лампочке? Это можно было бы сделать, если бы большой было использовано достаточно батареи. Такая сверхмощная батарея могла обеспечить достаточный ток для включения лампы-вспышки. Но гораздо более легкое и компактное устройство, весящее всего несколько единиц. унции можно заставить делать ту же работу с помощью конденсатора.

    Батарея, способная выдавать лишь небольшую струйку тока — гораздо меньшую, чем могла бы Требуется зажечь лампочку — можно использовать. Через некоторое время струйка накапливает мощный заряд на конденсаторе так же, как крошечный поток воды может в конечном итоге заполнить большой резервуар. Когда конденсатор полностью заряжен, он может подавать импульс тока даже более мощный, чем тяжелая батарея, и таким образом легко зажгите лампу-вспышку.

    Положительные и отрицательные

    О «положительном» и «отрицательном» заряде сказано много.Но Вы когда-нибудь задумывались, почему один полюс батареи называется положительным, а другой отрицательный? На самом деле это все ошибка, потому что то, что мы называем отрицательным, — это на самом деле положительный, и тот, который мы называем положительным, это … Но, может быть, нам стоит начать с начала.

    Старый Бен Франклин совершил первоначальную ошибку. Никто точно не знал, в каком направлении ток потек. Так предположил Франклин. Он назвал один полюс положительным, другой отрицательным, основанный на рассуждениях, что ток идет от положительного полюса, который он визуализировал как имеющий избыток тока, к отрицательному полюсу, который имел недостаток.

    У него были пятьдесят на пятьдесят шансов угадать, но удача была против него. Много Спустя годы было установлено, что ток действительно течет в обратном направлении. К тому времени положительная и отрицательная терминология утвердилась и стала решил, что никаких изменений вноситься не будет.

    Независимо от того, правильные или неправильные этикетки, важно учитывать полярность. во многих конденсаторных цепях. Например, электролитические конденсаторы, используемые в расходные материалы будут испорчены, если они будут подключены с неправильной полярностью.

    Конденсаторы в блоках питания

    Емкостные «фильтры» часто используются в источниках питания для сглаживания пульсирующий постоянный ток, выход из выпрямительной цепи переменного тока, что позволяет ток, который нужно преобразовать в постоянный ток.

    Без емкостного фильтра источник питания вырабатывает пульсирующий постоянный ток. Нынешние Луки только в одну сторону, но не стабильно. Картина пульсирующего d.c. от двухполупериодного блока питания выглядит так:

    Но радио- и ТВ-приемникам нужен источник чистого постоянного тока, который повышается до определенного уровень напряжения и остается там.

    Конденсатор, подключенный к источнику питания, дает именно такой эффект. Как напряжение повышается до максимума, конденсатор заряжается. Когда напряжение источника питания снова падает до нуля, конденсатор начинает разряжаться и помогает поддерживать напряжение близко к максимальному уровню до следующего скачка напряжения питания, который заряжает конденсатор снова для следующего цикла.

    Вы можете заметить, что напряжение не остается точно на максимальном уровне во время разряда конденсатора. Но если компоненты схемы правильных значений выбран, он остается достаточно близко, так что разница не важна.

    Легко определить, когда конденсатор фильтра (или конденсаторы) в вашем радио идет плохо. Когда конденсатор начинает падать во время работы, пульсация становится больше. и больше. Вскоре это начинает сказываться на работе всего комплекта, и вы слышите громкий гул.По мере того, как становится хуже, речь и музыка искажаются или искажаются; тогда тяжелый гул — это все, что вы можете услышать.

    Применения в цепях переменного тока

    Два упомянутых выше примера использования конденсаторов — фотовспышка и фильтр — иметь дело с d.c. напряжения и токи. Но функция конденсатора переменного тока схемы возможно даже более важно. Чтобы понять, как это работает, давайте взглянем на две пластины и снова установка батареи.Только на этот раз их связывает — двухполюсный двухпозиционный переключатель, то есть переключатель, который может быстро реверсировать полярность зарядного тока, подаваемого на конденсатор.

    При повороте переключателя влево конденсатор заряжается. Откройте переключатель и конденсатор сохраняет заряд.

    Теперь переключатель повернут вправо. Это подключает конденсатор к батарее. снова, но с обратной полярностью; отрицательная пластина теперь подключена к положительный полюс аккумуляторной батареи и наоборот.

    Электроны быстро проходят через батарею от отрицательной пластины к положительный, разряжающий конденсатор. Затем он снова заряжается, но на этот раз с противоположная полярность. Показанный амперметр, соединенный последовательно с одной пластиной, покажет текущий поток во время этого процесса.

    Если переключатель находится влево, счетчик будет показывать протекающий ток, в то время как конденсатор заряжается. Когда переключатель перевернут, измеритель показывает ток в обратном направлении, в то время как конденсатор разряжает свой старый заряд и берет по новой.Если переключатель поворачивать вперед и назад достаточно быстро, глюкометр будет показать, что ток течет все время — сначала в одном направлении, затем в другом.

    Таким образом, ясно, что даже если постоянный ток не может течь в конденсаторе цепь (кроме кратковременного периода зарядки), переменный ток может быть включен течь непрерывно, поочередно заряжая и разряжая конденсатор. Положить Иначе говоря, конденсатор «блокирует» постоянный ток, но «пропускает» переменный ток.Этот способности используются бесчисленными способами. Вот, например, упрощенный усилитель схема, демонстрирующая эффект.

    Сигнал вводится в цепь сетки лампы, усиливается и уходит. через пластинчатый контур. Чтобы трубка работала, тарелку нужно держать на высоком положительное напряжение — скажем, 200 вольт — в то время как сетка должна быть немного отрицательной.

    Поскольку электронные лампы обычно работают с высоким положительным напряжением на пластинах и низкое отрицательное напряжение в сети, очевидно, возникает проблема: как трубки должны быть соединены между собой пластина-сетка без нарушения их соответствующих d, c, рабочие уровни?

    Конденсатор изготавливается на заказ для этой работы.Поскольку усиливаемый сигнал это переменный ток, он легко пройдет через конденсатор, в то время как постоянный ток, рабочее напряжение будет заблокирован.

    Конденсатор, используемый таким образом, называется конденсатором связи или разделительным конденсатором. Или имя правильное.

    Способность конденсатора пропускать переменный ток. блокируя постоянный ток, также полезен в другом вид связи. Например, сигналы часто появляются там, где они не нужны. Конденсатор может «замкнуть» такой нежелательный сигнал на землю, оставляя цепь d.c, напряжение не изменилось. Это называется «обход».

    Неограниченная универсальность — значения, типы, использование конденсаторов

    Конденсатор был изобретен еще в октябре 1745 г. деканом Э. Г. фон Клейстом из Камминский собор в Померании. Через несколько месяцев — в январе 1746 года — Питер фон Мушенбрук, профессор Лейденского университета, сделал такое же открытие. все сначала. Каким-то образом Musschenbroek получил признание, и первые конденсаторы были назвал Лейденские банки в честь своего университета.Возможно, вы видели его в физике лаборатория; их до сих пор иногда используют для демонстрации принципа емкости.

    Лейденская банка — это просто бутылка, у которой примерно три четверти внутреннего а внешние поверхности покрыты металлической фольгой. Два куска фольги изолированы. друг от друга стеклянным диэлектриком. Латунный стержень проходит через стопор и контактирует с внутренней фольгой.

    Ранние экспериментаторы использовали сосуд, потому что они искали способ «уплотнить» и хранить электричество.Поскольку они думали об электричестве как о жидкости, они полагали, что банка была бы как раз тем, что могло бы его вместить. Название конденсаторное, которое до сих пор часто использованный вместо конденсатора, происходит из этих ранних попыток конденсировать электричество.

    Мушенбрук и его соратники обнаружили, что если они коснутся медного стержня от лейденской банки до «электрической машины» (у них был примитивный электростатический генератор), банка сохранила заряд. Вы можете получить шок, удерживая внешнюю фольгу одной рукой и касаясь стержня другой.

    Так как они не могли придумать ничего общего с лейденской банкой, кроме как стоять рядом и шокируют друг друга, им не нужна была точная система измерения накопленный заряд или емкость емкости.

    По мере развития науки об электричестве стало очевидно, что система измерение было необходимо. Итак, была выбрана основная единица измерения емкости. Он был назван Фарад после Майкла Фарадея, одного из великих пионеров электротехники.

    Фарад представляет собой определенное количество «запасаемой мощности» или емкости. Фактически использования, фарада оказалась слишком большой единицей, поэтому практичные конденсаторы обычно измеряется в микрофарадах (mf.) — одна миллионная фарада, и в микрофарадах (ммф.) — одна миллионная микрофарада. (Согласно одной системе обозначений, В аббревиатуре «μ» заменено на «m». Таким образом, «мф.» становится «μf.» и «ммф.» становится «μμf». Значение в обоих случаях одно и то же.) Другими словами:

    1 мф. (или мкФ) = 0,000001 фарад

    1 ммс. (или мкФ) = 0,00000000000001 фарад

    Переменные конденсатора

    Емкость любого конденсатора определяется четырьмя факторами. Возьмем посмотрите на каждого.

    1. Размер тарелок. Большие пластины могут удерживать больший заряд (больше электронов) чем маленькие тарелки.

    2. Разделение тарелок. Чем ближе пластины друг к другу (без касаясь), тем больший заряд они могут хранить.

    3. Кол-во тарелок. Чем больше пластин, тем больше емкость.

    4. Диэлектрическая проницаемость. Каждый диэлектрический материал имеет свои собственная диэлектрическая проницаемость. Воздух имеет произвольно назначенную константу, равную 1. Слюда имеет константа около 7. Это означает, что слюда будет хранить примерно в семь раз больше заряда этот воздух может справиться со всеми остальными факторами.Бумага имеет диэлектрическую проницаемость их около 5, а некоторых видов керамики более 1000! У разных веществ разные константы, потому что каждая молекула имеет разную «естественную эластичность», что позволяет одни для хранения значительно большего количества энергии, чем другие. Среди часто используемых диэлектрики — пластмассы различных видов, воздух, слюда, бумага.

    Типы конденсаторов

    Вот некоторые из наиболее распространенных типов конденсаторов, классифицированных в соответствии с диэлектрический материал.

    Бумажные конденсаторы изготовлены из длинных полосок алюминиевой фольги, плотно обернутых в рулон, разделенный бумажным диэлектриком. Чтобы бумага стала лучше изолятором (чтобы предотвратить пробой конденсатора при подаче на его обкладки высокого напряжения), обычно его пропитывают маслом, воском или пластиком.

    Пластиковые конденсаторы аналогичны, но в них используются тонкие листы пластика — майлар. а другие — как диэлектрик. Они имеют одинаковое применение и примерно одинакового размера. как бумажные конденсаторы.

    Металлизированные бумажные конденсаторы — еще одна разновидность той же базовой тип. Вместо полосок алюминиевой фольги обкладки этого конденсатора микроскопически тонкие слои металла, нанесенные методом напыления на диэлектрическую бумагу. Поскольку пластины такие тонкие, конденсатор можно свернуть в гораздо меньший размер. корпус, чем стандартный конденсатор той же емкости.

    Все эти варианты бумажного конденсатора широко используются в связке, байпасе, и схемы регулировки тембра.Обычно они трубчатые, а их емкость варьируется от около 250 мкФ. до 1,0 мкФ. или больше. Они имеют номинальное напряжение до 1600 вольт. — то есть выдерживают 1600 вольт без пробоя напряжения через диэлектрик и разрушающий конденсатор. Однако чаще всего используются конденсаторы в Диапазон 400-600 вольт.

    Между различными типами существуют незначительные различия. Пластиковые конденсаторы могут быть легче сконструировать, чтобы выдерживать более высокие напряжения. Металлизированные, как уже говорилось ранее, меньше и стоят дороже.За этими исключениями три типа обычно взаимозаменяемые.

    Печатная полоса вокруг одного конца этих трубчатых конденсаторов сообщает вам, какой вывод соединяется с внешним слоем фольги. Как правило, провод, отмеченный таким образом, должен быть подключен к «низкой» стороне цепи. Другими словами, подключите его к заземление, если возможно, или на сторону цепи, электрически ближайшую к земле потенциал. Полоса не указывает полярность подключений.Когда конденсатор используется таким образом, внешний слой фольги служит электростатическим экраном, поэтому что на работу конденсатора не будут влиять другие паразитные поля в пределах схема.

    Масляные конденсаторы также используют слой бумаги в качестве диэлектрика; бумага пропитан специальным маслом, что придает ему высокую емкость и высокое напряжение. Обычно они используются как фильтры высоковольтных источников питания. Емкость варьируется от 1.0 мкФ. до 20,0 мкФ. или больше.

    Масляные конденсаторы обычно помещаются в тяжелую канистру и могут иметь номинал 1000. вольт или больше.

    Слюдяные конденсаторы изготавливаются из множества плоских металлических полос (олово, медь, алюминий, и др.), разделенные листами слюды. Чередующиеся пластины соединяются вместе, и Вся сборка отлита в блок из пластика или керамики.

    Их емкость варьируется от 10 мкФ. к .01 мкф. Слюда необычно хороший изолятор, поэтому конденсаторы со слюдяным диэлектриком могут быть построены с номинальными характеристиками до 5000 вольт и более и используются в высоковольтных передающих цепях.

    В керамических конденсаторах нового типа в качестве диэлектрика используются листы керамики. В пластины обычно представляют собой серебро, наплавленное из паровой фазы. Керамический конденсатор обычно имеет только две пластины — по одной с каждой стороны керамического диска или одна на внешней стороне и одна на внутренняя поверхность керамической трубки.

    Поскольку керамика имеет очень высокую диэлектрическую проницаемость, до 1200, относительно большая значения емкости могут быть получены с небольшими конденсаторами. Также утеплитель качество керамики отличное, поэтому эти агрегаты могут быть легко сконструированы для работы на несколько тысяч вольт. Они широко используются на телевидении, в военных и спутниковых сетях. оборудование связи и другие критические цепи.

    Благодаря передовым технологиям производства стоимость керамики снизилась примерно до такой же диапазон, как у бумаги.У них есть один недостаток: они не так легко доступны. в больших общих ценностях.

    Электролитические конденсаторы содержат наибольшее количество емкости в самое маленькое пространство. Они бывают размером до нескольких тысяч микрофарад, с рабочее напряжение до 600 вольт. Банки диаметром не менее дюйма и от четырех до шести дюймов длиной, которые устанавливаются поверх почти каждого шасси радио и телевизора электролитические конденсаторы. Обычно они используются в качестве фильтров источника питания.

    Электролитики имеют чрезвычайно высокие значения емкости, поскольку диэлектрик толщиной всего несколько миллионных дюйма. Конденсатор изготавливается методом окунания. алюминиевый лист в электролитический раствор и создание тока от раствор алюминия. Под действием тока образуется слой оксида. на тарелке. Когда слой полностью сформирован, алюминий готов к работе. положительная пластина конденсатора. Диэлектрик — оксидное покрытие — уже на месте.Агрегат запечатан в канистре, наполненной проводящей жидкостью, которая становится отрицательная пластина готового конденсатора.

    Это описание так называемого «мокрого» электролита. Также существует «сухой» электролитический. Единственная разница в том, что «мокрый» использует реальный раствор, в то время как «сухой» имеет пропитанный слой марли между пластинами. На практике практически исчезла влажность, потому что сухие удобнее производить, хранить, и пользуйся.

    Электролитики, как и большинство других компонентов, становятся все меньше и меньше в этот век миниатюризации. Недавно разработанный тип — травленный алюминиевый электролит. — упаковывает еще большую емкость в меньший объем за счет использования пластины с были приданы шероховатости химическим травлением. Сильно увеличенное поперечное сечение травленого алюминий можно сравнить с обычной полированной поверхностью вот так:

    Очевидно, протравленная пластина имеет гораздо большую площадь поверхности, подверженной воздействию электролита, и, следовательно, имеет большую емкость.Травленый алюминиевый конденсатор включен. на рынке, но значительно дороже, чем обычный электролитический. Его дополнительная стоимость, конечно, стоит разницы в таких разнообразных приложениях как слуховые аппараты и ракеты, где вес и размер очень важны.

    У электролитиков

    есть несколько недостатков. Во-первых, ток утечки больше чем для любого другого типа. Во-вторых, у электролита есть положительный и отрицательный отрицательный терминал.Поэтому его нельзя использовать при изменении полярности (в переменном токе, схемы, например). Необходимо внимательно следить за тем, чтобы он был правильно подключен. Даже несколько секунд воздействия напряжения неправильной полярности могут испортить электролит. или даже заставить его взорваться.

    Переменные воздушные конденсаторы используются в каждой радиостанции для настройки на разные станции.

    Один из комплектов пластин закреплен на раме и называется статором.В другой набор, который движется, называется ротором. Естественно, как и во всех конденсаторах. в два набора тарелок расположены близко друг к другу, но не соприкасаются. Емкость варьируется изменение размера сетки пластин. (Есть постоянные воздушные конденсаторы. Но они редки.)

    Переменные воздушные конденсаторы имеют размер от долей мкФ. до 1200 мкФ. или больше. Те, которые используются в низковольтных приемных цепях, могут иметь от 10 до 30 отдельных пластин. менее чем на сотую дюйма.У крупных передающих типов может быть от 80 до 100 тарелки. разделенные полдюйма или более.

    Переменные воздушные конденсаторы часто собираются вместе. Это означает, что несколько независимых конденсаторы расположены вдоль одного вала так, что они вращаются вместе. В этом случае, одновременно можно настраивать несколько контуров.

    Хотя мы упомянули только фиксированную слюду, бумагу, масло, керамику и пластик. конденсаторы, есть переменные конденсаторы, в которых также используются некоторые из этих диэлектриков.Но в большинстве переменных конденсаторов в качестве диэлектрика используется воздух. Единственное распространенное исключение к этому относится небольшой слюдяной «подстроечный» конденсатор, который можно найти в большинстве радиоприемников. Эти блоки с емкостью всего несколько мкФ регулируются отверткой. Они используются для внесения незначительных изменений в схемы, в которых величина емкости имеет решающее значение. Например, гетеродин в супергетеродинном приемнике настроен на точную частоту с помощью слюдяного триммера.

    Пока что перечислены только основные типы конденсаторов.Здесь очень много другие: вакуум, стекло, стекловидная эмаль, полистирол, тантал, Milinex и даже один с потрясающим названием политетрафторэтлен. У каждого свое преимущество и специальное использование. А некоторые, например тантал, становятся все более популярными.

    Готовая рабочая лошадка

    Многочисленные способы, упомянутые до сих пор, в которых конденсаторы используются, почти не царапаются поверхность работ, для которых подходит этот универсальный компонент.Каждое радио, Например, телевизор или передатчик или приемник связи должны работать на определенной заранее заданной частоте. Сигнал, отправляемый передатчиком, должен колебаться или вибрировать с определенной скоростью — столько раз в секунду. Получатели должны настроиться на эту точную частоту, чтобы уловить сигнал. Конденсаторы играют важную роль участие в цепях, определяющих рабочую частоту. Измените емкость и частота меняется. Когда вы настраиваете радио, вы регулируете емкость цепей настройки.

    Еще одна важная функция конденсатора — формирование волны. Наиболее распространенная форма волны это синусоида.

    Электроэнергия, которая поступает в наши дома, находится в этой форме; это тоже форма выхода обычного генератора. Но для определенных целей — радар, телевидение, телеметрия, и это лишь некоторые из них — должны производиться сигналы самых разных форм.

    Эти и тысячи других форм волны могут быть сформированы соединением конденсаторов вместе. в различных комбинациях с другими компонентами.

    Небесные заряды

    Ах да, еще кое-что. Какое отношение имеет емкость к молнии? В ненастная погода, стремительно поднимаются воздушные потоки. Частицы водяного пара в облаках проносится мимо других неподвижных частиц, и заряд накапливается за счет трения, просто как это происходит, когда обувь трутся о ковер. Заряд на облаках, сначала небольшой, быстро накапливается. В то же время подобный, но противоположный заряд накапливается. на земле под облаком.Когда облако мчится по небу, заряд движется по земле — его можно измерить с помощью подходящего оборудования.

    Все выше и выше накапливается заряд, по мере того как проносятся все больше частиц водяного пара, каждое добавление к заряду. Сначала его можно измерить в вольтах, потом миллионах, потом триллионы вольт от облака до земли. Наконец, гигантский конденсатор — облако образуя одну плиту, земля другую — «ломается». Заряд дуги над изолирующий диэлектрик (воздух) и ослепляющая вспышка освещает небеса.Мамонт конденсатор разряжается яркой вспышкой молнии.

    Емкость — простая способность двух тел накапливать электрический заряд. — таким образом, отвечает за один из наших самых полезных электрических компонентов, а также в то же время, для одного из самых зрелищных представлений природы.

    Опубликовано 3 февраля 2020 г. (оригинал 05.07.2012)

    Как работает конденсатор

    В предыдущем посте мы обсудили основную теорию конденсатора.В этом посте мы разберемся « Как работает конденсатор ».

    Как мы обсуждали ранее, когда на конденсатор подается электроэнергия, конденсатор начинает накапливать электрический заряд.

    Как только питание отключается, он медленно разряжает накопленный заряд.

    Надеюсь, теперь вы получили общее представление о том, «как работает конденсатор». Возьмем пример. В приведенной ниже анимации у нас есть светодиод, который подключен к макетной плате вместе с конденсатором, резистором и переключателем.

    Когда переключатель находится в положении ON, светодиод получает питание и ярко светится. Однако, когда питание отключается путем перевода переключателя в положение ВЫКЛ., Светодиод не выключается, как это было бы в случае отсутствия конденсатора в цепи. Вместо этого светодиод по-прежнему светится и медленно гаснет. В этот момент конденсатор обеспечивает питание светодиода. По мере постепенного разряда конденсатора яркость светодиода также уменьшается. Как только конденсатор полностью разрядится, светодиод погаснет.

    Теперь у вас может возникнуть вопрос. Почему мы используем резисторы с конденсаторами? Ответ очень простой. Когда мы используем резистор в цепи конденсатора, заряд конденсатора происходит медленнее. Но самым большим преимуществом является то, что после зарядки конденсатор также очень медленно разряжается. Это связано с тем, что чем больше будет значение сопротивления, тем меньше заряда пройдет через него; и, следовательно, больше времени будет затрачено на зарядку и разрядку конденсатора.Таким образом, мы можем использовать конденсатор с резистором в качестве таймера. Этот метод обеспечения временной задержки также дешев и прост.

    Конденсатор можно использовать для многих целей. Их немного:

    • Можно использовать с резистором в качестве таймера. Один из самых популярных примеров — россияне. Русские уже много лет используют конденсаторы для создания временной задержки в цепях управления оружием.
    • Для подавления нежелательных всплесков тока в электронных схемах. Например, конденсаторы до сих пор используются в музыкальных проигрывателях для фильтрации нежелательного шума из-за скачков тока.
    • Может использоваться для предотвращения нежелательного срабатывания электронной схемы из-за всплесков тока.
    • Конденсатор используется для создания разности фаз в источнике питания. Например — однофазные двигатели, использующие конденсаторы для получения разности фаз.

    Конденсаторы

    НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАТЕЛЬНОЙ СТРАНИЦЫ

    КОНДЕНСАТОРЫ

    В.Райан 2002-2019

    ФАЙЛ PDF — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТИ НА ОСНОВЕ РАБОТА НИЖЕ

    Конденсаторы — это компоненты, которые используются для хранения электрического заряда и используются в схемах таймера. Можно использовать конденсатор с резистором, чтобы произвести таймер.Иногда конденсаторы используются для сглаживания ток в цепи, поскольку они могут предотвратить ложное срабатывание других компоненты, такие как реле. Когда питание подается в цепь, которая включает конденсатор — конденсатор заряжается. При выключении питания конденсатор медленно разряжает свой электрический заряд.

    Конденсатор состоит из двух проводников, разделенных изоляционный материал называется ДИЭЛЕКТРИК.Диэлектрик может быть бумажным, полиэтиленовая пленка, керамика, воздух или вакуум. Пластины могут быть алюминиевыми дисками, алюминиевая фольга или тонкая металлическая пленка, нанесенная на противоположные стороны твердого тела диэлектрик. Сэндвич ПРОВОДНИК — ДИЭЛЕКТРИК — ПРОВОДНИК можно свернуть в рулон. в цилиндр или левую плоскость

    КАК РАБОТАЕТ КОНДЕНСАТОР

    Когда цепь включена, светодиод излучает свет, и конденсатор заряжается.Когда переключатель повернут при выключенном светодиодном фотоаппарате светится на несколько секунд, потому что электричество хранящийся в конденсаторе медленно разряжается. Когда он полностью разрядится это электричество, светодиод больше не излучает свет. Если резистор введен в цепи конденсатор заряжается медленнее, но и разряжается больше. медленно. Что будет со светом?

    Конденсаторы электролитические поляризованные это означает, что они имеют положительный и отрицательный вывод и должны быть расположены в цепь в правильном направлении (положительный провод должен идти к положительному сторона схемы).
    Они также имеют гораздо более высокую емкость, чем неэлектролитические конденсаторы.

    Неэлектролитические конденсаторы обычно имеют меньшую емкость.
    Они не поляризованы (не имеют положительного и отрицательного вывода) и в любом случае можно разместить в цепи.
    Обычно они используются для сглаживания тока в цепи.

    ЕМКОСТЬ — означает емкость конденсатора.

    Обратите внимание на электролитический конденсаторы выше.Все они имеют два поляризованных вывода, другими словами, они есть положительная и отрицательная нога. Этот тип конденсатора используется с ИС. такие как микросхема таймера 555, и именно конденсаторы и резисторы определить временную последовательность.

    Внимательно посмотрите фотографии двух типов конденсаторы.Вы можете определить, какой из них электролитический и неэлектролитический ?

    Простая схема (см. Ссылку ниже) в основном представляет собой переключатель, который подключен к компу. При нажатии переключателя компьютер обнаруживает что реле замыкается, а затем включается двигатель.
    Однако есть проблема. Когда переключатель нажат, он закрывает только реле на долю секунды а для компьютера этого времени мало программа для определения того, что она была нажата в первую очередь.Задержка по времени это очевидный ответ, и этого можно достичь, добавив конденсатор в параллельно переключателю. Если реле удерживается замкнутым в течение 3/4 секунды, то компьютерная программа успеет это обнаружить — конденсатор обеспечивает время задерживать.

    ПОМНИТЕ — есть поляризованные и неполяризованные конденсаторы.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *