Как определить фазу и нуль
Перед тем, как начать процесс определения фазы и нуля, необходимо сделать ряд приготовлений, поскольку для данных работ потребуются следующие приборы и инструменты:
- мультиметр;
- индикаторная отвертка;
- тестер;
- пассатижи;
- нож с заточенным лезвием, чтобы снимать изоляцию с проводников;
- изоляционная лента;
- маркер для нанесения разметок;
Также, важно помнить, что перед началом любых электромонтажных работ, необходимо отключить автоматы, поскольку несоблюдение данного правила может представлять угрозу для жизни. Помимо этого, требуется убедиться, что весь используемый инструмент обладает надежно заземленными рукоятями.
В противном случае, его использование является небезопасным и не допускается по технике безопасности.
Визуальный метод определения
Данная методика является самым простым способом, поскольку для его реализации не потребуется никаких дополнительных приборов или оборудования.
Необходимо осмотреть проводку, чаще всего она имеет следующие цветовые разграничения:
- Провод желто-зеленого цвета является заземлением.
- Нуль имеет синий цвет или любые его оттенки вплоть до светло-голубого.
- Фаза имеет черный, коричневый или белый цвет.
- Необходимо убедиться в соответствии цветов не только в электрощите, но также и в распределителе.
Визуальный осмотр системы должен осуществляться в соответствии со следующим алгоритмом действий:
- Открыть электрощит и осмотреть его содержимое. Поскольку расчетная нагрузка может различаться, то и количество установленных автоматов также может быть разным. Через них может быть осуществлено подключение фазы или фазы с нулем, заземление никогда не подсоединяется к автоматическим выключателям, а имеет соединение с шиной. Необходимо убедиться, что все подключенные провода соответствуют цветовой маркировке.
- Если цвет изоляции, проведенной от электрощита к домашней сети, соответствует правилам цветовой маркировки, то все равно потребуется вскрытие распределителей для визуального осмотра скруток. Это необходимо для того, чтобы убедиться, что и в них цветовая маркировка изоляции нуля и заземления не была перепутана и соответствует установленным правилам.
- Иногда в распределителях осуществляется подключение фазы к автоматическим выключателям. В большинстве случаев, это реализуется при помощи специального провода с двумя жилами, изоляция которого может отличаться цветом.
- Если результаты визуальной проверки показали, что цвета изоляции полностью соответствуют правилам, то остается всего лишь проверить фазный проводник, используя для этого индикаторную отвертку.
Определение индикаторной отверткой
Одним из наиболее простейших способов определения нуля и фазы является использование для этих целей индикаторной отвертки.
Для осуществления данного процесса необходимо придерживаться следующего алгоритма действий:
- Первоначально потребуется отключить автомат, от которого происходит питание линии электросети на месте проверки.
- Провести зачистку обоих проверяемых проводников, достаточно снять не более 1-2 см. изоляционного слоя.
- После этого оба проводника разводятся друг от друга на безопасное расстояние, поскольку после подачи напряжения их случайное соприкосновение может стать причиной короткого замыкания.
- Можно приступать к идентификации фазного проводника. Для этого включается автоматический автомат, который подает напряжение, после этого необходимо будет взять индикаторную отвертку и прикоснуться к металлической области, расположенной возле основания рукояти.
- Категорически не допускается прикасаться к любым частям индикаторной отвертки, расположенным ниже рукояти, поскольку это вызовет удар электрическим током.
- Прикоснуться инструментом к одному из проверяемых проводов, при этом не нужно убирать палец с металлической области.
- Загорание лампочки, входящей в конструкцию отвертки, свидетельствует о том, что проводник является фазным. Соответственно второй провод – это нуль. Если загорание лампочки не произошло, наоборот, проводник был нулем, а второй является фазой.
Определение тестером или мультиметром
мультиметр
Иным распространенным способом определения фазы и нуля является использование специальных приборов – тестера или мультиметра.
Если был выбран именно этот вариант, то необходимо придерживаться следующей последовательности действий:
- Используемому прибору задать настройки предельного измерения переменного тока. На современных моделях этому параметру соответствует режим ~V или ACV. Необходимо указать значение равное 600 В, 750 В, 1000 В или иной параметр в зависимости от особенностей модели, главным требованием является, чтобы он превосходил показатель 250 В.
- Щупами прибора необходимо коснуться сразу обоих проводов, для того, чтобы определить уровень напряжения между ними. В стандартных бытовых сетях этот показатель равен 220 В, возможное отклонение не должно превышать 10 % в любую из сторон. Подобное значение свидетельствует о том, что проводник является фазой, у нуля уровень напряжение будет совсем незначительным или равным нулю.
- В современных электросетях может потребоваться также идентификация проводника с заземлением, для этого требуется определение уровня сопротивления. В таком случае, прибор переводится в соответствующий режим, который имеет условное обозначение в виде значка звонка или омеги.
- Необходимо помнить, что когда прибор переведен в режим для определения уровня сопротивления, категорически запрещено одновременное прикосновение к фазе и заземлению, поскольку произойдет короткое замыкание. Имеется риск получения травм.
Определение по маркировке
При описании визуального способа идентификации проводников уточнялось, что в большинстве современных электросетей желто-зеленый цвет соответствует защитному нулю, все оттенки синего цвета обозначают рабочий нуль, а любые иные цвета фазу.
Однако, необходимо учитывать, что проводники могут не соответствовать принятой цветовой гамме в следующих случаях:
- Проводка проложена в доме старой постройки, где не была произведена реконструкция домашней электросети в соответствии с современными правилами. Чаще всего в ней используются одноцветные проводники.
- Проводка проложена в новостройке, но ее монтаж осуществлялся частными лицами, а не профессиональными электриками.
- Провода ведут к более сложным бытовым устройствам, например, различным переключателям или выключателям, конструкция которых изначально подразумевает принципиально иную схему функционирования.
- Проводка прокладывалась по стандартам, отличающимся от принятых в Европе, поэтому она имеет совершенно иные цветовые обозначения.
В большинстве остальных случаев, цветовая маркировка проводников производится в соответствии с указанными правилами, которые регламентируются соответствующим стандартом IEC, действующем на территории всей Европы.
В ситуациях, когда отсутствует полная уверенность в полном соответствии цветовой гаммы общепринятому стандарту, рекомендуется воспользоваться одним из практических методов для определения нуля и фазы.
Также, можно посоветовать в последствии использовать специальные цветные насадки, которые позволят в будущем не забыть предназначение проводников и не осуществлять процедуру их определения заново.
Определение с помощью картошки
Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.
Для его осуществления необходимо осуществить следующую последовательность:
- Взять одну сырую картофелину и разрезать ее на две части.
- Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
- Подождать около 10 минут, после чего вытащить оба провода.
- Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.
Другие способы определения
Существует еще несколько альтернативных методик определения фазы и нуля, они редко используются и зачастую подвергаются критике со стороны квалифицированных специалистов. Связано это по большей части с тем, что подобные способы являются более опасными, поэтому проводить их необходимо с максимальной степенью осторожности.
Один их таких методов определения требует задействования обычного компьютерного кулера, его можно применить на практике в тех случаях, когда известны параметры подаваемого напряжения, но неизвестно назначение проводников:
- Для реализации необходимо будет использовать красный и черный проводники, выходящие из вентилятора. Иногда в нем имеется и третий провод, который является датчиком оборотов, но он в процессе определения не пригодится.
- Красный проводник кулера является фазным, а черный соответствует нулю.
- Стандартные вентиляторы рассчитаны на 12 В, а функционировать начинают от 3В, поэтому они лучше всего подходят для проверки от соответствующих источников питания.
- Если напряжение превышает показатель 12 В, то потребуется резко прикоснуться проводниками к выводам кулера и посмотреть на реакцию лопастей. Если они остались без движения, то к красному проводнику был подключен нуль, если начали двигаться, то это была фаза.
Для другого способа определения нужна будет контрольная лампа, а его реализация потребует соблюдения следующего алгоритма действий:
- Первоначально надо собрать саму контрольную лампу, простейшее устройство будет выглядеть таким образом: вкрутить лампочку в патрон, в его клеммы закрепить проводники, с их концов снять изоляционный слой.
- Дальнейший процесс не представляет никакой сложности: тестируемые проводники поочередно соединяются с контактами лампы, во время процесса необходимо наблюдать за ее реакцией.
Среди более безопасных вариантов определения можно выделить следующие альтернативные методы:
- Проверка проводников через УЗО, поскольку известно, что при наличии потребителя, подключенного к электросети, замыкание нуля и земли способствует возникновению утечки электрического тока, что моментально отключает защитное устройство. Это поможет идентифицировать нулевой и заземляющий проводник, третий будет являться фазой.
- Взять предохранитель и захватить его плоскогубцами, рукоять инструмента при этом должна быть изолирована, чтобы избежать поражения электрическим током. Замкнуть на нем два проводника и проверить результат: если предохранитель сгорел, то это была фаза и земля; если уцелел, то земля и нуль либо фаза и нуль. Поставив несколько поочередных экспериментов с фиксацией результатов, можно будет точно идентифицировать каждый проводник.
Особенности определения фазы и нуля
В двухпроводной сети
Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:
- Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
- Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.
В трехпроводной сети
Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.
Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:
- Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
- Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
- Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
- Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.
Устройство бытовых электрических сетей
Поступление электроэнергии в любые жилые строения происходит через трансформаторные подстанции, которые изменяют поступающее высоковольтное напряжение, и на выходе оно уже имеет показатель равный 380 В.
Бытовые электросети современного образца выглядят и функционируют следующим образом:
- Трансформаторная обмотка на подстанции имеет особый вид соединения, который придает ей сходство со звездой. Три вывода подключаются к одной общей точке нуля, а другие три на соответствующие клеммы.
- Выводы, подключенные к нулю, соединяются и подключаются к заземлению трансформаторной подстанции.
- В этом же месте общий нуль разделяется на рабочий нуль и специальный защитный PE-проводник.
- Описанная система получила обозначение TN-S, но в старых домах до сих пор действует схема TN-C, которая отличается в первую очередь отсутствием защитного PE-проводника.
- Фаза и нуль, после вывода из трансформатора, протягиваются к жилым домам для подключения к вводному электрощиту. Здесь происходит создание трехфазной системы напряжения с показателями 320/220В.
- Далее разводка осуществляется по подъездным электрощитам, куда поступает напряжение с фазы 220В и защитный PE-проводник, если его наличие было предусмотрено.
- Нулем в квартирной электросети будет являться проводник, который имеет соединение с землей в схеме трансформаторной подстанции и предназначенный для создания необходимого уровня нагрузки от фазы, которая также имеет подсоединение к трансформаторной обмотке, но с противоположной стороны. Главной функцией защитного нуля является отвод токов повреждений, которые могут возникнуть при аварийной ситуации внутри сети.
- Происходит равномерное распределение нагрузки, это осуществляется благодаря наличию этажной разводки, а также подключению квартирных электрощитов к определенным линиям на 220 В внутри центрального распределителя в подъезде.
- Система, по которой осуществляется подведение напряжения к жилому дому, с точностью повторяет векторные характеристики трансформаторной подстанции и также обладает формой звезды.
- Сумма всех токов в трехфазной разновидности электросети складывается в соответствии с векторной графикой внутри нулевого проводника, после чего она возвращается на трансформаторную обмотку в подстанции.
Если внутри жилого помещения отключить все потребители электроэнергии и отключить их от рабочих розеток, то электрический ток внутри сети перестанет протекать даже при подведенном к электрощиту напряжении.
Описанная система устройства бытовой электросети является наиболее оптимальной из всех существующих на сегодняшний день, но и она не застрахована от возможных неисправностей. В большинстве случаев они связаны с нарушением соединений контактов либо обрывом проводников.
Статья была полезна?
0,00 (оценок: 0)
Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.
Определение фазы и ноля в электрике
Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.
Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.
Правила использования мультиметра
Для определения фазы и нуля с помощью мультиметра необходимо очистить концы жил от изоляции, развести их в разные стороны, чтобы избежать контакта, который спровоцирует короткое замыкание, и подать следом электронапряжение.
На мультиметре установить измерительный предел переменного напряжения выше 220 В. В гнездо с меткой «V» вставить щуп для измерения напряжения. Прикоснуться им к очищенной жиле и следить за дисплеем. Если значение до 20В – это фазный провод, если показаний нет совсем – это ноль.
Для правильного использования мультиметра необходимо соблюдать следующие правила:
- Противопоказано использовать прибор при повышенной влажности.
- Нельзя применять вышедшие из строя измерительные щупы.
- Запрещено измерять параметры со значением, превышающим верхний предел прибора измерения.
- Во время измерительной процедуры нельзя крутить переключатель и менять пределы.
Как мультиметр поможет найти фазу
Как мультиметр показывает ноль
После того, как определился провод с фазой легче всего найти нулевой. Установив красный щуп на фазу касаетесь других проводников, после чего тестер должен показать значение около 220 В. Из этого будет понятно, что второй провод — это или нулевой защитный, или нулевой рабочий.
Определить мультиметром, где нулевой защитный провод, а где нулевой рабочий весьма сложно, так как они дублируют друг друга. Лучше всего отключить от шины заземления в электрическом щитке вводной провод, тогда в проверяемом помещении между фазой и проводами заземления не будет 220 В, как при проверке фазы и нуля.
Определяем прибором землю
Наличие заземляющего контакта не говорит о том, что этот контакт на самом деле заземлён. Довольно часто этот провод не подсоединяется никуда, а только создаёт видимость для пользователя. Грамотные электромонтёры для земли выбирают провод с полосой, но если мастер был неопытным или халатно отнёсся к данному заданию, то о цветовой маркировке могли и не вспомнить. В таких ситуациях напряжение лучше всего измерять, прикасаясь к трубам водоснабжения или отопления. На проводе с заземлением уровень напряжения будет меньше, чем на нулевом.
Другие варианты проверки
Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
Способ довольно необычный и требует особой осторожности, но действенный.
Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.
Отвертка с индикатором нам в помощь
Конструкция инструмента проста. Внутри встроена лампочка. Жало на одном конце, шунтовый контакт на другом.
Суть проверки контрольной отвёрткой состоит в выполнении следующих действий:
- Отключаем подачу тока от щитка.
- Очистить от изоляции жилы, которые нужно проверить на 1 см.
- Разъединяем их в разные стороны во избежание соприкосновения.
- Произвести подачу напряжения включив вводный автомат.
- Жало отвёртки поднести к оголённой проводке.
- Если при выполнении этого действия загорается индикаторное окошко, значит это фаза, если отсутствует, значит это ноль.
- Пометьте нужную жилу, отключите коробку автомат и выполните подсоединение коммутационного аппарата.
При работе с пробником всем необходимо соблюдать правила безопасности, которые заключаются в том, что при проведении замера нельзя касаться отвертки в нижней части. Инструмент нужно содержать в чистоте. Прежде чем определять отсутствие напряжения(в отличии от его присутствия) в розетке, можно проверить прибор на исправность с помощью другого электрооборудования, которое находится под напряжением.
По цвету проводов
Самым простым и надёжным способом определения фазы и нуля является по цвету проводов.
Но только в том случае, когда вы точно уверены, что электропроводка подключена по всем правилам!
В основном всегда жила с фазой чёрного, коричневого, белого или серого цвета, а ноль синий или голубой. Также могут быть жили зелёного цвета или же жёлто-зелёного, это говорит о наличии проводника с заземлением.
При монтаже электропроводки самую большую угрозу несут фазные жилы. Чтобы не произошла ситуация, влекущая за собой летальный исход – они окрашены в кричащие яркие цвета. Это сделано для того, чтобы при определенных обстоятельствах электрик из нескольких проводов мог быстро выбрать самые опасные и отнестись к ним с осторожностью.
Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют
Цвета и обозначение проводов
Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.
На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.
На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.
По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.
Таблица цветовой маркировки проводов до и после 2011 года
В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением
Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.
В чем отличие проводов N и PE в электропроводке
По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.
Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.
В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.
Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.
Индикаторы-пробники для поиска фазы и ноля
Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.
На неоновой лампочке
Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.
Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.
Светодиодный индикатор-пробник
Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.
Как определить фазу | Практическая электроника
Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.
С помощью индикаторной отвертки
На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного резистора и неоновой лампочки. Все они подключаются последовательно.
Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка. Значит, мы попали на фазу.
Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.
Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза.
С помощью мультиметра
А что, если у нас нет индикаторной отвертки? Как быть в этом случае? Для этих целей можно использовать обыкновенный мультиметр. Ставим крутилку на измерение переменного напряжения и берем любой щуп мультиметра в руки.
Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.
Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом, главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.
Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.
Как определить ноль и фазу? Провод цветной
На самом деле существует не так много разных типов проводников и их соединений. В электроэнергетике различают питающий и защитный проводники. Некоторые люди слышали такие слова как «ноль» и «фаза» провода. Однако есть вопросы. Как определить ноль и фазу в реальной сети?
Какие проводники в розетке?
Можно понять вопрос «что такое фаза и ноль», не углубляясь в дебри прояснения структуры, преимуществ и отрицательных моментов в трехфазных или пятифазных цепях.Вы можете разобрать все на пальцах, открыв самую обычную домашнюю розетку, которая была заложена в квартире или частном доме лет десять-пятнадцать назад. Как видите, эта розетка подключена к двум проводам. Как определить ноль и фазу?
Как работают провода в розетке и зачем они нужны?
Как видно, между работниками и нулем есть определенные различия. Какое обозначение фазы и нуля? Голубоватый или синий цвет — это цвет фазы провода, ноль обозначается любыми другими цветами, кроме, конечно, синего цвета.Это может быть желтый, зеленый, черный и полосатый. На нулевой проводник ток не идет. Если вы возьмете его и не трогаете работника, ничего не произойдет — разности потенциалов нет (на самом деле сеть не идеальна, и небольшое напряжение все же может быть, но оно будет измеряться в лучшем случае в милливольтах). Но с фазным проводником это не будет работать. Прикосновение к нему может привести к поражению электрическим током, даже смертельному. Этот провод всегда находится под напряжением, он питается от генераторов и трансформаторов электрических подстанций и станций.Всегда следует помнить, что ни в коем случае нельзя касаться рабочей направляющей, поскольку напряжение даже в сотню вольт может быть смертельным. А в розетке фазовое напряжение составляет двести двадцать.
Чем Евросеть отличается от советской?
Как определить ноль и фазу в этом случае? В розетке, спроектированной в соответствии с европейскими стандартами, одновременно находятся три проводника. Первый — фазовый, который запитан и окрашен во множество цветов (за исключением синих оттенков).Второй — ноль, который абсолютно безопасен на ощупь и окрашен в синий цвет. Но третий провод называется нулевой защитой. Обычно окрашивается в желтый или зеленый цвет. Укореняется в розетках слева, в выключателях — снизу. Фазовый провод находится справа и сверху соответственно. Учитывая такие цвета и особенности, легко определить, где находится фаза, а где ноль, а где защитный нулевой провод. Но для чего это нужно?
Зачем мне нужен защитный проводник в евророзетках?
Если фаза предназначена для питания токового выхода, ноль — для вывода к источнику, почему европейские стандарты регулируют другой провод? Если подключенное оборудование работает нормально, а вся проводка в рабочем состоянии, защитный ноль не будет участвовать, он простаивает.Но если внезапно возникает короткое замыкание или перенапряжение или короткое замыкание в некоторых частях устройств, то ток попадает в места, которые обычно не подвержены его влиянию, то есть не связаны ни с фазой, ни с нулем. Человек может просто почувствовать себя электрическим током. В худшем случае вы можете даже умереть от этого, потому что сердечная мышца может остановиться. Именно здесь необходим защитный нейтральный провод. Он «берет» ток короткого замыкания и посылает его на землю или на источник.Такие тонкости зависят от конструкции электропроводки и характеристик помещения. Таким образом, вы можете смело прикасаться к оборудованию — поражения электрическим током не будет. Дело в том, что ток всегда течет по пути наименьшего сопротивления. У тела человека величина этого параметра составляет более одного килограмма. У защитного проводника сопротивление не превышает нескольких десятых долей Ом.
Определение назначения проводников
Как определить ноль и фазу? Кто-нибудь так или иначе сталкивался с этими понятиями.Особенно, когда необходимо отремонтировать розетку или установить электропроводку. Поэтому необходимо точно понимать, где находится проводник. Но как определить ноль и фазу? Следует помнить, что все подобные манипуляции с электричеством опасны. Поэтому в случае неуверенности в своих действиях лучше обратиться к специалисту. Если вы уже подходите к розетке и к ней подключены провода, вы должны сначала полностью отключить всю квартиру. Как минимум, это может сохранить здоровье и жизнь.Как упомянуто ранее, обычно обозначение фазы и нуля делается путем окрашивания. При правильной маркировке их будет не сложно отличить. Черный (или коричневый) — цвет проволочной фазы, ноль обычно имеет голубоватый или голубоватый оттенок. Если установлена розетка европейского стандарта, третий (защитный ноль) выполнен зеленым или желтым. Что делать, если проводка однотонная? Как правило, в таком случае на концах проводов обычно имеются специальные изоляционные трубки, имеющие необходимую цветную маркировку.Они называются «кембрик».
Определение проводников с помощью специальной отвертки
Как определить ноль и фазу? Для этого удобнее всего купить специальную индикаторную отвертку. Ручка такого устройства выполнена из полупрозрачного или прозрачного пластика. Внутри встроенный диод — светящаяся лампочка. Верхняя часть этой отвертки металлическая. Как определить ноль и фазу этим методом?
Порядок работы при измерении с помощью индикаторной отвертки:
- мы обесточиваем квартиру;
- слегка очистить концы проводов;
- мы разводим их в стороны, чтобы случайно не вызвать короткое замыкание при контакте фазы и нуля;
- включите выключатель и подайте ток в квартиру;
- Возьмем за ручку отвертку с диэлектрическим покрытием;
- Надеваем палец (большой или указательный) на контакт, который находится на задней части гнезда;
- коснуться рабочего конца индикатора к одному оголенному проводнику;
- внимательно наблюдать за реакцией отвертки;
- Если диод загорелся, то мы можем с уверенностью сказать, что это фаза; По исключению
- мы понимаем, что оставшийся проводник равен нулю.
Отвертка индикатора реагирует на наличие напряжения. Естественно, в нулевом проводе его нет. Однако у этого метода есть существенный недостаток. С помощью индикаторной отвертки вы не можете понять, как определить: фазу, ноль, землю — где в случае с европейской розеткой.
Метод определения фазы и нуля с помощью вольтметра
Если провода не окрашены в соответствующие цвета и под рукой нет индикаторной отвертки, вы можете пойти другим путем.Нам нужен вольтметр (мультиметр, тестер). Необходимо установить его в требуемом диапазоне — более двухсот вольт переменного тока. Как определить фазу тестера? Возьмем один проводник, который отходит от устройства (обозначено V). Мы прикрепляем его к предварительно обесточенному проводнику (любому). Тогда мы применяем
. Тестер фаз или линий или электросети — Как это работает?
Что такое тестер фазы или сети?
Фаза, тестер электрической сети или линии — это основной инструмент, который используется для тестирования и идентификации Фаза / Live / Hot или Положительный (+) провод / проводник в электрической установке, также известный как напряжение или текущий детектор.
Тестер фазы или линии также называется Neon Screw Driver или Test Pin .
Полезно знать: Фаза, Линия, Горячий, Живой и Положительный — это те же термины, что и для одного предмета.
Конструкция фазового или линейного тестера
Ниже приведены основные части типичного фазового или линейного тестера.
Внутренние части фазового тестера1). Металлический стержень и горловина
Это цилиндрический металлический стержень. Плоский конец (горловина) используется в качестве отвертки или касается электрических проводов / проводов, чтобы найти фазные или токоведущие провода, а другой конец соединен с сопротивлением, неоновой лампой, элементом и металлическим колпачковым винтом соответственно.Плоский конец цилиндрического металлического стержня также покрыт прозрачной изоляцией из пластмассы для изоляции, кроме горловины.
2). Корпус и изоляция
Все эти компоненты (сопротивление, неоновая лампа, элемент или металлическая пружина и винт с металлической крышкой) покрыты прозрачным изолированным корпусом из пластика. Плоский конец цилиндрического металлического стержня также покрыт прозрачной изоляцией из пластмассы для изоляции, кроме горловины.
3).Резистор
Резистор — это элемент, который противодействует протеканию тока через него. В тестере фазы или линии резистор подключается между цилиндрическим металлическим стержнем и неоновой лампой для предотвращения сильного тока и снижает его до безопасного значения для защиты неоновой лампы. Без резистора большой ток может повредить неоновую лампу. Кроме того, может быть опасно использовать этот инструмент без резистора.
4). Неоновая лампа
Неоновая лампа подключена между сопротивлением и элементом (металлическая пружина).Используется как индикаторная лампа фазы. Когда через него протекает небольшой ток, неоновая лампочка начинает светиться. Из-за неоновой лампы тестер фазы или линии также называется Neon Screw Driver .
5). Элемент (металлическая пружина)
Элемент (металлическая пружина) используется для соединения неоновой лампы с металлическим колпачковым винтом.
6). Металлический колпачковый винт и зажим
Металлический колпачковый винт используется для затягивания всех компонентов внутри слота фазового тестера.Кроме того, металлический колпачковый винт соединен с пружиной (элементом), а пружина (элемент) — с неоновой лампой. Кроме того, клипса используется для удержания фазометра в кармане.
Строительство Работа сетевого тестераРабота фазового или линейного тестера
Когда мы касаемся рта (плоский конец металлического стержня) фазового или линейного тестера голым проводом под напряжением / горячим проводом, а один из наших пальцев касается металлический колпачковый винт или зажим тестера фазы / линии, затем цепь замыкается и ток начинает течь в металлическом стержне, следовательно, неоновая лампочка внутри сетевого тестера светится.
Металлический стержень подключен к резистору, который снижает высокий ток до безопасного значения. Пониженный ток проходит через неоновую лампочку, которая соединена с (металлическая пружина). Металлическая пружина связана с металлическим колпачковым винтом, который соприкасается с нашими пальцами. Очень маленький ток проходит через наше тело на землю и завершает цепь. Когда цепь завершена, ток начинает течь, и нить накала неоновой лампы начинает светиться. Это указывает на то, что провод с контактом с горловиной тестера фазы / линии является фазой / линией / горячей.
Если мы выполняем те же действия, что и упомянутые выше, и неоновая лампочка не светится, это означает, что это нейтральный (-) провод / проводник, или в фазном проводе нет сетевого питания или в середине оборван фазовый провод.
Использование фазового тестера в качестве индикатора линииМеры предосторожности
- Никогда не пытайтесь работать на электричестве без надлежащего руководства и ухода.
- Работайте на электричестве только в присутствии тех людей, которые имеют хорошие знания и практическую работу по работе с электричеством.
- Не прикасайтесь к разомкнутому проводу / Проводник, даже если тестер показывает отсутствие фазы или горячее питание.
- Используйте тестер линии только при напряжении 100–500 В.
- Не используйте фазовый или линейный тестер с высоким напряжением.
- Не нажимайте на ручку тестера линии, в противном случае неоновая лампа или элемент могут повредить.
- Выполнение ваших собственных электромонтажных работ является опасным, а также незаконным в некоторых областях. Обратитесь к лицензированному электрику или компании-поставщику электроэнергии, прежде чем вносить какие-либо изменения в подключение электропроводки.
- Электричество — наш враг, если вы дадите ему шанс убить вас, помните, они никогда его не упустят. Пожалуйста, прочитайте все предостережения и инструкции, делая это руководство на практике.
- Автор не несет ответственности за какие-либо убытки, травмы или ущерб, возникшие в результате отображения или использования этой информации, а также при попытке использования какой-либо схемы в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.
Похожие сообщения:
.Тестер вращения двигателя и фазы —
- Полная проверка последовательности фаз и вращения двигателя в одном приборе
- Обеспечивает правильное соединение фаз в одном простом тесте.
- Прочный и портативный тестер
- Выполняет дополнительные проверки полярности и непрерывности
Электродвигатель и тестер чередования фаз позволяет подрядчику или электрику по техническому обслуживанию постоянно подключать и обвязывать клеммы устанавливаемого двигателя без необходимости сначала подавать питание на двигатель с помощью временного подключения от источника питания, если таковой имеется, для определения двигателя вращение.Таким образом, тестовый набор устраняет необходимость во временных соединениях, которые могут быть трудоемкими, дорогостоящими и довольно опасными, особенно когда задействованы многие крупные высоковольтные двигатели.
Кроме того, некоторые типы приводов никогда не должны вращаться в неправильном направлении. В таких случаях временный метод подключения или пробный метод с вероятностью 50/50 ошибиться может нанести серьезный вред.
Три провода двигателя с левой стороны испытательного комплекта предназначены для присоединения к клеммам двигателя, испытываемого для определения вращения.
Предохранители вставлены в измерительные провода двигателя A и C в качестве защиты на случай, если пользователь случайно прикоснется к этим проводам в цепи под напряжением. Эти стандартные предохранители легко снимаются и заменяются с держателей, установленных на панели.
Три линии, ведущие справа от испытательного комплекта, предназначены для непосредственного подключения к системам электропитания переменного тока до 600 вольт для определения последовательности фаз системы. Четырехпозиционный переключатель выбирает тест, который необходимо выполнить — последовательность фаз системы, вращение двигателя и полярность трансформатора.Селекторный переключатель подключает сухой элемент размера D к цепи, когда проверяется вращение двигателя или полярность трансформатора. В положении ВЫКЛ и счетчик, и аккумулятор отключены от всех цепей.
Кнопочный выключатель соединен последовательно с аккумулятором и размыкает цепь во время проверки полярности трансформатора.
Сухой элемент легко снимается и заменяется с держателя, монтируемого на панели, крышкой с прорезью для монет. Амперметр с нулевым центром постоянного тока указывает на правильное или неправильное вращение или полярность, отклоняя указатель вправо или влево.Для амперметра предусмотрен регулятор нуля или нуля.
,6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)
В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой : проверить и проверить конденсатор? Это хорошо, плохо (мертвый), короткий или открытый?
Здесь мы можем проверить конденсатор с аналоговым (измеритель AVO, т. Е. Ампер, напряжение, омметр), а также с цифровым мультиметром, либо он находится в хорошем состоянии, либо мы должны заменить его на новый.,
Примечание. Чтобы определить значение ёмкости, необходим цифровой измеритель с функциями измерения ёмкости.
Ниже приведены пять (6) методов проверки и проверки, является ли конденсатор хорошим, плохим, открытым, мертвым или коротким .
Похожие сообщения:
Метод 1.
Традиционный метод проверки и проверки конденсатора
Примечание: Не рекомендуется для всех, кроме профессионалов. Пожалуйста, будьте осторожны, чтобы делать эту практику, так как это опасно.Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверьте предупреждения перед применением этого метода), и нет других вариантов проверки конденсатора, поскольку во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2 — 6 в качестве альтернативы конденсатору.
Предположим, вы хотите проверить конденсатор (например, конденсаторы вентиляторов, конденсаторы комнатного воздухоохладителя или конденсаторы оловянного типа в плате / печатной плате и т. Д.).)
Предупреждение и рекомендации по тестированию конденсатора по методу 1.
Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В, вы можете использовать 220-224 В переменного тока, но вы должны сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения между конденсатором и источником питания 230 В переменного тока. это уменьшит зарядку и разрядку тока. Вот пошаговое руководство, как вы можете проверить конденсатор этим методом.
- Отсоедините предполагаемый конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отсоединен.
- Убедитесь, что конденсатор полностью разряжен.
- Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
- Теперь безопасно подключите эти провода к источнику переменного тока 230 В в течение очень короткого периода (около 1-4 с) [или в течение короткого времени, когда напряжение возрастает до 63,2% от напряжения источника].
- Снимите предохранительные провода с источника питания 230 В переменного тока.
- Теперь закоротите клеммы конденсатора (пожалуйста, соблюдайте осторожность и убедитесь, что у вас есть защитные очки).
- Если он дает сильную искру, то конденсатор — это хорошо .
- Если он создает слабую искру, то это плохой конденсатор и немедленно заменить его на новый.
Похожие сообщения:
Метод 2.
Проверка конденсатора с помощью аналогового мультиметра
Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, Ом метр), выполните следующие действия.
- Убедитесь, что предполагаемый конденсатор полностью разряжен.
- Возьми AVO метр.
- Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
- Подсоедините провода измерительного прибора к клеммам конденсатора.
- Примечание. Чтение и сравнение со следующими результатами.
- Короткие конденсаторы : Замкнутый конденсатор будет показывать очень низкое сопротивление.
- Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране измерителя ОМ.
- Хорошие конденсаторы : вначале он показывает низкое сопротивление, а затем постепенно увеличивается к бесконечности. Это означает, что конденсатор находится в хорошем состоянии.
Метод 3.
Проверка конденсатора с помощью цифрового мультиметра
Для проверки конденсатора с помощью цифрового мультиметра (DMM) выполните следующие действия.
- Убедитесь, что конденсатор разряжен.
- Установите измеритель на диапазон Ом (установите его в аренду 1000 Ом = 1 кОм).
- Подсоедините провода измерительного прибора к клеммам конденсатора.
- Цифровой счетчик покажет некоторые цифры за секунду. Обратите внимание на чтение.
- И тогда сразу же он вернется в ПР (Открытая линия). Каждая попытка шага 2 будет показывать тот же результат, что и на шаге 4 и шаге 5. Это означает, что конденсатор находится в хорошем состоянии .
- Если изменений нет, то Конденсатор мертв .
Вы также можете проверить:
Метод 4.
Проверка конденсатора мультиметром в емкостном режиме
Примечание. Этот тест можно выполнить с мультиметром, если у вас есть измеритель емкости или у вас есть мультиметр с функцией проверки емкости.Кроме того, этот метод хорош для тестирования крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим емкости.
- Убедитесь, что конденсатор полностью разряжен.
- Снимите конденсаторы с платы или цепи.
- Теперь выберите «Емкость» на вашем мультиметре.
- Теперь подключите клемму конденсатора к выводам мультиметра.
- Если показание близко к фактическому значению конденсатора (то есть напечатанному значению на коробке контейнера конденсатора).
- Тогда конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (значение, напечатанное на коробке контейнера конденсатора).
- Если вы прочитали значительно более низкую емкость или ее нет вообще, то конденсатор не работает, и вы должны изменить его.
Похожие сообщения:
Метод 5.
Проверка конденсатора с помощью простого вольтметра
- Обязательно отсоединяйте один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатора от цепи (Вы можете также полностью отключить при необходимости)
- Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в нашем примере ниже, где напряжение = 16 В)
- Теперь зарядите этот конденсатор в течение нескольких секунд, чтобы номинальная (не до точного значения, но меньше, чем яе. зарядить конденсатор 16 В с аккумулятором 9 В). Убедитесь, что положительный (красный) провод источника напряжения подключен к положительному (длинному) проводу конденсатора, а отрицательный — к отрицательному. Если вы не можете найти его или не уверены, вот учебник, как найти отрицательный и положительный вывод конденсатора.
- Установите значение вольтметра для постоянного тока и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному проводу конденсатора и отрицательный к отрицательному.
- Обратите внимание на начальные показания напряжения в вольтметре. Если оно близко к напряжению, подаваемому на конденсатор, конденсатор находится в хорошем состоянии. Если он показывает очень мало чтения, то конденсатор мертв. обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.
Похожие сообщения:
Метод 6.
Найти значение конденсатора путем измерения значения постоянной времени
Мы можем найти значение конденсатора путем измерения постоянной времени ( TC или τ = Tau), если значение емкости конденсатора известно в микрофарадах (обозначенных мкФ), напечатанных на нем i.е. конденсатор не перегорел и не сгорел вообще.
Вкратце, время, затрачиваемое конденсатором на зарядку около 63,2% приложенного напряжения при зарядке через известное значение резистора, называется постоянной времени конденсатора (TC или τ = Тау) и может быть рассчитано с помощью:
. τ = RxC
Где:
- R = Известный резистор
- C = Значение емкости
- τ = TC или τ = Тау (постоянная времени)
Например, если напряжение питания составляет 9 В , затем 63.2% из этого — около 5.7V .
Теперь давайте посмотрим, как найти значение конденсатора путем измерения постоянной времени.
Обязательно отсоедините, а также разрядите конденсатор с платы.
Подключите известное значение сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.
Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.
Теперь измерьте время зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% составляет около 5,7 В.
Из значения данного резистора и измеренного времени вычислите значение емкости по формуле временного содержимого, то есть τ = TC или τ = Тау (постоянная времени) .
Теперь сравните рассчитанное значение емкости со значением конденсатора, напечатанного на нем.
Если они одинаковы или почти одинаковы, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора менять конденсатор, так как он не работает должным образом.
Время разряда также может быть рассчитано. В этом случае может быть измерено время, необходимое конденсатору для разрядки до 36,8% пикового напряжения.
Полезно знать : Время, необходимое конденсатору для разрядки около 36,8% пикового значения приложенного напряжения, также может быть измерено. Время разряда можно использовать так же, как в формуле, чтобы найти значение конденсатора.
Похожие сообщения:
.