назначение прибора, инструкция по изготовлению устройства своими руками
Регуляторы напряжения нашли широкое применение в быту и промышленности. Многим людям известно такое устройство, как диммер, позволяющий бесступенчато регулировать яркость светильников. Оно и является отличным примером регулятора напряжения 220в. Своими руками такой прибор собрать довольно просто. Безусловно, его можно приобрести в магазине, но себестоимость самодельного изделия окажется значительно ниже.
Назначение и принцип работы
С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.
Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.
Регуляторы напряжения чаще всего изготовлены на основе полупроводниковых деталей – тиристорах и симисторах. С их помощью изменяется длительность прохождения волны напряжения из сети в нагрузку.
Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.
Рекомендации по изготовлению
Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.
На основе симистора
Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:
Структурно прибор можно разделить на два блока:
- Силовой ключ, в роли которого используется симистор.
- Узел создания управляющих импульсов на основе симметричного динистора.
С помощью резисторов R1-R2 создан делитель напряжения. Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.
В результате силовой ключ включается, и через него начинает проходить электроток на нагрузку. Положение регулятора определяет, в какой части фазы волны должен сработать силовой ключ.
На базе тиристора
Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.
Принцип работы тиристорного прибора следующий:
- Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
- После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
- При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.
С помощью фазных регуляторов можно управлять не только яркостью ламп накаливания, но и другими видами нагрузок, например, количеством оборотов дрели. Однако следует помнить, что прибор на основе тиристора нельзя применять для работы со светодиодными и люминесцентными лампочками.
Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.
Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.
Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.
Как можно сделать простой регулятор напряжения на 12 вольт своими руками
5 частых вопросов, которые задают начинающие радиомеханики; 5 лучших транзисторов для регуляторов, тест на определение состава схемы
Регулятор электрического напряжения нужен для того, чтобы величина напряжения могла стабилизироваться. Он обеспечивает надежность работы и долговечность работы прибора.
Регулятор состоит из нескольких механизмов.
ТЕСТ:
Ответы на эти вопросы позволят узнать состав схемы регулятора напряжения 12 вольт и её сборку.
- Какое сопротивление должно быть у переменного резистора?
a) 10 кОм
b) 500 кОм
- Как нужно подключать провода?
a) 1 и 2 клемма – питание, 3 и 4 – нагрузка
b) 1 и 3 клемма – нагрузка, 2 и 4 — питание
- Нужно ли устанавливать радиатор?
a) Да
b) Нет
- Транзистор должен быть
a) КТ 815
b) Любой
Ответы:
Вариант 1. Сопротивление резистора 10 кОм – это стандарт для установки регулятора, провода в схеме подключаются по принципу: 1 и 2 клемма для питания, 3 и 4 для нагрузки – ток распределится правильно по нужным полюсам, радиатор устанавливать нужно – чтобы защитить от перегрева, транзистор использован КТ 815 – такой всегда подойдет. В таком варианте построенная схема сработает, регулятор станет работать.
Вариант 2. Сопротивление 500 кОм – слишком высокое, будет нарушена плавность звука в работе, а может не сработать вообще, 1 и 3 клемма это нагрузка, 2 и 4 питание, радиатор нужен , в схеме, где стоял минус будет плюс, транзистор любой – действительно можно использовать какой угодно.Регулятор не заработает из-за того, что схема собрана, будет неправильно.
Вариант 3. Сопротивление 10кОм, провода – 1 и 2 для нагрузки, 3 и 4 для питания, резистор имеет сопротивление 2кОм, транзистор КТ 815. Прибор не сможет заработать, так как он сильно перегреется без радиатора.
Как соединить 5 частей регулятора на 12 вольт.
Переменный резистор 10кОм.
Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.
Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.
Резистор на 1 ком. Снижает нагрузку с основного резистора.
Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты
2 проводка. Необходимы для того, чтобы по ним шел электрический ток.
Берем транзистор и резистор. У обоих есть 3 ответвления.
Проводятся две операции:
- Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
- А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.
Первый провод необходимо спаять с тем, что получилось во 2 операции.
Второй нужно спаять с оставшимся концом транзистора.
Прикручиваем к радиатору соединенный механизм.
Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.
Схема готова.
Как сделать диагностику без снятия?
Не рекомендуется проводить такую проверку, так как нет возможности оценить состояние щеточного узла. Но случаи бывают разные, поэтому даже такая диагностика может дать свои плоды. Для работы вам потребуется мультиметр или, если такового нет, лампа накаливания. Для вас главное – это провести замер напряжения в бортовой сети автомобиля, определить, нет ли скачков. Но их можно заметить и при езде. Например, мигание света при изменении оборотов коленчатого вала двигателя.
Но точнее окажутся измерения, проведенные с использованием мультиметра или вольтметра с растянутой шкалой. Заведите двигатель и включите ближний свет. Подключите мультиметр к клеммам аккумуляторной батареи. Напряжение не должно превышать 14,8 Вольт. Но и нельзя, чтобы оно опускалось ниже 12. Если оно находится не в дозволенном интервале, то имеется поломка регулятора напряжения. Не исключено, что нарушены контакты в местах соединения прибора с генератором, либо окислены контакты проводов.
Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.
Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.
Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.
Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.
Необходимые детали:
- 2 Конденсатора
- 2 переменных резистора
Соединяем части:
- Подключаем конденсаторы к самому регулятору.
- Первый резистор подключается с минусом регулятора, второй на массу.
Теперь менять скорость двигателя у прибора по желанию пользователя.
Регулятор напряжения на 14 вольт готов.
Простой регулятор напряжения 12 вольт
lm317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.
(319,9 Kb, скачано: 42 204)
Регулятор оборотов 12 вольт для двигателя с тормозом.
Состав:
- Реле – 12 вольт
- Теристор КУ201
- Трансформатор для запитки двигателя и реле
- Транзистор КТ 815
- Вентиль от дворников 2101
- Конденсатор
Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.
К реле подключаем 2 провода от блока питания. На реле подается плюс.
Всё остально подключается по принципу обычного регулятора.
Схема полностью обеспечила 12 вольт для двигателя.
Схема номер 1
Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.
КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.
Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»
Регулятор мощности на симисторе BTA 12-600
Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.
Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.
Для удобства схему можно собрать на печатной плате.
Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.
К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.
К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.
Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.
1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.
Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.
Идет тестирование схемы.
Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.
Мощность можно развить до 12 вольт для авто.
Разновидности 12В стабилизаторов
В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:
- Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
- Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.
Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.
Динистор и 4 типа проводимости.
Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.
Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.
В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.
Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.
Схема:
Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.
Интегральный стабилизатор
Устройства собирают с использованием небольших по размерам микросхем, способных работать при входном напряжении до 26-30 В, выдавая постоянный 12-ти вольтный ток силой до 1 Ампер. Особенностью данных радиодеталей является наличие 3 ножек – «вход», «выход» и «регулировка». Последняя используется для подключения регулировочного резистора, который используется для настройки микросхемы и предотвращения ее перегрузок.
Более удобные и надежные, собранные на основе стабилизирующих микросхем выравниватели постепенно вытесняют собранные на дискретных элементах аналоги.
Топ 5 транзисторов
Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.
- КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
- 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
- КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
- Irf3205. Пригоден для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
- KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.
Вступление.
Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/
Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.
Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.
Что получилось
Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.
Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
Схема и фотографии мощнейшего ультразвукового отпугивателя.
Простейшая схема радиожучка на одном транзисторе, для работы в паре с ФМ приёмником.
В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.
Простой регулятор напряжения на 12 Vиз доступных материалов
Чтобы стабилизировать величину электрического напряжения, необходим регулятор, который сделает работу приборов надежной и долговечной. В быту регулятор напряжения может потребоваться для различных ситуаций. Совсем необязательно покупать магазинный вариант. Имея небольшие познания в радиоэлектронике, можно спаять его и самостоятельно.
Обычно схема простого регулятора включает всего 5 элементов:
- Регулируемый резистор на 10 кОм. Он и отвечает за регулировку напряжения, может менять силу тока в цепи или увеличивать сопротивление.
- Радиатор. Защищает приборы от перегрева и охлаждает их в случае необходимости.
- Резистор на 1 кОм. Он призван снизить нагрузку на основной резистор.
- Транзистор. Он служит для увеличения колебаний и повышения их частоты.
- Два провода, по которым пойдет ток.
Принцип сборки
Сборка производится следующим образом:
- Левый конец транзистора соединяют с концом в середине резистора;
- Середина транзистора спаивается с правым концом резистора;
- Один проводок спаивается с тем, что вышло в результате второй операции;
- Другой проводок припаивают к оставшемуся концу транзистора;
- Весь собранный механизм прикручивают к радиатору;
- Теперь осталось припаять резистор на 1 кОм к крайним выходам регулируемого резистора и транзистора.
Простейший регулятор напряжения готов.
По тому же принципу можно сделать регулятор оборотов на 12 вольт. Для этого понадобятся:
- Реле на 12 вольт;
- Тиристор КУ201;
- Трансформатор для питания двигателя и реле;
- Транзистор КТ 815;
- Вентиль от дворников «Жигулей» первой модели;
- Конденсатор.
Этот регулятор используют для подачи проволоки, поэтому в схему включен тормоз двигателя с реле.
Сборка этого прибора также не отличается сложностью. Два проводка с блока питания подсоединяются к реле, на которое подается плюс батареи. Остальное включается, как и на обычном регуляторе напряжения. Данная схема позволяет создать 12 вольт для двигателя.
Простейший регулятор напряжения 220в — Морской флот
Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов: |
1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм – будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.
Схема регулятора переменного напряжения:
Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата – её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei – тут.
Далее припаяем симистор, и переменный резистор.
Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.
Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:
И в конце концов последний этап – это ставим на симистор радиатор.
А вот фото готового устройства уже в корпусе.
Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:
Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был [PC]Boil-:D
Обсудить статью РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ
В последнее время в нашем быту все чаще применяются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких приборов управляют яркостью свечения ламп, температурой электронагревательных приборов, частотой вращения электродвигателей.
Подавляющее большинство регуляторов напряжения, собранных на тиристорах, обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для управления нагрузкой с активным сопротивлением — электролампой или нагревательным элементом, и нельзя использовать совместно с нагрузкой индуктивного характера — электродвигателем, трансформатором.
Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор.
Принципиальная схема
Транзисторный регулятор напряжения (рис. 9.6) содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения — от 0 до 218 В; максимальная мощность нагрузки при использовании в регулирующей цепи одного транзистора — не более 100 Вт.
Регулирующий элемент прибора — транзистор VT1. Диодный мост VD1. VD4 выпрямляет сетевое напряжение так, что к коллектору VT1 всегда приложено положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5. 8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.
Рис. Принципиальная схема мощного регулятора сетевого напряжения 220В.
Переменный резистор R1 служит для регулировки величины управляющего напряжения, а резистор R2 ограничивает ток базы транзистора. Диод VD5 защищает VT1 от попадания на его базу напряжения отрицательной полярности. Устройство подсоединяется к сети вилкой ХР1. Розетка XS1 служит для подключения нагрузки.
Регулятор действует следующим образом. После включения питания тумблером S1 сетевое напряжение поступает одновременно на диоды VD1, VD2 и первичную обмотку трансформатора Т1.
При этом выпрямитель, состоящий из диодного моста VD6, конденсатора С1 и переменного резистора R1, формирует управляющее напряжение, которое поступает на базу транзистора и открывает его. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 — эмиттер-коллектор VT1, VD3. Если полярность сетевого напряжения положительная, ток протекает по цепи VD1 — коллектор-эмиттер VT1, VD4.
Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая движок R1 и изменяя значение управляющего напряжения, управляют величиной тока коллектора VT1. Этот ток, а следовательно, и ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.
При крайнем правом по схеме положении движка переменного резистора транзистор окажется полностью открыт и «доза» электроэнергии, потребляемая нагрузкой, будет соответствовать номинальной величине. Если движок R1 переместить в крайнее левое положение, VT1 окажется запертым и ток через нагрузку не потечет.
Управляя транзистором, мы фактически регулируем амплитуду переменного напряжения и тока, действующих в нагрузке. Транзистор при этом работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, свойственных тирис-торным устройствам.
Конструкция и детали
Теперь перейдем к конструкции прибора. Диодные мостики, конденсатор, резистор R2 и диод VD6 устанавливаются на монтажной плате размером 55×35 мм, выполненной из фольгированного ге-тинакса или текстолита толщиной 1. 2 мм (рис. 9.7).
В устройстве можно использовать следующие детали. Транзистор — КТ812А(Б), КТ824А(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные мосты: VD1. VD4 – КЦ410В или КЦ412В, VD6 — КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 — серии Д7, Д226 или Д237.
Переменный резистор — типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный — ВС, MJIT, ОМЛТ, С2-23. Оксидный конденсатор – К50-6, К50-16. Сетевой трансформатор — ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 — от телевизора «Юность» или любой другой маломощный с напряжением вторичной обмотки 5. 8 В.
Предохранитель рассчитан на максимальный ток 1 А. Тумблер — ТЗ-С или любой другой сетевой. ХР1 — стандартная сетевая вилка, XS1 — розетка.
Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150x100x80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса.
С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см2 и толщиной 3. 5 мм.
Рис. Печаная плата мощного регулятора сетевого напряжения 220В.
Регулятор не нуждается в налаживании. При правильном монтаже и исправных деталях он начинает работать сразу после включения в сеть.
Рекомендации
Теперь несколько рекомендаций тем, кто захочет усовершенствовать устройство. Изменения в основном касаются увеличения выходной мощности регулятора. Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 — 200 Вт, а для КТ847 — 250 Вт.
Если необходимо еще больше увеличить выходную мощность прибора, в качестве регулирующего элемента можно применить несколько параллельно включенных транзисторов, соединив их соответствующие выводы.
Вероятно, в этом случае регулятор придется снабдить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов. Кроме того, диодный мост VD1. VD4 потребуется заменить на четыре более мощных диода, рассчитанных на рабочее напряжение не менее 600 В и величину тока в соответствии с потребляемой нагрузкой.
Для этой цели подойдут приборы серий Д231. Д234, Д242, Д243, Д245 ..Д248. Необходимо будет также заменить VD5 на более мощный диод, рассчитанный на ток до I А. Также больший ток должен выдерживать предохранитель.
Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.
Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.
Виды и характеристики регуляторов
Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:
- тиристорные;
- симисторные;
- фазовые (диммер).
По виду выходного сигнала:
- стабилизированные;
- не стабилизированные.
Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.
По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.
Основными характеристиками, на которые следует обращать внимание, являются следующие параметры:
- плавность регулировки;
- рабочая и пиковая подводимая мощность;
- диапазон входного рабочего напряжения;
- диапазон задания напряжения, поступающего на нагрузку;
- условия эксплуатации.
Тиристорный регулятор мощности
Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.
Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.
Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.
Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания ) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.
Изготовление устройства самостоятельно
Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.
В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров диодного моста, применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.
Симисторный регулятор мощности
Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.
Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.
Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.
Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.
Фазовый регулятор
Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.
Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.
Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.
Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.
Регулятор мощности для паяльника своими руками
Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.
Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.
Регулятор на симисторе КУ208Г
Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.
Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.
Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.
Регулировка на интегральном стабилизаторе
Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.
Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.
При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.
Как сделать регулятор напряжения для паяльника
Схем регуляторов напряжения для паяльника на тиристорах очень много. Их преимущество — высокий КПД, малые размеры. Кроме того, такой регулятор греется незначительно. Недостаток — высокий уровень помех, который подобные схемы выдают в сеть. Их можно гасить, поставив на входе конденсаторы. Но в таком случае регулировка напряжения не будет плавной.
Тиристорных схем регулирования напряжения питания паяльников действительно много. Работают они по-разному, да и компоненты применяют различные. Некоторые вполне работоспособные решения не слишком хороши в эксплуатации из-за нестабильно работающих составляющих.
Регулятор напряжения для паяльника на 220 В на тиристоре
Приведённая выше схема позволяет регулировать выходное напряжение от 110 вольт до сетевого. Хороша тем, что построена на широко распространённых и стабильных в работе транзисторах серии КТ361 и 315 и тиристоре КУ202Н. Остальные компоненты — резисторы и всего один конденсатор. Стоит только грамотно подобрать регулятор R2 — чтобы было удобно с ним работать (плавный ход ручки).
А также обратите внимание на пределы регулировки и на мощность, на которую эти компоненты рассчитаны. Устройство рассчитано на ток до 10 А, тиристор VD2 должен быть установлен на теплоотвод.
Содержание статьи
Регулятор без помех
Этот регулятор можно использовать для любой нагрузки. Для устранения пульсаций используется постоянное напряжение. Имеет более широкий интервал изменения напряжений. Мощность ограничивается диодным мостом КЦ405А, в данном случае 100 ватт.
Регулировка паяльника с устранённым эффектом пульсации
При проверке работоспособности схемы случается, что регулировки не происходит. Это бывает связано с чувствительностью тиристора. То есть напряжения на управляющем электроде не хватает для открытия p-n перехода. Можно подобрать деталь с более высокой чувствительностью или найти аналог.
При появлении гула в паяльнике включите в цепь нагрузки индуктивность. Её величина подбирается до исчезновения эффекта.
Простой регулятор напряжения на симисторе
Пожалуй, самая простая схема управления напряжением нагрузки для повторения, с неплохими характеристиками.
Схема простого регулятора напряжения на симисторе
Схема небольшая и уместится даже в маленький в корпус зарядки от телефона. По такой схеме собраны регуляторы оборотов пылесосов, например. Разве что динистор может быть заменён оптопарой.
Аналогичную сборку имеют и диммеры на АлиЭкспресс. В продаже имеются как с радиатором, так и без. Без радиатора допускается нагрузка до 60 Вт.
Диммер для паяльника
Регулятор для паяльника на микросхеме
Вариант непрост, но имеет свои плюсы. Плавное регулирование напряжения на нагрузке от 0 до 2 кВт и отсутствие помех. При эксплуатации на большой мощности обязательна установка радиатора на VS1.
Самодельный регулятор паяльника без помех
К561ЛА7 — К176ЛА7.
КД503А — КД514А, КД522А.
КТ361В — КТ326В, КТ361А.
Простая схема для 36 вольтового паяльника
Эта схема вполне рабочая с минимумом деталей.
Простая схема регулятора паяльника низковольтного переменного напряжения
Есть аналогичные схемы регулирования сетевого напряжения. Здесь только меньше предел регулировки.
Регулятор для паяльника 36 вольт
Современная электроника требует для монтажа деталей иметь в наличии низковольтный паяльник. Реализовать его питание можно по приведённой ниже схеме. Она позволяет регулировать температуру паяльника в широких пределах. А используя в качестве ключа мощный полевой транзистор снижаются потери.
Регулятор для паяльника на микросхеме
На DA 1 собран ждущий мультивибратор, управляющий работой транзистора VT1. Он открывается с появлением на затворе положительного напряжения.
Для снижения помех работа мультивибратора синхронизирована с частотой сети. Достигается это подачей пульсирующего напряжения на вывод 2 DA1 через делитель R2- R3. Порог срабатывания микросхемы устанавливается подстройкой R3. С периодом 10 мс на выводе 3 DA1 идут импульсы с длительностью, зависящей от положения регулятора R4.
К деталям схема не критична. Микросхема КР1006ВИ1 может быть заменена аналогами LM 555 или NE 555. VD 1 — VD 4 с током не менее 3А. Полевик BUZ 11 меняется на IRF 540 или КП540.
Регулятор температуры на микроконтроллере PIC 16F628
Данный цифровой регулятор мощности позволяет отобразить уровень нагрузки, с автоматическим её отключением при долгом не простое. Минус схем с микроконтроллером, это необходимость его предварительной прошивки. Прошивка, печатная плата и схема доступна для скачивания в конце заметки.
Регулятор для паяльника на микроконтроллере PIC 16F628
Регулирование температуры осуществляется за счёт пропуска периодов сетевого напряжения. При уровне мощности «0», нагрузка подключена на один период, с паузой в 15 периодов. На уровне мощности «3», нагрузка подключается на 4 периода с паузой в 12 периодов. На уровне «15», нагрузка включена полностью.
Выставленный уровень показывается на индикаторе в виде цифр от 0 до 9 и букв ABCDEF. Прибавить или убавить температуру можно, удерживая кнопку.
Нажав одновременно и удерживая обе кнопки можно отключить нагрузку. Индикатор уровня будет мигать.
Через 2 часа нагрузка автоматически выключается. Возобновление работы производится нажатием и удержанием обеих кнопок или отключением регулятора от сети.
Перед началом монтажа детали регулятора проверьте мультиметром. Как правило, наладки при исправных деталях и правильно собранной схеме не требуется. Прошивка, печатная плата и схема регулятора на PIC 16F628.
Сделать регулятор напряжения своими руками
В наше время никак не обойтись без электроники. Современный электроинструмент hitachi с доставкой на дом позволит в краткие сроки выполнить любой ремонт, компьютеры помогут просчитать самую сложную задачу.
Конечно же, купить перфоратор hitachi в Москве с доставкой на дом будет куда проще, однако кое-что можно сделать и самому. Большое количество электротоваров имеют регуляторы. Они позволяют в широких пределах регулировать освещения, мощность агрегатов и т.д. Но в случае их неисправности или отсутствия совсем несложно установить их своими руками.
Переменное напряжение электросети преобразуется одно- или двухполупериодным выпрямителем в пульсирующее напряжение. При однополупериодном выпрямлении частота пульсаций при подаче нагрузки равна 50 Hz, если же применяется двухполупериодное выпрямление -100 Hz. Допускается открытие транзистора в течение всего периода импульса напряжения в выпрямленном потоке. При этом и ток в нагрузке максимальный, и лампа дает максимальную яркость.
Если транзистор открывать на разные части периода импульсов прямого напряжения, то ток в нагрузке будет меняться. Регулировку открывания транзистора можно выполнить более плавно, тогда и яркость лампы будет изменяться постепенно. Подобную схему регуляторов можно использовать для поддержания температуры паяльника, утюга, для создания определенных температурных режимов в духовке и т.д. Например, на хитачи шуруповерт низкие цены стали таковыми благодаря внедрению производителем плавной регулировки вращения рабочего инструмента в широком диапазоне частот.
Очень удачная конструкция регулятора получается, если в качестве корпуса регулятора использовать заводской корпус блока питания микрокалькулятора. Все детали можно разместить внутри этого корпуса, предусмотрев их электрическую изоляцию. Для этого можно использовать фторопластовую пленку, например, от старых конденсаторов постоянной емкости. С одной стороны корпуса имеется вилка для подключения в сетевую розетку. На противоположной стороне корпуса крепятся два гнезда для подключения к ним стандартной сетевой вилки, какими оснащены все настольные лампы, утюги и т.д. В удобном месте крепится переменный резистор.
Таким образом, с внешней стороны регулятора имеется вилка, розетка и ручка регулировки яркости. Подключая к регулятору любой электроприбор общей мощностью менее 200 Вт, получаем возможность менять его мощность. Например, таким образом можно подключить бра, настольную лампу, паяльник, фотоувеличитель и т.д. Особенно удобен такой регулятор для фотопечати, когда требуется изменение яркости лампочки фотоувеличителя.
Реле регулятора напряжения генератора своими руками: схема
Стабилизатор напряжения в бортовой электросистеме автомобиля – самый важный узел без всякого преувеличения. От качества его работы будет зависеть не только стабильность и длительность срок эксплуатации аккумулятора. При этом даже вполне исправное устройство стабилизации не всегда дает гарантию соответствия напряжения и качества питания электросети автомобиля. Нередко автолюбители задаются вопросом как сделать реле регулятор напряжения генератора более надежным – обратиться к специалистам СТО, собрать или усовершенствовать самостоятельно? Вариантов много.
Современные стабилизаторы
На современном автотранспорте, как правило, устанавливаются автоколебательные реле. Они работают по принципу отключения питания катушки возбуждения при достижении напряжения верхнего предела 13,5-13,8 В и подключения при нижнем пороге напряжения 14,5-14,6 В.
Таким образом, выходное напряжение постоянно колеблется. Теоретически это не считается недостатком, так как напряжение не выходит за допустимые рамки. Все же это не совсем безопасно. Наверняка опытные водители знают, что слабым местом у этого вида реле являются переходные моменты, когда резко меняются обороты ротора или нагрузочный ток. Особенно неблагоприятный момент возникает при большом токе нагрузки на малых оборотах. В эти моменты колебания напряжения часто превышают верхний порог. За счет кратковременности таких скачков аккумулятор не выйдет со строя сразу, но каждый раз его емкость и соответственно ресурс сокращается.
Решают эту проблему по-разному. Иногда автолюбители просто меняют автоколебательное реле на устаревшее контактно-вибрационное. Более оптимальным решением станет заменить реле на широтно-импульсный стабилизатор или модернизировать «родной» с помощью небольших дополнений.
ШИ-стабилизатор
Широтно-импульсные стабилизаторы характеризуются более стабильной работой, то есть в сеть автомобиля подается почти постоянное напряжение, а небольшие отклонения в пределах нормы носят плавный характер. В схеме устройства использованы те же детали, что и в оригинале, но в то же время включена микросхема К561ТЛ1. Это позволило собрать мультивибратор и формирователь коротких импульсов на 1-м узле. Также упрощен узел управления выходным ключом за счет применения полевого транзистора, повышенной мощности.
Основные узлы:
Цикл работы стабилизатора
С включением зажигания на выходе триггера DD1.1 появляется низкий логический уровень. В следствии, этого током зарядки конденсатора СЗ открывается транзистор VT1. Он в свою очередь начинает подавать на входы элемента DD1.2 высокий уровень, единовременно разряжая конденсатор С4. С появлением на выходе низкого уровня DD1.2 открывает полевой транзистор VT3. Ток с вывода стабилизатора протекает обмотку возбуждения генератора.
После прекращения импульса на выходе DD1.1 образуется высокий уровень и транзистор VT1 закрывается. Происходит зарядка конденсатора С4 током, проходящим через резистор R5 от генератора, который управляется транзистором VT2. В то время как напряжение на конденсаторе С4 опуститься до нижнего предела переключения триггера DD1.2, он переключится. На его выходе возникнет высокий уровень, который закроет транзистор VT3. В целях защиты входных цепей микросхемы DD1 напряжение конденсатора С4 ограничивается диодом VD4, что при его последующей зарядке не приведет к переключению DD1.2. Когда же на выходе генератора снова формируется импульс низкого уровня, процесс начинает повторяться.
Таким образом, стабилизация осуществляется длительностью включенного состояния полевого транзистора, а процессом управляет измерительное устройство, а также генератор тока. Когда возрастает напряжение на выводе генератора нарастает ток коллектора транзистора VT2. При увеличении ампеража конденсатор С4 начинает заряжаться быстрее и продолжительность включенного состояния транзистора VT3 уменьшается. В следствии ток, который протекает через обмотку возбуждения генератора уменьшается и, конечно же, уменьшается выходное напряжение генератора.
При понижении напряжения на выводе от генератора ток на коллекторе транзистора VT2 снижается. В результате время зарядки конденсатора С4 возрастает. Это приводит к более длительному периоду включенности транзистора VT3 и ток, который протекает через обмотку возбуждения генератора, возрастает. Выходное напряжение генератора также увеличивается.
Широтно-импульсный стабилизатор своими руками
Хотя эффективность представленного реле и его серийного производства устройство трудно найти в продаже. К тому же узнать о нем что-либо у продавцов консультантов не всегда удается. Поэтому если есть опыт в радиотехнике, реле регулятор напряжения генератора можно собрать своими руками.
Для приведенной выше принципиальной схемы можно применить следующие элементы и их альтернативные замены.
Модернизация регулятора напряжения
Это еще один вариант улучшить качество работы реле и устойчивость его к переходным моментам. За основу взято стандартное реле 50.3702-01, в схему которого добавили всего один резистор и конденсатор.
На схеме доработка обозначена красным цветом и, как видно, не требует больших усилий и особого опыта в радиоэлектронике. При увеличении напряжения в бортовой электросети, конденсатор С2 начинает заряжаться. При это часть тока протекает через базу транзистора VT1 и по величине пропорционален скорости роста напряжения. Это приводит к открытию транзистора VT1 и закрытию транзисторов VT2 и VT3. При этом происходит спад тока в катушке возбуждения, причем более ранний, чем без дополнительной установленной цепи. Это позволяет значительно уменьшить колебания напряжения в сети или вовсе их исключить. То же самое касается и снижения напряжения. Другими словами, рамки допустимого напряжения сужаются, а плавность стабилизации повышается.
На данной схеме также можно внедрить еще одно рациональное предложение. Как известно, выходное напряжение генератора оптимизируется в зависимости от окружающей температуры и зимой должно быть выше на 0,8 В, достигая где-то 14,6 В. По стандарту сезонная подстройка выполняется снятием или установкой перемычек S1, S2 и S3. Установка перемычек исключает из схемы резисторы R1, R2 и R3 и напряжение на выходе возрастает. При снятии перемычек транзисторы снова включаются в работу и напряжение падает. Чтобы этого не делать, упомянутые транзисторы можно заменить одним подстроечным и регулировать выходное напряжение проще и с большей точностью.
Читайте также:
Учебное пособие по регулятору напряжения— The Geek Pub
Регулятор напряжения — это очень удобный электронный компонент, который нужно иметь в своем арсенале. Стабилизатор напряжения преобразует нерегулируемое напряжение, которое может колебаться (или напряжение выше, чем напряжение, необходимое для работы устройства), и преобразует его в идеально стабильное напряжение, которое не изменится даже при изменении входного сигнала. В этом руководстве по регулятору напряжения мы узнаем все о регуляторах напряжения и о том, как они работают.
Учебное пособие и основы работы с регулятором напряжения
Представьте, что у вас есть батарея на 9 вольт, но для работы устройства, которое вам нужно, требуется 5 вольт.Если вы подадите на устройство напряжение более 5 В, это приведет к перегреву или повреждению устройства. Вот где стабилизатор напряжения может быть мощным союзником! Стабилизатор напряжения LM7805 принимает на входе от 7 до 25 вольт (в зависимости от точных спецификаций производителя). На выходе он выдает идеально стабильные 5 вольт, что позволяет нам питать наше устройство! Аккуратный!
Иногда у вас есть блоки питания, которые не регулируются. Это означает, что их выходное напряжение будет изменяться в зависимости от входного напряжения.Нерегулируемый источник питания на 12 вольт может варьироваться от 10 до 14 вольт. Это может быть очень нежелательно для современной электроники. Опять же, добавление регулятора напряжения решает проблему!
Стабилизаторы напряжения доступны практически с любыми выходными характеристиками, которые могут вам понадобиться. На самом деле, вот вам фантастический ассортиментный набор, который стоит менее 15 долларов. Он имеет 14 различных выходных значений!
Когда вы разбираете его до самой простой формы, регулятор напряжения обрезает напряжение, если оно превышает его номинальное выходное напряжение, оставляя вам стабильно надежное напряжение, независимо от того, выше или изменяется входное напряжение.Большинство современных регуляторов напряжения имеют точность в пределах +/- 5% от своего номинала, и вы можете получить их с точностью до + / 11%, если они вам понадобятся.
Характеристики и нумерация регулятора напряженияВ нашем руководстве по регулятору напряжения давайте поговорим о нумерации регуляторов напряжения! Большинство регуляторов напряжения имеют следующую нумерацию. Чаще всего они начинаются с L или LM (но не всегда). Далее следуют 78 для положительного регулятора или 79 для регуляторов отрицательного напряжения (подробнее об этом позже).Последние две цифры обычно представляют их выходное напряжение, 03, 05, 09, 12 и т. Д. Иногда в конце есть буква, которая указывает на точность или особенность некоторых регуляторов напряжения.
Вот несколько примеров того, как может быть пронумерован регулятор напряжения:
Важно помнить, что они могут отличаться от производителя к производителю, поэтому всегда проверяйте их спецификации, чтобы убедиться, что вы знаете, что получаете. Кроме того, некоторые производители заменяют LM буквами своей торговой марки, например TT7805.Лучший способ узнать наверняка — просто погуглить номер детали.
Распиновка LM78XX
Регуляторы напряжения LM78XX, такие как LM7805, LM7809 и LM7812, представляют собой трехконтактные ИС. Распиновка для этих регуляторов следующая:
Регуляторы положительного и отрицательного напряжения
Регуляторы напряжения также бывают в версиях с отрицательным и положительным выходом. С электричеством постоянного тока все относительно земли. Положительное напряжение выше потенциала земли системы, а отрицательное напряжение ниже потенциала земли.Для регулирования отрицательного напряжения вам понадобится стабилизатор отрицательного напряжения.
Некоторые люди думают, что регуляторы отрицательного напряжения выводят отрицательное напряжение на входе положительного напряжения. Это не тот случай. Регуляторы отрицательного напряжения не скрывают положительное напряжение в отрицательное. Вам потребуется получить отрицательный источник напряжения от вышестоящего трансформатора (или иметь отдельную батарею в портативных устройствах).
Подключение регулятора напряжения
Во многих проектах на YouTube и в других местах мы видим регуляторы напряжения, просто уложенные за трансформатором и перед каким-то чипом или устройством, на которое они подают ток.Хотя это будет работать в большинстве случаев, лучше всего использовать три конденсатора с регулятором, чтобы получить максимальную точность и стабильный выходной сигнал.
Вы должны разместить 10 мкФ на входе и выходе, как правило, электролитические, и дополнительный керамический конденсатор 0,1 мкФ на выходе. Если у вас нет этих точных значений, в большинстве случаев должно работать что-то близкое.
Вот диаграмма стиля Фритцинга и стандартная схема цепи регулятора напряжения для справки:
Кроме того, вы захотите проверить спецификации, чтобы увидеть, требуется ли радиатор для вашего приложения.Во многих случаях стабилизатор напряжения без радиатора работает только до 100 миллиампер. Для увеличения потребляемого тока вам понадобятся радиаторы все больше и больше.
Недостатки регуляторов напряжения
Далее в нашем руководстве по регулятору напряжения нам нужно поговорить о некоторых дополнительных предостережениях при использовании регуляторов напряжения, о которых вам следует знать. Они не идеальны для каждого проекта и могут иметь некоторые существенные недостатки при использовании в неправильных приложениях.
КПД регулятора напряжения
Регуляторы напряжения обычно не считаются эффективными устройствами. Вы можете рассчитать, сколько отходов они произведут, используя следующую формулу:
(Vin — Vout) X потребляемый выходной ток.
Если вы произведете вычисления на 5-вольтовой цепи, потребляемой 500 миллиампер (или 0,5 ампера) при входном напряжении 12 вольт, то окажется, что это 3,5 Вт тепла, выделяемого (или потраченного впустую). Если вы ищете более низкое энергопотребление, вам нужно поискать в другом месте.
Теперь о линейных регуляторах напряжения следует знать еще две вещи.
Падение напряжения регулятора напряжения
У регуляторов напряжения есть то, что называется падением напряжения. Это точка, в которой входное напряжение слишком низкое, чтобы поддерживать стабильное выходное напряжение. Помнишь эту трату? Мы должны где-то это объяснить! Большинство регуляторов напряжения имеют падение напряжения 2 В. Это означает, что вам потребуется минимум 7 вольт на входе, чтобы получить стабильные 5 вольт на выходе стандартного LM7805.Существуют регуляторы напряжения, называемые регуляторами напряжения с низким падением напряжения, которые имеют лучшие характеристики.
Регуляторы напряжения выделяют много тепла
Также важно отметить, что чем выше входное напряжение, тем больше тепла будет выделять регулятор напряжения и тем больший радиатор вам понадобится. Сохранение входного напряжения как можно более низким определенно помогает повысить эффективность схемы.
Если вы обнаружите, что это немного сбивает вас с толку, вы можете также проверить наши отличные руководства по напряжению и току!
* очень * Регулятор низкого напряжения — Электротехническая стековая биржа
Производитель микросхемы показывает вам, как это сделать: Максим.Ссылка показывает очень четкую принципиальную схему и объяснение.
Таким образом, вы можете реализовать произвольно низкое регулируемое выходное напряжение.
Выглядит проще, чем метод усилителя Spehro Pefhany. Просто использовать второй регулятор напряжения с V2 выходного напряжения, которое выше, чем опорное напряжение Vref первичного регулятора V1. Обычно между регулируемым выходом и землей есть делитель напряжения. Теперь вы должны поместить этот делитель напряжения между выходами обоих регуляторов напряжения.Среднее напряжение делителя подключено к входу обратной связи основного регулятора в обоих сценариях. V2 имеет только делитель напряжения в качестве нагрузки.
Забавно осознавать, что для работы регулятора не имеет значения, при каком напряжении вы подключаете «заземляющий» конец делителя напряжения в цепи обратной связи, потому что это статическое напряжение. Контур обратной связи связан с динамическими изменениями выходного напряжения. Если он идет вверх, регулятор должен попытаться снизить его, и наоборот.
Также не имеет значения, какой у вас импульсный стабилизатор (понижающий) или традиционный диссипативный регулятор. Конечно, Максим показывает регуляторы Максима, но вы можете использовать другие регуляторы.
Вот как в классической схеме регулятора напряжения используется делитель напряжения между выходом и землей. Регулятор настроит выходное напряжение таким образом, чтобы напряжения на обоих входах усилителя стали равными. Ясно, что выходное напряжение не может быть ниже Vref.
(нарисовано inkscape)
Вот как можно получить выходное напряжение ниже Vref:
Важно отметить, что выше об основных схемах, где опорное напряжение (1,25 В) соединены с положительным входом регулятора, и напряжением обратной связи от делителя напряжения на вход отрицательного. Однако популярные 3-контактные регуляторы, такие как серия LMvv для фиксированного выходного напряжения vv, и регулируемый регулятор LM317 работают несколько иначе.Здесь вывод «регулировки» НЕ является отрицательным входом, а является положительным входом с последовательным опорным напряжением запрещенной зоны. Таким образом, регулируемое выходное напряжение на 1,25 В выше, чем напряжение на регулировочном штыре. Итак, уловка состоит в том, чтобы подключить делитель напряжения между регулируемым выходным контактом и ОТРИЦАТЕЛЬНЫМ напряжением, обеспечиваемым вторым, малогабаритным регулятором напряжения. Вы найдете схему LM317 в качестве регулятора 0–30 В по этой ссылке Texas Instruments, см. Стр. 11.
Вот принципиальная схема низковольтного стабилизатора на LM317:
LM317 немного особенный, так как вывод «Adjust» не является входом с высоким импедансом, так как он имеет постоянный ток около 50–100 мкА, который вы должны учитывать как нагрузку на делитель напряжения.Но LM317 дешевый, в изобилии, имеет всего 3 контакта, и у меня было несколько в ящике для мусора, поэтому я действительно протестировал эту схему. Поскольку у него всего 3 контакта, для его внутренней работы требуется минимальный ток нагрузки около 5-10 мА в резисторе RL.
Обратите внимание, что значения 4,00 В и -5,00 В указывают на то, что эти напряжения должны быть стабильными, так как любой дрейф и шум будут полностью проявляться в выходном напряжении.
Конечно, мы создаем такие схемы для развлечения, но если у вас есть реальная потребность в низком напряжении, любой настольный блок питания за 50–100 евро можно регулировать до нуля вольт, часто с шагом 10 мВ.Как это работает? Вероятно, блок управления типа Arduino с выходом цифро-аналогового преобразователя (DAC), подключенным к положительному входу на схемах выше, вместо фиксированного стабилитрона, и дополнительный источник отрицательного напряжения на входе. . .
Прямая ссылка на заметку о приложении Maxim в виде файла PDF.
Пример схема с использованием второго опорного напряжения для генерирования вывода низкого напряжения от стандартного регулятора (от приложения записки Максим 🙂
Типы регуляторов напряженияи принцип работы | Статья
.СТАТЬЯ
Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.
Линейные регуляторы
В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Для того, чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление устройства прохода путем сравнения внутреннего опорного напряжения для дискретизированного выходного напряжения, а затем вождения ошибки к нулю.
Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.
Линейным регуляторам, таким как MP2018, для работы требуются только входной и выходной конденсатор (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.
Рисунок 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.
Импульсные регуляторымогут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.
Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .
Рисунок 2: Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.
Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.
Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.
Импульсные регуляторыочень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.
Топологии импульсного регулятора: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и повышающие-понижающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.
Пониженно-повышающие преобразователи
Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.
Регулятор напряжения
Четыре основные компоненты линейного регулятора являются проход транзистора, усилитель ошибки, опорное напряжение, и сетевой резистор обратной связи. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой входом является ссылкой стабильного напряжения (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторовобычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.
С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Применение линейного регулятора и импульсного регулятора
Линейные регуляторы часто используются в приложениях, которые чувствительны к стоимости, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.
Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.
Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подойдет импульсный стабилизатор, поскольку линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.
Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.
Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Это стандарт, чтобы посмотреть на опорное напряжение параметров. Это ограничивает более низкое выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы выбрать подходящий регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, V IN , V OUT , I OUT ).грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.
После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.
Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.
MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.
Список литературы
Глоссарий по электронной инженерии
_________________________Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!
Просмотреть все сообщения на форуме
Схема регулятора напряженияи принципиальные схемы
За прошедшие годы мы опубликовали на этом веб-сайте несколько схем регуляторов напряжения, которые служат многим целям.В этой статье я составляю краткий список лучших схем стабилизатора напряжения, которые будут полезны всем вам. Термин «регулятор напряжения» носит несколько общий характер — это может быть регулятор AC-AC или регулятор DC-DC. В основном то, что он делает, очень просто — он регулирует и поддерживает постоянный желаемый уровень напряжения на выходных клеммах. Итак, давайте начнем копать в нашем большом списке
Регулятор 6 В с использованием 7806
Это простая в сборке схема с использованием микросхемы IC 7806 (которая представляет собой трехконтактный стабилизатор положительного напряжения).Схема спроектирована таким образом, что напряжение сети 230 вольт понижается до 9 вольт с помощью трансформатора, а затем регулируется до 6 вольт на выходе. Эта ИС — стабильная, с внутренним ограничением тока и тепловым отключением. При использовании надлежащего радиатора он может выдавать ток на выходе более 1 А.
Регулируемый импульсный регулятор с использованием LM317
Линейные регуляторы напряжения неэффективны, поскольку они рассеивают много энергии в виде тепла. Чтобы решить такие проблемы с энергоэффективностью, мы можем использовать импульсный стабилизатор, который может сэкономить до 85% мощности по сравнению с линейным регулятором.Здесь у нас есть схема с использованием микросхемы LM317, которая представляет собой импульсный стабилизатор напряжения и может выдавать до 3 ампер тока. Импульсный стабилизатор работает, забирая небольшие биты энергии от источника входного напряжения и затем передавая их на выход с помощью твердотельного переключателя и схемы управления.
Регулятор 9 В с использованием 7809
Итак, вот еще одна простая схема регулятора напряжения, которая использует IC 7809 для регулирования входного напряжения 16 вольт.Сетевое напряжение 230 В понижается с помощью трансформатора, затем преобразуется в 16 В постоянного тока с помощью моста, а затем регулируется с помощью ИС. Как вы знаете, 7809 — это надежная ИС с внутренним ограничением тока, тепловым отключением, безопасной рабочей зоной и т. Д.
Схема регулируемого регулятора напряжения с использованием LM317
Ну, это набор схем регулятора напряжения , использующих LM317 IC — который является регулируемым регулятором напряжения. LM317 — трехконтактный регулируемый стабилизатор от National Semiconductors, входное напряжение которого может составлять до 40 вольт.Выходное напряжение можно регулировать от 1,2 В до 37 В. Теперь эта статья представляет собой сборник из 4 схем, использующих LM317.
1. Обычный стабилизатор положительного напряжения — выходное напряжение можно регулировать, изменяя потенциометр и резистор. Для вычисления V0ut дано уравнение.
2. Схема регулируемого регулятора напряжения — выходное напряжение может выбираться цифровым способом. Эта схема представляет собой не что иное, как простую модификацию схемы обычного регулятора напряжения с использованием LM317.Здесь вместо потенциометра параллельно подключены 4 резистора, которые активируются только соответствующими транзисторами. Таким образом, каждый транзистор действует как логический уровень и включается или выключается. Выбрав транзисторы и включив их, можно отрегулировать уровень выходного напряжения.
3. 5 ампер стабилизатор постоянного тока / постоянного напряжения — Вы поняли это из названия обряда? По сравнению с приведенными выше схемами эта немного тяжелая и в ней больше компонентов. Он использует операционный усилитель LM310 вместе с LM317.
4. Схема силового повторителя — запуталась что это? Ни что иное, как повторитель напряжения с высокой токовой нагрузкой.
Регулируемый регулятор напряжения 10 ампер с использованием MSK5012
Это простая в изготовлении схема регулятора напряжения постоянного тока с использованием надежной микросхемы MSK5012. Выходное напряжение можно программировать с помощью двух резисторов R1 и R2. Особенностью этой ИС является низкое падение напряжения из-за использования полевого МОП-транзистора в качестве внутреннего элемента последовательного прохода. MS5012 отличается высокой точностью и подавлением пульсаций.
Регулятор 12 В с использованием 7812
Итак, вот действительно мощный 12-вольтный стабилизатор, использующий IC 7812, который может обеспечивать ток до 15 ампер. Стабилизатор 7812 используется для поддержания выходного напряжения на уровне 12 вольт, а три транзистора TIP 2599 используются для повышения тока. Это дорогостоящая схема из-за используемых компонентов высокой мощности. Так что собирайте, только если он вам нужен.
Регулятор 12 В на стабилитроне
Итак, появился первый стабилизатор напряжения, управляемый стабилитроном.Таким образом, эта схема действительно проста и легко собирается с использованием стабилитрона и последовательного транзистора (2N3055). Он может обеспечивать выходной ток до 3 ампер. Когда вы используете стабилитрон в качестве регулятора напряжения, теоретически вы получите на выходе на 0,7 вольт меньше. В данном случае — 11,3 вольт.
От 2 до 37 вольт Регулируемый регулятор напряжения с использованием LM723
Стабилизатор напряжения на микросхеме LM723 — линейный регулятор производства National Semiconductors. Входное напряжение может быть до 40 вольт, а выходное — от 2 до 37 вольт.Без каких-либо настроек ИС может выдавать ток до 150 мА, а дальнейшее улучшение тока может быть достигнуто путем добавления транзистора с последовательным проходом — в нашем случае MJ3001 транзистор Дарлингтона.
13 вольт 5 ампер Регулируемый регулятор напряжения с использованием LM338
МикросхемаLM338 произведена в компании ST Microelectronics. ИС имеет временное ограничение тока, терморегуляцию и выпускается в корпусе с 3-выводными транзисторами. LM338 имеет диапазон выходного напряжения от 1 до 1.2 В и 30 В, и он может выдавать выходной ток более 5 ампер. R1 и R2 настраиваются для программирования желаемого выходного напряжения.
25 В Регулируемый регулятор с использованием LM117
Хм !! Это самая простая принципиальная схема регулятора напряжения на нашем сайте! Только что получил IC LM117 и 4 пассивных компонента. Вы можете регулировать выходное напряжение, изменяя потенциометр. LM117 — это надежная ИС, которая может выдавать стабилизированное напряжение в диапазоне от 1,2 до 37 вольт. Этот источник питания может обеспечивать ток до 0 o.5 ампер.
Набор регуляторов переключения
Эта статья предназначена больше для образовательных целей, чем для ваших практических нужд. Принцип коммутации отличается от линейного регулирования напряжения. Главное преимущество импульсного регулятора — энергоэффективность. Эта статья достаточно хороша, и она познакомит вас с теоретическими аспектами импульсного регулирования, простыми схемами переключения, некоторыми практическими применениями импульсных регуляторов. Ближе к концу вы найдете объяснение линейного регулирования по сравнению с коммутационным регулированием.Я настоятельно рекомендую вам эту статью для повышения ваших знаний.
Регулятор 3 А с использованием LM350
LM350K IC имеет такие функции, как терморегулирование, защита от короткого замыкания и т. Д. Это простая в сборке схема, которая, как было обнаружено, имеет лучшее подавление пульсаций и стабильность по сравнению с элементарным регулятором напряжения, использующим LM350 IC. Выходное напряжение можно регулировать от 1,2 В до 25 вольт, изменяя POT R2. Мы можем получить до 3 ампер тока от этого схемного приложения.
Схема повышающего преобразователя 12 В с использованием LM2698
А вот и первая схема повышающего преобразователя на микросхеме LM2698 (от National Semiconductors). LM2698 — это повышающий преобразователь общего назначения с диапазоном выходных сигналов от 2,2 В до 17 В постоянного тока. В этой конкретной схеме вы можете получить на выходе 12 вольт постоянного тока от 4,5 до 5 вольт постоянного тока в качестве источника входного сигнала.
Схема регулируемого регулятора напряжения с использованием L200
Еще одна простая схема, использующая монолитный интегрированный регулируемый стабилизатор напряжения IC L200.Эта ИС имеет такие функции, как ограничение тока, тепловое отключение, ограничение мощности, защита от перенапряжения на входе и т. Д. Резисторы R1 и R2 должны быть отрегулированы для получения желаемого выходного напряжения. Мы можем получить выходное напряжение от 2,8 до 15 вольт при токе в 1 ампер.
Типы регуляторов напряжения
Стабилизаторы напряжения принимают входное напряжение и создают регулируемое выходное напряжение на фиксированном или регулируемом уровне. Это автоматическое регулирование уровня выходного напряжения по-разному осуществляется различными типами регуляторов напряжения.
Типы регуляторов напряжения
Самый доступный и часто самый простой в использовании тип регуляторов напряжения — это линейные регуляторы напряжения. Линейные регуляторы компактны и часто используются в низковольтных маломощных системах. Импульсные регуляторы более эффективны, чем линейные регуляторы напряжения, но с ними сложнее работать и они дороже. Стабилитроны недороги и просты в использовании, но менее эффективны, чем линейные регуляторы.
Hemera Technologies / Getty ImagesЛинейные регуляторы
Одним из основных способов обеспечения стабильного напряжения для электроники является использование стандартного 3-контактного линейного регулятора напряжения, такого как LM7805, который обеспечивает выход 5 В, 1 А с входным напряжением до 36 В. (в зависимости от модели).
Линейные регуляторы работают, регулируя эквивалентное последовательное сопротивление (ESR) регулятора на основе напряжения обратной связи, по сути становясь схемой делителя напряжения. Это позволяет стабилизатору выдавать постоянное напряжение независимо от токовой нагрузки, установленной на нем, вплоть до его текущей допустимой нагрузки.
Одним из больших недостатков линейных регуляторов напряжения является большое минимальное падение напряжения, которое составляет 2,0 В на стандартном линейном стабилизаторе напряжения LM7805. Это означает, что для получения стабильного выходного напряжения 5 вольт требуется как минимум 7-вольтный вход.Это падение напряжения играет большую роль в мощности, рассеиваемой линейным регулятором, который должен рассеивать не менее 2 Вт, если он обеспечивает нагрузку 1 А (падение напряжения 2 В умноженное на 1 А).
Рассеивание мощности ухудшается по мере увеличения разницы между входным и выходным напряжением. Например, в то время как источник 7 В, регулируемый до 5 В, дающий 1 А, рассеивает 2 Вт через линейный регулятор, источник 10 В, регулируемый до 5 В, дающий такой же ток, рассеивает 5 Вт, делая регулятор только 50% эффективным.
Импульсные регуляторы
Линейные регуляторы — отличное решение для маломощных и недорогих приложений, где разница напряжений между входом и выходом мала и не требуется много энергии. Самым большим недостатком линейных регуляторов является их неэффективность, поэтому в игру вступают импульсные регуляторы .
Когда требуется высокий КПД или ожидается широкий диапазон входного напряжения, импульсный стабилизатор становится лучшим вариантом.Импульсные регуляторы напряжения имеют КПД 85% или выше по сравнению с КПД линейных регуляторов напряжения, которые часто ниже 50%.
Регуляторы переключения обычно требуют дополнительных компонентов по сравнению с линейными регуляторами. Значения компонентов в большей степени влияют на общую производительность импульсных регуляторов, чем линейные регуляторы. Существуют также проблемы проектирования при эффективном использовании импульсных регуляторов без ухудшения характеристик схемы из-за электронного шума, который генерирует регулятор.
Стабилитроны
Один из самых простых способов регулирования напряжения — стабилитрон. В то время как линейные регуляторы обычно имеют базовую конструкцию, стабилитрон обеспечивает адекватное регулирование напряжения в одном компоненте.
Поскольку стабилитроны шунтируют все дополнительное напряжение, превышающее пороговое значение напряжения пробоя, на землю, его можно использовать в качестве простого регулятора напряжения с выходным напряжением, подаваемым на выводы стабилитрона.
Однако стабилитроны часто имеют ограниченную способность обрабатывать мощность, что ограничивает их использование только маломощными приложениями.При использовании стабилитронов таким образом лучше всего ограничить доступную мощность, которая может протекать через стабилитрон, стратегически выбрав резистор подходящего размера.
Спасибо, что сообщили нам об этом!
Расскажите, почему!
Другой Недостаточно подробностей Сложно понятьКак построить схему регулятора напряжения
Как построить схему регулятора напряжения* Как создать схему регулятора напряжения *
Автор: 2manytoyz
8 февраля 2010 г.
Мы считаем само собой разумеющимся, что сеть доступна, и подключаем все наши настенные бородавки к различным розеткам, чтобы заряжать наши виджеты.Когда сетка все-таки выйдет из строя, как тогда заряжать эти предметы? Вы можете использовать батарею с инвертором для преобразования 12 В постоянного тока в 120 В переменного тока, а затем подключить стенную бородавку (подключить трансформатор) к инвертору, чтобы принять 120 В переменного тока и понизить его до 5 В постоянного тока, 9 В постоянного тока или того, что требует ваш виджет. Но каждый шаг в этом процессе приносит убытки. Не говоря уже о разочаровании от необходимости настраивать оборудование для этой цели, когда гаснет свет.
Есть способ проще / лучше. Для многих элементов требуется 12 В постоянного тока или меньше для зарядки.Простой регулятор напряжения можно сделать из нескольких недорогих деталей. Это позволит вам напрямую подключать виджеты к батарее. Они всегда будут заряжаться, независимо от того, что делает сеть. Это также снижает паразитную нагрузку на ваш счет за электричество из-за стенных бородавок, которые остаются горячими и тратят энергию. Для зарядки некоторых элементов требуется более 12 В постоянного тока. Мы обсудим это в конце статьи.
В этом примере я выбрал светодиодный рабочий фонарь, купленный в Harbour Freight.Адаптер прикуривателя не входит в комплект.
Вся необходимая информация обычно прямо на стене бородавки. 9 В постоянного тока, 600 мА, центральный контакт положительный.
Есть серия регуляторов напряжения, для завершения которых требуется очень мало аппаратного обеспечения. LM7805 (на фото) — стабилизатор +5 В постоянного тока. LM7809 — стабилизатор +9 В постоянного тока. Доступно много других размеров, но они также могут быть наиболее распространенными для вашего приложения. Они подключены одинаково для любого регулятора.Контакт 1 — это вход, контакт 2 — общая земля, контакт 3 — выход. Конденсатор 0,33 мкФ подключен между входом и землей, конденсатор 0,1 мкФ подключен между выходом и землей. Раньше я без проблем подключал их без конденсаторов в цепи, но для их установки не требуется много усилий, и это позволяет избежать возможных проблем с шумом в дальнейшем.
Вот информация из спецификации: «Серия LM78XX с тремя клеммами положительного стабилизатора доступна в корпусе TO-220 и с несколькими фиксированными выходными напряжениями, что делает их полезными в широком диапазоне приложений.Каждый тип использует внутреннее ограничение тока, тепловое отключение и безопасную защиту рабочей зоны, что делает его практически неразрушимым. При наличии соответствующего теплоотвода они могут обеспечивать выходной ток более 1 А. Хотя эти устройства разработаны в первую очередь как стабилизаторы постоянного напряжения, их можно использовать с внешними компонентами для получения регулируемых напряжений и токов ».
Я предпочитаю коробки проекта марки Pomona. Они недешевы, но ИМХО прослужат вечно. Вы также можете найти коробки для проектов в Radio Shack.Просто убедитесь, что часть его металлическая, так как мы будем использовать ее в качестве радиатора.
Вы можете подключить конденсаторы и провода непосредственно к ножкам регулятора напряжения, но стандартная печатная плата от Radio Shack упрощает это.
Я раньше резал эти доски ленточной пилой, но на этот раз использовал высечные ножницы. Когда я приблизился к нужному размеру, я использовал кусок наждачной бумаги, чтобы закончить удаление ненужной части доски. Я обрезал лишнюю медную цепь ножом Xacto.
Провода ввода / вывода были подведены в коробку для проекта, и я завязал на каждом кабеле узел 8 для снятия натяжения. Все компоненты распаяны на плате.
Стабилизатор находится вверху, конденсатор проходит между входом и землей (контакты 1 и 2), еще один конденсатор на выходе (контакты 2 и 3), и подсоединяется проводка (1 вход, 2 заземления для входа и выхода. , 3 выхода).
Задняя часть регулятора напряжения представляет собой металлическую пластину.Он используется для отвода тепла. Эти маленькие регуляторы хороши до 1 А, но требуют радиатора. Регулятор был прикручен к крышке проектной коробки. Печатная плата почти ничего не весит, а ножки регулятора удерживают ее перпендикулярно крышке, чтобы избежать короткого замыкания. На этом рисунке лучше видно узел разгрузки от натяжения в каждом кабеле. В каждое отверстие помещалась втулка, чтобы провода не натирались.
Коробка закрыта, и добавлена наклейка, поэтому я знаю, к какому проекту принадлежит эта коробка.
Хорошо, время для теста. Входное напряжение от аккумулятора 13,92В постоянного тока.
Выход из цепи регулятора, 9,03 В постоянного тока.
Worklight подключен к аккумуляторной батарее, заряжается.
Немного погодя загорелся зеленый свет, полностью заряжен.
Это определенно проект «сделай сам». Необходимы базовые навыки пайки. Детали дешевые. Регулятор 9VDC был приобретен у Digikey. P / N: LM7809CT-ND, ссылка на товар.Всего по 0,43 доллара за штуку.
Стабилизаторы на 5 В постоянного тока, которые я купил, также были произведены той же компанией, также по $ 0,43 каждый. P / N LM7805CT-ND, ссылка на этот продукт. Входной конденсатор можно найти по этой ссылке (0,46 доллара США). Имейте в виду, что это танталовый конденсатор, ЧУВСТВИТЕЛЬНЫЙ НА ПОЛЯРНОСТЬ. Если вставить его задом наперед, он сгорит! Они четко обозначены. FNV, был там, сделал это. Удивительно, сколько неприятного запаха может вызвать такая маленькая вещь! Это было много лет назад, когда еще изучал электронику … Выходной конденсатор можно найти по этой ссылке (0 руб.11). Доставка будет стоить дороже, чем запчасти, но Digikey — мое любимое онлайн-магазин электронных запчастей. Надежная, быстрая, конкурентоспособная цена. Обслуживание клиентов — A +.
Фактическое необходимое оборудование стоит менее 1 доллара. Купите любую коробку для проекта, которая соответствует вашим потребностям, цена Pomona — 9 долларов. Radio Shack тоже подойдут. Вы можете отрезать пробку от существующей стенной бородавки или получить замену за ~ 1 доллар. Я предпочитаю оставлять бородавки нетронутыми, давая мне возможность использовать их при необходимости. Я настоятельно рекомендую прикрепить этикетку к бородавке и коробке проекта, чтобы их можно было легко идентифицировать позже (к чему это?)., / p>
Если вам нужен источник постоянного тока выше, чем у вашего источника (например, от 12 В до 18 В постоянного тока), для этой цели есть готовые продукты. Это преобразователи постоянного тока в постоянный. Они позволяют заряжать от автомобиля такие продукты, как портативные компьютеры, в которых в наши дни часто используются батареи> 12 В постоянного тока. Powerstream продает их менее чем за 20 долларов. Просто обратите внимание на рейтинг эффективности. Продукт, который я исследовал, имел эффективность 50-80%. Я мог бы использовать один из них периодически в экстренных случаях, но не мог бы каждый день.Меня бы особенно интересовала паразитная нагрузка, когда элемент полностью заряжен. Я планирую купить преобразователь постоянного тока в постоянный и протестировать его. Эти данные будут в другой статье. Я измерил ток холостого хода в цепи регулятора напряжения, который был продемонстрирован в этой статье, он был незначительным.
Это простая сборка. Моя рабочая фара теперь заряжается от солнечных панелей и всегда готова к работе, несмотря на состояние электросети. Я купил несколько регуляторов серии 78xx, так как у меня есть несколько виджетов, которые я хотел бы подключить к батарее.Следующим элементом, который будет изменен, будет зарядное устройство типа «AA», затем портативное морское радио, перезаряжаемые радиостанции FRS и т. Д. И т. Д.
2манытойз
www.alpharubicon.com
Авторские права на все материалы на этом сайте, не указанные иным образом, принадлежат Trip Williams, 1996–2010. Все права защищены. Допускается воспроизведение только для личного пользования. Использование любого материала, содержащегося в данном документе, допускается при соблюдении установленных условий или при наличии письменного разрешения.
Электроника 102 — Урок 4
На предыдущем уроке мы улучшили усилитель, смоделировали его и продемонстрировали производительность с использованием SPICE.В этом уроке мы собираемся разработать регулятор напряжения — сердце любого источника питания.
Потребность в регуляторах напряжения
Назначение регуляторов напряжения — обеспечить стабильное напряжение питания в цепях. вы проектируете.
Это самые распространенные схемы (каждая электронная система, независимо от ее функции, есть хотя бы один), и все же ими часто пренебрегают из-за их утилитарности природа.
Нам нужны регуляторы напряжения, потому что источники первичного питания (например, обычные батареи, или напряжение переменного тока, которое мы получаем от сетевой розетки) обычно не очень стабильны или нестабильны достаточно, чтобы гарантировать, что наши схемы работают в пределах своих спецификаций.
Например, напряжение, которое мы получаем от автомобильного аккумулятора, может варьироваться от 14,4 В. когда двигатель работает и генератор заряжает аккумулятор, и при низком уровне 8 или 9 В при запуске двигателя холодным утром.Потому что может быть положительный или отрицательные всплески, наложенные на напряжение батареи из-за другого оборудования, большинство автомобильное оборудование рассчитано на работу с напряжением до 16 В. Внутри некоторых цепей для правильной работы требуется стабильное напряжение, например микропроцессор, используемый для управления магнитолой. Большинство микропроцессоров работают от источника питания 3 В или 5 В, которое должно регулироваться с точностью до доли вольт. Например, многие микросхемы, рассчитанные на работу от номинального напряжения 5 В. требуется, чтобы напряжение оставалось в пределах 4.5 и 5,5 Вольт.
опорного напряженияДля работы регуляторам напряжения требуется ссылка. А Напряжение ссылка является частью или цепь, обеспечивающая стабильное напряжение при выходе за пределы параметров, таких как напряжение питания или температура меняется.
Наиболее распространенное опорное напряжение диод Зенера ([1]). Стабилитрон — это диод, в котором наблюдается лавинный обратный пробой. оптимизированы и количественно определены таким образом, чтобы диод мог безопасно работать в этой области.
Мы можем использовать SwitcherCAD, чтобы проиллюстрировать поведение стабилитрона.
<Зинер-1.png>
Создайте схему сейчас, вам не нужно пока вводить какое-либо значение в Source V1. Не беспокойтесь о.Заявление постоянного тока в нижней части схемы, это просто строка текста, которую я поместил туда для справки. Когда вы закончите создание схемы, нажмите Simulate-> Edit Simulation Cmd. затем выберите «Развертка по постоянному току».
Введите следующие значения:
- Название 1-го источника для проверки: V1
- Тип развертки: линейный
- Начальное значение: -4
- Стоп-значение: 16
- Приращение: 0,1
У вас должен получиться такой сюжет:
<Зинер-2.png>
При напряжениях источника выше примерно 6 В стабилитрон начинает проводить ток и напряжение на нем составляют около 6.2 В, что является номинальным Напряжение стабилитрона для этой части.
Область отрицательного напряжения интересна тем, что показывает, что Стабилитрон похож на настоящий диод, когда он смещен в прямом направлении. Однако мы не собираемся использовать стабилитрон в этой области.
Самая интересная часть — это область обратного смещения (когда напряжения от V1 равны положительный). Эффект Зенера обеспечивает напряжение около 6,2 В, что вполне достаточно. стабильно по сравнению с напряжением источника.
Чтобы выяснить, насколько стабильна, давайте повторно запустим симуляцию, но с поиском источника. от 8 до 18 В.
<Зинер-3.png>
Регулировка линии = треугольник (V
на выходе ) / треугольник (V на выходе )В этом случае изменение выходного напряжения при вводе изменение напряжения с 14 до 16 В (изменение на 2 В) составляет 20 мВ, поэтому Стабилизация линии между 14 и 16 В составляет 1%.
Если бы мы заменили источник V1 автомобильным аккумулятором, мы бы ожидайте, что регулируемое напряжение стабилитрона будет варьироваться от 6,24 до 6,38 В, в то время как напряжение батареи изменяется с 8 до 16 В, что является значительным улучшением.
Давайте посмотрим, как влияет температура, добавив оператор .STEP к моделирование.
Щелкните значок текста и введите в текстовое поле следующее: «.STEP TEMP LIST 0 25 50», затем нажмите «Директива», «ОК» и запустите снова симуляция.
<Зинер-4.png>
Шунтирующие регуляторы
Этот тип схемы называется шунтирующим регулятором , потому что регулирующий элемент находится параллельно (а не последовательно) с нагрузкой. Пока наши схема не показывает нагрузку (пока), нагрузка запитана от любой цепи от регулируемого напряжения, которое, следовательно, будет подключено параллельно с стабилитроном.
Особенность шунтирующего регулятора, которая может быть как преимуществом, так и неудобством. в зависимости от того, где и как используется схема, шунтирующий регулятор тянет постоянный ток от источника. Ток, взятый из источника, — это ток, протекающий через последовательный резистор. Поскольку ток, который течет через последовательный резистор зависит только от напряжения источника, Напряжение стабилитрона и номинал резистора постоянны до тех пор, пока напряжение источника постоянно и не зависит от тока нагрузки.
Преимущество заключается в том, что ток источника не зависит от тока нагрузки.
Недостатком является то, что КПД схемы очень низок при малые токи нагрузки, поэтому схема не оптимизирована для работы от батареи.
Трудно представить более простую схему, она состоит всего из двух основных компонентов.
С другой стороны, доступный ток ограничен. Посмотрим, какой ток мы можем получить от этой схемы.
Расчет максимального тока нагрузки
В этой модифицированной схеме я добавил резистор R2, чтобы представить схему, которая будет использовать опорное напряжение. Резистор пока не имеет значения, он нужен для пояснения сути. Этот резистор составляет нагрузку и потребляет определенный ток. Нам нужно убедиться, что регулятор может обеспечить ток, необходимый для цепи. представлен резистором R2.
<Зенера-5.png >>
Я
R1 = Я D1 + Я R2 В нашей примерной схеме, когда напряжение источника равно 12 В, напряжение на стабилитроне равно 6,34 В, поэтому напряжение на резисторе R1 составляет 5,66 В, поэтому ток в резисторе будет 5,66 / 1000 или 5,66 мА.По мере уменьшения значения R2 ток через него будет увеличиваться, а ток через D1 уменьшится на такую же величину.
Если ток нагрузки (ток через R2) приближается к 5,66 мА, стабилитрон будет голодать (ток через него будет очень низким или нулевым), и он не будет делать свое работа по регулированию напряжения. Давайте узнаем, сколько тока мы можем пропустить D1, посмотрев на спецификацию.
Чтобы просмотреть весь документ, нажмите на картинку.
I
макс. = P макс. / V Зенера В этом случае максимальный ток равен 0.225 / 6,2 = 0,036 А или 36 мА.Если вы прочитаете примечания в листе технических данных, вы увидите, что 225 мВт — это Абсолютный максимальный рейтинг при температуре окружающей среды 25 ° C. В техническом паспорте также указаны вы можете определить тепловое сопротивление и номинальные характеристики для температур выше 25 градусов.
Не вдаваясь в подробности этих расчетов прямо сейчас, хороший практика проектирования заключается в ограничении максимального тока в нашей цепи до не более более 50% от абсолютного максимума рейтинга.Это 18 мА.
Если наша схема такова, что ток нагрузки может изменяться от нуля до некоторого значения, мы должны убедиться, что через R1 проходит не более 18 мА.
При выбранном нами (несколько произвольно) значении R1 мы достигнем 18 мА. когда напряжение от V1 составляет 6,2 + (1000 * 0,018) = 24,2 В, где 6,2 — это номинальное напряжение стабилитрона, а (1000 * 0,018) — это напряжение, которое нам нужно приложить через R1, чтобы через него протекал ток 18 мА.Итак, похоже, что у нас есть довольно большой запас прочности относительно максимальной рассеиваемой мощности в стабилитроне.
Теперь нам нужно рассмотреть, что происходит при минимальном напряжении питания. На примере автомагнитолы минимальное напряжение от аккумулятора может быть всего 8 В. При напряжении питания 8 В ток через R1 будет Только:
I
R1 = (V источник — V стабилитрон ) / R1 Это равняется 1.8 мА.Итак, если эта схема использовалась в автомобильном радиоприемнике для обеспечения регулируемого напряжения 6,2 В некоторые чувствительные схемы, мы можем потреблять до 1,8 мА без потери регулирования, и не рискуя взорвать стабилитрон при максимальном напряжении батареи.
На практике, точно так же, как мы снижали максимальный ток, мы не хотели бы полностью заморозить стабилитрон и убедиться, что напряжение остается в норме, мы должны поддерживать минимальный ток в стабилитроне.В таблице данных перечислены напряжение стабилитрона для 3 значений тока 1, 5 и 20 мА, поэтому пока оно допустимо интерполировать между данными значениями, менее рекомендуется используйте часть за пределами указанного диапазона значений, поэтому мы должны сохранить минимум 1 мА хоть стабилитрон, чтобы он работал нормально.
Это означает, что у нас есть доступный ток нагрузки до 0,8 мА.
Получение большей мощности с помощью регулятора прохода серии
Что делать, если 0.8 мА мало?
Что ж, мы могли либо:
- Уменьшите значение R1. Мы видели, что при текущем значении 1 кОм мы не сможем достичь безопасного максимального рассеивания мощности до тех пор, пока напряжение питания составляет 24,2 В. Мы можем уменьшить значение R1 так, чтобы максимальная безопасная мощность рассеяние достигается при 18 В, что является максимальным напряжением питания, которое мы нужно проектировать для.
- Измените схему на стабилитрон с более высокой номинальной мощностью (и уменьшите значение резистора R1, чтобы через него протекал больший ток), или
- Добавьте усилитель тока, используя один или несколько транзисторов.
Решение 1 легко реализовать и недорого, но оно не дает многого. улучшения. В данном случае максимальный ток стабилитрона составляет 18 мА, т.е. также максимально возможный ток нагрузки.
В общем, решение 2 не имеет особого смысла, потому что стабилитрон большей мощности их труднее достать, и цепь быстро потратит много энергии. В связи с тенденцией к оборудованию с батарейным питанием важно знать решения, которые не тратят впустую электроэнергию и не тратят минимум, необходимый для выполнения функции.
Решение 3 немного сложнее, но предлагает большую гибкость и больше эффективный.
Итак, попробуем решение 3.
Есть хорошо известная схема, выполняющая нужную нам функцию, поэтому без лишних слов, вот оно:
<Регулятор-1.png>
Точно так же источник тока будет генерировать любое напряжение, необходимое для количество тока, которое мы запросили.
Вы можете выбрать текущий источник из меню «Компонент», просто найдите и нажмите на «текущий».
Источники тока не так интуитивно понятны, как источники напряжения, поэтому не беспокойтесь если концепция кажется странной. Просто следите за тем, что мы будем делать с этим, и снова раз он станет вам знакомым.
Еще одна вещь, которую вы могли заметить, если действительно наблюдательны, — это то, что мы есть стабилитрон с каталожным номером BZX84C5V6L, которого не было в библиотеке.
Я жульничал. Я хотел продемонстрировать известную схему — стабилизатор на 5 В.Предыдущая схема представляла собой стабилизатор на 6,2 В, которого было достаточно для этой цели. упражнения, используется редко. 5 В — гораздо более распространенное напряжение, а Стабилитрон 5,6 В часто используется в схеме, подобной той, которую я только что описал. Но в библиотеке SwitcherCAD не было стабилитрона на 5,6 В.
Если вы обратитесь к спецификации Motorola (полный документ в формате pdf, а не выдержка выше), вы увидите, что некоторые номера деталей выделены жирным шрифтом. В примечании указано что эти номера деталей — , предпочтительные , что означает, что они гораздо более вероятны быть в наличии.Часть 5,6 В выделена жирным шрифтом, поэтому разумно предположить, что она должна были в библиотеке. Учитывая, сколько мы заплатили за SwitcherCAD, мы Простите Linear Technology за то, что она не включила все возможные номера деталей.
Так как же мне получить стабилитрон 5,6 В в SwitcherCAD?
Я открыл файл библиотеки диодов, C: \ Program Files \ LTC \ SwCADIII \ lib \ cmp \ standard.dio в текстовом редакторе и добавил BZX84C5V6L следующим образом:
.модель BZX84C5V6L D (Is = 1,66n Rs = 0,5 Cjo = 205p nbv = 3 bv = 5,6 Ibv = 1 м Vpk = 5,6 mfg = Тип двигателя = стабилитрон)Вы можете вырезать и вставить всю строку. Я поместил его прямо над частью BZX84C6V2L в файле. Обратите внимание, что эта модель, вероятно, не так хороша, как другие. Это подходит для приведенный ниже пример, но он может не подходить для более сложных симуляций. Поэтому, когда вы закончите курс, вы можете удалить модель из библиотеки.
Мне пришлось закрыть и снова открыть SwitcherCAD, потому что программа явно читает библиотеки при запуске программы и после того, как я изменил файл, она не перезагружала его автоматически.
Хорошо, хватит библиотеки SwitcherCAD, транзистор, который мы добавили к шунтирующему стабилизатору, в конфигурации, известной как эмиттер-повторитель . Это означает, что напряжение на эмиттер следует за напряжением на базе (с небольшим смещением обычно от 0,6 до 0,7 В). Коэффициент усиления по напряжению такой схемы чуть меньше 1.
Таким образом, если напряжение базы поддерживается на уровне 5,6 В, напряжение на эмиттере будет быть примерно от 4,9 до 5.0 Вольт.
Прежде чем двигаться дальше, убедитесь, что вы запрограммировали V1 как источник напряжения 12 В.
Чтобы сделать симуляцию более интересной, мы проведем развертку постоянного тока по току.
Нажмите Simulate-> Edit Simulation Cmd и выберите DC sweep . Введите значения следующим образом:
- Название 1-го источника для анализа: I1
- Тип развертки: линейный
- Начальное значение: 0
- Стоп-значение 0.1
- Приращение: 0,001
<Регулятор-2.png >>
Регулировка нагрузки выражается в процентах от выходного напряжения или в абсолютном значении.
Если мы выразим это как изменение напряжения по сравнению с изменением тока, которое вызвало он будет называться Выходное сопротивление , поскольку значение сопротивления равно равным отношению напряжения на нем к проходящему через него току.
Регулировка нагрузки = Дельта (В
на выходе ) / Среднее В на выходеВыходное сопротивление = Дельта (В
из ) / Дельта (I из ) В этом случае изменение выходного напряжения при изменении тока нагрузки от 50 до 100 мА составляет 40 мВ, поэтому выходное сопротивление равно.04 / 0,05 = 0,8 Ом для изменения тока нагрузки на 50%.Регулировка нагрузки составляет 0,04 / 4,92 = 0,81%.
Обратите внимание, как напряжение быстро растет при малых токах (ниже нескольких мА). Это связано с тем, что при очень малом токе нагрузки базовый ток, который равен = ток нагрузки / Hfe, настолько мал, что базовое напряжение необходимое для его создания становится очень маленьким, намного ниже типичного От 0,6 до 0,7 В.
Я добавил резистор R2 (100 кОм), чтобы обеспечить минимальный ток нагрузки. а без этого резистора напряжение на свету увеличивалось бы еще больше. текущие значения I1.Например, вы можете попробовать изменить R2 на 1000k (1 мегом).
На практике, если бы схема действительно работала до такой низкой токи, было бы неплохо немного уменьшить значение R2 для уменьшения роста напряжения при малых нагрузках.
С другой стороны, обратите внимание, что эта схема теперь выдает 100 мА, пока поддержание регулирования между 4,85 и 5,05 В для токов примерно между 5 мА и 100 мА.
Это было бы идеально для работы с большинством микропроцессоров с питанием 5 В.
Подавление пульсации
Подавление пульсаций — еще одна мера способности регулятора отклонять Колебания сетевого напряжения. Тем не менее, линейное регулирование, определенное выше, измеряется при статических (медленно меняющихся) изменениях входного напряжения, где подавление пульсаций измеряется при быстро меняющемся входном напряжении, обычно при сетевой частоте (60 Гц) или это вторая гармоника (120 Гц).
Если бы мы использовали реальные инструменты, мы бы измерили отклонение пульсаций наложение небольшого переменного напряжения на входное постоянное напряжение, затем измерение амплитуда того же сигнала на выходе регулятора и вычислителя Соотношение. Например, мы можем подать пиковое напряжение 1 В переменного тока (2 В размах), потому что это хорошо в пределах диапазона регулирования регулятора и производит расчеты Полегче.
Мы можем использовать ту же технику со Spice, хотя Spice предлагает другой метод, который мы изучим на следующем уроке.Для удобства замерим подавление пульсаций на частоте 1 кГц.
Установите источник тока I1 на фиксированное значение 50 мА, установите источник напряжения V1 на быть источником SINE со смещением 12 В постоянного тока, амплитудой 1 В и частотой 1 кГц, тогда отредактируйте команду моделирования следующим образом:
- Анализ переходных процессов
- Время остановки: 5 мс
- Время начала сохранения данных: 0
Вот график пульсаций на выходе (обратите внимание на шкалу напряжения):
<Регулятор-3.png
<Регулятор-4.png
Упражнения
- Сколько тока мы можем потребить от регулятора, прежде чем регулирование станет действительно плохим?
(вы можете использовать SwitcherCAD для экспериментов).
Какие факторы ограничивают увеличение тока? - Постройте напряжение на базе транзистора на том же графике, что и выходное напряжение, чтобы увидеть разницу. Объясните разницу.
- Вычислите коэффициент подавления пульсаций в дБ. Поскольку пульсация измеряется в Вольты, а не ватты, уравнение составляет 20 * log (V2 / V1).
- Постройте график изменения выходного напряжения при температуре 25, 50 и 75 градусов C.
Выводы этого урока
- Установлено, что регуляторы напряжения являются необходимой частью большинства современные электронные схемы.
- регуляторов напряжения нужен источник опорного напряжения, как правило, диод Зенера.
- Регуляторы напряжения характеризуются линейным регулированием и регулированием нагрузки, характеристики подавления пульсаций и температурной стабильности.
- Мы узнали, как использовать SPICE для получения этих значений.
В следующих уроках мы усовершенствуем стабилизатор напряжения с каскадом усиления.