Амперметр своими руками
Привет всем любителям самоделок. В данной статье я расскажу, как сделать амперметр своими руками, в сборке которой поможет кит-набор, ссылка на него будет в конце статьи. Данный амперметр пригодится для различных самоделок, где нужно контролировать ампераж. Корпус радиоконструктора выполнен специально с защелками для установки на щиток или панель, что является несомненным плюсом.
Перед прочтением статьи предлагаю посмотреть видеоролик с подробным процессом сборки и проверкой в работе кит-набора.
Для того, чтобы сделать амперметр своими руками, понадобится:
* Кит-набор
* Паяльник, флюс, припой
* Мультиметр
* Крестовая отвертка
* Бокорезы
Шаг первый.
Весь монтаж будет производиться на печатной плате, на которой нанесена маркировка всех компонентов, так что в данном случае инструкция не нужна, само качество изготовления платы на высоком уровне, также она имеет металлизированные отверстия.
Помимо самой платы здесь имеется не так много радиодеталей, таких как, конденсаторы, микросхема и панелька под нее, корпус с красным светофильтром и другие компоненты.
Разобравшись с комплектом кит-набора, переходим непосредственно к сборке.
Первым делом на плату устанавливаем резисторы. Для установки резисторов необходимо измерить их номиналы, сделать это можно при помощи мультиметра, цветовой маркировки с справочной таблицей или онлайн-калькулятора. Определив сопротивление каждого резистора, устанавливаем их на свои места, согласно маркировке на плате, с обратной стороны загинаем выводы, чтобы при пайке детали не выпали.
После установки резисторов переходим к конденсаторам, устанавливаем полярные и неполярные конденсаторы, полярные ставим с соблюдением полярности, плюс это длиная ножка, минус-короткая, также минус на плате обозначен заштрихованным полукругом.
Шаг третий.
Теперь закрепляем плату в приспособлении для пайки «третья рука» и наносим флюс на контакты, после чего припаиваем их при помощи паяльника, добавляя припой по мере необходимости.
Далее при помощи бокорезов откусываем лишнюю часть выводов, чтобы в дальнейшем они не мешали. При удалении выводов бокорезами будьте аккуратны, так как дорожки на плате держатся не очень крепко и есть возможность их нечаянно оторвать. После этого устанавливаем оставшиеся элементы. Вставляем на плату панельку для установки микросхемы, ориентируясь по ключу, затем два транзистора, на плате изображена маркировка в виде их корпусов. Для калибрования прибора устанавливаем подстроечный резистор, и под подключение входа и выхода вставляем разъемы.
Припаиваем установленные радиодетали с обратной стороны платы паяльником аналогично предыдущему шагу.
Шаг четвертый.
После пайки вставляем семисегментные индикаторы на плату, ориентируясь по точке на их корпусе и на маркировке платы, но перед этим очищаем плату от остатков флюса, для этого отлично подойдет растворитель или бензин «калоша».
Закрепляем плату в «третьей руке» , наносим флюс и припаиваем выводы индикаторов, при этом стараемся не перегревать их.
Удалять выводы на данном этапе не нужно, так как они не мешают.
Вставляем микросхему, ориентируясь по ключу в виде полукруглой выемки на ее корпусе, а также на самой плате.
Отклеиваем защитные пленки с семисегментных индикаторов.
Затем устанавливаем собранную плату в корпус с светофильтром красного цвета, который служит антибликом.
Плату закрепляем в корпусе с помощью четырех винтиков их комплекта, вкручиваем их крестовой отверткой.
Вот и готов кит-набор, теперь его можно проверить в действии.
Шаг пятый.
Чтобы проверить данный радиоконструктор необходимо подсоединить провода к питанию, для этого будет достаточно аккумуляторной батареи типа 18650, а тестируемое устройство подсоединяем в разрыв к входу прибора.
Подключать можно различные устройства для проверки потребления тока, чтобы откалибровать измерения имеется подстроечный резистор. Данный кит-набор пригодится для тех, кто хочет сделать что-то электронное, где необходим вывод информации в реальном времени, например, потребление тока электродвигателя. Также данная сборка будет полезна начинающим радиолюбителям, которые хотят попробовать себя в радиоэлектронике.
На этом у меня все, всем спасибо за внимание и творческих успехов.
Купить Kit-набор на Aliexpress
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
Сообщества › Кулибин Club › Блог › Изготовление шунта амперметра для зарядного устройства
Всем добрый вечер! Хочу поделится методикой изготовления шунта для амперметра в зарядное устройство. Не давно у знакомого в зарядном устройстве перегорел шунт и соответственно сгорел и сам амперметр.
Обмотка измерительной головки и контакты не рассчитана на ток в 50А, для применения в нашем ЗУ надо изготовить шунт.
Шунт — устройство, которое позволяет электрическому току протекать в обход какого либо участка электрической схемы. В нашем случае через шунт проходит основной зарядный ток, а через амперметр малая часть, пропорциональная основной величине тока.
Для шунта берем обычную канцелярскую скрепку.
На упаковке со скрепками было написано «Скрепки никелированные», фото не сделал самой упаковки. Разгибаем ее, чтоб из нее получился прямой кусочек проволоки…
Далее сгибаем кончики проволоки под гайки прибора и прикручиваем их вместе с проводами к амперметру.
Для калибровки амперметра нам понадобится регулируемый блок питания от 0 до 20 В с током в 5А, но можно обойтись обычным автомобильным аккумулятором (напишу далее), проволочный 100 Вт резистор ПЭВ-100,
мультиметр и соединительные провода. Все соединяем проводами между собой последовательно и подключаем к блоку питания.
Выставляем ток в 1А и смотрим на наш амперметр. Он показывает около 1,5 А. Нам надо 1 А.
Уменьшаем длинну шунта, чтоб стрелка амперметра стала показывать 1А.(По шкале амперметра это будет 10А). Далее вместо резистора подключаем лампочку с фары на ближний свет. Проверяем как работает амперметр на больших токах.
После, когда длинна шунта уже нам известна, завернутые под гайку кончики необходимо залудить оловом.
После разбираем наш прибор и белым корректором зарисовываем на шкале нули, собираем прибор. Шкала прибора получилась от 0 до 5А вместо 0-50А.
Если нету под рукой блока питания с регулировкой и проволочного 100 Вт резистора, вместо блока питания можно использовать автомобильный аккумулятор, а вместо резистора лампочку с габаритов задней фары на 15Вт. При подключении к аккумулятору, ток в цепи будет равен около 1 А, что достаточно для начальной калибровки амперметра. Потом так же можна подключить лампочку с передней фары в режиме ближнего света, для проверки амперметра под большим током.
Делаем контрольную поверку мультиметром и прибор можно устанавливать в зарядное
www.drive2.ru
изготовление своими руками, расчет шунта для амперметра постоянного тока, схема включения устройства
Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.
Зачем нужен шунт?
Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.
Расчёт сопротивления шунта
Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.
Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.
В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.
Схема включения устройства
Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.
Что можно использовать?
В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.
Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.
Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.
Что требуется?
Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.
- Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
- Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
- При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.
Напряжение подаётся только после правильной сборки цепи.
Шунт своими руками
Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».
В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.
- Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
- Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
- Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
- Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.
Полученная деталь подключается параллельно амперметру или гальванометру.
Переградуировка прибора
Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.
- Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
- Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
- Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
- Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
- Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.
Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.
С несколькими шунтами
Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.
Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.
При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.
Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.
О том, как произвести расчет шунта для амперметра, смотрите далее.
stroy-podskazka.ru
Схема амперметра на светодиодах (светодиодный индикатор тока)
Цифровой амперметр на светодиодах – удобный способ отображения информации, при котором имеет значение не только модуль измеряемой величины (что, кстати, значительно удобнее определять не по отклонению стрелочного индикатора, а по величине столбчатой диаграммы, или при помощи мини-дисплея), но и частоту изменения этого параметра.
Описание схемы
Светодиоды не отличаются большой мощностью, но использовать их в слаботочных электрических цепях допустимо и целесообразно. В качестве примера можно рассмотреть схему получения цифрового амперметра для определения силы тока в аккумуляторной батарее автомобиля, при номинальном диапазоне значений в 40…60 мА.
Вариант внешнего вида амперметра на светодиодах в столбикКоличество использованных светодиодов определит пороговое значение тока, при котором в работу будет включаться один из светодиодов. В качестве операционного усилителя можно использовать LM3915, либо подходящий по параметрам микроконтроллер. На вход будет подаваться напряжение через любой низкоомный резистор.
Удобно отражать результаты измерения в виде столбчатой диаграммы, где весь, практически используемый диапазон тока будет разделяться на несколько сегментов по 5…10 мА. Плюсом LED является то, что в схеме можно использовать элементы разного цвета – красного, зелёного, синего и т.д.
Для работы цифрового амперметра потребуются следующие компоненты:
- Микроконтроллер типа PIC16F686 с АЦП на 16 бит.
- Настраиваемые джамперы для выхода конечного сигнала. Можно, как альтернативу, применить DIP-переключатели, которые используются в качестве электронных шунтов или сигнальных замыканий в обычных электронных цепях.
- Источник питания постоянного тока, который рассчитан на рабочее напряжение от 5 до 15 В (при наличии стабильного напряжения, что контролируется вольтметром, подойдёт и 6 В).
- Контактная плата, где можно разместить до 20 светодиодов типа SMD.
Последовательность размещения и монтажа амперметра
Входной сигнал по току (не более 1 А) подаётся от стабилизированного блока питания через шунтирующий резистор, допустимое напряжение на котором не должно быть более 40…50 В. Далее, проходя через операционный усилитель, сигнал поступает на светодиоды. Поскольку значение тока во время прохождения сигнала изменяется, то соответственно будет изменяться и высота столбика. Управляя током нагрузки, можно регулировать высоту диаграммы, получая результат с различной степенью точности.
Монтаж платы с SMD-компонентами, по желанию пользователя, можно размещать либо горизонтально, либо вертикально. Смотровое окошко перед началом тарировки необходимо перекрывать тёмным стеклом (подойдёт фильтр с кратностью 6…10х от обычной сварочной маски).
Тарировка цифрового амперметра состоит в подборе минимального значения нагрузки по току, при которой светодиод будет светиться. Варьирование настройки производится экспериментально, для чего в схеме предусматривается резистор с небольшим (до 100 мОм) сопротивлением. Погрешность показаний такого амперметра обычно не превышает нескольких процентов.
Вы знали, что можно переделать старый вольтметр в амперметр? Как это сделать — смотрите видео:
Как настраивать регулировочный резистор
Для этого последовательно устанавливают силу тока, которая проходит через определённый светодиод. В качестве контрольного прибора можно использовать обычный тестер. Вольтметр включается в схему перед микроконтроллером, а амперметр – после него. Для исключения влияния случайных пульсаций подключается также сглаживающий конденсатор.
Практическим плюсом изготовления прибора своими руками (светодиодов не должно быть менее четырёх) является устойчивость схемы при значительных изменениях первоначально заданного диапазона силы тока. В отличие от обычных диодов, которые при коротком замыкании выйдут из строя, светодиоды просто не загораются.
Св-диоды как измерители тока в аккумуляторной батарее автомобиля, не только экономят заряд и сохраняют аккумуляторы, но и позволяют более удобным способом считывать показания.
Аналогичным образом можно построить и цифровой вольтметр. В качестве источников света для такого варианта применения подойдут элементы на 12 В, а наличие дополнительного шунта в схеме вольтметра позволит более рационально использовать всю высоту столбчатой диаграммы.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
svetodiodinfo.ru
Самодельный шунт для амперметра | Все своими руками
Опубликовал admin | Дата 29 ноября, 2011Амперметр для самодельного блока питания.
Для того чтобы изготовить шунт, надо рассчитать его сопротивление. Заходим на страницу «Карта сайта», выбираем категорию «Программы», заходим в заметку «Программы» и скачиваем «Программу для работ с проволокой». Так, программа есть. Теперь берем измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Эти параметры называются чувствительностью измерительной головки. Произведем расчет для головки с током в 50 микроампер. Зададимся измеряемым током, допустим 10А.
1) Замеряем сопротивление прибора (головки), для моей оно равно 1454 Ома.
2) В формулу 1 подставляем все имеющиеся данные: Ток прибора — Iприбора=0, 00005А; Ток измеряемый — Iизмеряемый=10А. Сопротивление прибора Rприбора= 1454 Ома.
3) Определили сопротивление шунта Rш=0,00727 Ом.
Открываем программу. Нажимаем вверху на вторую клавишу для определения длины шунта. Справа из выпадающего списка выбираем материал для шунта. Я для таких амперметров в качестве материала всегда использую светлую луженую жесть от консервных банок из-под сгущенного молока. И так, выбираем сталь.
Ее удельное сопротивление примерно в 10 раз больше чем у меди, поэтому геометрические размеры шунта будут меньше. Замеряем микрометром толщину жестянки, у моей она равна 0,2мм. Выбираем ширину полоски жести, девяти миллиметров для тока в десять ампер я думаю хватит, тем более, что плоский проводник имеет большую площадь охлаждения.
Если будет уж очень сильно греться, то ширину можно увеличить и пересчитать шунт. Определяем площадь сечения нашего шунта S=0,2×9=1,8 квадратных мм. Выбираем величину ввода — «площадь поперечного сечения». Вводим это значение в соответствующее окно. Вводим величину необходимого сопротивления шунта. Нажимаем на «Результат» и получаем длину проводника равной 74 миллиметрам. Берем банку 1 (Фото 1) и вырезаем из ее жести соответствующую полоску. На фото я показал, какие формы можно придавать шунту. Под номером 4 шунт для печатного монтажа, концы полоски припаиваются к печатным площадкам. Вообще я всегда немного увеличиваю длину таких шунтов, что ведет к увеличению их сопротивления и в следствии с этим увеличению падения напряжения на на данном шунте при одном и том же токе. Зато появляется возможность точно отрегулировать показания амперметра с помощью добавочного резистора, включенного последовательно с измерительной головкой. См. фото2.
Фото_2
Конечно, в качестве шунтирующего резистора можно использовать и медный обмоточный провод, но тогда шунт будет очень длинным. Хотя давайте попробуем. Вводим новые данные в соответствующие окна. Смотрим следующий скиншот_2. Получаем шунт в виде проволоки длиной 51см. Не стоит сматывать проволоку в катушку и концентрировать тепло в одном месте. Просто проденьте этот кусок проволоки во
Скриншот_2
фторопластовую трубочку и используйте его, как монтажный провод к выходной клемме вашего блока питания. Естественно от концов этого шунта пойдут два провода к измерительной головке.
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:57 889
www.kondratev-v.ru
Амперметр своими руками стрелочный
Амперметр для самодельного блока питания.
Для того чтобы изготовить шунт, надо рассчитать его сопротивление. Заходим на страницу «Карта сайта», выбираем категорию «Программы», заходим в заметку «Программы» и скачиваем «Программу для работ с проволокой». Так, программа есть. Теперь берем измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Эти параметры называются чувствительностью измерительной головки. Произведем расчет для головки с током в 50 микроампер. Зададимся измеряемым током, допустим 10А.
1) Замеряем сопротивление прибора (головки), для моей оно равно 1454 Ома.
2) В формулу 1 подставляем все имеющиеся данные: Ток прибора — Iприбора=0, 00005А; Ток измеряемый — Iизмеряемый=10А. Сопротивление прибора Rприбора= 1454 Ома.
3) Определили сопротивление шунта Rш=0,00727 Ом.
Открываем программу. Нажимаем вверху на вторую клавишу для определения длины шунта. Справа из выпадающего списка выбираем материал для шунта. Я для таких амперметров в качестве материала всегда использую светлую луженую жесть от консервных банок из-под сгущенного молока. И так, выбираем сталь.
Ее удельное сопротивление примерно в 10 раз больше чем у меди, поэтому геометрические размеры шунта будут меньше. Замеряем микрометром толщину жестянки, у моей она равна 0,2мм. Выбираем ширину полоски жести, девяти миллиметров для тока в десять ампер я думаю хватит, тем более, что плоский проводник имеет большую площадь охлаждения.
Если будет уж очень сильно греться, то ширину можно увеличить и пересчитать шунт. Определяем площадь сечения нашего шунта S=0,2×9=1,8 квадратных мм. Выбираем величину ввода — «площадь поперечного сечения». Вводим это значение в соответствующее окно. Вводим величину необходимого сопротивления шунта. Нажимаем на «Результат» и получаем длину проводника равной 74 миллиметрам. Берем банку 1 (Фото 1) и вырезаем из ее жести соответствующую полоску. На фото я показал, какие формы можно придавать шунту. Под номером 4 шунт для печатного монтажа, концы полоски припаиваются к печатным площадкам. Вообще я всегда немного увеличиваю длину таких шунтов, что ведет к увеличению их сопротивления и в следствии с этим увеличению падения напряжения на на данном шунте при одном и том же токе. Зато появляется возможность точно отрегулировать показания амперметра с помощью добавочного резистора, включенного последовательно с измерительной головкой. См. фото2.
Конечно, в качестве шунтирующего резистора можно использовать и медный обмоточный провод, но тогда шунт будет очень длинным. Хотя давайте попробуем. Вводим новые данные в соответствующие окна. Смотрим следующий скиншот_2. Получаем шунт в виде проволоки длиной 51см. Не стоит сматывать проволоку в катушку и концентрировать тепло в одном месте. Просто проденьте этот кусок проволоки во
фторопластовую трубочку и используйте его, как монтажный провод к выходной клемме вашего блока питания. Естественно от концов этого шунта пойдут два провода к измерительной головке.
Параметры и особенности стрелочных вольтметров
И хоть мы уже давно привыкли к цифровым вольтметрам, в природе всё ещё встречаются и стрелочные.
В некоторых случаях их применение может быть более удобным и практичным, чем использование современных цифровых.
Если в ваши руки попал стрелочный вольтметр, то желательно узнать его основные характеристики. Их легко определить по шкале и надписях на ней. В мои руки попал встраиваемый вольтметр М42300.
Внизу, под шкалой, как правило, есть несколько значков и указана модель прибора. Так, значок в виде подковы (или изогнутого магнита) означает, что это прибор магнитоэлектрической системы с подвижной рамкой.
На следующем снимке можно разглядеть такую подковку.
Горизонтальная чёрточка указывает на то, что данный измерительный прибор рассчитан на работу с постоянным током (напряжением).
Тут же стоит уточнить, почему речь идёт о постоянном токе. Не секрет, что стрелочными бывают не только вольтметры, но и огромное количество других измерительных приборов, например, тот же аналоговый амперметр или омметр.
Действие любого стрелочного прибора основано на отклонении катушки в поле магнита при прохождении постоянного тока по этой самой катушке. Чтобы отобразить с помощью стрелки показания на шкале прибора, ток должен быть постоянным.
Если он будет переменным, то стрелка будет отклоняться вправо-влево с частотой переменного тока, который протекает через обмотку катушки. Чтобы измерить величину переменного тока или напряжения в измерительный прибор встраивают выпрямитель.
Именно поэтому, под шкалой прибора указывается тип тока, с которым он способен работать: постоянным или переменным.
Далее на шкале прибора можно обнаружить целое или дробное число, вроде 1,5; 1,0 и подобное. Это класс точности прибора, выраженный в процентах %. Понятно, чем меньше число, тем лучше – показания будут точнее.
Также можно увидеть такой знак – две пересекающиеся черты под прямым углом. Этот знак указывает на то, что рабочее положение прибора вертикальное.
При горизонтальном положении показания могут быть менее точные. Иными словами прибор может «врать». Стрелочный вольтметр с таким значком лучше устанавливать в прибор вертикально и исключить существенный наклон.
А вот такой знак говорит о том, что рабочее положение прибора — горизонтальное.
Ещё один интересный знак – пятиконечная звезда с цифрой внутри.
Данный знак предупреждает о том, что между корпусом прибора и его магнитоэлектрической системой напряжение не должно превышать 2кВ (2000 вольт). На это стоит обращать внимание при эксплуатации вольтметра в высоковольтных установках. Если вы планируете использовать его в блоке питания на 12 – 50 вольт, то беспокоиться не стоит.
Как считывать показания со шкалы стрелочного вольтметра?
Для тех, кто впервые видит шкалу прибора, возникает вполне резонный вопрос: «А как же считывать показания?» На первый взгляд ничего непонятно .
На самом деле всё просто. Чтобы определить минимальное деление шкалы нужно определить ближайшее число (цифру) на шкале. Как видим на шкале нашего М42300 – это 2.
Далее считаем количество промежутков между чёрточками до первого числа или цифры – в нашем случае до 2. Их оказывается 10. Далее делим 2 на 10, получаем 0,2. То есть, расстояние от одной маленькой чёрточки до соседней, равно — 0,2 вольта.
Вот мы и нашли минимальное деление шкалы. Таким образом, если стрелка прибора отклонится на 2 маленьких деления, то это будет означать, что напряжение равно 0,4V (2 * 0,2V = 0,4V).
В наличии уже знакомый нам встраиваемый вольтметр модели М42300. Прибор предназначен для измерения постоянного напряжения до 10 вольт. Шаг измерения — 0,2 вольта.
Прикручиваем к клеммам вольтметра два провода ( соблюдаем полярность!), и подключаем севшую батарейку на 1,5 вольта или любую попавшуюся.
Вот такие показания я увидел на шкале прибора. Как видим, напряжение батарейки равно 1 вольту (5 делений * 0,2V = 1V). Пока фотографировал, стрелка вольтметра упорно двигалась к началу шкалы — батарейка отдавала последние «соки».
Кроме этого мне стало интересно, какой ток потребляет сам стрелочный вольтметр. Поэтому вместо батарейки я подключил блок питания и выставил на выходе 10 вольт — чтобы стрелка прибора отклонилась на всю шкалу. Далее я подключил в разрыв цепи цифровой мультиметр и измерил ток.
Оказалось, ток, потребляемый стрелочным вольтметром, составил всего 1 миллиампер (1 мА). Его достаточно, чтобы стрелка отклонилась на всю шкалу. Это очень мало. Поясню свой намёк.
Получается, что стрелочный вольтметр экономичнее цифрового. Посудите сами, любой цифровой измерительный прибор имеет дисплей (ЖК или светодиодный), контроллер, а также буферные элементы для управления дисплеем. И это только часть его схемы. Всё это потребляет ток, садит батарею или аккумулятор. И если в случае вольтметра с жидкокристаллическим дисплеем потребляемый ток невелик, то при наличии активного светодиодного индикатора, потребляемый ток будет уже существенный.
Вот и получается, что для портативных приборов с автономным питанием иногда разумнее использовать классический стрелочный вольтметр.
При подключении вольтметра к цепи следует помнить о нескольких простых правилах.
Во-первых, вольтметр (любой, хоть цифровой, хоть стрелочный) необходимо подключать параллельно той цепи или элементу, напряжение на котором планируется измерять или контролировать.
Во-вторых, следует учитывать рабочий диапазон измерений. Узнать его легко – достаточно взглянуть на шкалу и определить последнее число на шкале. Это и будет граничное напряжение для измерения данным вольтметром. Естественно, есть и универсальные вольтметры, с выбором предела измерения, но сейчас речь идёт о встраиваемом стрелочном вольтметре с одним пределом измерения.
Если подключить вольтметр, например, со шкалой измерения до 100 вольт, в цепь, где напряжение превышает эти 100 вольт, то стрелка прибора будет уходить за пределы шкалы, «зашкаливать». Такое положение дел рано или поздно приведёт к порче магнитоэлектрической системы.
В-третьих, при подключении стоит соблюдать полярность, если вольтметр рассчитан на измерение постоянного напряжения. Как правило, на клеммах (или хотя бы у одной) указывается полярность – плюс «+» или минус «-» . При подключении вольтметров, рассчитанных на измерение переменного напряжения, полярность подключения не имеет значения.
Надеюсь, теперь вам будет проще определить основные характеристики стрелочного вольтметра, а самое главное, применить его в своих самоделках, например, встроив его в блок питания с регулируемым выходным напряжением . А если сделать светодиодную подсветку его шкалы, то он будет выглядеть вообще шикарно! Согласитесь, такой стрелочный вольтметр будет смотреться стильно и эффектно.
♦ В предыдущей статье: «Выпрямитель для зарядки аккумулятора « для контроля зарядного тока применяется амперметр на 5 — 8 ампер. Амперметр довольно дефицитная вещь и не всегда подберешь его на такой ток. Попробуем изготовить амперметр своими руками.
Для этого потребуется стрелочный измерительный прибор магнитно-электрической системы на любой ток полного отклонения стрелки по шкале.
Необходимо посмотреть, чтоб у него не было внутреннего шунта или добавочного сопротивления для вольтметра.
♦ Измерительный стрелочный прибор имеет внутреннее сопротивление подвижной рамки и ток полного отклонения стрелки. Стрелочный прибор может использоваться как вольтметр (добавочное сопротивление включается последовательно с прибором) и как амперметр (добавочное сопротивление включается параллельно с прибором).
♦ Схема для амперметра справа на рисунке.
Добавочное сопротивление — шунт рассчитывается по специальным формулам. Мы же изготовим его практическим путем, применив только калибровочный амперметр на ток до 5 — 8 ампер, или применив тестер, если он имеет такой предел измерения.
♦ Соберем несложную схему из зарядного выпрямителя, образцового амперметра, провода для шунта и заряжаемого аккумулятора. Смотрите рисунок.
♦ В качестве шунта можно использовать толстый провод из стали или меди. Лучше всего и проще, взять тот же провод, каким наматывалась вторичная обмотка, или чуть-чуть потолще.
Необходимо взять отрезок медного или стального провода длиной около 80 сантиметров, снять с него изоляцию. На двух концах отрезка сделать колечки для болтового крепления. Включить этот отрезок последовательно в цепь с образцовым амперметром.
Один конец от нашего стрелочного прибора припаять к концу шунта, а другим проводить по проводу шунта. Включить питание, установить регулятором или тумблерами ток заряда по контрольному амперметру — 5 ампер.
Начиная от места пайки, другим концом от стрелочного прибора проводить по проводу. Установить одинаковые показания обоих амперметров. В зависимости от сопротивления рамки вашего стрелочного прибора, разные стрелочные приборы будут иметь разную длину провода шунта, иногда до одного метра.
Это конечно не всегда удобно, но если у вас будет свободное место в корпусе, можно аккуратно разместить.
♦ Провод шунта можно смотать в спираль как на рисунке, или еще как нибудь по обстоятельствам. Витки немного растянуть, чтоб не касались друг друга или надеть колечки из хлорвиниловой трубочки по всей длине шунта.
♦ Можно предварительно определить длину провода шунта, а потом вместо голого применить провод в изоляции и намотать уже в навал на заготовку.
Подбирать надо тщательно, проделывая все операции несколько раз, тем точнее будут показания вашего амперметра.
Соединительные провода от прибора необходимо обязательно припаивать непосредственно к шунту, иначе будут неправильные показания стрелки прибора.
♦ Соединительные провода могут быть любой длины, а потому шунт может быть расположен в любом месте корпуса выпрямителя.
♦ Необходимо подобрать шкалу к амперметру. Шкала у амперметра для измерения постоянного тока равномерная.
Один из вариантов шкалы смотрите на рисунке:
Тут можно сделать шкалу на 5 ампер, на 8 ампер или на полное отклонение стрелки до 10 ампер.
Могут быть другие шкалы, на другие цифры по шкале.
А можно подрисовать свои цифры.
Нужно немного пофантазировать.
Такой амперметр подойдет только для измерения постоянного или пульсирующего тока.
vi-pole.ru
Стрелочный вольтметр на любое напряжение своими руками
Приветствую, Самоделкины!
Аналоговые измерительные приборы постепенно вытесняются цифровыми, но несмотря на это стрелочные головки все еще довольно широко распространены, причем используют их не только мастера самодельщики в своих самодельных конструкциях. Конечно такие приборы не славятся сверх высокой точностью, но тем не менее, в некоторых измерениях аналоговый прибор просто незаменим.
В данной статье мы подробно рассмотрим технологию изготовления стрелочного вольтметра для самых различных задач, буквально на любое напряжение. Такой вольтметр можно будет использовать в качестве измерителя напряжение в зарядных устройствах, регулируемых источниках питания и так далее. Автором данного проекта является «AKA KASYAN» (YouTube канал «AKA KASYAN).
Как измерять напряжение, думаю, все в курсе. Для начала нам естественно понадобится электромагнитная измерительная головка.
Такую головку можно изготовить своими руками, но процесс этот не такой уж и простой, поэтому более простым вариантом будет поиск уже готовой. Для данной самоделки подойдет буквально любой стрелочный индикатор любых размеров.
Так же желательно, чтобы индикатор имел линейную измерительную шкалу. В данном примере автор использовал головку высоковольтного вольтметра переменного напряжения, который благополучно был извлечен из стабилизатора.
В данном случае автор поставил задачу изготовить из высоковольтного вольтметра переменного напряжения низковольтный вольтметр постоянного напряжения со шкалой в 15-20 вольт. Как вы поняли данный образец рассчитан для работы в цепях переменного напряжения, а шкала 300В.
Первым делом необходимо вскрыть и разобрать электромагнитную измерительную головку.
Внутри мы можем увидеть выпрямительный диод и токоограничивающий резистор.
Напряжение с клемм вольтметра подается на обмотку измерительной головки именно через эту цепочку из диода и резистора. От них немного позднее мы избавимся, а сейчас аккуратно вынимаем шкалу, она крепится при помощи двухстороннего скотча.
После этого шкалу необходимо отсканировать.
Далее получившийся рисунок необходимо отредактировать. Для этой цели подойдет любой редактор, даже всем известный «Paint» без особого труда справится с этой задачей. Удаляем все дефекты, дорисовываем неполные линии, символы и надписи, ну и естественно меняем циферки на нужные.
В данном случае шкалу было решено сделать на 16В.
Затем берем линеечку и измеряем размеры родной шкалы.
После этого открываем Word, вставляем туда наш рисунок, указываем полученные размеры, ну и в конечно же распечатываем все это дело, лучше сразу несколько штук, мало ли что.
Теперь бумажку необходимо обрезать до нужных размеров.
После чего приклеиваем ее на место любым подручным клеем.
Так, с этим вроде разобрались, теперь аккуратно откусываем цепочку из резистора и диода, о которой говорилось в начале статьи.
Теперь необходимо припаять торчащие выводы друг к другу вот так:
Таким образом, напряжение, которое мы подадим на клеммы вольтметра, непосредственно пойдет на обмотку измерительной головки. Данная электромагнитная измерительная головка довольно чувствительная, и стрелка полностью отклоняется если на клеммы подать напряжение всего лишь в 0,5В.
Так дело не пойдет. Это никуда не годится, так как по нашей задумке стрелка прибора должна отклоняться до предела только в том случае, если на клеммы поддается напряжение 16В.
Для того, чтобы это исправить нам понадобится переменный, а лучше подстроечный многооборотный резистор с сопротивлением 20-50кОм.
После чего необходимо собрать вот такую простейшую схему, которая сейчас перед вами:
Для калибровки индикатора очень желательно наличие лабораторного блока питания, но за неимением такового вполне можно ограничиться любым адаптером питания вольт на 6. Далее параллельно источнику питания необходимо подключить мультиметр, он у нас будет в качестве эталона.
Теперь на вход подаем напряжение и медленно вращаем подстроечный резистор до тех пор, пока стрелка не покажет то напряжение, которое мы видим на мультиметре.
То есть, достаточно всего лишь откалибровать головку на конкретной отметке, а за счет того, что шкала линейная, другие значения напряжения наш измеритель будет также адекватно показывать.
После того, как калибровка завершена, подстроечный резистор необходимо выпаять.
Далее необходимо замерить полученное сопротивление, и на место выпаянного подстроечного резистора устанавливаем постоянный резистор с таким же сопротивлением.
Если под рукой нет нужного резистора, то можно соединить несколько резисторов последовательно для получения необходимого значения сопротивления.
Для данного проекта желательно использовать резисторы с погрешностью в 1 и меньше процент.
Подстроечник конечно можно оставить, но перед этим необходимо будет заклеить регулирующий винт, чтобы предотвратить его смещение.
Очень часто для постройки и измерительных головок, в самом начале через ограничительное сопротивление на головку падают эталонное напряжение и на пустой шкале делают метки, которые учитываются во время создания шкалы в редакторе. Такой подход более предпочтителен, так как это позволяет построить измерительные головки довольно высокой точности.
А на этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru