+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как проверить электролитический конденсатор большой емкости

Подготовительные работы

Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.

Способ №1 – Мультиметр в помощь

Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, как пользоваться мультиметром мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.

Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу. В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.

Измеряем сопротивление

Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.

После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.

Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!

После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.

Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.

Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло короткое замыкание.

Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.

Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.

Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.

Измеряем емкость

Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).

Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.

Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.

Измеряем напряжение

Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.

После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.

Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!

Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.

Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:

Способ № 2 – Обойдемся без приборов

Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.

Что еще важно знать?

Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).

Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.

Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.

Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!

Также читают:

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Элемент имеет определенные основные характеристики:

  • Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
  • Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
  • Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
  • Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
  • Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.

Важно: несмотря на большое количество параметров, измерению (проверке) подлежат лишь два из них: емкость и сопротивление диэлектрика.

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Преимущества твердотельных конденсаторов

  • В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
  • Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
  • Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
  • Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.

Самостоятельная диагностика конденсатора

Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.

Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.

Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.

Если внешний осмотр не дал результатов, проводим тестирование с помощью мультиметра

В любом случае, для выполнения этих работ необходимо выпаять деталь из платы. Делать это надо осторожно, чтобы не выдернуть контактные ножки из корпуса.

Если ваш прибор имеет специализированный разъем для проверки, диагностика выполняется в соответствии с инструкцией к мультиметру. Обязательно проводится весь комплекс тестирования (если такой алгоритм имеется). Подключать нужно правильно, соблюдая полярность. Маркировка обязательно присутствует на корпусе детали. При такой проверке вы не только проверите исправность, но и увидите значение емкости.

    Проверка работоспособности конденсатора начинается с измерения сопротивления. Делается это не так, как на резисторах или диодах. Чтобы понять принцип проверки, вспомним основные свойства конденсатора. При накоплении заряда сопротивление между обкладками увеличивается. Для начала необходимо разрядить элемент (снять остаточный заряд). Разумеется, это справедливо лишь для исправной детали. Надо просто замкнуть ножки любым проводником, или сомкнуть их между собой.

Важно: электролитические конденсаторы могут работать с напряжением до 600 Вольт и более, поэтому их разряжают только инструментом с изолированной рукояткой.

Проверка межобкладочного замыкания

Даже такой надежный конденсатор, как твердотельный, может иметь банальные физические повреждения. Например, замыкание между обкладками или на корпус. В первом случае сопротивление не увеличится до бесконечности, хотя первое время будет плавно увеличиваться. При пробое на корпус, сопротивление между одной из ножек и внешней оболочкой будет критически маленьким.

В обоих случаях, такие конденсаторы следует отнести к браку, восстановлению они не подлежат.

Проверка истинных значений емкости

Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.

Тестирование проводится в несколько этапов:

  • несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
  • нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).

Важно: обязательно соблюдайте полярность при проведении измерений. Это необходимо не только для получения истинного значения. При напряжении питания прибора хотя бы 9 вольт (такие мультиметры встречаются часто), конденсатор может выйти из строя из-за переполюсовки.

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Видео по теме

как проверить конденсатор мультиметром инструкция с фото

Для проверки работоспособности радиоэлементов существует несколько приемов и приборов. В частности, для измерения емкости и проверки состояния конденсаторов лучше всего подходит LC-метр. Однако в ситуациях, когда его нет под рукой, может выручить обычный мультиметр.

Содержание:

  1. Как он работает и зачем он нужен
  2. Подготовка перед проверкой
  3. Ход проверки
  4. Проверка на ёмкость
  5. Проверка вольтметром
  6. Проверка на короткое замыкание
  7. Проверка автомобильного конденсатора

Как работает конденсатор и зачем он нужен

Конденсатор – это пассивный электронный радиоэлемент. Его принцип действия схож с батарейкой – он аккумулирует в себе электрическую энергию, но при этом обладает очень быстрым циклом разрядки и зарядки. Более специализированное определение гласит, что конденсатор – это электронный компонент, применяемый для аккумуляции энергии или электрического заряда, состоящий из двух обкладок (проводников), разделенных между собой изолирующим материалом (диэлектриком).

простая схема конденсатора

Так каков принцип действия этого устройства? На одной пластинке (отрицательной) собирется избыток электронов, на другой — недостаток. А разница между их потенциалами будет называться напряжением. (Для строгого понимания нужно прочесть, например: И.Е. Тамм Основы теории электричества)

В зависимости от того, какой материал используется для обкладки, конденсаторы разделяют на:

  • твердотельные или сухие;
  • электролитические – жидкостные;
  • оксидно-металлические и оксидно-полупроводниковые.

По изолирующему материалу их делят на следующие виды:

  • бумажные;
  • плёночные;
  • комбинированные бумажно-плёночные;
  • тонкослойные;

Чаще всего необходимость проверки с использованием мультиметра возникает при работе с электролитическими конденсаторами.

Керамический и электролитический конденсатор

Ёмкость конденсатора находится в обратной зависимости от расстояния между проводниками, и в прямой – от их площади. Чем они больше и ближе друг к другу – тем больше ёмкость. Для её измерения используется микрофарад (mF). Обкладки изготавливаются из алюминиевой фольги, скрученной в рулон. В качестве изолятора выступает слой окисла, нанесенный на одну из сторон. Для обеспечения наибольшей ёмкости устройства, между слоями фольги прокладывается очень тонкая, пропитанная электролитом, бумага. Бумажный или пленочный конденсатор, сделанный по данной технологии, хорош тем, что обкладки разделяет слой окисла в несколько молекул, благодаря чему и удается создавать объемные элементы с большой ёмкостью.

Устройство конденсатора (такой рулон помещается в алюминиевый корпус, который в свою очередь кладется в пластиковый изолирующий короб)

На сегодня конденсаторы используются практически в каждой электронной схеме. Их выход из строя чаще всего связан с истечением срока годности. Некоторым электролитическим растворам присуще «усыхание», в процессе которого уменьшается их ёмкость. Это сказывается на работе цепи и форме сигнала, проходящего по ней. Примечательно, что это характерно даже для неподключенных в схему элементов. Средний срок службы – 2 года. С этой периодичностью и рекомендуется проводить проверку всех установленных элементов.

Обозначение конденсаторов на схеме.
Обычный, электролитический, переменный и подстроечный.

Подготовка перед проверкой

В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.

Мультиметр с аналоговой шкалой и цифровой мультиметр

Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.

Для подготовки к проверке:

  • Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
  • Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
  • Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными. Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.

Ход проверки

Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки. Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу.

Взорвавшиеся на плате конденсаторы и сработавший «защитный надрез»

Кстати, надо заметить, современное элементы снабжены специальными щелями для безопасного выхода схемы из строя. Иначе взрыв мог бы сильно испортить всю плату.

Но бывает и так

Перед тем как проверить элемент мультиметром, следует определить его тип: полярный или неполярный. Электролитические относятся к первой категории – их припаивают к контактам на схеме с соблюдением полярности: плюс – к плюсу, минус – к минусу. Соответственно, и клеммы мультиметра следует подключать согласно данному правилу. Неполярный конденсатор устанавливается без учета этих особенностей. Он, как и бумажный или керамический конденсатор, можно присоединяться к прибору в любом направлении.

Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:

  • При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
  • Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.

В обоих случаях исправность элементов уже не восстановить и их следует выбросить.

Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.

Проверка на ёмкость

Проверив сопротивление, мы лишь частично выполняем условия. Простая работоспособность элемента еще не говорит о том, что он работает правильно – в некоторых случаях очень важна точность в работе, к примеру, если проверяется конденсатор микроволновки или колебательного контура. Чтобы убедиться в том, что конденсатор накапливает и удерживает заряд, нужно проверить емкость.

Для этого нужно повернуть тумблер мультиметра на режим CX. Здесь стоит сказать, что проведение этой процедуры возможно лишь с помощью качественного цифрового прибора, но даже в таком случае точность измерений остается приблизительной. При использовании стрелочного инструмента стрелка после подключения начинает быстро отклоняться. В свою очередь это лишь косвенное доказательство исправности элемента, лишь подтверждающее то, что он набирает заряд. О том, как правильно подключать тестер к конденсатору в режиме ёмкости должно быть указано в инструкции пользователя. Не забывайте, что электролитический конденсатор необходимо присоединять, соблюдая полярность. Как правило, анодный (положительный) контакт несколько длиннее катодного (отрицательного).

Ниже размещено интересное радиолюбительское видео, где в середине проводится измерение емкости.

Предел измерения следует выбирать исходя из значения емкости, указанного на корпусе конденсатора. Так, к примеру, если номинальная емкость составляет 9,5 мкФ, необходимо измерять её, переведя тумблер на значение 20 µ. Если итоговые показатели измерений сильно отличаются от номинальных, значит радиодеталь неисправна.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

  1. Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
  2. Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
  3. Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса). После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Проверка на короткое замыкание

Обратите внимание, что данный способ относительно небезопасен и не рекомендуется его использование людьми без необходимого опыта и знаний.

  1. Для начала следует отсоединить конденсатор от схемы и ненадолго (до 4 сек) подключить к источнику питания.
  2. Отсоединив от источника питания, замкните выводы конденсатора с помощью электропроводящего инструмента (отвертка, пинцет, нож). Будьте осторожны: используйте для этого только заизолированный предмет или наденьте на руки резиновые перчатки.
  3. При замыкании выводов произойдет короткое замыкание, сопровождающееся вылетом искры, по виду которой и можно судить о состоянии элемента: если проскочила сильная и яркая искра, конденсатор в норме, тусклая и слабая искра говорит о неисправности.

А вот это видео мы настоятельно рекомендуем посмотреть, т.к. оно очень подробное и охватывает все аспекты нашей темы:

Проверка конденсатора на плате (не выпаивая)

На самом деле, механизм аналогичен, поэтому просто рекомендуем посмотреть это видео, оно должно закрыть все оставшиеся вопросы.

Проверка автомобильного конденсатора

В системах зажигания большинства современных автомобилей используется электронный коммутатор (по привычке называемый так же, как предшествующий ему механический прибор), распределяющий зажигание на свечи, которые, в свою очередь, подают искры на цилиндры двигателя. Считается, что поломка этого устройства требует его немедленной полной замены, однако, если причина неисправности в конденсаторе, используемом в конструкции, можно попробовать поменять только его. Для проверки на трамблере используется амперметр.

  1. Подключив амперметр к выводам конденсатора, включите зажигание и разомкните их.
  2. Обратите внимание на показатели амперметра – если стрелка сместилась с 2-4 А до нуля, наш элемент вышел из строя и надо его заменить.

Самостоятельно проверить автомобильный конденсатор можно и без специального оборудования. Для этого нужно подключить к контактам переносную лампочку небольшой мощности. Если радиоэлемент в порядке, то она не загорится после включения зажигания.

Как проверить конденсатор мультиметром на работоспособность, измерение емкости

Конденсатор — электронный элемент, относящийся к категории пассивных. Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд. В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.

Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.

В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.

Самый простой способ

Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.

При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их.

Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения.

Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.

Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.

В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко.

Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.

Применение тестера для проверки

Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ.

Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.

Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее.

При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки. Металлический проводник даже может оказаться оплавлен.

Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Нет разъема для измерения емкости

Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.

Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.

Алгоритм следующий:

  • разрядить элемент, закоротив его ножки;
  • выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
  • подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
  • коснуться черным щупом минуса детали, а красным — плюса;
  • наблюдать за показаниями прибора.

Обратите внимание, что электролитический тип всегда полярен, все остальные — неполярные.

Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается.

Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.

Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.

Что означают результаты проверки

При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.

Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.

Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.

Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.

Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.

Проверка на вольтаж

Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу. Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд.

Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд. Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.

После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.

Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается.

Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.

Как проверить конденсатор мультиметром: инструкции, фото, видео

Конденсатор — часть разных микросхем. Если с ними возникли проблемы, нужно проверить именно этот элемент. В таком важном деле помогает с виду незатейливый, но очень полезный прибор — мультиметр. Чтобы вы смогли ощутить всю прелесть этого скромного измерителя, мы расскажем вам, как проверить конденсатор мультиметром.

Обязательно к прочтению!

Перед началом измерительных процессов учтите несложные, но очень важные правила проверки конденсатора мультиметром на работоспособность:

  1. Проверять разрешается только разряженные конденсаторы. Они копят электрозаряд, поэтому необходимо их разряжать. Для этого можно использовать отвертку: дотроньтесь до выводов для образования искры. После этого можно заниматься прозвонкой. Кстати, некоторые используют для проверки конденсатора кабели и лампы, но применение мультиметра отличается точностью и надежностью.
  2. Если ёмкость конденсатора больше 20 мкФ, даже и думать не стоит о простом коротком замыкании. Включите сопротивление на 5-20 КОм, которое подразумевает один-два Вт, между контактами. Если не учесть этого, в ходе разрядки будет мощная искра, а это уже риск для здоровья. Помните, что взаимодействовать с высокоёмкими элементами нужно в защитных очках!
  3. До того, как начать мерить, изучите внешнее состояние конденсатора. Когда нарушена изоляция, имеются трещины и прочие дефекты, лучше сразу менять его на рабочую деталь. Если видимых проблем нет, стоит использовать тестер.
  4. Важно понять тип конденсатора. Когда он с полярностями, важно их соблюдать, если вы не планируете распрощаться с устройством. Если неполярный, то можно не определять “-” и “+” выходы.
  5. Для проверки ёмкости конденсатора придется его выпаять. Если вы думаете, как прозвонить конденсатор мультиметром на плате, придется вас разочаровать: никак. Если вы попытаетесь проводить измерения прямо на плате, процесс будет подвергаться влиянию других составных цепи, то есть показания будут неточным. Впрочем, продаются определенные измерители, у которых на щупах напряжение снижено, что позволяет осуществлять проверку даже на плате.

Есть ещё момент в отношении того, на плате как проверить конденсатор мультиметром, не выпаивая. Без выпаивания допускается проверить возможность функционирования элемента, если нет зашунтирования низкоомной цепью. Неисправность можно проверять, например, с помощью функции постоянного напряжения. То есть, если не выпаять элемент, можно даже на плате узнавать, рабочий конденсатор или нет.

Видео о проверке конденсатора мультиметром, не выпаивая:

Как проверить конденсатор мультиметром на работоспособность

Мы уже упоминали о полярности. Что нужно для определения полярного устройства? На корпусе будет контрастная полоса (на светлом фоне темная полоса и наоборот). Она является отметкой для вывода со знаком “-”.

Перед тем как измерить конденсатор мультиметром, посмотрите на наличие полоски. Если её нет, расположение щупов не важно.

Видео, как проверить мультиметром конденсатор электролитический, то есть полярный:

Как измерить емкость конденсатора мультиметром: режим сопротивления

Вот как должен измеряться конденсатор:

  1. Выбрать на мультиметре функцию сопротивления (омметра). Благодаря такому режиму можно определить наличие замыкания или обрыва.
  2. Выставить границу значений. Если элемент неполярный, ставим 2МОм. Иначе нам понадобится значение в 200 Ом.
  3. Не забываем, что механизм должен быть отпаянным от платы.
  4. Щупами соединиться с конденсаторными выводами в зависимости от полярности. Если полярности нет, на расположение можно не обращать внимания.
  5. Орлиным глазом смотрим на дисплей включенного мультиметра. Там появятся цифры, постепенно увеличивающиеся до 1. Объясняется это просто: измеритель заряжает деталь.

Если появилась цифра 1, можно смело делать вывод о том, что с функционированием механизма всё в порядке. Если при соединении контактов сразу появилось это значение, радовать не чему: в детали есть обрыв и она не пригодна к дальнейшему использованию. Да и цифра 0 не особо оптимистична, ведь указывает на короткое замыкание.

Если конденсатор без полярностей, работоспособная цифра — 2. Всё, что ниже, указывает на отсутствие функционирования конденсатора. Теперь вы знаете, как проверить емкость мультиметром у конденсатора. Но эта инструкция предназначена для цифровых измерителей. Кстати, советуем к прочтению материал о том, как пользоваться тестером.

Для аналоговых моделей процесс измерений ещё более простой. Главное — смотреть на движение стрелки.  Если она перемещается спокойно, всё в порядке. Если видите очень маленькое или большое значение, значит, конденсатор сломан.

Измерение конденсаторов мультиметром с функцией омметра осуществляется для элементов, ёмкость которых больше 0.25 мкФ. Если значение меньше, нужно использовать специальные измерители с высоким разрешением.

Измерение емкости мультиметром у конденсатора: используем специальную функцию

Сейчас поговорим о мультиметрах, у которых есть режим измерения ёмкости. Принцип действия практически такой же. Для начала выбираем нужную функцию мультиметра, затем:

  1. Выбираем значение измерений. Для этого смотрим, что написано на конденсаторе и выбираем ближайшее сверху значение. К примеру, мы видим, что на элементе стоит ёмкость в 1 мкФ. Тогда выставляем 2.
  2. Соединяем провода мультиметра с контактными выводами нашего конденсатора.
  3. Фиксируем на бумаге или просто у себя в голове показатели с дисплея.

Не замыкайте щупы на выводах собственноручно! Проводимость нашего организма по сравнению с конденсатором лучше, в результате чего ток тестера будет проходить по цепи из одной руки в другую. Поэтому на дисплее вы увидите цифры, которые относятся к вам, а не к конденсатору.

Есть тестеры с отверстиями для конденсаторов. Это удобно, так нужно только выбрать функцию и значения измерений, а затем вставить элемент в гнездо, после чего дисплей покажет значение проверки.

Теперь вы знаете самое необходимое о проверке емкости мультиметром.

Проверка обрыва через прозвонку

Здесь мы снова имеем дело с ёмкостью. А всё потому, что принцип анализа на обрыв основан на том, чтобы поймать хотя бы какие-то признаки того, что у конденсатора есть ёмкость. Один из способов это осуществить — сигнал на функции прозвонки.

Очень простая пошаговая инструкция, как проверить конденсатор мультиметром:

  1. Выбрать на измерителе функцию прозвонки.
  2. Дотронуться щупами до выводов конденсатора.
  3. Внимательно слушать.

Мультиметр должен выдать короткий писк. Он может звучать как щелчок, поэтому держите ухо востро.

Есть секрет, как сделать продолжительность сигнала больше. Для этого заранее зарядите конденсаторы напряжением со знаком “-”: приложите щупы в обратном порядке. За счет этого при следующей прозвонке измеритель сначала перезарядит элемент от “-” напряжение до 0, а потом от 0 до момента выключения писка. Так как этот процесс протекает дольше, писк тоже станет более продолжительным, и вам будет легче услышать его.

Посмотрите, как замерить конденсатор мультиметром:

Как проверить пусковой конденсатор мультиметром

Пусковой конденсатор нужен для стабильного функционирования электродвигателя. Проверить его работу мультиметром просто:

  1. Обесточить кондиционер.
  2. Разрядить конденсатор.
  3. Снять клемму.
  4. Выбрать на мультиметре функцию измерения ёмкости.
  5. Выбрать предел значений. Для этого, как обычно, смотрим на значения корпуса и выставляем на приборе параметр больше.
  6. Прислонить щупы к выводам.
  7. Устремляем взор на цифры, которые появились на экране.

Если значение отличается от того, что на корпусе, скорее всего, механизм нуждается в замене.

Как проверить керамический конденсатор мультиметром

Элементы из керамики обычно без полярностей. Как мы уже упоминали, их проверка практически такая же, отличается лишь норма полученных значений:

  1. На мультиметре выбираем функцию измерения сопротивления.
  2. Ставим максимальный предел замеров.
  3. Дотрагиваемся проводами мультиметра до контактов, но не прикасаемся к ним сами!

Если на дисплее вы увидели цифру от 2 Мом — всё в порядке. Если же значение меньше, конденсатор не пригоден для дальнейшего использования.

Теперь вы знаете самое главное о том, как проверить исправность конденсатора мультиметром и сможете сделать это самостоятельно.

Желаем вам безопасных и точных проверок!

Вопрос — ответ

Вопрос: Как можно проверить конденсатор обычным мультиметром на работоспособность?

Ответ: Сначала нужно разрядить конденсатор, а также определить его тип: если полярный, нужно соблюдать полярность. Если неполярный, то определять “-” и “+” выходы не обязательно. Также нужно выпаять конденсатор.

 

Вопрос: Как прозвонить конденсатор с помощью мультиметра?

Ответ: Нужно выбрать режим прозвонки, дотронуться щупами до выводов конденсатора и внимательно слушать. Мультиметр издаст короткий писк.

 

Вопрос: Как проверить конденсатор простым мультиметром, не выпаивая?

Ответ: Если оставить компонент на плате, результаты будут неточным. Без выпаивания можно только проверить, работает конденсатор или нет, если не зашунтирован низкоомной цепью. Для этого нужен режим проверки постоянного напряжения или сопротивлений.

 

Вопрос: Как правильно проверить электролитический конденсатор мультиметром?

Ответ: Электролитический или полярный конденсатор проверяется в режиме омметра или на функции измерения ёмкости. В первом случае выбираем режим омметра, устанавливаем пределы измерений (200 Ом), щупами касаемся выводов конденсатора в зависимости от полярности.

 

Вопрос: Как лучше всего проверить пусковой конденсатор мультиметром?

Ответ: Для этого нужно обесточить кондиционер, разрядить конденсатор и снять клемму. На мультиметре выбирается режим измерения ёмкости. Также выбирается предел значений в зависимости от того, что указано на корпусе. Клемма снимается, щупы присоединяются к конденсаторным выводам.

 

Как проверять конденсаторы мультиметром? Как проверить конденсатор мультиметром не выпаивая.

Знаете – ходит одна байка: для проверки конденсатора мультиметр излишен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь — шарахнет сильно, уши задымятся. Избегайте также лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.

Процесс проверки конденсатора

Увидите, проверить мультиметром конденсатор может каждый. Вопрос составлен требуемой точностью. Как говаривал Кашпировский: даже 100% не стопроцентны. В остальном, неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.

Проверка конденсатора

Ищущие шуток ошибаются. Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:

Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:

Проверить емкость конденсатора мультиметром


Мультиметр

Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Будет неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.

На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Необходимо, чтобы оценить параметры. Например, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.

Зная указанные вещи, можно представить, что делать дальше:

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
  3. Попутно сопротивлению будет расти от нуля до бесконечности.

Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Взорваться, по идее ничего не должно… Теперь проводим анализ. Выяснили, годен ли конденсатор, имеются некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.

Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:

  1. Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
  2. По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.

Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.

Имеется простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Прикупив прибор, избегаем выдумывать. Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр сам проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, может не выйти. Параллельно емкости включены резисторы, дроссели другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.

Можно провести сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — можно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.

Конденсатора на плате без предварительного демонтажа возникают проблемы. Конденсатор всегда включен в цепь и может соседствовать на плате с другими элементами схемы. Особенно влияют на измерения емкости обмотки трансформаторов, индуктивности, предохранители — у них маленькое сопротивление постоянному току.

Поэтому необходимо убедиться, что в цепях измеряемого конденсатора нет влияния таких элементов. Если в цепях с конденсатором включены транзистор или диод, тогда при измерении можно увидеть отклонение стрелки до определенного положения и падение до определенного значения, равному сопротивлению переходов полупроводника. И если нет короткого замыкания, то конденсатор может быть исправным.

При прикосновении щупами мультиметра на конденсатор подается постоянный ток от тестера. Конденсатор будет заряжаться, а сопротивление плавно увеличиваться.

На электронном тестере значение будет расти от отрицательных или положительных чисел до единицы, указывающей на сопротивление, превышающее предел измерений, выбранный ручкой переключения. После перестановки щупов тестера местами конденсатор должен перезарядиться, прибор должен действовать также.

По отклонению стрелки стрелочного мультиметра при подключении конденсатора и возврате ее в исходное положение можно заметить по шкале максимальное отклонение.

Если поменять местами щупы тестера, стрелка прибора должна снова отклониться на максимум и плавно упасть на исходное положение. После необходимо взять похожий и заведомо исправный конденсатор, и если стрелка тестера на контрольном элементе отклонится больше, то проверяемый конденсатор нерабочий.

Если при измерении и соответствии плюсов и минусов на тестере и выводах конденсаторов прибор покажет сопротивление, то такой конденсатор неисправен.

Проверка конденсатора другими приборами

Существуют приборы, позволяющие проверять конденсаторы прямо на плате. Такие приборы работают на низких напряжениях для уменьшения опасности вывода из строя других элементов.

Можно самому изготовить приставку к тестеру по схемам, опубликованным в журналах и интернете. Но не всегда ими можно провести измерения точно из-за влияния других элементов схем. Например, несколько установленных параллельно конденсаторов в итоге покажут общую емкость.

В автомобиле есть множество электрических систем, которые выполняют определенные функции. Среди этих систем есть основная — система зажигания. В случае, если двигатель начинает работать неустойчиво, «троит», т.е. один из цилиндров двигателя не вступает в работу, необходимо проверить систему зажигания.

Для этого нужно убедиться, что свечи зажигания вырабатывают искру, с помощью которой производится воспламенение топливовоздушной смеси в цилиндре двигателя. Если одна или несколько свечей выдают слабые искры красного цвета или их появление неравномерно, нужно обратить внимание на работу распределителя зажигания, который еще называют трамблер (от французского «trembleur», что в переводе означает «прерыватель»).

В новых моделях автомобилей вместо механического трамблера используется электронный коммутатор, который в случае отказа меняется целиком. Чтобы обнаружить причину неустойчивой работы трамблера, необходимо снять с него крышку, которая сделана из эбонита. В крышке за время эксплуатации могут возникнуть микротрещины, в которые попадает пыль и грязь, что вызывает пробои в электрической цепи, и напряжение не подается на свечи зажигания. После осмотра крышки нужно уделить внимание зазорам между контактами прерывателя. Также необходимо проверить конденсатор в трамблере . Если зазоры нормальные, а при работе возникает сильное искрение, значит проблема в конденсаторе . Для проверки его работы потребуется амперметр.

Подключив прибор к контактам, включите зажигание и рукой разомкните контакты в трамблере. Понаблюдайте за показаниями стрелки амперметра . Если стрелка или цифровое значение на экране приблизились к нулю с положения разрядки 2-4А, то существует неисправность в работе конденсатора , и его следует заменить.

Также можно проверить конденсатор самостоятельно, когда есть подозрение в пробое на «массу». Для этого потребуется переносная автомобильная лампочка. Сначала нужно отсоединить провод катушки зажигания вместе с проводом конденсатора от зажима прерывателя и произвести

Как проверить электролитический конденсатор мультиметром

Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.

В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.


В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.

Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.

Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).


Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.

Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.

Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.

Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.

Как проверить пусковой неполярный керамический конденсатор мультиметром

Электролитический неполярный конденсатор используется в схеме запуска однофазного и трехфазного электродвигателей в однофазной сети. Этот конденсатор можно проверить мультиметром таким же способом, как и электролитический полярный накопитель заряда. Для него полярность мультиметра, при проверке работоспособности не имеет значения. Проверяются они на тех же пределах измерения резисторов, что и полярные ёмкости.


Проверка конденсаторов мультиметром V 890D в режиме измерения емкости

Керамические емкости имеют диэлектрик с большим сопротивлением (керамика, стекло), поэтому при проверке емкости сопротивление должна быть более 2 Мом. Если сопротивление меньше, это говорит о неисправности ёмкости. Таким образом проверяются накопители заряда от 0,25 мкф и выше. Ёмкости ниже 0,25 мкф проверить обычным мультиметром невозможно. Для этих целей имеются измерители LC.

Хотя функцию измерения емкостей до 200 мкф можно встретить в некоторых типах мультиметров. Проверить конденсатор мультиметром не выпаивая из схемы, тоже возможно. При этом необходимо соблюдать полярность при прозвонке и не касаться щупов руками. Погрешность проверки ёмкостей установленных на плате будет выше, так как на заряд накопителя влияют элементы схемы.

Проверить работоспособность емкости приблизительно можно и на искру, т. е. зарядить рабочим напряжением ёмкость, и далее закоротить металлической отверткой с изолированной ручкой ее вывода. По силе разряда можно приблизительно судить о работоспособности ёмкости. При проверке накопителя на искру предназначенных для работы в сети 220 В и выше, нужно предпринимать меры безопасности и разряжать емкости через резистор 10 Ком.


Проверка конденсаторов стрелочным тестером Ц 4353

Стрелочный тестер более удобен при проверке работоспособности накопителей. Стрелка тестера во время измерения емкости плавно перемещается по циферблату, что дает более правильную картину проверки, чем мелькающие цифры цифрового мультиметра. Неисправность накопителей заряда также можно определить визуально по вспучиванию торца корпуса, тёмным пятнам и прожженным отверстиям на элементе.

С помощью специального технического оборудования можно обнаружить различные радиоэлементы, которые вышли из строя или износились. Но все становится весьма непросто, когда требуется произвести тестирование емкостных элементов при помощи мультитестера, потому как самых обычных «прозвонов» элементы данного типа не боятся.

Что такое мультиметр? Это универсальное устройство, которое позволяет выполнять электрические измерения. При помощи этого аппарата можно произвести измерения показателей тока постоянного и переменного типа, а также замерить мощностной показатель сети, емкость конденсатора, мощность сопротивления и радиодеталей.

На данный момент все приборы этого типа подразделяют на два основных типа:

  • цифровой – этот прибор отображает все полученные результаты на табло цифрового вида;
  • аналоговый – для отображения показателей используется специальная цифровая шкала.

На корпусе прибора устанавливают специальный регулятор. В некоторых случаях таких регуляторов бывает несколько. Они необходимы для того, чтобы переключать режимы и величины измерения. Для того, чтобы выполнить замер применяют щупы (специальный провод на одном конце которого имеется разъем, а на второй – наконечник из металла).

Электролитический конденсатор можно проверить мультиметром не выпаивая. Специально для этого используют омметр, который входит в состав устройства этого вида.

Показатель сопротивления электрического конденсатора будет выше отметки в 100 Мом:

  • Прибор разряжают. Для этого устраивают короткое замыкание на ножках.
  • Непосредственно на корпусе прибора выставляют соответствующую величину измерения.
  • Оба вывода подводят к ножкам. Левую к минусу, а правую к плюсу.
  • Если показатель сопротивления выше указанной величины, то прибор исправен.

Для наглядного ознакомления с проведением данного технического процесса можно воспользоваться видеоматериалом, представленным ниже:

Чтобы измерить емкость конденсатора при помощи мультиметра, необходимо следовать инструкции:

  • Измерительные прибор переводят в состояние измерения емкости.
  • Дважды производят подключение щупов. Второй раз их меняют местами.
  • Фиксируют результат. Сравнивают оба показания.
  • В том случае, если в первый раз на экране появился «0», а во втором «-», то прибор абсолютно исправен. Если же показания одинаковы, то устройство можно считать нерабочим.

Этот метод используют для определения утечки или наличия обрывов. При необходимости проведения проверки конденсатора на плате с помощью мультиметра используют зарядку устройства и разрядку его, при этом практически полностью меняют полярность. По мнению опытных специалистов этот вариант является весьма сомнительным.

Проверка разных видов


При проверке керамического конденсатора (неполярного) с помощью мультиметра применяют различные диэлектрики. К примеру, это может быть бумага, стекло или воздух.

Весь процесс сводится к следующему:

  • Переводят устройство в режим измерения реального сопротивлении.
  • На приборе выставляют максимальный предел.
  • Устройство настраивают и щупами касаются к ножке


В том случае, если устройство рабочее, то на нем покажется величина в 2 Мом. Если же показатель будет меньше, то прибор вышел из строя.

Проверяя пленочный конденсатор мультиметром, проверяют показатель сопротивления. Если в устройстве «утечка», то ничего не изменится. Если существует внутренний обрыв, то на аналоговом мультиметре стрелочка уйдет в бесконечность.

Если с помощью мультиметра необходимо произвести проверку на работоспособность пускового конденсатора, то первоначально извлекают пусковой механизм. Затем проверяют его на наличие утечек электрического типа. Присоединяют щупы к клеммам. После этого выполняют проверку емкости.

Когда речь заходит о проверки неполярного конденсатора, то следует обратиться к материалу, предоставленному выше, потому как с точки зрения принципиального устройства прибор этого типа ничем не отличается от керамического конденсатор.

Проверка smd конденсатора проводится также, как и обычного устройства. С помощью измерения максимального показателя сопротивления.

Внимание! Проверяя высоковольтный конденсатор всего-то и надо, что зарядить его свыше нормы. Тогда все будет заметно сразу же.

Конденсатор переменного тока проверяют при помощи мультиметра с помощью измерения данного показателя дважды с переменой полярности. После чего их сравнивают и на основе этого делают вывод. Если показатель №2 будет выше, то прибор исправен.

Как проверить в бытовой технике?

В некоторых отдельных случаях приходится проверять конденсатор, который находится в корпусе бытовой техники:

  • конденсатор от стиральной машины – измерят с помощью мультметра или тестера. Измерение производится на максимальное сопротивление устройства. Если оно исправно, то стрелочка прибора отклонится.
  • конденсатор микроволновки – при подключении мультиметра показатель сопротивления должен быть бесконечным (при условии, что измерительный прибор стоит в положении Rх 1000).
  • автомобильный конденсатор – для этого пользуются стандартным методом.

Как проверить без мультиметра?

Для того чтобы проверить конденсатор на работоспособность без использования специального измерительного оборудования необходимо работать с конденсаторами высокой мощности. При этом пользуются одним из свойств конденсатора – копить заряд и подзаряжаться. конденсатор заряжают высоким напряжение (больше чем номинал, указанный на корпусе устройства). Делают это на протяжении нескольких секунд.

Внимание! Руки не должны прикасаться к металлическим элементам устройства. Железо должно быть полностью изолировано от человека. После аккуратно замыкают при помощи железного элемента контакты конденсатора. Появится искра.

Видео

Смотрите на видео как проверить конденсатор:

Сегодня создано большое количество технических средств, предназначенных для измерения и замера различных электрических и технических показателей. При помощи них можно вовремя выявить неполадки и произвести замену. Ко всему прочему можно будет избежать серьезных трат на покупку нового оборудования. Вес что потребуется – это отремонтировать или заменить износившийся элемент.

Окт 5, 2015 Татьяна Сумо

На данный момент практически каждый человек может столкнуться с поломкой конденсатора. Чтобы определить его исправность вам не потребуется изучать основы электротехники. Достаточно будет просто знать, как проверить мультиметром конденсатор.

Благодаря этому можно восстановить работоспособность микроволновки или холодильника. Перед тем, как выполнить ремонт необходимо определить, какая именно деталь неисправна. Для проверки конденсатора отлично подойдет цифровой мультиметр.

Как измерить емкость

Во время проверки вам необходимо помнить, что не все неисправности будут поддаваться тестированию в режиме омметра. Если мультиметр будет показывать бесконечно большое сопротивление полярного элемента, тогда это будет считаться признаком его неисправности. Проверить потерю номинальной емкости в режиме омметра у вас не получится. Чтобы измерить эту характеристику необходимо использовать цифровой мультиметр. Это устройство поможет проводить тестирование в пределах от 20 нф до 200 мкф.

Благодаря мультиметрам с подобной функцией появится возможность тестировать любые конденсаторы, даже электролитические. Если вы желаете выполнить проверку электролитического конденсатора, тогда необходимо соблюдать полярность.


На фото выше вы видите, что для проверки емкости конденсатора необходимо вставить выводи детали в гнезда Сх, а ручку необходимо установить в положение необходимого диапазона измерений. После этого все параметры емкости будут отображаться на дисплее.

Основные неисправности и причины их возникновения

Неважно, какой тип конденсатора вы используете. Любой конденсатор может выйти из строя в связи со следующими проблемами:

  1. Снижение номинальной емкости, которая будет происходить в процессе высыхания.
  2. Ток утечки будет превышать необходимо значение.
  3. Возрастание активных потерь цепи.
  4. Возникло короткое замыкание обкладок.
  5. Потеря контакта, которая произошла между обкладкой и выводом детали.

Все неисправности, которые мы описали выше чаще всего могут возникнуть в результате нарушения температурного режима или превышения порога допустимого напряжения. Специалисты уверяют, что благодаря понижению рабочей температуры можно значительно продлить срок службы радиоэлемента.

На практике чаще всего неисправность конденсатора может быть вызвана коротким замыканием. Теперь мы решили подробно рассказать о том, как выполнить диагностику конденсатора.

Диагностика неисправностей

Выявить пробой конденсатора также можно благодаря визуальному осмотру. Если произошел пробой, тогда на конденсаторе могут образоваться трещины или вздутие. На фотографии ниже вы можете увидеть признаки пробоя конденсатора.


В большинстве случаев обнаружить пробой во время визуального осмотра не всегда возможно. Если внешний вид детали действительно нормальный, тогда возможно проблема произошла из-за внутреннего короткого замыкания. Перед тем как начать проверять мультиметром неполярный пленочный, керамический, электролитический, smd или sbb конденсатор необходимо будет снять его с платы. Отпаивать конденсатор не всегда обязательно. В некоторых случаях можно проверить сопротивление цепи прямо на плате. Но вам необходимо помнить, что для этого потребуется карта сопротивлений.

Проведение диагностики устройств неполярного типа

Для проверки устройства с помощью мультиметра вам не потребуется замерять емкость конденсатора неполярного типа. В этом случае будет достаточно просто измерить его сопротивление. Оно в обязательном порядке должно быть бесконечно большим. Если произошел пробой, тогда мультиметр покажет незначительную величину. Для тестирования, вам потребуется выполнить следующий алгоритм действий:

  1. Следует выставить максимальный режим измерений в режиме омметра.
  2. Щупами прибора, вам потребуется прикоснуться к выводам радиодетали.
  3. Если на табло вы увидите цифру «1», тогда это укажет на то, что сопротивление будет больше 2 мегаом. Если мультиметр покажет другую величину, тогда в этом случае произошло короткое замыкание.

Важно знать! Во время проведения измерений помните, что нельзя держать щупы прибора за неизолирование места. В этом случае показания могут быть просто недостоверные.

При необходимости вести тестирование вы также можете в режиме проверки диодов. Если в этом случае будет присутствовать пробой, тогда мультиметр издаст характерный сигнал. У нас вы также можете воспользоваться калькулятором для .

Диагностика полярных конденсаторов

Проверять конденсаторы полярного типа необходимо подобным образом. Единственной особенностью считается то, что порог измерения должен быть больше 100 ком. Перед проведением диагностики вам потребуется разрядить радиодеталь. Для этого можете просто соединить выводы. Если вы используете высоковольтный конденсатор, тогда его необходимо «закорачивать» через нагрузку.

Если вы не уберете заряд, тогда можете испортить мультиметр. Кроме этого, следует помнить о том, что, если вы дотронетесь одним из выводов до тела, тогда можете провести разряд через себя. Если во время разрядки вы увидите искры, тогда это будет говорить о том, что устройство исправно.

Для проверки мультиметром конденсатора необходимо подсоединить щупы. В результате этого электрический ток, который поступает с прибора будет накапливаться в тестируемой детали. Если мультиметр будет показывать увеличение сопротивления, тогда это говорит об исправности. Наиболее детально этот процесс можно будет изучить в аналоговых измерительных приборах.


Метод проверки в режиме омметра считается косвенным. Для получения более точно оценки необходимо воспользоваться цифровым мультиметром. Для проведения измерения вы можете использовать мультиметр DT890B+.

Ремонт бытовых приборов

Если конденсаторы выходят из строя, тогда соответственно и бытовая техника постепенно перестает функционировать. Наши советы помогут просто определить исправность конденсатора. После проведения анализа необходимо заменить конденсатор и техника вновь заработает.

Перед тем, как приступать к ремонту бытовых приборов необходимо убедиться в том, что они отключены от электропитания. Теперь вы знаете как проверить конденсатор мультиметром своими руками. Надеемся, что эта информация была полезной и интересной.

Как проверить конденсатор мультиметром или тестером

Конденсатор – это устройство, способное накапливать электрический заряд. Вследствие неисправности он теряет это свойство и становится бесполезным. В этой статье речь пойдет о том, как проверить конденсатор.

Конденсаторы делятся на электролитические, подключаемые в схему лишь определенным образом, и неполярные, порядок подключения выводов которых безразличен. Для начала рассмотрим, как проверить электролитический конденсатор на работоспособность.

Как проверить исправность электролитического конденсатора мультиметром

Сначала нужно провести внешний осмотр конденсатора. Повреждения электролитов нередко приводят к увеличению давления внутри их корпуса. В итоге они взрываются. Сила взрыва невелика, но больший вред окружающему пространству наносит разбрызгивание содержимого детали. Для исключения этого явления современные конденсаторы имеют в верхней части крестообразную насечку. При превышении давления корпус рвется по ее линиям и стравливает давление из корпуса, не давая ему достичь высоких значений. Заключение о неисправности можно смело дать в случаях вспучивания корпуса или его разрыва в месте насечки. В остальных случаях потребуется проверить работоспособность конденсатора.

Такой конденсатор необходимо заменить

Принцип проверки заключается в следующем. Мультиметры и тестеры используют для измерения сопротивления внутренний источник постоянного тока – батарейку. Для проверки исправности конденсатора прибор подключают к его выводам, соблюдая полярность. В первый момент времени прибор будет показывать сопротивление разряженного устройства, которое близко к нулю. Источник постоянного тока прибора начнет заряжать конденсатор, по мере зарядки сопротивление будет увеличиваться. Когда заряд закончится, прибор покажет бесконечно большое сопротивление, лежащее за пределом его измерения.

Перед тем, как проверить конденсатор мультиметром, его необходимо разрядить, замкнув выводы между собой или закоротив любым металлическим предметом: отверткой, пинцетом, ножом. Предел измерения мультиметра выставляется максимально возможным. Плюсовой вывод прибора, имеющий красный цвет и маркировку «Ω», соединяется с выводом радиодетали, обозначенным знаком «+». Минусовой вывод черного цвета, обозначенный на корпусе мультиметра «COM», подключается к другому выводу, и измерение начинается. При этом нужно внимательно следить за показаниями мультиметра, которые должны только увеличиваться, не изменяясь в меньшую сторону.

Должен быть обеспечен надежный контакт между щупами мультиметра и выводами детали, процесс не рекомендуется прерывать. Также нельзя держаться за оба вывода руками: тело человека имеет сопротивление, которое будет шунтировать элемент, мешая ему заряжаться. В конце проверки прибор покажет не бесконечность, а сопротивление тела, и исправность изделия определить будет невозможно.

Возможные результаты проверки конденсатора мультиметром:

  • показания прибора равны нулю и не увеличиваются, любо увеличиваются незначительно. В этом случае у изделия наблюдается пробой (замыкание) обкладок между собой. Его подключение к схеме, где он работает, приведет к короткому замыканию
  • показания прибора увеличиваются, но не достигают бесконечности, останавливаясь на определенном значении сопротивления. В этом случае между обкладками наблюдается ток утечки, а емкость изделия значительно снижается. Элемент будет работать, но неэффективно, выполняя свое функциональное назначение не полностью. Использование его в блоках питания приведет к недостаточной фильтрации выходного напряжения, на звуковых устройствах это сопровождается наличием фона 50 Гц в выходном сигнале. В других узлах это приводит к искажениям сигнала.

Рабочее напряжение мультиметра не превышает 1,5 В, а в схемах, где работают конденсаторы оно намного больше. Если прибор показывает утечку, то при установке изделия на свое место при рабочем напряжении не исключен его полный пробой.

При проверке работоспособности электролитического изделия изменять полярность подключения мультиметра не имеет смысла.

Как проверить исправность обычного конденсатора мультиметром

Перед тем, как проверить обычный конденсатор на исправность, его также нужно разрядить. Метод проверки работоспособности ничем не отличается от предыдущего, кроме того, что заряд произойдет быстрее. Скорость заряда зависит от емкости изделия, при ее уменьшении время заряда тоже уменьшается. Электролитические элементы выпускаются с емкостью от 0,5 мкФ до 1000 мкФ и более, тогда как этот параметр у большинства неполярных не превышает 1 мкФ.

После проверки исправности неполярного конденсатора нужно разрядить его перед впаиванием обратно в схему.

Критерии работоспособности неполярных элементов те же, что и у электролитических.

Как можно проверить конденсатор мультиметром, не выпаивая его

Конденсаторы, особенно электролитические, имеют очень неприятное свойство: при прогреве паяльником при пайке они иногда восстанавливают свои свойства. Поэтому вопрос, как проверять исправность конденсатора, не выпаивая его из схемы, становится иногда очень актуальным. К сожалению, сделать это без интеллектуальных ухищрений невозможно, и универсального метода не существует. Вокруг изделия всегда существуют элементы, шунтирующие его своим сопротивлением, и проверка закончится его измерением.

Поэтому профессионалы после впаивания проверенного конденсатора на место иногда включают ремонтируемое устройство, наблюдая за изменениями в его работе. Если работоспособность его восстановилась или что-то изменилось к лучшему, только что проверенную деталь заменяют на новую.

Сократить время на проверку элементов можно, выпаивая только один из выводов. Но это не может помочь в проверке большинства электролитических конденсаторов, так как конструкция их корпуса не позволяет отпаять только один вывод.

Если проверяемая деталь подключена последовательно с каким-нибудь другим элементом, можно определять ее исправность прямо на плате, выпаяв этот элемент.

Если схема проверяемого устройства сложная, то конденсаторов в ней много. Выпаивать каждый из них для проверки – трудоемкое занятие. К тому же после такого ремонта плата оказывается изрядно перепаханной. В этом случае нужно найти принципиальную схему устройства и проанализировать ее работу. Наличие на схеме контрольных точек с указанными в них напряжениями очень поможет делу. В том, как определять неисправность конденсаторов в этом случае, поможет измерение напряжений на них или на сопряженных с ними узлах схемы. Если напряжение не соответствует ожидаемому, то подозрительный элемент выпаивается и проверяется одним из вышеперечисленных способов.

Как можно проверить конденсатор тестером

Тестер отличается от мультиметра наличием стрелочного измерительного механизма. Он имеет достоинство, позволяющее выполнить процесс диагностики нагляднее. При проверке тестером его стрелка плавно отслеживает изменение сопротивления проверяемой детали, что дает возможность контролировать процесс заряда в подробностях. Будут зафиксированы изменения скорости заряда, рывки, связанные с кратковременными пробоями обкладок, которые при использовании мультиметра невозможно увидеть.

Методика проверки конденсаторов тестером ничем не отличается от той, что применяется для мультиметра.


[ads-pc-1][ads-mob-1]

Как проверять емкость конденсатора

Не всегда исправность конденсаторов можно определить, заряжая его от постороннего источника и контролируя зарядный ток. При небольших значениях емкости (менее 0,5 мкФ) они заряжаются настолько быстро, что за этим не сможет уследить ни один прибор. В таких случаях нужно определить, насколько емкость детали соответствует номинальной. Для этого используются специализированный прибор для проверки конденсаторов: измеритель емкости или LC-метр.

Одна из разновидностей электронных LC-метров

Профессиональные приборы выполняют измерения с большой точностью, но они имеют большие габаритные размеры, дороги и сложны в эксплуатации. Применение их оправдано только при профессиональной деятельности, связанной не только с ремонтом, но и наладкой сложных радиотехнических устройств, требующих точной подгонки емкостей конденсаторов.

Для использования в бытовых условиях используются компактные цифровые измерители емкости, по габаритам не отличающиеся от обычного мультиметра. Они имеют точно такие же щупы для подключения измеряемого элемента, жидкокристаллический дисплей и переключатель пределов измерения. Для проверки конденсаторов сначала узнают его емкость по надписям на корпусе, выбирают соответствующий предел измерения и подключают элемент к прибору. Некоторые модели способны измерять емкость деталей без выпаивания их из схемы.

Как известно, у радиодеталей существует разброс параметров, который регламентируется величиной допуска. Измеренное значение должно укладываться в этот допуск. В этом случае конденсатор считается исправным.

Как проверять емкость конденсатора мультиметром

Некоторые модели мультиметров имеют встроенную функцию для измерения емкости. Проверяемый объект может подключаться как при помощи стандартных щупов, так и втыкаться в специально предназначенные для этого гнезда на корпусе прибора. Мультиметрами тоже можно пользоваться, чтобы определять исправность конденсаторов.

Цифровой мультиметр с функцией измерения емкости конденсаторов

Но, в отличие от узкоспециализированных приборов, пределы их ограничены: на верхнем емкость измеряется до десятков микрофарад, нижний – сотнями пикофарад. Но иногда и этого бывает достаточно для проверки и ремонта большинства распространенных радиоэлектронных устройств.

Как проверить конденсатор самым простым, дешевым мультиметром

Как проверить обычным мультиметром исправность конденсатора?

Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.

Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.

Так что же нужно делать?

Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.

  • Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.

  • Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.

  • Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.
Как это работает?

Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается. При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.

Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.

  • Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
  • Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
  • Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!

Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.

Опубликовано: 2021-09-13 Обновлено: 2021-09-13

Автор: Магазин Electronoff

Поделиться в соцсетях

как проверить электролитический конденсатор

В большинстве случаев устранения и ремонта электролитических и электронных устройств мы сталкиваемся с этой проблемой: как проверить электролитический конденсатор? Это хорошо, плохо, коротко или открыто?
Ниже мы представим три метода проверки того, что конденсатор исправен, неисправен, открыт, не работает или короткое замыкание.

Метод 1. Проверьте и протестируйте конденсатор с помощью аналогового мультиметра.
1. Убедитесь, что подозреваемый конденсатор полностью разряжен.
2. Возьмите измеритель AVO.
3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
4. Подключите выводы измерителя к клеммам конденсатора.
5. Обратите внимание на показания и сравните со следующими результатами.
6. Короткие конденсаторы: закороченный конденсатор покажет очень низкое сопротивление.
7.Открытые конденсаторы: открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
8. Хорошие конденсаторы: сначала сопротивление будет низким, а затем постепенно увеличивается до бесконечности. Это означает, что конденсатор в хорошем состоянии.

Метод 2. Тестирование и проверка конденсатора с помощью цифрового мультиметра
1. Убедитесь, что конденсатор разряжен.
2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
3. Подключите выводы измерителя к клеммам конденсатора.
4. Цифровой счетчик на секунду покажет некоторые числа. Обратите внимание на чтение.
5. И сразу же вернется в OL (Open Line). Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии.
6. Если изменений нет, то конденсатор неисправен.


Метод 3. Проверка конденсатора мультиметром в режиме измерения емкости
1. Убедитесь, что конденсатор полностью разряжен.
2. Снимите конденсаторы с платы или цепи.
3. Теперь выберите «Емкость» на мультиметре.
4. Теперь подключите клемму конденсатора к выводам мультиметра.
5. Если показание близко к фактическому значению конденсатора.
6. Тогда конденсатор в хорошем состоянии..
7. Если вы обнаружите значительно меньшую емкость или ее отсутствие вообще, значит, конденсатор мертв, и вам следует его заменить.

Тестирование конденсатора — Пошаговый метод тестирования конденсатора различными способами

Чтобы проверить правильность работы конденсатора, необходимо провести тестирование конденсатора. В этом посте мы обсудим, что вы понимаете под тестированием конденсаторов, методы пошаговой проверки конденсатора различными способами и их преимущества.

Что такое конденсатор

Конденсатор — это устройство, используемое для электростатического накопления энергии в электрическом поле.Это пассивный двухконтактный электрический компонент. Конденсатор состоит из двух близких проводников или пластин, разделенных диэлектрическим материалом. Пластины накапливают электрический заряд при подключении к источнику питания.

Рис. 1 — Введение в тестирование конденсаторов

  Подробнее о конденсаторах: 
  Теория конденсаторов 
  Как работает конденсатор 
  Цикл зарядки и разрядки конденсатора 
 Маркировка номера конденсатора  - как декодировать на примере 
  Как считывать значения цветовой маркировки конденсаторов - Расчетные и идентификационные коды 
  Различные типы конденсаторов на рынке с описанием - Часть I 
  Различные типы конденсаторов на рынке с описанием - Часть II 
  Электролитический конденсатор - свойства, применение, значение емкости и полярность 
 Керамический конденсатор  - Состав, типы, свойства и применение 
  Что такое суперконденсатор (ультраконденсатор) - характеристики, работа, типы и применение  

Как проверить конденсатор — пошаговые методы

Как и все электрические устройства, конденсатор также чувствителен к скачкам напряжения.Такие колебания напряжения могут повредить конденсаторы. Следовательно, необходимо регулярно проверять конденсаторы, следуя любому из методов, приведенных ниже. Различные типы конденсаторов показаны на рис. 2.

Рис. 2 Различные типы конденсаторов

  • Тестирование конденсаторов с помощью мультиметра с настройкой емкости
  • Тестирование конденсаторов с помощью мультиметра без настройки емкости
  • Тестирование конденсаторов путем измерения постоянной времени
  • Проверка конденсатора с помощью простого вольтметра
  • Проверка конденсатора с помощью аналогового мультиметра
  • Проверка конденсатора путем замыкания проводов

Проверка конденсатора с использованием мультиметра с настройкой емкости
  1. Конденсатор должен быть отсоединить от печатной платы, а затем его следует полностью разрядить.
  2. Следует отметить, если номиналы конденсатора видны на его корпусе.
  3. Ручка цифрового мультиметра должна быть установлена ​​на значение емкости.
  4. Затем щупы мультиметра должны быть подключены к клеммам конденсатора.
  5. После этого необходимо проверить показания цифрового мультиметра. Если показания мультиметра ближе к фактическим значениям (указанным на конденсаторе), в этот момент конденсатор можно считать исправным.Напротив, если разница между фактическим значением и измеренным показанием значительно велика (или иногда равна нулю), то конденсатор следует заменить, так как он мертв.

Рис. 3 — Изображение цифрового мультиметра

Конденсатор Тестирование с использованием мультиметра без настройки емкости
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем он должен быть отключен. разряжена полностью.
  2. Затем ручку мультиметра необходимо установить в положение «Ом» или «Настройки сопротивления». В случае нескольких диапазонов измерения сопротивления следует выбрать более высокий диапазон (обычно от 20 кОм до 200 кОм).
  3. Затем щупы мультиметра должны быть подключены к клеммам конденсатора. В случае электролитического конденсатора красный зонд должен быть подключен к положительной клемме конденсатора, а черный зонд должен быть подключен к отрицательной клемме конденсатора. В случае неэлектролитического конденсатора его можно подключить любым способом.
  4. После этого цифровой мультиметр отобразит на дисплее значение сопротивления. Затем он отобразит сопротивление разомкнутой цепи (т. Е. Бесконечность). Следует записать показания за этот короткий период.
  5. Затем необходимо отключить конденсатор от мультиметра и повторить испытание несколько раз.
  6. Для хорошего конденсатора каждая попытка теста должна показывать аналогичный результат на дисплее. Если при дальнейших испытаниях сопротивление не изменится, то конденсатор следует заменить, так как он мертвый.

Конденсатор Тестирование путем измерения постоянной времени
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Затем необходимо последовательно подключить известный резистор (обычно резистор 10 кОм) с конденсатором.
  3. После этого цепь необходимо замкнуть, подключив блок питания известного напряжения. Эта схема представляет собой не что иное, как RC-схему, показанную на рис.4.
  4. Затем необходимо включить источник питания и измерить время, за которое конденсатор зарядится до 63,2% напряжения питания.
  5. Затем, исходя из этого времени и сопротивления, необходимо измерить емкость и сравнить ее со значением, напечатанным на конденсаторе. Если они похожи или почти равны, то конденсатор можно считать исправным. Напротив, если разница существенно большая; то следует заменить конденсатор, так как он мертв.

Рис. 4 — RC-схема, используемая при тестировании конденсатора

Конденсатор Тестирование с вольтметром
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем разрядить полностью.
  2. Затем необходимо соблюдать номинальное напряжение на конденсаторе (обычно оно упоминается как 16 В, 25 В, 50 В и т. Д.). После этого выводы конденсатора должны быть подключены к источнику питания или батарее, но напряжение должно быть быть меньше максимального рейтинга.
  3. Затем конденсатор необходимо зарядить на короткое время (обычно 4-5 секунд), а затем его следует отключить от источника питания.
  4. Затем цифровой мультиметр должен быть настроен на настройки вольтметра постоянного тока и должно быть измерено напряжение на конденсаторе. Должны быть подключены соответствующие клеммы вольтметра и конденсатора.
  5. Для исправного конденсатора начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению. Напротив, если разница большая, то конденсатор считается неисправным.

Рис.5 — Конденсатор, подключенный к батарее

Конденсатор Тестирование с помощью аналогового мультиметра
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить .
  2. Затем аналоговый мультиметр следует установить в положение омметра, и если имеется несколько диапазонов, необходимо выбрать более высокий диапазон.
  3. После этого выводы конденсатора должны быть подключены к щупам мультиметра и должны быть сняты показания мультиметра.
  4. Вначале сопротивление будет низким, а затем постепенно будет увеличиваться для хорошего конденсатора. Для закороченного конденсатора сопротивление всегда будет низким. Для открытого конденсатора либо не будет движения стрелки, либо сопротивление всегда будет показывать более высокое значение.

Рис. 6 — Аналоговый мультиметр

Конденсатор Тестирование путем замыкания проводов
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Далее выводы конденсатора необходимо подключить к клемме питания.
  3. После этого блок питания следует включить на очень короткий период времени (обычно от 1 секунды до 5 секунд), а затем выключить. Конденсатор ведет; затем необходимо отключить от источника питания.
  4. Клеммы конденсатора должны быть закорочены с помощью металлического контакта. Этот шаг необходимо сделать, приняв надлежащие изоляционные меры.
  5. Состояние конденсатора можно определить по искре от конденсатора.Для конденсатора в хорошем состоянии искра большая и сильная. Для плохого конденсатора искра маленькая и слабая.

Рис. 7 — Клеммы конденсатора закорочены

Преимущества тестирования конденсатора

Преимущества включают:

  • Тестирование предотвращает системные потери.
  • Это может предотвратить колебания тока.
  • Помогает улучшить коэффициент мощности.
  Также читают:
Что такое стабилизатор напряжения - зачем он нам, как он работает, типы и применение
Как выбрать батарею - метод и краткосрочные / долгосрочные требования к питанию 
 Микроконтроллер  - классификация, архитектура, применение, преимущества
  

5 способов с мультиметром и без него

В общих чертах описывается, как проверить конденсатор с функцией измерения емкости и без нее на мультиметре, как проверить конденсатор с помощью прибора для проверки целостности цепи или с помощью омметра, а также «грубый тест» путем его короткого замыкания.

Найдите другие руководства, советы и рекомендации по автомобилям и мотоциклам

СОДЕРЖАНИЕ
Что такое конденсатор
Визуальный осмотр
Функциональный тест
1. Как проверить конденсатор без измерения емкости
2. Как проверить конденсатор с помощью мультиметра для проверки целостности цепи
3. Использование мультиметра с измерением емкости
4. Как проверить конденсатор омметром
5. Как проверить конденсатор коротким замыканием

Мультиметр является предпочтительным измерительным устройством, когда дело доходит до проверки возможно неисправного конденсатора.Есть несколько способов проверить конденсатор с помощью мультиметра.

В основном, однако:

Для мультиметра требуется специальное измерительное устройство, чтобы иметь возможность проверять конденсаторы и, таким образом, определять точные значения емкости конденсатора. Если нет функции для измерения емкости, можно только определить, имеет ли конденсатор короткое замыкание или заряжается ли он. Для этого можно выполнить проверку целостности или измерение сопротивления в омном диапазоне.

Что такое конденсатор?

Конденсаторы — это пассивный электронный компонент, который используется практически во всех электрических устройствах. Вы можете найти их в компьютерах, телевизорах, кухонной технике, ремесленных машинах, транспортных средствах и многих других устройствах.

В основном конденсаторы состоят из двух электропроводящих поверхностей, которые отделены друг от друга изоляционным материалом. Однако существуют конденсаторы разных типов и форм. Один из самых известных — электролитический конденсатор.Это поляризованный конденсатор. Напротив, керамические конденсаторы, например, используются как неполяризованные конденсаторы. В области моторных конденсаторов также используются пусковые конденсаторы.

Поскольку конденсаторы блокируют постоянный ток и пропускают переменный ток, они выполняют разные функции. В цепи переменного тока конденсатор используется как резистор переменного тока, в цепи постоянного тока он может накапливать электрический заряд. Это сохраненное напряжение называется электрической емкостью (C) и измеряется в Фарадах (F).

Поскольку электролитические конденсаторы со временем изнашиваются, может потребоваться проверка их работоспособности. Вы можете измерить конденсатор мультиметром. Есть два подхода: вы просто хотите проверить состояние конденсатора с помощью мультиметра или вы хотите измерить точную емкость конденсатора?

Визуальный осмотр

  • Пластиковый корпус: есть ли где-нибудь на корпусе неопределимая масса? На корпусе есть трещина или даже дыра?
  • Алюминиевый корпус: утечка жидкости? Сработала ли защита от избыточного давления?

Если вы ответите на один из этих вопросов «Да», скорее всего, конденсатор неисправен.

В следующем разделе мы познакомим вас с различными методами проверки конденсатора с помощью мультиметра.

Функциональный тест

Двигатель с неисправным конденсатором либо гудит перед запуском, либо запускается с отчетливо слышимым гудением. Это явные признаки потери емкости и, следовательно, неисправного конденсатора.

Вы должны быть очень осторожны с этим типом теста, так как существует большой риск получения травмы. Прежде всего, никогда не проверяйте пилы или газонокосилки подобным образом.Многие люди переоценивают свои рефлексы и не могут достаточно быстро вывести пальцы из опасной зоны, когда двигатель внезапно запускается. К сожалению, многие несчастные случаи с отрубленными пальцами говорят сами за себя.

Если двигатель вращается в неправильном направлении, это также может указывать на неисправный конденсатор. То же самое относится к очень медленному или бессильному запуску машины. Если машина загружена, скорость в этом случае очень быстро падает. Если ваш электродвигатель работает неправильно или у него заканчивается мощность, в дополнение к дефекту конденсатора также может быть виновата неисправная обмотка двигателя.

1. Как проверить конденсатор без измерения емкости

Если доступен только простой мультиметр без функции измерения емкости, то можно проверить только приблизительную функциональность конденсатора или электролитического конденсатора (электролитического конденсатора). Действуйте следующим образом:

1. Выставляем конденсатор

Прежде всего, проверяемый конденсатор следует полностью удалить из схемы. Все контакты в цепи должны быть удалены, а полюса конденсатора должны быть открыты для свободного доступа.

2. Визуально проверьте конденсатор

Перед тем, как измерить конденсатор мультиметром, его следует визуально проверить на наличие явных повреждений. Обратите внимание на небольшие неровности или мелкие трещинки на поверхности. Утечка жидкости также указывает на неисправный конденсатор, который следует заменить.

3. Разрядный конденсатор

Следующий шаг — убедиться, что конденсатор полностью разряжен. Чтобы гарантировать отсутствие остаточного тока в конденсаторе, его можно подключить к потребителю, например, к простой лампочке.Таким образом, вся накопленная энергия может быть полностью разряжена.

4. Настроить мультиметр

Теперь мультиметр должен быть настроен на функцию измерения сопротивления (измеренные значения в омах). Чтобы можно было определить пригодные для использования результаты, необходимо выбрать диапазон измерения 1000 Ом, то есть 1 кОм.

5. Измерить конденсатор мультиметром

Теперь две измерительные линии мультиметра можно подключить к полюсам конденсатора.Для полного испытания конденсатора измерительные линии необходимо применить дважды и сравнить реакцию обоих процессов:

На дисплее цифрового мультиметра теперь должно отображаться измеренное значение в течение доли секунды, которую вы должны запомнить. Дисплей измерений сразу же перейдет к OL (открытая линия). Если измерительные линии удалены и повторно подключены, на дисплее снова должно появиться то же измеренное значение, а затем OL. Если это так, то конденсатор в порядке.

2. Как проверить конденсатор с помощью мультиметра для проверки целостности цепи

Тестер непрерывности с проверкой диодов встроен во многие модели мультиметров. Это также можно использовать для проверки конденсатора. Однако таким образом можно только определить, заряжается ли конденсатор.

Ток от измерительного устройства сначала течет в конденсатор, пока он не будет полностью заряжен. Затем можно провести измерение сопротивления. Затем показание на дисплее показывает непрерывно увеличивающееся измеренное значение, пока не выйдет из диапазона измерения и не будет отображаться только 1.

Проверка целостности с акустическим сигналом

Мультиметры, оснащенные тестером целостности с акустическим сигналом, обеспечивают следующую обратную связь:

  • Постоянный или отсутствующий звуковой сигнал означает, что конденсатор неисправен.
  • Звуковой сигнал изменяется по громкости или высоте, что означает, что конденсатор в порядке.

В обоих вариантах конденсатор можно проверить только на короткое замыкание или проверить процесс зарядки.Таким способом нельзя измерить точную емкость конденсатора.

Вы также должны учитывать, что конденсаторы могут реагировать иначе, когда они удалены, чем когда они встроены в цепь. С небольшими конденсаторами в диапазоне пФ или нФ измерения определенно значимы, но с большими конденсаторами от 10 мкФ они становятся неточными, поскольку они ведут себя иначе во время измерения, чем при нормальной работе в реальных условиях. Измерение конденсаторов в цепи, но это больше для профессионалов, чем для электриков-любителей.

Узнайте больше о точной процедуре проведения проверки целостности с помощью мультиметра в руководстве по эксплуатации мультиметра и узнайте все, что вам нужно учесть.

3. Использование мультиметра для измерения емкости

Если доступен мультиметр, способный измерять емкость, прямое измерение емкости может быть выполнено на конденсаторе или электролитическом конденсаторе (электролитическом конденсаторе). Действуйте следующим образом:

1.Выставляем конденсатор

Здесь тоже первое, что нужно сделать, это полностью удалить проверяемый конденсатор из схемы. Все контакты в цепи должны быть удалены, а два полюса конденсатора должны быть доступны для свободного доступа.

2. Визуально проверьте конденсатор

Перед измерением емкости мультиметром необходимо проверить конденсатор на предмет повреждений. Если на поверхности видны небольшие неровности, мелкие трещины или даже протекающая жидкость, это может указывать на неисправный конденсатор.

3. Разрядный конденсатор

Следующий шаг — убедиться, что конденсатор полностью разряжен. Чтобы снять с конденсатора весь остаточный ток, его можно подключить к потребителю. И здесь, например, лампочка полностью разряжает энергию конденсатора.

4. Настроить мультиметр

Теперь мультиметр должен быть настроен на функцию измерения емкости (измеренные значения в фарадах).Диапазон измерения обычно автоматически регулируется устройством.

5. Измерить емкость конденсатора мультиметром

Теперь обе измерительные линии можно подключить к полюсам конденсатора. На дисплее мультиметра теперь должно отображаться показание, примерно соответствующее значению, указанному на конденсаторе. Если два значения очень похожи, конденсатор в хорошем состоянии. Если измеренное значение значительно ниже, чем значение, указанное на конденсаторе, или если измеренное значение не отображается вообще, то конденсатор неисправен и его необходимо заменить.

Общее примечание:

Поскольку конденсаторы или электролитические конденсаторы накапливают электрический ток, они должны быть полностью разряжены, прежде чем вы сможете проверить конденсатор с помощью мультиметра.

С помощью простых мультиметров вы можете только определить, есть ли в конденсаторе короткое замыкание или заряжается ли он. Точные измеренные значения емкости конденсатора можно определить только с помощью надлежащим образом оборудованных измерительных устройств.

4.Как проверить конденсатор омметром

Также можно проверить конденсатор в электродвигателе, измерив сопротивление омметром. При этом измерении сопротивление должно начинаться с низкого уровня и постепенно увеличиваться по мере заряда конденсатора. Наиболее значимым из обоих методов измерения является сравнение с определенно работающим конденсатором двигателя с такими же техническими характеристиками. Если отклонения стрелки ведут себя одинаково с точки зрения интенсивности и временной прогрессии, конденсатор, вероятно, в порядке.

5. Как проверить конденсатор коротким замыканием

В некоторых ситуациях состояние электролитического конденсатора можно проверить без омметра или вольтметра только при наличии подходящего источника напряжения. Конденсатор заряжается 1-2 секунды. Затем нужно замкнуть контакты отверткой по металлу.

Рабочий конденсатор должен иметь яркую искру. Если он тусклый или едва заметный, это означает, что конденсатор неисправен и плохо держит заряд.

Как определить полярность электролитического конденсатора

Обновлено 8 сентября 2019 г.

Автор С. Хуссейн Атер

Конденсаторы имеют различные конструкции для использования в вычислительных приложениях и фильтрации электрического сигнала в цепях. Несмотря на различия в том, как они построены и для чего они используются, все они работают по одним и тем же электрохимическим принципам.

Когда инженеры создают их, они принимают во внимание такие величины, как значение емкости, номинальное напряжение, обратное напряжение и ток утечки, чтобы убедиться, что они идеальны для своих целей.Если вы хотите сохранить большой заряд в электрической цепи, узнайте больше об электролитических конденсаторах.

Определение полярности конденсатора

Чтобы определить полярность конденсатора, полоса на электролитическом конденсаторе указывает отрицательный полюс. Для конденсаторов с осевыми выводами (в которых выводы выходят из противоположных концов конденсатора) может быть стрелка, указывающая на отрицательный конец, символизирующая поток заряда.

Убедитесь, что вы знаете полярность конденсатора, чтобы его можно было подключить к электрической цепи в нужном направлении.Установка в неправильном направлении может вызвать короткое замыкание или перегрев цепи.

В некоторых случаях положительный конец конденсатора может быть длиннее отрицательного, но вы должны быть осторожны с этим критерием, потому что многие конденсаторы имеют обрезанные выводы. Танталовый конденсатор иногда может иметь знак плюса (+), указывающий на положительный полюс.

Некоторые электролитические конденсаторы могут использоваться в биполярном режиме, что позволяет при необходимости менять полярность. Они делают это, переключаясь между потоками заряда через цепь переменного тока (AC).

Некоторые электролитические конденсаторы предназначены для биполярной работы неполяризованными методами. Эти конденсаторы состоят из двух анодных пластин, соединенных с обратной полярностью. В последовательных частях цикла переменного тока один оксид действует как блокирующий диэлектрик. Он предотвращает разрушение противоположного электролита обратным током.

Характеристики электролитического конденсатора

В электролитическом конденсаторе используется электролит для увеличения емкости или способности накапливать заряд, который он может получить.Они поляризованы, то есть их заряды выстраиваются в линию, позволяющую им сохранять заряд. Электролит в данном случае представляет собой жидкость или гель с большим количеством ионов, благодаря которым он легко заряжается.

Когда электролитические конденсаторы поляризованы, напряжение или потенциал на положительном выводе больше, чем на отрицательном, что позволяет заряду свободно проходить через конденсатор.

Когда конденсатор поляризован, он обычно обозначается минусом (-) или плюсом (+) для обозначения отрицательного и положительного полюсов.Обратите на это особое внимание, потому что, если вы неправильно подключите конденсатор в цепь, это может привести к короткому замыканию, как в случае, когда через конденсатор протекает такой большой ток, что может его необратимо повредить.

Хотя большая емкость позволяет электролитическим конденсаторам накапливать большее количество заряда, они могут подвергаться токам утечки и могут не соответствовать соответствующим допускам по величине, величина емкости может варьироваться для практических целей. Определенные конструктивные факторы могут также ограничивать срок службы электролитических конденсаторов, если конденсаторы склонны к быстрому износу после многократного использования.

Из-за этой полярности электролитического конденсатора они должны быть смещены в прямом направлении. Это означает, что положительный конец конденсатора должен иметь более высокое напряжение, чем отрицательный, чтобы заряд проходил по цепи от положительного конца к отрицательному.

Подключение конденсатора к цепи в неправильном направлении может привести к повреждению материала оксида алюминия, изолирующего конденсатор, или к короткому замыканию. Это также может вызвать перегрев, в результате которого электролит слишком сильно нагревается или протекает.

Меры предосторожности при измерении емкости

Перед измерением емкости вы должны знать о мерах безопасности при использовании конденсатора. Даже после того, как вы отключите питание от цепи, конденсатор, скорее всего, останется под напряжением. Прежде чем прикоснуться к нему, убедитесь, что все питание схемы отключено, используя мультиметр, чтобы убедиться, что питание отключено, и вы разрядили конденсатор, подключив резистор к его выводам.

Для безопасной разрядки конденсатора подключите 5-ваттный резистор к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что питание отключено. Постоянно проверяйте конденсатор на предмет утечек, трещин и других признаков износа.

Символ электролитического конденсатора

••• Syed Hussain Ather

Символ электролитического конденсатора является общим обозначением конденсатора. Электролитические конденсаторы изображены на принципиальных схемах, как показано на рисунке выше для европейского и американского стилей. Знаки плюс и минус указывают на положительную и отрицательную клеммы, анод и катод.

Расчет электрической емкости

Поскольку емкость является величиной, присущей электролитическому конденсатору, вы можете рассчитать ее в единицах фарад как C = ε r ε 0 A / d для области перекрытия две пластины A в м 2 , ε r как безразмерная диэлектрическая проницаемость материала, ε 0 как электрическая постоянная в фарадах / метр и d как расстояние между плитами в метрах.

Экспериментальное измерение емкости

Для измерения емкости можно использовать мультиметр. Мультиметр измеряет ток и напряжение и использует эти два значения для расчета емкости. Установите мультиметр в режим измерения емкости (обычно обозначается символом емкости).

После того, как конденсатор был подключен к цепи и получил достаточно времени для зарядки, отключите его от цепи, соблюдая только что описанные меры безопасности.

Подключите выводы конденсатора к клеммам мультиметра. Вы можете использовать относительный режим для измерения емкости измерительных проводов относительно друг друга. Это может быть удобно при низких значениях емкости, которые может быть труднее обнаружить.

Попробуйте использовать различные диапазоны емкости, пока не найдете показание, которое является точным в зависимости от конфигурации электрической цепи.

Приложения при измерении емкости

Инженеры часто используют мультиметры для измерения емкости однофазных двигателей, оборудования и машин небольшого размера для промышленного применения.Однофазные двигатели работают за счет создания переменного потока в обмотке статора двигателя. Это позволяет току менять направление при протекании через обмотку статора в соответствии с законами и принципами электромагнитной индукции.

Электролитические конденсаторы, в частности, лучше подходят для использования с высокой емкостью, например, для цепей питания и материнских плат для компьютеров.

Индуцированный ток в двигателе затем создает собственный магнитный поток, противоположный потоку обмотки статора.Поскольку однофазные двигатели могут быть подвержены перегреву и другим проблемам, необходимо проверить их емкость и работоспособность с помощью мультиметров для измерения емкости.

Неисправности конденсаторов могут ограничить срок их службы. Короткозамкнутые конденсаторы могут даже повредить его части, так что он может больше не работать.

Конструкция электролитического конденсатора

Инженеры создают алюминиевых электролитических конденсаторов с использованием алюминиевой фольги и бумажных прокладок, устройств, которые вызывают колебания напряжения для предотвращения разрушительных вибраций, которые пропитаны электролитической жидкостью.Обычно они покрывают одну из двух алюминиевых фольг оксидным слоем на аноде конденсатора.

Оксид в этой части конденсатора заставляет материал терять электроны в процессе зарядки и накопления заряда. На катоде материал приобретает электроны в процессе восстановления конструкции электролитического конденсатора.

Затем производители продолжают укладывать пропитанную электролитом бумагу с катодом, соединяя их друг с другом в электрическую цепь и свертывая их в цилиндрический корпус, который подключается к цепи.Инженеры обычно выбирают расположение бумаги либо в осевом, либо в радиальном направлении.

Осевые конденсаторы выполнены с одним штифтом на каждом конце цилиндра, а в радиальных конструкциях оба штифта используются с одной стороны цилиндрического корпуса.

Площадь пластины и электролитическая толщина определяют емкость и позволяют электролитическим конденсаторам быть идеальными кандидатами для таких приложений, как усилители звука. Алюминиевые электролитические конденсаторы используются в источниках питания, материнских платах компьютеров и бытовой технике.

Эти особенности позволяют электролитическим конденсаторам сохранять гораздо больший заряд, чем другие конденсаторы. Двухслойные конденсаторы или суперконденсаторы могут даже достигать емкости в тысячи фарад.

Алюминиевые электролитические конденсаторы

Алюминиевые электролитические конденсаторы используют твердый алюминиевый материал для создания «клапана», так что положительное напряжение в электролитической жидкости позволяет ей образовывать оксидный слой, который действует как диэлектрик, изолирующий материал, который может быть поляризован до предотвратить утечку зарядов.Инженеры создают эти конденсаторы с алюминиевым анодом. Это используется для создания слоев конденсатора и идеально подходит для хранения заряда. Инженеры используют диоксид марганца для создания катода.

Эти типы электролитических конденсаторов можно разделить на тонких пленок с гладкой фольгой и на протравленную фольгу типа . Типы простой фольги — это те, которые были только что описаны, в то время как в конденсаторах с травленой фольгой на аноде и катодной фольге используется оксид алюминия, который протравлен для увеличения площади поверхности и диэлектрической проницаемости, что является мерой способности материала накапливать заряд.

Это увеличивает емкость, но также снижает способность материала выдерживать высокие постоянные токи (DC), тип тока, который проходит в одном направлении в цепи.

Электролиты в алюминиевых электролитических конденсаторах

Типы электролитов, используемых в алюминиевых конденсаторах, могут различаться: нетвердый, твердый диоксид марганца и твердый полимер. Обычно используются нетвердые или жидкие электролиты, потому что они относительно дешевы и подходят для различных размеров, емкостей и значений напряжения.Однако при использовании в цепях они действительно теряют много энергии. Этиленгликоль и борная кислота составляют жидкие электролиты.

Другие растворители, такие как диметилформамид и диметилацетамид, также могут быть растворены в воде для использования. Эти типы конденсаторов также могут использовать твердые электролиты, такие как диоксид марганца или твердый полимерный электролит. Диоксид марганца также экономичен и надежен при более высоких значениях температуры и влажности. Они имеют меньший ток утечки постоянного тока и высокую электрическую проводимость.

Электролиты выбраны для решения проблем высоких коэффициентов рассеяния, а также общих потерь энергии электролитических конденсаторов.

Ниобиевые и танталовые конденсаторы

Танталовые конденсаторы в основном используются в устройствах поверхностного монтажа в вычислительных приложениях, а также в военном, медицинском и космическом оборудовании.

Танталовый материал анода позволяет им легко окисляться, как алюминиевый конденсатор, а также позволяет им использовать преимущества повышенной проводимости, когда танталовый порошок прижимается к проводящей проволоке.Затем оксид образуется на поверхности и внутри полостей в материале. Это создает большую площадь поверхности для повышенной способности хранить заряд с большей диэлектрической проницаемостью, чем у алюминия.

Конденсаторы на основе ниобия используют массу материала вокруг проводника, который использует окисление для создания диэлектрика. Эти диэлектрики имеют большую диэлектрическую проницаемость, чем танталовые конденсаторы, но для данного номинального напряжения используется большая толщина диэлектрика. Эти конденсаторы в последнее время используются чаще, потому что танталовые конденсаторы стали более дорогими.

Хотите разгадать секреты конденсаторов? Проверьте это простое открытие

Вы когда-нибудь задумывались, что происходит внутри электролитического конденсатора? Ник Визик из AiSHi Capacitors показывает, как работают эти популярные конденсаторы, в этом разобранном видео с DesignCon. Конденсаторы с винтовыми клеммами имеют большие размеры и характеризуются высокой емкостью и напряжением. Они используются в промышленных источниках питания, а также в новых энергетических приложениях.

Теперь, когда мы понимаем, как изготавливаются пленочные электролитические конденсаторы, как они проходят испытания?

Испытательные конденсаторы

Связано: Основы целостности сигнала

Самый простой способ проверить конденсатор — использовать мультиметр с настройкой емкости. Этот метод позволяет измерять емкость конденсаторов в диапазоне от нескольких нанофарад до нескольких сотен микрофарад.

Если у вас есть цифровой мультиметр низкого уровня без настройки емкости, все, что вы можете сделать, это проверить, исправен ли конденсатор или нет.Рабочий конденсатор будет выглядеть как разомкнутая цепь при измерении сопротивления. Плохой будет показывать некоторый уровень сопротивления после того, как переходные процессы успокоятся.

Связано: EMC имеет жизненно важное значение в мире беспроводной связи. Помогут ли стратегии тестирования ADAS?

Большинство инженеров помнят тестирование конденсатора путем измерения его постоянной времени. Этот тест требует, чтобы известна емкость. Тест позволит более точно определить, хороший или плохой конденсатор. Уловка состоит в том, чтобы измерить постоянную времени конденсатора, чтобы получить емкость из измеренного времени.Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен. Вы действительно захотите использовать осциллограф для этого теста, чтобы точно определить постоянную времени.

Напоминаем, что постоянная времени последовательной RC-цепи (резистор / конденсатор) — это временной интервал, необходимый для зарядки конденсатора до 63% напряжения источника. В постоянной времени RC, также называемой тау, постоянная времени (в секундах) RC-цепи равна произведению сопротивления цепи (в омах) на емкость цепи (в фарадах), т.е.е., тау = R x C. (Источник изображения: Inductiveload — собственная работа, общественное достояние)

индуктивная нагрузка, RC-цепь серии Public Domain

.

Есть много других способов проверить конденсатор. Однако новичкам всегда лучше правильно разрядить конденсатор перед тестированием.

Джон Блайлер — старший редактор журнала Design News, освещающий электронику и передовые производственные площади. Имея степень бакалавра инженерной физики и степень магистра электротехники, он имеет многолетний опыт работы в области аппаратных, программных и сетевых систем в качестве редактора и инженера в области передового производства, Интернета вещей и полупроводников.Джон является соавтором книг по системной инженерии и электронике для IEEE, Wiley и Elsevier.

Как проверить конденсатор мультиметром?

Вы можете использовать разные методы для проверки конденсатора с помощью цифрового / аналогового мультиметра. Для вакуумной лампы, а также для транзисторных источников питания используется электролитическая модель, в то время как неэлектролитическая модель используется для управления скачками постоянного тока.

Форма электролита может быть нарушена разрядом дополнительного тока из-за короткого замыкания. Наиболее частая потеря неэлектролитических форм связана с утечкой накопленного заряда.

Существует множество подходов к проверке конденсатора. Тем не менее, мы рассмотрим , как проверить конденсатор с помощью мультиметра , в нашей статье. Так что следите за обновлениями до конца, чтобы узнать все об этом.

Что такое конденсатор?

Одним из видов электрической части является конденсатор, используемый для хранения энергии в виде электрического заряда.Они используются для выполнения различных функций в различных электрических и компьютерных цепях.

Можно разместить конденсатор в активной цепи. Таким образом можно заряжать конденсатор. Электрический заряд будет проходить через конденсатор, пока он не будет прикреплен.

Если первичная пластина конденсатора не сохраняет электрический заряд, вторая пластина возвращается в цепь. Таким образом, этот метод рассматривается как зарядка и разрядка конденсатора.

Как проверить конденсатор?

Многочисленные виды электрических и компьютерных продуктов, представленных на рынке, отличаются друг от друга. Любой из них очень подвержен колебаниям напряжения. Точно так же конденсатор часто уязвим для колебаний напряжения, поэтому есть способы проверить конденсатор, которые мы обсудим.

Проверка конденсатора играет важную роль в проверке функциональности конденсатора для решения проблем, связанных с отказом конденсатора.Давайте посмотрим, как можно измерить емкость с помощью лучшего измерителя емкости.

Как измерить емкость?

Для проверки результирующего напряжения используется мультиметр для оценки емкости. Вы можете измерить его через зарядный конденсатор. После этого вы можете использовать свою емкость для измерения мультиметром.

Здесь мы рассмотрели, как использовать мультиметр для измерения конденсатора. Начните с цифрового мультиметра, чтобы убедиться, что питание схемы отключено.

Вы должны помнить две главные вещи. Если конденсатор используется в цепи переменного тока, установите мультиметр для измерения переменного напряжения, иначе он не будет знать точных результатов.

Аналогичным образом, если конденсатор подключен к цепи постоянного тока, установите цифровой мультиметр для измерения напряжения постоянного тока. Если он пролился, сломался или порвался, осмотрите конденсатор один раз, а затем отремонтируйте конденсатор. Закрепите циферблат на знаке емкости, который считается режимом расчета емкости.

В качестве дополнительной функции у эмблемы также есть метка над циферблатом. Обычно нажатие функциональной кнопки включает измерение и регулировку шкалы.

Мы предпочли три способа проверки емкости, и они обсуждаются ниже.

Как проверить конденсатор с помощью мультиметра:

Несколько проблем могут возникнуть во время тестирования конденсатора при устранении большей части электрических и электронных неисправностей. Здесь, используя аналоговые и оптические мультиметры, мультиметр может проверять конденсатор.

Но можно проверить конденсатор, исправен он или нет. При использовании такой функции, как измерение емкости, значение емкости можно проверить с помощью цифрового мультиметра.

В общем, для измерения конденсатора требуются различные методы, такие как аналоговый, интерактивный, вольтметр, мультиметр с двумя режимами, такими как емкостной режим, режим омметра и обычная система искрообразования.

При проверке конденсатора эти подходы играют важную роль в понимании того, исправен ли конденсатор, доступен, слабый, короткое замыкание или нет.

Но, прежде чем вы начнете измерять емкость, вы должны убедиться, что силовые цепи отключены. Чтобы убедиться, что все питание цепи отключено:

  1. Используйте оптический мультиметр (DMM).
  2. Установите мультиметр на вычисление переменного напряжения вне зависимости от того, используется ли конденсатор в цепи переменного тока.
  3. Предположим, используется цепь постоянного тока, настройте цифровой мультиметр на расчет напряжения постоянного тока.

Обязательно осмотрите конденсатор физически.Замените конденсатор при появлении утечек, зазоров, вздутия или других признаков коррозии.

Переведите шкалу в режим расчета емкости. Символ иногда разделяет позицию с другим элементом на циферблате.

Помимо изменения шкалы, для запуска измерения обычно необходимо нажать функциональную кнопку. Обратитесь к руководству пользователя вашего мультиметра для получения инструкций.

Как проверить конденсатор PCBWay

Из множества доступных способов проверить конденсатор PCBway — отличный.Следовательно, мы начнем с PCBWay ниже —

Шаг 1. Удалите все источники электрического тока из конденсатора

Вы должны удалить конденсатор из электрической цепи для точного расчета. Некоторые мультиметры показывают относительный режим.

Этот режим используется для удаления выводов емкости из измерения всякий раз, когда вычисляются значения базовой емкости. Убедитесь, что на следующем этапе у вас включен режим REL, так как он вам понадобится.

Шаг 2: Нажмите опции .

Когда мультиметр используется для измерения емкости в относительном режиме, измерительные провода должны быть разомкнуты. Далее вам просто нужно будет нажимать кнопки REL. Таким образом, однако, испытание будет способствовать сохранению емкости, от которой можно отказаться.

Шаг 3: Затяните клеммы емкости .

Чтобы мультиметр мог выбрать правильный диапазон, подсоедините клеммы конденсатора к измерительным проводам на несколько секунд.Вы должны убедиться, что клеммы затянуты, так как это может привести к смещению во время процесса, если не будет сжато точно.

Шаг 4: Запишите значения

Проверяется показание измерения на цифровом мультиметре. Если значение емкости попадает в диапазон измерения, на цифровом экране отображается значение конденсатора мультиметра. Таким образом, вы сможете найти правильные значения вашего конденсатора с помощью PCBWay.

Как проверить конденсатор аналоговым мультиметром

Давайте посмотрим, как можно проверить конденсатор аналогового мультиметра, выполнив следующие простые и легкие шаги.Обязательно выполняйте каждый шаг внимательно, так как вы можете увидеть ложные результаты, если пропустите один или два шага.

Шаг 1. Достаньте разряженный конденсатор и мультиметр .

Вы должны убедиться, что ваш конденсатор полностью разряжен после предыдущего использования. Теперь вы можете взять свой измеритель AVO и начать процесс измерения.

Шаг 2: Выберите аналоговые значения

Поскольку вы используете аналоговый измеритель, обязательно выберите аналоговые параметры с высокими значениями Ом.Таким образом, вы можете тщательно убедиться, что мультиметр сопряжен с конденсатором.

Шаг 3: Присоедините концы клемм к мультиметру .

Осторожно возьмите клеммы конденсатора и прикрепите их к выводам мультиметра. Таким образом вы включите электропитание между двумя устройствами. Через несколько секунд между устройствами произойдет обмен информацией.

Шаг 4: Обратите внимание на значение

Внимательно записывает числа или значения, которые покажет ваш мультиметр.

Шаг 5. Проверьте, какой у вас конденсатор .

Если у вас короткий конденсатор, он всегда будет показывать значения сопротивления более низкого диапазона.

Если у вас есть открытые конденсаторы, они будут стабильными и не покажут никаких признаков прогиба на стержнях.

Со стандартными конденсаторами вы сможете увидеть отклонение мультиметра до бесконечности. Обычно это указывает на то, что ваш конденсатор находится в хорошем состоянии.

Как проверить конденсатор цифровым мультиметром

Наиболее распространенной формой конденсаторов в настоящее время являются цифровые мультиметры.Чтобы проверить конденсатор с помощью цифрового мультиметра, тщательно выполните действия, указанные ниже. Пропуск одного или двух шагов приведет к ложному результату.

Шаг 1: Возьмите разряженный конденсатор и мультиметр

Повторяя тот же шаг, что и для аналогового мультиметра, необходимо разрядить конденсатор и мультиметр. Убедитесь, что в конденсаторе не осталось ранее накопленных зарядов.

Шаг 2: Установите диапазон сопротивления .

Поскольку это цифровой мультиметр, а не аналоговый, вы должны установить диапазон Ом как минимум на 1 кОм или 1000 Ом.Таким образом, мультиметр сможет обнаружить ваш цифровой конденсатор.

Шаг 3. Присоедините мультиметр к конденсатору

К этому шагу нужно относиться внимательно. Часто мы видим, как пользователи в спешке подключают терминалы, что облегчает их отключение. Мы не хотим, чтобы это произошло. Тщательно соблюдая процедуры подключения терминала, вы сэкономите время.

Шаг 4: Обратите внимание на значение

Вы должны внимательно записывать показания вашего конденсатора.Значения будут четко отображаться на вашем цифровом мультиметре.

Шаг 5: Определение состояния конденсатора

Через некоторое время он попытается вернуть открытую строку и отобразить те же шаги, что и раньше. Если ваш конденсатор показывает значения, это означает, что он в хорошем состоянии. Однако, если нет значений, ваш конденсатор мертв и больше не работает.

Некоторые факторы, влияющие на измерение емкости:
  • Срок службы конденсаторов меньше, и они тоже вызывают неисправности.Из-за короткого замыкания возможно повреждение конденсаторов.
  • Предохранитель, используемый в цепи, может перегореть при коротком замыкании конденсатора. Элементы в цепи не могут правильно работать, когда клеммы конденсаторов разомкнуты.
  • Из-за распада разложение может также изменить значение значений емкости. Наличие конденсаторов непродолжительное и всегда является источником отказа.
  • Неисправные конденсаторы могут иметь обрыв цепи, короткое замыкание или могут выйти из строя механически до точки отказа.При коротком замыкании резистора может перегореть предохранитель.
  • Устройство или элементы схемы не могут работать, когда конденсатор размыкается или выходит из строя. Износ может даже изменить значение емкости конденсатора, что может создать проблемы.

Как узнать, неисправен ли конденсатор:

Вы сможете выяснить, неисправен ли конденсатор, выполнив простое визуальное сканирование. Один из признаков слабого конденсатора — вздутие или выпуклость сверху или снизу. Осмотрите корпус конденсатора и печатную плату, чтобы убедиться, что он не обесцвечен или не поврежден.

Наличие протекающего электролита является еще одним признаком неисправности конденсатора. Если вы видите все эти очевидные признаки, немедленно замените конденсаторы.

Заключительные слова

Поэтому мы очень надеемся, что к концу этой статьи вы научитесь , как проверить конденсатор с помощью мультиметра различными способами и как проверить, неисправен ли конденсатор.

Тем не менее, будьте осторожны при работе с электрическими приборами, поскольку они склонны накапливать электричество и могут привести к поражению электрическим током при неправильном использовании.Вы даже можете воспользоваться руководством, прилагаемым к мультиметру, чтобы получить подробную информацию о функциях мультиметра.

Ресурс:

  1. https://www.ifixit.com/Wiki/Troubleshhoting_logic_board_components.

1994-2008 гг.
Все права защищены.

Полное или частичное воспроизведение этого документа разрешено, если оба выполняются следующие условия:

1. Это примечание полностью включено в начало.
2. Плата не взимается, кроме расходов на копирование.

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ Мы не несем ответственности за повреждение оборудования, ваше эго, взорванные детали, перебои в подаче электроэнергии в округе, спонтанно генерируемые мини (или больше) черные дыры, планетарные сбои или травмы, которые могут возникнуть в результате использования этого материала.



  • Вернуться к содержанию тестирования конденсаторов.

    Введение

    Сфера действия документа

    Конденсаторы нельзя считать суперзвездами электронной техники. (кроме, возможно, таких устройств, как ксеноновые вспышки и импульсные лазеры), но больше нравятся помощники и массовки.Однако они играют жизненно важную роль практически в все, что так или иначе использует электроны. Неисправный конденсатор на 2 цента в телевизоре или мониторе может сделать его бесполезным.

    В этом документе описываются методы тестирования конденсаторов с использованием мультиметр без режима проверки емкости. Информация о сейфе разрядка конденсаторов высокой емкости или высокого напряжения и разряд Схема с визуальной индикацией заряда и полярности тоже включена.

    Также есть общая информация о конденсаторах, измерителях емкости и ESR, и другие связанные темы.



  • Вернуться к содержанию тестирования конденсаторов.

    Соображения безопасности

    Базовая безопасность конденсатора

    При этом случайного контакта с конденсаторами на плате логики 3,3 В не происходит. чтобы привести к шокирующему опыту, это не относится ко многим распространенным типам оборудование, включая телевизоры, компьютерные и другие мониторы, микроволновые печи; в импульсные источники питания в некоторых видеомагнитофонах, портативных компьютерах, батареях видеокамер зарядные устройства; электронная вспышка и другие ксеноновые стробоскопы; источники питания для лазеров и многие другие бытовые и промышленные устройства.

    Если оборудование подключено к сети переменного тока или использует высокое напряжение, специальные меры предосторожности необходимы как для личной безопасности, так и для предотвращения повреждения схемотехника от неосторожных действий. Помимо конкретных вопросов безопасности Что касается конденсаторов, обсуждаемых ниже, прочтите, поймите и соблюдайте Рекомендации, представленные в документе: Меры предосторожности при тестировании конденсаторов ВНИМАНИЕ: убедитесь, что конденсатор разряжен! Это и для вашей безопасности и постоянное здоровье вашего мультиметра.

    Пара диодов 1N400x, включенных параллельно с противоположной полярностью, может помочь защитить схема цифрового мультиметра. Поскольку цифровой мультиметр обычно не подает более 0,6 В. в диапазонах Ом диоды не будут влиять на показания, но будут проводить, если вы случайно поднесете глюкометр к заряженной крышке или выходу блока питания. Они мало что сделают с заряженным конденсатором 10 Ф или сильноточным источником питания, где вы забыли вытащить вилку, но можете сохранить микросхему LSI вашего цифрового мультиметра более скромными лохи.

    Этот подход нельзя использовать с типичными аналоговыми ВОМ, потому что они обычно поставьте слишком высокое напряжение в диапазонах Ом.Однако мой 20-летний аналог У VOM есть что-то подобное по всему движению счетчика, что спасло это не раз.



  • Вернуться к содержанию тестирования конденсаторов.

    Базовое испытание конденсаторов

    Проверка конденсаторов мультиметром

    Некоторые цифровые мультиметры имеют режимы проверки конденсаторов. Они достаточно хорошо работают, чтобы определить приблизительный рейтинг мкФ. Однако для большинства приложений они Не проводите испытания при напряжении, близком к нормальному рабочему напряжению, и не проверяйте утечку.Обычно этот тип тестирования требует отсоединения хотя бы одного провода. подозрительного конденсатора из схемы, чтобы получить достаточно точную чтение — или вообще любое чтение. Однако более новые модели также могут достойная работа по тестированию конденсаторов в цепи. Конечно, вся власть должна должны быть удалены, а конденсаторы должны быть разряжены. Обычно это работает до тех пор, пока компоненты, прикрепленные к конденсатору, являются либо полупроводниками (которые не работают при низком испытательном напряжении) или пассивные компоненты с достаточно высокий импеданс, чтобы не перегружать тестер слишком сильно.Чтение может не будет таким точным в схеме, но, вероятно, не приведет к ложному отрицательному результату — назвать конденсатор хорошим — это плохо. Но я не знаю, какие модели лучше в этом плане.

    ВНИМАНИЕ: Для этого и любых других испытаний конденсаторов большой емкости и / или конденсаторов. в блоке питания, усилителе мощности или аналогичных цепях убедитесь, что конденсатор полностью разряжен, иначе ваш мультиметр может быть поврежден или разрушен!

    Однако VOM или цифровой мультиметр без диапазонов емкости могут тесты.

    Для маленьких крышек (например, 0,01 мкФ или меньше) все, что вы действительно можете проверить, это шорты или протечка. (Однако на аналоговом мультиметре по шкале высокого сопротивления вы можете увидеть кратковременное отклонение, когда прикоснетесь щупами к конденсатор или поменять местами. Цифровой мультиметр может вообще не давать никаких указаний.) Любой конденсатор с сопротивлением несколько Ом или меньше — это плохо. Большинству следует проверить бесконечно даже в самом высоком диапазоне сопротивления.

    Для электролитов в диапазоне мкФ или выше вы должны увидеть заряд конденсата, когда вы используете шкалу высокого сопротивления с правильной полярностью — сопротивление будет увеличиваться, пока не достигнет (почти) бесконечности.Если конденсатор закорочен, он никогда не будет заряжаться. Если он открыт, сопротивление сразу станет бесконечным и не изменится. Если полярность щупы перевернуты, он также не будет заряжаться должным образом — определите полярность вашего измерителя и отметьте его — они не все одинаковы. красный обычно ** отрицательный ** с (аналоговыми) VOM, но ** положительный ** с большинством Цифровые мультиметры, например. Подтвердите с помощью отмеченного диода — низкое значение поперек исправный диод (ВОМ на Ом или цифровой мультиметр на тесте диода) указывает на то, что положительный свинец находится на аноде (треугольник), а отрицательный вывод — на катоде (стержень).

    Если сопротивление никогда не становится очень высоким, конденсатор негерметичен.

    Лучший способ действительно проверить конденсатор — заменить его заведомо исправным. ВОМ или цифровой мультиметр не будут проверять колпачок при нормальных условиях эксплуатации или при полное номинальное напряжение. Однако это быстрый способ поиска серьезных неисправностей.

    Простой способ довольно точно определить емкость — это построить осциллятор, использующий таймер 555. Заменить колпачок в цепи, а затем рассчитать значение C по частоте.С несколькими номиналами резисторов это будет работать в довольно широком диапазоне.

    В качестве альтернативы, используя источник питания постоянного тока и последовательный резистор, емкость можно рассчитать, измерив время нарастания до 63% источника питания напряжение от T = RC или C = T / R.

    Заметки Рэя по тестированию конденсаторов

    (Этот раздел от: Раймонд Карлсен ([email protected])

    Лучшая техника зависит от того, для чего используется колпачок. Полно электролиты считаются «негерметичными», когда они действительно частично открыты и просто не выполняют свою работу.Электролитики, которые на самом деле электрически негерметичные встречаются не так часто. Вы можете вынуть каждый конденсатор из цепь и проверьте ее с помощью средства проверки колпачка или даже VOM, но внутри цепи тестирование проходит быстрее. Я не люблю хвататься за паяльник, если я не почти уверен, что часть плохая. Время — деньги.

    Сначала я провожу визуальный осмотр и смотрю, нет ли электролитов. выпуклые (они-неплотные и обычно нагреваются) или физически протекающие (коррозия вокруг клемм). Вздутие колпачков в импульсном блоке питания являются беспощадной распродажей, но также могут указывать на негерметичные диоды.Далее, если устройство включится, я ищу признаки открытия крышек фильтров … гул полосы в изображение, гул в звуке, мерцающие дисплеи, низкий уровень B +, но ничего не нагревается, и т. д. Вы можете многое сказать, просто наблюдая и делая несколько простые проверки. Попробуйте все элементы управления и переключатели … вы можете получить другие подсказки. Что работает, а что нет?

    Если у вас очевидная неисправность … например, уменьшенная вертикальная развертка на телевизоре установить или контролировать, например, чтобы найти колпачок, который начинает открываться, вы можете соединить каждый из них с другим колпачком, по одному и посмотреть, это исправляет проблему.(Опыт научил меня, что плохие электролиты обычно не убивает вертикальную развертку полностью). несколько лет и более, может быть высохло несколько крышек (открытым). Проверь их все.

    «Выталкивающие» фильтры (как это раньше называлось) путем объединения исходных с аналогичным значением не является хорошей практикой с твердотельной электроникой. В удар по цепи, находящейся под напряжением, может повредить другие компоненты или потрясите схему, чтобы она снова заработала … на некоторое время. Тогда ты сядешь там, как дурак, и ждите, пока он снова сойдет с ума… минут или недель потом. Для небольших электролитов я использую трюк, обходя каждый из них с помощью небольшой конденсатор от 0,1 до 0,47 мкФ во время работы устройства. Если я увижу -любого- изменение производительности, Я ЗНАЮ, что оригинал не выполняет свою работу (стоимость сильно снижена или открыта). Конечно, если вы попадете в колпачки времени, это немного расстроит вертикальный осциллятор … это нормально. Для большего электролитические, подобные тем, которые используются для питания ярма или питающей сети фильтры, единственный эффективный способ проверить их — заменить на такая же или большая емкость.Выключите телевизор, вставьте новый колпачок в цепь и снова включите ее.

    Как я уже говорил ранее, протекающие колпачки на самом деле довольно редки … но это действительно случается. Обычно они расстраивают цепь намного больше, чем открытые. Вещи имеют тенденцию быстро нагреваться, если крышка является фильтром в блоке питания. Закороченные танталы и электролиты в источниках питания могут буквально взорваться. Очевидно, что негерметичные колпачки необходимо удалить из контура, чтобы замените их в тестовых целях.

    Большинство других типов малогабаритных конденсаторов: майларовые, дисковые керамические, и т.п.довольно прочные. Действительно, редко можно найти их плохими. Такое случается достаточно часто, чтобы технический специалист оставался скромным.

    Комментарии Гэри по тестированию конденсаторов

    (От: Гэри Коллинза ([email protected]).)

    Омметр говорит вам только о том, закорочена ли крышка или нет, если она Достаточно большой электролит может сказать вам, открыта ли крышка. Я техник в крупной компании по промышленному контролю в заводском сервисном центре. Мы Считайте любую электролитическую крышку подозрительной, если ее кодовая дата превышает пять лет.У нас есть Fluke 97, и он бесполезен для тестирования схем. Все измеритель, как Fluke 97, может сказать вам, находится ли крышка на пути к открытию от потери электролита или короткого замыкания. На самом деле не все, что вам нужно знать. Несколько других фактов, которые вам необходимо знать: какова проводимость? (внутреннее сопротивление утечки), иногда оно зависит от напряжения. Вы тоже необходимо знать, что такое коэффициент мощности конденсатора в некоторых случаях. Это его способность пройти A.C. Это особенно важно для компьютерного оборудования, которое должно пройти гармоники и шум на землю.Импульсные источники питания, подобные почти все ПК в наши дни используют высокочастотные преобразователи напряжения для регулирования Напряжение. Гармоники и шум, создаваемые этим быстрым переключением, нагревают постоянный ток. крышки фильтра и заставляет их терять влагу из своих несовершенных уплотнений. Этот Эффект приводит к постепенному открытию конденсатора или падению емкостного значения.

    Если вы говорите о других типах конденсаторов, вы можете проверить их значение. с измерителем, но я видел крышки, которые хорошо смотрятся с измерителем, но ломаются под напряжением.Существуют специальные измерители крышки, которые проверяют все эти параметры и позволяют вы оцениваете, хороша ли кепка или нет, но лучший тест за исключением этого — заменить колпачок и посмотреть, работает он или нет. Не стесняйтесь спросить, не так ли то, что вы хотели знать.

    На самом деле, иногда лучший тест — это использовать осциллограф, чтобы посмотреть, что кап делает в цепи.

    А как насчет измерителей емкости?

    Простые шкалы емкости на цифровых мультиметрах просто измеряют емкость в мкФ и не проверяйте на утечку, ESR (эквивалентное последовательное сопротивление) или пробой Напряжение.Если результат измерения находится в пределах разумного процента от отмеченное значение (некоторые конденсаторы имеют допуски, которые могут достигать +100% / — 20% или более), то во многих случаях это все, что вам нужно знать. Однако утечка и СОЭ часто меняются на электролитах по мере старения и высохнуть.

    Многие измерители емкости не проверяют ничего другого, но, вероятно, точнее, чем дешевый цифровой мультиметр для этой цели. Счетчик этого типа будет не гарантирую, что ваш конденсатор соответствует всем спецификациям, но если он проверяет плохо — очень низко — конденсатор плохой.Это предполагает, что тест был проведен при снятом конденсаторе (хотя бы один вывод из схемы — в противном случае другие компоненты, включенные параллельно, могут повлиять на показания.

    Чтобы более полно охарактеризовать конденсатор, вам необходимо проверить емкость, утечка, ESR и напряжение пробоя. Другие параметры, такие как индуктивность, не вероятно, изменится на вас.

    Тестеры СОЭ, которые отлично подходят для быстрого устранения неполадок, предназначены только для Измерьте эквивалентное последовательное сопротивление, так как это отличный индикатор исправности электролитического конденсатора.Некоторые предлагают только «идти / нет» индикация того, какой другой фактически отображает показание (обычно между 0,01 и 100 Ом, поэтому их также можно использовать в качестве низкоомных измерителей сопротивления в безиндуктивные цепи). См. Раздел: Что такое СОЭ и Как это можно проверить ?.

    Примечание: всегда размещайте щупы на самих клеммах конденсатора, если возможный. Любая проводка между вашим измерителем и конденсатором может повлиять на чтения. Хотя в вашем руководстве пользователя может быть указано, что вы можете тестировать конденсаторы в цепи, другие компоненты, подключенные параллельно конденсатору, могут испортить показания — обычно приводящие к индикации короткого замыкания конденсатора или слишком большое значение мкФ.Удаление лучше всего. Отпаял только один из контактов достаточно, если вы можете изолировать его от цепи.

    Замена действительно лучший способ ремонта, если у вас нет очень сложный измеритель емкости.

    В мартовском номере Popular Electronics за 1998 г. измеритель емкости с диапазоном от 1 пФ до 99 мкФ.

    В майском выпуске журнала Popular Electronics за 1999 г. Метр », который точно измерит емкость и позволит определение некоторых других характеристик конденсаторов большой емкости — до нескольких сотен тысяч мкФ.Это в основном постоянная времени, основанная на тестер с использованием источника постоянного тока.

    Больше о тестировании конденсаторов, чем вы, вероятно, хотели Знать

    (От: Джона Уитмора ([email protected]).)

    Во-первых, вам понадобится источник переменного тока пульсаций. Затем вы настраиваетесь на частоту представляет интерес (обычно 120 Гц для конденсаторов фильтра блока питания выпрямителя) и приложите как переменный ток, так и смещение постоянного напряжения. Измерьте фазовый сдвиг между током и напряжением (для идеального конденсатора это 90 градусов) и измерьте наведенное напряжение (для идеального конденсатора это это I * 2 * pi * f * C).

    Возьмите тангенс разности фазового сдвига и 90 градусов. (Этот ‘tan (delta)’ и появляется в спецификации конденсатора …)

    Затем отключите переменный ток и увеличьте смещение постоянного тока до номинального значения скачка напряжения; измерить ток утечки. Понизьте смещение постоянного тока до номинального рабочего напряжения; измерить ток утечки.

    Увеличьте температуру и повторите измерение емкости, фазового сдвига и рабочего напряжения. измерения при максимальной температуре, на которую рассчитан конденсатор.

    Да, это ДЕЙСТВИТЕЛЬНО звучит довольно сложно, но это тест, который производители используют.



  • Вернуться к содержанию тестирования конденсаторов.

    Безопасный разряд конденсаторов телевизоров, видеомониторов и микроволновых печей Духовки

    Почему это важно

    Это важно — для вашей безопасности и для предотвращения повреждения устройства под тестируйте так же, как ваше испытательное оборудование — это большие или высоковольтные конденсаторы быть полностью разряженным перед проведением измерений, попыткой пайки, или схемотехника никак не тронута.Некоторые из больших конденсаторов фильтра обычно находящийся в линейном хранилище оборудования потенциально опасен для жизни.

    Это не означает, что каждый из 250 конденсаторов в вашем телевизоре должен быть разряжается каждый раз, когда вы отключаете питание и хотите провести измерение. Тем не мение, большие конденсаторы основного фильтра и другие конденсаторы в источниках питания следует проверить и разрядить при обнаружении значительного напряжения до касаясь чего-либо — некоторых конденсаторов (например, высокое напряжение ЭЛТ в Телевизор или видеомонитор) сохранит опасный или, по крайней мере, болезненный заряд за дней или дольше!

    Работающий телевизор или монитор может полностью разрядить свои крышки, когда он отключен, так как существует значительная нагрузка как на низком, так и на высоком напряжении Источники питания.Однако телевизор или монитор, которые кажутся мертвыми, могут содержать заряд. как на низковольтном, так и на высоковольтном питании в течение длительного времени — часы в случае LV, дни или более в случае HV, так как на них может не быть нагрузки. запасы.

    Конденсаторы главного фильтра в блоке питания низкого напряжения должны иметь резисторы утечки, чтобы разрядить их относительно быстро, но резисторы может потерпеть неудачу. Не полагайся на них. Нет пути разряда для высокое напряжение, хранящееся на емкости ЭЛТ, кроме луча ЭЛТ ток и обратная утечка через высоковольтные выпрямители, которые довольно маленький.В случае старых телевизоров с вакуумными ламповыми высоковольтными выпрямителями, утечка была практически нулевой. Они будут держать заряд почти бесконечно.

    (От: Эдвина Винета ([email protected]).)

    Некоторые из нас работают в областях, где конденсаторы огромные, необычные, а иногда и то, и другое. Многие считают, что убить, сбить с толку могут только «большие» конденсаторы. через комнату, продырявить в вас дыру или привлечь ваше внимание. Вот пара комментариев:

    Когда конденсатор благополучно разряжен, не останавливайтесь на достигнутом.Некоторые конденсаторы, из-за их способности протекать — «мертвы» после безопасной разгрузки с «сливной резистор» подходящего номинала для работы. Используя резистор, который занижен — по мощности — может привести к разрыву цепи дренажа ВО ВРЕМЯ последовательности разряда, ОСТАВЛЯЯ немного энергии! Конденсаторы высокого напряжения, или что еще хуже, конденсаторы с высокой энергией и высоким напряжением требуют правильной мощности И правильное сопротивление для безопасного кровотечения. Также высокое микрофарад низкое напряжение конденсаторы могут испарить отвертку и брызгать металлом вам в глаза.(Адекватный Запас по напряжению также важен для резисторов, используемых в цепях высокого напряжения. — Сэм.)

    Определенные типы конденсаторов сделаны из ОЧЕНЬ хороших материалов, которые могут удерживать заряд на ГОДЫ! Убирать заряженные конденсаторы этого типа — приглашение к катастрофе!

    Конденсаторы с низкой индуктивностью, которые многократно используются в схемах импульсов энергии. относятся к маслонаполненному типу для высоких энергий / высокого напряжения. Этот тип может дать САМЫЙ неприятный сюрприз ПОСЛЕ того, как его полностью осушили сейфом. техника кровотечения.После того, как конденсатор был удален, НЕМЕДЛЕННО закоротите это, от клеммы к клемме И к внешней металлической банке (если применимо) !!! Эти конденсаторы перезаряжаются из своей внутренней жидкости и ЕЩЕ МОГУТ доставлять смертельны, так как они «восстанавливают» определенное количество энергии! Этот тип конденсатор или любой конденсатор любого высокого (достаточно) значения энергии ДОЛЖЕН быть СЛЕВА. закорочен.

    Будьте особенно осторожны с любым конденсатором с оторванным проводом, который сидит в ящике! Иногда эти блоки ломаются во время тестирования и не попадают в выброшен — но остается обвиненным — чтобы убить или шокировать годы спустя.

    Наконец, слово «поражение электрическим током» используется во многих письменных источниках, посвященных высоковольтным устройствам. Это плохо, потому что он был предназначен только для «электрического стула», короче для электро + исполнение.

    Метод разряда конденсаторов

    Я рекомендую использовать резистор высокой мощности примерно От 5 до 50 Ом / В рабочего напряжения конденсатора. 2 / R), так как полная энергия, запасенная в конденсатор не такой уж и большой.
  • Для ЭЛТ используйте высокую мощность (не для мощности, а для удержания высокой мощности). напряжение, которое может перепрыгнуть через крошечный 1/4 ваттный резистор) резистор от 1 до 10 МОм, разряженный на массу шасси, подключенную к внешней стороне ЭЛТ — НЕ СИГНАЛЬНОЕ ЗАЗЕМЛЕНИЕ НА ГЛАВНОЙ ПЛАТЕ, так как вы можете повредить чувствительные схема. Постоянная времени очень мала — мс или около того. Однако повторить несколько раз, чтобы убедиться. (Использование закорачивающего зажима может быть неплохой идеей а также во время работы на оборудовании — слишком много историй было болезненных переживаний от зарядки по тем или иным причинам готов кусать при повторном подключении высоковольтного провода.) Обратите внимание: если вы касаетесь небольшая доска на шейке ЭЛТ, вы можете захотеть разрядить HV даже если не отключаете жирный красный провод — фокус и экран (G2) напряжения на этой плате выводятся из ЭЛТ HV.
  • Для высоковольтного конденсатора в микроволновой печи используйте 100 кОм 25 Вт. (или резистор большего размера с зажимом, ведущим к металлическому шасси. Причина использования большой (большой) резистор опять же не столько рассеивает мощность, сколько задержка напряжения.Вы же не хотите, чтобы высоковольтное напряжение проходило через клеммы резистор.

    Прикрепите провод заземления к неокрашенному месту на шасси. Используйте разряд щупайте по очереди с каждой стороны конденсатора в течение секунды или двух. Поскольку постоянная времени RC составляет около 0,1 секунды, это должно быстро разрядить заряд и безопасно.

    Затем подтвердите с помощью ОТВЕРТКИ С ХОРОШЕЙ ИЗОЛЯЦИЕЙ на конденсаторе. терминалы. Если есть большая искра, вы каким-то образом узнаете, что ваша первоначальная попытка была менее чем полностью успешной.По крайней мере, будет не будет опасности.

    НЕ используйте для этого цифровой мультиметр, если у вас нет подходящего высоковольтного пробника. Если разрядка не сработала, можете взорвать все, в том числе сам.

  • Разрядный инструмент и схема, описанные в следующих двух разделах, могут быть используется для визуальной индикации полярности и заряда телевизора, монитора, SMPS, конденсаторы фильтра источника питания и малая электронная энергия вспышки накопительные конденсаторы и высоковольтные конденсаторы для микроволновых печей.

    Причины для разрядки конденсаторов использовать резистор, а не отвертку:

    1. Не повредит отвертки и клеммы конденсатора.
    2. Не повредит конденсатор (из-за импульса тока).
    3. Это снизит уровень стресса вашего супруга из-за того, что ему не нужно слышать эти страшные щелчки и треск.

    Инструмент для разряда конденсатора

    Подходящий разрядный инструмент для каждого из этих приложений может быть выполнен в виде довольно легко. Схема индикатора разряда конденсатора, описанная ниже могут быть встроены в этот инструмент для визуального отображения полярности и заряда (на самом деле не требуется для ЭЛТ, так как постоянная времени разряда равна практически мгновенно даже с резистором мульти-МОм).Опять же, всегда дважды проверяйте с помощью надежного вольтметра или закорачивая изолированная отвертка!

    Цепь индикатора разряда конденсатора

    Вот предлагаемая схема, которая разряжает главный фильтр высокого качества. конденсаторы в телевизорах, видеомониторах, импульсных источниках питания, СВЧ конденсаторы духовки и другие подобные устройства быстро и безопасно. Эта схема может быть встроен в разгрузочный инструмент, описанный выше (Примечание: другое значение резисторы необходимы для приложений низкого, высокого и сверхвысокого напряжения.)

    Визуальная индикация заряда и полярности обеспечивается с максимального входа до нескольких вольт.

    Общее время разряда составляет примерно:

    • LV (блоки питания телевизоров и мониторов, SMPS, электронные фотовспышки) — up до 1000 мкФ, 400 В. Время разряда 1 секунда на 100 мкФ емкости (5RC с R = 2 кОм).
    • HV (высоковольтные конденсаторы СВЧ) — до 5000 В, 2 мкФ. Время разряда 0,5 секунды на 1 мкФ емкости (5RC с R = 100 кОм)
    • EHV (вторые аноды ЭЛТ) — до 50 000 В, 2 нФ.Время разряда 0,01 секунды на 1 нФ емкости (5RC с R = 1 МОм). Примечание: разряд время настолько короткое, что мигание светодиода можно не заметить.
    Отрегулируйте значения компонентов для вашего конкретного приложения.
    
     (Зонд)
    ------- + --------- + -------- +
     (Зажим GND)
    
     
    Два набора из 4 диодов (от D1 до D8) будут поддерживать почти постоянное напряжение. падение примерно 2,8-3 В на светодиоде + резистор, пока входной сигнал больше чем около 20 В. Примечание: это означает, что яркость светодиода НЕ индикация значения напряжения на конденсаторе до его падения ниже примерно 20 вольт.Затем яркость будет уменьшаться до тех пор, пока не исчезнет полностью выключен на уровне около 3 вольт.

    ВНИМАНИЕ: Всегда проверяйте разряд с помощью вольтметра, прежде чем касаться любого высокого напряжения. конденсаторы напряжения!

    Для конкретного случая крышек главного фильтра импульсных источников питания, Телевизоры и мониторы — это быстро и эффективно.

    (От: Пола Гроэ ([email protected]).)

    Я обнаружил, что лампа «ночник» на 4 Вт лучше, чем простой резистор. так как он дает немедленную визуальную индикацию оставшегося заряда — вплоть до ниже 10 В.

    Как только он перестанет светиться, напряжение упадет до несмертельного уровня. Тогда уходи он подключился еще немного и закончил его с помощью `ole отвертка.

    Они дешевы и легко доступны. Вы можете сделать десяток «тестовых ламп» из старая гирлянда рождественских гирлянд ‘C7’ («самое время!»).

    Примечание редактора: если задействован удвоитель напряжения (или вход 220 В переменного тока), используйте два такие лампочки в серию.

    (От: Дэйва Талкотта ([email protected]).)

    Я построил инструмент для разряда конденсаторов. У меня были все детали под рукой, кроме для последовательного резистора, для которого я использовал осевой блок на 2 Вт, так как мощность диссипация не критична. Я решил упаковать его в пробную форму для удобство. За исключением последовательного резистора, который находится в цековке, все устанавливается на поверхность и сообщается через МНОГО перфорированных дыры. Кусок термоусадочной трубки удерживает все на месте. Единственный Сложная часть заключалась в том, чтобы сделать два небольших углубления для размещения светодиодов.Наконечник зонда короткий кусок сплошного медного провода, взятый из домашней проводки Ромекса и заземлить до точки.

    Устройство проверки напряжения

    В то время как мультиметр предназначен для измерения напряжений (и прочего), чекер используется в основном для быстрого определения присутствия напряжения, его полярности и других основных параметров. Одно использование — быстрое, но надежная индикация состояния заряда на БОЛЬШОМ конденсаторе. An, Примером простого варианта такого устройства является «Конденсаторный разряд». схема индикатора », описанная выше.

    (От: Яна Филда ([email protected]).)

    Версия чекера, которая у меня есть, тоже содержит миниатюрную 12 В. аккумулятор для проверки непрерывности — любое сопротивление менее 22 кОм будет произвести некоторое свечение. Это удобно для быстрой проверки полупроводниковых переходов — в общем, если он дает небольшое свечение, значит, он негерметичен, но транзистор B / E переходы имеют внутреннее напряжение стабилитрона, поэтому обычно наблюдается некоторое свечение. Также диоды с барьером Шоттки дают свечение с обратной утечкой — этого не происходит. означают, что они неисправны, проверьте Vf с помощью проверки диодов на цифровом мультиметре перед биннинг! Любой стабилитрон выше 10-11 В можно быстро проверить на S / C, более низкий Vz будет производить некоторое свечение — снова проверьте Vf перед биннингом.

    Эти шашки становится все труднее достать, большинство продавцов компонентов здесь переносятся только сложные (и дорогие) версии с встроенный измерительный компьютер и ЖК-дисплей — этого не хватит на 5 минут схема обратного хода! В некоторых магазинах автомобильных аксессуаров есть более простые версии. без батареи — всегда проверяйте, что он способен измерять Переменный или постоянный ток от 4 до 380 В перед расставанием с деньгами! Внутренний контур должен содержат светодиоды, резистор на 15 Ом для ограничения максимального импульсного тока при PTC холодный и специальный пленочный термистор PTC.Батарея может быть добавлен кнопкой с передней панели видеомагнитофона — но не обвиняйте меня, если вы убьете сами, потому что вы неправильно изолировали добавленные компоненты! Там есть более сложная безбатарейная версия с 2 светодиодами на передней панели ручка для указания полярности и ряд светодиодов по длине дескриптор для указания диапазона напряжения. Эта версия содержит 2 специальных PTC и схему гистограммы на дискретных транзисторах — может быть, есть место для добавления аккумулятор внутри корпуса. Что касается специального PTC, это единственное место, где я видел их — одна из возможностей, на которую стоит обратить внимание, — это Термистор запуска Siemens PTC SMPSU для микросхем управления TDA4600, обычно это имеет последовательный резистор не менее 270 Ом и с большей вероятностью включится в Европейские телевизоры, но я видел их в ранних дисплеях Matsushita IBM и у некоторых других (возможно, Tandon) термистор PTC всегда синий и выглядит как очень миниатюрная копия бело-пластикового размагничивания PTC Philips термистор.



  • Вернуться к содержанию тестирования конденсаторов.

    Эквивалентное последовательное сопротивление (ESR) и связанные параметры

    Что такое СОЭ и как его проверить?

    ESR (эквивалентное последовательное сопротивление) — важный параметр любого конденсатора. Он представляет собой эффективное сопротивление, возникающее в результате комбинации проводка, внутренние соединения, пластины и электролит (в электролитическом конденсатор). ESR влияет на работу настроенных цепей (высокое ESR снижает коэффициент добротности) и может привести к полностью неправильному или нестабильному работа таких устройств, как импульсные источники питания и отклоняющие цепи в телевизорах и мониторах.Как и следовало ожидать, электролитические конденсаторы имеют тенденцию имеют высокий СОЭ по сравнению с другими типами, даже если они новые. Однако из-за электрохимическая природа электролитического конденсатора, ESR действительно может меняться — и не в лучшую сторону — со временем.

    При устранении неисправностей электронного оборудования, электролитических конденсаторов, в в частности, может ухудшиться, что приведет к значительному и неприемлемому увеличению в ESR без аналогичного снижения емкости мкФ при измерении на типичном Шкала емкости цифрового мультиметра или даже дешевый измеритель LCR.

    Вот несколько веб-сайтов, на которых более подробно обсуждается тестирование СОЭ, а на некоторых Включите полную информацию о создании собственного измерителя СОЭ:

    Доступны коммерческие измерители СОЭ и наборы по цене от 50 до 200 долларов. или больше. Вот пара сайтов, на которые стоит обратить внимание:

    Эти устройства обычно могут использоваться для измерения действительно низких сопротивлений неиндуктивные устройства или цепи (они используют переменный ток, поэтому индуктивность приводят к неточным показаниям). Поскольку их самый низкий диапазон составляет не менее 10 раз лучше, чем у типичного цифрового мультиметра (полная шкала 1 Ом — 0.Разрешение 01 Ом), их даже можно использовать для обнаружения закороченных компонентов на печатной плате доски.

    Примечание: всегда размещайте щупы на самих клеммах конденсатора, если возможный. Любая проводка между вашим измерителем и конденсатором может повлиять на чтения. Хотя обычно это не проблема, компоненты с очень низким сопротивлением в параллельно с конденсатором может привести к ложному отрицательному показанию — конденсатор, который хорошо себя зарекомендовал, хотя на самом деле его ESR чрезмерно.

    (От: Ларри Сабо (ac274 @ FreeNet.Carleton.CA).)

    Я считаю, что мой измеритель СОЭ неоценим для поиска высоких значений СОЭ, и никогда видел закороченную кепку, которая не взорвалась. Это такое удовольствие застегивать молнию через заглушки в блоке питания и найдите те, у которых было, все не касаясь паяльника.

    Были дни, когда мне хотелось иметь LC102 для измерения утечек. возможности, но по моему ограниченному опыту цифра 10% кажется высокой. В LC102 также может похвастаться звонком индуктивности, но вы обязательно заплатите премиум.Сначала я построю штуковину Сэма.

    Кстати, я построил свой измеритель СОЭ из комплекта, приобретенного у Dick Smith Electronics. в Австралии: 52,74 австралийского доллара + 25 австралийских долларов за доставку. Прошло около 8 часов собрать, но я задница.

    Подробнее о ESR, DF и Q

    (От: Майкл Каплан ([email protected]).)

    Прежде чем я купил свой измеритель СОЭ, я тоже задавался вопросом — что именно он измеряет? Тем не менее, так много наслышавшись о счетчике, я пошел дальше и купил один. Это работает, и это настоящая прибыль.

    Недавний вопрос о том, что именно измеряется (DF или Q), вызвал у меня внимание. снова интерес. Думаю, у меня есть ответ — «думай», будучи оперативником. слово. Вот моя интерпретация.

    Таким образом, СОЭ действительно связано с фактором рассеяния (DF), но это не то же самое. Измерительный прибор пеленгации может не так легко определить неисправный конденсатор, как и измеритель ESR, потому что показания различаются и не являются прямыми, как описано ниже.

    Конденсаторы можно рассматривать как имеющие чистую емкость (C) и некоторую чистую емкость. сопротивление (R), два последовательно.Идеальный конденсатор имел бы только C, а не R. Однако есть выводы и пластины, на которых сопротивление и составляют реальную R. Любая R, соединенная последовательно с C, уменьшит способность конденсатора пропускать ток в ответ на изменяющееся приложенное напряжение, как в приложениях фильтрации или изоляции постоянного тока, и он будет рассеивать тепло, которое является расточительным и может привести к отказу компонента. Как и в случае с СОЭ, более низкая DF (или более высокий Q, он инверсный) может быть приравнен к лучшей производительности, все при прочих равных.

    Теперь я немного усложняю математику, но использую только основную электронную теорию и формулы, поэтому я надеюсь, что большинство сможет это сделать.

    DF определяется как Rc / Xc, отношение R в конденсаторе (Rc) к реактивное сопротивление конденсатора (Xc). Чем выше Rc, тем выше DF и «беднее» конденсатор. Все идет нормально.

    Реактивное сопротивление (Xc) зависит от частоты. Хс = 1 / (2 * пи * f * C). Итак, как частота повышается, Xc понижается. Теперь вернемся к формуле DF.DF — это функция, обратная Xc. Когда Xc уменьшается, DF увеличивается, и наоборот. Так DF изменяется пропорционально частоте.

    Вот пример использования вездесущего электролита 22 мкФ, 16 В, который, кажется, слишком часто быть виноватым во многих импульсных источниках питания.

    При 1000 Гц этот конденсатор имеет Xc 7,2 Ом. Если серия Rc только 0,05 Ом (неплохо), тогда пеленгатор 0,0069.

    При 50 000 Гц этот же конденсатор имел бы Xc всего 0,14 Ом.На это частота, пеленгатор 0,36, опять хорошо.

    Теперь измените Rc с 0,05 до 25 Ом. На частоте 1000 Гц DF = 3,4. При 50 000 Гц, DF = 178.

    Итак, мы видим, что пеленг — это функция тестовой частоты. Чем выше частота, тем выше пеленгатор. DF — это мера «качества» конденсатора, но цифра действительна только при частоте проведения теста. (Хороший конденсатор, с идеальным Rc, равным нулю, будет иметь DF, равный нулю, независимо от частоты.)

    DF действительно может использоваться для идентификации неисправного конденсатора, но пользователь должен интерпретировать уровень измеренного пеленгации, который указывает на неисправный компонент.Любой «идти / не идти» таблицы значений DF будут действительны только при указанной частоте. Как в качестве альтернативы пользователь может рассчитать Rc, сначала измерив как DF, так и C, а затем, зная частоту испытаний, определите, соответствует ли Rc излишний. (Rc = DP * Xc).

    Однако система измерения ESR-метра, похоже, не является функцией Xc. Он измеряет напряжение на конденсаторе, возникающее в результате применение очень короткого импульса тока. Этого короткого импульса недостаточно для зарядки конденсатора так, чтобы напряжение, измеряемое на конденсаторе Количество отведений в первую очередь зависит от Rx, который не чувствителен к частоте.А также, с «таблицами» типичного СОЭ (= Rc), которые предоставляются измерителями СОЭ I увидели, дальнейшие вычисления не нужны.

    Измеритель ESR не будет надежным с очень маленькими конденсаторами. В этом случае они будут более полно заряжены приложенным током в то время измеритель измеряет напряжение. Даже если Rc является идеальным нулевым сопротивлением, измеритель теперь будет считывать напряжение на конденсаторе и интерпретировать его как очень высокая (возможно, зашкаливающая) СОЭ.Таким образом, его преимущество и основная цель заключаются в тестирование электролитов, которые, как правило, являются конденсаторами большей емкости.

    (Примечание: неспособность измерителя ESR проверить конденсаторы малой емкости верна. только если измеритель не различает синфазный и квадратурный напряжения, а это не так. Если бы он чувствовал только синфазное напряжение, которое возникает через Rx (т.е. синфазно с приложенным током), то он не будет быть чувствительным к задержанному (минус 90 градусов) напряжению, возникающему на обкладки конденсатора.)

    Все тесты, которые я проводил с небольшими конденсаторами (менее 0,001 мкФ), похоже, предполагают, что измеритель СОЭ (Боб Паркер) не различает фазу, а Боб Паркер это подтвердил. Это не большой недостаток. Цель измерителя ESR предназначен для определения вышедших из строя конденсаторов. Это больше случай с электролитами, где диэлектрическая смесь имеет тенденцию к высыханию. Конденсаторы меньшего размера обычно не являются электролитическими и поэтому обычно относительно стабильный. Неисправности последнего (напр.грамм. керамика, слюда, полистирол) с большей вероятностью будут открытыми, закороченными или негерметичными, и все это будет обнаружено приборами для измерения емкости или сопротивления.)

    (От: Роя Маккаммона ([email protected]).)

    Обратите внимание, что «эквивалентное последовательное сопротивление» не обязательно то же самое, что «последовательное сопротивление. сопротивление».

    «Последовательное сопротивление» — это просто сопротивление, соединенное последовательно с емкостью. Это то, с чем в большинстве описаний есть дельта, и с большими токами. и частоты, как вы склонны видеть в импульсном источнике питания, «истинная серия сопротивление «- вот что вам нужно знать.

    «Эквивалентное последовательное сопротивление» — это сопротивление, которое вам нужно будет разместить последовательно с чистой емкостью, чтобы произвести такие же потери. Это может быть частотно-зависимый. Колпачок с резистором параллельно имеет esr. На одной частоты, вы не можете отличить колпачок от параллельного резистор и колпачок с резистором серии. Например, при 100 Гц 1 мкФ и 10 Ом последовательно имеет реактивное сопротивление 10 + J1591, как и 1 мкФ параллельно с 253K, следовательно, оба имеют ESR 10 Ом.

    Вам нужно точно знать, что делает ваш глюкометр. Лучшее, что измерение относятся к вашему использованию.

    Схема и схемы простого измерителя СОЭ

    Журналы по электронике опубликовали различные схемы измерителя ESR по всему миру. годы. Уникальность в том, что можно тестировать крышки в прямом эфире. оборудование, хотя я не уверен, какое это большое преимущество:

    (От: Пита Калфа ([email protected]).)

    «В январском номере журнала» Телевидение «за 2003 год есть статья о live — в цепи электролитический тестер СОЭ.Аккумулятор работает Проект Яна Филда основан на компараторе TL431 с высоким коэффициентом усиления с вход изолирован через оптрон. Он предназначен для живого тестирования. я еще не построил, так как я привык немного подождать и почитать о любые проблемы, которые обнаруживают другие ребята, прежде чем я попробую, но в последующих выпусках Я не слышал ни о каких проблемах «.

    Вот пара основных схем аналогового измерителя ESR:

    Марк Зениер ([email protected]) имеет СОЭ Схема измерителя настолько проста, насколько это возможно.

    Тестирование СОЭ без измерителя СОЭ

    Хотя описанные ниже методы в принципе применимы к любым конденсатор, они будут наиболее полезны для электролитических типов. Конечно, обязательно соблюдайте полярность и номинальное напряжение конденсатора. во время тестирования! Кроме того, следите за максимальным подаваемым напряжением. к другим компонентам, если вы попытаетесь проверить конденсаторы в цепи. Должен быть достаточно мал, чтобы полупроводниковые переходы не смещались вперед (несколько десятых долей вольт макс), а полное сопротивление должно быть таким, чтобы низкое значение резисторы не курят!

    Лучшее из дешевых, если у вас есть осциллограф, будет: 99 Cent ESR Test Адаптер.

    (От: Рона Блэка ([email protected]).)

    Недорогой (по стоимости резистора) способ измерения ESR конденсатор предназначен для подачи прямоугольного сигнала через резистор, включенный последовательно с тестируемый конденсатор. Следите за формой волны на конденсаторе, используя осциллограф. При использовании разумной частоты прямоугольной волны (несколько кГц — не тот, где индуктивность цепи становится проблемой) будет треугольная форма волны с шагом во временах перехода прямоугольной волны.В амплитуда шага будет пропорциональна ESR конденсатора. Откалибруйте вещи, добавив имитирующий резистор небольшого значения ESR в последовательно с конденсатором. Это не должно ничего стоить, если у вас есть генератор прямоугольной волны, или можно построить его дешево.

    (От: Гэри К. Хенриксона ([email protected]).)

    Воодушевленный дискуссиями о достоинствах тестирования СОЭ, я заказал подлинный измеритель СОЭ. В ожидании его прибытия была обнаружена большая куча собак. накапливается в моем магазине.

    Тем временем, чтобы быстро провести этот ремонт, я построил ESR метр ‘, подключив кабелем выход функционального генератора (50 Ом) ко входу осциллографа и, через тройник к набору измерительных проводов.

    При закороченных измерительных проводах на экране осциллографа отображаются только милливольты. Через хороший конденсатор, всего милливольт. Через больной конденсатор много вольт. В дефектные колпачки торчали как больной палец.

    Вау, это слишком просто. Мгновенное внутрисхемное (отключенное) тестирование защиты от ошибок электролитики.Хотел бы я подумать об этом 50 лет назад.

    Я использовал 100 кГц и 5 В размах. Установив осциллограф на 0,2 В / дел, вы также можете проверить диоды, окруженные низкоомными обмотками трансформатора или индуктора.

    (Примечание редактора: чтобы избежать возможности повреждения полупроводников из-за чрезмерное напряжение, используйте сигнал с меньшей амплитудой — скажем, 0,5 В размах — для внутрисхемное тестирование. Это также предотвратит большинство полупроводниковых переходов. от проведения и запутывания ваших показаний.

    (Источник: Берт Кристенсен ([email protected]).)

    Я читал различные сообщения о средствах проверки СОЭ, но пока не сомневаюсь в их ценности в электронном обслуживании, я думаю, что использование этих устройств добавляет лишний и ИМХО ненужный шаг. Мой метод диагностики возможен Электролитическая неисправность заключается в использовании только прицела. Помня, что электролиты проходят Переменного тока или сигналов через них, осциллограф должен показывать * одинаковую * форму волны на обоих стороны кепки. Если колпачок представляет собой перепускной колпачок на землю, то форма волны должна быть ровная линия с двух сторон; если это крышка муфты, форма волны должна быть одинаковой с обеих сторон.

    Есть несколько исключений, одно из которых — колпачок, который используется для формирования волны в вертикальный контур но таких приложений немного. Большинство электролитов либо муфта или байпас.

    Использование метода «моя» область видимости имеет несколько преимуществ. Главный из них — это то, что он тестирует заглушки динамически в цепи, в которой они используются, и с использованием фактических сигналов применительно к ним в реальной жизни. Метод быстрый, потому что вам просто нужно идти от одного к другому (если вы используете метод рассеивания), используя только объем прод.Но, что лучше всего, он органично интегрирует тотальный динамический подход. на обслуживание по собственным сигналам установки или их отсутствие. Если вы отслеживаете видеосхема, вы можете найти открытую крышку, открытый транзистор или неисправную микросхему с использованием того же оборудования.

    Я занимаюсь услугами более 40 лет. Большая часть моего бизнеса сегодня оказывает жесткую услугу другим сервисным компаниям.

    Но, я должен признать, что иногда я исправляю наборы, просто меняя заглушки, которые вздутый.; -}

    (От: Клифтона Т. Шарпа-младшего ([email protected]).)

    Я все еще делаю достаточно работы, чтобы однажды сломаться и купить измеритель СОЭ. (Я всегда сдаюсь и балую себя игрушками своего «ремесла»). Теперь, Тем не менее, я использую быстрый метод — осциллограф. Это похоже на это:

    1. Положительный провод щупа. Любой значительный AC? Если нет, переходите к следующей шапке.
    2. Переменный ток превышает примерно 5% от постоянного тока? Если нет, отметьте это место и перейти к следующей шапке.
    3. Отрицательный провод осциллографа. AC здесь примерно такой же, как на плюсовом проводе? Если так, перейти к следующей шапке. (Если этот вывод * очевидно * заземлен, пропустите этот шаг.)
    4. Зачет; стоимость примечания; перемычка примерно на такое же значение при безопасном номинальном напряжении. (Примечание: убедитесь, что обе крышки разряжены! — Сэм)

      Установить на; положительный результат. Значительная разница? Если нет, обратите внимание на это место и перейти к следующей шапке.

    5. Заменить колпачок. Набор для испытаний. Если не в порядке, переходите к следующей шапке.
    Если это не улавливает, часто бывает быстрый обзор «отмеченных мест».Это устраняет 98% проблем с крышкой. Не исчерпывающий, не идеальный и не предполагаемый быть. Закройте крышку перед нанесением удара. Вероятно, вызывает рак у лабораторных крыс. Ваш пробег может отличаться.

    (От: Тони Уильямса ([email protected]).)

    При измерении параметра компонента всегда лучше всего опереться на измерение. метод к какой-то эмуляции приложения, к которому параметр важен. Особенно это касается силовых компонентов, потому что значение параметра может изменяться в зависимости от условий эксплуатации.это необходимо для магнетиков, в меньшей степени для электролитов, но в любом случае это хорошая привычка.

    Держите колпачок заряженным и найдите способ нанести повторяющийся квадрат * ток * подает импульс к нему, ампер или больше каждый раз, в зависимости от ожидаемого СОЭ.

    Если у крышки нет ESR, то осциллограф на ее терминалах покажет, что каждый текущий импульс дает красивый плавный треугольник. Если в кепке есть СОЭ тогда каждому треугольнику будет предшествовать небольшая вертикальная ступенька. Если нынешний Известно, что измерение этого шага дает вам значение ESR.Вы можете перепроверьте точность метода, увидев эффект увеличения «ESR» как R с низким значением подключаются последовательно с крышкой, от 0,01 до 0,1 Ом.

    Будьте осторожны с размещением выводов прицела, вы не хотите измерять ИК-капля в проводке.

    Если размер каждой ступеньки + треугольника мал по сравнению со стабильным напряжением на колпачок, то известный импульс разряда с постоянным I можно аппроксимировать с помощью не более чем резистор и коммутационный Fet.

    (От: Оливер Бец (list_ob @ gmx.де).)

    Если вам нужна возможность развязки, вы, возможно, захотите знать только ESR. на последовательной резонансной частоте. Это довольно просто:

    Используйте синусоидальный генератор, подключите коаксиальный кабель к его выходу на конце кабель поставить последовательно 47 Ом и подключить резистор к одному концу колпачка, аналогичным образом подключите тип извещателя (47R — кабель — извещатель) к тот же свинец. Другой конец крышки (и коаксиальных экранов) к небольшой заземляющей пластине. Детектором может быть вольтметр, осциллограф или анализатор спектра, в зависимости от вашего оборудование и резонансная частота.Анализатор спектра со следящим генератором устраняет необходимость в отдельном генераторе, упрощает измерения и позволяет для измерения даже очень малых емкостей конденсаторов.

    Настройтесь на минимальный сигнал на детекторе. С помощью прицела вы также можете проверить фазу shift (спасибо за подсказку, Winfield!), cap должен быть только резистивным (нет сдвиг фазы). Теперь можно легко рассчитать СОЭ.

    (От: Джорджа Р. Гонсалеса ([email protected]).)

    Увидев все светящиеся рекомендации по ESR-метрам на научныйВ группе новостей electronics.repair я решил разобраться в этом. Быть дешевым типа, я сначала попытался настроить свой собственный измеритель СОЭ, используя вещи, лежащие вокруг магазин: Функциональный генератор на 2 В p-p, синусоидальный сигнал 100 кГц, подключен к тройник BNC, одна сторона тройника идет к некоторым зажимам, другая сторона — к прицел, установленный на 0,1 вольт / см, развертка 10 мкс / см.

    Когда зажимы свободно свисают, след прицела почти не виден, так как он увеличивается и уменьшается на 20 см в 10 раз по экрану. С зажимом провода закорочены, я получаю около 0.3 см синусоиды. С резистором 1 Ом через провода зажима я получаю синусоидальную волну около 1 см.

    Ставлю ХОРОШИЙ конденсатор на 2 мкФ на выводы зажима, мы видим синус около 0,5 см. волна. Все тесты с различными хорошими электролитиками дают менее 1 см синуса. волна.

    Теперь мы можем просто прыгать по печатной плате, перекрывая электролитические соединения, пока мы идти вместе. Хороший электролит будет показывать прогиб не более 1 см. Многие старые с кодами дат 1970-х годов показывают 2 или 3 см. Зондирование вокруг подозрительная старая печатная плата показала, что 80% крышек дали более 2 см отклонения!

    Это не всегда плохо.Вы должны немного рассудить. Если электролит находится в цепи с высоким импедансом, такой как соединение двух напряжений каскадов усилителя, несколько Ом не повредит. Но если это обходной путь конденсатор на линии Vcc, это может быть значительным. Просто поймите, что цепь Может показаться, что он отлично работает даже с крышками с большим сопротивлением СОЭ. Я все равно обычно заменяю эти кепки, так как они будут только кататься под гору. отсюда.

    Я не могу сказать вам, сколько времени эта небольшая установка уже сэкономила мне!Раньше мне пришлось отпаивать один вывод конденсатора, воткнуть его в колпачок. мост, крутите циферблаты, пока я не добьюсь подобия баланса, или если это был плохой конденсатор, я бы потратил еще больше времени, пытаясь найти недостающий ноль. Теперь я могу просто проверить колпачки в цепи и пометить плохие большим красный магический маркер для последующей замены. Это быстро и здорово для морального духа.

    Этот метод хорошо работает с крышками в диапазоне от 1 до 500 мкФ, со средними или высокая СОЭ. Но ему не хватает мощности, чтобы управлять БОЛЬШИМИ крышками.Для этого вам понадобится генератор с более низким выходным сопротивлением.

    Следующий эксперимент — подключим трансмиссию от старого дохлого ИИП, чтобы понизить выходное сопротивление генератора, чтобы мы могли протестировать эти большие конденсаторы PS. Оставаться настроен ….

    Кстати, это не значит, что продажи встроенных измерителей СОЭ! Это может даже увеличивайте их, так как как только вы увидите, насколько прекрасна эта техника, вы можете захотеть купить специальный измеритель СОЭ.



  • Вернуться к содержанию тестирования конденсаторов.

    Электролитические конденсаторы и специальные типы

    Cool Electrolytics — номинальная температура по сравнению с ESR

    (От: Йерун Х. Стессен ([email protected]).)

    Электролитические конденсаторы любят охлаждение! Если есть что-нибудь, что эти конденсаторы терпеть не могут, это тепло. Это заставляет их высыхать.

    Электролитические конденсаторы существуют (как минимум) в двух разных температурах. рейтинги: 85 C и 105 C. Последние, очевидно, более устойчивы к температуре. К сожалению, они также, как правило, имеют более высокое ESR, чем их аналоги на 85 ° C.2 * Рассеивание ESR, 105 C type на самом деле может быть * худшим * выбором! Если жар вызван близлежащим горячим радиатор 105 C действительно лучший выбор.

    От: Ральф В. М. ([email protected]).)

    Хотя кажется правдой, что электролиты 105 C имеют примерно на 50% больше ESR, когда новый, по сравнению с аналогичными электролитами 85 C, IMO, что не имеет значения в схема. Если бы вы (могли) провести долгосрочный эксперимент и установить 85C и 105 C в той же цепи, и измерьте ESR через 1000 часов, я можно было бы ожидать увидеть ESR детали 105 C после старения / использования, теперь будет меньше чем 85 C.

    Уход, подача и хранение электролита Конденсаторы

    «Я, кажется, припоминаю, что читал (или это старая женская сказка?), Что электролитические служат дольше, если вы время от времени подаваете на них напряжение. Это мне подразумевает, что редко используемые устройства следует включать время от времени, чтобы сделать их дольше, не оставив сидеть на полке. Правда или ложь?»
    (От: Ральфа В. М. ([email protected]).)

    Электролитики имеют срок хранения. Электролитики могут испортиться (т.е., высохнуть) на полку, даже если они ни разу не использовались / не включались.

    Технически «несвежий» электролит (более чем через год после того, как он был изготовлены) будут иметь чрезмерную утечку постоянного тока и должны быть должным образом переформированы перед его использованием. На практике я никогда не обнаруживал, что это проблема. 99% время (единственное исключение составляет критическая синхронизация / цепи с прямой связью; очень редко в эти дни). Самое худшее, что я даже заметил, при установке устаревшего электролитическим, заключалась в том, что цепь была немного нестабильной в течение 15 минут, но прояснилось, и после этого все было в порядке и НИКОГДА не «подпрыгнуло».(все ставки отменены, если что-то настолько старое, что у него есть «усы», хотя пробовали).

    Сколько лет слишком стар? Я бы предложил это до 5 лет на полке, в практика, не должно быть проблемой. Но 10 лет несвежего МОЖЕТ расстроить ситуацию. немного.

    Технически, если вы прочитаете спецификации электролитов, вы обнаружите, что лучшая (то есть самая низкая) утечка постоянного тока не будет, пока она ДЕЙСТВИТЕЛЬНО не будет использована для не менее 10% от общего прогнозируемого срока службы (т. е. 1000 часов при 105 ° C электролитический не достигнет самой низкой утечки постоянного тока, пока он не будет использован в течение 100 часов при 105 ° C (или используется в течение 600 часов при 65 ° C; но это преобразование — другое история).

    На практике, IMO, огромное количество схемотехнических конструкций / типов схем в настоящее время разработан, имеет достаточно допусков для постоянного тока выше среднего утечки, то есть (в наши дни) чрезмерная / дрейфующая утечка постоянного тока редко является проблемой.

    Что касается «тренировок», редко используется оборудование; не может повредить.

    Некоторые вопросы и ответы о выходе из строя конденсатора

    Вот вопрос из трех частей, касающихся электролитических конденсаторов. Это автомобильное компьютерное приложение.

    Проблема: электролитические конденсаторы протекают через некоторое время, вызывая сбой компьютера.

    Вопросов:

    1. Каков физический механизм, который вызывает утечку диэлектрика?
    2. Есть ли преимущества в повышении номинального напряжения для замены крышки?
    3. Каковы плюсы и минусы замены тантала?
    (От: Азимова ([email protected]).)
    1. Тепло — враг диэлектрика, оно может пропускать много высоких частотный ток, на который он не рассчитан. Ток утечки увеличивается экспоненциально с температурой.
    2. Это снижает возможность разрыва диэлектрического перехода, который, хотя обычно самовосстановление, может стать постоянным после повторяющихся эпизодов.
    3. Тантал хорошо работает в субмегагерцовом диапазоне. Главная проблема с ними — это когда их диэлектрик разрывается, и он подключается через При подаче достаточного тока он может потреблять фантастическое количество энергии. Обычно это приводит к взрыву конденсатора, который разбрызгивает горячий воздух. расплавленный материал вокруг.Он раздается как выстрел и тантал Пеллета — это пуля.

    Комментарии к рейтингам ESR и uF

    (От: Азимов ([email protected]).)

    Я видел очень показательный график в каталоге Sprague, касающийся долговечные испытания при + 130 ° C, показывающие зависимость СОЭ от времени. Получается, что для 10 мкФ cap, СОЭ фактически падает в течение первых 1500 часов или около того. Интересный Часть состоит в том, что с 1500 часов до 5000 часов стоимость увеличивается примерно вдвое.

    На другом графике результаты ограничения 47 мкФ не показывают изменений в СОЭ. в течение всего срока службы.Однако его значение мкФ падает примерно на 2,5%. Электроэнергия 10 мкФ, с другой стороны, показывает небольшое изменение емкости (менее чем 1%).

    Если мы экстраполируем эти результаты, мы сможем увидеть общую тенденцию к увеличению значения ограничивают потерю емкости с течением времени, но их СОЭ остается довольно значительным постоянные, а меньшие крышки сохраняют свое значение, но их СОЭ увеличивается. со временем. Таким образом, для меня это имеет некоторый смысл в том, почему эти маленькие Так пресловуты крышки 1 мкФ. Комментарии приветствуются …

    Номинальное напряжение электролитических конденсаторов по сравнению с Надежность

    Вот некоторые из вопросов:
    «Мне интересно, есть ли проблемы с заменой колпачка с более низким напряжением рейтинг с одним из более высоких оценок.Например, конденсатор 2,2 мкФ 50 В в целом работает нормально в качестве замены крышки 2,2 мкФ 16 В, которая используется в качестве фильтр в цепи 6 или 12 вольт? Я никогда не думал дважды о делает это, но недавно видел обсуждения, в результате которых я задал вопрос будет ли электролит правильно функционировать, если он работает только при малая часть его номинального напряжения ».

    (От: Ральфа В. М. ([email protected]).)

    Я знаю, что многие люди пытаются повысить надежность, увеличивая напряжение замена электролитической.А некоторые компании вроде Sony выпускают модификацию обновляет увеличивая номинальное напряжение. И да, НЕКОТОРЫЕ (но НЕ все) электролитические производители рекомендуют увеличивать номинальное напряжение для повышения надежности ОРГАНИЧЕСКИЕ электролиты. Но на мой взгляд, я бы не стал и не буду.

    Чтобы повысить надежность, я сначала обновил темп. Или я мог бы выбрать обновление до электролитического низкого ESR. Иногда обстоятельства или логистика препятствуют продолжаются, и я увеличу мкФ до 200% от первоначального, если это приложение для фильтрации или развязки.

    По сути, любое увеличение срока службы за счет увеличения номинального напряжения просто происходят из-за большего размера корпуса, позволяющего поддерживать температуру электролитического сердечника возможно, на 5С холоднее, т.е. снижение температуры происходит из-за большего размера корпуса будучи лучшим «радиатором». Я считаю, что увеличение номинального напряжения замена детали не позволит увеличить срок службы более чем на 50%; НО за счет большей / худшей утечки постоянного тока (большая утечка постоянного тока может не быть проблемой).

    С другой стороны, я читал некоторых производителей компонентов, которые рекомендуют увеличивая мкФ для повышения надежности, и я считаю, что в 2 раза больше оригинального мкФ приведет к улучшению как минимум на 200% (возможно, на 400%) компонентов срок эксплуатации.

    И, чтобы предвидеть возможный вопрос, например, «что, если бы вы попытались восстановить Колпачок «1,5X», который эксплуатировался при более низком напряжении по сравнению с исходным номинальным напряжением от стараясь осторожно и медленно увеличивая приложенное напряжение, чтобы восстановить диэлектрик ». Может, не знаю, никогда не проводил такой эксперимент. Как минимум, потребуется много труда на том, что стоят относительные копейки.

    (От Стива Белла ([email protected]).)

    По опыту я не вижу проблем с установкой конденсаторов чуть выше. номинальное напряжение.Я держу полный диапазон высокочастотных конденсаторов с низким ESR 105 градусов. я найди, например, когда я заменяю конденсатор 47 мкФ 35 В, он оказывается на 47 мкФ 50 В устройство. Из-за улучшений в производстве конденсаторов замена подогнанный обычно того же размера, возможно, меньше, и обычно имеет меньшую СОЭ, чем у оригинала до отказа ..

    Проблемы могут возникнуть, если кто-то установит в критическая область, такая как источник питания переключения режима монитора или видеосхема. Конденсаторы с более высоким напряжением имеют более высокое ESR, что может не подходить для схема.

    (От: Роберт Мэйси ([email protected]).)

    Электролит с более высоким напряжением имеет более высокое значение esr.

    Ток пульсаций будет одинаковым для конденсаторов и более высоких значений esr. большая мощность рассеивается в крышке, высушивая электролит и сокращая жизнь конденсатора много.

    Комментарии к старым электролитам и неисправностям Механизмы

    Часто (ну, по крайней мере, иногда) возникает вопрос: что делать с что касается электролитических конденсаторов в действительно старом оборудовании.Заменить все?

    Не вдаваясь в подробное обсуждение (см. Ниже):

    1. Общего правила нет.
    2. Оборудование, которое интенсивно использовалось и / или в жаркой среде, будет скорее всего проблем будет больше с засохшими конденсаторами.
    3. Я бы просто проверил их и заменил те, которые сильно уменьшились в uF, имеют более высокое ESR или более высокую утечку после того, как они реформа. Я как раз работал над 30-летним стробоскопом Minox. Его электролиты, кажется, быть такими же хорошими, как день, когда они были изготовлены.

      (От: Дэвида Шермана ([email protected]).)

      Я занимаюсь электроникой не менее 20 лет и изучил электронику. первоначально на старом военном снаряжении времен Второй мировой войны, которое было дешево в время. С тех пор я был дипломированным инженером и профессиональным инженером, а также заядлый сборщик мусора. К действительно старому военному снаряжению дизайнеры часто обращались к многим. расходов, чтобы избежать электролитов. Они используют большой двухсекционный дроссель и подключать маслонаполненные бумажные конденсаторы емкостью 4 мкФ к источнику питания, а не только к одному большой электролитический, потому что электролиты в то время имели тенденцию «высыхать» и терпят неудачу с возрастом.

      В ранней бытовой электронике я часто обнаруживал плохие электролиты. Первое то, что нужно сделать с этим старым материалом, — это посмотреть, не просочилось ли что-нибудь из конденсаторы. Затем включите его. В этот момент нет ничего необычного для что-то простаивающее, чтобы взорвать конденсатор струей пара! потом вы знаете, какой из них плохой. Сигнальные конденсаторы (связь, эмиттер / катодный байпас, и т. д.) обычно не являются проблемой, потому что на них не так много напряжения как конденсаторы питания.После замены перегоревших конденсаторов (а может, другие, которые выглядят точно так же) снова зажгите эту штуку. Если не сработает, проверьте напряжение постоянного тока на всех электролитах. Даже если ты не знаешь что они для, все они должны иметь постоянный ток правильной полярности и обычно в пределах изрядная доля рабочего напряжения, напечатанного на них. Также почувствуйте, если любой горячий. Думаю, вы уловили идею.

      Теперь по поводу утилизации старых конденсаторов. Произведенные, может быть, с 1970 года — ДАЛЬШЕ лучше, чем модели 40-х и 50-х годов, и все они заслуживают экономии, если только они из них течет слизь или резина выпирает (вроде как оценивая старую банку с фасолью!).Я никогда не встречал ни одного в приспособлении после 1970 года, чтобы испортиться из хранилища. Если вы хотите быть уверенным, прежде чем устанавливать его в схему, просто подайте номинальное рабочее напряжение от переменного источника питания (справа полярность, конечно) и оставьте на несколько минут. Если вы можете установить ограничение тока на поставку до низкого значения, это предотвратит потенциально липкий взрыв. На самом деле, применение постоянного напряжения — это хорошо. Это называется «формируя» конденсатор, и он создает изолирующую оксидную пленку на алюминиевая фольга.

      (От: Джона Попелиша ([email protected]).)

      В электролизерах действуют как минимум два различных механизма износа. Один из них — потеря электролита из-за утечки из емкости. Это усугубляется плохие уплотнения и нагрев, поэтому сильно варьируется в зависимости от качества оригинала упаковка и такие вещи, как температура окружающей среды и внутренний нагрев пульсацией Текущий. Если они хранятся в прохладных условиях, они могут долго оставаться влажными. более 10 лет. Второй — разрушение оксидов, и это имеет тепловая и смещающая составляющие.Тепло ускоряет ухудшение во время хранение и отсутствие напряжения смещения также ускоряют потерю. Я всегда очень сильно затыкаю старое оборудование в вариак чем примерно 70% сетевого напряжения на некоторое время, и проверьте, не нагреваются ли колпачки. Если все выглядит хорошо, я буду медленно поднимать линию до полного напряжения примерно час. Это позволяет частично восстанавливать оксиды без катастрофического термического воздействия. повышаться. Мне не приходилось заменять колпачки оптом, если надежность не была очень высокой. важно (где более поздняя неисправность будет намного дороже, чем все конденсаторы).

      Электролитические колпачки имеют одну металлическую пластину и одну жидкостную пластину. Диэлектрик между ними находится очень тонкий слой оксида, который образуется на металлической пластине. после протравливания, чтобы сделать его поверхность очень губчатой ​​и пористой. Этот процесс травления увеличивает площадь поверхности металла во много раз (увеличение емкости, пропорциональной площади поверхности), но означает что оксид образуется на очень шероховатой поверхности. Итак, часть оксида обернуты вокруг очень острых краев и точек.Это химически менее стабильная ситуация по сравнению с оксидом, образовавшимся на гладкой поверхности или внутри пустой. То же самое для оксида, образованного по границам зерен металла. Со временем некоторые этого оксида либо отламывается, либо трескается, либо он превращается в атомы металла и кислорода, в результате в изоляционном слое образуются тонкие пятна.

      Если крышка хранится со смещением постоянного тока, эти тонкие точки потребляют ток, который высвобождает атомарный кислород из электролита, который повторно окисляет слабые пятна по мере их образования. Если он хранится без приложенного напряжения, все эти пятна нужно реформировать сразу при сдаче шапки в сервис.Это заставляет их протекать чрезмерный ток, выделяют много газа и выделяют тепло. Если утечка достаточно плохо, крышка может самоуничтожиться. Если большие и дорогие кепки, особенно высоковольтные, будут введены в эксплуатацию после продления хранения, их можно более изящно преобразовать, приложив напряжение последовательно с токоограничивающим сопротивлением. И они должны быть проверены на приемлемость ток утечки при номинальном напряжении перед использованием. Я думаю современный Ожидается, что электролитические колпачки прослужат около 10 лет при хранении в прохладном месте.Выше температуры сокращают их жизнь.

      Если бы вы собирались реформировать множество похожих крышек, вы могли бы создать регулируемый источник постоянного тока, который имеет как регулировку напряжения, так и ограничение тока, можно установить значения, подходящие для крышек разного размера. Для одного или двух я использовали Variac перед простой нерегулируемой подачей. Дело в том, чтобы позволить течь некоторому формирующему току, но ограничить его до меньшего, чем то, что могло бы вызвать заметный подъем температуры в шапке. Для маленькой трубчатой ​​крышки это на порядка десятой ватта.Разделите это на приложенное напряжение, и вы иметь некоторое представление о необходимом текущем пределе. Для больших (размером с кулак) бейсболок вы может позволить внутреннему рассеиванию приблизиться к ватту. Эти уровни мощности не поднимет температуру крышки, чтобы вы заметили это своим пальцами (хотя они могут вызвать довольно ощутимые горячие точки на небольших области в шапке).

      (От: Dbowey)

      Насколько я помню, формирование электролитов состоит в том, что ступенчатое во времени напряжение был применен.Таймер был мной, и я увеличил вариакционный выход до мощности. поставка в течение одного-двух дней, начиная с 10% номинального напряжения и в итоге получаем 100%.

      (От: Джека Шидта ([email protected]).)

      Это хорошо работает. Электролитические крышки NOS всегда должны быть выполнены до к использованию. Часто для старого снаряжения необходимо использовать NOS или использованные колпачки из соображений экономии. или доступность.

      Поскольку я много чиню ламповое оборудование, я построил небольшой изолированный тройник. легко поставить 450В для подачи электролита.Я использовал весь новый майлар шапки.

      Я немного изменил вашу процедуру, установив тройник на рабочий напряжение на крышке без нагрузки, подключив резистор 2 МОм или около того, последовательно с колпачок и подключите его к источнику питания.

      Для действительно больших конденсаторов (1000 мкФ +) я использую несколько сотен К; ты хочешь приложенный ток должен быть больше, чем средний ток утечки хорошего конденсатора.

      Периодически проверяйте напряжение крышки с помощью DVM или VTVM, отключая измерительные щупы сразу после измерения.Если вы используете высокое напряжение, низкое транзистор утечки в качестве эмиттерного повторителя, счетчик можно оставить подключенным всегда. Я рекомендую это.

      Часто вы видите, что более старая крышка достигает определенного напряжения, а затем падает. резко, поскольку его диэлектрик разрушается, процесс повторяется. Их следует выбросить, так как диэлектрик явно имеет тонкие пятна и будет выходят из строя.

      Некоторые полностью зарядятся через несколько часов [t = RC], некоторые через несколько дней и некоторые никогда не отрываются от земли.Выбросьте те, которые не заряжаются.

      Что это за штриховые линии на концах электролиза? Конденсаторы?

      Они предназначены для того, чтобы направить мусор в известном направлении, если конденсатор превратиться в бомбу. Действительно :-).

      Тем не менее, взрывающиеся конденсаторы не все ТАК распространены в правильно спроектированных оборудование …. (Ну, кроме программатора СППЗУ, у которого был танталовый Электролитик установлен задом на заводе. Через полгода — К-Блам!)

      (От: Гэри Вудс (gwoods @ wrgb.com).)

      Если вы посмотрите в каталог DigiKey, там подробно описан «Vent Test», в котором электролитический колпачок определенным образом перегружен, и баллончик не выталкивается материал * только * через эту надрезанную часть. Похоже на материал для еще одна городская легенда; как поставщик, который тщательно проверял каждую входящую предохранитель на срабатывание за заданное время при заданной перегрузке. Конечно, люди, пытающиеся * использовать * эти предохранители, не оценили, насколько хорошо они прошли эти тесты!

      Вы можете сделать тест вентиляции, подключив электролит к своей «суицидальной пуповине». и подключить его к сети 110 В переменного тока.Развлекательный. (Я НЕ рекомендовал вам делать это, и я НЕ несу ответственности!)

      Изготовление неполяризованных конденсаторов из нормальных Электролитики

      Вы можете найти неполяризованные электролитические конденсаторы в некотором оборудовании — обычно Телевизоры или мониторы, хотя некоторые из них также появляются в видеомагнитофонах и других устройствах. Большой их также можно найти в приложениях для запуска двигателей. Обычно это так необходимо заменить на неполяризованные конденсаторы. Поскольку поляризованные типы как правило, намного дешевле, производитель использовал бы их, если бы были возможный.

      Для небольших конденсаторов — скажем, 1 мкФ или меньше — неэлектролитический тип будет очень полезен. скорее всего будет удовлетворительным, если его размер — они обычно намного больше — не проблема.

      Существует несколько подходов к использованию электролитических конденсаторов с нормальной поляризацией. построить неполяризованный тип.

      Ничто из этого не является действительно отличным, и получение надлежащей замены могло бы будь лучшим. В нижеследующем обсуждении предполагается, что 1000 мкФ, 25 В нужен неполяризованный конденсатор.

      Вот три простых подхода:

      1. Подключите два электролитических конденсатора с удвоенным номиналом мкФ и не менее равное номинальное напряжение с обратной связью последовательно:
        
                           - + + -
                 о ----------) | ----------- | (----------- o
                         2000 мкФ 2000 мкФ
                           25 В 25 В
        
         
        Неважно, какой знак (+ или -) находится вместе, если они совпадают.

        Повышенная утечка в обратном направлении приведет к увеличению заряда центральный узел так, чтобы колпачки были смещены с соблюдением правильной полярности. Однако иногда обратное напряжение все же будет неизбежно. Для сигнальных цепей, это, вероятно, приемлемо, но используйте с осторожностью в источник питания и приложения высокой мощности.

      2. Подключите два электролитических конденсатора с удвоенным номиналом мкФ и не менее равное номинальное напряжение с обратной связью последовательно. Чтобы свести к минимуму любые значительные обратное напряжение на конденсаторах, добавить пару диодов:
        
                       + --- |> | ---- + ---- |
          Обратите внимание, что изначально источник будет видеть емкость, равную полной
          емкость (не половина).Но очень быстро две крышки зарядятся до
          положительные и отрицательные пиковые значения входа в комбинации через
          диоды. В установившемся режиме диоды вообще не будут проводить и
          поэтому будет так, как если бы их не было в цепи.
         

        Однако при переходных процессах в цепи будет некоторая нелинейность. условия (и из-за утечки, которая приведет к разрядке конденсаторов) так что используйте с осторожностью. Диоды должны пропускать пиковый ток. без повреждений.

      3. Подключите последовательно два конденсатора емкостью в два раза больше мкФ и смещайте центр. точка от положительного или отрицательного источника постоянного тока больше максимального сигнала ожидается для схемы:
        
                                 +12 В
                                   о
                                   |
                                   /
                                   \ 1K
                                   /
                           - + | + -
                 о ----------) | ----- + ----- | (----------- o
                         2000 мкФ 2000 мкФ
                           35 В 35 В
        
         
        Сопротивление резистора должно быть высоким по сравнению с сопротивлением привода. цепь, но мала по сравнению с утечкой конденсаторов.Конечно, номинальное напряжение конденсаторов должно быть больше, чем смещение плюс пиковое значение сигнала в обратном направлении.

      О танталовых конденсаторах

      (От: Ральфа В. М. ([email protected]).)

      Во-первых, вам необходимо определить / указать конкретный тантал, который вы говоря о. Бывают как ТВЕРДЫЙ, так и ОРГАНИЧЕСКИЙ тантал. Если это знакомый стиль эпоксидной смолы слезоточивый корпус, это прочная разновидность; любой другой пакет может быть твердым или органическим (и это НЕ одно и то же).

      Да, твердые танталы могут взорваться. Но это либо редкость в случае изготовленное оборудование в исходном состоянии, ИЛИ кто-то модифицировал, схема и выбрана / выбрана неправильно. Твердые танталы ОЧЕНЬ непереносимы скачков / скачков; НО органические электролиты толерантны к скачкам / скачкам напряжения; (НО органические электролиты НЕ являются прямой заменой твердого тантала !!!).

      Твердые танталы ОЧЕНЬ стабильны в отношении:

      1. Значение мкФ.
      2. Чрезвычайно стабильная утечка постоянного тока.Обратите внимание, я НЕ говорил о низкой утечке; у них есть средние утечки постоянного тока по сравнению с современными электролитиками.

      Твердые танталы также имеют ОЧЕНЬ низкий импеданс на низких частотах; (органический танталов нет).

      Утверждение, что твердые танталы имеют меньшие утечки постоянного тока по сравнению с Органические электролиты стали употребляться неправильно, т. е. 20 лет назад в основном быть правдой, но не сегодня. В настоящее время утечки постоянного тока в Solid тантал похож на средний органический электролит; есть некоторые органических электролитов, которые имеют примерно на 50% МЕНЬШЕ утечки постоянного тока (после допуска от 2 до 5 минут «разогрева»), (НО твердые танталы имеют ОЧЕНЬ стабильный постоянный ток протечки, и НЕТ «прогрева»).

      Суперкапс и ультракэп

      (От: Николаса Бодли ([email protected]).)

      В течение последних 2 недель или около того (текущая дата: 11 августа 1997 г.), вероятно под влиянием статьи в EE Times, я заставил Excite искать «суперконденсаторы». и «ультраконденсаторы». Я обнаружил, что когда вы используете «More Like This» option ‘достаточно, он дает те же результаты.

      Во всяком случае:

      То, что я обнаружил, было захватывающим для старика. Конденсаторная технология — это теперь в точке, где он может выполнять выравнивание нагрузки, чтобы продлить срок службы аккумуляторы для электромобилей.Высокая мощность, необходимая для ускорения электромобиля может быть обеспечен ультраконденсатором. Ультракап. также может поглощать энергию для рекуперативного торможения, чтобы ограничить в противном случае очень высокую зарядку ток на аккумулятор.

      Попутно был отмечен экспериментальный электромобиль Mazda, в котором используются колпачки. это способ; его зовут, хотите верьте, хотите нет, Бонго Френди. Без шуток. (У меня есть коллекция из 7 или 8 других таких имен …)

      Упоминались конденсаторы на 1800 фарад на 2,3 В. Ага, мы сейчас находимся в эра килофарадов, ребята! Конденсаторная батарея состояла всего из 80, в группы по два человека параллельно, 40 групп последовательно.Общее напряжение 92.

      Другие характеристики отмечены попутно:

      Ультракэпс. сейчас находятся в диапазоне от 0,1 до 8 кВтч (киловатт-час).

      Некоторые из них сделаны из углеродных аэрогелей (это не новость …)

      Maxwell имеет 8-элементный блок, рассчитанный на 24 В, биполярный, 4,5 Втч / кг. Одинаковый у компании также есть монополярный элемент (монополярный?) номиналом 2300 F, 3 В; 5 Втч / кг. Он может обеспечить более 100 А!

      Некоторые ультраконденсаторы, по-видимому (почти наверняка) не используют электрический двойной послойная технология.3; отлично работает при температурах до -30 C, и может управлять мощностью более 7кВт / кг. Саморазряд в неделях.

      Я нашел эту информацию. совершенно захватывающе. Когда я получаю достойную работу, я приобретаю себе 100F Elna.

      Кстати, вы слышали, что цифровой мультиметр использует суперконденсатор. за власть? я думаю Цифры таковы, что 3-х минутная зарядка проработает 3 часа.

      Что это за конденсаторы X и Y в линии переменного тока? Вход?

      «Недавно я заметил, что в конденсаторах используются так называемые« X »и« Y »конденсаторы. входная силовая часть блоков питания.Когда я изучил это дальше, Я обнаружил, что есть разные степени X и Y — X1, X2, Y1, Y2 и т. Д. Очевидно, это связано с кодексом или регулирующим органом.
      1. Каково определение или использование различных классов (X1, X2 и т. Д.)
      2. Где регулирующие органы говорят, что мы должны использовать различные типы.
      3. Что является хорошей методикой проектирования для фильтрации шума SMPS с использованием эти устройства и др. »
      (От: Пол Касли ([email protected]).)

      Крышки класса X предназначены для повсеместного использования.Бейсболки класса Y предназначены для линия на защитное заземление. Эти колпачки сконструированы так, чтобы «самоочищаться». То есть, если в устройстве возникает короткое замыкание, энергия, рассеиваемая в короткое «сдует» короткое. Типичный линейный входной фильтр будет иметь один колпачок класса X от линии к нейтрали или от линии к линии и Цоколь класса Y от каждой линии до земли или от линии до земли и нейтрали К земле, приземляться. Никакие регулирующие органы не требуют их использования. Однако вы можете обнаружите, что они вам нужны, чтобы соответствовать нормам EMI / EMC и соответствовать вашим собственным Требования к восприимчивости к электромагнитным помехам / электромагнитной совместимости.UL, CSA, VDE и другие меры безопасности агентства потребуют, чтобы вы использовали соответствующие компоненты для обеспечения безопасности стандартов (что всегда является хорошей практикой) и получить разрешение на используйте их маркировку безопасности. Что касается точных различий между типов (X1, X2, Y1, Y2), я предлагаю вам связаться с производителями крышек, такими как Vishay-Roederstein за их каталоги и прикладные книги.

      Конденсаторы для фотовспышки

      Они встречаются не только в электронных вспышках и стробоскопах, но и в импульсных. источники питания для лазеров и другие приложения для быстрого разряда.Они созданы для быстрой разрядки с минимальными потерями и без самоуничтожения. Таким образом, ESR и индуктивность очень низкие, а внутренняя структура настроена на выдерживают очень высокие пиковые токи (сотни или тысячи ампер).
  • Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *