+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Осциллограф. Часть 4. Параметры приборов

Полоса частот

Это один из наиболее важных параметров осциллографа. Определяет диапазон сигналов, которые вы можете наблюдать на экране (существенно влияет на стоимость прибора). Для того, чтобы осциллограф мог отображать в надлежащем виде сигнал на экране, ему требуется полоса частот в три раза больше полосы исследуемого сигнала. Второй, не менее важный параметр, имеющий отношение к полосе частот — частота дискретизации.

Частота дискретизации (количество выборок в сек)

В отличие от аналогового, цифровой осциллограф воспроизводит сигнал на экране несколько иначе. Сигнал с его входа, через делитель и усилитель попадает на АЦП (аналоговый цифровой преобразователь). Здесь сигнал приобретает форму дискретного сигнала, и уже представляет собой некую импульсную последовательность. В параметрах каждого из импульсов будет заложена информация о конкретной выделенной точке, с огибающей входного сигнала.

Иными словами: «входной сигнал воспроизводится осциллографом по выделенным точкам». Очевидно, что при большем выборе количества точек на исходном сигнале, воспроизведение сигнала на экране будет точнее. А какова же должна быть минимальная частота дискретизации (или минимальное количество выборок), чтобы сигнал в достаточной степени соответствовал исходному? Минимальная частота дискретизации осциллографа в реальном времени должна быть равна не менее четырем полосам пропускания осциллографа. Поэтому нужно смотреть? какие возможности заложены в вашем осциллографе. Очень часто производитель указывает максимальную частоту дискретизации (количество выборок), которая возможна только при работе одного канала. Некоторые же указывают частоту дискретизации для 1-2х; 4х и далее. При этом вы видите, что
чем больше каналов задействуется, тем ниже частота дискретизации
. Поскольку мы работаем в основном автомобильными осциллографами, необходимо на это минимальное значение обращать внимание.( А о частотах и сигналах, с которыми мы работаем, я скажу ниже.) Вот поэтому, когда работаете одним каналом или двумя, частота и может быть максимальной. Если вы задействовали все каналы на своем осциллографе,чатота дискретизации скорее всего снизится в разы. На том же осциллографе Посталовского посмотрите, какая максимальная частота для 1-2х канального режима. И как она изменяется при увеличении задействованных каналов. Вот и решайте: «либо нацеплять кучу датчиков и любоваться кучей «визуально плохих» сигналов; либо задействовать минимум и лучше рассмотреть осциллограммы. Это еще одно отличие автомобильного осциллографа от «нормального осциллографа». Можно сохранить достаточно высокую степень дискретизации по всем каналам, и даже сделать ее максимальной, но здесь уже будет вопрос цены…

И главное, пока идет обработка сигнала со входа осциллографа, пока развертка заполняет экран — сигнал на входе не прекращается. Значит, мы часть информации теряем. Может повысить скорость дискретизации и этого достаточно? А что делать, когда нужно выполнить захват сигнала для просмотра и анализа?

Внутренняя память осциллографа

После АЦП оцифрованный сигнал записывается в высокоскоростную память осциллографа. Без нее цифровой осциллограф работать не сможет. Объем внутренней памяти — важный параметр осциллографа. Важно понимать в каких целях используется внутренняя память осциллографа.

Первое: это анализ в автономном режиме; захват точек данных, и последующее их масштабирование для получения более подробной информации.

Второе: это данные для автоматического анализа и выполнения математических функций;

Многие ошибочно полагают, что максимальная частота дискретизации находится в области полной развертки изображения. Это не так. Для обеспечения этого условия потребовалась бы громадная внутренняя память. А реализация в «железе» повлекла бы за собой значительное увеличение стоимости. Можно встретить осциллограф с высокой частотой дискретизации и небольшой внутренней памятью. Такой осциллограф будет просто вынужден снизить количество выборок в секунду, если ставить развертку 2ms и меньше, поскольку необходимая полоса частот для воспроизведения сигнала будет незначительной.

Но чем больше память осциллографа, тем больше времени выделяется на захват точек данных для просмотра и анализа. Это не всегда удобно, не всегда нужно, это может несколько усложнять процесс работы с прибором.

Поэтому все же на внутреннюю память тоже могут вводиться ограничения исходя из области применения прибора. Если вам необходимо просматривать сигналы:

* при захвате

* длительный период времени

* с большим разрешением между точками,- тогда память осциллографа должна быть большой.

Необходимый объем памяти можно оценить по двум параметрам:

* временной интервал

* частота дискретизации

А теперь несколько простых формул, которые могут потребоваться при выборе прибора.

1. Полоса частот сигнала = 0.5/скорость нарастания фронта импульса

;

2. Полоса частот осциллографа = 3 х полосы частот тестируемого сигнала;

3 Минимальная частота дискретизации осциллографа в реальном времени = 4 х полосы частот осциллографа;

4. Объем памяти = Частота дискретизации х время прохождения сигнала по экрану осциллографа.

Остался необъясненным п.1 из списка. Время нарастания амплитуды во фронте импульса или время спада амплитуды(в данном случае употребление слова «спад» корректно, поскольку разговор идет о времени, а не о амплитудных значениях. Это понятие принятое)

Любой периодический сигнал, кроме прочих характеристик имеете еще и частоту. Следовательно, необходимо согласовывать частотные характеристики сигнала с входным трактом осциллографа. Если этого не сделать, то получим искажение формы сигнала и временных промежутков.

АЧХ (амплитудно — частотная характеристика), оценивается для синусоидального сигнала. А в реальности имеем дело далеко не с синусоидами. Поэтому в осциллографах, для более полной и справедливой оценки введены ПХ (переходные характеристики). Оценка этих характеристик основана на том, как воспроизводит осциллограф сигнал с бесконечным спектром. Тестовым сигналом может служить прямоугольный импульс, у которого время нарастание во фронте и время спада близки к нулю. Такой импульс формирует большое количество гармонических составляющий основного сигнала. Часть из них будут обрезаны полосой пропускания осциллографа, а значит время нарастания во фронте (спаде) увеличится и увеличится время установления импульса; часть гармоник усилится за счет неравномерности АЧХ и приведет к выбросу на вершине импульса.

Составляющие ПХ (переходные характеристики):

время нарастания во фронте — это время в течение, которого импульс изменяет свое значение от 0,1 до 0,9.(спад – наоборот 0,9-0,1), измеряется в сек.

время установления импульса

— это время, в течение которого колебательные процессы на вершине импульса станут меньше 1% от амплитуды импульса.

выброс на вершине (спаде) это отношение превышения амплитуды установившегося импульса, к амплитуде импульса. Измеряется в процентах. Почему это нужно знать? А потому, что если это не знать, то при измерениях могут быть ошибки. И как следствие неправильные выводы и уход от неисправности в противоположную сторону. Как это выглядит на экране осциллографа:


Фото№35


Фото№ 36

Вот осциллограммы одного и того же сигнала. Видны выбросы и на вершине и на спаде. Сигнал можно масштабировать, растягивать разверткой, изменять порог сигнала. И может оказаться, что человек увидит то, что совершенно не нужно. Но бывают моменты, когда это нужно сделать для того, чтобы рассмотреть и понять причину неисправности. И тогда все, о чем сказано выше, надо учитывать.

МАРКИН Александр Васильевич

г. Белгород

Таврово мкр 2, пер. Парковый 29Б

(4722) 300-709

© 1999 – 2010 Легион-Автодата

Основные характеристики современных осциллографов

Основные характеристики современных осциллографов

А.А. Дедюхин, ЗАО «ПриСТ»

Введение

После прочтения статьи «Основные характеристики современных осциллографов» в Электронных компонентах № 11 за 2004 г. #bibliografy class=l>[1] (здесь и далее квадратными скобками обозначается сноска на соотвествующий источник из списка литературы в конце статьи) создается впечатление, что недомолвки и ввод в заблуждение массовой аудитории стал одним из основных средств продвижения собственных идей. Все вроде бы хорошо расписано и правильно, но ощущение такое, что после должны быть части 2, 3 и т.д. — но в конце стоит список литературы и ничего про «продолжение следует…». Краткий и единственный вывод из описанного в «Основные характеристики современных осциллографов» – у цифрового осциллографа есть всего две основных характеристики:

  • полоса пропускания
  • частота дискретизации.

Простите, но с этим согласиться невозможно, поскольку это не так.

Итак следуя по #bibliografy class=l>[1], лозунг «Основные характеристики современных осциллографов» через абзац трансформировался в «Основные характеристики современных ЦИФРОВЫХ осциллографов» (выделено автором). Если учесть, что существует три типа осциллографов – аналоговые, цифровые и аналогово-цифровые (а не только цифровые), и предназначены они для отображения сигналов в декартовой система координат, где по оси Х находится время развертки, а по оси Y находится амплитуда входного сигнала (измерение фигур Лисажу или режим X- Y выделим отдельно), то получаем, что любой осциллограф, прежде всего, имеет два основных параметра и эти параметры связанны с измерением напряжения и времени.

Но если следовать логике, расписанной в #bibliografy class=l>[1], и принимая в учет, что у аналогового осциллографа нет частоты дискретизации, то, соответственно получим, что у аналогового осциллографа есть всего одни основной параметр – это полоса пропускания. Какая-то нелепость получается. Если пользователь оценивает осциллограф как средство измерения, способное достоверно определять физически величины – то есть несколько иной набор характеристик, нежели указанный в #bibliografy class=l>[1]. Если пользователь относится к осциллографу как к монитору, предназначенному для отображения картинки – то тут перечень параметров, действительно, может быть и таким.

Если уже быть предельно корректным, то все параметры осциллографа, как средства измерения, делятся на две группы:

  • Основные параметры.
  • Дополнительные параметры.

К основными параметрам относятся:

  • Значения коэффициентов отклонения, погрешность коэффициента отклонения или связанная с ним погрешность измерения напряжения.
  • Значения коэффициентов развертки, погрешность коэффициента развертки или связанная с ним погрешность измерения временных интервалов.
  • Параметры переходной характеристики (ПХ), включая:
    • время нарастания;
    • выброс;
    • неравномерность;
    • время установления.
  • Параметры входа канала вертикального отклонения, включая:
    • активное входное сопротивление;
    • входная емкость;
    • КСВН;
    • допускаемое суммарное значение постоянного и переменного напряжения.
  • Параметры синхронизации, включая:
    • диапазон частот;
    • предельные уровни;
    • нестабильность.

К дополнительным параметрам относятся:

  • Параметры АЧХ, включая:
    • полоса пропускания;
    • нормальный диапазон частот;
    • расширенный диапазон частот;
    • опорная частота.
  • Коэффициент развязки между каналами.

Для цифровых осциллографов к дополнительным параметрам можно отнести:

  • Частота дискретизации.
  • Длина внутренней памяти.

Но и это был бы не полный список всех параметров. Полностью он указан в #bibliografy class=l>[2]. Ниже рассмотрим некоторые основные и дополнительные параметры, применительно к цифровым осциллографам.

1. Погрешность коэффициента отклонения или связанная с ним погрешность измерения напряжения

У большинства аналоговых осциллографов погрешность измерения напряжения составляет 3% и это в большей степени обусловлено тем, что измерения оператором проводятся визуально по делениям экрана (даже в том случае если используются маркерные измерения). Худшие образцы могут иметь погрешность измерения до 8%, а аналоговые осциллографы с погрешностью меньше, чем 1,5%, лично мне не приходилось встречать. Цифровые осциллографы, используя современные алгоритмы проведения измерений, позволяют полностью исключить ошибку человеческого фактора методом автоматических измерений. Тут уже нет ничего проще – результат отображается на экране осциллографа и не дает повода для двусмысленного толкования. Но если у аналогового осциллографа не разделяется измерение величины постоянного и переменного напряжения, то у современных цифровых осциллографов эти понятия разделены. Причина в различных алгоритмах проведения измерения. Наиболее критичным, с точки зрения определения погрешности, является постоянное напряжение. Оно определяется как абсолютное отклонение линии развертки от нулевой базовой линии и зависти от погрешности коэффициента отклонения осциллографа, погрешности определения нулевой линии и погрешности определения абсолютного отклонения линии развертки при воздействии постоянного напряжения. У большинства цифровых осциллографов погрешность измерения постоянного напряжения составляет 1,5% — 2% . Здесь и далее мы опускаем составные части погрешности, зависящие от формы или величины входного сигнала, и будем вести разговор только об инструментальной погрешности осциллографа.

Так на рисунке 1 приведена осциллограмма измерения постоянного напряжения осциллографом LeCroy Wave Surfer 432. С выхода калибратора осциллографов Fluke-9500В подаем постоянное положительное напряжение 1В. Измеренное значение равно 1,005 В, т.е. погрешность измерения составляет 0,5% (при допуске 2%).

Рисунок 1 — измерение постоянного напряжения
(здесь и далее щелчок по изображению — увеличение)

Погрешности измерения переменного напряжения алгоритмами цифровых осциллографов рассматривается как вертикальные ?-измерения между двумя точками и, соответственно, не нуждаются в привязке в нулевой линии, что позволяет уменьшить погрешность измерения размаха сигнала до величины 1%-1,5% (а при использовании источников опорного смещения до 0,5%).

На рисунке 2 приведена осциллограмма измерения переменного напряжения осциллографом LeCroy Wave Surfer 432. С выхода калибратора осциллографов Fluke -9500В подаем симметричный меандр частотой 1 кГц и размахом 1В. Измеренное значение равно 991,9 мВ, т.е. погрешность измерения равна 0,81% (при допуске 1,5 %).

Рисунок 2 — измерение переменного напряжения

Особо отметим то, что крупнейшие компании-производители цифровых осциллографов Tektronix, LeCroy и Agilent Technologies при проведении ежегодной поверки своих цифровых осциллографов рекомендуют проводить измерения именно постоянного напряжения (а не меандра частотой 1 кГц, как принято в России #bibliografy class=l>[3], #bibliografy class=l> [4]).

2. Погрешность коэффициента развертки или связанная с ним погрешность измерения временных интервалов

У большинства аналоговых осциллографов погрешность коэффициента развертки составляет от 3% до 15% и это обусловлено тем, что времязадающие цепи развертки реализованы на аналоговой элементной базе. Регулировка частоты развертки осуществляется RC-цепочками, что не дает возможности добиться установки высокой точности частоты генератора развертки. Соответственно погрешности измерения временных интервалов аналоговых осциллографов составляют те же 3-15%.

Иным способом реализован генератор развертки цифрового осциллографа. Его основой является кварцевый генератор, который даже без термостабилизации дает погрешность установки частоты 1*10-6 , что вполне достаточно для выполнения задач, стоящих перед цифровым осциллографом. И кроме того, за весь срок службы цифрового осциллографа, он может не нуждаться в корректировке коэффициентов развертки. Погрешность измерения временных интервалов цифровым осциллографом лежит в пределах от 0,01% до 5*10-6 , что в общем-то соответствует измерению частоты хорошим частотомером. Но, в отличие от измерения напряжения, указанные погрешности измерения временных интервалов справедливы лишь при строгом соблюдении условий, определенных производителем. Так, например, компания Tektronix для осциллографов TDS-5000 серии при измерении временных интервалов периодического сигнала указывает условия:

  1. Размах сигнала не мене 5 делений,
  2. Включено усреднение входного сигнала 100 раз.
  3. Включена интерполяция sin\x.
  4. Результат измерения считывается в режиме накопления статистики при числе измерения не менее 1000.

Компания LeCroy идет аналогичным путем, за исключением того, что не предлагает использовать усреднение сигнала.

Поставим простой эксперимент по определению погрешностиизмерения временных интервалов. С рубидиевого стандарта частоты Pendulum 6686 подадим на вход осциллографа LeCroy Wave Runner 6030 сигнал частотой 10 МГц. Рубидиевый стандарт обладает малой погрешностью формирования частоты 10 МГц и высокой стабильностью – данное средство измерений применяют для определения погрешности частотомеров.

На рисунке 3 приведена осциллограмма и результат измерения частоты осциллографом LeCroy Wave Runner. Как видно погрешность измерения частоты составляет 5*10-6 при допуске 10*10-6 #bibliografy class=l>[6].

Рисунок 3 — Непосредственное измерение
частоты 10 МГц осциллографом LeCroy

Для второго примера возьмем осциллограф Tektronix TDS-5054, выполним все условия проведения измерений, указанные производителем. Погрешность измерения частоты составляет 188*10-6 (рис. 4). Это превышает допустимую погрешность почти в 10 раз! При этом соблюдены все условия измерений, указанные в РЭ производителем #bibliografy class=l>[8].

Рисунок 4 — Непосредственное измерение
частоты 10 МГц осциллографом Tektronix

Попробуем провести измерения временных интервалов для Tektronix альтернативным способом – методом задержанной развертки. Суть этого метода заключается в том, что на вход ЦЗО подается высокостабильный периодический сигнал и привязывается к определенной точке на экране, после этого сигнал сдвигается задержкой на один период и изменением значения задержки устанавливается в точку привязки. Значение задержки и есть абсолютное значение временного интервала, на основании которого определяется погрешность осциллографа. Подадим с выхода калибратора Fluke-9500 прямоугольный сигнал частотой 1 кГц и стабильностью 1*10-7, что вполне достаточно для определения погрешности ЦЗО. На рисунке 5 приведена осциллограмма измерения периода. Погрешность измерения 10 периодов составляет 29,75*10-6 , или для одного периода порядка 3*10-6 – это в норме для тестируемого ЦЗО.

Рисунок 5 — Измерение временного
интервала методом задержки

Поскольку погрешность измерения временных интервалов в основном зависит от погрешности установки частоты опорного генератора (ОГ) ЦЗО, произведем измерение частоты ОГ методом стробоскопического преобразования. Для этого на вход ЦЗО Tektronix подадим сигнал частотой 10 МГц, сузим память и добьемся стробоскопического эффекта на больших развертках (рис. 6). Результатом стробоскопического эффекта будет отображение биения частоты, вызванное разностью частоты ОГ ЦЗО и прецизионной опорной частоты 10 МГц, подаваемой на вход осциллографа. Результат измерения представлен на рисунке 8, из которого видно, что погрешность установки частоты ОГ ЦЗО составляет 29 Гц или 2,9*10-6 , при допуске 15*10-6. Частота ОГ находится в норме.

Рисунок 6 — погрешности частоты
опорного генератора методом
стробоскопического преобразования

Итак, мы произвели оценку погрешности измерения временных инте

Практическая работа на тему «Измерение частоты осциллографом»

Цель работы:

1) ознакомиться с основными техническими показателями прибора;

2) изучить прибор и усвоить назначение органов управления и правила пользования им;

3) усвоить порядок измерения частоты осциллографом.

Материальное обеспечение: IBM PC

Программное обеспечение:

Electronics Workbench

Схема соединения:

hello_html_686f7333.png

Общие теоретические сведения:

Измерение частоты с помощью осциллографов производится путем сравнения измеряемой частоты с эталонной частотой образцового генератора. Практическое применение среди осциллографических методов нашли: метод фигур Лиссажу и метод круговой развертки.

Измерение частоты с помощью фигур Лиссажу заключается в том, что на входы горизонтального X и вертикального Y каналов отклоняющей системы подается напряжение измеряемой fx и образцовой f0 частот. При этом на экране осциллографа наблюдается фигура, которая остается неподвижной, если отношение частот равно отношению целых чисел и носит название «фигуры Лиссажу». В случае неравенства частот на экране возникают сложные фигуры и данным методом определения частоты не пользуются.

Для определения соотношения между частотами мысленно пересекают получившуюся фигуру взаимно перпендикулярными прямыми, но не проходящими через ее узлы и подсчитывают максимально возможное число пересечений фигуры с вертикальной осью nв и с горизонтальной осью nг. Из правила Лиссажу следует nг /nв= fх /f0. Если f0 известна, то fx легко определить из пропорции: fx = f0nг/ nв

Вид фигуры Лиссажу зависит не только от соотношения частот, но и от фазовых соотношений сигналов. Это затрудняет измерение изложенным методом при отношении

hello_html_12bab3ed.jpg

Рис. 1. Пример фигур Лиссажу

Так как данный метод измерения основан на применении осциллографа, то будет не лишним напомнить и о нем.

Принцип работы этого универсального прибора (Oscilloscope) основывается на применении электронно-лучевой трубки (ЭЛТ), содержащей катод, излучающий поток (луч) электронов за счет термоэмиссии, модулятор для управления интенсивностью этого потока, систему его фокусировки, отклоняющую систему в виде двух пар пластин и экран из кристалликов люминофора, которые под действием падающего на них потока электронов высвечивают траекторию движения электронного луча в пространстве, определяемую потенциалами на пластинах отклоняющей системы. Горизонтальные пластины этой системы называются Х-каналом, вертикальные — Y-каналом.

На пластины Y-канала подается исследуемый сигнал после его усиления и масштабирования вертикальным Y-усилителем. Для одновременного наблюдения п сигналов используют п усилителей, выходные сигналы которых с помощью аналоговых коммутаторов поочередно подаются на вход усилителя мощности Y-канала.

На пластины Х-канала подается пилообразный сигнал развертки, длительность (период) которого с помощью системы синхронизации поддерживается равным или кратным периоду исследуемого сигнала в одном из Y-каналов, что позволяет получить устойчивое, а не хаотично «бегающее» изображение контролируемого сигнала.

Осциллограф EWB (рис. 2) имеет два Y-канала (CHANNEL) А и В с раздельной установкой чувствительности в диапазоне от 10 мкВ/дел (V/Div) до 5 кВ/дел (kV/Div) и регулировкой смещения по вертикали (Y POS). Выбор режима по входу осуществляется нажатием курсором мыши кнопок .hello_html_2ae29f81.png

Режим АС предназначен для наблюдения только сигналов переменного тока (его еще называют режимом «закрытого входа», поскольку в этом режиме на входе Y-усилителя включается разделительный конденсатор, не пропускающий постоянную составляющую). В режиме 0 входной зажим замыкается на землю. В режиме DC (включен по умолчанию) можно проводить осциллографические измерения как постоянного, так и переменного тока. Этот режим еще называют режимом «открытого входа», поскольку входной сигнал поступает на вход вертикального усилителя непосредственно. С правой стороны от кнопки DC расположен входной зажим.hello_html_2ae29f81.png

Режим развертки выбирается кнопками

В режиме Y/T (обычный режим, включен по умолчанию) реализуются следующие режимы развертки: по вертикали — напряжение сигнала, по горизонтали — время; в режиме В/А: по вертикали — сигнал канала В, по горизонтали — сигнал канала А; в режиме А/В: по вертикали — сигнал канала А, по горизонтали — сигнал канала В.

В режиме Y/T длительность развертки (TIME BASE) может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1 с/дел (s/div) с возможностью установки смещения в тех же единицах по горизонтали, т. е. по оси X (X POS).

В режиме Y/T предусмотрен также ждущий режим (TRIGGER) с запуском развертки (EDGE) по переднему или заднему фронту запускающего сигнала (выбирается нажатием кнопок ) hello_html_2ae29f81.png

при регулируемом уровне (LEVEL) запуска, а также в режиме AUTO (от канала А или В), от канала А, от канала В или от внешнего источника (ЕХТ), подключаемого к зажиму в блоке управления TRIGGER. Названные режимы запуска развертки выбираются кнопками hello_html_2ae29f81.png

Заземление осциллографа осуществляется с помощью клеммы GROUND в правом верхнем углу прибора.

При нажатии на кнопку ZOOM лицевая панель осциллографа существенно меняется (см. рис. 3.) — увеличивается размер экрана, появляется возможность прокрутки изображения по горизонтали и его сканирования с помощью вертикальных визирных линеек (синего и красного цвета), которые за треугольные ушки могут быть курсором установлены в любое место экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений (между визирными линейками).

Изображение можно инвертировать нажатием кнопки REVERSE и записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию осциллографа производится нажатием кнопки REDUCE.

hello_html_2ae29f81.png

Рис. 2 Внешний вид осциллографа

hello_html_m68e62dd5.png

Рис. 3. Внешний вид развернутого осциллографа

Порядок выполнения работы

1. Откройте файл EWB «Измерение частоты».

  1. Ознакомиться с приборами и оборудованием, необходимыми для выполнения работы.

  2. Собрать схему, руководствуясь указаниями к сборке и показать ее руководителю.

  3. Проведите исследование фигур Лиссажу при частоте источника Us100, 180, 200, 300, и 400Гц и определите частоту источника Uх в зависимости от количества точек пересечений фигур с осями.

  4. Запустите схему.

  5. Результаты проделанной работы занесите в виде таблицы в отчет.

1

.

.

6

Указания к выполнению:

1. Для того чтобы открыть файл EWB «Измерение частоты», Вам необходимо найти его в папке и двойным щелчком мыши открыть его. Перед вами откроется следующее окно.

hello_html_m31a39838.png

Рис.4. Рабочее окно редактора Elecrtronics Workbench

Нажмите ОК в появившемся сообщении. Теперь перед Вами рабочее окно редактора Elecrtronics Workbench (рис.4) , которое представляет собой наборное поле с расположенной над ним группой функциональных клавиш.

2. Для данной работы Вам понадобится осциллограф, источник Us опорной частоты и исследуемый источник сигналов Uх.

3. Для размещения на наборном поле исследуемой схемы необходимо выполнить следующие действия: hello_html_7a201091.png

Навести курсор на функциональную клавишу Instruments, и нажав на нее левой кнопкой мыши (ЛКМ) перед Вами откроется панель инструментов, из которой Вы выберите осциллограф (см. рис. 5).

hello_html_7a201091.png

Рис.5. Панель инструментов

Нажмите ЛМК на изображении осциллографа, и не отпуская ЛКМ путем перемещения курсора поместите его в нужное место наборного поля.

Аналогичным образом из панели инструментов Sources выберите источники опорной и исследуемой частоты (одно и тоже изображение), а так же заземление (см. рис. 6).

hello_html_4e7c598e.png

Рис.6 Панель инструментов Sources

Обратите внимание на то, что для удобства подключения оба источника должны быть повернуты на 900. Для этого необходимо навести курсор на уже созданный на поле источник, и нажать правую кнопку мыши (ПКМ). В результате появится контекстное меню, в котором необходимо выбрать Rotate.

hello_html_2c74b4d8.png

Теперь необходимо собрать всю схемы воедино, для этого подводим курсор к выводу источника (в конце вывода появляется точка) )и не отпуская нажатую ЛМК ведем до места соединения с осциллографом и т.д.

Для того, чтобы наблюдать изображения фигур Лиссажу необходимо открыть панель осциллографа с помощью двойного щелчка мыши по его изображению на схеме. Затем необходимо произвести первоначальные установки осциллографа, сделав их такими, как показано на рисунке 2.

Теперь схема соединения собрана и осциллограф готов к применению.

4. Чтобы задать необходимую частоту источника Usнеобходимо навести курсор на этот источник, и нажать ПКМ. В результате появится контекстное меню, в котором необходимо выбрать Component Properties. На вкладке Value в разделе Frequence задаете необходимое значение частоты.

5. Запускаем схему с помощью переключателя, который расположен в верхнем правом углу рабочего окна редактора Elecrtronics Workbench, путем нажатия на него ЛКМ.hello_html_m31a39838.png

Контрольные вопросы:

  1. Для наблюдения каких сигналов предназначен режим АС осциллографа?

  2. В каком режиме развертки работает осциллограф, если по вертикали — сигнал канала А, по горизонтали — сигнал канала В?

  3. При соблюдении какого условия на экране осциллографа наблюдается неподвижная фигура Лиссажу?

  4. Назовите осциллографические методы измерения частоты.

  5. Расскажите определение частоты с помощью метода фигур Лиссажу.

Как измерить ёмкость и индуктивность с помощью генератора и осциллографа + online-калькулятор

Для многих любителей электроники актуальной является задача измерения емкостей конденсаторов и индуктивностей дросселей, поскольку, в отличие от резисторов, эти компоненты нередко бывают не промаркированы (особенно SMD). Между тем, имея генератор синусоидальных колебаний и осциллограф (приборы, которые должны быть в любой радиолюбительской лаборатории), эта задача довольно просто решается. Всё, что для этого нужно — это вспомнить начальный курс электротехники.

Рассмотрим простейшую схему — последовательно соединённые резистор и конденсатор. Пусть эта схема подключена к источнику синусоидальных колебаний. Запишем уравнения для напряжений на элементах нашей схемы в операторной форме: UR = I * R, UC = -j * I / ωC. Из этих уравнений очевидно, что амплитудные значения напряжений будут относится следующим образом: UR / UC = R * ωC (конечно, напряжения будут сдвинуты по фазе, но нас это в данном случае не волнует, нас волнуют
только амплитуды).

Думаю, что многие уже догадались к чему я клоню. Да-да, из последнего уравнения довольно просто вычисляется ёмкость:

C = UR/UC * 1/ωR или, с учетом того, что ω= 2πf, получим C = UR/UC * 1/2πfR ; (1)

Итак, алгоритм простой: подключаем последовательно с измеряемой ёмкостью резистор, подключаем к этой схеме генератор синусоидальных колебаний и осциллографом измеряем амплитуды напряжений на нашем конденсаторе и резисторе. Изменяя частоту, добиваемся, чтобы амплитуда напряжений на обоих элементах была примерно одинаковой (так измерение получится точнее). Далее, подставляя измеренные значения амплитуд в формулу (1), находим искомую ёмкость конденсатора.

Аналогично можно вывести формулу для подсчета индуктивности:

L = UL/UR * R/ω или, с учётом того, что ω= 2πf, получим L = UL/UR * R/2πf ; (2)

Таким образом, имея генератор синусоидальных колебаний и осциллограф, с помощью формул (1) и (2) оказывается довольно просто вычислить неизвестную ёмкость или индуктивность (благо резисторы практически всегда имеют маркировку).

Алгоритм действий следующий:

1) Собираем схему из последовательно соединённых резистора известного номинала и исследуемой ёмкости (индуктивности).

2) Подключаем эту схему к генератору синусоидальных колебаний и изменением частоты добиваемся того, чтобы амплитуды напряжений на обоих элементах схемы были примерно одинаковы.

3) По формуле (1) или (2) вычисляем номинал исследуемой ёмкости или индуктивности.

Несмотря на то, что наши элементы не идеальные, есть допуск на номинал резистора и всегда есть некоторые погрешности измерений, результат получается довольно точным (по крайней мере можно без труда идентифицировать ёмкость в стандартном ряду). Пусть у меня при измерении ёмкости получилась величина 1,036 нФ. Очевидно, что на исследуемом конденсаторе должна была быть нанесена маркировка 1 нФ.

Для того, чтобы вам легче было сориентироваться с номиналами резисторов, приведу некоторые примеры:

— для ёмкости 15 пФ в схеме с резистором 200 кОм амплитуды напряжений будут примерно равны на частоте 53 кГц;

— для ёмкости 1 нФ в схеме с резистором 10 кОм амплитуды напряжений будут примерно равны на частоте 15,9 кГц;

— для ёмкости 0,1 мкФ в схеме с резистором 680 Ом амплитуды напряжений будут примерно равны на частоте 2,34 кГц;

— для индуктивности 3 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 6,3 МГц;

— для индуктивности 100 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 190 кГц.

Таким образом, диапазон измеряемых емкостей и индуктивностей зависит только от диапазона частот, с которыми могут работать ваши генератор и осциллограф.

На основе этого метода можно изготовить прибор для автоматического измерения емкостей и индуктивностей.

Online-калькулятор для расчёта емкостей и индуктивностей:

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Расчёт емкостей:

2) Расчёт индуктивностей:

Выполнение измерений с помощью осциллографа

Цифровой запоминающий осциллограф — это электронное устройство, используемое для просмотра электрических сигналов, которое состоит из экрана дисплея, входов и нескольких элементов управления. Для работы с осциллографом вы сначала подключаете электрический сигнал, который хотите просмотреть, к одному из входов осциллографа, которых обычно два, обозначенных A и B. Затем вы включаете осциллограф, но сигнал не будет виден до тех пор, пока вы настраиваете две настройки: вольт / деление и время / деление (или развертку).

Используется для измерения вертикальной шкалы, вольт / деление определяет количество вольт для каждого вертикального деления. Время / деление контролирует горизонтальный масштаб. Время, в течение которого отображается каждое горизонтальное деление, соразмерно изменяется при настройке времени / деления. Отрегулируйте эти две настройки до тех пор, пока сигнал не будет четко отображаться на экране осциллографа.

Амплитуда переменного тока

Для измерения амплитуды переменного тока (AC) вы начинаете с подключения сигнала переменного тока к одному из входов осциллографа перед его оптимизацией.Сигнал переменного тока будет колебаться и напоминать синусоидальную волну. Вы будете измерять амплитуду сигнала, подсчитывая количество вертикальных делений между самой высокой и самой низкой точками сигнала (то есть его пиком и минимумом). Вы можете получить амплитуду в вольтах, умножив количество делений по вертикали на ваши настройки вольт / деление.

Частота переменного тока

Если вы хотите измерить частоту переменного тока, вам следует подключить сигнал переменного тока к одному из входов цифрового осциллографа и оптимизировать сигнал.Подсчитайте количество горизонтальных делений от одной верхней точки до следующей (т.е. от пика до пика) вашего колебательного сигнала. Затем вы умножите количество горизонтальных делений на время / деление, чтобы найти период сигнала. Вы можете рассчитать частоту сигнала с помощью следующего уравнения: частота = 1 / период.

Напряжение сигнала постоянного тока

Чтобы измерить напряжение сигнала постоянного тока (DC), вы сначала включаете осциллограф, не подключая входной сигнал. (Обратите внимание, что сигнал постоянного тока на экране осциллографа будет ровным.) Поместите линию осциллографа над нулевым уровнем напряжения с настройкой вертикального положения. Затем подключите тракт сигнала постоянного тока к одному из входов осциллографа. После подключения сигнала вы заметите сдвиг линии осциллографа по вертикальной оси. Вы подсчитаете количество делений по вертикали, на которое смещается линия осциллографа, и умножьте деления по вертикали на вольт / деление, чтобы найти напряжение сигнала постоянного тока.

Узнайте больше и приобретите осциллографы с цифровой памятью у специалистов по схемам здесь.

,

Как пользоваться осциллографом

Введение

Вы когда-нибудь обнаруживали, что при поиске неисправностей в цепи вам требуется больше информации, чем может предоставить простой мультиметр? Если вам нужно получить информацию, такую ​​как частота, шум, амплитуда или любые другие характеристики, которые могут измениться со временем, вам понадобится осциллограф!

О-образные диафрагмы

— важный инструмент в лаборатории любого инженера-электрика. Они позволяют видеть электрические сигналы , поскольку они меняются с течением времени, что может иметь решающее значение для диагностики, почему ваша схема таймера 555 не мигает правильно или почему ваш генератор шума не достигает максимальных уровней раздражения.

HAMlab — 160-6 10 Вт

Осталось всего 3! WRL-15001

HAMlab — это полнофункциональный SDR-трансивер с диапазоном 160-10 м и выходной мощностью 10 Вт, построенный на платформе STEMlab…

рассматривается в этом учебном пособии

Цель данного руководства — познакомить с концепциями, терминологией и системами управления осциллографов.Он разбит на следующие разделы:

  • Основы O-Scopes — Введение в осциллографы, что они измеряют и почему мы их используем.
  • Oscilloscope Lexicon — Глоссарий, охватывающий некоторые из наиболее распространенных характеристик осциллографов.
  • Анатомия O-Scope — Обзор наиболее важных систем осциллографа — экрана, элементов управления по горизонтали и вертикали, триггеров и пробников.
  • Использование осциллографа — Советы и рекомендации для тех, кто впервые использует осциллограф.

Мы будем использовать Gratten GA1102CAL — удобный цифровой осциллограф среднего уровня — в качестве основы для обсуждения области применения. Другие o-области могут выглядеть иначе, но все они должны иметь одинаковый набор механизмов управления и интерфейса.

Рекомендуемая литература

Прежде чем продолжить изучение этого руководства, вы должны быть знакомы с приведенными ниже концепциями. Ознакомьтесь с руководством, если хотите узнать больше!

Видео


Основы O-Scopes

Основное назначение осциллографа — графическое представление электрического сигнала, изменяющегося во времени .Большинство осциллографов создают двухмерный график с временем по оси x и напряжением по оси y .

Пример дисплея осциллографа. Сигнал (в данном случае желтая синусоида) отображается на горизонтальной оси времени и вертикальной оси напряжения.

Элементы управления, расположенные на экране осциллографа, позволяют регулировать масштаб графика как по вертикали, так и по горизонтали, что позволяет увеличивать и уменьшать масштаб сигнала.Есть также элементы управления для установки триггера на прицеле, который помогает сфокусировать и стабилизировать изображение.

Что могут измерить прицелы?

В дополнение к этим основным функциям многие осциллографы имеют инструменты измерения, которые помогают быстро определять частоту, амплитуду и другие характеристики формы сигнала. Как правило, осциллограф может измерять характеристики как по времени, так и по напряжению:

  • Временные характеристики :
    • Частота и период — Частота определяется как количество повторов сигнала в секунду.И период является обратной величиной (количество секунд, которое занимает каждый повторяющийся сигнал). Максимальная частота, которую может измерить осциллограф, варьируется, но часто она находится в диапазоне 100 МГц (1E6 Гц).
    • Рабочий цикл — Процент периода, когда волна является либо положительной, либо отрицательной (есть как положительные, так и отрицательные рабочие циклы). Рабочий цикл — это соотношение, которое показывает, как долго сигнал «включен» по сравнению с тем, как долго он «выключен» в каждом периоде.
    • Время нарастания и спада — Сигналы не могут мгновенно переходить от 0 В до 5 В, они должны плавно возрастать.Продолжительность волны, идущей от нижней точки к верхней точке, называется временем нарастания, а время спада измеряет обратное. Эти характеристики важны при рассмотрении того, насколько быстро цепь может реагировать на сигналы.
  • Характеристики напряжения :
    • Амплитуда — Амплитуда — это мера величины сигнала. Существует множество измерений амплитуды, включая размах амплитуды, которая измеряет абсолютную разницу между точкой высокого и низкого напряжения сигнала.Пиковая амплитуда, с другой стороны, измеряет только то, насколько высокий или низкий сигнал превышает 0 В.
    • Максимальное и минимальное напряжение — осциллограф может точно сказать вам, насколько высоким и низким становится напряжение вашего сигнала.
    • Среднее и среднее напряжение — Осциллографы могут вычислять среднее или среднее значение вашего сигнала, а также могут сообщать вам среднее значение минимального и максимального напряжения вашего сигнала.

Когда использовать O-Scope

o-scope полезен в различных ситуациях поиска и устранения неисправностей, в том числе:

  • Определение частоты и амплитуды сигнала, которые могут иметь решающее значение при отладке входа, выхода или внутренних систем схемы.По этому вы можете определить, неисправен ли какой-либо компонент в вашей цепи.
  • Определение уровня шума в вашей цепи.
  • Определение формы волны — синус, квадрат, треугольник, пилообразная, сложная и т. Д.
  • Количественное определение разности фаз между двумя разными сигналами.

Осциллограф Lexicon

Научиться пользоваться осциллографом — значит познакомиться с целым словарем терминов.На этой странице мы познакомим вас с некоторыми важными модными словечками o-scope, с которыми вам следует ознакомиться, прежде чем включать его.

Основные характеристики осциллографа

Некоторые прицелы лучше других. Эти характеристики помогают определить, насколько хорошо вы можете ожидать от прицела:

  • Полоса пропускания — Осциллографы чаще всего используются для измерения сигналов определенной частоты. Однако ни один прицел не идеален: у всех есть ограничения на то, насколько быстро они могут видеть изменение сигнала.Полоса пропускания осциллографа определяет диапазон частот, он может надежно измерять.
  • Сравнение цифровых и аналоговых — Как и большинство всего электронного, осциллографы могут быть аналоговыми или цифровыми. Аналоговые осциллографы используют электронный луч для прямого отображения входного напряжения на дисплей. Цифровые осциллографы включают микроконтроллеры, которые отбирают входной сигнал с помощью аналого-цифрового преобразователя и отображают это показание на дисплее. Обычно аналоговые осциллографы старше, имеют меньшую полосу пропускания и меньше функций, но они могут иметь более быстрый отклик (и выглядеть намного круче).
  • Количество каналов — Многие осциллографы могут считывать более одного сигнала одновременно, отображая их все на экране одновременно. Каждый сигнал, считываемый осциллографом, подается в отдельный канал. Очень распространены осциллографы от двух до четырех каналов.
  • Частота дискретизации — Эта характеристика уникальна для цифровых осциллографов, она определяет, сколько раз в секунду считывается сигнал. Для осциллографов с более чем одним каналом это значение может уменьшиться, если используется несколько каналов.
  • Время нарастания — Указанное время нарастания осциллографа определяет самый быстрый нарастающий импульс, который он может измерить. Время нарастания осциллографа очень тесно связано с полосой пропускания. Его можно рассчитать как Время нарастания = 0,35 / Пропускная способность .
  • Максимальное входное напряжение — Каждая электроника имеет свои пределы, когда дело касается высокого напряжения. Все осциллографы должны быть рассчитаны на максимальное входное напряжение. Если ваш сигнал превышает это напряжение, есть большая вероятность, что прицел будет поврежден.
  • Разрешение — Разрешение осциллографа показывает, насколько точно он может измерять входное напряжение. Это значение может измениться при настройке вертикального масштаба.
  • Вертикальная чувствительность — Это значение представляет собой минимальное и максимальное значения вертикальной шкалы напряжения. Это значение указано в вольтах на деление.
  • Time Base — Временная база обычно указывает диапазон чувствительности на горизонтальной оси времени. Это значение указывается в секундах на каждый div.
  • Входное сопротивление — Когда частота сигнала становится очень высокой, даже небольшой импеданс (сопротивление, емкость или индуктивность), добавленный к цепи, может повлиять на сигнал. Каждый осциллограф добавляет к считываемой цепи определенный импеданс, называемый входным сопротивлением. Входные импедансы обычно представлены в виде большого резистивного сопротивления (> 1 МОм), соединенного параллельно (||) с малой емкостью (в диапазоне пФ). Влияние входного импеданса более очевидно при измерении очень высокочастотных сигналов, и используемый пробник может помочь его компенсировать.

Используя в качестве примера GA1102CAL, вот характеристики, которые можно ожидать от прицела среднего класса:

Признак Значение
Полоса пропускания 100 МГц
Частота дискретизации 1 Гвыб / с (1E9 выборок в секунду)
Время нарастания
Количество каналов 2
Максимальное входное напряжение 400 В
Разрешение 8 бит
Вертикальная чувствительность 2 мВ / дел — 5 В / дел
Развертка времени 2 нс / дел — 50 с / дел
Входное сопротивление 1 МОм ± 3% || 16 пФ ± 3 пФ

Понимая эти характеристики, вы сможете выбрать осциллограф, который лучше всего соответствует вашим потребностям.Но вам все равно нужно знать, как им пользоваться … на следующей странице!


Анатомия O-Scope

Хотя не существует абсолютно одинаковых осциллографов, все они должны иметь несколько общих черт, которые заставляют их функционировать одинаково. На этой странице мы обсудим несколько наиболее распространенных систем осциллографа: дисплей, горизонтальную, вертикальную, триггер и входы.

Дисплей

Осциллограф бесполезен, если он не может отображать информацию, которую вы пытаетесь проверить, что делает дисплей одним из наиболее важных разделов осциллографа.

Каждый дисплей осциллографа должен быть пересечен горизонтальными и вертикальными линиями, называемыми делениями . Масштаб этих делений изменен с помощью горизонтальной и вертикальной систем. Вертикальная система измеряется в «вольтах на деление», а горизонтальная — в «секундах на деление». Как правило, прицелы имеют около 8-10 делений по вертикали (напряжение) и 10-14 делений по горизонтали (секунд).

Старые прицелы (особенно аналоговые) обычно имеют простой монохромный дисплей, хотя интенсивность волны может варьироваться.Более современные осциллографы оснащены многоцветными ЖК-экранами, которые отлично помогают отображать более одной формы сигнала за раз.

Многие дисплеи осциллографа расположены рядом с набором из пяти кнопок — сбоку или под дисплеем. Эти кнопки могут использоваться для навигации по меню и управления настройками осциллографа.

Вертикальная система

Вертикальная секция осциллографа контролирует шкалу напряжения на дисплее. В этом разделе традиционно есть две ручки, которые позволяют индивидуально регулировать вертикальное положение и вольт / дел.

Более критическая ручка вольт на деление позволяет установить вертикальный масштаб на экране. Вращение ручки по часовой стрелке уменьшает масштаб, а против часовой стрелки — увеличивает. Меньший масштаб — меньшее количество вольт на деление экрана — означает, что вы в большей степени увеличиваете масштаб сигнала.

Например, дисплей GA1102 имеет 8 делений по вертикали, а ручка вольт / дел может выбрать шкалу от 2 мВ / дел до 5 В / дел. Таким образом, при полном увеличении до 2 мВ / дел на дисплее может отображаться осциллограмма 16 мВ сверху вниз.Полностью уменьшенный, осциллограф может отображать сигнал в диапазоне более 40 В. (Зонд, как мы обсудим ниже, может еще больше увеличить этот диапазон.)

Положение Ручка управляет вертикальным смещением формы сигнала на экране. Поверните ручку по часовой стрелке, и волна будет двигаться вниз, против часовой стрелки — вверх по дисплею. Вы можете использовать ручку положения, чтобы сместить часть сигнала за пределы экрана.

Используя одновременно ручки положения и вольт / деления, вы можете увеличить только крошечную часть сигнала, которая вас больше всего волнует.Если бы у вас был прямоугольный сигнал 5 В, но вы беспокоились только о том, насколько он звенел по краям, вы могли бы увеличить нарастающий фронт, используя обе ручки.

Горизонтальная система

Горизонтальная часть осциллографа контролирует шкалу времени на экране. Как и в вертикальной системе, горизонтальный элемент управления дает вам две ручки: положение и секунды / дел.

Ручка секунды на деление (с / дел) вращается для увеличения или уменьшения горизонтального масштаба.Если вы вращаете ручку s / div по часовой стрелке, количество секунд, которое представляет каждое деление, уменьшится — вы «увеличите масштаб» временной шкалы. Поверните против часовой стрелки, чтобы увеличить шкалу времени и показать на экране более длительное время.

Если снова использовать GA1102 в качестве примера, дисплей имеет 14 делений по горизонтали и может отображать от 2 нс до 50 с на деление. Таким образом, при полном увеличении по горизонтали осциллограф может отображать 28 нс формы волны, а при увеличении масштаба он может отображать сигнал, когда он изменяется в течение 700 секунд.

Ручка позиции может перемещать вашу форму волны вправо или влево от дисплея, регулируя горизонтальное смещение .

Используя горизонтальную систему, вы можете настроить , сколько периодов осциллограммы вы хотите видеть. Вы можете уменьшить масштаб и показать несколько пиков и впадин сигнала:

Или вы можете увеличить масштаб и использовать ручку положения, чтобы показать только крошечную часть волны:

Система запуска

Секция триггера посвящена стабилизации и фокусировке осциллографа.Триггер сообщает осциллографу, какие части сигнала «запускать» и начинать измерение. Если ваша форма волны периодическая , триггером можно управлять, чтобы дисплей оставался статичным, и устойчивым. Плохо сработавшая волна будет производить такие широкие волны, как это:

Секция триггера осциллографа обычно состоит из ручки уровня и набора кнопок для выбора источника и типа триггера. Регулятор уровня можно повернуть, чтобы установить триггер на определенную точку напряжения.

Ряд кнопок и экранных меню составляют остальную часть триггерной системы. Их основное назначение — выбор источника и режима запуска. Существует множество типов триггеров , которые определяют способ активации триггера:

  • Спусковой механизм edge — это самый простой вид спускового крючка. Он заставит осциллограф начать измерение, когда напряжение сигнала перейдет на определенный уровень. Триггер по фронту может быть настроен на захват нарастающего или спадающего фронта (или обоих).
  • Триггер , импульс сообщает осциллографу ввести заданный «импульс» напряжения. Вы можете указать длительность и направление импульса. Например, это может быть крошечный скачок 0 В -> 5 В -> 0 В, или это может быть секундное падение от 5 В до 0 В, обратно до 5 В.
  • Триггер по наклону может быть настроен на запуск осциллографа по положительному или отрицательному наклону в течение определенного периода времени.
  • Существуют более сложные триггеры, позволяющие сосредоточиться на стандартизированных формах сигналов, передающих видеоданные, например NTSC или PAL .Эти волны используют уникальный шаблон синхронизации в начале каждого кадра.

Обычно вы также можете выбрать режим запуска , который, по сути, сообщает осциллографу, насколько сильно вы относитесь к своему запуску. В режиме автоматического запуска осциллограф может попытаться нарисовать сигнал, даже если он не запускается. Нормальный режим будет рисовать вашу волну, только если видит указанный триггер. И single mode ищет ваш указанный триггер, когда он его видит, он рисует вашу волну, а затем останавливается.

Зонды

Осциллограф хорош, только если вы действительно можете подключить его к сигналу, а для этого вам нужны пробники. Пробники — это устройства с одним входом, которые направляют сигнал от вашей схемы к осциллографу. У них есть острый наконечник , который исследует точку на вашей цепи. Наконечник также может быть оснащен крючками, пинцетом или зажимами, чтобы упростить фиксацию на цепи. Каждый пробник также включает зажим заземления , который следует надежно прикрепить к общей точке заземления на тестируемой цепи.

В то время как пробники могут показаться простыми устройствами, которые просто фиксируются на вашей схеме и передают сигнал в осциллограф, на самом деле многое нужно сделать в конструкции и выборе пробника.

В оптимальном случае зонд должен быть невидимым — он не должен влиять на ваш тестируемый сигнал. К сожалению, все длинные провода обладают собственной индуктивностью, емкостью и сопротивлением, поэтому, несмотря ни на что, они будут влиять на показания осциллографа (особенно на высоких частотах).

Существует множество типов пробников, наиболее распространенным из которых является пассивный пробник , входящий в состав большинства прицелов.Большинство «штатных» пассивных пробников — это аттенуированные . Ослабляющие пробники имеют большое сопротивление, намеренно встроенное и шунтируемое небольшим конденсатором, что помогает свести к минимуму влияние длинного кабеля на нагрузку вашей цепи. Этот ослабленный пробник, соединенный последовательно с входным сопротивлением осциллографа , будет создавать делитель напряжения между вашим сигналом и входом осциллографа.

Большинство пробников имеют резистор 9 МОм для ослабления, который в сочетании со стандартным входным сопротивлением 1 МОм на осциллографе создает делитель напряжения 1/10.Эти зонды обычно называют 10X ослабленные зонды . Многие пробники включают переключатель для выбора между 10X и 1X (без затухания).

Аттенуированные пробники отлично подходят для повышения точности на высоких частотах, но они также уменьшат амплитуду вашего сигнала. Если вы пытаетесь измерить сигнал очень низкого напряжения, возможно, вам придется использовать пробник 1X. Вам также может потребоваться выбрать настройку на вашем осциллографе, чтобы сообщить ему, что вы используете ослабленный зонд, хотя многие осциллографы могут это обнаружить автоматически.

Помимо пассивного ослабленного пробника, существует множество других пробников. Активные пробники — это пробники с питанием (для них требуется отдельный источник питания), которые могут усилить ваш сигнал или даже предварительно обработать его, прежде чем он попадет в ваш осциллограф. Хотя большинство пробников предназначены для измерения напряжения, существуют пробники для измерения переменного или постоянного тока. Токовые пробники уникальны тем, что они часто зажимают провод, фактически не контактируя с цепью.


Использование осциллографа

Бесконечное разнообразие сигналов означает, что вы никогда не сможете использовать один и тот же осциллограф дважды. Но есть несколько шагов, на выполнение которых вы можете рассчитывать практически каждый раз, когда тестируете схему. На этой странице мы покажем пример сигнала и шаги, необходимые для его измерения.

Выбор и настройка датчика

Во-первых, вам нужно выбрать зонд. Для большинства сигналов простой пассивный пробник , входящий в комплект поставки осциллографа, будет работать идеально.

Затем, прежде чем подключать его к осциллографу, установите ослабление на пробнике. 10X — наиболее распространенный коэффициент затухания — обычно является наиболее всесторонним выбором. Однако если вы пытаетесь измерить сигнал очень низкого напряжения, вам может потребоваться использовать 1X.

Подключите зонд и включите осциллограф

Подключите пробник к первому каналу осциллографа и включите его. Наберитесь терпения, некоторые прицелы загружаются так же долго, как и старый компьютер.

При загрузке осциллографа вы должны увидеть деления, масштаб и зашумленную ровную линию формы сигнала.

На экране также должны отображаться ранее установленные значения времени и вольт на деление. Игнорируя пока эти шкалы, внесите эти корректировки, чтобы поместить ваш прицел в стандартную установку :

  • Включите канал 1 и выключите канал 2.
  • Установите канал 1 на Соединение по постоянному току .
  • Установите источник запуска на канал 1 — без внешнего источника или запуска по альтернативному каналу.
  • Установите тип запуска на нарастающий фронт и режим запуска на автоматический (в отличие от одиночного).
  • Убедитесь, что затухание пробника на вашем прицеле соответствует настройке на вашем щупе (например, 1X, 10X).

Для получения помощи по настройке этих параметров обратитесь к руководству пользователя осциллографа (например, к руководству GA1102CAL).

Проверка датчика

Давайте подключим этот канал к значимому сигналу. Большинство осциллографов будут иметь встроенный частотный генератор , который излучает надежную волну заданной частоты — на GA1102CAL в правом нижнем углу передней панели имеется прямоугольный сигнал с частотой 1 кГц.Выход генератора частоты имеет два отдельных проводника — один для сигнала и один для заземления. Подключите заземляющий зажим пробника к земле, а наконечник пробника к выходу сигнала.

Как только вы подключите обе части зонда, вы должны увидеть, как сигнал начинает танцевать вокруг вашего экрана. Попробуйте поиграть с помощью системных регуляторов горизонтального и вертикального , чтобы перемещать осциллограмму по экрану. Поворот регуляторов шкалы по часовой стрелке «увеличивает» осциллограмму, а против часовой стрелки — уменьшает.Вы также можете использовать ручку положения для дальнейшего определения вашего сигнала.

Если ваша волна все еще нестабильна, попробуйте повернуть ручку положения триггера . Убедитесь, что триггер не выше самого высокого пика сигнала . По умолчанию тип триггера должен быть установлен по фронту, что обычно является хорошим выбором для таких прямоугольных волн.

Попробуйте повозиться с этими ручками, чтобы отобразить на экране один период вашей волны.

Или попробуйте уменьшить масштаб временной шкалы, чтобы отобразить десятки квадратов.

Компенсация ослабленного пробника

Если ваш датчик настроен на 10X, и у вас нет идеально прямоугольной формы волны, как показано выше, вам может потребоваться компенсировать ваш датчик . Большинство пробников имеют утопленную головку винта, которую можно повернуть, чтобы отрегулировать шунтирующую емкость пробника.

Попробуйте использовать небольшую отвертку, чтобы повернуть триммер, и посмотрите, что происходит с осциллограммой.

Отрегулируйте подстроечный колпачок на рукоятке зонда так, чтобы получился прямоугольный сигнал с прямым краем и .Компенсация необходима только в том случае, если ваш зонд ослаблен (например, 10X), и в этом случае это критично (особенно, если вы не знаете, кто использовал ваш прицел последним!).

Наконечники для измерения, запуска и масштабирования

После того, как вы скомпенсировали зонд, пришло время измерить реальный сигнал! Иди найди источник сигнала (генератор частоты? Террор-Мин?) И возвращайся.

Первый ключ к зондированию сигнала — это найти прочную и надежную точку заземления . Прикрепите зажим заземления к известному заземлению, иногда вам, возможно, придется использовать небольшой провод для промежуточного звена между зажимом заземления и точкой заземления вашей схемы.Затем подключите наконечник пробника к тестируемому сигналу. Наконечники пробников существуют в различных форм-факторах — подпружиненный зажим, острие, крючки и т. Д. — постарайтесь найти тот, который не требует от вас постоянного удерживания его на месте.

⚡ Внимание! Будьте осторожны при установке заземляющего зажима при проверке неизолированной цепи (например, без батарейного питания или при использовании изолированного источника питания). При проверке цепи, которая заземлена на сетевую землю, обязательно подключите заземляющий зажим к стороне цепи , подключенной к сетевой земле .Это почти всегда отрицательная сторона / земля цепи, но иногда может быть и другая точка. Если точка, к которой подключен заземляющий зажим, имеет разность потенциалов, вы создадите прямое короткое замыкание и можете повредить вашу схему, осциллограф и, возможно, вас самих! Для дополнительной безопасности при проверке цепей, подключенных к сети, подключите его к источнику питания через изолирующий трансформатор.

Как только ваш сигнал появится на экране, вы можете начать с настройки горизонтальной и вертикальной шкал, по крайней мере, так, чтобы приблизиться к вашему сигналу.Если вы исследуете прямоугольную волну 5 В на 1 кГц, вам, вероятно, понадобится значение вольт / дел где-то около 0,5-1 В и установите секунды / деление примерно на 100 мкс (14 делений покажут примерно полтора периода).

Если часть вашей волны поднимается или опускается за пределы экрана, вы можете отрегулировать вертикальное положение , чтобы переместить его вверх или вниз. Если ваш сигнал является чисто постоянным током, вы можете настроить уровень 0 В в нижней части дисплея.

После того, как вы настроите весы, возможно, потребуется выполнить запуск формы волны. Запуск по фронту — когда осциллограф пытается начать сканирование, когда видит повышение (или падение) напряжения выше заданного значения, — это самый простой в использовании тип. Используя триггер по фронту, попробуйте установить уровень триггера на точку на вашей форме сигнала, которая видит только нарастающий фронт один раз за период .

Теперь просто масштабируйте , позиционируйте, запускайте и повторяйте , пока не получите именно то, что вам нужно.

Отмерь дважды, отрежь один раз

При наличии сигнала с определенным диапазоном, запуском и масштабированием пора измерять переходные процессы, периоды и другие свойства формы сигнала.У некоторых осциллографов больше инструментов измерения, чем у других, но все они по крайней мере будут иметь деления, по которым вы сможете по крайней мере оценить амплитуду и частоту.

Многие осциллографы поддерживают различные инструменты автоматического измерения, они могут даже постоянно отображать самую важную информацию, например частоту. Чтобы получить максимальную отдачу от своей области действия, вам нужно изучить все функции измерения , которые он поддерживает. Большинство осциллографов автоматически рассчитают частоту, амплитуду, рабочий цикл, среднее напряжение и множество других волновых характеристик.

Используя инструменты измерения осциллографа, найдите V PP , V Max , частоту, период и рабочий цикл.

Третий измерительный инструмент, который предоставляют многие прицелы, — это курсора . Курсоры — это подвижные маркеры на экране, которые можно размещать на оси времени или напряжения. Курсоры обычно бывают парами, поэтому вы можете измерить разницу между ними.

Измерение звона прямоугольной волны курсорами.

После того, как вы измерили искомую величину, вы можете приступить к корректировке вашей схемы и еще раз измерить! Некоторые осциллографы также поддерживают с сохранением , с печатью или с сохранением формы волны, поэтому вы можете вспомнить ее и вспомнить те старые добрые времена, когда вы определяли этот сигнал.

Чтобы узнать больше о возможностях вашего прицела, обратитесь к его руководству пользователя!


.

Как измерить значение индуктора или конденсатора с помощью осциллографа — метод резонансной частоты

Резисторы, индукторы и конденсаторы являются наиболее часто используемыми пассивными компонентами почти во всех электронных схемах. Из этих трех номиналы резисторов и конденсаторов обычно указываются сверху либо в виде цветового кода резистора, либо в виде числовой маркировки. Также сопротивление и емкость можно измерить с помощью обычного мультиметра. Но большинство индукторов, особенно с ферритовым и воздушным сердечником, почему-то не имеют какой-либо маркировки.Это становится довольно раздражающим, когда вам нужно выбрать правильное значение индуктора для вашей схемы или вы спасли его от старой электронной печатной платы и захотели узнать его стоимость.

Прямым решением этой проблемы является использование измерителя LCR, который может измерять значение катушки индуктивности, конденсатора или резистора и отображать его напрямую. Но не у всех есть измеритель LCR под рукой, поэтому в этой статье мы научимся использовать осциллограф для измерения значения индуктивности или конденсатора , используя простую схему и несложные вычисления.Конечно, если вам нужен более быстрый и надежный способ сделать это, вы также можете создать свой собственный LC-метр, который использует ту же технику вместе с дополнительным MCU для считывания отображаемого значения.

Необходимые материалы

  • Осциллограф
  • Генератор сигналов или простой ШИМ-сигнал от Arduino или другого MCU
  • Диод
  • Известный конденсатор (0,1 мкФ, 0,01 мкФ, 1 мкФ)
  • Резистор (560 Ом)
  • Калькулятор

Чтобы измерить значение неизвестной катушки индуктивности или конденсатора, нам нужно построить простую схему, называемую цепью резервуара.Эту схему также можно назвать схемой LC, резонансной схемой или настроенной схемой . Цепь резервуара — это цепь, в которой индуктор и конденсатор будут подключены параллельно друг другу, и когда цепь запитана, напряжение и ток на ней будут резонировать на частоте, называемой резонансной частотой. Прежде чем двигаться дальше, давайте разберемся, как это происходит.

Как работает контур резервуара?

Как уже говорилось ранее, типичная баковая цепь просто состоит из параллельно соединенных индуктора и конденсатора.Конденсатор представляет собой устройство, состоящее всего из двух параллельных пластин, которое способно накапливать энергию в электрическом поле, а индуктор — это катушка, намотанная на магнитный материал, которая также способна накапливать энергию в магнитном поле.

Tank Circuit

Когда схема запитана, конденсатор заряжается, а затем, когда питание отключается, конденсатор отдает свою энергию в катушку индуктивности. К тому времени, когда конденсатор истощает свою энергию в катушке индуктивности, катушка индуктивности заряжается и будет использовать свою энергию, чтобы протолкнуть ток обратно в конденсатор с противоположной полярностью, чтобы конденсатор снова зарядился.Помните, что катушки индуктивности и конденсаторы меняют полярность при зарядке и разрядке. Таким образом, напряжение и ток будут колебаться взад и вперед, создавая резонанс, как показано на изображении GIF выше.

Но это не может происходить вечно, потому что каждый раз, когда конденсатор или катушка индуктивности заряжается и разряжается, некоторая энергия (напряжение) теряется из-за сопротивления провода или в виде магнитной энергии, и постепенно величина резонансной частоты будет исчезать, как показано на ниже формы волны.

Resonance Frequency

Как только мы получим этот сигнал на нашем прицеле, мы можем измерить частоту этого сигнала, которая представляет собой не что иное, как резонансную частоту , тогда мы можем использовать приведенные ниже формулы для расчета значения индуктора или конденсатора.

  FR = 1 / / 2π √LC 
 

В приведенных выше формулах F R — это резонансная частота, а затем, если мы знаем значение конденсатора, мы можем вычислить значение индуктора, и аналогично мы знаем значение индуктора, мы можем вычислить значение конденсатора.

Установка для измерения индуктивности и емкости

Довольно теории, теперь давайте построим схему на макете. Здесь у меня есть индуктор, значение которого я должен узнать, используя известное значение индуктивности. Схема, которую я использую здесь, показана ниже

.

Circuit Diagram for Inductance and Capacitance Calculator using Oscilloscope

Конденсатор C1 и индуктор L1 образуют цепь резервуара, диод D1 используется для предотвращения попадания тока обратно в источник сигнала ШИМ, а резистор 560 Ом используется для ограничения тока через цепь.Здесь я использовал свой Arduino для генерации сигнала ШИМ с переменной частотой, вы можете использовать генератор функций, если он у вас есть, или просто использовать любой сигнал ШИМ. Прицел подключается через контур резервуара. Моя аппаратная установка выглядела как ниже , когда цепь была завершена. Вы также можете увидеть мой неизвестный индуктор с горячим сердечником здесь

Circuit Hardware for Inductance and Capacitance Calculator using Oscilloscope

Теперь включите схему, используя сигнал ШИМ, и проверьте наличие резонансного сигнала на осциллографе.Вы можете попробовать изменить значение конденсатора, если вы не получаете четкого сигнала резонансной частоты, конденсатор обычно 0,1 мкФ должен работать с большинством катушек индуктивности , но вы также можете попробовать с более низкими значениями, такими как 0,01 мкФ. Как только вы получите резонансную частоту, она должна выглядеть примерно так.

Output Waveform of Resonance Frequency with Oscilloscope

Как измерить частоту резонанса с помощью осциллографа?

Для некоторых людей кривая будет выглядеть так, для других вам, возможно, придется немного подправить.Убедитесь, что зонд осциллографа установлен на 10x, так как нам нужен развязывающий конденсатор. Также установите временное деление на 20 мкс или меньше, а затем уменьшите величину до менее 1 В. Теперь попробуйте увеличить частоту сигнала ШИМ, если у вас нет генератора сигналов, попробуйте уменьшить значение конденсатора, пока не заметите резонансную частоту. Как только вы получите резонансную частоту, включите осциллограф в одну последовательность. режим, чтобы получить четкую форму волны, подобную показанной выше.

После получения сигнала мы должны измерить частоту этого сигнала .Как вы можете видеть, величина сигнала уменьшается по мере увеличения времени, поэтому мы можем выбрать любой полный цикл сигнала. У некоторых осциллографов может быть режим измерения, чтобы делать то же самое, но здесь я покажу вам, как использовать курсор. Поместите первую строку курсора в начало синусоиды, а второй курсор — в конец синусоиды, как показано ниже, чтобы измерить период частоты. В моем случае период времени был выделен на рисунке ниже . Моя область видимости также отображает частоту, но для целей обучения просто учитывайте период времени, вы также можете использовать линии графика и значение деления времени, чтобы найти период времени, если ваша область не отображает его.

Calculation Inductance and Capacitance using Resonance Frequency

Мы измерили только период времени сигнала, чтобы узнать частоту , мы можем просто использовать формулы

  Ф = 1 / Т  

Таким образом, в нашем случае значение периода времени составляет 29,5 мкс, что составляет 29,5 × 10 -6 . Таким образом, значение частоты будет

.
  F = 1 / (29,5 × 10 -6 ) = 33,8 кГц  

Теперь у нас есть резонансная частота 33.8 × 10 3 Гц и емкость конденсатора 0,1 мкФ, что составляет 0,1 × 10 -6 Ф, подставляя все это в формулы, получаем

  FR = 1 / 2π √LC 
  33,8 × 10  3  = 1 / 2π √L (0,1 x 10 -6 )  

Решая для L, получаем

  L = (1 / (2π x 33,8 x 10  3 )  2  / 0,1 × 10 -6  
  = 2,219 × 10 -4  
  = 221 × 10 -6  

  L ~ = 220 мкГн  

Таким образом, значение неизвестной индуктивности рассчитано как 220 мкГн, аналогично вы также можете рассчитать значение емкости конденсатора, используя известную индуктивность. Я также пробовал это с несколькими другими известными значениями индуктивности, и, похоже, они работают нормально. Вы также можете найти полную работу в видео, прикрепленном ниже .

Надеюсь, вы поняли статью и узнали что-то новое. Если у вас возникли проблемы с тем, чтобы это работало для вас, оставьте свои вопросы в разделе комментариев или воспользуйтесь форумом для получения дополнительной технической помощи.

,

Десять измерений с помощью осциллографа

1) Измерение и просмотр форм напряжения

Вы можете измерять и просматривать сигналы постоянного или переменного тока вплоть до полосы пропускания осциллографа, используя стандартный режим работы по напряжению и времени. Отрегулируйте настройку по вертикали, чтобы отобразить полную форму сигнала, и определите значение путем подсчета вертикальных делений и умножения на коэффициент вертикального масштабирования. Большинство цифровых запоминающих осциллографов имеют меню измерений, которое напрямую отображает значения, не заставляя вас считать сетку.

2) Измерение и просмотр кривых тока

Вы можете просматривать текущие значения и формы сигналов, используя внешний маломощный шунтирующий резистор. Используйте закон Ома *, чтобы определить правильный масштабный множитель для измерения. Токовый шунт должен быть подключен к «низкой» стороне питания.

* I = E / R

3) Частота измерения

Вы можете выполнять измерения частоты, отображая форму сигнала на экране осциллографа и регулируя значение горизонтальной развертки до тех пор, пока на дисплее не появится хотя бы один полный цикл.Измерьте значение времени для одного цикла и определите частоту, используя уравнение Freq = 1 / time.

4) Измерение времени нарастания импульса

Время нарастания импульсного сигнала можно определить аналогично частоте. Отрегулируйте горизонтальную шкалу времени для отображения нарастающего фронта импульса. Время нарастания определяется как время между 10% и 90% амплитуды.

5) Измерение емкости

Вы можете оценить емкость, используя простую RC-цепь, и отметить разность фаз между приложенным и результирующим напряжением на конденсаторе, используя оба вертикальных канала осциллографа.Отмечается разность фаз, и емкость рассчитывается по следующей формуле (α — фазовый угол, Z — полное сопротивление):

Емкость = -1 / (2 x π x частота x Z x sin (α))

6) Измерительный коэффициент усиления усилителя

Вы можете измерить усиление или усиление цепи, используя как канал один, так и канал два осциллографа. Вы будете контролировать входной сигнал по одному каналу, а выходной сигнал — по другому. Разница между амплитудами этих двух сигналов указывает на усиление.

7) Измерение длины кабеля (TDR)

Вы можете использовать простой рефлектометр во временной области (TDR), чтобы определить приблизительную длину кабеля. Один быстрорастущий импульс от генератора импульсов одновременно подается на кабель и вертикальный канал осциллографа. Время, необходимое для того, чтобы импульс прошел до конца кабеля и отразился обратно, зависит как от длины кабеля, так и от его диэлектрической проницаемости. Формула измерения длины кабеля:

Длина = (скорость распространения x время) / 2

8) Измерение дифференциальных сигналов

Вы можете измерять дифференциальные сигналы, например, по кабелю витой пары, используя оба вертикальных канала осциллографа одновременно.Используйте операцию MATH Ch2-Ch3, если оба вертикальных канала имеют одинаковый масштабный коэффициент.

9) Измерение спектра сигнала (БПФ)

Вы можете использовать операцию МАТЕМАТИЧЕСКОГО БПФ для просмотра формы сигнала в виде амплитуды и частоты. Это упрощенное измерение типа анализатора спектра, которое полезно для определения частотных составляющих периодического сигнала.

10) Измерение рабочего цикла сигнала ШИМ

Вы можете определить рабочий цикл сигнала ШИМ, отобразив один полный цикл на экране осциллографа, что позволит вам определить ширину положительной части, а также ширину отрицательной части.Затем вы рассчитываете рабочий цикл по следующей формуле:

Рабочий цикл = (высокий импульс / (высокий импульс + низкий импульс) x 100%

,
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *