+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как подключить автомат включения уличного освещения

Монтируем наружную сеть освещения

Автоматы отключения уличного освещения в последнее время пользуются все большим спросом. Ведь многие озаботились проблемой освещения придомовой территории.

Каждому хочется выполнить наружное освещение максимально эффективным, экономным и безопасным. И вводные автоматы, датчики управления освещением, и схемы освещения становятся все более востребованными. Поэтому и мы решили уделить этому вопросу внимание.

Варианты схем ручного управления наружным освещением

На данный момент представлено богатое разнообразие схем выполнения наружного освещения. Каждая из них имеет свои преимущества и недостатки.

Недостатки в большинстве случаев сводятся к конечной стоимости освещения, поэтому наша инструкция предлагает варианты схем освещения от самой дешевой к самой дорогой.

Ручное включение наружного освещения

Первый, и, пожалуй, самый простой способ, это включение освещения посредством воздействия на автоматический выключатель системы наружного освещения. В этом случае загораются сразу все лампы наружного освещения, если они не имеют отдельных выключателей. Схема не требует особых изысков и максимально надежна.

Включение освещения от выключателя

Итак:

  • Для создания такой схемы освещения нам потребуется только вводной автомат, от которого будет запитана вся сеть освещения. Но здесь есть несколько нюансов.
  • Согласно п.6.2.3 ПУЭ, каждая группа освещения может содержать не более 20 ламп. Кстати, это правило распространяется и на другие схемы освещения.
  • Так же, согласно п.6.2.2. ПУЭ, автомат отключения уличного освещения не должен иметь номинал выше 25А. Но если монтируется одна группа освещения, то обычно хватает автомата с номиналом в 10 или 16А.
  • Обычно вводной автомат устанавливается в распределительном шкафу в помещении. В этом случае пыле и влагозащищенность не имеют значения. Если же вводной автомат устанавливается в специальном шкафу вне помещения, то его защищенность должна быть не ниже IP 44.

Обратите внимание! Если электрический аппарат устанавливается вне помещения, то уровень защиты имеет важное значение. Первая цифра обозначает уровень пылезащищенности и может варьировать от 0 до 6. Вторая цифра обозначает уровень влагозащищенности и может варьировать от 0 до 8. Чем выше этот показатель, тем лучше.

Включение наружного освещения от кнопки

Ходить к распределительному щитку и постоянно включать и отключать свет — достаточно обременительно. Поэтому некоторые установили кнопки в удобном месте и производят эти операции от них. Это более удобно, но требует установки дополнительного оборудования.

Схема включения освещения от кнопочного поста через пускатель

Итак:

  • Схема автомата включения освещения в этом случае такова: сразу после группового автомата устанавливается пускатель. К пускателю подключаются выводы вводного автомата и запитываемая сеть освещения.
  • В удобном для вас месте устанавливается кнопочный пост. Он должен содержать кнопки включить и отключить. С кнопочного поста подается питание на катушку пускателя.
  • При нажатии кнопки включения цепь катушки пускателя замыкается, и он подтягивается, тем самым включая вашу сеть освещения. Благодаря собственным контактам, пускатель становится на самоподхват и находится в сработанном состоянии до нажатия кнопки «Стоп».
  • При нажатии нормально замкнутой кнопки «Стоп» цепь размыкается и пускатель отпадает. Благодаря этому освещение отключается.
  • Такой способ включения уличного освещения позволяет одним нажатием включить сразу несколько групп освещения. Главное, все их подключить к пускателю.

Автоматическое включение освещения

Использование в качестве вводных автоматов датчиков

Все это «дедовские» методы, но ведь современные технологии не стоят на месте. Сейчас все большее распространение получают схемы с использованием датчиков движения или освещенности. Эти приборы позволят вам полностью устраниться от управления сетью освещения.

На фото представлены разнообразные датчики движения

Итак:

  • Датчики освещенности срабатывают при снижении уровня освещения до определенного уровня. Благодаря наличию регулировки, вы самостоятельно сможете выставить этот уровень.
  • Датчики движения срабатывают при наличии движения в определенном секторе. Он так же имеет регулировку по уровню этого движения, что позволит вам исключить ложное включение от пробежавшего кота. Кроме того, датчики движения оборудованы настраиваемыми таймерами задержки выключения после срабатывания.
  • Также в продаже имеются совмещенные датчики движения и освещенности, которые срабатывают при наличии обоих факторов. В большинстве случаев они имеют возможность регулировки обоих параметров, а также времени задержки отключения.
  • Характеристики автоматов освещения на основе датчиков имеют не мало параметров. В первую очередь, это, конечно, номинальный ток, которые они способны коммутировать. Обычно он составляет 6 или 10А. Для коммутации больших токов используют схемы, о которых мы расскажем ниже.

Обратите внимание! Справедливости ради стоит отметить, что можно отыскать модели с номиналом и в 25А. Но в большинстве случаев цена такого фотореле достаточно высока, а заявленные номинальные параметры не всегда отвечают действительности.

  • Так как датчики предназначены для наружной установки, то нельзя забывать об их защите. Здесь так же лучше выбирать приборы с IP 44 и выше.
  • Для датчиков движения очень важным параметром является угол обзора. Он может варьироватьcя до 360⁰. От его величины зависит и цена. Поэтому если вам нужен узконаправленный датчик, например, на садовую дорожку, то стоит выбирать изделия с меньшим углом. Если же вы собрались контролировать движение на детской площадке или поляне, то вам нужен датчик с большим углом обзора.

Разнообразные датчики освещенности

  • Характеристика автомата для освещения такого типа включает в себя и номинальную мощность прибора. Но обычно она крайне мала и не является существенной для сети освещения.
  • Также можно отметить разные возможности по регулировке датчиков освещенности и движения. Разница может достигать десятки раз, но, откровенно говоря, регулировку вы выполните один раз при установке и больше она вам не потребуется. А вот таймер, который имеется на датчиках движения и совмещенных моделях, может быть весьма полезен. Обычно он позволяет варьировать в пределах 5 минут, но можно найти модели и с большей задержкой.

Схема включения наружного освещения с использованием датчика движения

Датчики движения устанавливают как автомат на освещение определенного участка. Это может быть садовая дорожка, подъездная дорога к гаражу, в общем, там, где свет нужен лишь на небольшой промежуток времени.

Схемы подключения датчиков движения

  • Обычно схема такого подключения выглядит так. От группового автомата питание подается на несколько линий. На требуемой линии мы устанавливаем датчик движения, который работает по принципу обычного выключателя.
  • Так же возможен вариант установки датчика движения не после группового автомата, а после датчика освещенности. То есть групповой автомат коммутирует и обеспечивает электрическую защиту группы. Затем стоит датчик освещенности, который при снижении освещенности включает всю группу. И только при срабатывании датчика освещенности начинает работать датчик движения.
  • Такая схема хороша, если вам необходимо обеспечить включение части освещения просто при потемнении, а часть освещения должна включаться только при присутствии человека.
  • Если же вам надо, чтобы все имеющееся наружное освещение включалось только при наличии человека и в темное время суток, то идеальным решением будет совмещенный датчик освещенности и движения.

Схема включения наружного освещения от датчика освещенности

Мы уже частично описали основные варианты использования датчика освещенности выше. Но давайте более подробно остановимся на схеме его подключения.

Схема подключения датчика освещенности

  • От нашего группового автомата в распределительном щите прокладываем провод к датчику освещенности. Для коммутации сети освещения нам необходимо подключить фазный провод от автомата и фазный провод, идущий непосредственно к светильникам. Кроме того, для работоспособности прибора нам необходимо подать ноль на соответственно обозначенный вывод датчика. Более детально с этим процессом вы можете ознакомиться на видео, представленном на нашем сайте.

Обратите внимание! Место установки датчика освещенности очень важно. Оно не должно располагаться в зоне освещения светильников. Иначе при включении освещения датчик отключит его. Также место установки не должно попадать в зону тени от деревьев или строений. Это может привести к ошибочному включению освещения.

  • Если вы используете датчик освещенности для включения более 20 ламп, то, согласно п. 6.3.4 ПУЭ, вам следует установить дополнительные автоматы защиты. Их можно установить в распределительном щите рядом с вводным автоматом. Но в этом случае стоимость монтажа сильно возрастет. Да, датчик на большой номинальный ток обойдётся не дешево. Поэтому чаще используют другой вариант.

Схема включения мощного наружного освещения от датчика освещенности

А вот какой автомат ставить на освещение, если нам необходимо, чтобы при потемнении включалось сразу несколько групп. При этом суммарная нагрузка может превышать и 25 и 32 А. Для этого используется схема совместного подключения датчика и пускателя.

Схема включения освещения от датчика освещенности через пускатель

  • При такой схеме освещения провода нескольких групп питания наружного освещения подключаются к выводам пускателя соответствующей величины. Но это только в случае использования однофазной сети и при количестве групп не больше трех.
  • Если же групп больше или же применяется трехфазная сеть, что более вероятно, то пускатель устанавливают перед групповыми автоматами включения наружного освещения.
  • Управление пускателем осуществляется от датчика освещенности. Для этого один из фазных проводов питания группы подключается к датчику, а вывод из датчика подключается к катушке пускателя. Тем самым обеспечивается управление включением пускателя от датчика.
  • При срабатывании пускателя подается напряжение ко всем группам освещения, что позволяет коммутировать достаточно серьезные нагрузки.

Вывод

Зная какие схемы возможно применять для управления наружным освещением, вы без труда сможете смонтировать все своими руками. Ведь никаких сложностей в этом нет, а более детальную информацию по монтажу каждой из представленных схем вы с легкостью найдете на страницах нашего сайта.

Монтаж электропроводки в частном доме

Наконец-то ваша мечта сбылась, и вы строите свой собственный дом! Мы очень рады за вас. Честно! И если вы читаете эту статью, то скорее всего вы уже возвели каркас здания, разобрались с кровлей и начали задумываться об электрификации своего жилища. На этом этапе у вас два пути: Нанять профессионального электрика или же сделать всю эту работу самому. На самом деле в каждом из вариантов есть свои достоинства и недостатки. Мы не будем ничего навязывать – каждый сам выберет для себя то, что ему ближе.

В рамках серии статей «Электромонтажные работы», мы будем разбирать различные ситуации и учиться производить электромонтаж в доме своими руками.

Эта первая статья из данной серии и в ней мы разберем установку щитка и подбор автоматов под наш дом. Дело это абсолютно индивидуальное, но некоторые закономерности все же присутствуют. Итак, приступим

Подбираем электрический щиток для дома

По новым условиям Электросетей, счетчик должен находиться в доступном для их инспектора месте, в связи с чем, многих обязывают делать выносной учет. Не исключение и новые дома. При получении разрешения и остальной документации, вы установите щиток с счетчиком где-нибудь у входа (обычно ставят на опорах, по которым к вам приходит кабель). Но для обслуживания дома, это неудобно, поэтому придется ставить еще один щит в прихожей или другом месте, по вашему усмотрению. Если имеется подвал, щитовую можно сделать там!

Далее, необходимо определить размер будущего щитка, а именно: какое количество автоматов мы планируем использовать. Давайте посчитаем:

  • Вводной автомат. Если в процессе эксплуатации нашей домашней сети, нужно будет обесточить одну из групп, чтобы не бегать на улицу и не отключать общий ввод, можно поставить промежуточный автомат, на который мы посадим приходящий кабель, а от него сделать разводку по группам. Это очень удобно. Если у вас трехфазный ввод, то автомат к нему будет занимать 3 модуля, если фаза одна, то можно установить двухполярный автомат на фазу и ноль(2 модуля) или обычный 1-модульный.

  • Группа освещения. Если дом одноэтажный, вполне хватит одного автомата под освещение. Если же этажа два – логично будет поставить второй, чтобы грамотно распределить нагрузки. Если типов освещения несколько(основное, бра, подсветки), лучше разделить его на подгруппы. Делается это на случай, если в одной группе что-то закоротит или произойдет обрыв, остальные продолжат функционировать.

  • Розеточная группа. Тут все проще. Можно конечно зонировать розетки, разделив по помещениям, но в этом есть смысл, если у вас 3 приходящие фазы. В остальных случаях достаточно одного автомата на этаж.

  • Индивидуальные автоматы. Такие автоматы ставятся на кухонную печь, бойлеры, котлы и теплые полы. Тут, у кого что.

Рассчитав количество автоматов, подбираем нужный размер щитка. Далее определяемся с исполнением. Накладной щиток или утопленный. Здесь на ваше усмотрение. Накладной щиток будет смотреться лучше, если вы планируете подводить кабели снаружи, по стене.

После монтажа щитка к стене, установите в нем дин-рейку под автоматы и две шинки, на которые вы будете крепить “ноль” и “землю”. Не забудьте проделать отверстия под кабель перед тем, как прикрепите щиток к стене.

Какого номинала нужны автоматы

В этом вопросе начнем с самых незначительных потреблений. На группу освещения вполне подойдет автомат С16. Ставить пакетники большего номинала чревато, ибо защита просто может не сработать.

Розеточные группы предполагают большее потребление энергии, следственно нагрузка также возрастет. Здесь будет уместен автомат С25.

Под плиту или бойлер, я обычно ставлю также 25-й автомат. В качестве вводного, можно использовать С32, этого вполне будет достаточно.

Подключение автоматов в щитке

Подключать автоматы можно с помощью самодельных перемычек из кабеля, но надежнее будет использовать специальную рейку(гребенку). Она имеет плоские выводы из основания, что позволит плотно притянуть их к контакту автомата, обеспечив надежный контакт. Правильнее и удобнее всего подключить автоматы сверху, так как данное подключение является статичным и вряд ли будет переделываться. Плюс ко всему, это будет намного безопаснее и исключит попадание под напряжение.

В следующих статьях этого цикла мы разберем как произвести монтаж электропроводки, какое сечение кабеля нужно и для каких групп, как расключить распределительные коробки и многое другое.

Схема правильного подключения реле напряжения | ASUTPP

Автоматические выключатели и УЗО не являются единственными средствами защиты домашней электросети. Из-за не всегда стабильных показателей, таких как напряжение и частота, может серьёзно пострадать дорогостоящая электроника, без возможности восстановления. Чтобы предупредить проблему, необходимо установить реле напряжения в электрощитовую, а как это сделать правильно описано далее в статье.

Что такое реле напряжения?

Реле напряжения относится к разновидности коммутационных приборов, и выполняет сравнение действующих величин с заданными. Современные устройства позволяют устанавливать определённый порог, после которого срабатывает реле и отключает домашнюю сеть, сохраняя все электроприборы исправными.

Какие бывают реле напряжения:

  • Отображающие только напряжение сети. Вся информация выводится на удобный небольшой дисплей.
  • Устройства, которые также выводят на экран силу тока. Не слишком важная функция, но разбирающиеся люди могут определить по высокому току проблему или найти неисправность.
Рисунок 1: Реле напряжения, измеряющее как разность потенциала, так и силу тока

Рисунок 1: Реле напряжения, измеряющее как разность потенциала, так и силу тока

  • Реле, отображающие сразу 3 показателя: напряжение, сила тока и потребляемая мощность. Такие устройства самые дорогие, но и самые удобные в эксплуатации. Всё управление обеспечивается кнопками.

Также существуют удобные и компактные реле напряжения, которые просто вставляются в розетку, а не подключаются штатно в электрощиток. Такие устройства практичны тем, что их можно применять для одного или пары потребителей, например, компьютера.

Как правильно подключить реле напряжения?

Для подключения реле напряжения потребуется 10-15 минут, при условии, что известна схема подключения и есть под рукой такой простой инструмент как индикаторная отвёртка, фигурная отвёртка, монтёрский или канцелярский нож.

Важно! Реле напряжения всегда подключается в разрыв между электрическим счётчиком и дальнейшей группой коммутационных приборов. Вводной автомат, по всем правилам, устанавливается до прибора учёта электроэнергии, поэтому сеть всегда можно выключить и ни в коем случае не работать под напряжением.
Рисунок 2: Схема подключения реле напряжения после УЗО и электросчётчика

Рисунок 2: Схема подключения реле напряжения после УЗО и электросчётчика

Как правильно подключить реле напряжения:

  1. Обесточить сеть, выключив основной автоматический выключатель. Убедиться, что на участке, где будет выполняться монтаж, отсутствует опасное для жизни напряжение. Для этого следует использовать индикаторную отвёртку.
  2. Установить реле времени на DIN-рейку, защёлкнуть фиксатор, расположенный сзади устройства и проверить, качественно ли держится коммутационный прибор на своём месте.
  3. Зачистить провода, идущие от счётчика и к потребителю. Всего 3 провода: 2 фазных и 1 нулевой.
  4. Провода, идущие от электросчётчика, закрепить на своих штатных местах в верхней части реле. Это будет «фаза» и «ноль». Достаточно вставить провод в клемму и затянуть его с помощью болта.
  5. Провод, идущий к потребителю, закрепить на своём штатном месте в нижней части устройства. Это «фаза», которая пойдёт на квартиру, порядок её фиксации такой же, как и с верхними проводниками.
  6. Включить основной автомат, убедиться с помощью индикаторной отвёртки, что напряжение поступает на вход реле.
  7. Включить реле и выставить порог чувствительности.
Рисунок 3: Подключение реле контроля напряжения с графической схемой

Рисунок 3: Подключение реле контроля напряжения с графической схемой

Выставлять следует как нижний, так и высший порог чувствительности, чтобы устройство могла отключить сеть при всех скачках напряжения. Реле напряжения можно подключать на однофазную сеть с общей потребляемой мощностью не более 7 кВт. Если нагрузка больше этой цифры, то в сеть необходимо дополнительно монтировать магнитный пускатель.

Подключение трехфазного автомата в щитке

5 вариантов трехфазной схемы распределительного щита.

Все распределительные щиты должны выполнять 3 основные задачи:

    защита кабеля от перегрузок и КЗ

С этой целью в щитах монтируются автоматические выключатели. Они в первую очередь предназначены именно для защиты кабеля, а не подключенного к ним оборудования, как многие до сих пор думают.

    защита человека от поражения электрическим током

Обеспечивается она путем установки УЗО или дифф.автоматов.

    защита техники от перепадов напряжения

К сожалению, в наших сетях зачастую происходят скачки напряжения. Автоматы на это не реагируют, так как просто не рассчитаны на такую защиту.

УЗО также не приспособлено на срабатывание от перенапряжения. Для этого понадобятся модульные реле напряжения или УЗМ – устройства защиты многофункциональные.

На них выставляются определенные верхние и нижние пределы по напряжению. Как только произошел скачок, или наоборот резкое снижение параметров эл.сети, данное реле (УЗМ) срабатывает и отключает питание.

Чем же отличается сборка 3-х фазного щита, с условием обеспечения вышеперечисленных задач, от сборки однофазного? Понятно, что однофазный на порядок проще трехфазного.

Там есть только единственная фаза, ноль и защитное заземление. В 3-х фазном, к вам в щит приходит те же ноль, защитное заземление и уже 3 фазы.

С одной стороны это дает вам возможность подключать гораздо большую нагрузку, и получить у энергопередающей организации большую мощность для подключения. Но с другой стороны, это всегда несет и большие затраты, плюс необходимость грамотного распределения этой самой нагрузки.

Причем не по своей вине или вине энергоснабжающей организации, а именно из-за вас.

Есть множество вариантов сборки и комплектации трехфазных щитков. Не будем рассматривать самые простейшие с минимальным количеством вводного оборудования.

Выберем более сложные по комплектации, но в тоже время достаточно универсальные. В связи с резким увеличением количества эл.приборов в наших квартирах и домах, они в последнее время приобретают все большую популярность.

Преимущества:

    каждая линия защищена как от КЗ, перегрузок, так и от утечек. И все это одни аппаратом.
    проще установить проблемную зону при повреждениях
    отсутствуют нулевые шины
    у вас полная свобода в группировке аппаратов в щите
    легко распределять нагрузку по фазам
    большие габариты щита и большое количество модульных устройств (от 72шт и более)

Дифференциальный автомат это оборудование, которое ставится на отдельную линию, как обычный автомат, но еще включает в себя и защиту от утечек (дифф.защиту).

Это хоть и самый лучший вариант, но и самый дорогой. Поэтому используется крайне редко.

Условно говоря, сколько у вас будет отходящих групповых линий, столько же понадобится дифф.автоматов.

При этом, чтобы при возможных авариях понять, от чего отключился такой автомат, от утечки или КЗ, рекомендуется использовать модели с индикацией причины срабатывания.

В начале схемы монтируется вводное устройство – рубильник. С него пускаете питание на реле напряжения.

Далее, через кросс-модули разделяете нагрузку на диффы. На каждый автомат пускаете по одной фазе.

Если в последствии окажется, что та или иная линия перегружает какую-либо из фаз, вам достаточно на одном из кросс модулей просто поменять их местами, перекинув провода с одной шинки на другую.

Если вы не ограничены бюджетом, то это самый лучший вариант сборки и комплектации трехфазного щитка.

Преимущества сборки:

    требуется щиток небольших размеров (от 54 до 72 модулей)
    не наглядная группировка линий
    невозможность простого внесения изменений в перераспределении нагрузки по фазам
    наличие нулевых шинок

Это один из простых и наиболее распространенных вариантов сборки и проектировании трехфазных щитков. Объясняется это конечно его дешевизной по отношению к остальным.

Однако это все предварительное деление. Так как реального потребления никто не знает. И только со временем, путем замеров можно увидеть фактическую картину. А она может существенным образом отличаться от ранее спроектированной.

И чтобы хоть как-то подравнять нагрузки, приходится переделывать чуть ли не половину всего щитка. Оставите как есть, и обязательно в будущем столкнетесь с проблемами:

    перекос напряжения
    нагрев нулевой шинки с возможным отгоранием ноля
    перегруженные автоматы и последствия этого

Есть еще более упрощенный вариант данного способа комплектации.

Преимущества:

    самый дешевый вариант
    щит малого размера (до 32 модулей)

Недостатки:

    практически отсутствует группировка линий
    отсутствует возможность изменения нагрузки по фазам
    присутствуют нулевые шины
    возможно ложное срабатывание УЗО

Здесь используется всего одно УЗО на вводе (кроме не отключаемых потребителей) и уже далее, нагрузка распределяется через однополюсники. Согласно п.7.1.83 ПУЭ вы можете быть ограничены в выборе количества подключаемых линий.

Если же проигнорировать данное правило, то вполне вероятны ложные срабатывания УЗО. При этом вы долго будете ломать голову прикидывая, сработало оно от защиты или же ложно.

Поэтому лучше искать промежуточные варианты комплектации трехфазного щитка.

Преимущества:

    возможность легко распределять нагрузку по фазам
    наглядная группировка линий
    удобное подключение питания и отходящих проводников
    отсутствие нулевых шинок
    габаритные размеры щитка (от 96 до 144 модулей)
    относительно дорого

Когда вы собираете щит по первому варианту на дифф.автоматах, вы пропускаете через него фазный и нулевой проводник. Плюс отпадает необходимость в УЗО.

Если по экономическим причинам вы не можете себе позволить дифференциальные автоматы, группировать отходящие линии все равно придется на УЗО.

Однако для того, чтобы впоследствии все было ремонто-пригодно и легко вносились изменения в схему без ее кардинальных реконструкций и перемонтажа проводов, вместо обычных однофазных модульных автоматов достаточно применить двухполюсные.

Внешне они выглядят как собранные воедино два одинарных модульных однополюсника.

Для сборки схемы соединяете между собой нули в той или иной группе 4-х полюсных УЗО. Через них пропускаете все фазы и далее пускаете их на кросс модули.
После чего фазы распределяются по автоматам.

Преимущества:

Как подключить автомат в щитке без ошибок

Распределительный щит трудно представить без современных модульных устройств защиты, таких как автоматические выключатели, устройств защитного отключения, дифференциальных автоматов и всевозможных реле защиты. Но далеко не всегда эти модульные устройства подключаются правильно и надежно.

В виду обслуживания электрических щитков мне иногда приходится сталкиваться с ошибками подключения автоматических выключателей, которые в них установлены. Казалось бы, как можно неправильно подключить обычный однополюсный автомат? Зачистил кабель на определенную длину, вставил в клеммы, затянул надежно винты.

Но как бы это странно не звучало, большинство людей имеет «корявые» руки и качество сборки щитов оставляет желать лучшего. Хотя на самом деле все мы совершаем или совершали ошибки в той или иной отрасли, и как говорится в известной пословице: «не ошибается тот, кто ничего не делает».

Приветствую всех друзья на сайте « Электрик в доме ». В данной статье рассмотрим, как подключить автомат в щитке и разберем несколько вариантов самых распространенных и грубых ошибок.

Подключение автоматов в щитке – вход сверху или снизу?

Первое с чего бы хотел начать это правильность подключения автомата в принципе. Как известно автоматический выключатель имеет два контакта для подключения подвижный и неподвижный. На какой из контактов необходимо подключать питание к верхнему или нижнему? На сегодняшний день споров по этому поводу развелось очень много. На любом электротехническом форума куча вопросов и мнений на этот счет.

Обратимся за советом к нормативным документам. Что сказано в ПУЭ по этому поводу? В 7-м издании ПУЭ пункт 3.1.6. сказано:

Как видно в правилах сказано, что питающий провод при подключении автоматов в щитке должен присоединяться, как правило, к неподвижным контактам. Это также относится ко всем узо, дифавтоматам и прочих устройств защиты. Из всей этой вырезки непонятно выражение «как правило». То есть вроде, как и должно, но в некоторых случаях может быть и исключение.

Чтобы понимать, где расположен подвижный и неподвижный контакт нужно представлять внутреннее устройство автоматического выключателя. Давайте на примере однополюсного автомата рассмотрим, где находится неподвижный контакт.

Перед нами автомат серии ВА47-29 фирмы iek. Из фото понятно, что неподвижным контактом у него является верхняя клемма, а подвижным контактом – нижняя клемма. Если рассмотреть электрические обозначения на самом выключателе, то здесь тоже видно, что неподвижный контакт находится сверху.

У автоматических выключателей других фирм производителей аналогичные обозначения на корпусе. Взять, например автомат фирмы Schneider Electric Easy9, у него неподвижный контакт также находится сверху. Для УЗО Schneider Electric все аналогично сверху находятся неподвижные контакты, а снизу подвижные.

Другой пример, защитные устройства фирмы Hager. На корпусе автоматических выключателей и УЗО hager также можно увидеть обозначения, из которых понятно, что неподвижные контакты находятся сверху .

Давайте разберемся, с технической стороны есть ли значение, как подключить автомат сверху или снизу.

Автоматический выключатель защищает линию от перегрузок и коротких замыканий. При появлении сверхтоков реагируют тепловой и электромагнитный расцепитель, расположенные внутри корпуса. С какой стороны будет подключено питание сверху или снизу для срабатывания расцепителей разницы абсолютно нет. То есть с уверенностью можно сказать, что на работу автомата не влияет, на какой контакт будет подведено питание.

По правде говоря, должен отметить, что производители современных «брендовых» модульных устройств, такие как ABB, Hager и прочие допускают подключение питания к нижним клеммам. Для этого на автоматах имеются специальные зажимы, предназначенные под гребенчатые шины.

Почему же в ПУЭ советуют подключение выполнять на неподвижные контакты ( верхние )? Такое правило утверждено в целях общего порядка. Любой образованный электрик знает, что при выполнении работ необходимо снять напряжение с оборудования, на котором будет работать. «Залазя» в щиток человек интуитивно предполагает наличие фазы сверху на автоматах. Отключив АВ в щитке, он знает, что напряжения на нижних клеммах и все что от них отходит, нет.

Теперь представим, что подключение автоматов в распределительном щите Вам выполнял электрик дядя Вася, который подключил фазу к нижним контактам АВ. Прошло некоторое время (неделя, месяц, год) и у Вас появилась необходимость заменить один из автоматов (или добавить новый). Приходит электрик дядя Петя, отключает нужные автоматы и уверенно лезет голыми руками под напряжение.

В недалеком советском прошлом у всех автоматов неподвижный контакт располагался вверху (например, АП-50). Сейчас по конструкции модульных АВ не разберешь где подвижный, а где неподвижный контакт. У АВ которые мы рассматривали выше, неподвижный контакт был расположен сверху. А где гарантии, что у китайских автоматов неподвижный контакт будет расположен сверху.

Поэтому в правилах ПУЭ подключение питающего проводника к неподвижным контактам подразумевает лишь подключение на верхние клеммы в целях общего порядка и эстетики. Я сам сторонник подключения питания к верхним контактам автоматического выключателя.

Для тех, кто со мной не согласен вопрос на засыпку, почему на электрических схемах питание на автоматы подключают именно на неподвижные контакты.

Если взять, например обычный рубильник типа РБ, который установлен на каждом промышленном объекте, то его никогда не подключат верх ногами. Подключение питания к коммутационным аппаратам такого рода полагает только к верхним контактам. Отключил рубильник и ты знаешь, что нижние контакты без напряжения.

Подключаем провода к автомату – кабель с монолитной жилой

Как выполняет подключение автоматов в щитке большинство пользователей? Какие ошибки можно при этом допустить? Давайте разберем здесь ошибки, которые наиболее часто встречаются.

Ошибка – 1. Попадание изоляции под контакт.

Все знают, что перед тем как подключить автомат в щитке нужно снять изоляцию с подключаемых проводов. Казалось бы, здесь нет ничего сложного, зачистил жилу на нужную длину, затем вставляем ее в зажимную клемму автомата и затягиваем ее винтом, обеспечивая тем самым надежный контакт.

Но встречаются случаи, когда люди в недоумении, почему выгорает автомат, когда все правильно подключено. Или почему периодически пропадает питание в квартире, когда проводка и начинка в щитке абсолютно новые.

Одна из причин вышеописанного попадание изоляции провода под контактный зажим автоматического выключателя. Такая опасность в виде плохого контакта несет в себе угрозу оплавления изоляции, не только провода, но и самого автомата, что может привести к пожару.

Чтобы этого исключить нужно, следить и проверять, как затянут провод в гнезде. Правильное подключение автоматов в распределительном щите должно исключать такие ошибки.

Ошибка – 2. Нельзя подключать несколько жил разных сечений на одну клемму АВ.

Если возникла необходимость подключить несколько автоматов стоящих в одном ряду от одного источника (провода) для этой цели как невозможно лучше подойдет гребенчатая шина. Но такие шины не всегда есть под рукой. Как объединить несколько групповых автоматов в таком случае? Любой электрик, отвечая на этот вопрос, скажет сделать самодельные перемычки из жил кабеля.

Чтобы сделать такую перемычку используйте куски провода одинакового сечения, а лучше вообще не разрывайте его по всей длине. Как это сделать? Не снимая с провода изоляцию, формируете перемычку нужной формы и размеров (по количеству ответвлений). Затем зачищаем изоляцию с провода в месте перегиба на нужную длину, и у нас получается неразрывная перемычка из цельного куска провода.

Никогда не объединяйте автоматы перемычками кабелем разного сечения. Почему? При затягивании контакта хорошо зажмется жила с большим сечением, а та жила, у которой сечение меньше будет иметь плохой контакт. Как следствие оплавление изоляции не только на проводе, но и на самом автомата, что несомненно приведет к пожару.

Пример подключения автоматических выключателей перемычками из разных сечений кабеля. На первый автомат приходит «фаза» проводом 4 мм2, а на другие автоматы уже идут перемычки проводом 2.5 мм2. На фото видно, что перемычка из проводов разного сечения . Как следствие плохой контакт, повышение температуры, оплавление изоляции не только на проводах, но и на самом автомате.

Для примера попробуем затянуть в клемме автоматического выключателя две жили с сечением 2.5 мм2 и 1.5 мм2. Как бы я не старался обеспечить надежный контакт в этом случае, у меня ничего не получалось. Провод сечением 1.5 мм2 свободно болтался.

Еще один пример на фото дифавтомат, в клемму которого воткнули два провода разного сечения и попытались все это дело надежно затянуть. В результате чего провод с меньшим сечением болтается и искрит.

Ошибка – 3. Формирование концов жил проводов и кабелей.

Этот пункт, скорее всего, относится не к ошибке, а к рекомендации. Для подключения жил отходящих проводов и кабелей к автоматам мы снимаем с них изоляцию примерно на 1 см, вставляем оголенную часть в контакт и затягиваем винтом. По статистике 80 % электриков именно так и подключают.

Контакт в месте соединения получается надежный, но его дополнительно можно улучшить без лишних затрат времени и средств. При подключении к автоматам кабелей с монолитной жилой сделайте на концах U-образный загиб.

Такое формирование концов увеличит площадь соприкосновения провода с поверхностью зажима, а значит контакт будет лучше. P.S. Внутренние стенки контактных площадок АВ имеют специальные насечки. При затягивании винта эти насечки врезаются в жилу, благодаря чему надежность контакта увеличивается.

Присоединение к автомату многожильных проводов

Для разводки щитов электрики часто отдают предпочтение гибкому проводу с многопроволочной жилой типа ПВ-3 или ПуГВ. С ним легче и проще работать, чем с монолитной жилой. Но здесь есть одна особенность.

Основная ошибка, которую допускают новички в этом плане, подключают многожильный провод к автомату без оконцевания. Если обжать голый многожильный провод как он есть то при затягивании жилки передавливаются и обламываются, а это приводит к потере сечения и ухудшению контакта.

Опытные «спецы» знают, что затягивать голый многожильный провод в клемме нельзя. А для оконцевания многопроволочных жил нужно применять специальные наконечники НШВ или НШВИ.

Корме того если существует необходимость подключения двух многожильных провода к одному зажиму автомата для этого нужно использовать двойной наконечник НШВИ-2. С помощью НШВИ-2 очень удобно формировать перемычки для подключения нескольких групповых автоматов.

Пайка проводов под зажим автомата – ERROR (ошибка)

Отдельно хотел бы остановиться на таком способе оконцевания проводов в щите как пайка. Так уж устроена человеческая натура, что люди на всем стараются сэкономить и далеко не всегда хотят тратиться на всевозможные наконечники, инструменты и всякую современную мелочевку для монтажа.

Для примера рассмотрим случай, когда электрик из ЖЭКа дядя Петя выполняет разводку электрического щитка многожильным проводом (или подключает отходящие линии в квартиру). Наконечников НШВИ у него нет. Но под рукой всегда есть старый добрый паяльник. И электрик дядя Петя не находит другого выхода как облудить многопроволочную жилу, запихивает все это дело в контактный зажим автомата и затягивает от души винтом. Чем опасно такое подключение автоматов в распределительном щите?

При сборке распределительных щитов НЕЛЬЗЯ опаивать и облуживать многопроволочную жилу. Дело в том, что луженое соединение со временем начинает «плыть». И чтобы такой контакт был надежный его постоянно нужно проверять и подтягивать. А как показывает практика, про это всегда забывают. Пайка начинает перегреваться, припой плавится, место соединения еще больше ослабляется и контакт начинает «выгорать». В общем, такое соединение может привести к ПОЖАРУ.

Поэтому если при монтаже используется многожильный провод то для его оконцевания нужно применять наконечники НШВИ.

Cхема щита учета электроэнергии 380в для частного дома 15 квт

При подключении частного дома к электросети, вам обязательно потребуется получить у электросбытовой компании (Мосэнерго, Ленэнерго, Свердловэнерго и др., в зависимости региона) ТУ – Технические условия на подключение. Именно этот документ содержит основные характеристики электросети доступные вам, в том числе и требования к щиту учета электроэнергии.

В этой статье мы подробно осмотрим схему типового щита учета, а также его модификаций, которые предписывают собирать требования ТУ.

Cтандартные в таких случаях параметры сети для подключения частного дома это:

3 фазы

Напряжение: 380В

Выделенная мощность: 15 кВт

Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте – на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

Простая схема подключения электрощита частного дома 15 кВт

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

Простой щит учета, система заземления TT

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Схема щита учета с УЗИП, система заземление TN-C-S

Пошаговая инструкция по расключению доступна по ССЫЛКЕ

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Еще раз отмечу, что под каждой схемой есть ссылки, перейдя по которым вы сможете прочитать подробности, узнать использованное оборудование, задать вопросы.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Как правильно подключить автоматы в электрическом щите — пошаговая инструкция

Ошибки в процессе подключения автоматов могут привести к серьезным проблемам с электропроводкой, поэтому, если вы не уверены в своих силах, лучше исключить риски и обратиться к профессиональному мастеру. Сегодня мы рассмотрим этапы проведения работ по подключению автоматов в электрическом щите, в том числе установку кабеля, соединение всех элементов. В любом доме или квартире имеется электричество, поэтому подобный вопрос не теряет актуальности.

Как правильно подключить автоматы в электрическом щите – это распространенный вопрос, ведь подобные действия требуют от мастера хотя бы базовых навыков. Для начала следует в соответствии с правилами составить проект электропроводки, определиться с местом установки, составить чертежи, выбрать основание и комплектующие элементы. Только после вышеперечисленных действий мастера приступают к монтажным работам, а потом подсоединяют щит к кабелю.

Куда устанавливают электрощит для счетчика и автоматики

Первым делом необходимо определиться с местом для установки щитка. Так, специалисты считают, что лучше фиксировать его возле входной двери в коридоре, ведь тогда не придется прокладывать кабель с лестничной площадки, что значительно упростит монтаж.

Как правило, закрепляют щиток на уровне видимости жителей квартиры — это позволит без проблем снимать показания и отключать автоматы. Поэтому место установки будет отличаться в зависимости от роста домочадцев.

Обратите внимание! До сих пор встречаются электрики, которые предпочитают устанавливать счетчики под потолком (как это делали раньше). Старые конструкции фиксировались на стену без ящиков, поэтому закрепляли их на высоте в целях безопасности.

Любые современные щитки имеют надежное основание, закрываются с помощью замка, поэтому посторонние или маленькие дети не смогут туда добраться, если не будут иметь доступ к ключам.

При выборе места для монтажа учитывают и то, откуда будет проходить кабель воздушной или подземной линии питания (в квартире или частном доме). Уточнить подобную информацию можно у сотрудников компании, отвечающей за электроэнергию.

Приобрести готовый электрощит или собрать самостоятельно

Теперь электрики уже не только самостоятельно собирают щитки, но и устанавливают готовый заводской вариант со всем внутренним наполнением. Такие конструкции даже изготавливают по специальному заказу под конкретную квартиру.

Главный момент в этом деле – это опыт установки фирменных щитков. Если мастер уже сталкивался с таким монтажом, то опасаться не стоит. В других же случаях лучше собрать конструкцию на месте, поэтапно.

Цены на электрощитки

Видео – Сборка щитка для квартиры

Схема соединения автоматов в электрощите

Прежде чем приступить к установке автоматов, необходимо внимательно изучить их схематичное устройство, ведь схема монтажа состоит из нескольких элементов с разными обозначениями.

Таблица 1. Элементы, используемые при монтаже электрощита.

НазваниеХарактеристика
Автомат вводнойЕго устанавливают на защиту целого контура электропроводки. Так, жилы основного кабеля фиксируют к зажимам автомата. Для удобства использования, впереди автомата закрепляют рубильник. Он позволяет отключить ток от всей конструкции, чтобы провести ремонтные работы. В этом случае кабель питания тоже необходимо завести на этот рубильник.
СчетчикЕго ставят уже после автоматов. Основным назначением счетчика является контроль потребляемой электроэнергии. Иногда его закрепляют в другом месте еще до электрощита вместе с автоматами (на лестничной площадке).
Устройство защитного отключенияОсновной функцией УЗО является защита от ударов током и возгораний. К примеру, в малогабаритной квартире после счетчика устанавливают только одно УЗО, потому что больше не требуется из-за минимальной нагрузки. Иногда устанавливают несколько таких устройств на линии, где имеется большое потребление электроэнергии.
Линейные автоматыОни требуются для линий в отдельные комнаты. При наличии высокого напряжения или замыкания они разрывают цепочку, благодаря чему предотвращают пожар или короткое замыкание. Они нужны для защиты различных электроприборов.
Дифференциальные автоматыИх устанавливают вместо нескольких основных автоматов с защитным устройством на отдельных линиях для различных бытовых приборов.
Монтажная рейкаРейка фиксируется к задней стенке основания щитка. В зависимости от размеров ящика, количество реек и модулей может отличаться. Для того чтобы приобрести щиток под определенное количество модулей, предварительно составляют подробный чертеж соединений.
ГребенкаПредназначаются с целью расключения щита, чтобы соединить нули с подводками заземления. В одном щитке имеются нулевые гребенки и заземляющие.
Шина распределенияОни связывают между собой линейные, дифференциальные автоматы и защитное устройство. Они надежно изолированы, благодаря чему безопасно фиксируют автоматы через входной зажим. Их используют как для фазы, так и для нуля.

Что представляют собой автоматические выключатели

Автовыключатели — это специализированные устройства, основной задачей которых является защита электропроводки от возгорания. Конечно, они не способны защитить от удара током и от поломки бытовых приборов, но контролируют перегревание.

Функционирование основано на том, что устройства разрывают электрическую цепочку при следующих ситуациях:

  • замыкание;
  • резкое повышение напряжения в проводнике (выше определенной нормы).

Обычно автомат фиксируют на входе, что позволяет защитить идущий за ним участок цепочки. Поскольку ко всем элементам применяется разная проводка, устройства защиты должны работать при различной мощности тока.

Некоторым начинающим электрикам может показаться, что достаточно зафиксировать энергоемкий автомат, но это распространенное заблуждение. Ведь если защитное устройство не сработает при наличии тока большой силы, то произойдет возгорание проводки.

Устройство автомата

Чаще всего автомат представляет собой конструкцию из следующих элементов:

  1. Рукоятка взвода. Она позволяет включить устройство или же отключить при необходимости монтажа.
  2. Включающий механизм.
  3. Контакты. Соединяют и разрывают общую цепочку.
  4. Зажимы. Используются для подключения к защитному устройству.
  5. Механизмы, работающие по условию. Сюда относится биметаллическая платина теплового расцепителя. В некоторых конструкциях присутствует винт регулировки, с помощью которого можно скорректировать силу тока.
  6. Дугогасительная камера. Располагается в любом полюсе прибора.

Как устроен механизм отключения

В автомате присутствует особый механизм, который способствует разрыву цепочки при повышении силы тока.

Существуют различные принципы функционирования подобных устройств:

  1. Электромагнитные. Отличительной особенностью является стремительное срабатывание при наличии замыкания. При резком повышении силы тока в действие приводится катушка, сердечник которой и размыкает цепочку.
  2. Тепловые. Здесь основным элементом является биметаллическая пластинка, которая при повышении температуры меняет форму, выгибается в обратную сторону, за счет чего размыкает цепочку.

По аналогичному принципу функционируют электрочайники, из-за чего происходит их отключение при закипании воды. Для разрыва цепи используют и полупроводниковые устройства, но они редко применяются в сетях.

Маркировки на автоматах

Все модели автоматов имеют различные обозначения, по которым их можно идентифицировать. Обычно, большинство производителей предпочитают выпускать такие конструкции, которые могут использоваться в различных условиях и отраслях.

Для того, чтобы исключить ошибки во время подключения, следует разобраться с маркировками на корпусной части:

  1. Логотип. Чаще всего в верхней части автомата можно обнаружить логотип копании производителя. Кроме того, все бренды выпускают изделия определенной цветовой гаммы. Это значит, что рядовому пользователю не составит труда отыскать нужный вариант.
  2. Окно индикатора. Определяет состояние контактов на данный момент. При поломке выключателя в этом окне можно увидеть напряжение в сети или его отсутствие.
  3. Тип устройства. В стандартных сетях обычно используют автоматы типов C и B. Между собой они отличаются коэффициентом чувствительности.
  4. Номинальный ток. Здесь показывается максимальное значение силы тока. Часто указывают два значения – для однофазной и трехфазной сети.
  5. Предельно допустимый ток выключения. Обозначает предел напряжения при замыкании, из-за которого автомат выключается, но при этом остается исправным.
  6. Схема. Иногда на автомате можно встретить даже чертеж подсоединения контактов, который находится в боковой части.

Какой автомат выбрать

При выборе устройства в первую очередь следует учитывать его предельно допустимый ток. Для этого необходимо посчитать, какая сила тока потребуется для всех установленных в квартире приборов.

Кроме того, значение имеет и толщина проводки, поскольку по ней течет электричество. Требуется оптимальная величина в зависимости от степени нагревания. Еще большое значение имеет наличие полюсов:

  1. Один. Цепочки с осветительными приборами и розетками, к которым подключаются только примитивные устройства.
  2. Два. Используется с целью защиты электропроводки, которая подводится к крупным приборам (стиральным машинам, плитам, холодильникам, отоплению, водонагревателям). Кроме того, устанавливается для дополнительной защиты между электрощитом и квартирой.
  3. Три. Актуальны при наличии сети с тремя фазами, что бывает на производственных предприятиях, собственных мастерских.

Автоматы устанавливаются в щитке по стандартному принципу – от большего к меньшему. Это значит, что сначала фиксируют автомат с двумя полюсами, а только потом с одним. После чего следуют остальные устройства с меньшей мощностью.

Цены на дифавтоматы

Видео – УЗО или дифференциальный автомат: что выбрать

Особенности подключения автоматических выключателей

После того, как вы определитесь с типом автоматов, их необходимо подключить. Если придерживаться определенных этапов, то справиться с таким процессом можно без каких-либо специальных навыков.

Здесь мы рассмотрим процесс поэтапной сборки электрического щита для однокомнатной квартиры. Для начала потребуется подготовить все инструменты и комплектующие, которые будут использованы в процессе монтажа:

Цены на вольтметры

Сборка щитка — пошаговая инструкция

Шаг 1. Первым делом на верхней рейке нам потребуется расположить автоматику, таким образом, как она должна выглядеть после фиксации. Сначала мы укладываем рубильник, после чего УЗМ (защитное устройство), после чего три УЗО на разные группы (ток утечки 30 мА, номиналом 63,63 и 40 А).

Первый на 40 А – свет, второй на 63 А – на варочную панель и духовку, третий на 63 А – на оставшиеся группы. В конце устанавливается один дифференциальный автомат типа «А», потому что такие устройства рекомендуют производители большинства бытовых приборов.

Шаг 2. Далее необходимо перейти ко второй рейке и расставить автоматы в правильном положении. Расставлять их надо строго под определенной группой УЗО. Начинать следует с правой стороны.

Шаг 3. Теперь автоматику необходимо запитать между собой. Для таких целей следует использовать гребенки в двух конфигурациях. Первая – PS-1 на 12 модулей. Вторая – PS-2 на 12 модулей. Поскольку у нас только 9 модулей, лишний участок гребенки потребуется удалить машинкой со специальным диском. Так, сначала необходимо запитать верхний модуль.

Шаг 4. Когда миниатюрная гребенка будет готова, потребуется вставить ее в автоматику, а потом затянуть винтовые крепления.

Шаг 5. Теперь необходимо запитать по аналогичному принципу нижнюю автоматику. Здесь придется учесть некоторые нюансы. Медь вместе с пластиковой частью отпиливать не стоит, их следует отрезать отдельно. Это позволит исключить необходимость использования боковых заглушек. Так, пластмассовая часть будет длиннее медной, тем самым обеспечивается дополнительная безопасность.

Поскольку автоматика разделяется на три части, то понадобится разделить и медную часть (два модуля, два модуля, 5 модулей). После чего эти три части можно использовать под единой гребенкой из пластика.

Шаг 6. Далее необходимо подавить питание от рубильника на УЗМ, это позволит проверить функциональность. Для этого нам понадобится подготовить два кабеля 10 квадратных миллиметров — черный и синий (на фазу и нуль). Потребуется сначала отрезать кабели нужной длины, затем снять изоляции по краям, а только потом подсоединять.

Шаг 7. Проверяем работоспособность соединения. Для этого нам необходимо подготовить питающий кабель с вилкой на одном конце и соединениями на другом. Одну сторону следует подключить к автомату, а вилку включить в розетку (вторым этапом).

Шаг 8. Далее необходимо подать питание на первое УЗО, потому что все остальные мы уже запитали гребенкой. Здесь тоже необходимо отрезать кабель нужного размера, зачем зачистить его концы и подключить питание от УЗМ на первое УЗО.

Шаг 9. Следующим этапом нам необходимо сдвинуть все нижние автоматы в правую сторону и зафиксировать их ограничителем.

Шаг 10. Теперь необходимо убрать питающий кабель и перенести конструкцию в щиток. Теперь необходимо перейти к этапу установки нулевых шин. Здесь имеется три УЗО и такое же количество шин.

Потребуется установить шины и подключить каждое УЗО к шине. Сделать это следует с помощью кабеля 6 квадратных миллиметров. В данном случае тоже потребуется отрезать нужный размер, снять изоляцию.

Шаг 11. Далее нам потребуется запитать группы автоматов к каждому УЗО. Теперь понадобится взять кабель того же сечения, но только уже красного цвета. Здесь тоже следует отмерить нужную длину, зачистить, а только потом соединить.

На данном этапе процесс подключения всех элементов щитка считается завершенным. Теперь следует только подтянуть винтовые крепления, еще раз проверить работоспособность устройства, закрыть его крышкой. Кроме того, желательно промаркировать автоматику, чтобы понимать последовательность компонентов.

Обратите внимание! Провода нагрузки и питающий кабель следует закреплять уже на месте установки.

Видео – Монтаж электрического щитка

Подводим итоги

Читайте также нашу статью на тему — Как подобрать кондиционер, где подробно рассказывается, как выбрать эффективную сплит-систему.

Для того, чтобы подключить автоматику в электрическом щитке, не обязательно вызывать профессионального электрика. Справиться с поставленной задачей можно и без посторонней помощи, следуя этапам инструкции. Желаем удачи!

Как подключить трехфазный автомат

Как подключить электрический автомат?

Когда в квартире разведена проводка, пришло время установки электрических автоматов и распределительного щитка. Концы всех проводов, которые установлены на стенах, должны быть подписаны, промаркерованые и зачищены для подключения к автоматам.

Электрические автоматы предназначены для включения/выключения общего питания помещения, включая розетки и выключатели для освещения.

Если в доме есть мощное оборудование, требующее большего питания, его следует выводить на отдельные автоматы. Есть, также защитные автоматы, которые называются УЗО, предназначены для защиты человека от поражения током.

Как подключить проводку к автомату.

Процесс установки и подключения проводки к автомату требует внимательности и знаний инструкций и схем подключения. Каждый автоматический выключатель должен соответствовать своему назначению в распределительном щитке.

Для этого следует поделить провода на узлы (прихожая, спальня, коридор, кухня, санузел, котел).

Когда все готово для подсоединения проводки к электрическим автоматам, необходимо переходить к подключению:

  • сперва автомат крепится на специальную, металлическую рейку (din-рейка). Для этого с тыльной стороны автомата нужно отщелкнуть зажимной клапан вниз. Потом вставить автомат в щиток на планку и защелкнуть зажим, подняв его вверх;
  • зачищаем кончики проводов. Провода крепятся при помощи специальных зажимов, потому, ослабеваем винтовые крепления и вставляем вводной провод в гнездо верхнего зажима. Затем зажимаем крепежный винт до упора, только нужно следить, чтоб не пережать его.
  • в гнездо нижнего зажима вставляем провод, идущий с одного из узлов, и зажимаем его;
  • один автомат уже подключен. Такую же операцию нужно провести со всеми автоматами.

После подключения силового провода к автомату необходимо подключить нулевые провода и провода заземления на соответствующие шины.

Как подключить однофазный автомат.

Однофазный автоматический выключатель выполняет 2-е основные функции: защищает от перепадов напряжения и тепловых перепадов, при нагрузке на кабелях.

Перепады напряжения очень частое явление. Оно может возникнуть при коротком замыкании, после чего напряжение в кабелях может достичь до 100А. Электрический автомат сразу отключает питание. Таким образом, предотвращается повреждение проводки.

Что касается тепловой защиты, то она производит отключение питания в случае превышения, более 5А, номинального ампеража автоматического однофазного выключателя.

Это сделано специально, чтобы исключить ложные отключения автомата, в момент запуска оборудования.

Для бытовой проводки, напряжением 220В и частотой 50Гц, достаточно будет однофазного автомата номиналом 25А.

Автоматы устанавливаются только на фазные провода. Чтобы правильно подключить однофазный автомат, необходимо:

  • установить автомат на специальную металлическую рейку, при помощи тыльных зажимов;
  • затем послабить крепежные винты снизу и сверху;
  • сначала подключаем верхний провод (ввод). Вставляем его в клемму и затягиваем до упора;
  • в нижнюю клемму нужно вставить провод потребителя электроэнергии и закрепить его также до упора.

Как подключить трехфазный автомат.

Трехфазный автоматический выключатель по принципу работы похож на однофазный автомат, только он имеет три, и более контактов. Фазные провода проходят через него, благодаря чему одновременно осуществляется коммутация фаз.

Категорически запрещено использование одинарных автоматов в замену трехфазному автоматическому устройству.

Применяется он для защиты трехфазных потребителей (электродвигатель, сварочный аппарат, иное оборудование). Также, может применяться для защиты 3-х фаз однофазных электрических систем.

Есть еще возможность подключения трехфазного автомата к двум проводам однофазной, двухпроводной системе. В этом случае обеспечивается присоединение нулевого провода и фазного провода.

При коротком замыкании или нагрузки, трехфазный автомат отключит двопроводниковую однофазную систему.

Советы в статье “Как подключить электросчетчик и автоматы?” здесь.

Его выгодно использовать в качестве средства автоматизации, позволяющее производить отключения разных нагрузок, по срабатыванию основной нагрузки.

Подключение трехфазного автомата осуществляется по принципу:

  • – провода питания подключаются к верхним клеммам автомата. Необходимо ослабить зажимные винты, вставить провода и зажать их;
  • – к нижним клеммам подключаются провода потребителя. Ослабляются крепежные винты, вставляются провода и зажимаются до упора.

Автомат трехфазный: характеристики, назначение, подключение

Содержание статьи

  • Автомат трехфазный: характеристики, назначение, подключение
  • Как выбрать автомат по току
  • Как подключить трёхфазный электродвигатель

Назначение трехфазного автомата

Автоматы трехфазного типа (имеющие три полюса) устанавливаются на приводные электрические устройства высокой мощности для обеспечения соединения и экстренного разрыва цепи. Они предназначены для защиты электрической сети от сверхтоков. В сетях с переменным током устройства используются одновременно с выпрямителями. Многие модификации автоматов способны работать с контроллерами. Наиболее мощные модели подходят для электростанций.

У проводных модификаций устройства имеется стабилизатор. Автоматы оснащены триодами, предназначенными для передачи сигнала на центральный блок аппарата. Регуляторы у разных модификаций применяются одно- и двухканального типа. В качестве защиты системы используются изоляторы с обкладками. Для увеличения мощности трехфазного автомата устанавливают специальные преобразователи.

Подключение трехфазного автомата

Вводной автоматический выключатель трехфазного вида подключается через динистор, двунаправленный тригерный диод. Выходные контакты аппарата соединяются с расширителем, одновременно для стабилизации входного сигнала используется реле. Номинальное напряжение на устройстве не должно превышать 230 В.

Подключение автомата к приводным механизмам осуществляется только через переходник с применением контакторов инвертирующего типа. Если в работу включается приводное устройство малой мощности, то в таком случае реле допустимо использовать на 120 В. Процедура подключения зависит от конкретной модели трехфазного автомата и ее рабочих характеристик.

Характеристики модели трехфазного автомата PL6-C10/3 и PL6-C10/5

Данные трехфазные автоматы серии PL6-C10 расчитаны на 25 А и подходят для цепей с переменным током. Регулятор в коммутаторе версии PL6-C10/3 используется одноканального типа. Выходное напряжение на контактах устройства достигает максимум 300 В, а мощность автоматов данной серии составляет 2 кВт. Проводимость резистора равняется 3 мк.

При установке важно учитывать, что конденсатор для указанной модификации применяется только с переходником. Также необходимо отметить, что этот трехфазный автомат оснащен варикапом, который установлен в нижней части конструкции. Благодаря этому устройству обеспечивается лучшая стабилизация частоты.

Характеристики модели PL6-C10/5 немного отличаются. Подключается автомат через реле с напряжением в 200 В. Расширители в аппарате используются с емкостными фильтрами. Устройство оснащено регулятором двухканального типа и лучше всего подходит для приводных механизмов с током на 3 А.

В данную модификацию включены тетроды низкоомного типа. На обкладке показатель сопротивления составляет 30 Ом. Выходное рабочее напряжение автомата не превышает 120 В. Важно учитывать, что для сетей с переменным током эта модель трехфазного автомата не подходит.

Характеристики модели ВА47-33 и ВА47-35

Модели вводного автомата серии ВА47 обладают высоким показателем входного напряжения. Допустимый уровень перегрузки реле равен 40 А. Однако приводные устройства следует подключать только с одинарными переходниками. Резисторы у подобных модификаций также установлены низкоомного типа. На расширителях параметр сопротивления равен 30 Ом.

Благодаря такому оснащению проблемы с частотными сбоями автоматам этой серии не страшны. Для защиты устройства установлен модулятор с тремя конденсаторами. Трансивер у модели ВА47-33 размещен в верхней части конструкции. Регулятор этого же автомата выполнен в двухканальном варианте, и к контактам он подсоединяется через переходник. Установленный в устройстве варикап отвечает за принятие сигнала с максимальным входным напряжением в 300 В.

Однако, подключая эту модель автомата, стоит учитывать, что система защиты от сбоев динистора здесь не предусмотрена. Контактные приводные механизмы позволяют подключать автомат через реле на 240 В. Частота устройства составляет 55 Гц. При подключении необходимо использовать изоляторы с фильтрами, как правило, применяются электродного типа.

Характеристики автомата модификации ВА47-35 подходят для приводов, расчитанных на 30 А, показатель проводимости на расширителе составит не менее 3 мк. В данной модели используется два качественных фильтра. Входное сопротивление этой версии автомата также равняется 30 Ом. Модулятор – с двумя переходниками, а резисторы – операционного типа. Причем показатель перегрузки изоляторов не может превышать 23 А.

При подключении необходимо учитывать, что система защиты от импульсных помех у данного трехфазного автомата отсутствует. Триод в приборе установлен в нижней части конструкции, а контакты – под замыкающим механизмом. Смена положения резисторов происходит благодаря транзистору. Проводимость варикапа соответствует 4 мк. Подключается модель только через реле на 230 В, однако выходное напряжение прибора не менее 300 В. Защита от фазовых искажений у данной версии автомата не предусмотрена.

Характеристики модификаций Legrand 40 и 45

Трехфазный автомат данных модификаций выпускается с двумя проводными резисторами со стабилизацией напряжения и проводимостью на конденсаторе не более 3 мк. Автомат подходит для приводов на 40 А. Установленный в устройстве варикап используется с линейным фильтром.

При установке Legrand 40 важно учитывать, что у автомата только один преобразователь, а значение предельной перегрузки расширителя не более 3 А. Выходное напряжение на контактах составит 250 В, поэтому реле на 300 В использовать запрещается. Защита от фазовых искажений у данного автомата не предусмотрена.

Параметры модели Legrand 45 соответствуют регулятору одноканального типа. Автомат необходим для выключения приводных устройств и оснащен тремя конденсаторами хорошей проводимости. Резисторы в устройстве размещены за контактами. Для стабилизации выходного напряжения используется расширитель и фильтры линейного типа. При подключении автомата разрешается использовать реле на 200 В. Причем преобразователь у данной модификации рассчитан на большие перегрузки.

Характеристики трехфазного автомата модели АВВ 30

Автоматы серии АВВ производятся с тремя резисторами. Показатель выходного напряжения на конденсаторах составляет 230 В. Важно отметить, что данная модель выделяется низким сопротивлением, а система защиты от импульсных помех здесь вообще отсутствует.

Конденсаторы на расширителе автомата установлены емкостного типа. Имеется специальный варикап, предохраняющий от проблем с повышением напряжения. При подключении устройства должно использоваться реле только на 240 В и триод операционного типа. Всего у данной модификации используется четыре линейных фильтра. Следует отметить, что автомат хорошо подходит для приводов с допустимой силой тока в 43 А.

Минимальный показатель проводимости у трехфазного автомата подобного назначения составляет порядка 4 мк. Следует учитывать, что конденсаторы в данном варианте расположены за контактами. Если требуется выполнить подключение с повышением выходного напряжения, то в этом случае необходимо использовать только оперативный расширитель. В устройстве данной модификации применяется модулятор с двумя фильтрами, а тетрод установлен магнитного типа.

Схема подключения автоматического выключателя

Приветствую вас, уважаемые читатели сайта http://elektrik-sam.info.

В продолжение серии публикаций по автоматическим выключателям очередная статья цикла — схема подключения автоматического выключателя.

Мы уже подробно изучили конструкцию и основные технические характеристики автоматов, давайте рассмотрим схемы их подключения.

В зависимости от количества коммутируемых полюсов (или иначе модулей), автоматы подразделяются на одно-, двух-, трех-, четырехполюсные (три фазы и ноль). В случае возникновения аварийной ситуации все полюса автоматического выключателя отключаются одновременно.

Один полюс — это часть автомата, в которую входит две винтовые клеммы для присоединения проводов (со стороны питания и со стороны нагрузки). Ширина однополюсного автомата, устанавливаемого на DIN-рейку стандартна — 17,5 мм, многополюсные автоматы кратны этой ширине.

Одно- и двухполюсные используются в однофазной электросети. Чаще всего применяются однополюсные автоматы, они устанавливаются в разрыв фазного провода и в случае возникновения аварийной ситуации отключают питающую фазу от нагрузки.

Двухполюсные автоматы позволяют одновременно отключить и ноль, и фазу. Применяются чаще всего, как вводные автоматы, либо если необходимо полностью отсоединить потребителя от электрической сети, например бойлер, душевую кабину. Они отключают ноль и фазу от защищаемого участка цепи и позволяют проводить работы по ремонту, обслуживанию или замене автоматических выключателей.

Нельзя устанавливать два однополюсных автомата отдельно для защиты фазного и нулевого провода. Для этих целей применяют двухполюсные автоматы, которые отключают ноль и фазу одновременно.

Трех- и четырехполюсные автоматические выключатели используются в трехфазной электросети. Трехполюсные автоматы устанавливаются в разрыв фаз (L1,L2,L3) трехфазной сети и служат для подключения к ней трехфазной нагрузки (электродвигателей, трехфазных электроплит и т.д.). В случае возникновения аварийной ситуации они отключают одновременно все три фазы от нагрузки.

Четырехполюсные автоматы позволяют одновременно отключить и ноль, и все три фазы, и используются как вводные автоматы в трехфазной электросети.

Вводной автомат позволяет отключить всю электропроводку квартиры и отключить питающую линию от групповых электрических цепей квартиры.

В зависимости от системы заземления применяются следующие вводные автоматы:

Вводной автомат для системы TN-S (где нулевой рабочий N и нулевой защитный PE проводники разделены) должен быть:

— однополюсный с нулем или двухполюсный;

— трехполюсный с нейтралью или четырехполюсный.

Система TN-S используется в современных домах.

Это необходимо для одновременного отключения электросети квартиры от нулевого рабочего и фазных проводников со стороны ввода электропитания, так как нулевой и защитный проводники разделены на всем протяжении.

Для системы TN-C (где нулевой рабочий и нулевой защитный проводники объединены в один PEN-проводник) вводной автомат защиты устанавливается однополюсный (при электропитании 220 В) или трехполюсный (при питании 380В). Устанавливаются они в разрыв фазных рабочих проводников.

Система TN- C используется в домах советской постройки (так называемая «двухпроводка»).

По правилам устройства электроустановок (п.1.7.145) не допускается включать коммутационные аппараты в цепи РЕ- и РЕN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Это требование ПУЭ обусловлено тем, что возможна ситуация, когда двухполюсные автоматические выключатели не смогут одновременно отключить фазный и РЕN-проводник. А отключая РЕN-проводник, мы тем самым инициируем его обрыв.

При включении под нагрузкой внутри автомата может произойти залипание или обгорание фазных контактов (например, может попасть песчинка на контактную группу автомата), в этом случае при отключении автомата от питающей сети произойдет обрыв РЕN-проводника и вынос на зануленные корпуса электрооборудования опасного потенциала. Т.е. нет гарантии, что коммутационные аппараты одновременно отключат и фазный и РЕN-проводник.

Подключение проводов к автоматическим выключателям осуществляется по схеме: «питание сверху», а «нагрузка снизу». Т.е. провод с питающим напряжением подводится к верхней винтовой клемме, а отходящий провод нагрузки к нижней винтовой клемме.

Смотрите подробное видео Схемы подключения автоматических выключателей

Конструкцию, основные характеристики, схемы подключения автоматических выключателей мы рассмотрели и вплотную подошли к вопросу их выбора.

Подписывайтесь на новости, впереди самое интересное!

Рекомендую материалы по теме:

Трехфазная схема распределительного щита — 5 разных вариантов

Сегодня очень часто частные дома стали подключать к трехфазной электросети. Также в некоторых новых многоэтажках в квартиры начали заводить три фазы вместо одной как раньше. Как правило, при данном подключении местные сетевые компании выделяют на дом или на квартиру мощность 15 кВт. Это означает, что номинал вводного автоматического выключателя должен быть 25 А. Для небольших офисов, кафе и т.д. выделяют большую мощность. Поэтому в их щитах номиналы вводных автоматов будут совершенно другими.

Подключение к 3-х фазной электросети обуславливает установку трехфазных электрощитов. Ниже разберем пять разных вариантов простых трехфазных схем для распределительного щита.

Все схемы простые и носят рекомендательный характер. Они наглядно показывают суть самих подключений разных защитных устройств в одном щитке. К разработке схемы каждого щита нужно подходить индивидуально, так как у всех условия разные. Система заземления в представленных вариантах TN-S.

Вариант 1

Здесь представлена самая простая трехфазная схема щита. На вводе обязательно должен стоять вводной автоматический выключатель. Он будет ограничивать потребляемый ток, каждого потребителя — дома или квартиры. Далее идет 3-х фазный прибор учета электроэнергии.

На самом деле места размещения счетчиков могут быть разные. Они могут устанавливаться на улице в щите учета для частных домов, в этажных щитах в многоквартирных домах или непосредственно в домашних щитах. Где ставить счетчики указываю в технических условиях на подключение местные сетевые компании или это строго определяется проектной документацией зданий.

Большинство бытовых потребителей подключаются к однофазной сети. Тут составляют исключения мощные варочные поверхности, проточные водонагреватели, электрокотлы и т.д. Такие потребители имеют возможность подключения к 3-х фазной сети.

После прибора учета электроэнергии необходимо всю однофазную нагрузку равномерно распределить по фазам. Для этого нужно сосчитать мощность приборов, количество однополюсных автоматических выключателей и постараться их разделить на три равные части.

В предложенном варианте трехфазной схемы щита для наглядного понимания на каждой фазе подключено по два. Рабочий ноль от счетчика подключается к общей нулевой шине, а нулевые защитные проводники подключаются к общей шине заземления. Фазы подключаются через групповые автоматы. Таким образом получается, что при отключении потребителя будет разрываться только один фазный проводник. Это стоит учитывать и следить, чтобы при подключении щита к сети на вводе не были перепутаны между собой фаза и ноль. С такими ошибками мне пару раз приходилось сталкиваться. Получалось, что ноль коммутировался автоматами, а фаза сидела на нулевой шине. При отключении автомата в розетки все равно оставалось опасное напряжение, что могло привести к плачевным последствиям. Будьте внимательны и осторожнее.

Вариант 2

Данный вариант схемы по своей сути аналогичен с предыдущем вариантом. Тут только нет прибора учета электроэнергии и изображен 3-х полюсный автоматический выключатель для 3-х фазной нагрузки. Также тут изменено чередование однополюсных автоматов. То есть автоматы, подключенные к фазе «А» — это первый, третий и т.д. устройства. Чередование происходит через каждые два полюса. Тут так это показано для возможности использования 3-х фазной гребенчатой шины. Зубчики ее шины от одной фазы как раз имеют такое чередование. С ее помощью очень удобно соединять между собой несколько защитных устройств. Она исключает изготовления множества перемычек между ними.

Вариант 3

Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе:

  1. При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно.
  2. Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться.

Вариант 4

Вот в данном варианте уже можно немного запутаться с подключением нулевых рабочих проводников, так как тут стоит несколько УЗО. А мы знаем, что у каждого УЗО должна быть своя индивидуальная нулевая шина, иначе ничего работать не будет.

В текущей трехфазной схеме на вводе стоит уже противопожарное селективное УЗО на 300 мА. Оно будет защищать кабели от возгорания при замыкании фазы на землю. Для человека ток 300 мА уже опасен и поэтому для его защиты нужно ставить дополнительное УЗО на 10-30 мА.

Ниже на рисунке показано одно УЗО с током утечки 30 мА только на первой фазе, к которому подключено два автоматических выключателя. У этого УЗО будет своя нулевая шина и поэтому нулевые рабочие проводники от других групп к его шине подключать нельзя. А шина заземления всегда и для всех потребителей будет одной общей.

В текущем варианте можно рассмотреть схему с установкой трех 2-х полюсных УЗО по одному на каждую фазу. Так все группы будут иметь защиту от утечек тока. Тогда здесь можно будет отказаться от общего вводного УЗО на 300 мА, так как у вас и так все будет иметь защиту с уставкой 30 мА.

Вариант 5

В пятом варианте представлена схема трехфазного щита без вводного УЗО, но с использованием однофазных дифавтоматов на некоторые потребители. АВДТ ставится один на одну группу и поэтому их количество может быть равно количеству групп. Так все группы потребителей будут независимы друг от друга. То есть при возникновении утечки тока в одном приборе, отключится только дифавтомат, к которому он подключен. При использовании УЗО с 3-5 автоматами при срабатывании УЗО будет отключаться соответственно 3-5 групп. А это уже не очень удобно со стороны эксплуатации потребителей.

Вышеприведенные схемы имеют наглядный вид, чтобы донести саму суть подключений разных защитных устройств в одну общую схему электрощита. Также эти примеры очень элементарные и поэтому ваши схемы будут намного больше и сложнее.

Характеристики автоматов ABB Sh302 C

Перейти в каталог

Описание двухполюсных выключателей ABB Sh302 C
Выбор автоматического выключателя
Маркировка автоматов ABB Sh302 C
Применение двухполюсных автоматов Sh302 C
Подключение автоматических выключателей
Технические характеристики выключателей Sh302 C
Таблица номинального тока Sh302 С
Преимущества

Описание двухполюсных выключателей ABB Sh302 C

Модульные двухполюсные выключатели ABB Sh302 C предназначены для защиты электрических цепей от перегрузок и коротких замыканий в линиях кабелей, электродвигателях, систем освещения, а также розеточных линий. Они имеют два различных механизма отключения: механизм термического отключения с задержкой для защиты от перегрузки и механизм электромеханического отключения для защиты от короткого замыкания.

Устройство автоматического выключателя

Материал корпуса Sh302 C произведен из самых современных материалов, состоящих из последнего поколения термопластов,
не содержащих галогенов, загрязняющих окружающую среду, и пригодных для вторичной переработки.

Все автоматические выключатели оснащены индикацией положения контактов (CPI). Вы можете легко определить, находится ли автоматический выключатель во включенном положении, что способствует легкости и безопасности проведению технических работ.


Выбор автоматического выключателя

Выбор выключателей в основном осуществляется по мощности нагрузки и сечению подключаемого провода, учитывая 2 параметра: ток перегрузки и ток отключения при КЗ.

Перегрузка тока возникает при включении в сеть устройств и приборов, суммарная мощность которых приведет к чрезмерному нагреву проводников и контактных соединений. Поэтому автомат, который будет установлен в конкретную цепь, должен иметь ток отключения больше, так называемый запас или равный расчетному. Его определяют суммированием мощности предполагаемых к использованию электроустройств, которое зачастую указывается в паспорте. Далее полученную цифру делят на 220 и получают наш ток перегрузки. Следует учесть также еще одно немаловажное обстоятельство: этот ток не должен быть больше тока, который может протекать по проводнику.

Ток отключения при КЗ – это та величина, при которой происходит отключение автоматического выключателя, также она еще именуется как отсечка. Его тоже рассчитывают, а затем подбирают по типу защиты. Тип защиты содержит значения тока отключения по отношению к вероятному току короткого замыкания, в зависимости от вида нагрузки электросети. В быту и для небольших объектов используют устройства с условным обозначением характеристики B, C, а на вводе – D. Чаще всего, в электрическую схему помимо автоматов на каждую групповую линию, входят еще вводной автомат, УЗО или диф. автомат.

Маркировка автоматов Sh302 C

Корпус автоматических выключателей серии Sh302 C содержит все необходимые маркировки, такие как:

  1. — производитель;
  2. — модель;
  3. — номинальный ток и тип характеристики срабатывания;
  4. — рабочее напряжение сети;
  5. — отключающая способность;
  6. — класс токограничения;
  7. — принципиальная схема работы выключателя.

Автоматы ABB соответствуют стандартам IEC/EN 60898-1 и IEC/EN 60947-2 и имеют все соответствующие знаки сертификации для каждого рынка и сегмента, для которого они разработаны. Знаки сертификации также напечатаны на корпусе автоматического выключателя. Для процедуры контроля и приемки знаки сертификации хорошо видны на корпусе.
Вся маркировка выполнена по технологии лазерной печати, устойчивой к истиранию и воздействию растворителей, что обеспечивает ей долгий срок эксплуатации и простоту идентификации изделия.

Применение двухполюсных автоматов Sh302 C

Модульные автоматические выключатели серии Sh302 C как правило имеют все возможные исполнения по характеристикам срабатывания автоматических выключателей, что говорит о их широком сегменте применения. Применяются как правило для защиты от перенапряжения, путем установки на Дин рейку в распределительных щитах, боксах, расположенных в жилых домах, офисах, складах, и других промышленных и коммерческих помещениях. Sh302 C применяется для защиты цепей с активной и индуктивной нагрузкой и низким импульсным током (обеспечение электричеством квартир, офисов, промышленных объектов).

Подключение автоматических выключателей

Выключатели Sh302 C оснащены клеммами: 35 мм + 10 мм (для аппаратов до 2 2 63А), и 50 мм + 10 мм 2 2 (для аппаратов на 80, 100А) для раздельного подключения шинной разводки и кабеля,- цилиндрическими двунаправленными клеммами с защитой от неправильного монтажа, стойкими к ударному воздействию, которые доступны даже после установки модульного автомата. При отсутствии шинной разводки возможно подключение двух пар проводников разного сечения. Sh302 C имеют специальные губки- фиксаторы для быстрого монтажа автоматического выключателя на DIN рейку, расположенную в распределительных щитах, боксах и шкафах. В случае замены изделия, этот же фиксатор позволяет быстро его демонтировать. Для удобства монтажа кабеля, выключатели оснащены технологией невыпадающих винтов, а степень защиты от прикосновения пальцами в области присоединений, снижает риск удара током и возможность короткого замыкания.

Схема подключения автоматических выключателей Sh302 C:

Технические характеристики выключателей Sh302 C

Электрические характеристики
Стандарты Данные IEC/EN ГОСТ Р 50345-2010 (МЭК 60898-1)
Кол-во полюсов 2P
Характеристики срабатывания C
Номинальный ток In А 6…63 A
Номинальное напряжение Un IEC/EN 60898-1 В 2P: 400 В перем. 3P+N: 400 В перем.
Номинальное напряжение изоляции Ui IEC/EN 60898-1 В 440 В перем.(фаза-фаза)
Макс. рабочее напряжение UBmax. В 1P+N: 253 В перем. 3P+N: 440 В перем.
Мин. рабочее напряжение UBmax. В 12 В перем.
Номинальная частота f Гц 50 / 60 Гц
Номинальная наибольшая отключающая способность Icn IEC/EN 60898-1 кА 6
Класс ограничения энергии IEC/EN 60898-1 3
Категория перенапряжения IEC/EN 60898-1 III
Степень загрязнения IEC/EN 60898-1 2
Ном. импульсное выдерж. напряжение Uimp (1.2/50 ps) IEC/EN 60898-1 кВ 4 кВ (исп. напряжение 6.2кВ на уровне моря 5кВ на 2,000м
Испытательное напряжение изоляции IEC/EN 60898-1 кВ 2 кВ (50 / 60Гц, 1 мин.)
Механические характеристики
Корпус Группа изоляции II, RAL 7035
Рычаг Группа изоляции II, черный, опломбируемый
Индикация состояния контактов Маркировка на рычаге (I ON / 0 OFF)
Степень защиты IEC/EN 60529 IP20 / IPXXB, при использовании в боксе IP40
Электрическая износостойкость операция In > 32A: 10,000 цикл. (перем.)
Механическая износостойкость операция 20,000 цикл.
Устойчивость к ударному воздействию IEC/EN 60068-2-27 25 г — 3 удара — 11мс
Устойчивость к вибрации согласно IEC/EN 60068-2-6 5g- 20 циклов при 5.150.5 Гц с нагрузкой 0.8In
Тропическое исполнение IEC/EN 60068-2-30 C/RH 28 циклов 55 C/90-96% и 25 C/95-100%
Температура окружающей среды С -25 … +55 C
Температура хранения С -40 … +70 C
Температура калибровки расцепителя IEC/EN 60898-1 С 30 C
Установка
Клеммы Цилиндрические
Сечение проводников (сверху/ снизу) IEC/EN 60898-1 мм2
Момент затяжки IEC/EN Нм 2,8 Нм
Отвертка отвёртка Pozidrive № 2
Монтаж DIN 43880 На Din рейку 35 мм посредством системы быстрого крепления
Положение монтажа любое
Сторона подключения питания сверху и снизу
Габаритные размеры мм
Монтажный размер DIN 43880 Монтажный размер 1
Габаритные размеры (В x Г x Ш) мм 185 x 69 x 17.5 мм
Масса полюса г прибл. 115 г
Аксессуары
Использование доп. элементов нет

Таблица номинального тока Sh302 С

Кол-во полюсов Номинальный ток Кол-во модулей Серия Артикул производителя
In A 17,5 мм
2P 6 2 Sh302 C6 2CDS212001R0064
2P 8 2 Sh302 C8 2CDS212001R0084
2P 10 2 Sh302 C10 2CDS212001R0104
2P 13 2 Sh302 C13 2CDS212001R0134
2P 16 2 Sh302 C16 2CDS212001R0164
2P 20 2 Sh302 C20 2CDS212001R0204
2P 25 2 Sh302 C25 2CDS212001R0254
2P 32 2 Sh302 C32 2CDS212001R0324
2P 40 2 Sh302 C40 2CDS212001R0404
2P 50 2 Sh302 C50 2CDS212001R0504
2P 63 2 Sh302 C63 2CDS212001R0634

Преимущества

Компания «Фаворит-Электро» более 10 лет продает широкий ассортимент различных типов автоматических выключателей, и за это время накопила огромный опыт и наработанные контакты при выборе поставщика данной продукции. При этом наши специалисты регулярно изучают и анализируют качество исполнения автоматических выключателей, точное соответствие классам и характеристикам .
Купив выключатели ABB Sh302 C в компании «Фаворит-Электро», вы можете быть уверены, что приобрели действительно надежную, качественную продукцию, которая соответствует всем требованиям ГОСТ. При необходимости всегда можно получить сертификат качества и протокол испытаний на интересующую партию автоматических выключателей.

возможные схемы подключения + пошаговая инструкция


Подключение дифавтомата и установка своими руками: схема, видео, фото

Назначение дифференциального автомата заключается в трех основных функциях: защита от короткого замыкания, утечки тока и перенапряжения электросети. Как Вы понимаете, данное устройство представляет собой сочетание УЗО и автоматического выключателя в одном корпусе. Далее мы поговорим о том, как должны происходить установка и подключение дифавтомата своими руками!

Выбираем способ

Для начала разберемся с основными вариантами электромонтажных работ, т.к. домашняя электропроводка может быть однофазной (220 В), трехфазной (380 В), с заземлением и без него. К тому же изделие можно установить только на вводном щитке в квартире либо на каждую отдельную группу проводов. В зависимости от этих условий, схема подключения дифавтомата может быть немного видоизмененной, да и самой устройство будет иметь другую конструкцию (двухполюсный либо четырехполюсный).

Итак, рассмотрим по порядку каждый из способов подключения дифавтомата в щитке.

Простейшая защита

Наиболее простой способ установки – один вводной дифавтомат, обслуживающий всю квартирную проводку. В этом случае необходимо покупать мощное устройство, рассчитанное на токовую нагрузку от всех электроприборов в помещении. Недостаток такой схемы подключения заключается в том, что если защита сработает, самому найти проблемную зону будет проблематично, т.к. пробой может быть где угодно.

Обратите внимание на то, что земляной провод проходит отдельно, соединяясь с заземляющей шиной, к которой подсоединяются все PE-проводники от электроприборов. Также важный момент заключается в подсоединении нулевого проводника. Ноль, который выведен из дифференциального автомата, категорически запрещается соединять с другими нулями электросети. Это связано с тем, что по всем нулям будут проходить разные токи, которые станут причиной срабатывания аппарата.

Надежная защита

Усовершенствованным вариантом подключения дифавтомата в доме является следующая схема:

Как Вы видите, на каждую группу проводов установлено по отдельному устройству, которое сработает только в том случае, если опасная ситуация возникнет у него на «участке». В то же время остальные изделия не среагируют и будут работать в своем обыкновенном режиме. Преимущество такого варианта подключения заключается в том, что при возникновении утечки тока, короткого замыкания либо перегрузки электросети можно сразу же найти проблемный участок и переходить к его ремонту. Недостаток такого способа установки дифавтомата – повышенные материальные затраты на приобретение нескольких аппаратов.

Без заземления

Выше мы предоставили несколько примеров, в которых присутствовал заземляющий контакт. Однако на даче и в старых домах (а соответственно и со старой проводкой) использовалась двухпроводная сеть – фаза и ноль.

В этом случае подключение дифавтомата осуществлялось по следующему принципу:

Если в Вашем случае также отсутствует «земля», обязательно осуществите замену электропроводки в доме на новую, более безопасную.

В трехфазной сети

Если Вы решили установить дифавтомат в коттедже, гараже либо современной квартире, где применяется трехфазная сеть на 380В, в этом случае необходимо использовать 3 фазный автомат. На самом деле схема не будет отличаться от предыдущих, если не учитывать тот факт, что на вводе и выводе из корпуса нужно подключить по четыре жилы.

На схеме показано, как подключить трехфазный дифавтомат к сети:

Вот мы и предоставили существующие способы подключения дифференциального автомата своими руками. Наиболее правильным вариантом является тот, который с заземлением и несколькими отдельно установленными устройствами.

Также советуем просмотреть наглядную видео инструкцию с правильным подсоединением проводов:

Селективная схема

Устанавливаем изделие

После того как Вы определитесь со способом подключения, нужно переходить к не менее важному этапу – установочным работам. На самом деле установка диф автомата не представляет ничего сложного, главное делать все правильно и согласно инструкции. Чтобы читатели «Сам электрика» смогли быстро и без проблем установить дифавтомат в щитке, предоставляем следующую пошаговую инструкцию:

  1. Осмотрите корпус на наличие дефектов и механических повреждений. Любая трещина в корпусе может стать причиной неправильной работы изделия.
  2. Отключите электроэнергию в доме и убедитесь что напряжение в сети отсутствует, использовав индикаторную отвертку (либо мультиметр). О том, как проверить напряжение в розетке, мы рассказывали в соответствующей статье!
  3. Установите дифавтомат на DIN-рейку, как показано на фото.
  4. Зачистите изоляцию на подсоединяемых жилах, для этого рекомендуется использовать инструмент для снятия изоляции, который не повредит токоведущий контакт.
  5. Подключите фазные и нулевые проводники, согласно схеме, в специальные разъемы на корпусе дифавтомата. Обращаем Ваше внимание на то, что вводные жилы обязательно должны крепиться сверху.
  6. Включите электропитание и проверьте работоспособность устройства.

Вот и вся технология установки дифференциального автомата. Рекомендуем использовать продукцию только от известных производителей: Legrand (легранд), ABB, IEK и Dekraft (декрафт).

Также советуем Вам обязательно ознакомиться с ошибками при подключении, которые мы предоставили ниже.

Основные ошибки подключения

Как мы уже сказали, при неправильном подключении дифавтомата к сети могут возникнуть такие проблемы, как его ложное срабатывание либо вообще полный выход из строя.

Виновниками неисправностей могут быть следующие ошибки подключения:

  1. Нулевой провод на выводе из корпуса соединен с остальными нулями. Как уже было сказано ранее, проходящие токи будут провоцировать устройство на ложное срабатывание.
  2. Вводные L и N заведены снизу корпуса. Такая ошибка встречается очень часто на практике, свидетельствуя о невнимательности электрика, который совершал установку. Даже на передней панели дифференциального автомата нарисована схема, согласно которой ввод осуществляется только сверху.
  3. Ноль соединяется с «землей». Такой вариант иногда используют в старых домах, где применяется двухпроводная сеть. Результат неправильного подключения – ложное срабатывание защиты.
  4. Провод N заведен к электроприбору напрямую (мимо защиты). В этом случае также будет происходить срабатывание.
  5. В схеме присутствуют несколько диф автоматов и при этом электроприбор подсоединен фазой к одному, а нулем к другому. Результат – отключение одного либо двух сразу защитных устройств.

Наглядно увидеть ошибки Вы можете на видео ниже:

Неправильное подключение дифференциального автомата

Вот и все что хотелось рассказать Вам о том, как правильно установить и подключить дифавтомат своими руками.

Похожий материал:

samelectrik.ru

Подключение дифавтомата: выбор, схемы подкючения

Решить проблему защиты проводки от перегрузок и токов утечки можнопри помощи пары устройств — защитного автомата и УЗО. Но та же задача решается  дифференциальным защитным автоматом, который объединяет в одном корпусе оба эти устройства. О правильном подключение дифавтомата и его выборе и пойдет дальше речь. 

Назначение, технические характеристики и выбор

Содержание статьи

Дифавтомат или дифференциальный автомат защиты объединяет в себе функции автомата защиты и УЗО. То есть, одно это устройство защищает проводку от перегрузок, короткого замыкания и тока утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть он еще защищает человека от поражения электричеством.

Дифавтоматы устанавливаются в электрические распределительные щитки, чаще всего на дин-рейки. Они ставятся вместо связки автомат+УЗО, физически занимают немного меньше места. Насколько конкретно — зависит от производителя и типа исполнения. И это — основной их плюс, который может быть востребован при модернизации сети, когда место в щитке ограничено, а необходимо подключить некоторое количество новых линий.

Дифавтоматы служат для защиты проводки от повышенных нагрузок и человека от поражения электротоком

Второй положительный момент — экономия средств. Как правило, дифавтомат стоит меньше, чем пара автомат+УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определиться только с номиналом автомата защиты, а УЗО встроен по умолчанию с требующимися характеристиками.

Недостатки тоже имеются: при выходе и строя одной из частей дифавтомата менять придется все устройство, а это дороже. Также не все модели снабжены флажками, по которым можно определить, по какой причине сработало устройство — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

Характеристики и выбор

Так как дифавтомат объединяет в себе два устройства, имеет он характеристики их обоих и при выборе надо учитывать все. Разберемся что обозначают эти характеристики и как выбирать дифференциальный автомат.

Обозначение дифавтоматов на схемах

Номинальный ток

Это максимальный ток, который может длительное время выдерживать автомат без потери работоспособности. Обычно он указывается на лицевой панели. Номинальные токи стандартизованы и могут быть 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63А.

Четырехполюсный дифавтомат для подключения в сети 380 В

Малые номиналы — 10 А и 16 А — ставят на линии освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используют как вводный (общий) дифавтомат. Подбирается в зависимости от сечения кабеля, точно также, как при выборе номинала автомата защиты.

Время-токовая характеристика или тип электромагнитного расцепителя

Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает на то, при каких перегрузках относительно номинала происходит отключение автомата (для игнорирования кратковременных стартовых токов).

Номинал дифавтомата и его время-токовая характеристика

Категория B — если ток превышен в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, которые превышают номинал в 10-20 раз. В квартирах обычно ставят дифавтоматы типа C, в сельской местности можно ставить B, на предприятиях с мощным оборудованием и большими стартовыми токами — D.

Номинальное напряжение и частота сети

Для каких сетей предназначен аппарат — 220 В и 380 В, с частотой 50 Гц. Других в нашей торговой сети не бывает, но все равно, стоит проверить.

Напряжение и частота, на которые рассчитан дифференциальный автомат защиты

Дифференциальные автоматы могут иметь двойную маркировку — 230/400 V. Это говорит о том, что данное устройство может работать и в сети на 220 В и на 380 В. В трехфазных сетях подобные устройства ставят на розеточные группы или на отдельных потребителей, там где используется лишь одна из фаз.

В качестве водных дифавтоматов на трехфазные сети необходимы устройства с четырьмя вводами, а они значительно отличаются габаритами. Спутать их невозможно.

 

 

Номинальный отключающий дифференциальный ток или ток утечки (уставки)

Отображает чувствительность устройства к образующимся токам утечки и показывает, при каких условиях сработает защита. В быту используются только два номинала: 10 мА для установки на линии, в которых установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовой шкаф,  посудомоечная машина и т.п.).

Для линий с группой розеток и наружного освещения ставят дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их не обычно ставят — для экономии.

Ток утечки или уставки на диф автомате

На устройстве может быть написан просто значение в миллиамперах (как на фото слева) или может быть нанесено буквенное  обозначение тока уставки (на фото справа), после которого стоят цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

Класс дифференциальной защиты

Показывает от токов утечки какого типа защищает это устройство. Есть буквенное и графическое изображение. Обычно ставят значок, но может быть и буква (смотрите в таблице).

Буквенное обозначениеГрафическое обозначениеРасшифровка Область применения
АСРеагирует на переменный синусоидальный токСтавят на линии, к которым подключена простая техника без электронного управления
АРеагирует на синусоидальный переменный ток и пульсирующий постоянныйПрименяется на линиях, от которых запитывается техника с электронным управлением
ВУлавливает переменный, импульсный, постоянный и сглаженный постоянный.В основном применяется на производстве с большим количеством разнообразной техники
SС выдержкой времени отключения 200-300 мсВ сложных схемах
GС выдержкой времени отключения60-80 мсВ сложных схемах

Выбор класса дифференциальной защиты дифавтомата происходит исходя из типа нагрузки. Если это техника с микропроцессорами, необходим класс А, на линии освещения или включения питания простых устройств подойдет класс AC. Класс В в частных домах и квартирах ставят редко — нет необходимости «отлавливать» все типы токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Их ставят в качестве входных, если в схеме дальше есть другие дифференциальные устройства отключения. В этом случае при срабатывании одного из нижестоящих по току утечки, входной не отключится и исправные линии будут в работе.

Номинальная отключающая способность

Показывает, какой ток в состоянии дифавтомат отключить при возникновении КЗ и остаться при этом работоспособным. Есть несколько стандартных номиналов: 3000 А, 4500 А, 6000 А, 10 000 А.

Отключающая способность дифавтомата

Выбор дифавтомата по этому параметру зависит от типа сети и от дальности расположения подстанции. В квартирах и домах на достаточном удалении от подстанции используют дифавтоматы с отключающей способностью 6 000 А, близко к подстанциям ставят на 10 000 А. В сельской местности, при подводе электропитания по воздушке и в давно не модернизированных сетях достаточно 4 500 А.

На корпусе эта цифра указана в квадратной рамке. Местоположение надписи может быть разным — зависит от производителя.

Класс токоограничения

Чтобы ток короткого замыкания принял максимальное значение, должно пройти какое-то время. Чем быстрее будет отключено электропитание от поврежденной линии, тем меньше меньше вероятность получения повреждений. Класс токоограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всего. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дороги, зато дольше остаются работоспособными. Так что при наличии финансовой возможности, ставьте дифавтоматы этого класса.

Токоограничение дифавтомата

На корпусе эта характеристика изображена в маленькой квадратной рамке рядом с номинальной отключающей способностью. Она может стоять справа (у Legranda) или снизу (у большинства других производителей). Если вы такой отметки не нашли ни на корпусе, ни в паспорте, значит этот автомат не имеет тоокограничения.

Температурный режим использования

Большинство дифференциальных защитных автоматов рассчитаны на работу в помещениях. Они могут эксплуатироваться при температурах от -5°C до + 35°C. В этом случае на корпусе ничего не ставят.

Обозначение повышенной морозостойкости дифавтомата

Иногда щитки стоят на улице и обычные защитные устройства не подойдут. Для таких случаев выпускаются дифавтоматы с более широким диапазоном температур — от -25°C до +40°C. В этом случае на корпусе ставят специальный знак, который немного похож на звездочку.

Наличие маркеров о причине сработки

Дифавтоматы не все электрики любят ставить, так как считают, что связка защитный автомат+УЗО более надежна. Вторая причина — если устройство сработает, невозможно определить, что стало тому причиной — перегрузка, и надо просто выключить какой-то прибор, или ток утечки, и надо искать где и что произошло.

Чтобы решить хотя бы вторую проблему, производители стали делать флажки, которые показывают причину сработки дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

Флажок, который показывает причину отключения

Если отключение вызвала перегрузка, индикатор остается вровень с корпусом, как а фото справа. Если дифавтомат сработал при наличии тока утечки, флажок выступает на некоторое расстояние от корпуса.

Тип конструктивного исполнения

Есть диф автоматы двух типов: электромеханические или электронные. Электромеханические более надежны, так как они сохраняют работоспособность даже при пропадании питания. То есть, если пропадет фаза, они смогут сработать и отключить еще и ноль. Электронные же для работы требуют питания, которое берут с фазного провода и при пропадании фазы теряют работоспособность.

 

Производитель и цена

В электричестве не стоит экономить, тем более на устройствах, которые обеспечивают защиту проводки и жизни. Потому рекомендуют всегда покупать комплектующие известных производителей. Лидирует на рынке Legrand (Легранд) и Schneider (Шнайдер), Hager (Хагер) но их продукция дорога, да и много подделок. Не настолько высокие цены у IEK (ИЕК), ABB (АББ), но и проблем с нм бывает больше. С неизвестными производителями в данном случае лучше не связываться, так как они зачастую просто неработоспособны.

Выбор на самом деле не такой и маленький, даже если ограничиться только этими пятью фирмами. У каждого производителя есть несколько линеек, которые отличаются по цене, причем значительно. Чтобы понять в чем разница, надо внимательно смотреть на технические характеристики. На цену оказывает влияние каждая и них, так что внимательно изучайте все данные перед покупкой.

 

Как подключить дифавтомат

Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

Крепление на динрейку

Электрическое подключение

Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала.  Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

Схема подключения дифавтомата обычно есть на корпусе

В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

Подключение дифавтомата на распределительном щитке

Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

Проверка работоспособности

После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

Если при нажатии кнопки «Т» дифавтомат сработал, он работоспособен

Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

Схемы

При разработке схемы электропроводки в квартире или доме может быть много вариантов. Отличаться они могут удобством и надежностью эксплуатации,  степенью защиты. Есть простые варианты, требующие минимума затрат. Они обычно реализуются в небольших сетях. Например, на дачах, в небольших квартирах с малым количеством бытовой техники. В большинстве случаев приходится ставить большое количество устройств, которые обеспечивают безопасность проводки и защищают от поражения током людей.

Схемы бывают разного уровня сложности

Простая схема

Не всегда имеет смысл устанавливать большое количество защитных устройств. Например, на даче сезонного посещения, где есть всего несколько розеток и освещение, достаточно поставить всего один дифавтомат на входе, от которого на группы потребителей — розетки и освещение — через автоматы пойдут отдельные линии.

Простая схема подключения дифавтомата на небольшую сеть

Эта схема не потребует больших затрат, но при появлении тока утечки на любой из линий дифавтомат сработает, обесточив все. До выяснения и устранения причин света не будет.

Более надежная защита

Как уже говорили, отдельные дифавтоматы ставят на «мокрые» группы. К ним относятся кухня, ванная, наружное освещение, а также техника, использующая воду (кроме стиральной машинки). Такой способ построения системы дает более высокую степень безопасности и лучше защищает проводку, оборудование и человека.

Более сложная и надежная схема: подключение дифавтомата на каждое потенциально опасное устройство

Реализация этого способа устройства проводки потребует больших материальных затрат, но работать система будет более надежно и стабильно. Так как при сработке одного из защитных устройств, остальная часть останется работоспособной. Такое подключение дифавтомата применяется в большинстве квартир и в небольших домах.

Селективные схемы

В разветвленных сетях электроснабжения возникает необходимость сделать систему еще более сложной и дорогостоящей. В таком варианте после счетчика устанавливается входной дифференциальный автомат класса S или G. Далее, на каждую группу идет свой автомат, а при необходимости ставятся еще и на отдельных потребителей. Подключение дифавтомата для этого случая смотрите на фото ниже.

Селективная схема установки дифавтомата

При таком построении системы при сработке одного из линейных устройств все остальные останутся в работе, так как входной автомат дифференциального отключения имеет задержку в срабатывании.

 

Основные ошибки подключения дифавтоматов

Иногда после подключения дифавтомата он не включается или вырубается при подключении любой нагрузки. Это значит, что что-то сделано не так. Есть несколько типичных ошибок, которые встречаются при самостоятельной сборке щитка:

  • Провода защитного нуля (земля) и рабочего нуля (нейтраль) где-то объединены. При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать где объединены или перепутаны «земля» и «ноль».
  • Иногда при подключении дифавтомата ноль на нагрузку или на ниже расположенные автоматы взят не с выхода устройства, а напрямую с нулевой шины. В таком случае рубильники становятся в рабочее положение, но при попытке подключить нагрузку, они моментально отключаются.
  • С выхода дифавтомата ноль подается не на нагрузку, а идет обратно на шину. Ноль на нагрузку тоже берется с шины. В этом случае рубильники становятся в рабочее положение, но кнопка «Тест» не работает и при попытке включить нагрузку происходит отключение.
  • Перепутано подключение ноля. С нулевой шины провод должен идти на соответствующий вход, обозначенный буквой N, который находится вверху, а не вниз. С нижней нулевой клеммы провод должен уходить на нагрузку. Симптомы аналогичны: рубильники включаются, «Тест» не работает, при подключении нагрузки происходит срабатывание.
  • При наличии в схеме двух дифавтоматов перепутаны нулевые провода. При такой ошибке оба устройства включаются, «Тест» работает на обоих устройствах, но при включении любой нагрузки выбивает сразу оба автомата.
  • При наличии двух дифавтоматов, идущие от них нули где-то дальше соединили. В этом случае оба автомата взводятся, но при нажатии на кнопку «тест» одного из них, вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

 

Теперь вы не только можете выбрать и подключить дифференциальный автомат защиты, но и понять почему он выбивает, что именно пошло не так и самостоятельно исправить ситуацию.

stroychik.ru

Как подключить дифференциальный автомат: схемы подключения

Электропроводка несет для дома, его жильцов и техники много рисков. Исключить большинство из них способна установка автоматического выключателя дифференциального тока (АВДТ) — дифавтомата.

Это устройство обеспечивает защиту от тока утечки, сетевой перегрузки, короткого замыкания и поражения человека током. Важно знать, как подключить дифференциальный автомат, чтобы максимально защитить здоровье людей и имущество.

Содержание статьи:

Принцип работы дифавтомата

В дифавтомат встроено три механизма, каждый из которых отключает напряжение в определенной ситуации:

  • наличие тока утечки;
  • неожиданное короткое замыкание;
  • перегрузка электрической сети по мощности.

Утечка определяется с помощью дифференциального трансформатора, который реагирует на разницу между значениями тока на «нуле» и «фазе».

Отличие может возникнуть при контакте человека с предметами под напряжением или при частичном замыкании электроприборов на окружающие их поверхности. В таких случаях срабатывает дифавтомат и отключает электричество.

Механизм защиты при обнаружении утечки тока может быть электромеханическим или электронно-механическим. Второй вариант подразумевает наличие управляющей микросхемы

Датчик короткого замыкания реагирует на высокий ток. А подключение избыточной нагрузки определяется по нагреву металлической термопластины, которая размыкает электросеть при повышении собственной температуры.

Таким образом, любая опасная ситуация, связанная с электропроводкой, быстро определяется дифавтоматом и заканчивается защитным отключением напряжения в проблемном контуре.

Возможные схемы подключения

Способы подключения дифавтоматов отличаются не столько вариантами расположения проводов, сколько количеством и характеристиками самих устройств. Поэтому важно разобраться в возможных схемах, узнать особенности их применения и подключения, чтобы обеспечить максимальную защиту себя и бытовой техники за минимальные деньги.

Система с единственным дифавтоматом

Первая схема подключения дифавтомата подразумевает наличие только одного защитного устройства. Оно монтируется сразу после электросчетчика. К выходу АВДТ подключаются все имеющиеся электрические контуры. По возможности, необходимо установить в начале каждой цепи концевой выключатель, чтобы можно было проводить ремонт электропроводки в одной комнате без выключения света во всей квартире.

Единственный дифавтомат на всю квартиру – самый бюджетный вариант, но и он способен защитить жильцов от удара током при случайном контакте с поверхностью под напряжением

Максимальная токовая нагрузка защитного устройства должна соотноситься с мощностью одновременно подключенной техники и характеристиками электросчетчика. Желательно, чтобы АВДТ срабатывал раньше, чем предохранители на приборе учета.

К единственному дифавтомату сверху подключаются питающие провода от электросчетчика, а снизу выходят те, к которым присоединяется внутриквартирная разводка. Плюсом такой схемы является простота, дешевизна и минимальная потребность в месте для размещения АВДТ.

К недостатку описываемого варианта электрозащиты относится неудобство поиска причины выбивания дифавтомата. Так как обесточивается сразу вся квартира, то определить, в какой комнате находится причина срабатывания АВДТ, довольно трудно. Кроме того, если проблема с электропроводкой возникнет только в одном помещении, то напряжение нельзя будет включить во всей квартире.

Чтобы избежать минусов схемы с единственным дифавтоматом, рекомендуется присмотреться к другим вариантам его подключения.

Двухуровневая система подключения

Двухуровневая система дифавтоматов является более надежной и удобной в обслуживании. На первом уровне находится подключенный после электросчетчика АВДТ, через который проход вся нагрузка. Выходящие из него провода параллельно подключаются к нескольким дифавтоматам, число которых равно количеству электрических контуров в квартире.

Для установки нескольких дифавтоматов продаются специальные щиты, которые позволяют экономить место на стене, сохраняя удобство подключения электропроводов

Устройства второго уровня могут быть менее мощными и иметь меньший пороговый ток утечки. Это позволит сэкономить, сохранив эффективность оборудования.

Теоретически отдельное защитное устройство можно подключить к каждому бытовому прибору, но на практике это нецелесообразно. Иногда в отдельный контур выделяют наиболее опасное оборудование в ванной – стиральную машину, электрифицированную душевую кабину, джакузи.

К преимуществам двухуровневой схемы подключения дифференциального автомата относят:

  1. Надежность и безопасность. Дифавтомат первого уровня, по сути, является дублирующим и способен отключать электроэнергию одновременно со следующими за ним защитными устройствами.
  2. Легкость поиска электроконтура, в котором возникла неисправность.
  3. Возможность отключения лишь одной комнаты от электричества на период ремонтных работ.

К недостаткам такого варианта защиты электросети можно отнести лишь необходимость покупки нескольких дифавтоматов и сложность в выделении места для их установки.

Двухуровневую схему рационально использовать при разветвленной сети с несколькими электрическими контурами. Если же к электросчетчику подключено минимум техники, то будет достаточно установки единственного дифавтомата.

Одноуровневая система дифавтоматов

Одноуровневая схема подключения дифавтоматов напоминает двухуровневую. Отличие заключается лишь в отсутствии общего АВДТ. Сторонники этого варианта подчеркивают, что он позволяет сэкономить деньги и место за счет исключения одного защитного устройства из схемы.

В одноуровневой схеме подключения дифавтоматов рекомендуется использовать коммутирующую шину, которая упорядочивает электрические провода и упрощает их монтаж

Минусом такого способа монтажа является отсутствие в цепи дублирующего устройства, которое бы обеспечивало дополнительный уровень защиты. Что касается особенности установки и сфер применения распределенной одноуровневой схемы, то они идентичны таковым в двухуровневом варианте.

Установка дифавтоматов без заземления

Принципиальная схема подсоединения дифавтоматов при отсутствии заземления практически не отличается от рассмотренных выше одноуровневых и двухуровневых вариантов. Разница заключается лишь в отсутствии специальной жилы, которая должна подходить к каждой электроточке, обеспечивая съем тока с корпуса прибора при нарушении его электроизоляции.

Отсутствие заземления в квартире значительно облегчает монтаж электрической проводки, но создает дополнительные риски при эксплуатации бытовой техники

В старых многоэтажках и частных домах заземляющий провод просто не был предусмотрен. В результате такой непредусмотрительности возникал риск поражения человека током при контакте с техникой и конструкциями, которые случайно оказались под напряжением.

Дифавтомат функционально замещает провод заземления, разрывая электрическую цепь за сотые доли секунды после определения утечки тока. За это время электроудар не успевает навредить человеку, а воздействие ограничивается максимум легким испугом. Дополнительно АВДТ защищает оборудование от перегрузок и короткого замыкания, чем выгодно отличается от обычного заземления.

Схема при трехфазной сети

Иногда возникает необходимость установить дифавтомат в здании, куда подведена сеть 380В. Это может быть гараж, магазин или небольшое промышленное помещение. В таком случае применяются те же схемы, что и в сети 220В. Отличается только сама конструкция дифавтомата.

Подключение проводов трехфазной сети к клеммам дифференциального автомата проводится в строгом соответствии с маркировкой на его корпусе

АВДТ для трехфазного напряжения имеет четыре входных клеммы и столько же выходных, от которых идут провода к электроприборам. Желательно, чтобы в электрическом контуре была жила заземления. Но при отсутствии таковой на ток утечки обязательно среагирует дифавтомат и обесточит помещение.

Преимущества и недостатки разных вариантов подключения АВДТ к трехфазной сети такие же, как и при напряжении 220В.

Особенности монтажа селективных дифавтоматов

Большинство селективных дифавтоматов имеют в названии индекс S. Эти устройства отличаются от обычных АВДТ увеличенным временем срабатывания при обнаружении тока утечки. Селективные дифавтоматы применяются только в качестве главного прибора в двухуровневых схемах. Они обеспечивают индивидуальное срабатывание устройств второго уровня без отключения электропитания во всей сети.

Селективный дифаппарат рационально покупать только при монтаже двухуровневых схем. Если он будет единственным в квартире, то задержка срабатывания станет, наоборот, его недостатком

Их особенность заключается в следующем. При появлении тока утечки его могут обнаружить дифавтоматы обоих уровней. Какой из них сработает первым, отдается на откуп случайности, но обычно отключают электричество оба.

Увеличение времени срабатывания центрального АВДТ позволяет дифавтомату второго уровня сработать первым. Таким образом, в результате неисправности отключается только один электроконтур, а остальная квартира продолжает оставаться под напряжением. Использование селективности позволяет использовать дифавтоматы с одинаковым пороговым током утечки.

Существует и другая схема подключения, без селективного устройства, которая позволяет добиться избирательного отключения АВДТ второго уровня при появлении тока утечки.

Для этого центральный аппарат выбирается с пороговым значением параметра в 100мА, а второстепенные – 30 мА. В таком случае первыми будут срабатывать дифавтоматы второго уровня, избирательно отключая только один электроконтур. Однако 100% работоспособность такой схемы не гарантируется.

Приоритет при покупке необходимо отдавать селективным дифавтоматам, которые обеспечивают большую надежность и удобство.

Пошаговая инструкция по установке дифавтомата

Установка дифавтомата не представляет сложностей и может быть произведена самостоятельно без специального обучения.

К месту с блоком дифавтоматов должен быть свободный доступ. Вокруг него желательно не размещать легковоспламеняющиеся и взрывоопасные предметы

Последовательность действий при этом следующая:

  1. Проверить целостность АВДТ и работоспособность его тумблеров.
  2. Зафиксировать дифавтомат на специальной металлической DIN-рейке в месте его постоянного расположения.
  3. Отключить напряжение в квартире и проверить его отсутствие индикатором.
  4. Зачистить питающие жилы в кабеле и подсоединить их к двум верхним клеммам дифавтомата. Синий цвет обычно подключается к «нулю» АВДТ, желтый или коричневый – к контуру заземления, а третий цвет – к «фазе» прибора.
  5. К нижним клеммам дифавтомата подключить провода, подающие напряжение в квартиру или на последующие защитные устройства.
  6. Подать напряжение на АВДТ и проверить работоспособность прибора.

Для тестирования дифавтомата на нем предусмотрена специальная кнопка «Т». При её нажатии в электрической цепи появляется ток утечки, который должен привести к срабатыванию аппарата и отключению напряжения. Если АВДТ не отреагировал, значит он неисправен и подлежит замене.

В деревянных домах обязателен огнестойкий щит для дифавтомата. Он защитит стены дома от огня в случае возгорания защитных устройств

В электрической сети квартиры дифавтомат является лишь промежуточным звеном, обеспечивающим дополнительную защиту, поэтому его монтаж не вызовет затруднений.

Полезные монтажные советы

Монтаж дифавтомата имеет множество мелких нюансов, которые помогут сделать работу оборудования эффективной и надёжной.

«Ноль» к нагрузке обязательно должен идти от дифавтомата, иначе возникнет разница значений токов, и защитное устройство сразу сработает. В результате подключить электроприборы не удастся

В электрике не следует пренебрегать советами, поэтому к приведенным рекомендациям следует отнестись внимательно.

  1. При подключении проводов к дифференциальному автомату обязательно нужно соблюдать полярность. Клемма «нуля» обозначается как N, а «фазы» – 1 или 2.
  2. Работы по подключению необходимо производить при полном обесточивании всех проводов.
  3. Наилучшую безопасность обеспечивает двухуровневая схема с селективным дифавтоматом первого уровня.
  4. Стоит подбирать мощность дифавтоматов второго уровня в соответствии с предполагаемой нагрузкой на электроконтур в каждой комнате.
  5. Нельзя объединять выходящие «ноль» и «фазу» дифавтомата с неподключенными к нему электропроводами, даже если они идут от параллельно подключенных АВДТ.
  6. Выходящий из дифавтомата «ноль» не должен соприкасаться с жилой заземления.

При фиксации провода в клемме нужно следить, чтобы в разъем не попала изоляция. Плохой контакт может привести к перегреванию дифавтомата и его поломке.

При несоблюдении большинства вышеописанных рекомендаций АВДТ просто не будет функционировать должным образом. Он может «выбивать» при подключении нагрузки или вообще не срабатывать на утечку тока. Поэтому к электрической схеме подключения нужно отнестись со всей серьёзностью.

Полезное видео по теме

С какими трудностями можно столкнуться при подключении защитных устройств, вы узнаете из следующих видеороликов.

Тестирование двухуровневой селективной и неселективной схемы:

Внутреннее устройство дифавтомата:

Разбор различных схем подключения дифавтоматов (3 части):

Подключение защитного дифференциального автомата – процесс несложный. Главным условием быстрого монтажа является четкое соблюдение рекомендованных электрических схем. В этом случае самостоятельная установка защитных устройств удастся с первого раза, а сами АВДТ будут надежно служить долгие годы.

sovet-ingenera.com

Как подключить дифавтомат в однофазной сети

Дифференциальный автоматический выключатель – это электромеханический прибор, обеспечивающий защиту электросети от повреждений в результате короткого замыкания или высоких нагрузок. Помимо этого, он обеспечивает безопасность людей, не допуская поражения электричеством при касании линии, в которой имеется утечка тока. Таким образом, он объединяет в себе функции двух аппаратов: защитного автомата и УЗО. Подключение дифавтомата – задача не из легких, и чтобы правильно выполнить ее, нужно соблюдать меры безопасности, а также выполнять правила монтажа. О том, как подключить дифавтомат, и пойдет речь в этой статье.

Конструктивные особенности дифференциальных автоматов

Как уже было сказано, установка в сеть дифавтомата позволяет обеспечить защиту от утечек электротока, перегрузок и сверхтоков КЗ. Этот прибор является комбинированным, и в его состав входят две основных составляющих:

  • Защитный автомат с электромагнитным (катушка) и тепловым (биметаллическая пластина) расцепителями. Первый отключает питание линии при возникновении в ней короткого замыкания, а второй обесточивает сеть при появлении нагрузки, превышающей расчетную. АВ в дифавтоматах могут иметь 2 или 4 полюса, в зависимости от того, какую сеть они защищают – однофазную или трёхфазную.

  • Устройство защитного отключения. В состав этого элемента входит реле, на которое при нормальном функционировании сети воздействуют магнитные потоки одинаковой силы, не давая разъединить линию. При возникновении утечки (ухода электричества в землю) равномерность потоков нарушается, в результате чего происходит переключение реле с обесточиванием линии.

Кроме АВ и УЗО, автомат имеет в своем составе дифференциальный трансформатор, а также электронный элемент усиления.

Установка дифавтомата в одно- и трехфазной сети

Прежде чем начать подключение дифференциального автомата, необходимо нажать на его корпусе кнопку «Тест». Таким образом, искусственно создается утечка тока, на которую прибор должен отреагировать отключением. Это позволит удостовериться в исправности устройства. Если при тестовом испытании аппарат не отключился, пользоваться им нельзя.

В бытовых однофазных сетях, где показатель рабочего напряжения составляет 220В, устанавливаются двухполюсные АВДТ.

Подключение дифавтомата в однофазной электрической сети требует правильного подсоединения нулевых проводов: ноль от нагрузки подключается с нижней части прибора, а от питания – с верхней.

Монтаж четырехполюсного диф. автомата, предназначенного для защиты трехфазной сети, рабочее напряжение в которой равно 380В, производится по аналогичному принципу. При этом нужно учитывать, что трехфазный (четырехполюсный) дифавтомат занимает в распределительном щите больше места, чем однофазный. Это обусловлено необходимостью установки блока дифференциальной защиты.

Корпус некоторых типов АВДТ маркируется обозначением 230/400V. Такое устройство может устанавливаться в сети как с одной, так и с тремя фазами. Во втором случае эти приборы монтируются на потребители, использующие только одну фазу – это может быть группа розеток или отдельные аппараты.

Схемы подключения

Основное правило, которое должна учитывать любая схема подключения дифференциального автомата, гласит: АВДТ нужно подсоединять к фазам и нулевому проводнику исключительно той линии или ответвления, для защиты которой предназначен этот прибор.

Вводной автомат

Дифференциальный автомат в щитке в этом случае устанавливается на вводном проводе. Такая схема подключения дифавтомата получила свое название потому, что устройство защищает все группы и ветки сети, к которой оно подсоединено.

При подборе АВДТ для этой схемы необходимо учитывать все рабочие параметры линии, в том числе и потребляемую мощность. Такой способ подключения защитного устройства имеет ряд плюсов, к которым относятся:

  • Экономия, поскольку на всю сеть устанавливается единственный автомат.
  • Компактность, так как одно устройство не занимает в щитке много места.

Минусы этой схемы таковы:

  • При возникновении нарушений в сети обесточивается вся квартира или дом.
  • При любой неисправности на ее поиск и устранение уйдет много времени, поскольку нужно будет найти ветку, на которой произошел сбой, а также установить конкретную причину неполадок.

Наглядные схемы подключения дифавтоматов на видео:

Отдельные автоматы

Этот метод подключения предусматривает установку нескольких дифференциальных АВ. Установка дифавтомата производится на каждую отдельную ветку или мощный потребитель. Кроме того, дополнительный АВДТ ставится перед группой самих защитных устройств. К примеру, на осветительные приборы устанавливается один аппарат, на розеточную группу – другой, а на электроплиту – третий.

Преимуществом этого способа является максимальный уровень обеспечения безопасности, а также достаточно легкий поиск возможных неисправностей. Недостаток его – большие затраты, связанные с покупкой нескольких дифференциальных автоматов.

Дифавтомат в схеме без заземления

Еще не так давно технология строительства любых зданий учитывала обязательное устройство заземляющего контура. Все имеющиеся в доме распределительные щиты подключались к нему. В современном строительстве оборудование заземления не является обязательным. В таких зданиях и имеющихся в них квартирах дифференциальные АВ должны устанавливаться обязательно, чтобы обеспечить необходимый уровень электрической безопасности. Дифавтомат в такой схеме не только защищает сеть от неполадок, но и играет роль заземляющего элемента, предотвращая утечку электротока.

Наглядно про подключение дифавтоматов на видео:

Что нужно помнить при подключении дифференциального автомата?

Независимо от того, в однофазную или трехфазную сеть подключается защитное устройство, при его установке должны соблюдаться нижеперечисленные правила:

  • Питающие кабели следует подсоединять к верхней части прибора, а провода, идущие на потребители – к нижней. На корпусной части большинства дифференциальных АВ имеется принципиальная схема, а также обозначение разъемов.

Очень важно правильно подключить дифавтомат, поскольку неверное подсоединение проводников с высокой долей вероятности станет причиной сгорания устройства. Если кабели недостаточно длинны, их нужно заменить или нарастить. Как вариант – аппарат можно перевернуть на ДИН-рейке, но в этом случае можно запутаться по ходу дальнейшей установки.

  • Необходимо соблюдать полярность контактов. Все защитные устройства в соответствии с международными стандартами имеют маркировку разъемов: для фазных – L, для нулевых – N. Подводящий кабель обозначается цифрой 1, а отводящий – 2. Если контакты будут подключены неправильно, то прибор, скорее всего, не сгорит, но при этом не будет реагировать на неполадки в сети.
  • Во многих аппаратах схема подключения предусматривает подсоединение всех нулевых проводников к общей перемычке. Но в случае с дифференциальным АВ этого делать нельзя, иначе питание будет постоянно отключаться. Чтобы не вызвать сбоев в работе, нулевой контакт каждого дифавтомата следует соединять только с той веткой, которую он защищает.

Порядок подключения

Теперь поговорим о том, как правильно подключить АВДТ. После того, как вы определились со схемой монтажа и приобрели все, что нужно для установки, переходим к подключению. Оно производится в следующем порядке:

  • Внимательно осмотрите корпус устройства. На нем не должно быть трещин и других дефектов, поскольку они могут стать причиной некорректной работы прибора.
  • Отключите питание в домашней сети рубильником в распределительном щитке.
  • Тестером или отверткой-индикатором проверьте контакты подключенных потребителей, чтобы убедиться, что к ним не поступает напряжение.
  • Прикрепите к DIN-рейке дифавтомат.
  • Снимите изоляционный слой с концов подключаемого провода (примерно по 5 мм). Для этого удобнее всего использовать бокорезы.
  • Подсоедините фазные и нулевые жилы: от провода питания – к верхним клеммам защитного устройства, а от защищаемой линии – к нижним.

После этого остается включить питание сети и удостовериться, что прибор работает правильно.

Порядок сборки распредщита на дифавтоматах на видео:

Наиболее распространенные ошибки при подключении АВДТ

Если после подсоединения дифференциального автомата он срабатывает при малейшей нагрузке или не включается вообще, значит, его установка была произведена неправильно.

Существует несколько ошибок, которые чаще всего допускают неопытные пользователи при самостоятельном подключении дифавтомата:

  • Соединение нейтрального провода с кабелем заземления. В этом случае включить АВДТ будет невозможно, так как не получится установить в верхнее положение рычажки устройства.
  • Подключение нуля к нагрузке с нулевой шины. При таком подсоединении рычажки прибора устанавливаются в верхнее положение, но отключаются при подаче малейшей нагрузки. Ноль следует брать только с выхода защитного аппарата.
  • Подсоединение нуля с выхода устройства вместо нагрузки к шине, а с последней – к нагрузке. Если подключение выполнено таким образом, рычажки прибора можно будет установить в исходное положение, но как только будет включена нагрузка, АВДТ вырубит. Кнопка «Тест» в этом случае также работать не будет. Такие же симптомы будут наблюдаться, если перепутать подключение нуля, подсоединив его с шины к нижней, а не к верхней клемме аппарата.
  • Перепутанное подключение нулевых проводов с двух разных АВДТ. В этом случае оба автомата будут включаться, кнопка «Тест» на каждом из них будет работать правильно, но как только будет подключена нагрузка, вырубятся сразу оба устройства.

  • Соединение нулевых проводов от двух АВДТ. Когда допущена эта ошибка, рычажки обоих аппаратов устанавливаются в рабочее положение, но при подключении нагрузки или нажатии кнопки «Тест» на любом дифавтомате отключатся оба одновременно.

Разбор основных ошибок подключения на видео:

Заключение

В этой статье мы рассказали, как правильно подключить дифавтомат, а также разобрались с основными ошибками, которые допускаются при этой процедуре. Учитывая это, вы сможете самостоятельно установить защитное устройство, а если при этом будет допущена ошибка – легко найдете и исправите ее.

yaelectrik.ru

Подключение дифавтомата в щитке после счетчика, схемы и правила для автоматов и УЗО

При монтаже электропроводки всегда возникает вопрос: как подключить дифавтомат, где его установить, сразу после счетчика или перед ним, на каждую группу ставить или один на несколько? Это естественно, так как хочется безопасности и надежности в доме.

Сейчас все больше людей начинают использовать дифавтоматы в качестве средств защиты от токов утечки и короткого замыкания. Многие производители стали выпускать приборы с индикаторами, показывающими, какой из автоматов отключил линию, дифференциальный или обычный. Становится понятна причина отключения и упрощается поиск неисправности. Остался еще один аргумент, мешающий повсеместному замещению автоматических выключателей и УЗО дифференциальными автоматами. Это цена, но при недостатке места в электрощитке, он становится не таким значимым.

Покупка защитных устройств

Прежде, чем приступать к монтажу и подключению дифавтоматов, нужно определиться с их видами. Внешне они все одинаковы, но характеристики различаются очень сильно, даже при одинаковом номинальном токе. В однофазной электрической сети используются двухполюсные автоматические выключатели дифференциального тока, в трехфазной цепи применяют четырехполюсные приборы.

При покупке дифавтомата обращайте внимание на целостность корпуса. Даже незначительные механические повреждения могут сместить положение внутренних элементов устройства, что может привести к его неисправности. Обязательно проверьте его работоспособность на месте. Обычно в магазинах по продаже электрооборудования имеются специальные стенды для проверки. Приборы должны быть приобретены именно те, которые указаны в схеме или вычислены специалистом с учетом всех возможных нагрузок. Это не провода, которые можно установить большего сечения, здесь все связано с чувствительностью устройства к токам утечки или короткого замыкания. Маркировка дает полную характеристику прибора.

Некоторые люди покупают дифавтоматы с учетом вроде бы всех требований по номинальному току, отключающему, по току мгновенного отключения, но упускают такой момент, как максимальный ток короткого замыкания, который способен выдержать прибор. Цифры в прямоугольнике на передней панели, как раз об этом и говорят. Если в старых домах с алюминиевой проводкой допустимо подключение дифавтоматов на 3000 или 4500 А, то в новых с медными проводами, хорошей изоляцией токи короткого замыкания в 6000 А не редкость. Поэтому на этот параметр тоже обращайте внимание. Если вместо запланированных по проекту медного провода сечением 2,5 мм2 решили заменить на более надежный, как может показаться, сечением 4 мм2, то нужно учесть это при приобретении автомата, выбирайте с большим максимальным током короткого замыкания. Иначе возможен скорый поход в магазин за новым автоматом.

Как подключать

Установка УЗО и дифавтоматов производятся одинаково. При подключении проводов к приборам надо следовать старому правилу. Начиная от вводного автомата и до последнего надо подсоединять все, что является для данного устройства нагрузкой к нижним контактам. Его выходные контакты, находящиеся сверху, подсоединяют к входным контактам устройства расположенного в схеме, выше его по иерархии, если считать от вводного автомата. Хотя у некоторых производителей приборы могут работать при любом подключении, соблюдение этого порядка соединения позволяет уменьшать количество ошибок при монтаже устройств.

На дифавтоматах всегда указывается, куда нужно подключать нулевой или фазный провод. Обозначение на схеме, изображенной на передней панели всех контактов, позволяет безошибочно провести подключение. Путать провода нельзя, так как может случиться так, что автоматический выключатель от токов перегрузки и короткого замыкания будет контролировать нулевой вместо фазного провода.

Последовательность монтажных действий при подключении дифавтомата такая:

  • перед установкой приборов в щитке выключите вводной автомат;
  • индикаторной отверткой проверьте отсутствие напряжения в сети, если есть мультиметр, перепроверьте им, здесь перестраховываться полезно;
  • установите на DIN-рейку первым слева селективный (противопожарный) дифавтомат. Ставить автомат легко, просто защелкните его на рейке, если необходимо, сдвиньте его к краю;
  • откусите необходимой длины куски провода и зачистите от изоляции их концы, примерно по 1 см. Для этого используйте специальный инструмент, если его нет, то можно применить бокорезы. При зачистке изоляции старайтесь не повредить сам провод. Он должен быть монолитный.

Концы входных проводов подсоединяйте к верхнему разъему дифавтомата. Подключение противоположных концов происходит к счетчику, ноль к нолю, фаза к фазе. Следите, чтобы не зажималась изоляция. По возможности для монтажа используйте разноцветный провод. В дальнейшем это облегчит поиск неисправностей, да и при установке упрощаются работы.

Последний этап монтажных работ

Если необходимо, установите дополнительные клеммные колодки для подключения нулевого или земляного проводников. Сами провода прокладывайте по горизонтали или по вертикали. Это облегчает чтение схемы соединений.

После противопожарного дифавтомата по схеме стоят устройства, контролирующие несколько или только одну электрическую группу. Это могут быть две, три розеточные или отдельная группа на стиральную машину.

Когда закончите подключение внутри электрического щита, можно заводить провода, которые идут от распределительных коробок. Внимательно следите, чтобы нулевой и фазный провод от одной группы попали на один дифавтомат. Прозвоните всю цепь от розеток до дифавтомата. Особенно будьте внимательны при монтаже и прозвонке в распределительной коробке. Туда обычно подходят несколько нулевых, заземляющих и фазных проводов. Если перепутаете соединения, то автоматы будет постоянно выбивать.

Когда полностью закончите монтаж, проверьте, что вся нагрузка отключена от сети. Затем вводный автомат и все последующие надо включить. Смотрите, не сработает ли какой-нибудь из них. Если все нормально, проверьте с помощью тестовой кнопки работоспособность всех дифавтоматов. Убедившись в их работоспособности, начинаете подключать последовательно на каждую линию нагрузку. Если все нормально, то автоматы не сработают.

Ошибки при монтаже

Монтаж дифференциального автомата прост, это иногда вводит в заблуждение и приводит к ошибкам, вызывающим постоянные отключения оборудования или, наоборот, к полному его «молчанию». Дифавтомат ни на что не реагирует кроме тестовой кнопки, иногда, и на нее тоже. В основном это связано с невнимательностью при подключении или неисправностью прибора.

Наиболее распространенная ошибка совершается при подключении к дифавтомату проводов от разных линий. При подаче напряжения после монтажа дифавтомат сразу же отключается, и потом его невозможно включить, флажок не держится во включенном состоянии.

Иногда все собрано правильно, но устройство не встает на охрану, постоянно выключается. Начав разбираться, оказывается, что при подключении в клеммнике зажат не зачищенный конец, а защитный изоляционный слой провода. При подключении контролируйте, чтобы зажимался именно провод, а не его изоляция.

Бывает такое, что в электрическом щитке подключение правильное, прозвонка ничего не показывает, а дифавтомат все время отключается. Надо проверить линию, скорее всего где-то происходит соединение нулевого и земляного проводников. Для этого отключите в щитке нулевой и земляной провода данной линии и проверьте их на короткое замыкание.

Когда нулевые провода от двух дифавтоматов меняют местами, происходит мгновенное их выключение при подаче напряжения. Тест работает на обоих приборах.

Если к приборам нулевые провода подсоединили верно, а где-то на линии они закорочены, то при включении оба автомата нормально встают на контроль, при отсутствии нагрузки. Но стоит подключиться любому прибору, и срабатывают оба дифавтомата. При проверке кнопкой тест любого из них срабатывают оба.

Иногда нулевой провод с нижерасположенных по схеме устройств подключают не к нулевому контакту дифавтомата, а нулевой шине напрямую, минуя его. В этом случае устройство становится на контроль, но при включении нагрузки или тестовой кнопки сразу срабатывает.

Бывает, что нулевой провод с выхода автоматического выключателя дифференциального тока подключают не к нагрузке, а к нулевой шине. При включении дифавтомат становится на контроль, подсоединение устройств к линии приводит к срабатыванию дифференциального выключателя.

Когда затрудняетесь определить ошибку в монтаже, лучший вариант, начать все с начала. Промаркировать каждый провод и после каждого подсоединения очередной группы проверять дифавтоматы. Это плата за невнимательность.

evosnab.ru

Как подключить дифференциальный автомат в щитке

Схемы подключения дифавтомата

Пред тем как разбираться в теме статьи: дифавтомат – схема подключения, необходимо понять, что собой представляет сам этот электрический прибор. Итак, дифавтомат, он же автоматический выключатель дифференциального тока, представляет собой устройство электромеханического типа, который предназначается для защиты электрических участков от утечек электрического тока (имеется в виду утечки в землю), коротких замыканий и высоких нагрузок (перегрузок). То есть, само это устройство будет сразу выполнять две функции, которые раньше выполняли УЗО и обычный автомат.

То есть, оно заменяет УЗО в плане защиты человека от утечек тока, и автоматический выключатель в плане перегрузок и короткого замыкания. По сути, это небольшой прибор, в котором заключены сразу два вышеописанных прибора. А, значит, дифференциальный автомат будет защищать электрические цепочки сразу от трех нарушений, возникающих в этих сетях. Отсюда и удобство его применения.

Как работает дифференциальный автомат

Так как данный прибор в своей конструкции имеет два разных по назначению блока, то соответственно эти блоки будут по-разному реагировать на нарушения в электрической цепи. К примеру, для отключения цепи при появлении в ней короткого замыкания или повышенных нагрузок срабатывает модуль защиты, по принципу работы схожий с обычным автоматом. В основе этого модуля находится расцепитель, он же механизм расцепления контактов (независимый).

А вот защиту от поражения человека электричеством осуществляется за счет другой части дифавтомата – это так называемый модуль дифференциальной защиты. В нем расположен трансформатор дифференциального типа, который во время работы сети сверяет два значения тока: на входе и на выходе. Если разница двух величин будет значительной, то есть, есть угроза жизни человека, то с помощью двух элементов, а именно с помощью катушки электромагнитного сброса и усилителя, модуль преобразует электрическую энергию в механическую, тем самым обесточивает электрическую цепь, защищаемую собой.

Как правильно подключить дифференциальный автомат

Подключение дифавтомата – это то же самое, что подключить УЗО. Поэтому здесь необходимо придерживаться тех же правил, то есть, подключение проводить к тому участку (фазе и нулю), который данный прибор будет защищать. К примеру, нельзя нулевой провод, вышедший из защитного прибора подключать к другому нулевому проводу. В этом случае дифавтомат просто не будет работать, и цепь останется незащищенной. Все дело в том, что в двух проводах будут течь токи разной силы.

Давайте рассмотрим две схемы подключения дифавтомата. Первая из них, которая изображена на нижнем рисунке, подразумевает, что в ней будет использован один дифференциальный автомат, который будет устанавливаться на входе перед разводкой сети на группы. Поэтому провода питающей сети от счетчика контроля электроэнергии подаются на верхние клеммы автомата, а с нижних клемм провода будут соединены с обычными автоматами, которые установлены по группам.

У этой схемы подключения есть один существенный недостаток – это сам дифавтомат в единственном числе. То есть, если в какой-то группе появится одно из трех нарушений электрической цепочки (КЗ, перегруз, ток утечки), то защитный прибор отключит сразу все группы потребителей.

Вторая схема подключения дифференциального автомата более сложная, но и более надежная. В ней присутствует сразу несколько приборов, которые устанавливаются на каждую группу или разделяют группы на несколько участков. Это хорошо видно на рисунке ниже.

Обычно эта схема подключения раньше использовалась только во влажных помещениях или в комнатах, где присутствует повышенные требования к безопасности (к примеру, в детских). Сегодня ее используют везде в независимости от назначения помещений. Положительных сторон в таком подключении немало, особенно хотелось бы отметить возможность не отключать другие группы, если в одной из них произошло нарушение работы электрического участка. Конечно, цена сборки распределительного шкафа резко возрастет за счет увеличения количества дифавтоматов, но это стоит того.

Селективная схема

Начнем с того, что дифференциальные автоматы есть двух видов: селективные и неселективные. Первые в своей маркировке имеют букву «S». Если рассматривать первую схему подключения, то если в ней установить неселективный автомат, который сработает по трем вышеописанным причинам, то все группы будут тут же обесточены. Как это и говорилось выше.

Появление селективных дифавтоматов решило проблему отключения всех групп. То есть, если в одной из них произойдет короткое замыкание или два других нарушения, то прибор отключит именно эту группу.

Многие могут задаться вопросом, ведь автоматы и дифавтомат были подобраны по току утечки. К примеру, дифференциальный прибор на 100 мА, а автоматические выключатели на 30 мА. Но данный подбор не влияет на селективность работы самой собранной схемы. Хотя правильно подбирать элементы необходимо обязательно. Да и правильно подключить дифавтомат надо тоже уметь.

Полезные советы

  • Перед тем как приобретать дифференциальный защитный прибор, необходимо ознакомиться с его возможностями. Специалисты уверяют, что на сегодняшний день самый популярный автомат – это прибор с номиналом тока утечки 30 мА.
  • Эти приборы можно использовать и в однофазной сети, и трехфазной.
  • Ненужные ложные срабатывания при действии перегрузок – от этого надо избавляться. Поэтому придется учитывать всех потребителей, которые подключаются к защищаемой электрической цепочке.

Заключение по теме

Подключение дифференциального автомата – дело простое, здесь не надо быть большим специалистом. Но когда дело доходит до полной сборки распределительного щита, то тут лучше своими руками ничего не делать, если вы в этом серьезном деле неспециалист. И последнее, отвечая на вопрос, как подключить дифференциальный автомат, лучше использовать схемы, где на каждую группу потребителей устанавливается один отдельный прибор. Особенно это будет актуально в больших частных домах.

Как правильно провести подключение УЗО и автомата – схема и нюансы

  • Как подключить УЗО в однофазной сети без заземления

  • Диф автомат АВВ – что это такое, на что необходимо обратить внимание при его выборе

    Подключение дифавтомата

    Подключение дифавтомата не является очень сложной задачей, и справиться с ней сможет любой человек, ознакомившийся с основными правилами электротехнического монтажа и техникой безопасности.Содержание:

    Конструкция дифавтоматов

    Дифференциальный автоматический выключатель – это электрический прибор, служащий для защиты сети и подключенных к ней приборов от нерасчетных нагрузок и утечек тока. Фактически он представляет собой комбинированное устройство из двух основных функциональных частей:

    1. Устройство защитного отключения (УЗО). Его работа осуществляется за счет подведения обратного тока. В рабочем состоянии сети величины входного и обратного тока создают равносильные магнитные потоки, что не дает разъединить реле отключения. Если в сети появляется ток на землю (утечка), разница между потоками сразу же переключает реле и подача питания прекращается.
    2. Автоматический выключатель (АВ). Он оснащен парой расцепителей: тепловым и электромагнитным. Первый прекращает подачу тока при возникновении перегрузки на группе потребителей, к которым подключен, а второй – при коротком замыкании. В различных дифавтоматах могут использоваться двух- или четырехполюсные автоматические выключатели.

    Помимо этих основных элементов в рабочем модуле дифавтомата присутствует электронный усилитель и дифференциальный трансформатор.

    Перед монтажом дифференциального автомата следует проверить его исправность. Для этого на корпусе каждого такого прибора производители располагают кнопку «Тест». Нажатие на неё приведет к искусственному моделированию ситуации с утечкой тока, которая должна спровоцировать отключение аппарата. Если этого не происходит, то применение устройства категорически запрещено.

    Подключайте нулевой провод к клемме «N»!

    Для стандартной бытовой электросети с напряжением 220В предназначены двухполюсные дифференциальные автоматы. Правила подключения дифавтомата в однофазной сети требуют подсоединять нули следующим образом: снизу – ноль от нагрузки, а сверху – от питания.

    Четырехполюсные дифавтоматы устанавливаются по точно такому же принципу, но используются в трехфазных электросетях с номинальным напряжением 380В. Их установка, как правило, требует большего места на DIN-рейке, чем для 4 модулей, поскольку необходимо пространство для размещения блока дифзащиты.

    Схемы подключения

    Схема подключения дифавтомата легко читается даже для неопытным электротехником. В принципе, она мало чем отличается от схем подключения других приборов, устанавливаемых в распределительном щите. Поэтому и главное правило для них точно такое же: диф автомат может быть подключен к фазным проводам и нулю только той линии (ветки), защиту которой он осуществляет.

    Подключайте нулевой провод к клемме «N»!

    Подключение диффавтомата с заземлением

    Вводный автомат

    Рассмотрим две основные схемы подключения дифференциальных автоматов. Первая из них иногда называется «вводной автомат», так как в данном случае прибор ставится в щите на вводном кабеле и осуществляется одновременную защиту всех электрических цепей и групп в данной сети.

    Автоматический выключатель дифференциального тока для такой схемы должен подбираться индивидуально, с учетом потребляемой мощности и других рабочих параметров сети. Среди преимуществ такой способа организации защиты можно отметить:

    • более низкую стоимость одного дифавтомата;
    • компактность (один прибор всегда поместится в щите).

    И следующие недостатки:

    • при реакции на неполадки отключается подача тока на всю квартиру;
    • ремонт займет больше времени, поскольку точно неизвестно на какой из цепей произошла поломка, неизвестна даже причина отключения (короткое замыкание, утечка тока).
    Отдельный автомат

    Вторую схему можно назвать «отдельные автоматы». В этом случае автоматический дифференциальный выключатель ставится перед каждой группой потребителей или веткой сети, а также перед группой самих дифавтоматов. Например, отдельные дифавтоматы устанавливаются на группу освещения, розетки и стиральную машину. Это самый безопасный способ организации защиты электросети и её пользователей.

    Подключение двух дифавтоматов

    При монтаже такой схемы требуется выбирать общий дифференциальный выключатель с более высокими рабочими параметрами, чем у групповых автоматов. Так, к примеру, если отдельные диф автоматы рассчитаны на утечку тока 30мА, то у общего этот параметр должен быть не ниже 100мА. Если эти автоматы будут одинаковыми, то при каждом конфликте отдельной цепи будет срабатывать и групповой и основной, что приведет к отключению всей сети. Есть и другой способ организовать их работу – установить автомат селективного типа (на нем должно стоять обозначение “S”). Срабатывание такого прибора происходит с небольшой задержкой, с помощью которой можно организовать процесс последовательного отключения автоматов.

    • самый высокий уровень безопасности;
    • в момент отключения точно известно, на какой из линий электросети произошла авария.
    • высокая стоимость комплекта дифавтоматов;
    • конструкция занимает немало места в силовом щите;
    • относительная сложность монтажа и чтения.

    Известен также облегченный вариант предыдущей схемы, в котором с целью экономии не устанавливается общий дифференциальный выключатель. По функциональности такой способ практически не отличается от предыдущего.

    На всех приведенных схемах обозначение кабелей произведено по следующему принципу: синие линии – нулевые провода, красные – фазы, а желтые пунктирные – заземление.

    Схема подключения без заземления

    Раньше все дома и здания строились с заземлением, для этого от системы к земле отводился специальный контур, к которому в свою очередь подсоединялись все распределительные щитки. Современные строительные технологии далеко не всегда предусматривают наличие в доме заземления. И в такой ситуации установка дифавтомата является не столь рекомендацией, сколько требованием электробезопасности. В данном случае дифференциальный выключатель сам будет служить заземляющим элементом, что предельно важно для защиты от утечки тока. Подключение дифавтомата без заземления должно осуществляться по следующей схеме.

    Подключение без заземления

    Ключевые моменты

    Вне зависимости от типа сети при подключении дифавтоматов следует всегда соблюдать следующие правила:

    • Провода питания всегда должны подводиться к прибору сверху, а выходные (на нагрузку) – снизу. На большинстве дифавтоматов есть соответствующее обозначение этих разъемов и принципиальная схема. Случайное подключение в обратном порядке может влететь в копеечку, если приведет к сгоранию автомата. Если доступной длины проводов не хватает, лучше всего их заменить. В крайнем случае – нарастить или перевернуть дифавтомат на DIN-рейке (главное — не запутаться при дальнейшем монтаже).
    • Полярность контактов всегда должна быть соблюдена. Согласно международному стандарту на всех устройствах разъемы для подключения нулевого провода имеют обозначение N, а фазных – L. Порядок прохождения тока обозначается цифрами: 1 – подводящий провод, 2 – отходящий. Обратите внимание, что устройство может даже работать при неправильном подключении, однако несоблюдение полярности приведет к тому, что оно не будет реагировать на возникновение перегрузок и короткого замыкания.
    • Некоторые электрики по привычке могут подключить все нули к одной перемычке, так как этого требуют схемы подключения многих приборов. Однако в дифавтомате такое подключение будет всегда вызывать конфликт, и отключать питание. Для нормальной работы ноль каждого АВДТ может быть соединен только со своей цепью.

    Инструкция по подключению

    После определения схемы и покупки всех необходимых деталей, приступим к установке дифавтомата (ов).

    1. Осмотрите прибор на наличие дефектов и трещин. Они могут непосредственно повлиять на правильную работу устройства.

    Отключите дом или квартиру от сети, вырубив распределительный щит. Обязательно убедитесь в отсутствии напряжения с помощью мультиметра или индикаторной отвертки.

  • Установите дифференциальный автомат на DIN-рейке.
  • С помощью бокорезов или специального инструмента снимите изоляцию с жил подключаемого кабеля на расстоянии приблизительно в 5 мм от края (не используйте зубы, как это было принято у ваших дедушек).
  • Подключите фазные и нулевые провода в следующем порядке: к верхним клеммам от питающего кабеля, а к нижним – от нагрузки.
  • Готово! Теперь можно включать питание от силового кабеля и проверять работоспособность щита (все картинки можно увеличить).
  • Типичные ошибки

    Несмотря на то, что процедура подключения дифавтомата достаточно проста для проведения её своими руками, довольно часто допускаются малозаметные ошибки, не позволяющие прибору работать правильно:

    1. Нулевые провода отдельных автоматов соединены между собой. В таком случае в УЗО будет всегда срабатывать из-за возникновения разницы входного и обратного токов.
    2. Вводные нули и фазы подсоединены к нижним клеммам. Такую ошибку, как правило, допускают по невнимательности или из-за отсутствия опыта. При таком подключении прибор просто не будет работать. Во избежание такого казуса всегда смотрите на корпус, где оставляют обозначение нижних клемм и схема подключения устройства к питанию.
    3. Нулевой провод напрямую подводится к прибору-потребителю. В такой ситуации УЗО тоже будет регулярно отключать подачу тока из-за разницы токов.
    4. При монтаже нескольких дифавтоматов фазный провод кабеля подключен к одному устройству, а нулевой – к другому. Это приводит к отключению обоих «пострадавших» автоматов.
    5. Подключение нуля к заземлению. Этот «дедовский» метод называется у электротехников старой закалки «занулением» и основан на возбуждении короткого замыкания для срабатывания автоматического выключателя. В нашем же случае снова будет сформирована разница между токами и УЗО прекратит снабжение.

    А здесь всё очень толково рассказано:

    Поделиться с друзьями:

    Схема подключения дифавтомата

    Подробности Опубликовано: 10 Ноябрь 2014 Просмотров: 45030

    Если вы решили защитить своих близких и имущество с помощью дифавтомата (АВДТ), то правильно делаете, но только подключите его правильно. Сначала изучите схему подключения автоматического выключателя дифференциального тока и только потом занимайтесь его монтажом. Хотя тут ничего сложного нет, но если все равно сомневаетесь как подключить дифавтомат, то ниже я подробно рассказал как это сделать.

    Подключение дифавтомата практически похоже на подключение УЗО. но только здесь в схеме отсутствует дополнительный автоматический выключатель. На что тут нужно обратить особое внимание при подключении дифавтомата :

    1. Подключение проводов. Приходящий провод всегда подключается только на верхние контакты, а отходящий всегда на нижние. Не меняйте их местами. От этого может сгореть АВДТ и тогда побежите в магазин за новым. Если вдруг у вас не хватает длины проводов до нужных контактов, то замените провода (лучший вариант), нарастите их (не рекомендую) или переверните АВДТ вверх ногами (только потом не запутайтесь со схемой).
    2. Соблюдение полярности. На дифавтомат заводятся и фаза «L» и нуль «N». У одних производителей нулевой контакт может быть справа, а у других слева. Внимательно смотрите на корпус АВДТ, там все подписано. Буква N — это для подключения нулевого проводника. Цифра 1 — это для подключения приходящего фазного проводника. Цифра 2 — это для подключения отходящего проводника. Соблюдение полярности позволяет исправно выполнять все свои функции АВДТ. Модуль отвечающий за функции автоматического выключателя часто стоит только на фазном полюсе. Если мы перепутаем полярность, то тогда наш любимый дифавтомат не сможет защитить проводку от короткого замыкания и перегрузки.
    3. Следите за нулевыми проводниками. Как мы привыкли «нуль» должен быть везде общим и должен объединять все нулевые проводники. А вот использование дифавтомата немного нарушает это правило. Запомните, что объединение нулей после АВДТ запрещено. После дифавтомата фаза и нуль ушли только в контролируемую данным АВДТ цепь и на всем ее протяжении ни с чем больше не объединяются.
    Схема подключения дифавтомата

    Теперь ниже давайте рассмотрим несколько схем подключения дифавтомата, которые могут встретиться в обычных квартирах.

    В варианте предложенным ниже предлагается установка общего входного автоматического выключателя дифференциального тока, который будет защищать всю квартиру. Рекомендованные параметры АВДТ приведены на схеме, но учтите что у каждого разная нагрузка и нужно ее считать индивидуально.

    Плюсы такой схемы:

    • дешевизна, так как необходим только один АВДТ;
    • необходимо немного места в распределительном щитке.
    • при срабатывании дифавтомата обесточивается вся квартира;
    • затруднен поиск неисправности (В какой линии произошла утечка? А может было короткое замыкание?)

    Следующая схема подключения дифавтомата состоит из общего входного АВДТ и дифавтоматов в каждой отходящей линии. Это самый безопасный и надежный вариант схемы распределительного щитка. Тут входной АВДТ контролирует всю сеть, а групповые дифавтоматы контролируют каждый свою цепь.

    В данном варианте необходимо соблюсти селективность в выборе автоматических выключателей дифференциального тока. Групповые выбираем с током утечки 30мА, а входное с током утечки 100мА. Это нужно чтобы при неисправности к какой-либо цепи не сработали сразу групповой и входной дифавтоматы. Также селективность может быть достигнута с помощью применения АВДТ типа «S» (селективного). Оно имеет задержку в времени срабатывании, что дает возможность сработать только одному групповому АВДТ.

    Плюсы такой схемы:

    • надежность и безопасность;
    • при аварии обесточивается только неисправная линия, что облегчает поиск места неисправности.
    • дороговизна, так как дифавтоматы стоят недешево;
    • необходимо много место в распределительном щитке, чтобы все это разместить;
    • сложность схемы (может это и не минус).

    Последняя предлагаемая схема подключения дифавтомата является почти аналогичной предыдущей схемы, но только без применения общего входного АВДТ. Многие говорят, что зачем тратить лишние средства на входной дифавтомат, так как каждая цепь уже контролируется автоматическим выключателем дифференциального тока. Плюсы и минусы такой схемы такие же как и в предыдущем варианте.

    Если у Вас остались вопросы, то задавайте их в комментариях. Будем вместе разбираться что к чему.

    Специально для Елены ответ на второй комментарий. Схема подключения дифавтомата как делать НЕЛЬЗЯ.

    Тост:Висел на столбе электромонтер, сжимал зубами два куска провода. Бежала мимо лиса:— Монтер-монтер, а что это ты на проводах раскачиваешься, хоть бы лестницу поставил!Молчит монтер, сжимает провода пуще прежнего. А лиса не унимается:— Монтер, ты бы хоть паяльник взял, разве можно зубами?Молчит монтер. А лиса снова:— Монтер, ты электричество-то выключи, ведь тебя сейчас током долбанет!Не выдержал монтер, разжал зубы да как гаркнет во все горло:— А ну вали отсюда, дура рыжая, ты еще будешь меня учить работать!А как разжал зубы — вниз брякнулся и ногу вывихнул. А провода разомкнулись, и во всем городе свет погас.Так выпьем за то, чтобы не обращать внимания на советы дилетантов.

    Добавить комментарий

    Вот здесь нужно быть очень внимательным. Неправильный выбор автоматического выключателя по номиналу может привести к возгоранию проводки или автомат будет срабатывать на отключение по пять раз.

    У вас дома в квартирном щитке сработал автоматический выключатель. В итоге какая-то часть квартиры обесточилась. В такой ситуации оказывался практически каждый. Какие ваши дальнейшие действия.

    Лампочки перегорали, перегорают и будут перегорать иначе не выгодно их производить. Сами подумайте завод изготовил одну лампочку, человек ее купил, вкрутил у себя дома и она работает положенны.

    Кабели и провода играют одну из самых важных ролей в электропитании вашего дома. Не правильный выбор сечения может привести к перегреву изоляции, ее пробою, короткому замыканию и к серьезным п.

    Друзья, уважайте чужой труд и при копировании материалов, пожалуйста, ставьте открытую ссылку на источник sam-sebe-electric.ru, а то свет отключу. |

    Источники: http://onlineelektrik.ru/eoborudovanie/ustroystvazo/difavtomat-sxema-podklyucheniya-varianty.html, http://tokidet.ru/elektrooborudovanie/zashhitnoe/podklyuchenie-difavtomata.html, http://sam-sebe-electric.ru/uzo-i-dif-avtomaty/36-skhema-podklyucheniya-difavtomata

    electricremont.ru

    схема подключения и правила монтажа

    Дифавтомат представляет собой, по сути, союз УЗО выключателя с автоматом, собранных в одном корпусе. Способ его подключения к сети в некотором смысле аналогичен монтажу автомата или УЗО. При этом дифавтомат имеет ряд характерных преимуществ:

    1. высокое быстродействие, обеспечивающее защиту человека от поражения током;
    2. защита цепи от так называемых сверхтоков – тока к.з. или перегрузок по току;
    3. защита от утечки тока «на землю».

    Существует разнообразные варианты установки и подключения автоматического оборудования: с заземлением или без него, по селективной или неселективной схеме.

    Принципы установки автоматического выключателя дифференциального тока с наличием заземления

    Для правильной установки дифавтомата актуальны правила, работающие и в случае применения УЗО — что это такое, мы уже разобрались в другой статье.

    А именно: к дифавтомату подключается исключительно фаза и ноль цепи, для защиты которой он будет использован. Иными словами, это означает, что вышедший из автомата провод «ноль» объединять с остальными нулями недопустимо. Дифавтомат будет в таком случае постоянно отключаться из-за наличия в этих проводах принципиально отличающихся токов.

    При установке дифавтомата в схему с заземлением существует 2 варианта:

    • вводный дифавтомат, который смонтирован, соответственно, на вводе и служащий для защиты схемы в целом, то есть все входящие в нее электрические группы;
    • дифавтомат, включенный в цепь для протекции группы, стоящей отдельно группы.

    На первой схеме показано подключение первичного дифавтомата, следующая показывает монтаж включенного в цепь.

    Схема 1:

    Для того чтобы осуществить подключение дифавтомата по первой схеме, следует заблаговременно разделить электрические подгруппы с помощью типовых выключателей со встроенной автоматикой. Выводы этих автоматов в качестве нагрузки подключаются к контактам дифавтомата, расположенным в его в нижней части. К верхним же клеммам дифавтомата подводится напряжение для питания.

    У этой схемы есть существенный недостаток: в случае возникновения неполадок в одной любой цепи из подключенных к дифавтомату, сработает в аварийном режиме ее автомат и, как следствие, будут отключены все остальные группы.

    Для жилых и прочих помещений, где еще сохранилась старая проводка, актуально регулярное ложное срабатывание вводных дифавтоматов на утечку тока. Поэтому тут рекомендуется использовать дифавтоматы, у которых значение тока пробоя, вызывающего срабатывание, составляет 30 мА.

    Схема 2:

    Подключение по второй схеме обычно применяется для повышения электробезопасности объектов (помещений), где, собственно, осуществляется подключение такой электросистемы. Эта схема является более надежной и эффективной в аспекте защиты электросети на случай различных аварийных ситуаций. Такую схему целесообразно применять в помещениях с повышенной требовательностью к безопасности, или с повышенной влажностью и другими потенциально опасными внешними факторами: детские комнаты, ванные, кухни и т.д.

    Существует несколько критериев, по которым классифицируют выключатели дифференциального тока. Ознакомившись с важными особенностями разных видов таких устройств, можно узнать, как выбрать УЗО по мощности.

    Об отличиях УЗО от дифференциального автомата по принципу действия, способу защиты, конструктивному исполнению и др. можно прочитать здесь.

    Очевидна более высокая эффективность подключения дифавтомата по второй схеме. Это не только повышает все характеристики электробезопасности сети и отдельных составляющих, но и дает высокую практичную пользу.

    Так, в случае выхода из строя отдельной группы, обособленной собственным автоматом, остальная часть цепи и другие устройства не пострадают и не останутся обесточены.

    Таким образом можно обеспечить максимальную безопасность и бесперебойное электроснабжение в доме или другом помещении. Естественно, покупка нескольких дополнительных дифавтоматов потребует дополнительных затрат на реализацию такого подключения. Но в сравнении с эксплуатационными показателями и пользой от такого решения, затраты эти абсолютно оправданы.

    Схема подключения дифавтомата без заземления

    Если в помещениях не новых, уже бывших в эксплуатации, в основном предусмотрено заземление, то подключение дифавтомата будет происходить по одной из приведенных выше схем, и приведет к защите схемы от протечки «на землю». При создании новых электросистем во вновь построенных объектах регулярно можно наблюдать отхождение от некоторых стандартных схем и отсутствие заземления. В таком случае подключение дифавтомата непросто можно осуществить, а крайне необходимо.

    Для такой схемы дифавтомат послужит своего рода заменой заземляющего провода. По сути, он возьмет на себя функции защиты от протечки тока.

    Например, если человек прикоснется к токоведущим, или нетоковедущим, но оказавшимся под напряжением элементам, дифавтомат мгновенно сработает на отключение цепи и прекращение подачи напряжения на данный участок.

    Селективный и неселективный метод срабатывания устройства

    Для того, чтобы реализовать селективное подключение дифавтоматов, необходимо использовать селективный дифавтомат, то есть помеченный буковой S. В противном случае схема будет неселективной, даже если будут подобраны определенным образом технические характеристики дифавтоматов, входящих в эту систему.

    Селективная система подключения — это один селективный дифавтомат для площадки (лестничной клетки) и три дифавтомата в квартирах. В случае, если случится авария в одной из квартир и сработает соответствующий дифавтомат, благодаря тому, что для площадки выбран селективный прибор, на самой площадке дифавтомат не сработает, соответственно — будет отключена только одна аварийная квартира, а остальные будут спокойно продолжать потреблять электроэнергию без какого-либо риска аварии или выгорания проводки и т.д.

    Спутниковое ТВ — прекрасная альтернатива эфирным телеканалам и кабельному телевидению, особенно в загородных домах и дачах, где слабый сигнал для приёма с аналоговой антенны и отсутствуют кабельные операторы. Поэтому домашнему мастеру-любителю будет полезно знать, как настроить спутниковую антенну самостоятельно, придерживаясь простого порядка действий.

    Практически в каждом доме есть в наличии микроволновая печь. Для правильного использования такого вида бытовой электроники, очень важно разобраться в принципе работы и устройстве СВЧ-печи, а также научиться делать её текущий ремонт.

    Вторая схема является аналогичной предыдущей, но тут на площадке стоит такой же обыкновенный неселективный дифавтомат, как и для квартир. Это приводит к тому, что в случае отключения одной из квартир, будет отключен и общий дифавтомат на площадке. Очевидно, что без электроэнергии останутся и обе соседние квартиры.

    Таким образом, очевидно: в любом виде схема с дифавтоматом – это надежная защита от пробоев, которая может обеспечить как безопасность людей, так и защитить приборы и саму сеть от аварий. В зависимости от сложности электросистемы, количества нагрузочных элементов, помещения, где она будет работать, необходимо выбрать наиболее целесообразный способ подключения дифавтоматов.

    Пример двух схем подключения дифавтомата на видео

    elektrik24.net

    Учебное пособие по машинному обучению с примерами

    Машинное обучение (ML) становится самостоятельным, с растущим признанием того, что машинное обучение может играть ключевую роль в широком спектре критически важных приложений, таких как интеллектуальный анализ данных, обработка естественного языка, распознавание изображений. , и экспертные системы. Машинное обучение предлагает потенциальные решения во всех этих и других областях и должно стать опорой нашей будущей цивилизации.

    Предложение способных дизайнеров машинного обучения еще не соответствует этому спросу. Основная причина этого в том, что машинное обучение просто непросто.Это руководство по машинному обучению знакомит с основами теории машинного обучения, излагает общие темы и концепции, позволяя легко следовать логике и освоить основы машинного обучения.

    Что такое машинное обучение?

    Так что же такое «машинное обучение»? ML — это на самом деле лот, вещей. Эта область довольно обширна и быстро расширяется, постоянно разбиваясь и до тошноты подразделяясь на различные под-специальности и типы машинного обучения.

    Тем не менее, есть несколько основных общих тем, и общая тема лучше всего резюмируется этим часто цитируемым заявлением Артура Сэмюэля, сделанным еще в 1959 году: «[Машинное обучение — это] область исследования, которая дает компьютерам возможность учиться без явного программирования ».

    И совсем недавно, в 1997 году, Том Митчелл дал «правильное» определение, которое оказалось более полезным для инженеров: «Считается, что компьютерная программа учится на опыте E в отношении некоторой задачи T и некоторого показателя производительности P , если его характеристики по T, измеренные с помощью P, улучшаются с опытом E.”

    «Считается, что компьютерная программа учится на опыте E в отношении некоторой задачи T и некоторого показателя производительности P, если ее производительность на T, измеренная с помощью P, улучшается с опытом E.» — Том Митчелл, Университет Карнеги-Меллона

    Итак, если вы хотите, чтобы ваша программа предсказывала, например, модели движения на оживленном перекрестке (задача T), вы можете запустить ее с помощью алгоритма машинного обучения с данными о прошлых моделях трафика (опыт E) и, если она успешно « изучено », тогда он будет лучше предсказывать будущие модели трафика (показатель эффективности P).

    Однако очень сложная природа многих реальных проблем часто означает, что изобретение специализированных алгоритмов, которые будут идеально их решать каждый раз, непрактично, если не невозможно. Примеры проблем машинного обучения: «Это рак?», «Какова рыночная стоимость этого дома?», «Кто из этих людей дружит друг с другом?», «Взрывается ли этот ракетный двигатель при взлете? »,« Понравится ли этому человеку этот фильм? »,« Кто это? »,« Что ты сказал? »И« Как ты на этой штуке летишь? ».Все эти проблемы — отличные цели для проекта машинного обучения, и фактически машинное обучение применялось к каждой из них с большим успехом.

    ML решает проблемы, которые нельзя решить только численными методами.

    Среди различных типов задач машинного обучения принципиальное различие проводится между контролируемым и неконтролируемым обучением:

    • Машинное обучение с учителем: Программа «обучается» на заранее определенном наборе «обучающих примеров», которые затем облегчают ее способность прийти к точным выводам при получении новых данных.
    • Машинное обучение без учителя: Программа получает набор данных и должна находить в них закономерности и взаимосвязи.

    Здесь мы в первую очередь сосредоточимся на обучении с учителем, но в конце статьи содержится краткое обсуждение обучения без учителя с некоторыми ссылками для тех, кто заинтересован в дальнейшем изучении темы.

    Машинное обучение с учителем

    В большинстве приложений контролируемого обучения конечной целью является разработка точно настроенной функции прогнозирования h (x) (иногда называемой «гипотезой»).«Обучение» заключается в использовании сложных математических алгоритмов для оптимизации этой функции так, чтобы с учетом входных данных x о некотором домене (скажем, квадратном метре дома) можно было точно предсказать какое-то интересное значение h (x) ( скажем, рыночная цена на указанный дом).

    На практике x почти всегда представляет несколько точек данных. Так, например, средство прогнозирования цен на жилье может учитывать не только квадратные метры ( x1 ), но также количество спален ( x2 ), количество ванных комнат ( x3 ), количество этажей ( x4) , год выпуска ( x5 ), почтовый индекс ( x6 ) и т. д.Определение того, какие входные данные использовать, является важной частью дизайна машинного обучения. Однако для пояснения проще всего предположить, что используется одно входное значение.

    Допустим, у нашего простого предиктора есть такая форма:

    где и — константы. Наша цель — найти идеальные значения и сделать так, чтобы наш предсказатель работал как можно лучше.

    Оптимизация предиктора h (x) выполняется с использованием обучающих примеров . Для каждого обучающего примера у нас есть входное значение x_train , для которого заранее известен соответствующий выход y .Для каждого примера мы находим разницу между известным правильным значением y и нашим прогнозируемым значением h (x_train) . При наличии достаточного количества обучающих примеров эти различия дают нам полезный способ измерить «ошибочность» h (x) . Затем мы можем настроить h (x) , изменив значения и сделав «менее ошибочным». Этот процесс повторяется снова и снова, пока система не найдет наилучшие значения для и. Таким образом, предсказатель обучается и готов делать некоторые прогнозы в реальном мире.

    Примеры машинного обучения

    В этом посте мы остановимся на простых задачах для иллюстрации, но ML существует потому, что в реальном мире проблемы намного сложнее. На этом плоском экране мы можем нарисовать вам изображение, самое большее, трехмерного набора данных, но проблемы машинного обучения обычно связаны с данными с миллионами измерений и очень сложными функциями прогнозирования. ML решает проблемы, которые нельзя решить только численными методами.

    Имея это в виду, давайте рассмотрим простой пример.Допустим, у нас есть следующие данные по обучению, в которых сотрудники компании оценили свою удовлетворенность по шкале от 1 до 100:

    Во-первых, обратите внимание на то, что данные немного зашумлены. То есть, хотя мы видим, что в этом есть закономерность (например, удовлетворенность сотрудников имеет тенденцию повышаться по мере роста заработной платы), не все это четко вписывается в прямую линию. Это всегда будет иметь место с реальными данными (и мы абсолютно хотим обучить нашу машину, используя реальные данные!). Так как же тогда научить машину точно предсказывать уровень удовлетворенности сотрудников? Ответ, конечно же, такой, что мы не можем.Цель ML никогда не состоит в том, чтобы делать «идеальные» предположения, потому что ML работает в тех областях, где таких вещей нет. Цель состоит в том, чтобы сделать предположения, которые достаточно хороши, чтобы быть полезными.

    Это чем-то напоминает известное высказывание британского математика и профессора статистики Джорджа Э. П. Бокса о том, что «все модели ошибочны, но некоторые полезны».

    Цель ML никогда не состоит в том, чтобы делать «идеальные» предположения, потому что ML работает в тех областях, где таких вещей нет. Цель состоит в том, чтобы сделать предположения, которые достаточно хороши, чтобы быть полезными.

    Машинное обучение в значительной степени опирается на статистику. Например, когда мы обучаем нашу машину обучению, мы должны предоставить ей статистически значимую случайную выборку в качестве обучающих данных. Если обучающая выборка не случайна, мы рискуем получить шаблоны машинного обучения, которых на самом деле нет. А если обучающая выборка слишком мала (см. Закон больших чисел), мы не узнаем достаточно и можем даже прийти к неточным выводам. Например, попытка предсказать модели удовлетворенности в масштабах компании на основе только данных высшего руководства, вероятно, будет подвержена ошибкам.

    С этим пониманием давайте дадим нашей машине данные, которые мы дали выше, и пусть она их изучит. Сначала мы должны инициализировать наш предсказатель h (x) с некоторыми разумными значениями и. Теперь наш предиктор выглядит так, если поместить его над обучающим набором:

    .

    Если мы спросим этот предсказатель для удовлетворенности сотрудника, зарабатывающего 60 тысяч долларов, он даст рейтинг 27:

    .

    Очевидно, что это была ужасная догадка и что эта машина не очень многого знает.

    Итак, давайте дадим этому предсказателю все зарплаты из нашего обучающего набора и возьмем разницу между полученными прогнозируемыми оценками удовлетворенности и фактическими оценками удовлетворенности соответствующих сотрудников. Если мы произведем небольшое математическое волшебство (которое я опишу вкратце), мы сможем вычислить с очень высокой степенью уверенности, что значения 13,12 for и 0,61 for дадут нам лучший прогноз.

    И если мы повторим этот процесс, скажем, 1500 раз, наш предсказатель будет выглядеть так:

    На этом этапе, если мы повторим процесс, мы обнаружим это и больше не изменимся на сколько-нибудь заметную величину, и, таким образом, мы увидим, что система сошлась.Если мы не совершили ошибок, значит, мы нашли оптимальный предсказатель. Соответственно, если мы теперь снова спросим машину об оценке удовлетворенности сотрудника, который зарабатывает 60 тысяч долларов, он предсказывает оценку примерно 60.

    Теперь мы к чему-то приближаемся.

    Регрессия машинного обучения: заметка о сложности

    Приведенный выше пример технически представляет собой простую задачу одномерной линейной регрессии, которая в действительности может быть решена путем вывода простого нормального уравнения и полного пропуска этого процесса «настройки».Однако рассмотрим предсказатель, который выглядит так:

    Эта функция принимает входные данные в четырех измерениях и имеет множество полиномиальных членов. Вывести нормальное уравнение для этой функции — серьезная проблема. Многие современные задачи машинного обучения требуют тысячи или даже миллионов измерений данных для построения прогнозов с использованием сотен коэффициентов. Предсказание того, как будет выражен геном организма или каким будет климат через пятьдесят лет, — вот примеры таких сложных проблем.

    Многие современные задачи машинного обучения требуют тысячи или даже миллионов измерений данных для построения прогнозов с использованием сотен коэффициентов.

    К счастью, итеративный подход, используемый в системах машинного обучения, гораздо более устойчив к такой сложности. Вместо того, чтобы использовать грубую силу, система машинного обучения «нащупывает путь» к ответу. Для больших проблем это работает намного лучше. Хотя это не означает, что машинное обучение может решать все сколь угодно сложные проблемы (не может), оно представляет собой невероятно гибкий и мощный инструмент.

    Градиентный спуск — минимизация «неправильности»

    Давайте подробнее рассмотрим, как работает этот итеративный процесс. В приведенном выше примере, как убедиться, что с каждым шагом становится лучше, а не хуже? Ответ заключается в нашем «измерении ошибочности», о котором говорилось ранее, а также в небольшом исчислении.

    Мера ошибочности известна как функция стоимости (также известная как функция потерь ),. Входные данные представляют все коэффициенты, которые мы используем в нашем предсказателе.Так что в нашем случае это действительно пара и. дает нам математическое измерение того, насколько ошибается наш предсказатель, когда он использует данные значения и.

    Выбор функции стоимости — еще одна важная часть программы машинного обучения. В разных контекстах «неправота» может означать очень разные вещи. В нашем примере удовлетворенности сотрудников общепринятым стандартом является линейная функция наименьших квадратов:

    При использовании метода наименьших квадратов штраф за неправильное предположение увеличивается квадратично с разницей между предположением и правильным ответом, поэтому он действует как очень «строгий» критерий ошибочности.Функция стоимости вычисляет средний штраф по всем обучающим примерам.

    Итак, теперь мы видим, что наша цель — найти и для нашего предиктора h (x) , чтобы наша функция стоимости была как можно меньше. Мы обращаемся к силе исчисления для достижения этой цели.

    Рассмотрим следующий график функции стоимости для некоторой конкретной задачи машинного обучения:

    Здесь мы можем увидеть стоимость, связанную с разными значениями и. Мы видим, что график имеет небольшую чашу по форме.Нижняя часть чаши представляет собой наименьшую стоимость, которую наш предсказатель может дать нам на основе заданных данных обучения. Цель состоит в том, чтобы «скатиться с холма» и найти и соответствовать этой точке.

    Вот где в этом руководстве по машинному обучению используются вычисления. Чтобы это объяснение было управляемым, я не буду записывать здесь уравнения, но, по сути, мы берем градиент, который представляет собой пару производных от (одна больше и одна больше). Градиент будет разным для каждого значения и и говорит нам, какой «наклон холма» и, в частности, «какой путь вниз» для этих конкретных s.Например, когда мы вставляем наши текущие значения в градиент, он может сказать нам, что добавление небольшого количества и небольшое вычитание приведет нас в направлении нижней границы функции стоимости. Таким образом, мы добавляем немного к, и немного отнимаем от них, и вуаля! Мы завершили один раунд нашего алгоритма обучения. Наш обновленный предсказатель h (x) = + x будет давать более точные прогнозы, чем раньше. Наша машина стала немного умнее.

    Этот процесс переключения между вычислением текущего градиента и обновлением s на основе результатов известен как градиентный спуск.

    Это охватывает основную теорию, лежащую в основе большинства контролируемых систем машинного обучения. Но основные концепции можно применять по-разному, в зависимости от решаемой проблемы.

    Проблемы классификации в машинном обучении

    Под контролируемым ML две основные подкатегории:

    • Системы машинного обучения с регрессией: Системы, в которых прогнозируемое значение находится где-то в непрерывном спектре.Эти системы помогают нам с вопросами «Сколько?» или «Сколько?».
    • Классификация систем машинного обучения: Системы, в которых мы ищем ответ типа «да» или «нет», например «Является ли этот томер злокачественным?», «Соответствует ли этот файл cookie нашим стандартам качества?» И т.

    Как оказалось, лежащая в основе теория машинного обучения более или менее такая же. Основными отличиями являются конструкция предсказателя h (x) и конструкция функции стоимости.

    До сих пор наши примеры были сосредоточены на задачах регрессии, поэтому давайте теперь также рассмотрим пример классификации.

    Вот результаты исследования качества файлов cookie, где все обучающие примеры были помечены синим цветом как «хорошие cookie» ( y = 1 ) или как «плохие cookie» ( y = 0 ) красным.

    В классификации предсказатель регрессии не очень полезен. Обычно нам нужен предсказатель, который делает предположение где-то между 0 и 1. В классификаторе качества файлов cookie прогноз, равный 1, представляет собой очень уверенное предположение о том, что файл cookie является идеальным и совершенно аппетитным.Прогноз, равный 0, означает высокую степень уверенности в том, что cookie-файлы создают неудобства для индустрии cookie-файлов. Значения, попадающие в этот диапазон, представляют меньшую уверенность, поэтому мы могли бы спроектировать нашу систему таким образом, чтобы прогноз 0,6 означал «Чувак, это сложный вызов, но я соглашусь, да, вы можете продать этот файл cookie», в то время как значение точно в среднее значение 0,5 может представлять полную неопределенность. Не всегда так распределяется уверенность в классификаторе, но это очень распространенный дизайн, который работает для целей нашей иллюстрации.

    Оказывается, есть хорошая функция, которая хорошо фиксирует это поведение. Это называется сигмовидной функцией, g (z) , и выглядит это примерно так:

    z — это некоторое представление наших входных данных и коэффициентов, например:

    , чтобы наш предсказатель стал:

    Обратите внимание, что сигмоидальная функция преобразует наш вывод в диапазон от 0 до 1.

    Логика построения функции затрат также отличается по классификации.Мы снова спрашиваем: «Что значит неправильное предположение?» и на этот раз очень хорошее эмпирическое правило состоит в том, что если правильное предположение было 0, а мы угадали 1, то мы были полностью и совершенно неправы, и наоборот. Поскольку нельзя ошибаться больше, чем абсолютно ошибаться, наказание в этом случае будет огромным. В качестве альтернативы, если правильное предположение было 0, а мы угадали 0, наша функция стоимости не должна добавлять какие-либо затраты каждый раз, когда это происходит. Если предположение было верным, но мы не были полностью уверены (например, y = 1 , но h (x) = 0.8 ), это должно быть связано с небольшими затратами, и если наше предположение было неверным, но мы не были полностью уверены (например, y = 1 , но h (x) = 0,3 ), это должно было повлечь за собой значительные затраты. , но не настолько, как если бы мы были полностью неправы.

    Это поведение фиксируется функцией журнала, например:

    Опять же, функция стоимости дает нам среднюю стоимость по всем нашим обучающим примерам.

    Итак, здесь мы описали, чем предиктор h (x) и функция стоимости различаются между регрессией и классификацией, но градиентный спуск по-прежнему работает нормально.

    Предиктор классификации можно визуализировать, нарисовав граничную линию; то есть барьер, при котором прогноз изменяется с «да» (прогноз более 0,5) на «нет» (прогноз менее 0,5). Благодаря хорошо спроектированной системе наши данные cookie могут генерировать границу классификации, которая выглядит следующим образом:

    Теперь это машина, которая кое-что знает о печенье!

    Введение в нейронные сети

    Ни одно обсуждение машинного обучения не будет полным без хотя бы упоминания нейронных сетей.Нейронные сети не только предлагают чрезвычайно мощный инструмент для решения очень сложных задач, но они также предлагают увлекательные подсказки о работе нашего собственного мозга и интригующие возможности для создания действительно интеллектуальных машин в один прекрасный день.

    Нейронные сети хорошо подходят для моделей машинного обучения, в которых количество входных данных огромно. Вычислительные затраты на решение такой проблемы слишком велики для типов систем, которые мы обсуждали выше. Однако оказывается, что нейронные сети можно эффективно настроить с помощью методов, которые в принципе поразительно похожи на градиентный спуск.

    Подробное обсуждение нейронных сетей выходит за рамки этого руководства, но я рекомендую ознакомиться с нашим предыдущим постом по этой теме.

    Машинное обучение без учителя

    Неконтролируемое машинное обучение обычно занимается поиском взаимосвязей в данных. В этом процессе не используются обучающие примеры. Вместо этого системе предоставляется набор данных и задача поиска закономерностей и корреляций в них. Хороший пример — определение сплоченных групп друзей в данных социальных сетей.

    Используемые для этого алгоритмы машинного обучения сильно отличаются от алгоритмов, используемых для обучения с учителем, и эта тема заслуживает отдельной публикации. Тем не менее, чтобы кое-что обсудить, взгляните на алгоритмы кластеризации, такие как k-среднее, а также на системы уменьшения размерности, такие как анализ основных компонентов. В нашей предыдущей публикации о больших данных некоторые из этих тем также обсуждались более подробно.

    Заключение

    Здесь мы рассмотрели большую часть базовой теории, лежащей в основе области машинного обучения, но, конечно, мы коснулись лишь поверхности.

    Имейте в виду, что для того, чтобы действительно применить теории, содержащиеся в этом введении, к реальным примерам машинного обучения, необходимо гораздо более глубокое понимание обсуждаемых здесь тем. В машинном обучении есть много тонкостей и ловушек, а также множество способов сбиться с пути с помощью того, что кажется идеально настроенной мыслящей машиной. Практически со всеми частями базовой теории можно бесконечно играть и изменять, и результаты часто бывают захватывающими. Многие из них перерастают в совершенно новые области обучения, которые лучше подходят для решения конкретных задач.

    Очевидно, что машинное обучение — невероятно мощный инструмент. В ближайшие годы он обещает помочь решить некоторые из наших самых насущных проблем, а также откроет совершенно новые миры возможностей для компаний, занимающихся наукой о данных. Спрос на инженеров машинного обучения будет только расти, предлагая невероятные шансы стать частью чего-то большого. Я надеюсь, вы подумаете о том, чтобы принять участие в акции!


    Благодарность

    Эта статья в значительной степени основана на материалах, преподаваемых профессором Стэнфорда докторомЭндрю Нг в своем бесплатном открытом курсе машинного обучения. Курс подробно описывает все, что обсуждается в этой статье, и дает множество практических советов для практикующих ML. Я не могу рекомендовать этот курс достаточно высоко для тех, кто заинтересован в дальнейшем изучении этой увлекательной области.

    Простое введение в машинное обучение | Джозеф Рокка

    Но что такое машинное обучение? Что скрывается за этими волшебными алгоритмами? И как они используют данные, чтобы так хорошо работать?

    Формально машинное обучение — это наука о том, как заставить компьютеры выполнять задачу без явного программирования .Другими словами, большая разница между классическими алгоритмами и алгоритмами машинного обучения заключается в том, как мы их определяем.

    Классические алгоритмы дают точные и полные правила для выполнения задачи. Алгоритмы машинного обучения содержат общие рекомендации, которые определяют модель вместе с данными. Эти данные должны содержать недостающую информацию, необходимую модели для выполнения задачи. Таким образом, алгоритм машинного обучения может выполнить свою задачу, когда модель была скорректирована с учетом данных.Мы говорим, что «подгоняем модель к данным» или что «модель должна быть обучена на данных».

    Проиллюстрируем это на простом примере. Допустим, мы хотим спрогнозировать цену дома на основе размера дома, размера его сада и количества комнат в нем.

    Особенности, которые мы собираемся рассмотреть в нашем примере с ценами на дом.

    Мы могли бы попытаться построить классический алгоритм, который решает эту проблему. Этот алгоритм должен взять три характеристики дома и вернуть прогнозируемую цену на основе явного правила.В этом примере должна быть известна точная формула ценообразования и она должна быть явно закодирована. Но на практике эта формула часто не известна.

    Для нашего примера ценообразования дома классический подход к программированию будет заключаться в явном кодировании формулы, которая дает цену дома в зависимости от трех рассматриваемых нами характеристик.

    С другой стороны, мы могли бы построить алгоритм машинного обучения. Во-первых, такой алгоритм определил бы модель, которая может быть неполной формулой, созданной на основе наших ограниченных знаний. Затем модель будет скорректирована путем обучения на приведенных примерах цен на жилье . При этом мы объединяем модель с некоторыми данными.

    В нашем примере ценообразования для дома подход машинного обучения будет заключаться в определении модели, которая содержит частичные сведения о формуле ценообразования для дома и использует доступные данные для «определения» модели (мы подбираем модель по данным).

    В общем, машинное обучение невероятно полезно для сложных задач, когда у нас есть неполная информация или информация, которую слишком сложно кодировать вручную. В этих случаях мы можем предоставить информацию, которая у нас есть, для нашей модели, и позволить этой модели «изучить» недостающую информацию, которая ей нужна. Затем алгоритм будет использовать статистические методы для извлечения недостающих знаний непосредственно из данных.

    Введение в машинное обучение

    Введение

    Машинное обучение — это подраздел искусственного интеллекта (ИИ). Обычно цель машинного обучения — понять структуру данных и приспособить эти данные к моделям, которые могут быть поняты и использованы людьми.

    Хотя машинное обучение — это область компьютерных наук, оно отличается от традиционных вычислительных подходов. В традиционных вычислениях алгоритмы — это наборы явно запрограммированных инструкций, используемых компьютерами для вычислений или решения проблем. Вместо этого алгоритмы машинного обучения позволяют компьютерам обучаться на вводе данных и использовать статистический анализ для вывода значений, которые попадают в определенный диапазон. Благодаря этому машинное обучение помогает компьютерам создавать модели на основе выборочных данных, чтобы автоматизировать процессы принятия решений на основе вводимых данных.

    Любой пользователь технологий сегодня может извлечь выгоду из машинного обучения. Технология распознавания лиц позволяет платформам социальных сетей помогать пользователям отмечать и обмениваться фотографиями друзей. Технология оптического распознавания символов (OCR) преобразует изображения текста в подвижный шрифт. Системы рекомендаций, основанные на машинном обучении, предлагают, какие фильмы или телешоу смотреть дальше, в зависимости от предпочтений пользователя. Автомобили с автоматическим управлением, которые используют машинное обучение для навигации, вскоре могут стать доступными для потребителей.

    Машинное обучение — это постоянно развивающаяся область. В связи с этим следует учитывать некоторые факторы, когда вы работаете с методологиями машинного обучения или анализируете влияние процессов машинного обучения.

    В этом руководстве мы рассмотрим распространенные методы машинного обучения с учителем и без учителя, а также общие алгоритмические подходы к машинному обучению, включая алгоритм k-ближайшего соседа, обучение по дереву решений и глубокое обучение.Мы выясним, какие языки программирования чаще всего используются в машинном обучении, и расскажем о положительных и отрицательных характеристиках каждого из них. Кроме того, мы обсудим предубеждения, сохраняемые алгоритмами машинного обучения, и рассмотрим, что можно иметь в виду, чтобы предотвратить эти предубеждения при построении алгоритмов.

    Методы машинного обучения

    В машинном обучении задачи обычно делятся на широкие категории. Эти категории основаны на том, как происходит обучение или как обратная связь об обучении передается в разработанную систему.

    Двумя наиболее широко применяемыми методами машинного обучения являются контролируемое обучение , которое обучает алгоритмы на основе примеров входных и выходных данных, помеченных людьми, и неконтролируемое обучение , которое предоставляет алгоритм без помеченных данных, чтобы позволить ему найти структуру в своих входных данных. Давайте рассмотрим эти методы более подробно.

    Обучение с учителем

    При обучении с учителем компьютеру предоставляются примеры входов, которые помечены желаемыми выходными данными.Цель этого метода состоит в том, чтобы алгоритм мог «обучаться», сравнивая свой фактический результат с «обученными» выходными данными, чтобы находить ошибки и соответствующим образом изменять модель. Поэтому контролируемое обучение использует шаблоны для прогнозирования значений меток для дополнительных немаркированных данных.

    Например, при обучении с учителем в алгоритм могут быть переданы данные с изображениями акул, обозначенными как , рыба, , и изображениями океанов, обозначенными как , вода, . Обучаясь на этих данных, алгоритм контролируемого обучения должен иметь возможность позже идентифицировать немаркированные изображения акул как рыб и немаркированные изображения океана как воды .

    Распространенным вариантом использования контролируемого обучения является использование исторических данных для прогнозирования статистически вероятных будущих событий. Он может использовать историческую информацию о фондовом рынке, чтобы предвидеть предстоящие колебания, или использоваться для фильтрации спама. При обучении с учителем фотографии собак с тегами могут использоваться в качестве входных данных для классификации фотографий собак без тегов.

    Обучение без учителя

    При обучении без учителя данные не маркируются, поэтому алгоритму обучения остается найти общие черты среди входных данных.Поскольку немаркированные данные более многочисленны, чем маркированные, методы машинного обучения, которые облегчают обучение без учителя, особенно ценны.

    Цель обучения без учителя может быть такой же простой, как обнаружение скрытых закономерностей в наборе данных, но также может преследовать цель изучения функций, что позволяет вычислительной машине автоматически обнаруживать представления, необходимые для классификации необработанных данных.

    Обучение без учителя обычно используется для транзакционных данных.У вас может быть большой набор данных о клиентах и ​​их покупках, но, как человек, вы, вероятно, не сможете понять, какие похожие атрибуты можно извлечь из профилей клиентов и их типов покупок. С помощью этих данных, введенных в алгоритм обучения без учителя, можно определить, что женщины определенного возраста, покупающие мыло без запаха, могут быть беременными, и поэтому маркетинговая кампания, связанная с беременностью и товарами для детей, может быть нацелена на эту аудиторию, увеличить количество покупок.

    Без получения «правильного» ответа методы обучения без учителя могут рассматривать сложные данные, которые являются более обширными и, казалось бы, не связанными друг с другом, чтобы систематизировать их потенциально значимым образом. Неконтролируемое обучение часто используется для обнаружения аномалий, в том числе для мошеннических покупок по кредитным картам, и для рекомендательных систем, которые рекомендуют, какие продукты покупать дальше. При обучении без учителя немаркированные фотографии собак могут использоваться в качестве входных данных для алгоритма, чтобы находить сходства и классифицировать фотографии собак вместе.

    подходов

    Как область, машинное обучение тесно связано с вычислительной статистикой, поэтому наличие базовых знаний в области статистики полезно для понимания и использования алгоритмов машинного обучения.

    Для тех, кто, возможно, не изучал статистику, может быть полезно сначала определить корреляцию и регрессию, поскольку они являются обычно используемыми методами для исследования взаимосвязи между количественными переменными. Корреляция — это мера связи между двумя переменными, которые не обозначены как зависимые или независимые. Регрессия на базовом уровне используется для изучения взаимосвязи между одной зависимой и одной независимой переменной. Поскольку статистику регрессии можно использовать для прогнозирования зависимой переменной, когда независимая переменная известна, регрессия обеспечивает возможности прогнозирования.

    Подходы к машинному обучению постоянно развиваются. Для наших целей мы рассмотрим несколько популярных подходов, которые используются в машинном обучении на момент написания статьи.

    k-ближайший сосед

    Алгоритм k-ближайшего соседа — это модель распознавания образов, которую можно использовать как для классификации, так и для регрессии. Часто обозначаемое как k-NN, k в k-ближайшем соседе является положительным целым числом, которое обычно невелико. При классификации или регрессии входные данные будут состоять из k ближайших обучающих примеров в пространстве.

    Мы остановимся на классификации k-NN. В этом методе выходом является членство в классе.Это назначит новый объект классу, наиболее часто встречающемуся среди его ближайших k соседей. В случае k = 1 объект относится к классу единственного ближайшего соседа.

    Рассмотрим пример k-ближайшего соседа. На приведенной ниже диаграмме изображены объекты с голубыми ромбами и объекты оранжевой звезды. Они относятся к двум отдельным классам: классу бриллиантов и классу звезд.

    Когда в пространство добавляется новый объект — в данном случае зеленое сердце — мы хотим, чтобы алгоритм машинного обучения отнес сердце к определенному классу.

    Когда мы выбираем k = 3, алгоритм найдет трех ближайших соседей зеленого сердца, чтобы отнести его к классу бриллиантов или классу звезд.

    На нашей диаграмме три ближайших соседа зеленого сердца — это один ромб и две звезды. Следовательно, алгоритм отнесет сердце к звездному классу.

    Среди самых основных алгоритмов машинного обучения k-ближайший сосед считается типом «ленивого обучения», поскольку обобщение за пределами обучающих данных не происходит до тех пор, пока в систему не будет сделан запрос.

    Обучение дереву решений

    Для общего использования деревья решений используются для визуального представления решений и демонстрации или информирования о принятии решений. При работе с машинным обучением и интеллектуальным анализом данных деревья решений используются в качестве модели прогнозирования. Эти модели сопоставляют наблюдения о данных с выводами о целевом значении данных.

    Целью изучения дерева решений является создание модели, которая предсказывает значение цели на основе входных переменных.

    В модели прогнозирования атрибуты данных, которые определяются путем наблюдения, представлены ветвями, а выводы о целевом значении данных представлены в виде листьев.

    При «изучении» дерева исходные данные разделяются на подмножества на основе теста значения атрибута, который повторяется рекурсивно для каждого производного подмножества. Как только подмножество в узле получит значение, эквивалентное его целевому значению, процесс рекурсии будет завершен.

    Давайте рассмотрим пример различных условий, по которым можно определить, стоит ли кому-то ловить рыбу. Это включает в себя погодные условия, а также условия атмосферного давления.

    В упрощенном дереве решений выше пример классифицируется путем сортировки его по дереву до соответствующего конечного узла.Затем возвращается классификация, связанная с конкретным листом, которая в данном случае является либо Да, , либо Нет, . Дерево классифицирует условия дня в зависимости от того, подходит оно для рыбалки.

    Настоящий набор данных дерева классификации будет иметь гораздо больше функций, чем описано выше, но отношения должны быть простыми для определения. При работе с изучением дерева решений необходимо сделать несколько определений, в том числе, какие функции выбрать, какие условия использовать для разделения и понять, когда дерево решений достигло четкого конца.

    Глубокое обучение

    Глубокое обучение пытается имитировать, как человеческий мозг может обрабатывать световые и звуковые стимулы для зрения и слуха. Архитектура глубокого обучения основана на биологических нейронных сетях и состоит из нескольких уровней в искусственной нейронной сети, состоящей из оборудования и графических процессоров.

    Глубокое обучение использует каскад уровней нелинейных блоков обработки для извлечения или преобразования функций (или представлений) данных. Выход одного слоя служит входом следующего слоя.В глубоком обучении алгоритмы могут быть либо контролируемыми и служить для классификации данных, либо неконтролируемыми и выполнять анализ шаблонов.

    Среди алгоритмов машинного обучения, которые в настоящее время используются и разрабатываются, глубокое обучение поглощает больше всего данных и смогло превзойти людей в некоторых когнитивных задачах. Благодаря этим атрибутам глубокое обучение стало подходом со значительным потенциалом в области искусственного интеллекта

    .

    В компьютерном зрении и распознавании речи были достигнуты значительные успехи благодаря подходам глубокого обучения.IBM Watson — хорошо известный пример системы, использующей глубокое обучение.

    языков программирования

    При выборе языка для специализации в машинном обучении вы можете принять во внимание навыки, перечисленные в текущих объявлениях о вакансиях, а также библиотеки, доступные на разных языках, которые можно использовать для процессов машинного обучения.

    Из данных, взятых из объявлений о вакансиях на сайте Indeed.com в декабре 2016 года, можно сделать вывод, что Python является наиболее востребованным языком программирования в профессиональной сфере машинного обучения.За Python следует Java, затем R, затем C ++.

    Популярность Python может быть связана с расширением разработки фреймворков глубокого обучения, доступных в последнее время для этого языка, включая TensorFlow, PyTorch и Keras. Как язык с читаемым синтаксисом и возможностью использования в качестве языка сценариев, Python оказывается мощным и простым как для предварительной обработки данных, так и для непосредственной работы с данными. Библиотека машинного обучения scikit-learn построена на основе нескольких существующих пакетов Python, с которыми разработчики Python, возможно, уже знакомы, а именно NumPy, SciPy и Matplotlib.

    Чтобы начать работу с Python, вы можете прочитать нашу серию руководств «Как кодировать на Python 3» или прочитать, в частности, «Как создать классификатор машинного обучения на Python с помощью scikit-learn» или «Как выполнить передачу нейронного стиля» с Python 3 и PyTorch ».

    Java широко используется в корпоративном программировании и обычно используется разработчиками интерфейсных настольных приложений, которые также работают над машинным обучением на уровне предприятия. Обычно это не лучший выбор для новичков в программировании, которые хотят узнать о машинном обучении, но те, кто имеет опыт разработки Java, предпочитают применять к машинному обучению.Что касается приложений машинного обучения в промышленности, Java обычно используется больше, чем Python для сетевой безопасности, в том числе в сценариях использования кибератак и обнаружения мошенничества.

    Среди библиотек машинного обучения для Java: Deeplearning4j, распределенная библиотека глубокого обучения с открытым исходным кодом, написанная как для Java, так и для Scala; MALLET ( MA chine L заработок для L anguag E T oolkit) позволяет применять приложения машинного обучения для текста, включая обработку естественного языка, моделирование тем, классификацию документов и кластеризацию; и Weka, набор алгоритмов машинного обучения для использования в задачах интеллектуального анализа данных.

    R — это язык программирования с открытым исходным кодом, используемый в основном для статистических вычислений. Его популярность за последние годы выросла, и многие в академических кругах предпочитают его. R обычно не используется в промышленных производственных средах, но получил широкое распространение в промышленных приложениях из-за возросшего интереса к науке о данных. Популярные пакеты для машинного обучения в R включают Caret (сокращение от C lassification A nd RE gression T raining) для создания прогнозных моделей, randomForest для классификации и регрессии и e1071, который включает функции для статистики и теории вероятностей. .

    C ++ — предпочтительный язык для машинного обучения и искусственного интеллекта в играх или приложениях для роботов (включая перемещение роботов). Разработчики оборудования для встраиваемых вычислений и инженеры-электронщики с большей вероятностью отдают предпочтение C ++ или C в приложениях для машинного обучения из-за их знаний и уровня контроля над языком. Некоторые библиотеки машинного обучения, которые вы можете использовать с C ++, включают масштабируемый mlpack, Dlib, предлагающий широкий спектр алгоритмов машинного обучения, а также модульную Shark с открытым исходным кодом.

    Человеческие предубеждения

    Хотя данные и компьютерный анализ могут заставить нас думать, что мы получаем объективную информацию, это не так; основание на данных не означает, что результаты машинного обучения нейтральны. Человеческая предвзятость играет роль в том, как данные собираются, организовываются и, в конечном итоге, в алгоритмах, которые определяют, как машинное обучение будет взаимодействовать с этими данными.

    Если, например, люди предоставляют изображения для «рыбы» в качестве данных для обучения алгоритма, и эти люди в подавляющем большинстве выбирают изображения золотой рыбки, компьютер может не классифицировать акулу как рыбу.Это создаст предубеждение против акул как рыб, и акулы не будут считаться рыбами.

    При использовании исторических фотографий ученых в качестве данных для обучения компьютер может неправильно классифицировать ученых, которые также являются цветными людьми или женщинами. Фактически, недавнее рецензируемое исследование показало, что программы искусственного интеллекта и машинного обучения демонстрируют человеческие предубеждения, включая расовые и гендерные предрассудки. См., Например, «Семантика, полученная автоматически из языковых корпусов, содержит человеческие предубеждения» и «Мужчины также любят ходить по магазинам: уменьшение гендерных предубеждений с помощью ограничений на уровне корпуса» [PDF].

    Поскольку машинное обучение все чаще используется в бизнесе, невыявленные предубеждения могут увековечить системные проблемы, которые могут помешать людям иметь право на получение ссуд, показывать объявления о высокооплачиваемых вакансиях или получать варианты доставки в тот же день.

    Поскольку человеческая предвзятость может негативно повлиять на других, чрезвычайно важно знать о ней, а также работать над ее устранением в максимально возможной степени. Один из способов добиться этого — убедиться, что над проектом работают разные люди, а разные люди тестируют и проверяют его.Другие призвали регулирующие третьи стороны контролировать и проверять алгоритмы, создавать альтернативные системы, которые могут обнаруживать предвзятость, и проводить этические проверки в рамках планирования проектов по науке о данных. Повышение осведомленности о предвзятостях, осознание наших собственных подсознательных предубеждений и структурирование справедливости в наших проектах и ​​конвейерах машинного обучения могут помочь в борьбе с предвзятостью в этой области.

    Заключение

    В этом руководстве были рассмотрены некоторые варианты использования машинного обучения, общие методы и популярные подходы, используемые в этой области, подходящие языки программирования для машинного обучения, а также рассмотрены некоторые моменты, которые следует учитывать с точки зрения неосознанных предубеждений, воспроизводимых в алгоритмах.

    Поскольку машинное обучение — это область, которая постоянно обновляется, важно помнить, что алгоритмы, методы и подходы будут продолжать меняться.

    Помимо чтения наших руководств «Как создать классификатор машинного обучения на Python с помощью scikit-learn» или «Как выполнить передачу нейронного стиля с помощью Python 3 и PyTorch», вы можете узнать больше о работе с данными в технологической отрасли. прочитав наши руководства по анализу данных.

    Введение в машинное обучение

    Термин машинное обучение впервые был придуман в 1950-х годах, когда пионер искусственного интеллекта Артур Сэмюэл создал первую самообучающуюся систему для игры в шашки.Он заметил, что чем больше играла система, тем лучше она работала.

    Благодаря достижениям в статистике и информатике, а также улучшенным наборам данных и развитию нейронных сетей, машинное обучение в последние годы действительно набирает обороты.

    Сегодня, понимаете вы это или нет, машинное обучение повсюду — автоматический перевод, распознавание изображений, технология голосового поиска, автомобили с автономным управлением и многое другое.

    В этом руководстве мы объясним, как работает машинное обучение и как вы можете использовать его в своем бизнесе.Мы также познакомим вас с инструментами машинного обучения и покажем, как начать работу с машинным обучением без кода.

    Прочтите, перейдите к разделу или добавьте этот пост в закладки для дальнейшего использования:

    1. Что такое машинное обучение?
    2. Типы машинного обучения
    3. Как работает машинное обучение
    4. Примеры использования машинного обучения
    5. Начало работы с инструментами машинного обучения

    Что такое машинное обучение?

    Машинное обучение (ML) — это ветвь искусственного интеллекта (AI), которая позволяет компьютерам «самообучаться» на основе данных обучения и улучшаться с течением времени без явного программирования.Алгоритмы машинного обучения способны обнаруживать закономерности в данных и учиться на них, чтобы делать собственные прогнозы. Короче говоря, алгоритмы и модели машинного обучения учатся на собственном опыте.

    В традиционном программировании компьютерный инженер пишет серию инструкций, которые инструктируют компьютер, как преобразовать входные данные в желаемый результат. Инструкции в основном основаны на структуре IF-THEN: при выполнении определенных условий программа выполняет определенное действие.

    Машинное обучение, с другой стороны, представляет собой автоматизированный процесс, который позволяет машинам решать проблемы с минимальным участием человека или без него и предпринимать действия на основе прошлых наблюдений.

    Хотя искусственный интеллект и машинное обучение часто используются как взаимозаменяемые, это две разные концепции. ИИ — это более широкая концепция: машины принимают решения, осваивают новые навыки и решают проблемы аналогично людям, тогда как машинное обучение — это подмножество ИИ, которое позволяет интеллектуальным системам автономно изучать новые вещи из данных.

    Вместо программирования алгоритмов машинного обучения для выполнения задач вы можете предоставить им примеры помеченных данных (известных как данные обучения), которые помогут им выполнять вычисления, обрабатывать данные и автоматически определять закономерности.

    Проще говоря, главный специалист по решениям Google описывает машинное обучение как причудливую этикетировочную машину. Научив машины маркировать такие вещи, как яблоки и груши, показывая им образцы фруктов, в конечном итоге они начнут маркировать яблоки и груши без какой-либо помощи — при условии, что они научились на соответствующих и точных обучающих примерах.

    Машинное обучение может работать с огромными объемами данных и работать гораздо точнее, чем люди. Это может помочь вам сэкономить время и деньги на задачах и анализах, таких как устранение проблемных точек клиентов для повышения их удовлетворенности, поддержка автоматизации запросов и интеллектуального анализа данных из внутренних источников и из Интернета.

    Но что стоит за процессом машинного обучения?

    Типы машинного обучения

    Чтобы понять, как работает машинное обучение, вам нужно изучить различные методы и алгоритмы машинного обучения, которые в основном представляют собой наборы правил, которые машины используют для принятия решений. Ниже вы найдете пять наиболее распространенных и наиболее часто используемых типов машинного обучения:

    Обучение с учителем

    Алгоритмы обучения с учителем и модели обучения с учителем делают прогнозы на основе размеченных данных обучения.Каждая обучающая выборка включает в себя входные и желаемые выходные данные. Алгоритм контролируемого обучения анализирует эти образцы данных и делает вывод — по сути, обоснованное предположение при определении меток для невидимых данных.

    Это наиболее распространенный и популярный подход к машинному обучению. Он находится под «контролем», потому что в эти модели необходимо вводить вручную размеченные образцы данных, чтобы на них учиться. Данные помечаются, чтобы сообщить машине, какие шаблоны (похожие слова и изображения, категории данных и т. Д.) Она должна искать и распознавать связи.

    Например, если вы хотите автоматически обнаруживать спам, вам нужно будет загрузить в алгоритм машинного обучения примеры писем, которые вы хотите классифицировать как спам, и другие, которые важны и не должны считаться спамом.

    Это подводит нас к следующему пункту — двум типам контролируемых обучающих задач: классификация и регрессия .

    Классификация в контролируемом машинном обучении

    В контролируемом обучении используется ряд алгоритмов классификации, среди которых наиболее распространены вспомогательные векторные машины (SVM) и наивный байесовский метод.

    В задачах классификации выходным значением является категория с конечным числом вариантов. Например, с помощью этой бесплатной предварительно обученной модели анализа настроений вы можете автоматически классифицировать данные как положительные, отрицательные или нейтральные.

    Допустим, вы хотите проанализировать разговоры со службой поддержки, чтобы понять эмоции клиентов: счастливы они или разочарованы после обращения в вашу службу поддержки? Классификатор анализа настроений может автоматически помечать ответы для вас, как показано ниже:

    Тест с вашим собственным текстом

    Разочаровывающий опыт! Они оставили меня в ожидании на 20 минут и не смогли решить мои проблемы.Классифицируйте текст

    В этом примере модель анализа настроений помечает разочаровывающий опыт поддержки клиентов как «Отрицательный» .

    Регрессия в управляемом машинном обучении

    В задачах регрессии ожидаемым результатом является непрерывное число. Эта модель используется для прогнозирования величин, таких как вероятность того, что событие произойдет, что означает, что выходные данные могут иметь любое числовое значение в определенном диапазоне. Прогнозирование стоимости недвижимости в определенном районе или распространение COVID19 в конкретном регионе являются примерами проблем регрессии.

    Неконтролируемое обучение

    Алгоритмы неконтролируемого обучения раскрывают идеи и взаимосвязи в немаркированных данных. В этом случае модели получают входные данные, но желаемые результаты неизвестны, поэтому им приходится делать выводы на основе косвенных свидетельств, без каких-либо указаний или обучения. Модели не обучены «правильному ответу», поэтому они должны находить закономерности самостоятельно.

    Одним из наиболее распространенных типов обучения без учителя является кластеризация, которая состоит из группировки похожих данных.Этот метод в основном используется для исследовательского анализа и может помочь вам обнаружить скрытые закономерности или тенденции.

    Например, группа маркетинга компании электронной коммерции может использовать кластеризацию для улучшения сегментации клиентов. Учитывая набор данных о доходах и расходах, модель машинного обучения может определять группы клиентов со схожим поведением.

    Сегментация позволяет маркетологам адаптировать стратегии для каждого ключевого рынка. Они могут предлагать акции и скидки для клиентов с низким доходом, которые много тратят на сайте, как способ вознаградить лояльность и улучшить удержание.

    Полу-контролируемое обучение

    При полу-контролируемом обучении данные обучения разделяются на две части. Небольшой объем помеченных данных и больший набор немаркированных данных.

    В этом случае модель использует помеченные данные в качестве входных, чтобы делать выводы о немаркированных данных, обеспечивая более точные результаты, чем обычные модели контролируемого обучения.

    Этот подход набирает популярность, особенно для задач, связанных с большими наборами данных, таких как классификация изображений. Полу-контролируемое обучение не требует большого количества помеченных данных, поэтому его можно быстрее настроить, более рентабельно, чем методы контролируемого обучения, и он идеально подходит для предприятий, которые получают огромные объемы данных.

    Обучение с подкреплением

    Обучение с подкреплением (RL) касается того, как программный агент (или компьютерная программа) должен действовать в ситуации, чтобы максимизировать вознаграждение. Короче говоря, усиленные модели машинного обучения пытаются определить наилучший путь, которым они должны следовать в данной ситуации. Они делают это методом проб и ошибок. Поскольку данных для обучения нет, машины учатся на своих ошибках и выбирают действия, которые приводят к лучшему решению или максимальной награде.

    Этот метод машинного обучения в основном используется в робототехнике и играх. Видеоигры демонстрируют четкую взаимосвязь между действиями и результатами и могут измерять успех, ведя счет. Следовательно, это отличный способ улучшить алгоритмы обучения с подкреплением.

    Глубокое обучение (DL)

    Модели глубокого обучения могут быть контролируемыми, частично контролируемыми или неконтролируемыми (или комбинацией любого из трех). Это передовые алгоритмы машинного обучения, которые используются техническими гигантами, такими как Google, Microsoft и Amazon, для запуска целых систем и обеспечения электропитания, например беспилотных автомобилей и умных помощников.

    Глубокое обучение основано на искусственных нейронных сетях (ИНС), типе компьютерной системы, которая имитирует работу человеческого мозга. Алгоритмы глубокого обучения или нейронные сети состоят из нескольких уровней взаимосвязанных нейронов, что позволяет нескольким системам работать вместе одновременно и шаг за шагом.

    Когда модель получает входные данные — которые могут быть изображением, текстом, видео или аудио — и ее просят выполнить задачу (например, классификацию текста с машинным обучением), данные проходят через каждый уровень, позволяя модели учиться постепенно.Это как человеческий мозг, который развивается с возрастом и опытом!

    Глубокое обучение широко используется в процессах распознавания изображений, речи и обработки естественного языка (НЛП). Модели глубокого обучения обычно работают лучше, чем другие алгоритмы машинного обучения, для сложных проблем и массивных наборов данных. Однако обычно им требуются миллионы и миллионы единиц обучающих данных, поэтому на их обучение уходит довольно много времени.

    Как работает машинное обучение

    Чтобы понять, как работает машинное обучение, сначала вам нужно знать, что такое «тег».Например, для обучения распознаванию изображений вы должны «пометить» фотографии собак, кошек, лошадей и т. Д. Соответствующим именем животного. Это также называется маркировкой данных.

    При работе с анализом текста машинного обучения вы должны заполнить модель анализа текста данными обучения текста, а затем пометить ее, в зависимости от того, какой анализ вы выполняете. Если вы работаете с анализом настроений, вы должны наполнить модель, например, отзывами клиентов, и обучить модель, пометив каждый комментарий как положительный, нейтральный и отрицательный.

    Взгляните на диаграмму ниже:

    В самом упрощенном виде процесс машинного обучения состоит из трех этапов:

    1. Подача входных данных для обучения модели машинного обучения. В нашем случае это могут быть комментарии клиентов из социальных сетей или данные службы поддержки.
    2. Пометьте обучающие данные с желаемым выходом. В этом случае сообщите своей модели анализа настроений, является ли каждый комментарий или фрагмент данных Положительным, Нейтральным, или Отрицательным .Модель преобразует обучающие данные в текстовые векторы — числа, которые представляют функции данных.
    3. Протестируйте свою модель, загрузив в нее тестовые (или невидимые) данные. Алгоритмы обучаются связывать векторы признаков с тегами на основе вручную помеченных образцов, а затем учатся делать прогнозы при обработке невидимых данных.

    Если после тестирования ваша новая модель соответствует вашим стандартам и критериям, она готова к работе со всеми видами новых данных. Если он не работает точно, вам нужно продолжить тренировку.Более того, по мере того как человеческий язык и отраслевой язык трансформируются и изменяются, вам может потребоваться постоянно обучать вашу модель новой информации.

    Сценарии использования машинного обучения

    Приложения и сценарии использования машинного обучения почти бесконечны, особенно когда мы начинаем больше работать из дома (или создаем гибридные офисы), становимся более привязанными к нашим смартфонам и используем технологии на основе машинного обучения для передвижения.

    Машинное обучение в финансах, здравоохранении, гостиничном бизнесе, правительстве и других сферах уже регулярно используется.Компании начинают видеть преимущества использования инструментов машинного обучения для улучшения своих процессов, получения ценной информации из неструктурированных данных и автоматизации задач, которые в противном случае потребовали бы часов утомительной ручной работы (которая обычно дает гораздо менее точные результаты).

    Например, UberEats использует машинное обучение для оценки оптимального времени, в течение которого водители могут забрать заказы на еду, а Spotify использует машинное обучение, чтобы предлагать персонализированный контент и персонализированный маркетинг.Кроме того, Dell использует анализ текста машинного обучения, чтобы сэкономить сотни часов на анализе тысяч опросов сотрудников, чтобы прислушаться к голосу сотрудников (VoE) и повысить удовлетворенность сотрудников.

    Как вы думаете, Google Maps прогнозирует пики трафика, а Netflix создает персонализированные рекомендации по фильмам и даже информирует о создании нового контента? Конечно, с помощью машинного обучения.

    Существует множество различных приложений машинного обучения, которые могут принести пользу вашему бизнесу бесчисленными способами.Вам просто нужно определить стратегию, которая поможет вам решить, как лучше всего внедрить машинное обучение в существующие процессы. А пока вот несколько распространенных примеров использования машинного обучения и приложений, которые могут вызвать некоторые идеи:

    • Мониторинг социальных сетей
    • Обслуживание клиентов и их удовлетворенность
    • Распознавание изображений
    • Виртуальные помощники
    • Рекомендации по продукту
    • Торговля на фондовом рынке
    • Медицинский диагноз

    Мониторинг социальных сетей

    С помощью машинного обучения вы можете отслеживать упоминания вашего бренда в социальных сетях и сразу определять, требуют ли клиенты срочного внимания.Обнаруживая упоминания разгневанных клиентов в режиме реального времени, вы можете автоматически отмечать отзывы клиентов и сразу же отвечать. Вы также можете проанализировать взаимодействие службы поддержки клиентов в социальных сетях и измерить уровень удовлетворенности клиентов (CSAT), чтобы увидеть, насколько хорошо работает ваша команда.

    Обработка естественного языка дает машинам возможность разбивать устную или письменную речь так же, как человек, обрабатывать «естественный» язык, поэтому машинное обучение может обрабатывать текст практически из любого источника.

    Служба поддержки и удовлетворенность клиентов

    Машинное обучение позволяет интегрировать мощные инструменты анализа текста с инструментами поддержки клиентов, чтобы вы могли анализировать свои электронные письма, чаты в реальном времени и всевозможные внутренние данные на ходу. Вы можете использовать машинное обучение, чтобы помечать заявки в службу поддержки и направлять их в нужные команды или автоматически отвечать на общие запросы, чтобы никогда не оставлять клиента без внимания.

    Кроме того, использование машинного обучения для настройки программы голоса клиентов (VoC) и цикла обратной связи с клиентами гарантирует, что вы проследите путь клиента от начала до конца, чтобы улучшить качество обслуживания клиентов (CX), уменьшить отток клиентов и, в конечном итоге увеличьте свою прибыль.

    Распознавание изображений

    Распознавание изображений помогает компаниям идентифицировать и классифицировать изображения. Например, технология распознавания лиц используется как форма идентификации, от разблокировки телефонов до совершения платежей.

    Беспилотные автомобили также используют распознавание изображений для распознавания пространства и препятствий. Например, они могут научиться распознавать знаки остановки, определять перекрестки и принимать решения на основе того, что видят.

    Виртуальные помощники

    Виртуальные помощники, такие как Siri, Alexa, Google Now, используют машинное обучение для автоматической обработки и ответа на голосовые запросы.Они быстро сканируют информацию, запоминают связанные запросы, извлекают уроки из предыдущих взаимодействий и отправляют команды другим приложениям, чтобы они могли собирать информацию и предоставлять наиболее эффективный ответ.

    Группы поддержки клиентов уже используют виртуальных помощников для обработки телефонных звонков, автоматической маршрутизации заявок на поддержку в нужные группы и ускорения взаимодействия с клиентами с помощью ответов, сгенерированных компьютером.

    Рекомендации по продукту

    Обучение правилам ассоциации — это метод машинного обучения, который можно использовать для анализа покупательских привычек в супермаркете или на сайтах электронной коммерции.Он работает, ища взаимосвязи между переменными и находя общие ассоциации в транзакциях (продукты, которые потребители обычно покупают вместе). Эти данные затем используются для стратегий продакт-плейсмента и аналогичных продуктовых рекомендаций.

    Связанные правила также могут быть полезны для планирования маркетинговой кампании или анализа использования Интернета.

    Торговля на фондовом рынке

    Алгоритмы машинного обучения можно обучить определять торговые возможности, распознавая закономерности и поведение в исторических данных.Когда дело доходит до инвестиций, людьми часто движут эмоции, поэтому анализ настроений с помощью машинного обучения может сыграть огромную роль в выявлении хороших и плохих инвестиционных возможностей без каких-либо предубеждений со стороны человека. Они даже могут сэкономить время и предоставить трейдерам больше времени вдали от своих экранов за счет автоматизации задач.

    Медицинский диагноз

    Способность машин находить закономерности в сложных данных определяет настоящее и будущее. Возьмите, например, инициативы по машинному обучению во время вспышки COVID-19.Инструменты искусственного интеллекта помогли предсказать, как вирус будет распространяться с течением времени, и сформировали способы борьбы с ним. Он также помогает диагностировать пациентов, анализируя компьютерную томографию легких и обнаруживая лихорадку с помощью распознавания лиц, а также выявляет пациентов с повышенным риском развития серьезных респираторных заболеваний.

    Машинное обучение стимулирует инновации во многих областях, и каждый день появляются новые интересные варианты использования. В бизнесе общие преимущества машинного обучения включают:

    • Это рентабельность и масштабируемость. Вам нужно обучить модель машинного обучения только один раз, и вы можете увеличивать или уменьшать масштаб в зависимости от того, сколько данных вы получаете.
    • Работает точнее, чем люди. Модели машинного обучения обучаются с определенным объемом помеченных данных и будут использовать их для прогнозирования невидимых данных. На основе этих данных машины определяют набор правил, которые они применяют ко всем наборам данных, помогая им обеспечивать согласованные и точные результаты. Не нужно беспокоиться о человеческой ошибке или врожденной предвзятости.И вы можете обучить инструменты потребностям и критериям вашего бизнеса.
    • Работает в режиме реального времени, 24/7. Модели машинного обучения могут автоматически анализировать данные в режиме реального времени, что позволяет немедленно обнаруживать отрицательные мнения или срочные заявки и принимать меры.

    Когда вы будете готовы приступить к работе с инструментами машинного обучения, дело доходит до дискуссии о создании и покупке. Если у вас есть опыт работы в области науки о данных и компьютерной инженерии или вы готовы нанимать целые команды программистов и специалистов по информатике, создание собственных библиотек с открытым исходным кодом может дать отличные результаты.Однако создание собственных инструментов может занять месяцы или годы и стоить десятки тысяч долларов.

    С другой стороны, использование инструментов SaaS или MLaaS (машинное обучение как услуга) намного дешевле, поскольку вы платите только за то, что используете. Их также можно внедрить сразу же, а новые платформы и методы делают инструменты SaaS такими же мощными, масштабируемыми, настраиваемыми и точными, как создание собственных.

    Независимо от того, собираетесь ли вы создавать или покупать инструменты машинного обучения, вот некоторые из лучших из них:

    Лучшие инструменты машинного обучения SaaS

    Некоторые из лучших инструментов машинного обучения SaaS на рынке:

    • MonkeyLearn
    • BigML
    • IBM Watson
    • Google Cloud ML
    MonkeyLearn

    MonkeyLearn — это мощная платформа машинного обучения SaaS с набором инструментов анализа текста для получения аналитических данных в реальном времени и эффективных результатов, позволяющих принимать решения на основе данных из всевозможные текстовые данные: взаимодействие со службой поддержки, комментарии в социальных сетях, онлайн-обзоры, электронные письма, живые чаты и многое другое.

    Просто подключите свои данные и используйте одну из предварительно обученных моделей машинного обучения, чтобы начать их анализ. Вы даже можете создать свои собственные модели машинного обучения без кода, выполнив несколько простых шагов, и интегрировать их с приложениями, которые вы используете каждый день, такими как Zendesk, Google Sheets и другими.

    MonkeyLearn масштабируется для обработки любого объема данных — от нескольких сотен опросов до сотен тысяч комментариев со всего Интернета — для получения реальных результатов из ваших данных с помощью таких методов, как анализ тем, анализ настроений и т. Д. извлечение текста и многое другое.

    А с MonkeyLearn Studio вы можете продвинуться дальше в своем анализе, чтобы объединить ваши анализы для совместной работы. Это плавный процесс перехода от сбора данных к анализу и наглядной визуализации на единой удобной панели инструментов.

    Взгляните на этот аспектно-ориентированный анализ настроений MonkeyLearn Studio онлайн-обзоров Zoom:

    Анализ тональности на основе аспектов сначала классифицирует мнения клиентов по «аспектам» (теме или теме): Удобство использования, надежность, ценообразование, и т. Д.Затем каждый комментарий анализируется, чтобы показать, является ли он положительным, отрицательным, или нейтральным . Это позволяет вам увидеть, какие аспекты вашего бизнеса являются особенно положительными, а какие — отрицательными.

    Другие методы, такие как классификация намерений, особенно полезны для входящих писем или запросов в социальных сетях, чтобы автоматически показать, почему клиент пишет. Кроме того, в правом нижнем углу вы можете увидеть облака слов, которые показывают наиболее часто используемые и наиболее важные слова и фразы по тональности.

    MonkeyLearn расценки.

    BigML

    Цель BigML — связать все потоки данных и внутренние процессы вашей компании, чтобы упростить совместную работу и результаты анализа в рамках всей организации. Они специализируются в таких отраслях, как аэрокосмическая, автомобильная, энергетическая, развлекательная, финансовые услуги, продукты питания, здравоохранение, Интернет вещей, фармацевтика, транспорт, телекоммуникации и др., Поэтому многие из их инструментов готовы к работе прямо из коробки.

    Вы можете использовать предварительно обученные модели или обучить свои собственные с помощью классификации, регрессии и прогнозирования временных рядов.

    Цены на BigML

    IBM Watson

    IBM Watson — это гигант машинного обучения, предлагающий адаптируемость к большинству отраслей и возможность масштабирования в любом облаке.

    Watson Speech-to-Text — один из отраслевых стандартов преобразования устной речи в текст в реальном времени, а Watson Language Translator — один из лучших инструментов для перевода текста на рынке.

    Watson Studio отлично подходит для подготовки и анализа данных и может быть настроен практически для любой области, а их классификатор естественного языка упрощает создание расширенных моделей анализа SaaS.

    Цены см. На странице продуктов.

    Google Cloud ML

    Google Cloud ML — это решение SaaS для анализа изображений и текста, которое легко подключается ко всем инструментам Google: Gmail, Google Sheets, Google Slides, Google Docs и т. Д.

    Google AutoML Natural Language — один из самых продвинутых инструментов анализа текста на рынке, а AutoML Vision позволяет автоматизировать обучение пользовательских моделей анализа изображений для достижения наивысшей точности независимо от ваших потребностей.

    Цены на искусственный интеллект и машинное обучение Google Cloud

    Лучшие библиотеки с открытым исходным кодом для машинного обучения

    Библиотеки машинного обучения с открытым исходным кодом предлагают коллекции готовых моделей и компонентов, которые разработчики могут использовать для создания своих собственных приложений, вместо того, чтобы кодировать с нуля . Они бесплатны, гибки и могут быть настроены в соответствии с конкретными потребностями.

    Некоторые из самых популярных библиотек с открытым исходным кодом для машинного обучения:

    • Scikit-learn
    • PyTorch
    • Kaggle
    • NLTK
    • TensorFlow
    Scikit-learn

    Scikit-learn — популярная библиотека Python и отличный вариант для тех, кто только начинает заниматься машинным обучением.Почему? Он прост в использовании, надежен и хорошо документирован. Вы можете использовать эту библиотеку для таких задач, как классификация, кластеризация и регрессия, среди прочего.

    PyTorch

    Разработанная Facebook, PyTorch — это библиотека машинного обучения с открытым исходным кодом, основанная на библиотеке Torch с упором на глубокое обучение. Он используется для компьютерного зрения и обработки естественного языка и намного лучше справляется с отладкой, чем некоторые из его конкурентов. Если вы хотите начать с PyTorch, есть простые руководства как для начинающих, так и для продвинутых программистов.Известный своей гибкостью и скоростью, он идеально подходит, если вам нужно быстрое решение.

    Kaggle

    Созданный более десяти лет назад (и приобретенный Google в 2017 году), Kaggle придерживается философии обучения на собственном опыте и известен своими соревнованиями, в которых участники создают модели для решения реальных задач. Ознакомьтесь с этим онлайн-курсом машинного обучения на Python, который поможет вам создать свою первую модель в кратчайшие сроки.

    NLTK

    The Natural Language Toolkit (NLTK), возможно, является самой известной библиотекой Python для работы с обработкой естественного языка.Его можно использовать для поиска по ключевым словам, токенизации и классификации, распознавания голоса и многого другого. С упором на исследования и образование, вы найдете множество ресурсов, включая наборы данных, предварительно обученные модели и учебник, которые помогут вам начать работу.

    TensorFlow

    Библиотека Python с открытым исходным кодом, разработанная Google для внутреннего использования, а затем выпущенная по открытой лицензии, с множеством ресурсов, руководств и инструментов, которые помогут вам отточить свои навыки машинного обучения. Эта удобная платформа, подходящая как для новичков, так и для экспертов, имеет все необходимое для создания и обучения моделей машинного обучения (включая библиотеку предварительно обученных моделей).Tensorflow более мощный, чем другие библиотеки, и ориентирован на глубокое обучение, что делает его идеальным для сложных проектов с крупномасштабными данными. Однако для овладения им может потребоваться время и навыки. Как и в случае с большинством инструментов с открытым исходным кодом, у него есть сильное сообщество и несколько руководств, которые помогут вам начать работу.

    Monkeylearn — это простая в использовании платформа SaaS, которая позволяет создавать модели машинного обучения для выполнения задач анализа текста, таких как классификация тем, анализ тональности, извлечение ключевых слов и многое другое.

    MonkeyLearn предлагает простую интеграцию с инструментами, которые вы уже используете, такими как Zendesk, Freshdesk, SurveyMonkey, Google Apps, Zapier, Rapidminer и другими, для оптимизации процессов, экономии времени и улучшения внутреннего (и внешнего) взаимодействия.

    Взгляните на общедоступную панель управления MonkeyLearn Studio, чтобы увидеть, насколько просто использовать все инструменты анализа текста с единой впечатляющей панели инструментов. Поиграйте и найдите данные по дате, категории и т. Д.

    Готовы сделать первые шаги с помощью простого кода MonkeyLearn без кода?

    Запросите демонстрацию и начните создавать ценность из ваших данных.

    Введение в машинное обучение | MIT Press

    Вводный текст по машинному обучению, который дает унифицированное описание методов, основанных на статистике, распознавании образов, нейронных сетях, искусственном интеллекте, обработке сигналов, управлении и интеллектуальном анализе данных.

    Цель машинного обучения — запрограммировать компьютеры на использование примеров данных или прошлого опыта для решения данной проблемы. Уже существует множество успешных приложений машинного обучения, в том числе системы, которые анализируют прошлые данные о продажах для прогнозирования поведения клиентов, распознавания лиц или устной речи, оптимизируют поведение роботов, чтобы задача могла быть выполнена с использованием минимальных ресурсов, и извлекают знания из биоинформатических данных. Введение в машинное обучение — это всеобъемлющий учебник по этому предмету, охватывающий широкий круг тем, обычно не включаемых во вводные тексты по машинному обучению. В нем обсуждается множество методов, основанных на различных областях, включая статистику, распознавание образов, нейронные сети, искусственный интеллект, обработку сигналов, управление и интеллектуальный анализ данных, чтобы представить единую трактовку проблем и решений машинного обучения. Все алгоритмы обучения объяснены, чтобы учащийся мог легко перейти от уравнений в книге к компьютерной программе.Книгу могут использовать продвинутые студенты и аспиранты, окончившие курсы компьютерного программирования, теории вероятностей, исчисления и линейной алгебры. Книга также будет интересна инженерам, занимающимся применением методов машинного обучения. После введения, в котором дается определение машинного обучения и приводятся примеры приложений машинного обучения, книга охватывает контролируемое обучение, байесовскую теорию принятия решений, параметрические методы и т. Д. многомерные методы, уменьшение размерности, кластеризация, непараметрические методы, деревья решений, линейная дискриминация, многослойные персептроны, локальные модели, скрытые марковские модели, оценка и сравнение алгоритмов классификации, объединение нескольких учащихся и обучение с подкреплением.

    Ресурсы для инструкторов

    Доступные для загрузки ресурсы для инструкторов по этому заголовку: слайды, программы Matlab, решения.

    Введение в машинное обучение | by Anmol Behl

    Машинное обучение в настоящее время является наиболее широко используемой отраслью информатики. Он используется во многих отраслях для автоматизации задач и комплексного анализа данных. Мы уже используем устройства, которые их используют.Например, умный помощник вроде Google Home, носимые фитнес-трекеры вроде Fitbit. Есть множество примеров использования машинного обучения.

    • Прогнозирование. Машинное обучение также можно использовать в системах прогнозирования. Рассматривая пример ссуды, чтобы вычислить вероятность сбоя, системе потребуется классифицировать доступные данные по группам.
    • Распознавание изображений. Машинное обучение также можно использовать для распознавания лиц на изображении. В базе из нескольких человек есть отдельная категория для каждого человека.
    • Распознавание речи — это перевод произнесенных слов в текст. Он используется в голосовом поиске и многом другом. Голосовые пользовательские интерфейсы включают голосовой набор, маршрутизацию вызовов и управление устройствами. Его также можно использовать как простой ввод данных и подготовку структурированных документов.
    • Медицинские диагнозы — ML обучен распознавать раковые ткани.

    1. Создание простой нейронной сети

    2. От персептрона до глубоких нейронных сетей

    3.Нейронные сети для решения дифференциальных уравнений

    4. Превратите свой Raspberry Pi в самодельный Google Home

    Первый электронный компьютер общего назначения был разработан в 1945 году. Он был полным по Тьюрингу, цифровым и мог решать широкий класс числовых задач посредством перепрограммирования. Имя компьютера было ENIAC (Электронный числовой интегратор и компьютер).

    ENIAC — Электронный числовой интегратор и компьютер | Изображение: www.computerhistory.org

    Хотя ENIAC был машиной, предназначенной для интенсивных численных вычислений, идея его разработки заключалась в создании машины, имитирующей человеческое мышление.

    Но прошло не так много лет после разработки ENIAC, и в 1950-х годах Артур Сэмюэл, американский пионер в области компьютерных игр и искусственного интеллекта, ввел термин «машинное обучение» в IBM. В то же время появился компьютер, который, как утверждалось, помогает игрокам в шашки улучшить свой опыт.

    В то же время Фрэнк Розенблатт изобрел очень простой классификатор под названием Персептрон. Перцептрон был задуман как машина, а не как программа. Когда его объединили с большим количеством людей, он превратился в могущественного монстра. Это чудовище на тот момент стало настоящим прорывом. Затем мы увидели стагнацию машинного обучения и нейронных сетей из-за сложности решения некоторых проблем

    Mark I Perceptron Machine

    В 1990-х годах из-за пересечения информатики и статистики машинное обучение снова стало популярным, и был разработан новый вероятностный подход в ИИ. .С тех пор машинное обучение — это постоянно развивающаяся отрасль. Причиной этого также является разработка более совершенных алгоритмов и увеличение вычислительной мощности за последние несколько лет.

    Вы когда-нибудь задумывались, чем машина отличается от человека? Почему машина не может учиться сама по себе? Ответим на эти вопросы в этом разделе.

    Наша история и наша литература показывают нам, что на протяжении большей части истории человечества машины рассматривались как инструменты, помогающие людям делать больше, чем они были способны сами по себе.От простых каменных орудий до изобретений железного и бронзового веков — технологии увеличили возможности человека для выживания, конкурентное преимущество и удобство.

    Машины следовали приказам людей и выполняли задачи, в то время как люди способны выполнять задачи сами. Люди могут это делать, потому что они учатся на прошлом опыте и принимают решения на основе опыта, в то время как машина не учится на прошлом опыте. Таким образом, машины не могут самостоятельно принимать решения.

    Таким образом, машина не может обучаться сама по себе и требует обучения принятию решений. В ML мы встраиваем в машины возможности принятия решений, чтобы они могли имитировать человеческое поведение.

    Самое важное, что требует, чтобы машина имитировала человека, — это научиться принимать решения самостоятельно на основе прошлого опыта.

    Согласно Тому Митчеллу, машина, как говорят, учится на опыте E с резекцией к некоторой задаче T и некоторому показателю производительности P, если ее производительность на T, измеренная P, улучшается с опытом E.

    В общем, следующие шаги, чтобы заставить машины учиться —

    1. Сбор необработанных данных или опыта
    2. Преобразование данных в информацию
    3. Сбор знаний из информации
    4. Стать умным для принятия решений

    Чтобы собрать опыт или необработанные данные, нам нужен источник и методика извлечения данных. Используемая здесь техника — Big Data Hadoop. Способ анализа необработанных данных и извлечения из них информации называется Big Data Hadoop .

    Для преобразования необработанных данных в информацию мы используем Data Mining. Процесс обнаружения закономерностей в больших наборах данных с использованием методов на пересечении статистики и систем баз данных называется Data Mining .

    Понимание всех параметров информации и сбор знаний, чтобы стать интеллектуальным, осуществляется с помощью Машинное обучение . Алгоритмы машинного обучения помогают машине самостоятельно принимать решения.

    По словам Артура Сэмюэля, алгоритмы машинного обучения позволяют компьютерам учиться на данных и даже улучшать себя без явного программирования.

    Машинное обучение (ML) — это отрасль информатики, в которой мы разрабатываем алгоритмы, которые заставляют машину учиться что-то делать, фактически не производя вычислений. Основная предпосылка машинного обучения — создание алгоритмов, которые могут получать входные данные и использовать статистический анализ для прогнозирования выходных данных при обновлении выходных данных по мере появления новых данных.

    Машинное обучение подразделяется на 3 типа алгоритмов —

    1. Контролируемое обучение — [Ссылка в ближайшем будущем в блоге]
    2. Неконтролируемое обучение — [Ссылка в ближайшем будущем в блоге]
    3. Обучение с подкреплением — [Ссылка появится в будущем блоге]

    В настоящее время существует много заблуждений, связанных со словами машинное обучение , глубокое обучение и искусственный интеллект (AI) , большинство людей думают, что все это то же самое, когда они слышат слово AI, они напрямую связывают это слово с машинным обучением или наоборот, ну да, эти вещи связаны друг с другом, но не одинаковы.Посмотрим как.

    ИИ означает копирование человеческого мозга, как человеческий мозг думает, работает и функционирует. На самом деле мы не можем создать надлежащий ИИ до сих пор, но мы очень близки к его созданию. Одним из примеров ИИ является Sophia , самая передовая модель ИИ, существующая на сегодняшний день. Основная цель здесь — увеличить вероятность успеха алгоритма вместо повышения точности. Он работает как компьютерная программа, которая делает умную работу.

    Машинное обучение — одно из подразделов ИИ.Основной принцип здесь состоит в том, что машины берут данные и «учатся» сами. В настоящее время это самый многообещающий инструмент из набора ИИ для бизнеса. Основная цель здесь — повысить точность алгоритма, а не его успешность.

    В машинное обучение входят несколько этапов: прогнозирование, классификация, рекомендации, кластеризация и принятие решений. Когда все пять работают вместе, мы называем это искусственным интеллектом.

    Глубокое обучение — это разновидность машинного обучения.Основное различие между глубоким и машинным обучением заключается в том, что модели машинного обучения постепенно становятся лучше, но модель все еще нуждается в некотором руководстве. Если модель машинного обучения возвращает неточный прогноз, тогда программист должен исправить эту проблему явно, но в случае глубокого обучения модель делает это самостоятельно. Система автоматического вождения автомобиля — хороший пример глубокого обучения.

    При обучении с учителем алгоритму предоставляется конечный набор данных, который содержит правильные ответы для каждого из входных значений.У машины есть задача предугадывать правильные ответы, правильно анализируя набор данных.

    Пример контролируемого обучения.

    Как показано в приведенном выше примере, мы изначально взяли некоторые данные и пометили их как «Том» или «Джерри». Эти помеченные данные используются обучающей моделью с учителем, эти данные используются для обучения модели.

    После обучения мы можем протестировать нашу модель, проверив ее с помощью нескольких тестовых новых писем, и проверка модели может предсказать правильный результат.

    Типы контролируемого обучения

    • Регрессия: Это тип проблемы, в которой выходной переменной является реальное значение, такое как «доллары» или «вес».
    • Классификация: Это тип проблемы, в которой выходной переменной является категория, например «красный» или «синий» или «болезнь» и «отсутствие болезни».

    При обучении без учителя алгоритму предоставляется немаркированный набор данных, и он предсказывает закономерность в данных.

    Пример неконтролируемого обучения

    В приведенном выше примере мы присвоили нашей модели некоторые символы: «Утки» и «Не утки». В наших обучающих данных мы не даем никаких ярлыков для соответствующих данных.Модель без учителя может разделять обоих персонажей, глядя на тип данных, и моделировать базовую структуру или распределение в данных, чтобы узнать о них больше.

    Типы обучения без учителя

    • Кластеризация: Проблема кластеризации заключается в том, что мы группируем похожие данные в соответствии с шаблоном данных, например группируем клиентов по покупательскому поведению.
    • Association: Проблема изучения правил ассоциации — это когда мы хотим обнаружить правила, которые описывают большие части ваших данных, например, люди, которые покупают X, также склонны покупать Y.

    При обучении с подкреплением алгоритм учится, взаимодействуя с окружающей средой. Алгоритм настраивается на основе обратной связи.

    Пример обучения с подкреплением

    В приведенном выше примере мы видим, что агенту дается 2 варианта: путь с водой или путь с огнем. Алгоритм подкрепления работает с системой вознаграждения, то есть, если агент использует путь огня, тогда награды вычитаются, и агент пытается узнать, что он должен избегать пути огня. Если бы он выбрал водный путь или безопасный путь, то к бонусным баллам добавлялись бы некоторые баллы, после чего агент пытался бы узнать, какой путь безопасен, а какой нет.

    В этом блоге я представил основные концепции машинного обучения. Я надеюсь, что этот блог будет полезен новичкам и побудит их заинтересоваться этой темой.

    6 лучших курсов машинного обучения

    Learning Guide

    Теперь, когда вы ознакомились с рекомендациями курса, вот краткое руководство для вашего пути к машинному обучению. Во-первых, мы коснемся предварительных условий для большинства курсов машинного обучения.

    Предварительные требования к курсу

    Перед началом более продвинутых курсов потребуются следующие знания:

    • Линейная алгебра
    • Вероятность
    • Исчисление
    • Программирование

    Это общие компоненты, позволяющие понять, как машинное обучение работает в капюшон.Многие курсы для начинающих обычно требуют хотя бы некоторого программирования и знакомства с основами линейной алгебры, такими как векторы, матрицы и их обозначения.

    Первый курс в этом списке, Машинное обучение Эндрю Нг, содержит повторения по большей части математики, которая вам понадобится, но если вы раньше не изучали линейную алгебру, может быть сложно выучить машинное обучение и Linear Заодно алгебра.

    Если вам нужно освежить в памяти необходимую математику, посмотрите:

    Я бы порекомендовал изучить Python, поскольку большинство хороших курсов машинного обучения используют Python.Если вы пройдете курс машинного обучения Эндрю Нг, в котором используется Octave, вам следует изучить Python во время курса или после него, поскольку он вам в конечном итоге понадобится. Кроме того, еще один отличный ресурс Python — dataquest.io, у которого есть куча бесплатных уроков Python в интерактивной среде браузера.

    Изучив необходимые предварительные условия, вы можете начать действительно понимать, как работают алгоритмы.

    Фундаментальные алгоритмы

    Существует базовый набор алгоритмов машинного обучения, с которым каждый должен быть знаком и иметь опыт использования.Это:

    • Линейная регрессия
    • Логистическая регрессия
    • Кластеризация k-средних
    • k-ближайших соседей
    • Машины опорных векторов (SVM)
    • Деревья решений
    • Случайные леса
    • Наивный Байес

    Это предметы первой необходимости, но есть еще много всего. Перечисленные выше курсы содержат практически все это с некоторыми вариациями. Понимание того, как работают эти методы и когда их использовать, будет чрезвычайно важно при принятии новых проектов.

    После базовых знаний можно изучить следующие более сложные техники:

    • Ансамбли
    • Повышение
    • Снижение размерности
    • Обучение с подкреплением
    • Нейронные сети и глубокое обучение

    Это только начало, но эти алгоритмы работают. обычно то, что вы видите в самых интересных решениях машинного обучения, и они являются эффективным дополнением к вашему набору инструментов.

    И, как и в случае с основными методами, с каждым новым инструментом, который вы изучаете, вы должны взять за привычку сразу же применять его к проекту, чтобы укрепить свое понимание и иметь к чему вернуться, когда вам понадобится освежение знаний.

    Реализуйте проект

    Обучение машинному обучению в Интернете — сложная задача и чрезвычайно полезная задача. Важно помнить, что простой просмотр видео и прохождение тестов не означает, что вы действительно усваиваете материал. Вы узнаете еще больше, если у вас есть побочный проект, над которым вы работаете, который использует другие данные и преследует другие цели, чем сам курс.

    Как только вы начнете изучать основы, вам следует искать интересные данные, к которым вы можете применить эти новые навыки.Вышеупомянутые курсы дадут вам некоторое представление о том, когда применять определенные алгоритмы, поэтому рекомендуется немедленно применять их в собственном проекте.

    Путем проб и ошибок, исследований и обратной связи вы узнаете, как экспериментировать с различными методами, как измерять результаты и как классифицировать или делать прогнозы. Чтобы получить представление о том, каким проектом машинного обучения заняться, см. Этот список примеров.

    Работа над проектами дает вам лучшее понимание ландшафта машинного обучения на высоком уровне, и по мере того, как вы углубляетесь в более сложные концепции, такие как глубокое обучение, появляется практически неограниченное количество техник и методов, которые нужно понять и с которыми нужно работать.

    Прочитать новое исследование

    Машинное обучение — быстро развивающаяся область, в которой ежедневно появляются новые методы и приложения. После того, как вы пройдете основы, вы должны быть готовы к работе с некоторыми исследовательскими работами по интересующей вас теме.

    Есть несколько веб-сайтов, на которых можно получать уведомления о новых статьях, соответствующих вашим критериям. Google Scholar — это всегда хорошее место для начала. Введите ключевые слова, такие как «машинное обучение» и «твиттер», или что-нибудь еще, что вас интересует, и нажмите небольшую ссылку «Создать оповещение» слева, чтобы получать электронные письма.

    Сделайте еженедельной привычкой читать эти предупреждения, просматривать документы, чтобы увидеть, стоит ли их читать, а затем обязаться понять, что происходит. Если это связано с проектом, над которым вы работаете, посмотрите, сможете ли вы применить эти методы к своей собственной проблеме.

    Заключение

    Машинное обучение невероятно увлекательно и интересно учиться и экспериментировать, и я надеюсь, что вы нашли курс выше, который соответствует вашему собственному путешествию в эту захватывающую область.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *