+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как подключить трехфазный электродвигатель к однофазной сети 220 Вольт: tvin270584 — LiveJournal

Нельзя просто так взять и подключить трехфазный электродвигатель к однофазной сети 220 Вольт. Сначала нужно обеспечить смещение фазы. В противном случае двигатель не станет вращаться. В статье мастер сантехник расскажет, как подключить трехфазный электродвигатель к однофазной сети 220 Вольт.

Схемы подключения к сети

Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.

Схема подключения трехфазного электродвигателя на 380 В по схеме «Звезда» и «Треугольник»

Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна.

Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.

Как подключить трехфазный электродвигатель 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»

Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.

Схема соединения электролитических конденсаторов

Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток.

Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети

Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером и лишь затем подать на схему напряжение и кратковременно нажать на кнопку.

Подключение трехфазного двигателя к однофазной сети по схеме «Звезда»

Схема подключения звезды показана на картинке.

Схема подключения трехфазного электродвигателя 380 В на 220 В через конденсатор по схеме «Звезда»

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Подключение трехфазного двигателя к однофазной сети по схеме «Треугольник»

Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

Схема подключения трехфазного электродвигателя 380 В на 220 В через конденсатор по схеме «Треугольник»

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

Емкости фазосдвигающего и пускового конденсаторов

Для подсчета емкости фазосдвигающего конденсатора нужно воспользоваться несложной формулой:

  • С1 = 2800/(I/U) — для включения по схеме «Звезда»;
  • С1 = 4800/(I/U) — для включения по схеме «Треугольник».

Здесь:

  • С1 — емкость фазосдвигающего конденсатора, мкФ;
  • I — номинальный ток одной обмотки двигателя, А;
  • U — напряжение однофазной сети, В.

Но что делать, если номинальный ток обмоток неизвестен? Его можно легко рассчитать, зная мощность мотора, которая обычно нанесена на шильдик устройства.

Для расчета воспользуемся формулой:

I = P/1,73*U*n*cosф

Где:

  • I — потребляемый ток, А;
  • U — напряжение сети, В;
  • n — КПД;
  • cosф — коэффициент мощности.

Емкость пускового конденсатора С2 выбирается в 1,5−2 раза больше емкости фазосдвигающего.

Рассчитывая фазосдвигающий конденсатор, нужно иметь в виду, что двигатель, работающий не в полную нагрузку, при расчетной емкости конденсатора может греться. В этом случае номинал его нужно уменьшить.

Эффективность работы

К сожалению, трехфазный двигатель при питании одной фазой развить свою номинальную мощность не сможет. Почему? В обычном режиме каждая из обмоток двигателя развивает мощность в 33,3%.

При включении мотора, к примеру, «треугольником» лишь одна обмотка С работает в штатном режиме, а в точке соединения обмоток В и С при правильно подобранном конденсаторе напряжение будет в 2 раза ниже питающего, а значит, мощность этих обмоток упадет в 4 раза — т. е. всего 8,325% каждая.

Произведем несложный подсчет и рассчитаем общую мощность:

33,3 + 8,325 + 8,325 = 49.95%

Итак, даже теоретически трехфазный двигатель, включенный в однофазную сеть, развивает лишь половину своей паспортной мощности, а на практике эта цифра еще меньше.

Видео

В сюжете — Как подключить электродвигатель на 220 вольт

В сюжете — Как подключить трёхфазный двигатель в одну фазу

В сюжете — «Ламповый» метод подключения трехфазного двигателя к сети 220 вольт

В продолжение темы посмотрите также наш обзор Как сделать сверлильный станок из двигателя от стиральной машины и домкрата

Источник

https://santekhnik-moskva.blogspot.com/2021/06/Kak-podklyuchit-trekhfaznyy-elektrodvigatel-k-odnofaznoy-seti-220-Volt.html

Подключение однофазного электродвигателя на 220 вольт

Электродвигатель 220В является простым и широко распространенным устройством. Благодаря такому напряжению его часто применяют в бытовых приборах. Однако он не лишен недостатков. О том, какими бывают данные электрические двигатели, об их применении, минусах и путях решения проблем, а также о возможности подключения к сети расскажем в статье.

Однофазные устройства.

Описание

Если необходимо подключить универсальный коллекторный двигатель с последовательным возбуждением, обмотку соединяют с коллекторно-щеточным узлом. После нагрузки вала устройством, с которым двигатель будет работать, подается необходимое напряжение.

Обычно коллекторные двигатели на постоянном токе являются низковольтными. Поэтому, чтобы подключить электродвигатель 3000 об. мин 220В, необходимо применить соответствующий блок питания с трансформатором и выпрямителем.

Подключение трехфазного двигателя

В настоящее время уже нередки случаи, когда автолюбители используют электродвигатель. Если его необходимо заменить или отремонтировать, то может возникнуть вопрос о том, как подключить электродвигатель в сеть 220В. Трехфазный двигатель легко можно активировать без вызова специалистов, воспользовавшись нижеприведенными рекомендациями.

В качестве инструментов могут пригодиться отвертка, тепловое реле, изоляционная лента, автомат, и тестер.

Подробная инструкция

Старый мотор снимают и помечают нулевой провод при помощи изоленты. Если его устанавливают заново, то нулевой провод можно легко определить, используя индикатор. На конце его лампочка не загорится.

Новому двигателю добавляют арматуру с магнитным пускателем, а также с автоматом и тепловым реле. Арматуру устанавливают в щитке.

Тепловое реле подключают к пускателю. Выбирая последний, нужно быть уверенным, что он соответствует мощности мотора.

Арматурные выводы входа подключают к клеммам автомата, кроме нулевого провода. Выходные клеммы соединяют с теми же теплового реле. На выходе пускателя подключают кабель, непосредственно идущий на мотор.

При мощности менее одного киловатта автомат можно подсоединить, минуя магнитный пускатель.

Для подключения электромотора снимают крышку. На клеммнике выводы будут соединены в форме треугольника или звезды. Концы кабеля соединяют с колодками. При форме звезды контакты подключают поочередно.

Если же выводы расположены беспорядочно, то используют тестер. Его подсоединяют к концам, отыскивая обмотки. После этого соединяют как при форме звезды, а выводы катушек собирают в точку. Остальные концы подключают кабель.

Двигатель прикрывают крышкой и проверяют работу механизма. Если вал вращается не в том направлении, в котором нужно, любые провода на вводе просто меняют местами.

Так как питающие напряжения у различных потребителей могут различаться друг от друга, возникает необходимость переподключения электрооборудования. Сделать подключение асинхронного двигателя на 220 вольт безопасным для дальнейшей работы оборудования достаточно просто, если следовать предложенной инструкции.

На самом деле это не является невыполнимой задачей. Если сказать коротко, то все, что нам нужно, это правильно подключить обмотки. Существует два основных типа асинхронных двигателей: трехфазные с обмоткой звезда – треугольник, и двигатели с пусковой обмоткой (однофазные). Последние используются, например, в стиральных машинах советской конструкции. Их модель — АВЕ-071-4С. Рассмотрим каждый вариант по очереди.

  • Трехфазный
    • Увеличение напряжения
    • Уменьшение напряжения
  • Однофазный
    • Включение в работу

Трехфазный

Асинхронный двигатель переменного тока имеет очень простую конструкцию по сравнению с другими видами электрических машин. Он довольно надежен, чем и объясняется его популярность. К сети переменного напряжения трехфазные модели включаются звездой или треугольником. Такие электродвигатели также различаются значением рабочего напряжения: 220–380 в, 380–660 в, 127–220 в.

Как правило, такие электродвигатели применяются на производстве, так как трехфазное напряжение чаще всего используется именно там. И в некоторых случаях бывает, что вместо 380 в есть трехфазное 220. Как их включить в сеть, чтобы не спалить обмотки?

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.


Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).


Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Однофазный


Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.


Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

Включение в работу

Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:


Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

Если нужен реверс, то он делается по такой схеме:


Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель , а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Р ном,

где С — емкость конденсатора, мкФ, Р ном — номинальная мощность электродвигателя, кВт.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

C общ = C 1 + C 1 + … + С n

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1 ). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (С р) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (С п). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором С п показана на рис. 3 .

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С п

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток . Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1 ), достаточно третью фазную обмотку статора (W ) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V ).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б ), нужно третью фазную обмотку статора (W ) подсоединить через конденсатор к зажиму второй обмотки (V ). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4) .

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Как подключить трёхфазный двигатель к однофазной сети 220 вольт.

При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.

Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.

Расчёт ёмкости.

Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:

С = 66 Р мкФ .

Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.

Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости. То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.

Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).

Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).

Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.

Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).

 

При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.

Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.

Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.

Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.

Определение фазных обмоток и их выводов.

При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью тестера (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.

Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).

Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.

Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.

Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.

Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец). Если это не поможет, то верните выводы С1 и С4 в первонаальное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель опять не набирает обороты и гудит, то верните назад выводы С2 и С5 поменяйте местами выводы третьей пары С3 и С6.

При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.

Изменение вращения вала электродвигателя (ротора).

Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону. Как это сделать?

Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.

Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.

Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.

Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем вот тут), и электродвигатель снова будет работать долгие годы.

Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, полировальных, сверлильных, токарных, гриндера и т.д.)  намного упрощается процесс доводки деталей при тюнинге или ремонте.

Как подключить электродвигатель с 3 проводами

Схемы подключения электродвигателя к электропитанию

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т. к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
– зачем шесть контактов в двигателе?
– а почему контактов всего три?
– что такое «звезда» и «треугольник»?
– а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
– а как измерить ток в обмотках?
– что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы – C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая – C2 и C5, а третья – C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
– использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

– использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
– при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
– при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Однофазный асинхронный двигатель: схема подключения с пусковой обмоткой и конденсаторным запуском — чем отличаются и как их реализовать на практике

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Способы подключения электродвигателей

Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе – хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.

Трехфазные и однофазные двигатели

Схемы подключения двигателя звезда, треугольник

Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:

    Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку – невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции.

Электрические коммутации двигателя

Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует – попробуем доработать недочет своими руками. Понадобится китайский тестер.

У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:

  • Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
  • Наименьшее значение образуется меж концами рабочей обмотки.
  • Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.

Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.

Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.

Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.

Синхронные, асинхронные, коллекторные двигатели

Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.

Обсудим три типа двигателей:

  1. Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
  2. Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны.

Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:

  1. Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны – цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
  2. Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.

И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Схема подключения трехфазного электродвигателя

Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.

Для начала немного разберемся, что такое три фазы и для чего они нужны. В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении. Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.

Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:

Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.

Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:

Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец». Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.

Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.

А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.

В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.

Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:

Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.

Существует два метода включения трехфазного двигателя в однофазную сеть.

  1. Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
  2. Использовать конденсаторы (этот метод мы и рассмотрим более подробно).

Схема включения трехфазного двигателя на 220 вольт

Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.

А это более наглядная картинка:

Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:

Ток для расчёта мы возьмём с шильдика двигателя:

Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:

Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:

Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

Подключение трехфазного двигателя на 380 вольт

Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

Смена направления вращения вала трехфазного двигателя

Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.


Правильное подключение электродвигателя на 220 Вольт: инструкция

Для чего это нужно

В большинстве моделей различного электроинструмента используются электрические движки. Но со временем они изнашиваются, и приходится покупать новый электроинструмент. Отработавшие своё движки, тем не менее, не стоит выбрасывать. Если есть электроинструмент, значит, хозяин умеет им работать. И у него, скорее всего, бывает необходимость сделать какие-либо работы по хозяйству дома или на даче. А в этом старые движки могут очень даже помочь. Их можно применить в домашних самоделках для заточки, полировки и даже для стрижки травы.

Как подключить движок с коллектором

Коллекторные двигатели могут работать и на постоянном и на переменном напряжении. Это один из наиболее распространённых типов движков среди используемых для ручного электроинструмента и некоторых других электроприборов. Во многих из них электродвигатель работает от электронной схемы управления. Но если она сгорела, и электроприбор перестал работать, наверняка движок исправен, и его можно включить в сеть напрямую. Но если двигатель работал с электронной схемой как коллекторный двигатель постоянного тока, скорее всего он не будет развивать такие же обороты, что и в устройстве с электронной схемой управления.

Чтобы такой движок запустить от сети 220 В, надо соединить щётки коллектора и статор последовательно. При этом токи в роторе и статоре получатся меньше чем при работе в составе электронной схемы, и движок будет вращаться медленнее. Но зато не требуется никаких дополнительных элементов кроме самого движка, сетевого кабеля и вилки. Если такой двигатель используется в газонокосилке или иной самоделке с длинным сетевым кабелем, конечно же, потребуется ещё и выключатель расположенный вблизи этого движка. Разбираться с таким движком надо с осторожностью. Особенно если в нём более 4-х точек для соединения, то есть проводов обмотки статора не 2 а 3 или больше.

Это говорит о том, что двигатель переключался на разные скорости с использованием частей обмотки статора. Чтобы выполнить подключение электродвигателя на 220 Вольт к электросети его надо надёжно зажать либо в тисках, либо прижать струбциной. Подключив не полную обмотку статора, обороты могут быть слишком велики, и незакреплённый движок может сорваться с места и натворить бед. Если потребуется изменить вращение ротора на противоположное, надо поменять местами либо клеммы статора, либо клеммы щёток.

Как подключить асинхронный движок

Другим довольно-таки распространённым типом электродвижка является асинхронный двигатель. Наиболее часто его устанавливают в вентиляторах. Если известно, что движок именно оттуда, скорее всего он сконструирован на несколько скоростей. Об этом будут свидетельствовать несколько дополнительных выводов, которые являются ответвлениями основной обмотки статора. В движке, который рассчитан на работу с одной скоростью обмоток две. Поэтому в нём возможны ответвления от обмоток либо как 3, либо как 4 вывода. При трёх выводах обмотки уже соединены последовательно. При четырёх выводах надо разобраться с ними используя тестер.

Обмотки обеспечивают перемещение магнитного поля в пределах 90 градусов. Дополнительная обмотка используется для создания перемещающегося максимума магнитного поля и называется пусковой обмоткой. Поэтому если выводов 3 или больше всегда можно определить, используя тестер, где какая из них. Обмотка как пусковая, так и переключающая обороты имеют более высокое сопротивление. Для подключения асинхронного электродвигателя на 220 Вольт применяются схемы, показанные далее.

В некоторых моделях движков резистор встраивается в корпус и поэтому в них только два вывода. Такой двигатель должен вращаться сразу при подаче напряжения 220 В на эти обмоточные выводы. Но если этого не происходит, а тестер показывает некоторое значение сопротивления, значит, одна из обмоток оборвана. Такой движок уже никак не используешь без ремонта в виде перемотки повреждённой обмотки. Использование конденсатора для получения перемещающего магнитного поля является самым популярным техническим решением. Если необходимо таким способом подключить движок потребуется величина его мощности.

  • Конденсатор для асинхронного двигателя выбирается по мощности. Для каждых ста Ватт мощности движка надо примерно семь микрофарад ёмкости конденсатора.

БУ движки стиральных машин

Если используется движок от стиральной машинки, он может принадлежать к одному из трёх типов. В старых моделях машин использовалась отдельные ёмкости для стирки и для отжима. Для стирки применялся асинхронный движок, поскольку его оборотов было вполне достаточно для создания движения воды. Для отжима применялась центрифуга с приводом от коллекторного двигателя. Эти типы двигателей можно применять для каких-либо целей, а как сделать подключение для этого, рассмотрено выше.

Но среди более современных машин встречаются такие модели, у которых выполнен прямой привод на вращающийся барабан для стирки. В них применяются специальные двигатели, управляемые от электронного коммутатора. Он создаёт вращение магнитного поля с необходимой скоростью. Без такого коммутатора двигатель работать не будет. Тем более нельзя подключать его к сети 220 В напрямую.

В некоторых моделях двигателей стиральных машин могут использоваться тахометры, встроенные в корпус движка. Поэтому необходимо обязательно выяснить назначение дополнительных выводов в двигателе перед подключением его к сети 220 В. Бывает так, что это возможно сделать, только узнав, как выглядит движок изнутри, разобрав его. Если сложно идентифицировать конструкцию двигателя самостоятельно, лучше обратиться к специалисту. Это поможет сохранить двигатель в исправном состоянии.

Как подключить асинхронный трехфазный двигатель на 220. Как подключить однофазный двигатель

Необходимо подключить к домашней сети на 220 В. Так как двигатель при этом не запустится, необходимо изменить в нем некоторые детали. Это можно без труда сделать самостоятельно. Даже несмотря на то что КПД несколько снизится, такой подход бывает оправданным.

Трехфазные и однофазные двигатели

Чтобы разобраться, как подключить электродвигатель с 380 на узнаем, что значит питание на 380 вольт.

Трехфазные двигатели имеют множество преимуществ по сравнению с бытовыми однофазными. Поэтому их применение в промышленности обширно. И дело заключается не только в мощности, но и в коэффициенте полезного действия. В них также предусмотрены пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. К примеру, пусковое защитное реле холодильника отслеживает, сколько врублено обмотки. А в трехфазном двигателе в этом элементе необходимость отпадает.

Это достигается тремя фазами, во время работы которых внутри статора вращается электромагнитное поле.

Почему 380 В?

Когда поле внутри статора вращается, ротор двигается также. Обороты не совпадают с пятьюдесятью Герцами сети из-за того, что больше обмоток, количество полюсов отличное, а также по разным причинам происходит проскальзывание. Эти показатели применяются для регуляции вращения моторного вала.

Все три фазы имеют значение по 220 В. Однако разница между любыми двумя из них в любое время будет отличным от 220. Так и получится 380 Вольт. То есть двигатель применяет для работы, при этом имеется сдвиг фаз, составляющий сто двадцать градусов.

Потому как подключить электродвигатель 380 на 220 Вольт напрямую невозможно, приходится использовать ухищрения. Конденсатор считается самым простым способом. Когда емкость проходит фазу, последняя изменяется на девяносто градусов. Хоть до ста двадцати она не доходит, этого достаточно для запуска и работы трехфазного двигателя.

Как подключить электродвигатель с 380 на 220 В

Для реализации задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена разводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему соединений. Чтобы к сети 380-220 состоялось, используется коммутация в форме звезды. Концы обмоток находятся в общей точке, которая называется нейтралью. Фазы подаются на противоположную сторону.

«Звезду» придется изменить. Для этого обмотки мотора необходимо соединить в другую форму — в виде треугольника, объединив их на концах друг с другом.

Как подключить электродвигатель с 380 на 220: схемы

Схема может выглядеть следующим образом:

  • напряжение сети прикладывается к третьей обмотке;
  • тогда на первую обмотку напряжение перейдет через конденсатор при фазовом сдвиге в девяносто градусов;
  • на второй обмотке скажется разница напряжений.

Понятно, что сдвиг фаз получится на девяносто и сорок пять градусов. Из-за этого вращение равномерным не получится. К тому же форма фазы на второй обмотке не будет синусоидальной. Поэтому, после того как подключить трехфазный электродвигатель к 220 вольтам удастся, он не сможет реализовываться без потерь мощности. Иногда вал даже залипает и перестает крутиться.

Рабочая емкость

После набора оборотов емкость пуска уже будет не нужна, так как сопротивление движению станет незначительным. Для разряжения емкости ее укорачивают на сопротивление, через которое ток уже не пройдет. Для правильного выбора рабочей и пусковой емкости в первую очередь нужно учитывать, что рабочее конденсаторное напряжение должно существенно перекрывать 220 Вольт. Минимум оно должно составлять 400 В. Также нужно обратить внимание на провода, чтобы токи были предназначены для однофазной сети.

При слишком малой рабочей емкости вал будет залипать, поэтому для него используется начальное ускорение.

Рабочая емкость также зависит от следующих факторов:

  • Чем мощнее мотор, тем больше конденсаторный номинал потребуется. Если значение составляет 250 Вт, то хватит и нескольких десятков мкФ. Однако если мощность будет выше, то и номинал может считаться сотнями. Конденсаторы лучше приобретать пленочные, потому что электрические придется дополнительно доделывать (они предназначены для постоянного, а не переменного тока, и без переделок могут взорваться).
  • Чем больше обороты мотора, тем и номинал необходим выше. Если взять двигатель на 3000 оборотов в минуту и мощностью 2,2 кВт, то батарея ему потребуется от 200 до 250 мкФ. А это огромное значение.

Еще эта емкость зависит и от нагрузки.

Завершающий этап

Известно, что электрический двигатель 380 В в 220 Вольтах будет лучше работать в том случае, если напряжения получатся с равными значениями. Для этого обмотку, подсоединяющуюся к сети, трогать не нужно, но потенциал измеряется на обеих других.

У асинхронного мотора имеется свое Необходимо определить минимум, при котором он начнет вращение. После этого номинал понемногу увеличивают до тех пор, пока все обмотки не выравняются.

Но когда двигатель раскрутится, может получиться, что равенство нарушится. Это происходтит из-за снижения сопротивления. Поэтому, перед тем как подключить электродвигатель с 380 на 220 Вольт и зафиксировать это, нужно сравнять значения и при работающем агрегате.

Напряжение может быть и выше 220 В. Посмотрите, чтобы обеспечивалась стабильная стыковка контактов, и не было потери мощности или перегрева. Лучше всего коммутация производится на специальных клеммах с закрепленными болтами. После того как подключить электродвигатель с 380 на 220 Вольт получилось с необходимыми параметрами, на агрегат снова надевают кожух, а провода пропускают по бокам через резиновый уплотнитель.

Что еще может случиться и как решить проблемы

Нередко после сборки обнаруживается, что вал вращается не в ту сторону, в которую нужно. Направление необходимо поменять.

Для этого третью обмотку подключают через конденсатор к резьбовой клемме второй обмотки статора.

Бывает, что из-за длительной работы с течением времени появляется шум двигателя. Однако этот звук совсем иного рода по сравнению с гулом при неправильном подключении. Случается со временем и вибрация мотора. Иногда даже приходится с силой вращать ротор. Обычно это вызвано износом подшипников, из-за чего возникают слишком большие зазоры и появляется шум. Со временем это может привести к заклиниванию, а позже — к порче деталей двигателя.

Лучше такого не допускать, иначе механизм придет в негодность. Проще заменить подшипники на новые. Тогда электродвигатель прослужит еще долгие годы.

Доморощенные «кулибины» используют для электромеханических поделок то, что попадется под руку. При выборе электродвигателя, обычно попадаются трехфазные асинхронные. Этот тип получил широкое распространение благодаря удачной конструкции, хорошей балансировке и экономичности.

Особенно это актуально в мощных промышленных агрегатах. За пределами частного дома или квартиры, проблем с трехфазным питанием нет. А как организовать подключение трехфазного двигателя к однофазной сети, если ваш счетчик имеет два провода?

Рассмотрим вариант штатного подключения

Трехфазный двигатель, имеет три обмотки под углом 120°. На контактную колодку выводится три пары контактов. Соединение можно организовать двумя способами:

Подключение по схеме “звезда” и “треугольник”

Каждая обмотка одним концом соединяется с двумя другими обмотками, образуя так называемую нейтраль. Оставшиеся концы соединяются с тремя фазами. Таким образом, на каждую пару обмоток подается 380 вольт:

В распределительной колодке, перемычки соединены соответственно, перепутать контакты невозможно. Понятия полярности в переменном токе нет, поэтому не имеет значения, какую фазу, на какой провод подавать.

При таком способе конец каждой обмотки соединяется со следующей, в результате получается замкнутый круг, точнее треугольник. На каждой обмотке присутствует напряжение 380 вольт.

Схема подключения:

Соответственно, на клемной колодке перемычки устанавливаются по-иному. Аналогично с первым вариантом, полярность отсутствует, как класс.


На каждую группу контактов, ток поступает в разный момент времени, следуя понятию «сдвиг фазы». Поэтому магнитное поле последовательно увлекает за собой ротор, создавая непрерывный крутящий момент. Так работает двигатель при «родном» для него трехфазном питании.

А если вам достался двигатель в отличном состоянии, а подключить его надо к однофазной сети? Не стоит расстраиваться, схема подключения трехфазного двигателя давно отработана инженерами. Мы поделимся с вами секретами нескольких популярных вариантов.

Подключение трехфазного двигателя к сети 220 вольт (одна фаза)

На первый взгляд, работа трехфазного мотора при подключении к одной фазе ничем не отличается от правильного включения. Ротор вращается, практически не теряя оборотов, никаких рывков и замедлений не наблюдается.

Однако достичь штатной мощности при таком питании невозможно. Это вынужденная потеря, ее никак не исправить, приходится с этим считаться. В зависимости от управляющей схемы, снижение мощности колеблется от 20% до 50%.

При этом электроэнергия расходуется так же, как будто вы используете всю мощь. Чтобы выбрать наиболее выгодный вариант, предлагаем ознакомиться с различными способами.

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Важно! Подключая двигатель, будьте предельно осторожны. Делайте все не спеша. Меняя схему, отключайте электропитание и разряжайте конденсатор электролампой. Работы производите как минимум вдвоем.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Важно! Какой бы емкости ни были конденсаторы, их рабочее напряжение должно быть не ниже 400в, в противном случае они долго не проработают и могут взорваться.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

С такой проблемой приходится сталкиваться многим рачительным хозяевам, которые привыкли все, по максимуму, делать своими руками. В том числе, и собирать различную технику для хозяйственных нужд; например, циркулярную пилу на участке, эл/наждак, небольшой подъемник в гараже и тому подобное.

Учитывая, сколько стоит электродвигатель, лучше приспособить имеющийся под рукой 3-фазный образец к работе от 1ф, тем самым адаптировав его к домашней эл/сети, чем приобретать новый. Нужно лишь понимать, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы дополнительно не тратить деньги, и разбираться в существующих схемах их включения.

  1. Переделка с 380 на 220 имеет смысл, если речь идет об эл/двигателе сравнительно небольшой мощности – до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по данной характеристике нет. Но при этом, скорее всего, понадобится провести ряд мероприятий и потратить некоторую сумму денег и время.
  • Переложить вводной кабель эл/питания, к тому же придется заниматься согласованиями с поставщиком электроэнергии в плане повышения лимита. Не следует забывать, что для частных домовладений установлен предел эн/потребления; как правило, в 15 кВт. «Впишется» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли ее изначально заложенный кабель?
  • Для такого прибора нужно прокладывать отдельную линию от силового щита и ставить индивидуальный автомат, как минимум. Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
  • Практика переделок показывает, что даже если все сделано грамотно, возникнет еще одна проблема, с запуском. «Старт» мощного электродвигателя будет тяжелым, с длительной раскачкой, бросками напряжения. Такая перспектива мало кого устроит, тем более, если что-то собирается не на загородном участке, а на территории, прилегающей к жилому строению. Пока будет функционировать самодельная установка на основе этого двигателя, начнутся сбои в работе бытовых приборов. Проверено, и не раз.
  1. Порядок работы по переделке зависит от внутренней схемы электродвигателя. В некоторых моделях в клеммную коробку выводится всего 3 провода, в других – 6.

В чем разница? В первом случае обмотки уже соединены по одной их традиционных схем – «звездой» или «треугольником», поэтому для маневра (в плане модификации) возможностей несколько меньше.

Вариантов немного – оставить изначальное включение или произвести разборку двигателя и перекоммутировать вторые концы. Если же выведены все шесть, то можно их соединять по любой из схем, без ограничений. Главное – грамотно выбрать ту, которая будет оптимальной для конкретной ситуации (мощность электродвигателя, специфика его применения). .

Как переделать электродвигатель

Схема

Учитывая, что мощность электродвигателя небольшая (значит, не придется при пуске его «срывать»), а запитывать его планируется от сети 220, то оптимальной схемой является «треугольник». То есть, здесь не нужно ориентироваться на высокие пусковые токи (их не будет), а потеря мощности практически сводится к нулю (можно не учитывать). Все сказанное наглядно демонстрирует рисунок.

Если в электродвигателе схема изначально собрана по «треугольнику», то переделывать в нем вообще ничего не нужно.

Расчет рабочих емкостей

Так как вместо 3-х фаз теперь будет лишь одна, она и подается на каждую из обмоток, но с небольшим сдвигом синусоиды. По сути, включением конденсаторов производится имитация питания электродвигателя от источника 380/3ф. Формулы для расчетов рабочих конденсаторов показаны на рисунках ниже.

Ставить их по принципу «больше – лучше», что часто и делают домашние умельцы, не особенно разбирающиеся в электротехнике, не следует. Только на основании вычислений требуемого номинала. Иначе возможен перегрев эл/двигателя. Если он стоит на заводском оборудовании (например, переделке подвергается газонокосилка), то придется или устраивать постоянные перерывы в работе, или готовиться к незапланированному ремонту и неоправданным финансовым тратам на новый «движок».

Примечание:

  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Раз речь идет о переделке с 380 на 220, то U р должно быть не меньше 400 В.
  • Немаловажен и такой фактор, как разновидность конденсаторов. Во-первых, они должны быть однотипными. Во-вторых, только не электролитическими. Оптимально, бумажные; например, устаревшей серии КГБ, МБГ (и их модификации) или ее современные аналоги. Они удобны в креплении (имеются проушины) и легко выдерживают скачки температуры, тока, напряжения.

Для схемы «звезда»

Для схемы «треугольник»

Наглядно весь процесс в действии можно посмотреть на видео:

На практике инженерными расчетами мало кто из людей сведущих занимается. Есть определенные пропорции, позволяющие довольно точно подобрать рабочий конденсатор к конкретному электродвигателю.

Соотношение легко запомнить: на каждые 100 Вт мощности «движка» – 7 мкф рабочей емкости. То есть, для изделия на 2 кВт понадобится в обмотки включить конденсаторы по 7 х 20 = 140 мкф.

В чем сложность? Найти емкость с таким номиналом вряд ли получится. Есть простое решение – взять несколько конденсаторов и соединить параллельно. В результате небольших вычислений несложно подобрать нужное их количество с суммарной емкостью требуемой величины. Тем, кто забыл школу, можно подсказать – при таком способе соединения конденсаторов их емкости складываются.

Пусковой

Эта емкость нужна не всегда. Она ставится в схему лишь в том случае, если при пуске на вал двигателя создается значительная нагрузка. Примеры – мощное вытяжное устройство, циркулярная пила. А вот для той же газонокосилки вполне хватит и рабочих конденсаторов.

Расчет простой – номинал Сп должен превышать Ср в 2,5 (плюс/минус). Здесь предельной точности не требуется; величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя на разных режимах подскажет, увеличить ее или уменьшить.

Кстати, это относится и к рабочим конденсаторам. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не бывший в эксплуатации. А так как переделываются в основном изделия б/у, то в процессе работы выяснится, что не устраивает пользователя. Вариантов много – плохой запуск, быстрый нагрев корпуса и так далее.

Вывод – подобрать емкости для переделки эл/двигателя с 380 на 220, это еще не все. В первое время нужно внимательно следить за его работой в различных режимах. Только так, опытным путем, производя замену конденсаторов по номиналам, можно подобрать идеальное значение емкости для конкретного изделия.

Как организовать реверс

Иногда необходимо изменять направление вращения вала без дополнительных переделок. Это вполне возможно и для электродвигателя на 380, переведенного на питание 220. Как видно из рисунка, ничего сложного в этом нет, понадобится лишь переключатель на 2 позиции.

На заметку

Есть трехфазные электродвигатели, которые могут работать от 220 В. Их включение в домовую сеть имеет свою специфику – только «звездой». Дело в том, что каждая из обмоток рассчитана для 127, и при соединении «треугольником» они попросту сгорят.

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В . Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Как подключить трехфазный электродвигатель в сеть 220 В

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

https://youtube.com/watch?v=ukl8nctMpTI

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При  использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы

Теперь важно не перепутать

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо

А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они бывают на 2 вида напряжения – 220/380 и 380/660 В.

В чем отличия? В номинальных напряжениях питания. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Подробнее рассмотрим работу на этих напряжениях.

220/380 В


Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты

И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!

Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит!!!

Как будет выглядеть подключение подобного двигателя в коробке:

Подключение в “Звезду” двигателя на 220 – 380 В

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В


Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Напряжение питания 660 В в реальной жизни не используется, а схема, показанная справа, используется для “раскрутки” ротора.

Реальные примеры:

Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”

Вот этот же двигатель, его коробка борно, подключен в треугольник:

Обмотки двигателя подключены в треугольник на 380 В

Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.

О конденсаторах

Значение конденсатора в сети

В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его  величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит  снижение таких показателей, как электрическая мощность и мощность вала движка.

Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от  остальных обмоток была максимальная отдача, их нужно использовать совмещенно при  подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.

Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.

Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового  момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации  этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.

Еще одна особенность конденсатора при подключении к трехфазной сети это  его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке  или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в  какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы  можете управлять движением вала.

Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу.  Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на  месте конденсатора будет подключен дроссель. То он будет способствовать значительному  уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.

Поэтому конденсатор является единственным элементом пригодным для эффективного  перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.

Виды конденсаторов

Для подключения электрических агрегатов 380 на 220 Вольт в основном используют  следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.

Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими  качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Схемы “Звезда” и “Треугольник”

У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.

Схема обмоток статора с выводами для трехфазного асинхронного двигателя

Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?

Это простейшая логическая задача, у которой есть два решения – “Звезда” и “Треугольник”:

Схема соединения обмоток статора “звездой”

Схема соединения обмоток статора “треугольником”

В результате имеем у каждой схемы три вывода, которые можно подключать к источнику питания. А вот почему напрямую подключать не всегда возможно, об этом статья.

Эти схемы также имеют названия “Delta” и “Star“, и могут обозначаться на схемах как D и S. Но чаще обозначение идёт от вида схем – Δ и Υ. Или D и Y.

На обратной крышке борно обычно указывают схемы подключения и обозначения выводов:

Схемы подключения выводов двигателя: Звезда и Треугольник. Отличия видны сразу

По по схемам мы плотно пройдёмся ниже.

И ещё немного теории.

Мощность на валу при подаче номинального напряжения будет одинакова хоть в Звезде, хоть в Треугольнике. А токи разные, ведь P=UI. Это происходит потому, что Напряжение питания в этих схемах отличается в √3 раз, ток – тоже. В “звезде” напряжение питания двигателя (линейное) больше номинала катушки, а в “треугольнике” ток питания двигателя больше тока катушки в 1,73 раза.

Другими словами, если “базовое” рабочее напряжение катушки равно 220 В, то напряжение в “Звезде” будет 1,73 · 220 = 380 В. Другими словами, Uл=1,73Uф, где Uф – это номинальное напряжение катушки, Uл – номинальное напряжение питания. Для треугольника ситуация повторяется, но только для тока.

Таким образом, если написано одно из напряжений, можно легко узнать другое напряжение и ток:

Указано напряжение только в треугольнике 400 В

Вот этот же двигатель, вид на клеммы в коробке:

Подключение обмоток статора треугольником – клеммы двигателя

В данном случае на шильде приведён только треугольник, но чудес не бывает – этот двигатель может работать и в звезде, главное переключить правильно обмотки. Напряжение “Звезды” будет 1,73 · 400 = 690 В, ток в то же число меньше.

Кто хочет копнуть поглубже – в конце выложу для скачивания умные книги.

Этапы переделки

Чтобы переделать электродвигатель с 380 Вольт на 220 сначала откиньте крышку мотора, чтобы посмотреть, сколько снаружи концов у статорных намоток. Их может быть 6 или 3. Если 6, то есть возможность поменять схему соединения: если была «звезда», можно перейти на «треугольник», и наоборот.

Если конца всего 3, значит, внутри короба намотки уже соединяются либо «звездой», либо «треугольником» (всего 6 концов, которые попарно объединяются клеммами, их и будет 3, так как на каждую клемму – 2 конца). В таком случае придется оставить прежнюю схему.

Соединение обмоток

Неважно, каков источник питания, трехфазный или однофазный, соединять статорные намотки можно любым из способов (можете прочитать подробнее про способы подключения электродвигателей):

  • Звезда;
  • Треугольник.

Звездой обычно соединяют намотки, если двигатель будет питаться от сети 380 В. Благодаря этому пуск становится плавным, хотя теряется треть мощности. Треугольник же рекомендуется при запитывании от 220 Вольт. Пусковые токи при этом не так высоки по сравнению с теми, что возникают от трехфазного питания. Зато мощность равна той, что дает «звездное» соединение, если мотор подключен к 380 В.

Схемы посмотрите ниже. Разница в том, что в первом случае соединяются все начала так, что получается трехконечная звезда. А во втором – конец одной обмотки соединяется с началом следующей так, что образуется фигура с тремя вершинами (треугольник).

Расчет конденсаторов

Когда концы намоток соединяют звездой или треугольником, образуется 3 места, где они стыкуются. На этих местах ставят клеммы. При питании от 380 Вольт на каждую из них подают фазу. Но наша задача, имея те же 3 контакта, подать лишь 1 фазу 220 Вольт и нуль. Это можно реализовать своими руками, компенсировав отсутствие трехфазного питания конденсаторами. Пусковой будет активным только на время запуска, а рабочий – постоянно.

Чтобы электрический двигатель хорошо запускался и работал, нужно правильно подобрать емкость конденсаторов. У рабочего накопителя она зависит от схемы соединения. Если это звезда, то работает формула:

Если треугольник, то формула преобразует свой вид:

Ср – искомая емкость рабочего накопительного элемента. U – напряжение в сети (220 Вольт). I – сила тока, которую находят по формуле:

Р – мощность, U – уже известное нам напряжение, ƞ – КПД, косинус «фи» — коэффициент мощности. Все эти значения можно посмотреть в техническом паспорте от вашего трехфазного мотора.

Расчет емкости пускового конденсатора (Сп) прост: умножьте Ср на 1,5 или 2. Если Ср=50 мкФ, то Сп будет от 75 до 100 мкФ. Поочередно ставьте то одну емкость, то другую, запуская каждый раз мотор. По звуку хода слушайте: если нет гула, то все в порядке.

Сборка по схеме

Схема выше показывает, как правильно соединить своими руками намотки статора с конденсаторами и проводами сети 220 В. К одной из вершин треугольника или звезды нужно подключить накопительные элементы параллельно друг другу (предусмотрите ключ для ручного отключения пускового накопителя после разгона)

Затем их выводят либо на фазу, либо на ноль: неважно. От этого будет зависеть только направление вращения вала

Как устроен трехфазный асинхронный двигатель

В большинстве случаев асинхронные двигатели используют конденсаторный запуск, однако бывают и другие способы пуска. В трехфазных электродвигателях в отличие от однофазных имеется три обмотки статора, которые сдвинуты под определённым углом. Угол намотки обмоток статора трехфазного двигателя — 120 градусов, что позволяет создавать вокруг ротора мощное магнитное поле.

Конструкция статора трехфазного электродвигателя состоит из таких элементов:

  • Корпуса;
  • Магнитопровода и сердечника с обмотками;
  • Клеммной коробки.

Стандартное соединение обмоток трехфазного электродвигателя выполнено по схеме «звезда». Также существует менее распространённым способ соединения обмоток трехфазного двигателя, а именно — «треугольник». В любом случае, каждая обмотка статора имеет определённое направление, а также, начало и конец.

Для нумерации обмоток статора электродвигателя используются арабские цифры: 1, 2, 3. Концы обмоток обозначаются буквой и цифрой: К1, К2, К3, а их начало — Н1, Н2, Н3. В некоторых типах электродвигателей маркировка обмоток статора может иметь другое обозначение, например: С1, С2, С3 и С4, С5, С6.

Стандартное подключение

Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.

По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.

Соединение обмоток

Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.

Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.

В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.

В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда». По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.

Разновидности частотных преобразователей

Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:

Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.

Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.

Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.

  1. Транзисторные частотные преобразователи

Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.

Схемы подключения

Существуют две основные схемы, по которым производится подключение электрического мотора к сети переменного тока 220 вольт:

  • Треугольник.
  • Звезда.

Необходимо отметить тот факт, что любое изменение в подключениях электродвигателей несет за собой снижение их мощности. И если потери этого показателя в схеме треугольник составляют всего лишь 30%, то в схеме звезда уже 50%. Поэтому специалисты рекомендуют использовать именно треугольник. Хотя при соединении звездой электродвигатель работает мягко и плавно. Что касается частоты вращения ротора, то при подключении к сети 220 вольт этот показатель практически не изменяется.

Чтобы было понятно, как выглядят оба вида подключения, предлагаем посмотреть на два нижних рисунка, где позиция (а) это принципиальная электрическая схема, а (б) это монтажная схема подключения. Первый рисунок – это соединение треугольник, второй – звезда.


Соединение треугольник

Сразу оговоримся, что переделать подключение с 380 на 220 вольт можно двигатель, у которого из клеммной коробки торчит шесть концов. При этом на принципиальной схеме концы обозначаются по-разному. Старое обозначение (оно среди электриков используется и сейчас) – это начало обмоток С1, С2, С3, конец – это С4, С5, С6. Согласно ГОСТа 26772-85 буквенные обозначение были изменены на начало обмоток – U1, V1, W1, конец – U2, V2, W2.


Соединение звезда

Чтобы провести пуск 3-фазного электродвигателя малой мощности рабочего конденсатора будет достаточно. Но если мощность мотора превышает 1,5 кВт, то он или не запустится вообще, или запуск будет производиться медленно и трудно. Поэтому рекомендуется установить в схему еще один конденсатор – пусковой. Он будет отвечать только за пуск 3-х фазного двигателя. В самой его работе он участвовать не будет, то есть, тут же отключится после завершения запуска. На это уходит две-три секунды.

Вот снизу схема подключения, где установлен пусковой конденсатор (Cn).

Данные двигателя

На что стоит обратить внимание при включении в однофазную сеть 3ех фазных электродвигателей:

  • полезная мощность снижается до 70–80%,
  • при рабочих значениях 380/220,Ỵ/Δ, подключать на одну фазу нужно треугольником. При соединении звездой не будет максимальной мощности,
  • если на шильде указано только одно значение – 380В, звезда, тогда придется двигатель разбирать, чтобы сделать переключение на треугольник, что не совсем удобно. При возможности стоит поискать другой двигатель.

Реверс в однофазной сети

Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.

Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Предыдущая ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius
Следующая ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Электропроводка двигателя на 120 и 240 В

» Дом »Электромонтажные проекты

Должен ли я подключить двигатель к 240 вольт или 120 вольт? Плюсы разводки мотора вольт на 240 вольт.

Как подключить двигатель 120/240 к 240 вольт
[ad # block] Электрический вопрос: Должен ли я подключить свой двигатель к 240 вольт или 120 вольт?

При подключении двигателя 120/240 вольт есть ли существенная разница в потребляемой мощности 120 вольт и 240 вольт, и есть ли потеря или выгода в долговечности двигателя?

Этот вопрос по электрике пришел от: Брюса, домовладельца из Калифорнии.

Ответ Дэйва:
Спасибо за ваш вопрос по электрике, Брюс.

Подключение двигателя на 240 В

Применение: Электромотор.
Уровень квалификации: от среднего до продвинутого — лучше всего выполняется лицензированным электриком или сертифицированным электромехаником.
Необходимые инструменты: простые ручные инструменты в сумке для электриков и тестер напряжения.
Расчетное время: зависит от опыта работы с электродвигателями.
Меры предосторожности: Электродвигатели лучше всего обслуживать опытным электриком или знающим техником.Изменения в проводке электродвигателя следует вносить только после того, как цепь электродвигателя будет идентифицирована, выключена и помечена.

Двигатели, рассчитанные на напряжение 120/240 В
  • Большинство электродвигателей имеют распределительную коробку проводов, обычно на задней стороне электродвигателя с одной стороны. Это то место, где крепится шнур или кабелепровод. В распределительной коробке есть крышка для защиты проводки и соединений. На двигателе также будет паспортная табличка с такой информацией, как марка, модель, номинальная мощность в лошадиных силах, напряжение, сила тока и т. Д.
  • Если двигатель имеет возможность двойного напряжения, то он будет иметь состояние 120/240 вольт, и будет конфигурация проводки или схема подключения проводки, которая объяснит конфигурации проводки для каждого напряжения. В некоторых случаях может потребоваться перестановка двух проводов с плоскими клеммами или кольцевыми язычковыми клеммами, а затем провода ЛИНИИ или источника питания будут подключены, как описано.
  • Для двигателей большего размера может использоваться распределительная коробка большего размера с подводящими проводами, обозначенными цифрами или буквами, которые будут обозначены на электрической схеме конкретного двигателя.

Преимущества двигателя 240 В

Электропроводка двигателя на 120/240 вольт на 240 вольт следующая:

  • Сбалансированная электрическая нагрузка, позволяющая сэкономить электроэнергию по сравнению с несимметричной электрической нагрузкой.
  • Более высокая пусковая мощность. Двигатели на 240 вольт будут иметь более сильный пуск по сравнению с двигателями на 120 вольт.
  • Более длительный срок службы может быть обнаружен за счет более мощного двигателя, поскольку 120-вольтовые двигатели могут нагреваться сильнее, что может повлиять на весь срок службы двигателя.
  • Вы определенно заметите более высокую производительность, особенно при использовании такого оборудования, как настольная пила и т. Д.
  • В некоторых приложениях может использоваться проводка меньшего размера, поскольку для двигателя на 240 В требуется меньшая сила тока на каждую ногу по сравнению с одной силовой ветвью двигателя на 120 В.

ВАЖНО

  • Не все электродвигатели можно подключать к 240 вольт. Проконсультируйтесь с информацией на паспортной табличке двигателя или обратитесь к информации от производителя, чтобы узнать, можно ли подключить двигатель к более высокому напряжению.
  • В большинстве случаев необходимо будет изменить соединения проводов или концевые заделки, чтобы отразить напряжение, к которому будет подключен двигатель, как указано производителем двигателя.
Подробнее о схеме подключения 220 В

Электропроводка

Схема электрических соединений 220 В

Электропроводка Розетка 220 В
Домашняя электрическая проводка включает розетки на 110 вольт и розетки и розетки на 220 вольт, которые являются обычным делом в каждом доме.Посмотрите, как разводятся электрические розетки в доме.

Эта ссылка полезна как домовладельцу
Электрооборудование «Сделай сам»

Как подключить двигатель на 240 В



Вам также могут быть полезны следующие данные:

Сопроводительное руководство Дэйва по домашней электропроводке:
» Вы можете избежать дорогостоящих ошибок! «

Вот как это сделать:
Подключите его прямо с помощью моей иллюстрированной книги по электромонтажу

Отлично подходит для любого проекта домашней электропроводки.

Идеально для домовладельцев, студентов,
Разнорабочих, разнорабочих женщин и электриков
Включает:
Электромонтаж розеток GFCI
Электромонтаж домашних электрических цепей
Розетки на 120 и 240 В
Электромонтаж выключателей света

Электропроводка 3-проводного и 4-проводного электропроводки
Электромонтаж 3-проводного и 4-проводного кабеля осушителя и розетки осушителя
Поиск и устранение неисправностей и ремонт электропроводки
Способы подключения для Модернизация электропроводки
Коды NEC для домашней электропроводки
….и многое другое.

Будьте осторожны и безопасны — никогда не работайте с электрическими цепями!
Проконсультируйтесь в местном строительном департаменте по поводу разрешений и проверок для всех проектов электропроводки.

% PDF-1.4 % 32 0 объект > эндобдж xref 32 117 0000000016 00000 н. 0000003022 00000 н. 0000003121 00000 п. 0000003904 00000 н. 0000004017 00000 н. 0000004128 00000 н. 0000004217 00000 н. 0000004739 00000 н. 0000004996 00000 н. 0000005560 00000 н. 0000005585 00000 н. 0000005698 00000 п. 0000005734 00000 п. 0000006086 00000 н. 0000006377 00000 н. 0000006834 00000 н. 0000006973 00000 п. 0000014745 00000 п. 0000023578 00000 п. 0000033096 00000 п. 0000040662 00000 п. 0000040803 00000 п. 0000047523 00000 п. 0000052848 00000 п. 0000058285 00000 п. 0000063851 00000 п. 0000068049 00000 п. 0000068307 00000 п. 0000068376 00000 п. 0000068827 00000 н. 0000072868 00000 п. 0000072896 00000 п. 0000073002 00000 п. 0000073097 00000 п. 0000073240 00000 п. 0000073347 00000 п. 0000073453 00000 п. 0000073571 00000 п. 0000073720 00000 п. 0000073822 00000 п. 0000073920 00000 н. 0000074038 00000 п. 0000074181 00000 п. 0000074484 00000 п. 0000074841 00000 п. 0000075180 00000 п. 0000075324 00000 п. 0000075467 00000 п. 0000075579 00000 п. 0000075690 00000 н. 0000075808 00000 п. 0000075951 00000 п. 0000076254 00000 п. 0000076586 00000 п. 0000076903 00000 п. 0000077258 00000 п. 0000077426 00000 п. 0000077569 00000 п. 0000077681 00000 п. 0000077776 00000 п. 0000077919 00000 п. 0000078254 00000 п. 0000078589 00000 п. 0000078707 00000 п. 0000078850 00000 п. 0000078961 00000 п. 0000079069 00000 п. 0000079187 00000 п. 0000079330 00000 п. 0000079705 00000 п. 0000080059 00000 п. 0000080180 00000 п. 0000080325 00000 п. 0000080436 00000 п. 0000080548 00000 п. 0000080669 00000 п. ګ% $ mB1

Как подключить частотно-регулируемый привод с R S T к однофазному источнику питания 220?

Хорошо, я проверю документацию YL600 в понедельник 4/3 и дам ответ здесь.

Дополнительная информация:

Дополнительная информация:
Я также получил одну из них, и надписи на кнопках даже не соответствуют вашим инструкциям по программированию, указанным на вашем веб-наборе. Предоставьте обновленные инструкции, соответствующие поставляемой модели, с правильными названиями кнопок, которые нужно нажимать. Процесс программирования.

Дополнительная информация:
15.07.17 — У меня точная проблема. Я не вижу опубликованного решения ???

Дополнительная информация:
Моя — 2.YL-620 мощностью 2 кВт, подключенный к шпинделю мощностью 1,5 кВт.

Код Адрес Набор функций Диапазон и Описание функций Заводские настройки Пользовательский набор Производитель Предлагается при поставке Код Адрес Десятичный
P00.00 0 Основная частота 0-120 Гц (400 Гц) 50,0 Гц 400 60 399,6 P00.0 0
P00.01 1 Источник команды пуска / останова 0: Плата оператора 0 0 0 P00.1 1
1 : От внешнего концевого управления Электрооборудование, панель управления Клавиша СТОП действует
2 : С внешнего устройства управления. Электрооборудование, недействительный ключ СТОП панели управления.
3 : от (Modbus Rs485) управления Электрооборудование
4 : Управление прикладной программой пользователя Электрооборудование
P00.02 2 Зарезервировано 0 0 P00.2 2
P00.03 3 Режим остановки 0 : Останов с замедлением 0 0 1 P00.3 3
1 : Остановка выбегом 10
2 : Торможение постоянным током 0,2
P00.04 4 VF: Максимальная выходная частота 1,0-120,0 Гц (400 Гц) 50,0 Гц 400 60 400 P00.4 4
P00.05 5 VF: Максимальное выходное напряжение, частота 5,0–120,0 Гц (400 Гц) 50,0 Гц 400 60 400 P00.5 5
P00.06 6 VF: максимальное выходное напряжение 10,0% -150,0% 100,00% 100,00% 100,00% 100 P00.6 6
P00.07 7 VF: Средняя частота 1.0-120,0 Гц (400 Гц) 3,0 Гц 3,5 Гц 3,0 Гц 3,5 P00.7 7
P00.08 8 VF: Среднее напряжение 10,0% -100,0% 10% 20% 10% 10 P00.8 8
P00.09 9 VF: Мин. Частота 0-120,0 Гц (400 Гц) 0,2 Гц 0,2 Гц 0,2 Гц 0,2 P00.9 9
P00.10 10 VF: Мин. Напряжение 0% -100,0% 5% 10,00% 5,00% 5 P00.10 10
P00.11 11 Величина аналогового входа 1 Регулирование Многоступенчатая скорость 0% -100% 100100100100 P00.11 11
P00.12 12 VF: Настройка кривой 0-4 0 0 P00.12 12
P00.13 13 Блокировка параметров 0: lnvalid 0 0 P00.13 13
1: Действительно
10: Восстановить заводскую настройку Нет других функций
P00.14 14 Зарезервировано 0 0 P00.14 14
P00.15 15 Запрет времени включения Внешний сын Запуск 0: Время включения, разрешение Эффективный уровень внешнего входа, запуск Электрооборудование 0 0 P00.15 15
1: Время включения, не допускать
P00.16 16 0: FWD (X5) да, положительный ход 0 P00.16 16
1: REV (X6) Определить направление: Открыть Да
2: X_EF = EF, X_REV (X5) _DIR = DIR, FWD (X6) =
3: Стоп, FWD (X5) выключить мгновенно
4: FWD (X5) выключить мгновенно
5: FWD (X5) выключить мгновенно
6: Стоп, FWD (X5) выключить мгновенно
7: REV (X6) Когда открыт, FWD (X5) Запуск
P00.17 17 Многие функции ввода Выбор функции X1 ################################################################## ### ################################### 1 1 P00.17 17
P00.18 18 Многофункциональный вход X2 Функция Выбор 1.0HZ 1 P00.18 18
P00.19 19 Вход многих функций Функция X3 Выбор 1 P00.19 19
P00.20 20 Многофункциональный вход X4 Функция Выбор 1 P00.20 20
P00.21 21 Шаг увеличения / уменьшения внешнего терминала 0-120 Гц (400 Гц) 1,0 Гц 1 P00.21 21
P00.22 22 Временной интервал нарастания / замедления внешнего терминала 0.2 0,2 ​​P00.22 22
P00.23 23 Отображение физических величин Константа пропорции 0-999.9% 100.00% 100 P00.23 23
P00.24 24 После подачи питания отобразить выбор проекта 0: Показать текущую заданную частоту 0 0 P00.24 24
1: Отображение частоты работы электрического оборудования.
2: Отображение рабочего тока электрооборудования.
3: Отображение входного переменного напряжения
4: Напряжение материнской линии дисплея
5: Отображение выходного напряжения
6: Отображение абзаца скорости Номер SP x
7: Отображение температуры инвертора t xx
8: Отображение входного сигнала X1-X3 / выходного сигнала
9: Показать пользовательскую переменную
10: Отображение значения счетчика пользователей
11: Показать временную отладочную переменную
12: Отображение шага и времени автоматического многосегментного запуска
P00.25 25 Отображение проекта Время задержки автоматического возврата (10 / с) 0: Нет, автоматический возврат; 1-6 с задержкой 10-60 с. Назад Возврат 1 1 P00.25 25
P01.00 256 REV Выбор вращения 0: Rev Run Enable 0 0 P01.0 256
1: Rev Run запрещен 0
P01.01 257 Электрооборудование Реверс Время ожидания 0 P01.1 257
P01.02 258 Настройка перенапряжения для предотвращения замедления (%) 130130 P01.2 258
P01.03 259 Уставка перегрузки по току ускоренного предотвращения (%) 130130 P01.3 259
P01.04 260 Настройка максимального тока (%) 200 200 P01.4 260
P01.05 261 Настройка защиты от перегрузки (%) 130130 P01.5 261
P01.06 262 Время настройки защиты от перегрузки (с) 120120 P01.6 262
P01.07 263 Настройка защиты от пониженного напряжения (%) 80 80 P01.7 263
P01.08 264 Настройка защиты от перенапряжения (%) 150150 P01.8 264
P01.09 265 После выключения запускается настройка напряжения торможения постоянным током (%) 15 15 P01.9 265
P01.10 266 После отключения, установка конечного напряжения торможения постоянным током (%) 0 0 P01.10 266
P01.11 267 После отключения, установка времени торможения постоянным током 2 2 P01.11 267
P01.12 268 После отключения установка начальной частоты торможения постоянным током 0,6 0,6 P01.12 268
P01.13 269 Перед запуском устанавливается входное напряжение торможения постоянным током (%) 20 20 P01.13 269
P01.14 270 Перед пуском, Конечное значение напряжения торможения постоянным током Установленное (%) 15 15 P01.14 270
P01.15 271 Перед запуском, установка времени торможения постоянным током 3 3 P01.15 271
P01.16 272 Прямой пуск Начальная частота (улучшение пускового момента) 100 100 P01.16 272
P01.17 273 Прямой запуск Начальная частота Время удержания 0 0 P01.17 273
P01.18 274 Снижение частоты сбоев питания 80 80 P01.18 274
P01.19 275 Скорость снижения частоты отключения 5 5 P01.19 275
P01.20 276 Перезапуск Время холостого хода 10 10 P01.20 276
P01.21 277 Время нарастания напряжения перезапуска 200200 P01.21 277
P02.00 512 При увеличении крутящего момента 100100100 60 P02.0 512
P02.01 513 Время замедления — увеличение крутящего момента 100100100 60 P02.1 513
P02.02 514 Кривая ускорения Выбор 0 0 P02.2 514
P02.03 515 Кривая замедления Выбор 0 0 P02.3 515
P02.04 516 Избегайте частоты 1 20 400 P02.4 516
P02.05 517 Избегайте частоты 2 30 30 P02.5 517
P02.06 518 Избегайте частоты 3 40 40 P02.6 518
P02.07 519 Избегайте частоты Ширина 0 0 P02.7 519
P02.08 520 Частота окна 1 45 45 P02.8 520
P02.09 521 Частота окна 2 50 50 P02.9 521
П02.10 522? 400 P02.10 522
P03.00 768 Скорость передачи данных RS485 0: 1200 бит / с 5 4 P03.0 768
1: 2400 бит / с
2: 4800 бит / с
3: 9600 бит / с
4: 19200 бит / с
5: 38400 бит / с
6: 57600 бит / с
P03.01 769 Адреса связи RS485 1-254 10 10 P03.1 769
P03.02 770 0: 8-битные данные, 1 стоп-бит, нечетная четность 2 2 P03.2 770
1: 8-битные данные, 1 стоповый бит, проверка на четность
2: 8-битные данные, 1 стоповый бит, без контроля четности
3: 8-битные данные, 2 стоповых бита, нечетная четность
4: 8-битные данные, 2 стоповых бита, проверка на четность
5: 8-битные данные, 2 стоповых бита, без контроля четности
P03.03771 Обработка ошибок связи 0 P03.3 771
P03.04 772 Время допуска ошибок связи 20 P03.4 772
P03.05 773 4-20 мА Время обнаружения обрыва 0 P03.5 773
P03.06 774 Потенциометр панели, нижний предел нормы AD 3 P03.6 774
P03.07 775 Потенциометр панели, верхний предел спецификации AD 1020 1015 1015 P03.7 775
P03.08 776 Потенциометр панели, заданная частота ниже нижнего предела 0,0 Гц 0 0 P03.8 776
P03.09 777 Потенциометр панели, частота указана из верхнего предела 0-120 Гц (400 Гц) 60.0 Гц 400 60 Гц 400 P03.9 777
P03.10 778 Аналоговый вход 1 Нижний предел AD 0-1023 3,0 Гц 60 Гц 3 P03.10 778
P03.11 779 Аналоговый вход 1 AD Верхний предел 0-1023 1020 1010 1010 P03.11 779
P03.12 780 Частота аналогового входа 1 с заданным нижним пределом 0,0 Гц 0 P03.12 780
P03.13 781 Заданная частота аналогового входа 1 Верхний предел 60,0 Гц 400400 P03.13 781
P03.14 782 Аналоговый вход 2 Нижний предел AD 3,0 Гц 3 P03.14 782
P03.15 783 Аналоговый вход 2 AD Верхний предел 1020 1010 1010 P03.15 783
P03.16 784 Частота аналогового входа 2 с заданным нижним пределом 0,0 Гц 0 P03.16 784
P03.17 785 Заданная частота аналогового входа 2 Верхний предел 60.0 Гц 60 P03.17 785
P03.18 786 Корреляция аналогового выхода 0 0 P03.18 786

P03.19 787 Настройка усиления аналогового выхода 100100 P03.19 787
P04.00 1024 Mo аналоговый умножитель выходной частоты умножитель 10 10 P04.0 1024
P04.01 1025 Опции функции Mo1 0 0 P04.1 1025
P04.02 1026 Опции функции Mo2 1 1 P04.2 1026
P04.03 1027 Многофункциональное реле 1 Выбор функции 0: неисправность Да Электрическая, в противном случае сбой питания 0 2 2 2 P04.3 1027
P04.04 1028 Многофункциональное реле 2 Выбор функции 1: Работа Да Электрическая, в противном случае сбой питания 3 3,0 Гц 3 P04.4 1028
2: Зарезервировано
3: Время прихода произвольной частоты, есть электрическое, связано с настройками P02-10
4: Время отключения питания, есть электрический
5: время низкого напряжения, есть электрический
6: Время перенапряжения, есть электрический
7: Время перегрузки по току, есть электрический
8: Время ненулевой скорости, есть электрическое
9: Время торможения постоянным током, есть электрический
10: Время превышения крутящего момента, есть электрический
11: Время сбоя внешнего прерывания, иметь
12: Вперед, время электрика
13: Время разворота, есть электрический
14: Время движения, есть электричество
15: Ускорение времени, электричество
16: Время замедления, есть электрический
17: Время постоянной скорости, есть электрический
18: Время закрытия X1, есть электрический
19: Время закрытия X2, есть электрический
20: Время закрытия X3, есть электрический
21: Время закрытия X4, есть электрический
22: Время закрытия X5, есть электрический
23: Время закрытия X6, есть электрический
24: Прямое напряжение и напряжение на шине больше 400 В Время, есть электрический
25: Обратное напряжение и напряжение на шине больше 400 В Время, есть электрическое
P04.05 1029 Многофункциональное реле 1 Действие замыкания с задержкой 0-65,5 с 0 0 P04,5 1029
P04.06 1030 Действие задержки отключения многофункционального реле 1 0-65,5 с 0 0 P04.6 1030
P04.07 1031 Многофункциональное реле 1 Действие замыкания с задержкой 0-65,5 с 0 0 P04.7 1031
P04.08 1032 Действие задержки отключения многофункционального реле 1 0-65,5 с 0 0 P04.8 1032
P04.09 1033 Время обнаружения остановки ротора 0-65,5 с 1 1 P04.9 1033
P04.10 1034 Время выборки величины переключения (Di) 0-1000 мс 8 24 24 P04.10 1034
P04.11 1035 Режим остановки 0: остановка замедлением 0 0 P04.11 1035
1: остановка выбегом
P05.00 1280 Выход ПИД Верхний предел частоты 50 50 P05.0 1280
P05.01 1281 Нижний предел выходной частоты ПИД-регулятора 25 25 P05.1 1281
P05.02 1282 PID, заданный источник 0 0 P05.2 1282
P05.03 1283 Заданные значения PID 0,2 0,2 ​​P05.3 1283
P05.04 1284 Выходная характеристика ПИД-регулятора (FOR / REV) 0 0 P05.4 1284
P05.05 1285 Выходная характеристика ПИД-регулятора (FOR / REV) 0 0 P05.5 1285
P05.06 1286 Пропорциональное усиление ПИД-регулятора 0-100.0 50 50 P05.6 1286
P05.07 1287 Время интегрирования ПИД-регулятора Ti 0-100.0 0-100.0 50 50 P05.7 1287
P05.08 1288 Время производной ПИД-регулятора Td 0-100.0 0-100.0 50 50 P05.8 1288
P05.09 1289 Предел отклонения ПИД-регулятора 0-50.0 5 5 P05.9 1289
P05.10 1290 Верхний предел интегрального ПИД 50 50 P05.10 1290
P05.11 1291 Заданное время изменения ПИД-регулятора 0-600.0 1 1 P05.11 1291
P05.12 1292 Время фильтра обратной связи ПИД 0 0 P05.12 1292
P06.00 1536 Время разгона 0 0 P06.0 1536
P06.01 1537 Время разгона 1 0,1-65 53,5 5,0 9 5,0 5 P06.1 1537
P06.02 1538 Decel. Время 1 0,1-65 53,5 5,0 8,6 5,0 5 P06,2 1538
P06.03 1539 Время разгона 2 0,1-65 53,5 0,1-65 53,5 2 2 P06.3 1539
P06.04 1540 Decel. Время 2 0,1-65 53,5 0,1-65 53,5 2 2 P06.4 1540
P06.05 1541 Время разгона 3 0,1-6553,5 0,1-6553,5 2 2 P06,5 1541
P06.06 1542 Decel. Время 3 0,1-6553,5 0,1-6553,5 2 2 P06.6 1542
P06.07 1543 Время разгона 4 0,1-65 53,5 0,1-65 53,5 2 2 P06.7 1543
P06.08 1544 Decel. Время 4 0,1-65 53,5 0,1-65 53,5 2 2 P06,8 1544
P06.09 1545 Время разгона 5 0,1-6553,5 0,1-6553,5 2 2 P06.9 1545
P06.10 1546 Decel. Время 5 0,1-65 53,5 0,1-65 53,5 2 2 P06.10 1546
P06.11 1547 Время разгона 6 0,1-65 53,5 0,1-65 53,5 2 2 P06.11 1547
P06.12 1548 Decel. Время 6 0,1-65 53,5 0,1-65 53,5 2 2 P06.12 1548
P06.13 1549 Время разгона 7 0.1-6553,5 0,1-6553,5 2 2 P06,13 1549
P06.14 1550 Decel. Время 7 0,1-65 53,5 0,1-65 53,5 2 2 P06.14 1550
P06.15 1551 Время разгона 8 0,1-6553,5 0,1-6553,5 2 2 P06.15 1551
P06.16 1552 Decel. Время 8 0,1-65 53,5 0,1-65 53,5 2 2 P06.16 1552
P06.17 1553 Время разгона в толчковом режиме 0,1-6553,5 0,1-6553,5 2 2 P06.17 1553
P06.18 1554 Время торможения в толчковом режиме 0,1-6553,5 0,1-6553,5 2 2 P06.18 1554
P07.00 1792 Частота 1 0–120 Гц (400 Гц) 50 Гц 50 50 P07.0 1792
P07.01 1793 Частота 2 50 Гц 45 45 P07.1 1793
P07.02 1794 Частота 3 50 Гц 40 40 P07.2 1794
P07.03 1795 Частота 4 50 Гц 35 35 P07.3 1795
P07.04 1796 Частота 5 50 Гц 30 30 P07.4 1796
P07.05 1797 Частота 6 50 Гц 25 25 P07.5 1797
P07.06 1798 Частота 7 50 Гц 20 20 P07.6 1798
P07.07 1799 Частота 8 50 Гц 15 15 P07.7 1799
P07.08 1800 Выбор источника частоты 1 0: Панель оператора (параметр: P03.06 ~ P03.09) 0 0 P07.8 1800
P07.09 1801 Выбор источника частоты 2 1: Предустановленная частота, P00.00 Заданное значение частоты, Клавиатура панели управления, Может быть установлена ​​напрямую 2 2 P07.9 1801
P07.10 1802 Выбор источника частоты 3 2: Нет. Частота параграфа X P07.00 ~ P07.07 2 2 P07.10 1802
P07.11 1803 Выбор источника частоты 4 3: Аналоговый вход. : P03.10 ~ P03.13) 2 2 P07.11 1803
P07.12 1804 Выбор источника частоты 5 4: величина внешнего моделирования 2 (VI2) 2 2 P07.12 1804
P07.13 1805 Выбор источника частоты 6 5: (Modbus Rs485) Заданная частота 2 2 P07.13 1805
P07.14 1806 Выбор источника частоты 7 6: Прикладная программа пользователя, заданная частота 2 2 P07.14 1806
P07.15 1807 Выбор источника частоты 8 7 🙁 Pid) Выходная частота 2 2 P07.15 1807
Другое: Зарезервировано
Примечание: три метода управления (P07.08) 1808 1. Скорость двигателя контролируется с панели управления P07.16 1808
2. Контроль скорости двигателя с помощью внешних клемм (потенциометр 10К).P00.01 установлен на 1, P07.08 установлен на 3
3. Управление скоростью двигателя с помощью внешних клемм. P00.01 установлен на 1, P07.08 установлен на 1.
P07.16 1809 Частота толчкового режима ВПЕРЕД 0-120 Гц (400 Гц) 15,0 Гц 15 P07.17 1809
P07.17 2048 Частота толчкового режима REV 0-120 Гц (400 Гц) 15,0 Гц 13,0 Гц 13 P08.0 2048
P08.00 2049 Автоматическая многостраничная работа: Направление движения. Двоичный формат данных для установки направления работы, см. (Автоматическая многосегментная операция, операция таблицы установки направления) 0 0 P08.1 2049
P08.01 2050 Автоматическая многостраничная работа: режим Выбор 0: Автоматическая многосегментная работа недействительна; 0 0 P08.2 2050 г.
1: После завершения выполнения Stop;
2: после завершения выполнения, сохранить последнее рабочее состояние, продолжить работу;
3: После завершения выполнения, повторное выполнение.
P08.02 2051 Автоматическая многопараграфная длительность Единицы измерения: S / M 0: S; 1: M 0 0 P08.3 2051
P08.03 2052 Автоматическая многопараграфная Ходовая: Нет.1 абзац Время работы Автоматическое время работы нескольких секций, настройка времени работы скорости секции Единицы времени определяются параметром P08.02 Решение Задать пробег равным 0, указывает, что эта секция не выполняется. 10 1 1 P08.4 2052
P08.04 2053 Автоматическая многопараметрическая работа: 2 параграфа Время работы 10 1,5 1,5 P08,5 2053
P08.05 2054 Автоматическая многопараметрическая работа: № 3 параграфа Время работы 10 1 1 P08.6 2054
P08.06 2055 Автоматическая многопараграфная работа: №4 параграфа Продолжительность 10 1.5 1,5 P08.7 2055
P08.07 2056 Автоматическая многопараметрическая работа: № 5 параграфа Время работы 10 1 1 P08.8 2056
P08.08 2057 Автоматическая многопараметрическая работа: №6 параграф Время работы 10 1,5 1,5 P08.9 2057
P08.09 2058 Автоматическая многопараметрическая работа: №7 параграф Время работы 10 1 1 P08.10 2058
P08.10 2304 Автоматическая многопараметрическая работа: №8 параграф Время работы 10 1,5 1,5 P09.0 2304
P09.00 2305 Диапазон частот (%) 0-200% 0 0 P09.1 2305
P09.01 2306 Частота волны Диапазон (%) 0-400% 200 30 30 P09.2 2306
P09.02 2307 Частота Время нарастания (с) 0,1-999,9 с 6,0 с 6 P09.3 2307
P09.03 2560 Время спада частоты (с) 0,1-999,9 с 5,0 с 5 P10.0 2560
P10.00 2561 Перезагрузка счетчика, значение 1000 1000 P10.1 2561
P10.01 2562 Значение счетчика тока 0 0 P10.2 2562
P10.02 2563 Перезагрузка таймера, значение 1000 1000 P10.3 2563
P10.03 2816 Текущее значение таймера 0 0 P11.0 2816
P11.00 2817 Состояние выхода 1 1 P11.1 2817
P11.01 2818 Выходное напряжение (В) 0 0 P11.2 2818
P11.02 2819 Выходной ток (A) 5 5 P11.3 2819
P11.03 2820 Выходная частота (Гц) 50 50 P11.4 2820
P11.04 3072 Текущая температура радиатора 25 25 P12.0 3072
P12.00 3073 Номинальный ток двигателя 5 5 P12.1 3073
P12.01 3074 Номинальное напряжение двигателя 220220 P12.2 3074
P12.02 3075 Число полюсов двигателя 2-100 2 2 P12.3 3075
P12.03 3076 Ток холостого хода двигателя 10 10 P12.4 3076
P12.04 3077 Время определения тока холостого хода двигателя (с) 10 10 P12.5 3077
P12.05 3078 Номинальный ток преобразователя (A) 5 5 P12.6 3078
P12.06 3079 Номинальное напряжение преобразователя (В) 220220 P12.7 3079
P12.07 3080 Выходное напряжение шины постоянного тока% 140130 P12.8 3080
P12.08 3081 Точка защиты радиатора от перегрева 70 75 P12.9 3081
P12.09 3082 Конфигурация датчика температуры излучающего ребра 1 1 P12.10 3082
P12.10 3083 Время ожидания аварийного сброса агрегата 120120 P12.11 3083
P12.11 3084 Схема работы вентилятора 0: Мотор работает, запуск вентилятора; 1 1 П12.12 3084
1: При превышении рабочей температуры вентилятора (P12.12), мгновенный запуск вентилятора; Когда температура ниже, чем точка температуры вентилятора, подождите около 1 минуты, чтобы закрыть вентилятор;
2: Безусловный принудительный запуск вентилятора;
3: вентилятор не работает;
P12.12 3085 Рабочая температура охлаждающего вентилятора 55 45 50 P12.13 3085
P12.13 3086 Проверка вентилятора 0 0 P12.14 3086
P12.14 3087 Обнаружение замыкания реле байпаса 0 0 P12.15 3087
P12.15 3088 Время задержки реле байпаса 1,5 1 P12.16 3088
P12.16 3089 Начальное значение таймера задержки включения (S) 50 50 P12.17 3089
P12.17 3090 Датчик электрического тока Для настройки 1 1 P12.18 3090
P12.18 3091 Функция автоматического стабильного давления Выбор 1 1 P12.19 3091
P12.19 3092 Частота ШИМ 2,0-15,0 кГц (110V13.0 кГц 220 В 11,0 кГц 380 В 6,0 кГц) 8,0 кГц 13,0 кГц 13 P12.20 3092
P12.20 3328 SVPWM Шаблон 0: трехфазный асинхронный двигатель, 0 0 P13.0 3328
1: Двухфазный асинхронный двигатель (однофазный двигатель, разность фаз 90 градусов, пусковой конденсатор)
П13.00 3329103 П13.1 3329
П13.01 3330600 П13.2 3330
П13.02 3331 1 П13.3 3331
П13.03 3332 16.24 П13.4 3332
П13.04 3333 1 П13.5 3333
П13.05 3584 0 П14.0 3584
П14.00 3585 35 П14.1 3585
П14.01 3586 0.2 П14.2 3586
П14.02 3587 1 П14.3 3587
П14.03 3588 0 П14.4 3588
П14.04 3589 0 П14.5 3589
П14.05 35

П14.6 3590
П14.06 3591 1900 П14.7 3591
П14.07 3592 2000 П14.8 3592
П14.08 3593 59999 П14.9 3593
П14.09 3594 5 П14.10 3594
П14.10 3595 20 П14.11 3595
П14.11 3596 0 П14.12 3596
П14.12 3597 0 П14.13 3597
-П14.13 3598 0-П14.14 3598
-П14.14 3599 0-П14.15 3599

Дополнительная информация:
Извините, это вставка из электронной таблицы, вам, возможно, придется отформатировать или вставить ее в электронную таблицу, чтобы лучше увидеть …

Дополнительная информация:
Я обязательно это сделаю. Большое спасибо за предоставленную информацию !!

Дополнительная информация:
У меня тоже такая проблема с yl620.Есть решение?

Дополнительная информация:
Есть ли электрическая схема для блоков 110 В. Мой пришел с буклетом на 220 вольт.

Дополнительная информация:
Мой блок также пришел с инструкциями для блока 220. Мне нужна схема подключения 110.

Дополнительная информация:
Эти инструкции в лучшем случае неубедительны, мой друг заказал один из них для установки на шлифовальный станок для ножей, который я построил для него, и я приступил к настройке устройства, после подключения его к двигателю он работает двигатель, но охота идет на более низких скоростях, и настройки, которую я ищу, просто нет в списке, есть некоторые настройки в 14, которые не говорят, для чего там, может ли кто-нибудь помочь?

Щелкните ссылку, чтобы ответить:
Я получил VFD 110v yl600-2s-2k20 p 110v с инструкциями 220v, также разъемы на VFD не соответствуют какой-либо конфигурации проводки, которая у вас есть.

Как подключить трехфазный электродвигатель к сети 220В: советы

Часто возникает необходимость в доме или во время ремонтных работ подключить трехфазный электродвигатель к сети 220 вольт. Эти устройства работают от напряжения 380 В. Но, как известно, в большинстве домов в электросети всего 220 В. Как подключить трехфазный электродвигатель к сети 220В? Об этом мы узнаем из нашей статьи.

Как подключить трехфазный двигатель к однофазной сети

Рассмотрим пример со швейной машиной.Конечно, в заводских условиях с подключением проблем не возникнет. Но для работы в однофазной сети электродвигатель нужно немного отрегулировать. Например, изменить схему соединения обмоток с формы звезды на треугольник. Конечно, нужно соблюдать полярность. Благодаря такой переделке можно будет подключить трехфазный электродвигатель к сети 220 В.

Электродвигатель швейной машины 0,4 кВт. Если есть возможность приобрести пусковые металло-бумажные конденсаторы МБТТ, МБГО или МБГО емкостью 50 или 100 мкФ и рабочим напряжением от 450 до 600, то проблем с пуском не будет.Однако они могут стоить слишком дорого. Поэтому лучше поискать альтернативные «дешевые» решения проблемы.

Это может быть кратковременное подключение дополнительного электролитического конденсатора. Он должен работать всего две-три секунды, не более. Ведь его работа нужна только для запуска электродвигателя. Тогда последний будет работать в двухфазном режиме и терять до половины мощности. Однако можно предусмотреть его запас. Кстати, такая же потеря мощности будет наблюдаться при работе с фазовращающим конденсатором.

Отсутствие метода и решения проблем

Многие знают, что в сети переменного тока электролитический конденсатор очень быстро нагревается. Электролит в нем закипает и взрывается. Практика показала, что это может происходить за период от десяти до пятнадцати секунд. Но если этот конденсатор включить всего на полторы секунды, используя небольшое сопротивление, то устройство не будет повреждено, так как просто не успеет прогреться.

В стиральных машинах на короткое время используется кнопка.Он трехконтактный. У двух из них есть фиксация, а у одного вообще без нее. За счет последнего контакта конденсатор включается и перестает работать после прекращения нажатия.

Напряжение на электролитических конденсаторах должно быть не менее 450В. Таким образом, емкость может быть собрана из нескольких конденсаторов, помещенных в защитную коробку. Такая схема подключения на практике доказала свою жизнеспособность. Правда, эксперименты проводились только с электродвигателями мощностью менее одного кВт.Для более мощных двигателей вы, скорее всего, захотите включить небольшой резистор с ограничением тока и необходимой мощностью рассеивания с конденсатором.

Второй способ

Рассмотрим, как трехфазный электродвигатель в однофазной сети соединяется асинхронно с короткозамкнутым ротором.

На практике, даже при оптимальном выборе конденсатора, переключающего фазу емкости, крутящий момент не будет выше тридцати пяти процентов от номинального крутящего момента. Это связано с тем, что ток, протекающий через одну обмотку, сдвинут по фазе относительно других обмоток.Следовательно, в магнитном поле статора создается еще одна составляющая, помимо той, которая вращает ротор в нужном направлении.

Сформованный компонент вращается с противоположной стороны и тормозит ротор, уменьшая крутящий момент на валу и тратя энергию на нагрев обычных и магнитных проводов двигателя. Но если выключить обмотку, крутящий момент увеличится до сорока одного процента. А если изменить направление тока в нем и снова подключить, он еще больше возрастет и может достигать пятидесяти восьми процентов.

Как улучшить процесс

Такая оптимизация процесса возможна не только за счет изменения направления вращения детали. Получается также компенсация полей других обмоток, которые совпадают по направлению и не участвуют во вращении. Запуск двигателя улучшится даже при использовании двух фазосдвигающих конденсаторов.

Их емкости должны быть одинаковыми. Такие показатели рассчитываются по специальной формуле. Они проверяются путем измерения напряжения на обмотках и должны показывать примерно такие же результаты.

Равные напряжения можно соединить параллельно пунктирной линией.

Как подключить трехфазный мотор к сети 220 вольт

Радиолюбителям часто приходится использовать рассматриваемые моторы. Поэтому знать, как подключить трехфазный электродвигатель к сети 220В, крайне необходимо. Уже известно, что для этого совершенно не обязательно иметь трехфазную сеть. Третью обмотку лучше подключать через фазосдвигающий конденсатор.

Для нормальной работы двигателя емкость конденсатора изменяется с учетом количества оборотов.На практике это условие выполнить очень сложно. Из положения они выходят двухступенчатым образом: двигатель включается с пусковой мощностью и остается при этом работающим. В ручном режиме переходит в рабочий режим.

Конденсатор используется только бумажного типа, и его рабочее напряжение должно быть более чем в полтора раза выше напряжения сети. Схема реверсирования двигателя с конденсаторным запуском довольно проста. Когда переключатель активирован, двигатель меняет направление вращения.Но нужно знать особенности работы таких двигателей. Если устройство работает в холостом режиме на обмотке, ток будет протекать на двадцать — сорок процентов больше номинального. Поэтому при работе с нагрузкой следует снижать работоспособность. При перегрузке электродвигателя он выключится, и для нового запуска потребуется снова включить пусковой конденсатор.

Можно подключить мотор к сети 220В любую, даже трехфазную. Однако некоторые из них могут плохо работать.Примером может служить двойная ячейка короткозамкнутого ротора МА. Но если схема будет правильно реализована и необходимые параметры конденсаторов правильно подобраны, то рабочий процесс будет отличным. Например, асинхронные двигатели A, AO2, APN, AO, AOL и UAD — удачные варианты.

Недостатки трех способов подключения

Недостатки описанных выше способов следующие:

  • потеряна половина номинальной мощности;
  • Не все модели электродвигателей запускаются при питании от однофазной сети;
  • должны использоваться рабочие и пусковые цистерны;
  • на холостом ходу ток течет более двадцати — сорока процентов номинального тока;
  • Для автоматизированного процесса отключения пускового конденсатора и замены бумажных элементов на электролизеры используются дополнительные обороты.

Четвертый способ

Устранить эти недостатки можно следующим способом. Как подключить трехфазный электродвигатель к сети 220В?

При трехфазном напряжении каждая кривая сдвинута на одну треть по сравнению с другой.

Так как частота сети пятьдесят герц, период будет равен двадцати микросекундам. Тогда его третье — 6,666 … микросекунды. Возьмем синусоидальное однофазное напряжение 220В и 50 Гц. Если пропустить его через цепь задержки в течение трети периода, вы получите сдвинутое напряжение, которое по амплитуде и частоте будет равно исходному.Если вы пропустите его через ту же схему задержки, вы получите сдвинутое напряжение еще на треть периода.

Вы знаете, как подключить трехфазный двигатель к однофазной сети? Схема должна быть изучена вами максимально подробно. А это выглядит так.

Механизм БП включает в себя генератор импульсов положительной полярности на трансформаторе. Источник питания состоит из второй обмотки трансформатора, выпрямительного моста и стабилизатора. Генератор собран в третьей обмотке трансформатора, резистор и выпрямитель на диодах.Стабилитрон защищает входы детали от случайного повышения напряжения выше допустимого, то есть более двенадцати вольт. На детали изображен формирователь прямоугольных импульсов. На выходе подаются прямоугольные импульсы 50 Гц плюс полярность.

При преобразовании трехфазного тока используются три однофазных или специальных трехфазных трансформатора с сердечником в виде стержней. Отдельные элементы следует подключать по схеме звезда-звезда.

Вывод

Итак, решение вопроса — как подключить трехфазный электродвигатель в сеть 220В, возможно несколькими способами.Некоторые из них реализовать сложнее, но процесс будет лучше. Остальные методы попроще, но не лишены недостатков.

Требуется помощь по подключению электродвигателя | Homebrew Talk

Похоже, этот мотор должен работать на вас. Я помогу вам разобраться, но это может потребовать некоторого обсуждения.

Давайте начнем с двигателя и заставим его вращаться, а затем перейдем к блоку управления.

На выходе из двигателя: черный, желтый, черный провод с надписью и два набора из 3 проводов, концы которых обжаты вместе, что, как я полагаю, означает, что они принадлежат друг другу: черный, белый, оранжевый и черный, красный, синий

На тех схемах подключения двигателя, где показана группа различных цветов, собирающихся «изолировать», это означает, что вы соединяете эту группу вместе с помощью изолированного разъема.Другими словами, те, которые вы описываете как спрессованные вместе.

По мере того, как вы работаете над этим, вы должны маркировать каждый провод, как он идентифицирован, и перед тем, как вырезать его из группы — это избавит вас от проблем с идентификацией позже.

Похоже, что проводка теперь настроена для входа «высокого напряжения» (на основе цветов, которые сгруппированы вместе).

В группе Черный / Красный / Синий, этот Черный — T1 — обозначьте его.

В группе Оранжевый / Белый / Черный этот Черный — это тот, который они идентифицируют как Черный на диаграмме — обозначьте его как Черный, чтобы его не перепутали с другим черным.

Осталось два черных (один с надписью) и желтый.

Желтый на диаграмме явно желтый.

А теперь самое сложное — два черных. Один — P1, а другой — P2.

Что можно сказать по написанию на одном проводе?

Есть ли признаки того, что один был закрыт? P2 не используется в высоковольтной конфигурации.

Вы смотрите на них внутри кабельной коробки сбоку двигателя? Есть там какие-нибудь ярлыки? Можете ли вы предоставить картинку в коробке?

На проводах есть цифры? На заводской схеме, которую я скачал, есть номера внутренних соединений.

Edit:
Чтобы ответить на другой из ваших конкретных вопросов — линии 1 и линия 2 на схеме — это входящая мощность либо от шнура питания, либо от блока управления.

Edit 2:
У вас есть вольт / омметр для тестирования?

Как подключить трехфазный двигатель в 220. Подключить трехфазный двигатель к однофазной сети. Подключение без конденсатора

Пуск трехфазного двигателя от 220 вольт

Часто возникает потребность в подсобном хозяйстве подключить трехфазный электродвигатель , а имеется только однофазная сеть (220 В).Ничего, поправимо. Только нужно подключить к двигателю конденсатор, и он заработает.

Емкость используемого конденсатора зависит от мощности электродвигателя и рассчитывается по формуле

Подключение к трехфазной сети двигателя с короткозамкнутым ротором

Трехфазные двигатели имеют большой диапазон мощности. Хотя они потребляют немного больше энергии, чем трехфазные, однофазные модели имеют простое подключение, что делает их пригодными для домашнего, сельского и коммерческого использования, мест, где электрические установки обычно однофазные.

Пусковой конденсатор трехфазного двигателя

Однофазные асинхронные двигатели должны использовать другие решения для вращения плунжера. Поскольку они питаются только одной фазой, индуцированные поля ротора совпадают с индуцированными полями ротора, что предотвращает создание исходного сопряженного элемента. То есть им нужна помощь для загрузки. Следовательно, вспомогательная цепь вводит магнитное поле, зависящее от питания, которое фактически превращает двигатель в двухфазный.

C = 66 · P Mr.,

где С — емкость конденсатора, мкФ, R nom — номинальная мощность двигателя, кВт.

Например, для электродвигателя мощностью 600 Вт необходим конденсатор на 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

C всего = C 1 + C 1 + … + C n

Некоторые вспомогательные цепи пуска могут предполагать, что импульс начального тока в 5-10 раз превышает номинальный ток двигателя.Поэтому при подключении однофазного двигателя в свет выходит начальная «ступенька». Для этого необходимо обеспечить кратковременную перегрузку по току, чтобы избежать чрезмерного срабатывания автоматов защиты.

Однофазные двигатели можно разделить на две большие группы. Во-первых, запаздывание достигается электрическими изменениями пути прохождения сигнала и очень специфическим расположением катушек. Это 2-х обмоточные электродвигатели, основная и вспомогательная. Они показаны на рисунках ниже.

Итак, общая емкость для мотора мощностью 600 Вт должна быть не менее 42 мкФ.Необходимо помнить, что подходят конденсаторы, рабочее напряжение которых в 1,5 раза превышает напряжение в однофазной сети.

В качестве рабочих конденсаторов могут использоваться конденсаторы типа КБГ, МБГЧ, БХТ. При отсутствии таких конденсаторов используются электролитические конденсаторы. В этом случае корпуса электролитических конденсаторов соединены между собой и хорошо изолированы.

Во второй группе фаза тока изменяется за счет структурных изменений полюса двигателя. Это двигатели с экранированными полюсами.В двигателях со вспомогательной обмоткой вращающееся магнитное поле создается путем размещения обмоток на статоре, которые смещены на 90 ° друг от друга, запитывая одну из них с некоторым запаздыванием по времени. Это можно сделать несколькими способами: с помощью электродвигателя с расщепленной фазой, электродвигателя с пусковым конденсатором, постоянного конденсатора двигателя, постоянной электродвигателя и пускового конденсатора.

Обратите внимание, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, практически не изменилась по сравнению со скоростью вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключаются к однофазной сети по схеме «треугольник» ( рис. ). Мощность, развиваемая трехфазным электродвигателем, включенным в схему треугольника, составляет 70-75% от его номинальной мощности.

Об этих двигателях поговорим позже. Есть предложения по темам, которые вы хотели бы изучить в области электродвигателей и их компонентов? Отправьте нам, кто знает, мы поможем вам узнать больше. Подходит ли двигатель на 220 вольт, чтобы называть его однофазным? .В роторе с короткозамкнутым ротором ротор состоит из многослойного цилиндра с вырезами, в которых расположены стержни, которые с обеих сторон соединены венцами, заканчивающимися на них. Чтобы двигатель работал, частота вращения ротора должна быть меньше скорости вращения вращающегося поля, поэтому ротор вращается асинхронно.

Рис. 1. Принципиальная (а) и монтажная (б) схемы подключения трехфазного электродвигателя к однофазной сети по схеме «треугольник»

Трехфазный электродвигатель подключается аналогично по схеме «звезда» (рис.2).

Какие конденсаторы выбрать

КПД двигателя частично зависит от места, доступного для установки обмоток статора. Это объясняет, почему двигатели с несколькими отдельными обмотками имеют меньшую мощность. Двигатели с внешним ротором широко используются в области вентиляции. Поскольку обмотка расположена в сердечнике двигателя, обычно необходимо ограничить ее размер. Внешний ротор вращается вокруг статора, который остается прикрепленным к нему. Это выгодно с точки зрения конструкции, поскольку крыльчатку вентилятора можно установить непосредственно на двигателе.

Рис. 2. Принципиальная (а) и монтажная (б) схемы подключения трехфазного электродвигателя к однофазной сети по схеме звезды

Для соединения звездой необходимо две фазные обмотки электродвигателя подключить непосредственно к однофазной сети (220 В), а третью через рабочий конденсатор ( С p) к любой из двух провода сети.

Преимуществом этого типа конструкции является отсутствие приводного ремня, который всегда является источником потерь энергии.С другой стороны, чтобы иметь возможность широко распространить этот тип двигателя, необходимо было добавить к нему систему, позволяющую регулировать скорость вращения. Обычно это достигается за счет использования систем регулировки, которые действуют на пробуксовку двигателя за счет снижения напряжения питания. Большинство этих систем управления вызывают значительные потери энергии и создают гармоники.

Преобразователь переменного тока в постоянный встроен в двигатель. Прямой привод и двигатель постоянного тока. Для двигателей меньшего размера эти двигатели имеют более высокий КПД, чем двигатели переменного тока.Из-за отсутствия щеток они больше не подвержены механическому износу и требуют минимального обслуживания.

Для запуска трехфазного электродвигателя небольшой мощности обычно достаточно просто рабочего конденсатора, но при мощности более 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо использовать другой пусковой конденсатор ( С П). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора.Электролитические конденсаторы такого типа лучше всего использовать в качестве пусковых. EP или того же типа, что и рабочие конденсаторы.

Значительное повышение КПД двигателя постоянного тока связано с устранением потерь на скольжение, потерь возбуждения и потерь в меди. Это, очевидно, упрощает регулировку потока после установки, в то же время используя двигатель с прямым приводом, то есть без потери ремней.

Двигатели постоянного тока

могут быть сконструированы как с внутренним ротором, так и с внешним ротором, в то время как двигатели с внешним ротором хорошо подходят для изготовления вентиляторов и могут быть установлены непосредственно в крыльчатке вентилятора.Таким образом можно исключить перенос ленты, имея хорошие урожаи.

Схема подключения трехфазного электродвигателя с пусковым конденсатором С n приведена на рис. 3 .

Рис. 3. Схема подключения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С п

Необходимо помнить: пусковые конденсаторы включаются только на время пуска трехфазного двигателя, подключенного к однофазной сети, на 2-3 с, а затем пусковой конденсатор отключается и разряжается.

Компактный однофазный двигатель со встроенным рабочим конденсатором

Обратите внимание, что двигатели постоянного тока имеют тот же размер, что и двигатели переменного тока, поэтому они взаимозаменяемы, независимо от замены вентилятора. Если вы находитесь в Европе, США или Бразилии, не беда! Шесть типоразмеров охватывают диапазон мощностей от 0,18 кВт до 1,1 кВт.

Встроенный конденсатор позволяет сделать двигатель более компактным. Следовательно, для запуска у вас есть от 45% до 50% номинального крутящего момента. Двигатель готов к использованию в ленточных конвейерах или шнековых конвейерах, а также в мешалках и дозирующих устройствах.Вы можете рассчитывать на крутящий момент от 100 до 150% от номинального крутящего момента.

Обычно выводы обмоток статора электродвигателей маркируются металлическими или картонными бирками с указанием начала и конца обмоток. Если по какой-либо причине теги отсутствуют, действуйте следующим образом. Сначала определите принадлежность проводов к отдельным фазам обмотки статора. Для этого возьмите любой из 6 внешних выводов электродвигателя и подключите его к любому источнику питания, а второй вывод источника питания подключите к контрольной лампе и поочередно коснитесь оставшихся 5 выводов обмотки статора вторым провод от лампы, пока не загорится свет.Когда лампочка загорается, это означает, что 2 клеммы принадлежат одной фазе. Условно отметьте бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их как C2 и C5, а начало и конец третьей — C3 и C6.

Без редуктора решение неполное? Как и обычные мотор-редукторы, мотор-редукторы сконфигурированы с использованием модульных редукторов. Приложения самые разные, но ответы, которые даются, часто совпадают, в ожидании изменения явления электромагнитной индукции!

Статья не предназначена для поощрения неопытного пользователя к электрическому подключению электромобилей, работающих при напряжении сети от 230 до 50 Гц.Любой, кто хочет внести изменения в электрические компоненты, например, в продукт, обязательно должен иметь по крайней мере следующие требования.

Следующим и основным этапом будет определение начала и конца обмоток статора . Для этого воспользуемся методом выбора, который применяется для электродвигателей мощностью до 5 кВт. Соедините все начала фазных обмоток электродвигателя по ранее прикрепленным биркам в одну точку (по схеме «звезда») и подключите электродвигатель к однофазной сети с помощью конденсаторов.

Знание концепций напряжения, тока, сопротивления, электрической мощности. Сознание применения закона Ома и различных формул, полученных на его основе.

  • Понимание рисков и опасностей размытия.
  • Хорошее качество изготовления мультиметра.
  • Рефлексивный и здравый смысл.
Возможна правка.

Отключение питания и приложения

Не удалось изменить. Однако, как только что было сказано, этого недостаточно для продолжения трансформации, давайте разберемся, почему.Эта концепция, очевидно, относится к номинальным условиям использования, то есть предполагается, что двигатель работает в соответствии с данными паспортной таблички, указанными производителем. Как указано выше, это должно препятствовать маловероятным изменениям, если вы хотите достичь приемлемой производительности при приложении определенной силы тяжести. Однако, учитывая неконтролируемую стоимость конденсатора, многие не убеждают себя и не подчиняются доказательствам, пока не коснутся рук.

Если двигатель без сильного гудения сразу набирает номинальную скорость, это означает, что все точки или все концы обмотки попадают в общую точку.Если при включении двигатель очень сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами клеммы С1 и С4. Если это не помогает, верните концы первой обмотки в исходное положение и поменяйте местами C2 и C5. Проделайте то же самое с третьей парой, если двигатель продолжает гудеть.

А вот и панацея от проблемы выхода из строя ротора. Конденсатор нарушает баланс двух вращающихся полей противоположного направления, создавая дисбаланс даже для соответствующих пар возбуждения.В этот момент ротор начинает вращаться в том же направлении, что и поле вращения статора.

Однако, найдя расчетное значение, было бы хорошо провести другие испытания с устройствами с аналогичной мощностью, время от времени контролируя время, потребляемое двигателем, и, прежде всего, перегрев конденсатора. Упрощенная формула делается.

Позже мы увидим пример того, как действовать. А теперь перейдем к практическому варианту модификации на реальном движке.Рассмотрим электрическую помпу на половину лошади, как на картинке. Теперь посмотрим на эти тарелки.

При определении начала и конца фазных обмоток статора электродвигателя строго соблюдайте правила техники безопасности. В частности, касаясь зажимов обмотки статора, удерживайте провода только за изолированную часть. Это также необходимо сделать, потому что электродвигатель имеет обычную стальную магнитную цепь, и на выводах других обмоток может появиться большое напряжение.

Перемычки и устройства, шаг за шагом

Обмотка силовых обмоток пригодна для однофазной работы с постоянно установленным конденсатором. Теперь применим спанометрическую формулу для расчета емкости конденсатора по упрощенной формуле. Сначала устанавливаем двигатель на прямоугольную основу из ДСП, чтобы избежать плавучести рамы при запуске.

Открывая крышку клеммной колодки двигателя, находим то же, что и при подключении на 400 звезд. Сделаем это, отключив мосты центрального замка, открутив гайки специальным ключом.Всегда будьте осторожны при удалении данных и удалении медных перемычек и шайб. Последний вместе с гайками обычно убегает от пальцев, чтобы попасть в отсек доступа к статору. Как только вы снимете, положите детали в снятую крышку, чтобы не потерять их.

На меняется направление вращения ротор трехфазного электродвигателя включен в однофазную сеть по схеме «треугольник» (см. рис. ), третью фазную обмотку статора ( Вт ) подключают через конденсатор к выводу второй фазной обмотки статора ( В, ).

Для изменения направления вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме звезды (см. рис 2, б ), необходима третья фазная обмотка статора ( Вт, ), подключенная через конденсатор к выводу второй обмотки ( В, ). Направление вращения однофазного двигателя изменяют путем изменения соединения концов пусковой обмотки. P1 и P2 (рис.4) .

На этом этапе необходимо подготовить жгут проводов кабелей.Для подключения конденсатора мы используем однополюсный шнур 1,5 мм², по крайней мере, пока мы тестируем. Два участка отвода для подключения конденсатора следует обозначить головками-розетками, предварительно изолированными с одной стороны, и проушинами, предварительно изолированными с другой. Очевидно, что размер имеет соответствующие размеры относительно используемого сечения проводника.

И, конечно же, ситуация, при которой потоки подключаются, очевидно, просто будьте осторожны, чтобы не подключить оба провода к «штыревым» ножкам одного и того же полюса конденсатора.Теперь нужно расположить медные перемычки или пластинки, назвав их как угодно треугольником.

При проверке технического состояния электродвигателей часто можно с грустью заметить, что после продолжительной работы возникает посторонний шум и вибрация, а ротор трудно проворачивать вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и обойма. Во всех случаях необходимо детально осмотреть двигатель и устранить имеющиеся неисправности.При незначительных повреждениях достаточно промыть подшипники бензином, смазать их, очистить картер двигателя от грязи и пыли.

Теперь вы можете настроить источник питания фазы и нейтрали, независимо от того, соблюдается ли какая-либо «полярность». На следующем рисунке синий провод плотно закреплен на первом нижнем левом зажиме, а коричневый — на зажиме рядом с ним. На этом этапе вам нужно подключить две клеммы конденсатора. Одна шпулька, черная нить, зажимы на последнем зажиме, оставленные свободными в нижнем ряду, другой конец вместо оранжевой проволоки подсоединяется к одному из двух других зажимов.Этот выбор определяет направление вращения двигателя.

Подключение без конденсатора

Обнаруженное напряжение. Как видно, в отличие от трехфазного источника питания на 400 В напряжения не симметричны, а токи даже трехпроводные. Однако двигатель необходимо испытать в нормальных условиях эксплуатации, асимметрия в этом случае снова увеличится. По этой причине необходимо проверять ток полной нагрузки, что может привести к превышению номинальных значений, что приведет к перегреву обмоток, что приведет к повышенному износу и отражению, а также возможным отказам.

Для замены поврежденных подшипников снимите их с вала съемником и промойте бензином гнездо подшипника. Нагрейте новый подшипник в масляной ванне до 80 ° C. Вдавите металлическую трубку, внутренний диаметр которой немного больше диаметра вала, во внутреннее кольцо подшипника и слегка ударьте молотком по трубке и установите подшипник на вал двигателя. Затем заполните подшипник смазкой на 2/3 объема. Соберите в обратном порядке.В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Добавить сайт в закладки

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда необходимость в тумблере SA1 отпадает, и конденсатор автоматически отключится (рис. 5).

При нажатии кнопки SB1 срабатывает реле К1 и контактная пара К1.1 включает магнитный пускатель КМ1, а К1.2 запускает конденсатор С п.Магнитный пускатель КМ1 самоблокируется своей контактной парой КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подключают электродвигатель к сети.

Кнопка «Пуск» удерживается до полного разгона двигателя, а затем отпускается. Реле К1 обесточивает и отключает пусковой конденсатор, который разряжается через резистор R2. При этом магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме.

Чтобы остановить двигатель, нажмите кнопку «Стоп».В усовершенствованном пусковом устройстве по схеме рис. 5 возможно использование реле типа МКУ-48 или подобное.

Применение электролитических конденсаторов в цепях пуска двигателей

При включении трехфазных асинхронных двигателей в однофазную сеть, как правило, используются обычные бумажные конденсаторы. Практика показала, что вместо объемных бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые меньше по размеру и более доступны с точки зрения покупки.

Схема замены обычного бумажного конденсатора приведена на рис. 6

Положительная полуволна переменного тока проходит по цепи VD1, C2, а отрицательная VD2, C2. Исходя из этого, можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем у обычных конденсаторов такой же емкости.

Например, если в схеме для однофазной сети с напряжением 220 В используется бумажный конденсатор с напряжением 400 В, то при его замене по указанной выше схеме можно использовать электролитический конденсатор на напряжение 200 В.В приведенной выше схеме емкости обоих конденсаторов одинаковы и выбираются так же, как и при подборе бумажных конденсаторов для пускового устройства.

Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов представлена ​​на рис.7.

На схеме SA1 — переключатель направления вращения двигателя, SB1 — кнопка ускорения двигателя, электролитические конденсаторы C1 и C3 используются для запуска двигателя, C2 и C4 используются во время работы.

Выбор электролитических конденсаторов в схеме рис. 7 лучше всего делать с помощью клещей-клещей. Измерьте токи в точках A, B, C и добейтесь равных токов в этих точках путем пошагового выбора конденсаторов. Измерения проводятся при нагруженном двигателе в том режиме, в котором он должен работать.

Диоды VD1 и VD2 для сети 220 В выбраны с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя.Для электродвигателей до 1 кВт подходят диоды Д245, Д245А, Д246, Д246А, Д247 на постоянный ток 10 А.

При более мощном двигателе от 1 кВт до 2 кВт нужно брать более мощные диоды с соответствующим постоянным током или ставить параллельно несколько менее мощных диодов, устанавливая их на радиаторы.

Стоит обратить внимание к тому, что при перегрузке диода он может выйти из строя и протечь через электролитический конденсатор переменный ток, что может привести к его нагреву и взрыву.

Включение мощных трехфазных двигателей в однофазную сеть

Конденсаторная схема для включения трехфазных двигателей в однофазную сеть позволяет двигателю получать не более 60% номинальной мощности, при этом предел мощности электрифицированного устройства ограничен 1,2 кВт. Этого явно недостаточно для электропилы или электропилы, которые должны иметь мощность 1,5 … 2 кВт. Проблему в этом случае можно решить, применив электродвигатель большей мощности, например 3… 4 кВт. Двигатели этого типа рассчитаны на напряжение 380 В, их обмотки соединены звездой, а в клеммной коробке всего 3 клеммы.

Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40% при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но его можно использовать для раскрутки ротора на холостом ходу или с минимальной нагрузкой. Практика показывает, что большинство электродвигателей уверенно разгоняются до номинальной скорости, и в этом случае пусковые токи не превышают 20 А.

Доработка трехфазного мотора

Наиболее просто перевести мощный трехфазный двигатель в рабочий режим, если его перевести в однофазный режим, получив при этом 50% номинальной мощности. Перевод двигателя в однофазный режим требует небольшой доработки.

Клеммная коробка открывается и определяется, с какой стороны крышки корпуса двигателя подходят выводы обмотки. Выкрутите болты крепления крышки и снимите ее с картера двигателя.Найдите место стыка трех обмоток в общей точке и припаяйте к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с припаянным проводом изолируют изолентой или трубкой ПВХ, а дополнительный вывод втягивают в клеммную коробку. После этого крышка корпуса устанавливается на место.

Схема включения электродвигателя в этом случае будет иметь вид, показанный на рис. восемь.

Во время разгона двигателя используется соединение звездой с подключенным фазовращающим конденсатором Cn.В рабочем режиме в сети включена только одна обмотка, а вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Cn разряжается через резистор Rp. Работа представленной схемы была испытана на двигателе типа АИР-100С2У3 (4 кВт, 2800 об / мин), установленном на импровизированном деревообрабатывающем станке, и показала свою работоспособность.

Детали

В схеме коммутации обмоток двигателя в качестве коммутирующего устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например, переключатель типа ПП2-25 / Н3 (двухполюсный с нейтралью, на ток 25 А).Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность электродвигателя к перегрузкам. Если нагрузка на вал достигает половины мощности двигателя, то скорость вращения вала может снизиться до полной остановки. В этом случае нагрузка снимается с вала двигателя.Переключатель переводится сначала в положение «Разгон», а затем в положение «Работа», после чего продолжает свою дальнейшую работу.

Для улучшения пусковых характеристик двигателей, помимо пускового и рабочего конденсаторов, также может использоваться индуктивность, улучшающая равномерность нагрузки фаз.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *