+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Трехфазный автомат как подключить


Схема подключения автоматического выключателя

Приветствую вас, уважаемые читатели сайта http://elektrik-sam.info.

В продолжение серии публикаций по автоматическим выключателям  очередная статья цикла — схема подключения автоматического выключателя.

Напомню, что цикл статей входит в курс Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.

Мы уже подробно изучили конструкцию и основные технические характеристики автоматов, давайте рассмотрим схемы их подключения.

В зависимости от количества коммутируемых полюсов (или иначе модулей), автоматы подразделяются на одно-, двух-, трех-, четырехполюсные (три фазы и ноль). В случае возникновения аварийной ситуации все полюса автоматического выключателя отключаются одновременно.

Один полюс — это часть автомата, в которую входит две винтовые клеммы для присоединения проводов (со стороны питания и со стороны нагрузки). Ширина однополюсного автомата, устанавливаемого на DIN-рейку стандартна — 17,5 мм, многополюсные автоматы кратны этой ширине.

Одно- и двухполюсные используются в однофазной электросети. Чаще всего применяются однополюсные автоматы, они устанавливаются в разрыв фазного провода и в случае возникновения аварийной ситуации отключают питающую фазу от нагрузки.

Двухполюсные автоматы позволяют одновременно отключить и ноль, и фазу. Применяются чаще всего, как вводные автоматы, либо если необходимо полностью отсоединить потребителя от электрической сети, например бойлер, душевую кабину. Они отключают ноль и фазу от защищаемого участка цепи и позволяют проводить работы по ремонту, обслуживанию или замене автоматических выключателей.

Нельзя устанавливать два однополюсных автомата отдельно для защиты фазного и нулевого провода. Для этих целей применяют двухполюсные автоматы, которые отключают ноль и фазу одновременно.

Трех- и четырехполюсные автоматические выключатели используются в трехфазной электросети. Трехполюсные автоматы устанавливаются в разрыв фаз (L1,L2,L3) трехфазной сети и служат для подключения к ней трехфазной нагрузки (электродвигателей, трехфазных электроплит и т. д.). В случае возникновения аварийной ситуации они отключают одновременно все три фазы от нагрузки.

Четырехполюсные автоматы позволяют одновременно отключить и ноль, и все три фазы, и используются как вводные автоматы в трехфазной электросети.

Вводной автомат позволяет отключить всю электропроводку квартиры и отключить питающую линию от групповых электрических цепей квартиры.

В зависимости от системы заземления применяются следующие вводные автоматы:

Вводной автомат для системы TN-S (где нулевой рабочий N и нулевой защитный PE проводники разделены) должен быть:

— однополюсный с нулем или двухполюсный;

— трехполюсный с нейтралью или четырехполюсный.

Система TN-S используется в современных домах.

Это необходимо для одновременного отключения электросети квартиры от нулевого рабочего и фазных проводников со стороны ввода электропитания, так как нулевой и защитный проводники разделены на всем протяжении.

Для системы TN-C (где нулевой рабочий и нулевой защитный проводники объединены в один PEN-проводник) вводной автомат защиты устанавливается однополюсный (при электропитании 220 В) или трехполюсный (при питании 380В). Устанавливаются они в разрыв фазных рабочих проводников.

Система TN- C используется в домах советской постройки (так называемая «двухпроводка»).

По правилам устройства электроустановок (п.1.7.145) не допускается включать коммутационные аппараты в цепи РЕ- и РЕN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Это требование ПУЭ обусловлено тем, что возможна ситуация, когда двухполюсные автоматические выключатели не смогут одновременно отключить фазный и РЕN-проводник. А отключая РЕN-проводник, мы тем самым инициируем его обрыв.

При включении под нагрузкой внутри автомата может произойти залипание или обгорание фазных контактов (например, может попасть песчинка на контактную группу автомата), в этом случае при отключении автомата от питающей сети произойдет обрыв РЕN-проводника и вынос на зануленные корпуса электрооборудования опасного потенциала. Т.е. нет гарантии, что коммутационные аппараты одновременно отключат и фазный и РЕN-проводник.

Подключение проводов к автоматическим выключателям осуществляется по схеме: «питание сверху», а «нагрузка снизу». Т.е. провод с питающим напряжением подводится к верхней винтовой клемме, а отходящий провод нагрузки к нижней винтовой клемме.

Смотрите подробное видео Схемы подключения автоматических выключателей

Конструкцию, основные характеристики, схемы подключения автоматических выключателей мы рассмотрели и вплотную подошли к вопросу их выбора.

Подписывайтесь на новости, впереди самое интересное!

Рекомендую материалы по теме:

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Автоматические выключатели — конструкция и принцип работы.

Номинал токовые характеристики автоматических выключателей.

Автоматические выключатели технические характеристики.

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

Конструкция (устройство) УЗО.

Устройство УЗО и принцип действия.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

elektrik-sam.info

Как подключить автоматический выключатель однофазный

  1. Устройство и принцип действия
  2. Монтаж автоматических выключателей
  3. Как правильно выбрать автомат
  4. Ошибки при монтаже автоматов
  5. Полюсность автоматов и схемы подключения

Автоматические выключатели, называемые в быту автоматами или переключателями, относятся к средствам коммутации и предназначаются для подачи электрического тока к какому-либо объекту. Основной функцией этих устройств является автоматическое отключение подачи тока при возникновении аварийной ситуации и неполадок в сети. Автомат защищает электрическую цепь от коротких замыканий, перегрузок и падения напряжения сверх допустимого значения.

В домах старой постройки, в системе электроснабжения нулевой провод был не только рабочим, но и одновременно выполнял защитную функцию. В современных зданиях предусмотрено четкое разделение по назначению рабочих и защитных проводников. В связи с этим часто возникает вопрос, как подключить автоматический выключатель, поскольку все электроустановочные изделия европейского образца оборудованы клеммами для подключения заземляющего провода. Кроме того, крепление самих автоматов в распределительном шкафу может быть выполнено путем крепления на DIN-рейку или на специальную монтажную панель.

Устройство и принцип действия

Прежде чем выполнять подключение автомата, необходимо разобраться с особенностями его конструкции и принципом срабатывания. Автоматический выключатель состоит из корпуса, коммутирующего устройства, механизма управления в виде кнопки или рукоятки, дугогасительной камеры и винтовых клемм, расположенных вверху и внизу.

Для изготовления корпуса и механизма управления используется прочная пластмасса, не поддерживающая горение. Коммутирующее устройство состоит из подвижных и неподвижных контактов.

Каждый полюс автомата состоит из пары этих контактов и оборудован собственной дугогасительной камерой.

Предназначение дугогасительной камеры заключается в гашении электрической дуги, появляющейся при разрыве контактов, находящихся под действием нагрузки. Сама камера изготавливается в виде набора стальных пластин, имеющих профиль определенной формы. Они изолированы между собой и расположены на одинаковом расстоянии относительно друг друга. Именно к этим пластинам притягивается дуга, которая здесь же остывает и угасает. Число пар контактов в разных моделях автоматов составляет от 1 до 4. В устройствах имеются индикаторы положения. Красный цвет указывает на включенное состояние, а зеленый – на выключенное. Таким образом, можно очень быстро определить текущее состояние автоматического выключателя.

Все детали спрятаны внутри корпуса, снаружи видно только верхние и нижние винтовые зажимы, рукоятку управления и индикатор. На корпусе имеется фиксатор, позволяющий быстро установить автомат на DIN-рейку и так же легко демонтировать его.

Для отключения автомата существует специальный механизм, называемый расцепителем. Каждый тип расцепителя имеет собственную конструкцию. Например, в обычных автоматах функцию отключающего устройства выполняет катушка с обмоткой и сердечником. Для обмотки используется медный изолированный провод. Включение катушки в электрическую цепь производится последовательно с контактами, поскольку именно по ней осуществляется движение тока нагрузки. В случае превышения этим током установленного допустимого значения, то под действием магнитного поля катушки сердечник перемещается и оказывает механическое воздействие на отключающее устройство. В результате, происходит размыкание контактов защитного автомата.

Конструкция теплового расцепителя имеет свои особенности. В ее состав входит специальная биметаллическая пластина. Для ее изготовления используются два вида металлов, разнородных по своему составу и с различными коэффициентами линейного расширения. Пластина включается в цепь последовательно с нагрузкой.

Во время работы автомата она нагревается током, проходящим через нее. В случае перегрузки происходит изгиб пластины в сторону металла с наименьшим коэффициентом расширения. В действие вступает спусковой механизм, отключающий автомат. Чем больше ток превышает номинальное значение, тем быстрее происходит срабатывание теплового расцепителя.

Монтаж автоматических выключателей

Подключение автоматических выключателей в распределительном шкафу выполняется в определенной последовательности. Сверху заводится кабель, подключенный к внешнему источнику тока, а через выводные отверстия, расположенные внизу, проводка разводится по своим объектам, в соответствии с электрической схемой.

В начале монтажа подключается вводный автомат. При наличии в схеме нескольких линий, изолированных между собой, они разделяются от вводного автоматического выключателя. Его мощность должна быть не меньше общей мощности автоматов, подключенных к раздельным линиям. С этой целью выбираются двух- или четырехполюсные устройства группы D, устойчивые к включению электроинструмента и другого мощного оборудования.

Наибольшее распространение получили однополюсные выключатели. подходящие для любых схем электроснабжения квартир и частных домов. Модульные автоматы устанавливаются на DIN-рейку и соединяются проводниками с пропускной способностью по току, превышающей рабочий ток выключателя. Более удобное подключение нескольких автоматов в одном ряду можно выполнить с помощью специальной соединительной шины. От нее отрезается кусок необходимой длины и закрепляется в клеммах. Такое подключение возможно за счет расстояния между контактами шины, соответствующего стандартной ширине модульных автоматов. Установка выключателя производится на фазу, а нейтральный проводник подводится от вводного устройства напрямую к приборам.

  • Однополюсный выключатель используется при монтаже розеток и систем освещения.
  • Двухполюсный автомат подходит для приборов повышенной мощности, таких как электроплита или бойлер. В случае перегрузок он гарантированно разрывает цепь. Схема подключения таких выключателей практически ничем не отличается от однополюсных моделей. Для более эффективного использования их рекомендуется подключать к отдельной линии.
  • Трехполюсный автоматический выключатель следует устанавливать только в тех случаях, когда планируется использование электроприборов, работающих при напряжении 380 В. Для того чтобы исключить перекос фаз, подключение нагрузки осуществляется по схеме «треугольник». Такое подключение не требует нейтрального проводника, а потребитель подключается к собственному выключателю.
  • Четырехполюсный автоматический выключатель чаще всего используется в качестве вводного. Основным условием подключения считается равномерное распределение нагрузки на всех фазах. При подключении оборудования по схеме «звезда» или трех отдельных однофазных проводов, по нейтральному проводнику будут уходить излишки тока.

При равномерном распределении всех нагрузок, нейтральный провод начинает выполнять защитную функцию в случае непредвиденных перекосов мощностей. Для обеспечения нормального подключения следует использовать только качественные материалы. Все соединения должны надежно закрепляться в клеммах. Если подключается сразу несколько кабелей, их контакты необходимо тщательно зачистить и залудить.

Порядок действий во время подключения можно рассмотреть на примере двухполюсного автоматического выключателя, устанавливаемого в щитке. В первую очередь отключается электроэнергия, чтобы полностью обесточить сеть. Отсутствие электричества проверяется с помощью индикаторной отвертки или мультиметра. Затем автомат нужно установить на DIN-рейку и защелкнуть фиксатором. Отсутствие крепежной рейки может создать определенные неудобства. После этого зачищаются жилы входящих и выходящих проводов на расстояние 8-10 мм.

В два зажима, расположенных сверху, подключаются вводные провода – фаза и ноль. В нижних зажимах фиксируются аналогичные исходящие проводники, распределяемые к розеткам, выключателям и электроприборам. Все провода качественно зажимаются в клеммах с помощью винтов. Места соединений необходимо проверить вручную. Для этого проводники нужно аккуратно пошевелить из стороны в сторону. В случае некачественного соединения жила будет шататься в клемме и даже может выскочить из нее. В этом случае винт клеммы нужно подтянуть.

По окончании монтажа в сеть подается напряжение и выполняется проверка работоспособности автоматического выключателя.

Как правильно выбрать автомат

Большое значение имеет правильный выбор автоматического выключателя. Каждое устройство отличается собственными параметрами, такими как номинальный ток, рабочее напряжение сети, число полюсов, максимальный ток короткого замыкания, времятоковая характеристика и другие важные значения.

Время срабатывания устройства имеет цифровое обозначение, указывающее, при каком токе сохраняется нормальная работоспособность автоматического выключателя. В домашних электрических сетях чаще всего применяются автоматы с цифрами 4500, 6000 и 10000 ампер. Все технические характеристики указываются производителями непосредственно на корпусе устройства. Сюда же входит и схема подключения, а также условное обозначение автомата.

Основными критериями выбора автоматического выключателя считается мощность нагрузки и сечение используемых проводов. Кроме того, учитывается ток перегрузки и ток отключения при коротком замыкании. Как правило, перегрузки в сети возникают при одновременном включении приборов и устройств с общей мощностью, вызывающей чрезмерный нагрев проводников и контактов. Поэтому ток отключения автомата, установленного в цепи, должен быть больше расчетного или равным ему. Его значение определяется как сумма мощностей всех используемых устройств, разделенная на 220.

Ток отключения при коротком замыкании также вызывает отключение автомата. Он подбирается путем расчетов к конкретной цепи и зависит от нагрузок, используемых чаще всего. С целью улучшения защиты в электрическую схему могут быть включены УЗО или дифференциальный автомат .

Ошибки при монтаже автоматического выключателя

При выполнении электромонтажных работ иногда допускаются серьезные ошибки, которые могут привести к негативным последствиям в процессе дальнейшей эксплуатации.

  1. Подключение питающего провода выполняется снизу. Хотя это и не запрещено ПУЭ, подобная схема будет неудобной, поскольку установка и размещение автоматов в щитке рассчитано именно на верхнее подключение.
  2. Распространенной ошибкой считается чрезмерный зажим контактов фиксирующими винтами. Это может привести не только к повреждению жилы, но и к деформации корпуса изделия.
  3. Иногда выполняется неправильное соединение проводников между собой. Необходимо внимательно относиться к маркировке, соединять фазные и нулевые провода, расположенные сверху, с такими же проводами, расположенными снизу.
  4. В некоторых случаях один двухполюсный автомат заменяется двумя однополюсными. Этого категорически нельзя делать, поскольку они не обеспечивают одновременного разъединения фазы и нуля.
  5. Нередко во время фиксации жилы в контакте, происходит попадание изоляции в посадочное место. Это приводит к ослаблению контакта, в результате чего наступает перегрев жилы и другие негативные последствия. Поэтому нужно в обязательном порядке защищать провод в соответствии с техническими требованиями конкретной модели автомата. Данную операцию следует проводить с использованием инструмента для снятия изоляции.

Отрицательную роль может сыграть неправильный выбор автоматического выключателя, который впоследствии не способен выдержать запланированные нагрузки. Поэтому рекомендуется предварительно выполнить все необходимые расчеты, особенно сечение кабеля. Следует помнить, что при расчетах значение автомата должно округляться в сторону уменьшения. Например, при токовой нагрузке в 20 А, автоматический выключатель должен выбираться на 16 А, что существенно увеличит срок эксплуатации проводки.

Схема подключения автоматического выключателя

Приветствую вас, уважаемые читатели сайта http://elektrik-sam.info .

В продолжение серии публикаций по автоматическим выключателям очередная статья цикла — схема подключения автоматического выключателя.

Мы уже подробно изучили конструкцию и основные технические характеристики автоматов, давайте рассмотрим схемы их подключения.

В зависимости от количества коммутируемых полюсов (или иначе модулей), автоматы подразделяются на одно-, двух-, трех-, четырехполюсные (три фазы и ноль). В случае возникновения аварийной ситуации все полюса автоматического выключателя отключаются одновременно.

Один полюс — это часть автомата, в которую входит две винтовые клеммы для присоединения проводов (со стороны питания и со стороны нагрузки). Ширина однополюсного автомата, устанавливаемого на DIN-рейку стандартна — 17,5 мм, многополюсные автоматы кратны этой ширине.

Одно- и двухполюсные используются в однофазной электросети. Чаще всего применяются однополюсные автоматы, они устанавливаются в разрыв фазного провода и в случае возникновения аварийной ситуации отключают питающую фазу от нагрузки.

Двухполюсные автоматы позволяют одновременно отключить и ноль, и фазу. Применяются чаще всего, как вводные автоматы, либо если необходимо полностью отсоединить потребителя от электрической сети, например бойлер, душевую кабину. Они отключают ноль и фазу от защищаемого участка цепи и позволяют проводить работы по ремонту, обслуживанию или замене автоматических выключателей.

Нельзя устанавливать два однополюсных автомата отдельно для защиты фазного и нулевого провода. Для этих целей применяют двухполюсные автоматы, которые отключают ноль и фазу одновременно.

Трех- и четырехполюсные автоматические выключатели используются в трехфазной электросети. Трехполюсные автоматы устанавливаются в разрыв фаз (L1,L2,L3) трехфазной сети и служат для подключения к ней трехфазной нагрузки (электродвигателей, трехфазных электроплит и т.д.). В случае возникновения аварийной ситуации они отключают одновременно все три фазы от нагрузки.

Четырехполюсные автоматы позволяют одновременно отключить и ноль, и все три фазы, и используются как вводные автоматы в трехфазной электросети.

Вводной автомат позволяет отключить всю электропроводку квартиры и отключить питающую линию от групповых электрических цепей квартиры.

В зависимости от системы заземления применяются следующие вводные автоматы:

Вводной автомат для системы TN-S (где нулевой рабочий N и нулевой защитный PE проводники разделены) должен быть:

— однополюсный с нулем или двухполюсный;

— трехполюсный с нейтралью или четырехполюсный.

Система TN-S используется в современных домах.

Это необходимо для одновременного отключения электросети квартиры от нулевого рабочего и фазных проводников со стороны ввода электропитания, так как нулевой и защитный проводники разделены на всем протяжении.

Для системы TN-C (где нулевой рабочий и нулевой защитный проводники объединены в один PEN-проводник) вводной автомат защиты устанавливается однополюсный (при электропитании 220 В) или трехполюсный (при питании 380В). Устанавливаются они в разрыв фазных рабочих проводников.

Система TN- C используется в домах советской постройки (так называемая «двухпроводка»).

По правилам устройства электроустановок (п. 1.7.145) не допускается включать коммутационные аппараты в цепи РЕ- и РЕN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Это требование ПУЭ обусловлено тем, что возможна ситуация, когда двухполюсные автоматические выключатели не смогут одновременно отключить фазный и РЕN-проводник. А отключая РЕN-проводник, мы тем самым инициируем его обрыв.

При включении под нагрузкой внутри автомата может произойти залипание или обгорание фазных контактов (например, может попасть песчинка на контактную группу автомата), в этом случае при отключении автомата от питающей сети произойдет обрыв РЕN-проводника и вынос на зануленные корпуса электрооборудования опасного потенциала. Т.е. нет гарантии, что коммутационные аппараты одновременно отключат и фазный и РЕN-проводник.

Подключение проводов к автоматическим выключателям осуществляется по схеме: «питание сверху», а «нагрузка снизу». Т.е. провод с питающим напряжением подводится к верхней винтовой клемме, а отходящий провод нагрузки к нижней винтовой клемме.

Смотрите подробное видео Схемы подключения автоматических выключателей

Конструкцию, основные характеристики, схемы подключения автоматических выключателей мы рассмотрели и вплотную подошли к вопросу их выбора.

Подписывайтесь на новости, впереди самое интересное!

Рекомендую материалы по теме:

Как подключить автоматический выключатель

Подключение автоматических выключателей

Подключения автоматов в однофазной сети

Вариант установки автоматических выключателей зависит от выбранной одно или трехфазной сети.

Для однофазной сети используются одно или двухполюсные автоматы, для трехфазной сети используют трех или четырехполюсные автоматы. Многополюсные автоматы собираются из нескольких однополюсных.

Механизм защиты соединен в одну систему через специальные соединения. Например, при отключении сети одного полюса автомата при перегрузке или к.з. отключится весь многополюсный автомат. К однополюсному автомату подключают фазу, при аварии автомат отключает фазу.

Этот вариант подключения автомата пригоден для сети системы TN-C, где нулевой провод подключается отдельно, через нулевую шину. Если в доме используется система TN-S, то ввод выполняется тремя проводами, фаза, ноль — синий провод и желто-зеленый провод PEN защитного заземления.

Подключение однополюсных автоматов в системе сети TN-S с нейтралью и защитным заземлением

В этой ситуации монтаж автоматических выключателей ведут на двухполюсных автоматах, где фаза с нейтралью подключаются к верхним клеммам вводного автомата, а защитный желто-зеленый провод PEN подключается на шину заземления в электрощите.

Использование двухполюсных автоматов в системе сети TN-S с нейтралью и защитным заземлением

Подключение автоматов в трехфазной сети

В трехфазной сети используются трех или четырех полюсные автоматы. В системе TN-C все три фазы L1, L2, L3 подключают к верхним клеммам трехполюсного автомата, а нулевой провод к нулевой шине электрощита.

Подключение трехполюсного автомата в системе сети TN-S с нейтралью и защитным заземлением

В системе TN-S с защитным заземлением PEN. три фазы подключаются к верхним клеммам четырехполюсного автомата, а нулевой провод синего цвета к верхней клемме четвертого полюса вводного автомата с маркировкой N. Защитный PEN провод желто-зеленого цвета подключается к шине заземления электрощита.

Подключение проводов к автомату

Установка автоматического выключателя проводится на DIN-рейку, длина которой выбирается с расчетом 17, 5 миллиметров на один однополюсный автомат. При монтаже кабеля с него снимается внешняя изоляция на 10 — 15 см для улучшения гибкости проводов и удобства монтажа.

Концы проводов защищают на 7-10 мм и заводят под клеммные контакты. Затягивать сильно винтовые соединения автомата не нужно во избежании перекоса его механизмов. При установке проводов в клеммы автомата следите, чтобы под контакты не попала изоляция проводов. В лучшем случае будет ненадежное соединение, а в худшем пропадет фаза на контакте.

Монтажная соединительная шина для автоматов

Для многожильного кабеля, для надежности контакта, лучше поставить медные наконечники соответствующего размера. В электрощите, где установлены несколько автоматов в ряд, удобно ставить медную соединительную шину для автоматических выключателей (гребенку). Ее режут необходимой длины, и устанавливают в нужной последовательности вместо проволочных перемычек.

Тоже интересные статьи

Время токовые характеристики автоматических выключателей

Неисправности автоматических выключателей и их устранение

Расчет автомата по мощности

Устройство автоматического выключателя

Источники: http://electric-220.ru/news/kak_podkljuchit_avtomaticheskij_vykljuchatel/2017-01-25-1162, http://elektrik-sam.info/shema-podklyucheniya-avtomaticheskogo-vyklyuchatelya/, http://electricavdome.ru/kak-podklyuchit-avtomat.html

electricremont.ru

Как подключить автоматический выключатель

Подключение автоматических выключателей

Подключения автоматов в однофазной сети

Вариант установки автоматических выключателей зависит от выбранной одно или трехфазной сети.

Для однофазной сети используются одно или двухполюсные автоматы, для трехфазной сети используют трех или четырехполюсные автоматы. Многополюсные автоматы собираются из нескольких однополюсных.

Механизм защиты соединен в одну систему через специальные соединения. Например, при отключении сети одного полюса автомата при перегрузке или к.з. отключится весь многополюсный автомат. К однополюсному автомату подключают фазу, при аварии автомат отключает фазу.

Этот вариант подключения автомата пригоден для сети системы TN-C, где нулевой провод подключается отдельно, через нулевую шину. Если в доме используется система TN-S, то ввод выполняется тремя проводами, фаза, ноль — синий провод и  желто-зеленый провод PEN защитного заземления.

Подключение однополюсных автоматов в системе сети TN-S с нейтралью и защитным заземлением

В этой ситуации монтаж автоматических выключателей ведут на двухполюсных автоматах, где фаза с нейтралью подключаются к верхним клеммам вводного автомата, а защитный желто-зеленый провод PEN подключается на шину заземления в электрощите.

Использование двухполюсных автоматов в системе сети TN-S с нейтралью и защитным заземлением

Подключение автоматов в трехфазной сети

В трехфазной сети используются трех или четырех полюсные автоматы. В системе TN-C  все три фазы L1, L2, L3 подключают к верхним клеммам трехполюсного автомата, а нулевой провод к нулевой шине электрощита.

Подключение трехполюсного автомата в системе сети TN-S с нейтралью и защитным заземлением

В системе TN-S с защитным заземлением PEN, три фазы подключаются к верхним клеммам четырехполюсного автомата, а нулевой провод синего цвета к верхней клемме четвертого полюса вводного автомата с маркировкой N. Защитный PEN провод желто-зеленого цвета подключается к шине заземления электрощита.

Подключение проводов к автомату

Установка автоматического выключателя проводится на DIN-рейку, длина которой выбирается с расчетом 17, 5 миллиметров на один однополюсный автомат. При монтаже кабеля с него снимается внешняя изоляция на 10 — 15 см для улучшения гибкости проводов и удобства монтажа.

Концы проводов защищают на 7-10 мм и заводят под клеммные контакты. Затягивать сильно винтовые соединения автомата не нужно во избежании перекоса его механизмов. При установке проводов в клеммы автомата следите, чтобы под контакты не попала изоляция проводов. В лучшем случае будет ненадежное соединение, а в худшем пропадет фаза на контакте.

Монтажная соединительная шина для автоматов

Для многожильного кабеля, для надежности контакта, лучше поставить медные наконечники соответствующего размера. В электрощите, где установлены несколько автоматов в ряд, удобно ставить медную соединительную шину для автоматических выключателей (гребенку). Ее режут необходимой длины, и устанавливают в нужной последовательности вместо проволочных перемычек.

electricavdome.ru

Схемы подключения автомата

Установить и правильно подключить автомат в распределительном шкафу – не проблема. С этим может справиться даже обычный человек, который с электричеством сталкивается только, когда вставляет в розетку штепсельную вилку от бытового прибора или включает освещение. Но вопрос, как правильно подключить автомат, все равно часто звучит от обывателей. Все дело в том, что даже среди электриков происходят споры о способах подсоединения. То есть, подводить питающий провод к автоматическому выключателю сверху или снизу.

Давайте не будем спорить здесь, а просто обратимся к правилам устройства электроустановок (ПУЭ), где в одном из пунктов, а, точнее, в пункте 3.1.6, четко все описано. Ни фото ниже нами сделана выписка из этого пункта ПУЭ.

Итак, правила рекомендуют подключать питающий провод к неподвижному контакту в автомате. А он расположен именно сверху. Но давайте до конца быть честными, и еще раз прочитаем правило. В нем нет строго ограничения, то есть, оно носит только рекомендательный характер. Поэтому отвечая на вопрос, как подключить автоматический выключатель снизу или сверху, можно использовать два варианта. Тем более, прибор будет отключать сеть от перегрузок и короткого замыкания в любом случае в независимости от схемы подключения.

И все же, почему в ПУЭ этот пункт присутствует? Чтобы ответить на этот вопрос, необходимо рассмотреть устройство автоматического выключателя.

Устройство автомата

Чтобы перейти к схемам подключения автомата, необходимо разобраться в первую очередь с его конструкцией. А так как нас интересует именно подключение проводов к нижним или верхним контактам прибора, то надо понимать, что оба контакта (подвижный и неподвижный) изготавливаются из разных металлических сплавов.

Когда дело касается сети переменного тока, то при коммутации автомата его контакты выгорают равномерно, и здесь разницы, куда подключать провода, нет никакой. Если автомат располагается в схеме с постоянным током, то выбор контакта подключения – важная составляющая правильной и долгосрочной работы самого прибора. При высокой величине силы тока наблюдается перенос металлов с одного контакта на другой, поэтому в таких сетях подключение питающих проводов надо производить только сверху, то есть, через неподвижный контакт.

Теперь переходим непосредственно к самому устройству автомата. Чтобы вы поняли, что находится внутри этого прибора, рекомендуем ознакомиться с рисунком ниже.

Два основных элемента, которые выполняют защитные функции автомата – это расцепители электромагнитный и тепловой.

Электромагнитный расцепитель

Этот элемент является защитным, который срабатывает в том случае, если в электрической цепи, куда был установлен сам автомат, появилось короткое замыкание. Именно в этот момент в цепи появляются токи огромной величины (практически превышающие номинальное значение тока в тысячи раз). Чтобы не сгорела проводка и бытовые приборы, включенные в розетки, расцепитель мгновенно отключает подающую сеть. Время отключения – это миллисекунды. Кстати, существует определенная маркировка по времятоковым характеристикам. Обозначается она буквами латинского алфавита и наносится на корпус самого автоматического выключателя. В быту чаще используются типы «А», «В», и «С».

Сама конструкция электромагнитного расцепителя – это сердечник (соленоид), вокруг которого расположены витки пружины. Соленоид связан напрямую с подвижным контактом автомата. А вот пружина соединяется последовательно с силовыми контактами и тепловым расцепителем. Номинальный ток слишком мал, чтобы созданный внутри катушки магнитный поток, смог втянуть сердечник и тем самым разомкнуть контакты. Как только в сети возникает короткое замыкание, то есть, появляется тог огромной величины, внутри катушки (пружины) возникают большие магнитные потоки, пружина сжимается и втягивает в себя сердечник, который в свою очередь тут же размыкает силовые контакты. А, значит, сеть будет обесточена.

Тепловой расцепитель

Этот элемент предназначается для защиты электрической цепи, если в ней начинают действовать большие нагрузки, отличные от номинальной. Это расцепитель, так сказать, замедленного действия. Он будет определенное время держать перегруз, и если последний не снизится до номинального значения, то отключит питание. Сразу оговоримся, что тепловой расцепитель не будет реагировать на скачки тока кратковременного действия.

Чисто конструктивно тепловой расцепитель представляет собой биметаллическую пластину, которая, по сути, является консолью. Ее свободный конец соединен с механизмом, который и будет разъединять контакты. При номинальном токе свободный конец пластины располагается близко к рычагу расцепительного механизма. Как только в цепи начнется перегрузка, пластина начинает нагреваться и изгибаться, тем самым действуя на рычаг, тот в свою очередь на механизм, а последний на контакты, размыкая их.

Вот такое достаточно сложное устройство автоматического выключателя и принцип действия.

Схемы подключения

Итак, принцип работы автоматического выключателя теперь понятен, можно переходить непосредственно к схемам его подключения. Начнем с того, что автоматы могут подключаться в однофазные и трехфазные сети. Какие автоматы для этого необходимы? Если разговор вести от однофазных сетях с напряжением в 220 вольт, то в них обычно устанавливается или однополюсный прибор, или двухполюсный. Сама схема будет зависеть от того, используется ли в ней заземляющий контур или нет.

Если в дом входят два провода (ноль и фаза), то в распределительный шкаф можно ставить однополюсный вариант. При этом фазный контур будет проходить именно через сам автомат. Если внутрь дома входит три провода (фаза, ноль и заземление), то общий автомат должен быть двухполюсным. То есть, к первой клемме прибора подключается фаза, ко второй ноль. Заземление через отдельную клеммную коробку разводится до потребителей (светильники и розетки). Далее, провода от автоматического выключателя проводятся до счетчика, затем к однополюсным автоматам, установленных по группам, но уже как было описано в первом случае. Кстати, вот ниже данная система подключения автомата.

Что касается трехфазной сети, то в данном случае лучше всего ставить трехполюсные или четырехполюсные конструкции. Здесь все точно так же, как и в случае с однофазным подключением. То есть, если в доме используется разводка без заземления, то к неподвижным контактам подключаются три фазы питающей сети. Нулевой провод разводится как отдельный контур до потребителей (розетки и лампы). Если в доме присутствует система заземления, то устанавливается четырехполюсная модель, то есть, к прибору будут подключаться три фазы и ноль, а контур заземления пойдет отдельной линией до потребителей.

Полезные советы

Иногда подключение автоматического выключателя связано с правильным проведением некоторых нюансов всего процесса. А именно подсоединением проводов к прибору. На что необходимо обязательно обратить внимание?

  • У каждой модели есть свои требования относительно сечения вставляемого провода и длины изоляционной оболочки. Это обязательно указывается в паспорте изделия.
  • Чаще всего зачищать провод надо на длину от 0,8 до 1,0 см.
  • Важно понимать, что ставить провод с изоляцией в зажим недопустимо, потому что диаметр изоляции больше диаметра самой жилы, поэтому контакт между зажимом и жилой или будет слабым, или будет полностью отсутствовать.
  • Фиксация провода в автомате производится винтом, который закручивается отверткой. После фиксации необходимо проверить качество зажима, для этого сам провод надо слегка подергать.
  • Если для подключения автомата используется многожильный проводник, то на его конец лучше всего надеть наконечник.

Заключение по теме

Итак, в этой статье мы постарались ответить на вопрос, который интересует многих, как подключить автомат правильно? Надеемся, что из предоставленной информации все понятно. И как уже было сказано выше, этот процесс не самый сложный, главное разобраться в схемах подключения.

onlineelektrik.ru

Как подключить бойлер к электрической сети



В связи с появлением в нашем доме бойлера следует задуматься как его правильно подключить к инженерным сетям, к водопроводу а в особенности к электрической сети.
В этом деле не все так просто, если вы хочете сделать подключение правильно, то не стоит думать что будет достаточно просто включить его в розетку. Бойлер это нагревающее устройство с которым у нас бывает самый непосредственный электрический контакт через такой проводник как вода, поэтому следует думать впервую очередь о безопасности.

Первое на что следует обратить внимание это правильный выбор электромонтажных устройств. Определить сечение провода в зависимости от того какая мощность у бойлера.

Дальше идет расценить тех. способности имеющихся электрокоммуникаций с целью их применения для запитки обогревателя. При этом принципиально учесть не только лишь сечение проводки, да и тех. свойства устройства учета и частей защиты (автоматических выключателей).

Так как употребляемая нагревателем электрическая мощность достаточно немалая (зависимо от размера бойлера от 1 до 2,5кВт), а ток в соответствии с этим имеет возможность достигать 12А.
Если существующая проводка не удовлетворяет объявленным требованиям, оправданным станет обустройство отдельной (независящей) линии непосредственно от вводного электрощита ну или хотя бы от магистральной соединительной коробки.

Электрическое подключение должно удовлетворять следующие правила

  • Подключение с помощью изолированного трех-жильного проводника с соответствующим сечением.
  • Линия питания бойлера должна быть оборудована двухполюсным автоматическим выключателем, соответствующим током в зависимости от мощности нагревательных тенов накопительного бойлера.
  • Если бойлер будет иметь разъемное соединение (розетку), а не напрямую подключатся к линии, то розетка, по степени защиты, должна быть не ниже IP44. Следует заметить что для мощных бойлеров соединение через розетку не допустимо, так как она может греться и привести к аварийной ситуации.
  • Если бойлер будет неразрывно подключен к линии электросети (без розеток) возле него, в удобной зоне, должен быть оборудован дополнительный (автоматический) выключатель. Разумеется он должен располагаться не в ванной.
  • Крайне рекомендуется наличие защитного отключения — УЗО в линии питания бойлера. Это позволит защитить потребителя от появления аварийных ситуаций. Это особенно актуально в частном доме.
  • Бойлер должен иметь постоянную электрическую связь с заземлением (занулением)

В большинстве случаев если у вас стандартный бойлер до 150 литров, необходимо провести к нему линию (медный кабель) сечением не менее 2. 5мм на 3 жылы.

Зачастую, для подключения мощных бойлеров, применяют автоматические выключатели током 16А. Но такие автоматы допускают работу устройства до 3кВт. Если же у вас небольшой бойлер мощностью в 1.5 — 2 кВт с одним теном, то вам лучше поставить автомат на 10А, здесь не применимо правило «чем больше тем лучше», а скорее наоборот, так как функция такого автомата, защитить электропроводку и элементы бойлера от аварийных ситуаций.


Подключение выключателя: однополюсный, двухполюсный

Иногда даже простейшие манипуляции и подключение несложных электрических приборов таких как выключатель освещения или автомат, может вызвать массу вопросов. В принципе сложно ничего нет, просто нужно чётко понимать:

  1. назначение каждого элемента цепи;
  2. безопасные приёмы подсоединения выключателя;
  3. номинальные величины каждого аппарата;
  4. знать систему электроснабжения и географию расположения электрических устройств.

Перечень инструмента, который понадобится при этом тоже минимален:

  1. Отвёртка индикаторная или индикатор напряжения с указателем фазы;
  2. Отвёртка с крепкой ручкой из хорошей стали, которая обеспечит надёжное зажатие болтового контактного соединения;
  3. Плоскогубцы;
  4. Изоляционный материал (изолента).

Конечно же, все эти правила и приёмы применяются для подключения и установки бытовых автоматических выключателей, а также выключателей освещения. В производственных помещениях и условиях подключение выключателя автоматического силового это трудоёмкая работа, связанная с крупногабаритными электрическими аппаратами, и там уже нужны будут торцевые и накидные ключи, для того чтобы надёжно и качественно произвести монтаж корпуса и контактную часть. В быту чаще всего применяется фазное напряжение 220 Вольт, которое является следствием подключения в трёхфазную цепь с глухо-заземлённой нейтралью. То есть для того чтобы получить это напряжение равное 220 Вольт нужно подсоединиться к фазному токопроводящему кабелю и к нулевому проводу. Между двумя фазами напряжение уже будет 380 Вольт. Такое напряжение применяется в быту чаще всего в собственных домах и коттеджах, когда нужно подключить трёхфазный двигатель (компрессор, вентилятор, насос) без потерь в мощности.

Подключение двухполюсного автоматического выключателя

Перед тем как подключить автоматический выключатель необходимо разобраться с назначением данного устройства, его функциями и возможностями. Автоматический двухполюсный выключатель — это по большому счёту два однополюсных автомата собранных в едином корпусе. Согласно ПУЭ нельзя производить отключение только одного фазного провода или же нулевого, для обеспечения безопасного эксплуатации электроустановок.

Данное устройство имеет несколько защит:

  • От короткого замыкания, то есть от резкого нарастания больших токов, которые возникают при этом в цепи;
  • От длительного повышения тока больше номинального, на заданную и чётко рекламированную величину.

То есть автомат отключится аварийно если он, допустим, рассчитан на рабочую силу тока равную 20 А, а в течение 20 минут через него будет протекать, например, 25 А в нём сработает тепловое реле, которое может препятствовать повторному включению. Только после того, как автоматический выключатель, а точнее, его тепловое реле, остынет до рабочей температуры будет возможность произвести повторное включение. А также автомат отключится если в отходящей цепи, то есть той которая пошла к потребителям, произойдёт короткое замыкание.

Как правильно подключить

Для подключения выключателя нужно для начала определиться с источником энергии, то есть откуда он будет запитан. Установка автоматических выключателей в щитке будет осуществляться в любом случае тоже от автомата только с большим номиналом.

Но должна выдерживаться селективность. Селективность — это отлаженный и подобранный механизм защиты приборов в электрических цепях в результате которого происходит отключение автоматического выключателя на данном участке цепи и он будет ближайшим к месту короткого замыкания или перегрузки. Другими словами, если система электроснабжения квартиры или помещения разделена на несколько частей, то при коротком замыкании в цепях на кухне отключится только автомат питающий это кухню, а не вводной на всю квартиру.

Известен источник, к которому можно подключить верхние контакты автомата, теперь нужно определиться с тем выдержит ли он все нагрузки и всех потребителей, которые будут подключены. Каждый электрический прибор имеет свои номиналы:

  1. Потребляемой мощности;
  2. Напряжения;
  3. Силы тока.

Каждый из них важен, но иногда на некоторых приборах может быть указаны только мощность и напряжение. Примерную силу тока можно определить и самому, для этого мощность электроприбора нужно разделить на его рабочее напряжение. Автомат питания стоит подобрать в соответствии суммы всех приборов которые будут к нему подключаться. Например, если есть три электрических аппарата, которые будут в процессе своей работы потреблять по 5 А каждый, то автоматический выключатель должен быть немного с запасом на 20–25 А. Тогда протекающий рабочий ток будет равен 15 Ампер, при рабочем токе автомата 25. Все устройства будут работать в нормальном режиме, без перегрева. И при аварийных режимах будут немедленно отключать всю цепь, тем самым обеспечив надёжную пожаробезопасность помещения. Полярность в цепях переменного напряжения не имеет значения, так что нет разницы к каким клеммам будет подключена фаза, а к каким ноль. В цепях постоянного тока, тоже часто используются двухполюсные выключатели. Один из выводов отрицательный, другой положительный, однако в бытовых условиях постоянное напряжение применяется очень редко.

Подключение однополюсного автоматического выключателя

Однополюсный выключатель предназначен для коммутации цепей освещения, или даже розеток. Основное преимущество от двухполюсного это меньшая стоимость. Главное, в создании и питании цепей, подключаемых через такое устройство — это то что оно должно разрывать обязательно фазный провод, нулевой можно подсоединить напрямую к распределительной коробке.

 Установка автоматического выключателя

Современная установка выключателя основана на монтаже его на DIN рейке или планке. Это является простым и самым действенным механизмом крепления. Группы автоматических выключателей или же одиночных, должны быть установлены по правилам безопасного устройства электроустановок в специальные щитки, которые препятствуют попаданию пыли на автоматы, а также случайному прикосновению человека к токопроводящим частям его.

Обязательно нужно помнить что все работы по установке, подключению и монтажу необходимо производить безопасно, а значит с полным отключением и проверкой отсутствия напряжения. Это мероприятие может производиться любым пробником или указателем напряжения. Нужно помнит что эти работы относятся к работам повышенной опасности и могут быть причиной человеческой смерти.

Уставка расцепителей автоматических выключателей производится заводом изготовителем, поэтому настройку этой системы в бытовых условиях лучше не производить.

Подключение светильника к выключателю

Подключение выключателя к осветительному прибору несложный процесс, главное, нужно помнить одно основное правило, что он устанавливается на фазный провод, а не на нулевой. Для этого при включенном питающем автомате нужно определить какой провод является фазным. Для этого служат специальные приборы:

  1. указатели напряжения;
  2. указательные отвёртки.

Для того чтобы подключить выключатель нужно обязательно снять напряжение питания с этого участка цепи.

Но также необходимо следить, чтобы не было соединения медных и алюминиевых проводов методом скрутки, а только через клемник или разъём. Соединение этих двух материалов со временем приводят к плохому контакту между ними из-за окисления, которое получается вследствие химической реакции этих элементов. Выключатель может быть:

  1. Одноклавишный;
  2. Двухклавишный;
  3. Трёхклавишный и т. д.

В любом случае фазный провод приходит на них один, а уже после расходится как управляющий по разным лампам светильника. Скрутки в распределительных коробках обязательно нужно делать надёжно и качественно изолировать, для того чтобы не возникло короткого замыкания.

Выключатели освещения должны подбираться в соответствии с током который зависит от мощности ламп. На всех этих элементах и составляющих электрической сети если присмотреться есть маркировка. Например, если подключить выключатель освещения, рассчитанный на 10 А, то и ток светильника должен быть не больше этого значения, меньше может быть. Зачастую на лампах ток не написан, а только мощность и напряжение. Ток будет равен мощности, делённой на напряжение. Например, если лампа 100 Вт, включена в сеть 220 Вольт, то ток в её цепи будет примерно 0,45 А.

Правильный выбор, подключение и установка автоматического выключателя и выключателя освещения залог долговечной и бесперебойной работы электрооборудования. А также в аварийных случаях, перегрузок и коротких замыканий срабатывание защиты предохранит помещение от пожаров.

Видео об автоматических выключателях

Как подключить двойной автомат

Автоматический выключатель или автомат – это коммутационное устройство, проводящее токи при нормальных условиях в цепи и автоматически отключающее подачу электричества от питающей сети к потребителю при коротком замыкании или при перегрузке, можно также включать и отключать цепь вручную.

Главное отличие двухполюсного автомата от однополюсного – это наличие автомата как на фазе, так и на нуле, то есть на двух полюсах. Причем при отключении одновременно разъединяются и фаза и ноль, благодаря общей рукоятке взвода. Используется для монтажа однофазной цепи. Для трехфазной цепи нужно применять 3- и 4-полюсные автоматы.

Область применения

  1. В качестве вводных защитных автоматов. Это наиболее популярный способ применения. При одновременном отключении фазы и нуля обеспечивается максимальная безопасность при работах в цепи, потому что происходит полное обесточивание. К тому же, по новым правилам Устройства электроустановок (п. 6.6.28, п. 3.1.18), запрещена эксплуатация однополюсных автоматов на вводе.
  2. Для защиты отдельной группы потребителей электроэнергии. Отключение двухполюсного автомата предотвратит срабатывание УЗО (Устройство защитного отключения – предназначен для защиты от дифференциальных токов) при ошибочном соприкосновении нуля и фазы при ремонтных работах в цепях под нагрузкой. А также облегчает поиск ветки с неисправностью при срабатывании УЗО от утечки токов на землю.
  3. Для защиты и управления цепями с одновременным подключением питания. Например, при подключении тепловой пушки через один полюс автомата подается фаза на тэны, а через другой полюс – фаза на электродвигатель вентилятора. Если произойдет отключение одного оборудования, отключится и другое, что предотвратит вероятность работы тэнов без охлаждения.

Преимущества применения перед однополюсными автоматами

Рассмотрим ситуацию, когда кто-то перепутал фазу с нулем. Тогда при отключении однополюсного автомата разъединяется линия нуля, а фаза остается в цепи. Человек, думая, что обезопасил себя отключением автомата, начинает работать и получает удар током. Чтобы этого не произошло, нужно после отключения однополюсного автомата проверить отсутствие напряжения в цепи индикатором. Но все же надежнее использовать двухполюсный автомат, который полностью обесточит цепь.

В случае, когда сработало УЗО, необходимо найти неисправность в цепи. В первую очередь выключаются все электроприборы из розеток. Если это не дало результата, последовательно выключаются ветки цепи, но разъединять надо и ноль и фазу. Однополюсный автомат не дает такую возможность. Придется откинуть ноль на шине, что проблематично, так как требует прозвонки для нахождения нужного провода. Двухполюсный автомат отлично справляется с этой задачей.

Таким образом, преимущества:

  1. Безопасность – электрическая цепь разрывается целиком.
  2. Легкость поиска неисправности.

Недостатки применения перед однополюсными автоматами

На самом деле, недостатков совсем немного:

  1. Стоимость – двухполюсные дороже однополюсных.
  2. Эргономичность – занимают в два раза больше места в электрощитке.
  3. Трудозатраты при монтаже – нулевые провода не объединяются в шину, а каждый заводится в свой автомат.
  4. Невозможность использования стандартных распределительных шин – «расчесок», вместо них придется использовать перемычки.

Устройство автомата

Автоматический выключатель представляет собой пластмассовый корпус с контактами и рукояткой включения/выключения. Внутри располагается рабочая часть. В клеммы вставляется зачищенный провод и зажимается винтом. При взведенном состоянии силовые контакты замкнуты – положение рукоятки «Вкл». Рукоятка соединена с механизмом взвода, который, в свою очередь, двигает силовые контакты. Электромагнитный и тепловой расщепители обеспечивают отключение автомата при ненормальных состояниях цепи. Дугогасительная камера предотвращает горение и быстро гасит дугу. Канал отвода выводит газы горения из корпуса.

Схема подключения

Предлагается рассмотреть схему подключения двухполюсного автомата.

Здесь ВА 47-63 2/50А – это вводный двухполюсный автомат. Он полностью обесточивает при необходимости всю цепь. За ним подключается счетчик и УЗО. Далее применена схема подключения ряда однополюсных автоматических выключателей. Они устанавливаются только на фазные провода, а нулевые жилы распределяются посредством шины.

Существует схема подключения ряда двухполюсных автоматов, защищающих каждый свою ветку.

Первым на входе подключается УЗО, затем два ряда двухполюсных выключателей. Синим цветом обозначен нулевой провод, красным – фазовый, а желтым – заземление, распределенное с помощью заземляющей шины. Таким образом, осуществляется защита каждого ответвления цепи.

Монтаж

Как правильно монтировать автоматические выключатели в электрощит? Сначала в нем саморезами прикручиваются дин-рейки – это металлические пластины, на которые потом крепятся все автоматы и УЗО. Длину дин-рейки можно скорректировать при помощи ножовки по металлу. Кроме того, в щит прикрепляются распределительные клемники-шины. Они могут быть для нулевых проводов и отдельно для заземляющих. Современная конфигурация шин позволяет крепить их непосредственно на дин-рейку.

Установить двухполюсный автомат на дин-рейку очень просто. Плоской отверткой нужно вытянуть защелкивающуюся скобу на верхней части корпуса, приставить автомат к дин-рейке и отпустить крепление. Также осуществляется снятие. По правилам, вводный автомат устанавливают в левом верхнем углу.

Далее нужно подсоединить провода. Следует строго придерживаться схемы. К двухполюсному автомату сверху подходят вводные провода фазы и нуля, а снизу жилы отводятся в цепь. Важно не перепутать: вход – сверху, выход – снизу, иначе автомат может выйти из строя и не будет выполнять своих функций.

Объединять автоматы можно при помощи перемычек, изготовленных из медного провода такого же сечения, как и у провода цепи. Перемычки требуются для подключения двухполюсных автоматов в ряд. А также с помощью гребенок – это изолированные шины, используются для соединения однополюсных автоматов.

Концы проводов зачищают с помощью специального инструмента стриппера или острым ножом. Затем обжимают наконечниками для кабеля ручным инструментом кримпером. Если такого оборудования нет, то можно просто облудить концы паяльником с применением канифоли и олова. При подключении проводов к автоматам необходимо крепко затягивать болты отверткой, чтобы слабый контакт не вызывал нагревания и повреждения токопроводящих материалов.

Заземляющий провод всегда проходит мимо автоматов прямиком с заземляющей шине. Нулевые провода подключаются к нулевой шине.

Маркировка

Особое внимание следует обращать на маркировку автоматов.

На корпусе автоматов нанесены специальные обозначения:

  1. Номинальный ток устройства (в амперах).
  2. Группа по току перегрузки (диапазон тока срабатывания).
  3. Максимальный ток срабатывания или ток короткого замыкания (в амперах).
  4. Класс токоограничения (чем выше класс, тем выше скорость срабатывания при коротком замыкании).
  5. Графическое обозначение или принципиальная схема прибора.
  6. Серия аппарата.
  7. Номинальное напряжение, при котором нужно использовать автомат.

Подбор автомата

Сначала нужно рассчитать значение номинального тока для своей сети. Сделать это можно по формуле (закон Ома):

I – номинальный ток в амперах «А».

P – мощность всех приборов (сумма мощностей) в ваттах «Вт».

U – напряжение сети в вольтах «В» (в основном 220 В). Выбирать автомат нужно с ближайшим большим значением номинального тока.

Также выбор автомата по значению длительного допустимого тока следует производить, в зависимости от характеристик кабеля проводки. В правилах устройства электроустановок приведены таблицы расчетов. Чем больше сечение кабеля, тем выше допустимый длительный ток.

Нередко встречается ситуация, когда требуется подключить два провода в один автомат. Прежде чем это сделать, следует знать особенности такого подключения, а также правильно рассчитать возникающую в результате подключения нагрузку, не превышает ли она номинал автоматического выключателя.

Также нужно знать правильный способ соединения обоих проводов с контактом автомата, поскольку неправильное соединение приведет либо к отгоранию контакта, либо клемма автомата не будет контачить с проводом. Теперь обо всем подробно.

Подключение двух проводов к одному автомату

Сразу скажу: два провода подключить к автомату можно только при условии соблюдения всех правил такого подключения, иначе такая ситуация приведет к плачевным последствиям. В идеале лучше подключать один провод к одному автомату, но если по каким-то причинам этого сделать нельзя, нужно следовать советам из этой статьи.

Ниже мы разберем основные проблемы такого подключения, а также рассмотрим способы избежать этих проблем и способы правильного подключения.

Возможные проблемы такого подключения

Перечислим основные проблемы подключения двух проводов к одному автомату:

1) Завышение номинала автомата – выгорит проводка

Каждый автомат имеет свои номинальные характеристики. Каждый провод тоже имеет свои характеристики, в зависимости от сечения провода и его типа. В электрике наиболее популярны медные провода.

В случае, когда сечение провода рассчитано, к примеру, на силу тока в 21 ампер (для провода сечением 1.5 мм2), автомат нужно ставить с номиналом не более 16 Ампер. Учитывая то что при перегрузке в 45 % любой автоматический выключатель может не отключаться в течении 1 часа (1.45*16= 23.2 А) у провода будет некий запас по прочности.

Основное назначение автомата – сохранность электропроводки и подключаемых к ней электроприборов от больших токов, которые возникают при коротком замыкании и перегрузке.

Бывает так, что автоматический выключатель часто выбивает, при этом многие просто заменяют его на автомат большего номинала. Но при этом установленный автомат соответственно пропускает ток, сила которого превышает максимально возможную для нормальной работы проводки. В результате, такая проводка выгорает, плавится, и даже может замкнуть из-за нарушения изоляции.

При подключении двух проводов к одному автомату соблюдайте очень простое правило:

Оба провода должны быть одинакового сечения и соответствовать номиналу автомата!

Например, в наличии имеется автомат на 16 ампер. Для правильного подключения берем два кабеля типа NYM сечением 3×2.5. Максимально допустимое длительное значение силы тока для такого кабеля – 25 А, если кабель висит в воздухе, и 38 А если он лежит в земле. Так как наш кабель не лежит в земле, чтобы не испытывать его на максимальные нагрузки – автомат на 16 Ампер является идеальным решением для такого кабеля, а в нашем случае – для двух проводов.

2) Плохой контакт на клемме

При подключении двух проводов к одному автомату возникает проблема: как обеспечить плотность контакта клеммы автомата и обоих концов провода.

Выше уже было написано о том, что провода должны быть одинакового сечения. Почему? При подключении проводов разного сечения к автомату, когда вы будете затягивать крепление клеммы, один из проводов не будет иметь хорошего, плотного контакта с клеммой из-за провода большего сечения.

Многие “кулибины” сразу скажут “скрутите два провода разного сечения в скрутку и будет вам счастье”. Для этого есть статистические данные, которые говорят о том, что скрутка – самая распространенная причина неисправности в электропроводке. Из-за плохого крепления скрутка будет постоянно вываливаться, или, нет-нет касаясь клеммы автомата, будет замыкать.

Два провода одинакового сечения отлично затянутся в клемме автомата без скрутки. Если требуется подключить провода разного сечения или количеством более двух тогда лучше использовать для этих целей специальные кросс модули или шины.

Для подключения многожильных проводов, есть достойный выход из такой ситуации – НШВИ наконечники (наконечник штыревой втулочный изолированный). Это специальные коннектора, которые предназначены для соединения двух проводов. Они имеют конусообразную форму на входе и металлический контакт, который непосредственно вставляется в клемму автомата.

НШВИ-наконечники делятся на два типа: НШВИ и НШВИ-2. НШВИ предназначены для оконцевания жил одного провода, а НШВИ-2 – для оконцевания двух многожильных проводов одной гильзой с возможностью подключения их в дальнейшем к одной клемме.

Использование таких наконечников позволит обеспечить, во-первых, идеальный контакт электропроводки с клеммой автомата, а во-вторых – придаст эстетический вид вашему щитку. Все соединения будут аккуратны и надежны без всяких скруток, а два провода в один автомат подключатся идеально.

Подключение моножилы и многожилы в клемме автомата

Друзья специально для комментария №1 под данной статьей решил рассмотреть еще один из способов как подключить два провода в автомате, причем провода разные по своей конструкции. Речь идет о подключении одножильного (монолитного) и многожильного проводов под клемму автоматического выключателя.

В этом нам поможет наконечник НШВИ. Берем два провода, снимаем с них изоляцию и опрессовываем их двойным наконечником. В моем примере и монолитный и многожильный провод сечением 2.5 мм2 обжаты НШВИ(2)-2.5.

Плюс данного соединения в том, что стенка самого наконечника тонкая и под действием винтового усилия гильза будет сжиматься, тем самым улучшая соединение проводов.

P.S. Провода при обжиме скручивать не нужно. Тем более не нужно такую скрутку просто совать под клемму. При затягивании половина жил многожилы просто повредится, а это приведет к плохому контакту и ХОРОШЕМУ нагреву в дальнейшем.

А вообще лучше всего в таких случаях прикупить еще один автоматический выключатель, добавить его в щит и подключить каждый кабель на свой автомат. Это будет ЛУЧШЕ и НАДЕЖНЕЙ. Но если вдруг …, вдруг … такой возможности нет, тогда используем способы указанные в данной статье.

3) Подключаемая нагрузка превышает мощность автомата

Бывает так, что на один автомат вешаются несколько приборов, потребляемая мощность которых превышает его номинальный ток, из-за чего последний постоянно выбивает сразу при одновременном включении электроприборов.

Расскажу ситуацию, в которой сам принимал непосредственное участие. Однажды меня пригласили отремонтировать проводку (по крайней мере, именно так они сформулировали просьбу по телефону). В итоге я столкнулся со следующим:

  1. 1. Небольшой спортзал с двумя бойлерами
  2. 2. Автомат на 16 ампер
  3. 3. К каждому бойлеру идет отдельная кабельная линия с отдельной розеткой
  4. 4. Оба провода подключены к одной клемме автоматического выключателя.

При включении обоих бойлеров одновременно автомат выбивало сразу. Теперь смотрим мощность каждого бойлера. Она оказалась одинаковой: 3.5 кВт у каждого. Тип кабеля к каждому бойлеру – трехжильный кабель ВВГ-нГ-Ls, сечением – 2.5 мм². Теперь считаем:

  • – Токовая нагрузка для одного бойлера: 3.5 КВт × 1000 = 3500/220 вольт = 15.9 Ампер.
  • – Оба автомата в целом потребляют 31.8 Ампер.

Как видите, нагрузка обоих бойлеров превышала номинал 16-ти Амперного автоматического выключателя в два раза. При этом используемый кабель допускает нагрузку до 27 А. Соответственно, провод к бойлеру идет нормальный, его оставляем. Теперь убираем автомат на 16 А, и устанавливаем два по 20 А.

Каждый бойлер подключаем к отдельному автомату. Можно было бы взять и два автомата по 16 А, но тогда номинал автомата будет на одну десятую выше нагрузки бойлера (16-15.9=0.1). В таком случае ВОЗМОЖНЫ постоянные срабатывания тепловой защитой.

Так как наш кабель позволяет подключить 20-амперный автомат, поэтому смело цепляем оба автомата на 20 А и к каждому отдельно подключаем бойлер. Все, проблема решена.

Важно! Перед тем, как установить автомат большего номинала, обязательно проверьте, чтобы номинальный ток кабеля ему соответствовал. Если номинал автомата будет намного больше, чем максимальная нагрузка на кабель, то кабель может повредиться при очередном перегрузе, а автомат на этот перегруз даже не среагирует.

Важно! При подключении бойлеров рекомендуется сразу устанавливать УЗО (устройство защитного отключения). При наличии УЗО вас не ударит током, даже если вы засунете пальцы в розетку (но не экспериментируйте ни в коем случае!). Это устройство мгновенно срабатывает при утечке тока, поэтому человек не успевает ощутить заметный удар электрическим током.

Вывод

Подведем итоги. При необходимости, можно подключить два провода в один автомат. Для этого соблюдаем несколько условий:

  1. 1. Провода должны быть одинакового сечения
  2. 2. Для многожильных проводов должны использоваться НШВИ-наконечники
  3. 3. Номинал автомата должен соответствовать проводу (если провод имеет максимальную нагрузку в 16 ампер, то номинал автомата не должен превышать это значение).
  4. 4. Суммарная потребляемая нагрузка не должна превышать номинал автоматического выключателя.

Соблюдение этих нехитрых правил поможет вам правильно ответить на вопрос – можно ли подключить два провода в один автомат.

Автоматические выключатели созданы для защиты проводки и техники от создаваемых коротким замыканием сверхтоков. Их используют повсеместно, как для защиты бытовых приборов, обеспечения сохранности и безопасной работы промышленного оборудования. Однако существует особый тип устройства, встающий первой преградой на пути от подстанции до объекта. Это двухполюсный автоматический выключатель, или так называемый двухполюсный автомат.

Устройство: для чего нужны двухполюсные автоматы

Устройство двухполюсного автомата похоже на механизм однополюсного автоматического выключателя. Этот прибор, по сути, состоит из двух однополюсных модулей, объединенных в корпусе. Приборы такого типа необходимы для отключения сразу двух защищаемых линий при аварии.

Двухполюсные автоматы необходимы в случаях, когда невозможно подключить прибор в общую сеть. Например, у трансформатора на выходе нет фазы и нуля, соответственно, ток идет по обоим проводам, и отключение первого провода не гарантирует нейтральности второго. Для обеспечения защищенности при эксплуатации используют приспособление этого типа, гарантированно отключающее обе линии.

Чаще всего двухполюсные автоматы используются для:

  • Быстрого отключения участка цепи в случае перенапряжения.
  • Контроля мощности бытовых приборов — они необходимы для стиральных машин, электроплит, холодильников.
  • Защиты проводки в помещениях сверхтоков.
  • Удобных и легких разветвлений сети.
  • Структурирования проводки.

Отличие двухполюсных автоматов

Наибольшее отличие таких автоматов от однополюсных состоит в том, что последние наблюдают за параметрами обоих линий одновременно и гарантируют выключение обоих при значительном изменении параметров показателей тока, тогда как автоматический выключатель полюсныйконтролирует лишь одну линию.

Сделать равнозначную замену двухполюсного автомата двумя однополюсными невозможно, потому что двухполюсные имеют в конструкции не только общий рычаг отключения, но и особое устройство блокировочного механизма, позволяющего быстро обесточить обе линии и быстро найти возникшие на какой-либо из них неполадки.

Если же установить два однополюсных автомата, при возникновении неисправности отключится исключительно фаза. Это не позволит одновременно отключить и ноль, обеспечив безопасность прибора, ведь ноль будет продолжать течь, используя второй механизм, что может привести к поломке или возгоранию прибора.

Следует обязательно ставить двухполюсный автомат в качестве вводного, предохраняющего линию. Если же требуется обеспечить дополнительную защиту каким-либо отдельным контурам сети, можно спокойно использовать как двухполюсные, так и однополюсные – в этом случае со своей ролью оба будут справляться одинаково хорошо.

Между собой двухфазные автоматические выключатели отличаются по номинальному току, который через них может проходить. Например, автомат мощностью 6а отключится при нагрузке в четыре раза меньшей, чем 32а. Поэтому на общую квартирную сеть обычно устанавливается более мощный автомат, а варианты мощностью 5а, 6а и им подобные подключают отдельно к бытовой технике.

Применение двухполюсных автоматов

Область применения двухполюсников очень широка. Чаще всего их используют в старых квартирах, где установлена однофазная двухпроводная проводка, то есть там, где фаза и ноль представляют собой два абсолютно одинаковых провода. При расключении в общей щитовой перестановка фазы и нуля не является ошибкой, именно поэтому в квартирах и появилась необходимость отключать оба провода в цепи. При установке автоматического выключателя в трехфазной сети через него нельзя пропускать провода заземления.

Для корректной работы автомата необходимо соединение в щитке трансформатора, так как в нем не имеется постоянной фазы и ноля. Поэтому при работе с ним требуется одновременное отключение обоих линий.

Двухполюсные автоматы так же необходимы для предохранения от выгорания или поломки стиральных машин, холодильников и прочего сложного оборудования, так как они гасят резкие перепады нагрузки сети и помогают свести потери от сверхтоков, возникающих при коротком замыкании, к минимуму.

Как подключить двухполюсный автомат

Особых трудностей самостоятельное подключение двухполюсного автомата вызвать не должно, однако доверить дело электрику и не рисковать работать с потенциально опасными приборами самостоятельно. Конечно, разобраться, как подключить все собственными руками, легко, однако проводить установку такого механизма в одиночку крайне нежелательно – обычно даже электрики работают над подключением в паре. Поэтому имеет смысл попросить кого-либо помочь и проследить за тем, чтобы ничего не случилось.

Установка любого механизма такого типа проводится при наличии на нее разрешения. Процедура его получения проста, требуется только обратиться в ЖКХ или управляющую компанию. Если же этого не сделать, есть риск получить штраф.

Прикрепить устройство на специальную металлическую рейку не сложно, достаточно вытянуть обычной плоской отверткой защелку, находящуюся на задней части корпуса предмета, подставить его к специальным крепежам, находящимся на рейке, и отпустить крепление. Механизм защелкнется сам, обеспечив надежное крепление к нужному месту. Провода подсоединяются к клеммам специальными зажимными болтами. Как правило, сверху подключаются вводные провода нуля и фазы, а снизу жилы, которые необходимо отвести в цепь.

Главное – не перепутать места подключения проводов, в противном случае автомат попросту выйдет из строя.

Схема подключения автомата

Общая схема подключения предельно проста:

  1. Перед счетчиком устанавливают вводный выключатель АВ.
  2. Двухполюсный АВ ставится после счетчика с однофазным входом.
  3. Возможно, потребуется установка двух или трех выключателей. Это зависит от сложности схемы в однофазной сети.

Принцип действия

По принципу работы двухполюсный автоматический выключатель не особенно сильно отключается от однополюсных или трехполюсных вариантов прибора. При экстренной ситуации размыкатель моментально отключает подачу электрического тока, вырубая подключенное к нему устройство и предохраняя его от повреждения.

Основной же особенностью двухполюсного автомата является прохождение через него обеих линий цепи. При возникновении неисправности на любой из линий, независимо от того ноль это или фаза, устройство выключает одновременно обе, что обеспечивает одновременно сохранность агрегата, так как цепь моментально разрывается, вырубая питание полностью, и большее удобство при поиске неполадок.

Таким образом, двухполюсный автомат является важнейшим элементом защиты сети от сверхтоков. Если нет уверенности в постоянной фазе или требуется запитать сложное оборудование с большим энергопотреблением, не раздумывая нужно ставить двухполюсный автоматический выключатель, иначе затраты на ремонт могут быть большими. А также не стоит забывать, что прибор не защищает приборы, подключенные в данную сеть, а лишь спасает саму сеть от сверхтоков, возникающих при коротком замыкании. И любые подключения автоматов лучше доверять профессиональному электрику.

10 правил хорошего электромонтажа — АВБ Электрика. Профессионально


Выполняя небольшие заказы, я иногда сталкиваюсь с такими необычными явлениями в электромонтаже и электропроводке, от которых возникает желание писать статьи, объясняющие элементарные вещи. В каждом из «правил» я покажу насколько оно важно с точки зрения надежности и безопасности для жизни, и в конечном счете, удобстве и разумных затратах на эксплуатацию.

1. Правильно выбирайте тип кабеля

Используйте жесткий кабель (моножильный) для стационарной проводки и многожильный для подвижных соединений.

Это очевидно для многих электриков, но.. Простой человек не понимает разницы. Итак — гибкий или жесткий провод.

«Жесткий» иначе говоря «одножильный» или «моножильный» — это NYM, ВВГ, ПВ1, ПУВ — имеет одну твердую медную круглую проволоку в изоляции, диаметр обычно более 1 мм. Если сечение 5х10 и более может быть 7 таких проволок, скрученных между собой.  Пример такого провода — обычная медная проволока из детства.

«Гибкий» иначе говоря «многожильный» — это ПВС, ШВВП, КГ, ПВ3, ПУгВ — имеет много тонких проволочек, может быть несколько десятков, диаметром 0,1 мм и более. Пример такого провода — шнур холодильника или любого бытового прибора.

Понятно какая разница между тремя медными проволоками и шнуром для холодильника.

Если использовать многожильный кабель в стационарной проводке, то случиться следующее — отдельные проводники, окисляясь, со временем теряют проводимость, сопротивление такого провода растет и это может привести к выходу его из строя. Другими словами к пожару или его отгоранию. Дело в том что электропроводка рассчитывается на срок службы 15-30 лет, иногда 50 лет. В то время как гибкие проводники соответствуют сроку службы электроприбора, то есть 3-5 лет.

Если использовать моножильный кабель в местах подвижных соединений, то он просто отломится. Либо отломится один проводник в кабеле, либо сразу несколько. Это может привести либо к отключению подключенного оборудования, либо к короткому замыканию, либо к тому что нагрузка окажется под фазным напряжением без нуля. То есть работать не будет, но может ударить током.

Существует мнение, что можно использовать многожильный кабель для стационарной проводки в случае пропайки концов, но мы такой способ не рекомендуем.

2. Используйте кабели правильно выбранного сечения

От сечения кабеля зависит его сопротивление и максимальный допустимый ток. Для стационарной электропроводки принято использовать кабель сечением 3х1,5 мм2 для освещения и 3х2,5 мм2 для розеточных сетей. Это не относится к мощным электроприборам, таким как станки, тепловые завесы, вентиляционные установки.

Некоторые люди сами создают себе проблемы выбирая очень толстый кабель, например, даже 3х4,0 мм2 для розеток значительно затрудняет их монтаж, особенно в блоках по несколько розеток рядом. Или сечение 3х2,5 мм2 для подключения выключателя или светильника. Такой провод может просто не влезть в клемму. Это небольшая, но проблема, которая сказывается на трудоемкости работ, надежность от этого в основном только выигрывает, что, впрочем, ведет к не совсем обоснованному удорожанию.

Более распространенный вариант — заниженное сечение проводника. Некоторые производители в последнее время занижают сечение кабеля из целей экономии. Покупаешь в магазине 3х2,5 мм2, а выглядит он ну совсем как 3х1,5 мм2 от другого, более хорошего производителя. Однако это еще объяснимо. Хуже, когда берут провод и используют его вообще не обращая внимание на его сечение и мощность подключаемой нагрузки. Простая формула  — приблизительно 8 Ампер тока нагрузки на 1мм2 медного кабеля. То есть при напряжении 220 вольт для провода 1мм2 можно подключить приблизительно 220*8 = 1600 Вт. Это предельно допустимо. Для 1,5 мм2 — 12 Ампер. Для провода 2,5 мм2 — 20 Ампер, что соответствует 4000 Вт, или 4 кВт. Внимание — это сечение одной жилы, не надо 3 умножать на 1,5 и думать, что кабель 4,5мм2.

Если провод, или как говорят электрики «линия» очень длинная, то нужно использовать большее сечение кабеля, так как сопротивление кабеля зависит от длины и ни в коем случае не должно случиться так, что при коротком замыкании на конце этой линии, ток в ней окажется меньше чем аппарат защиты установленный на этой линии.

Для маломощного освещения допустимо применять провод ШВВП 2х0,75, но.. важно понимать какой аппарат защиты установлен на данную группу электропотребителей, проще говоря какой номинал автомата.

3. Применяйте автоматические выключатели соответствующие мощности нагрузки

Я часто встречаю щитки, где стоят автоматические выключатели все как один номиналом 16 Ампер. Даже от опытных электриков я иногда слышу фразы — «А что плохого, будет запас». Запас будет, но давайте посмотрим к чему это приводит.

Больший ток короткого замыкания — если у вас перегорит лампочка или случиться короткое замыкание будет очень хороший хлопок и вспышка. Может напугать вашу кошку или ребенка. Сильным броском тока иногда разбивает лампу накаливания. Если вас ударит током, то это будет гораздо ощутимее, чем если бы автомат был установлен на меньший ток.

Более серьезные последствия — это выгорание проводки, которую обычно почему-то не считают нужным делать с «запасом». Это впрочем и не нужно, если устанавливать автоматы с правильными номиналами.

В предыдущем пункте я коснулся темы тонких проводов. Так вот чем ближе к лампочке, тем чаще хочется сделать провод потоньше, чтобы его спрятать или изогнуть было проще. В таком случае это самое слабое звено в цепи. И по нему нужно рассчитывать какой номинал автомата выбрать.

Такая практика, ставить все автоматы 16 Ампер, имеет исторические корни. Раньше были номиналы «пробок» 6,3А, 10А, 16А, 25А. Автоматы тоже встречались чаще на 16 Ампер. Сейчас все гораздо лучше, у хороших производителей, например ABB и даже IEK, есть номиналы 1, 2, 3, 4, 6, 8, 10, 13, 16, 18, 20, 25, 32, 40 и более ампер. То есть если у вас 20 светодиодных ламп на линии, то они потребляют, например, 20*6Вт = 120Вт, отсюда получим приблизительно 120Вт/220В = 0,5А. Это даже не 1 Ампер. Вполне достаточно в таком случае использовать автоматический выключатель номиналом 6А или 4А, которые достаточно часто встречаются в магазинах.

Если вы еще помните предыдущий пункт, то можете увидеть, что провод сечением 3х1,5 может использоваться на ток 1,5*8=12Ампер и менее, и его нельзя защищать автоматическим выключателем на 16Ампер, он может просто сгореть, или почернеть. Допустимо 10 Ампер для провода 3х1,5, максимум 13 Ампер если очень нужно, но автомат поставить с характеристикой B, смотри следующий пункт.

4. Выбирайте автоматический выключатель с характеристикой B для бытового освещения

Если вы очень внимательны, то могли видеть букву С на автоматах в щитке. Это время-токовая характеристика C, бывает еще B, D, K и другие. Отличие в том, что B отключается при токе, превышающем номинальный в 3..5 раз за время менее 1 секунды (даже еще более малое время). Характеристика C — за тоже время, но допускает возрастание тока в 5..10 раз от номинального — то есть любимый многими С16 допускает ток 80..160 Ампер! Характеристика D — тоже самое, но ток отключения еще больше — 10..15 номиналов.

Эти характеристики не случайны. От характера подключенной нагрузки зависит пусковой ток — для двигателей он может на время пуска превышать рабочий в 7 раз. В таком случае, чтобы двигатель не выбивал автомат при каждом пуске, используют автоматические выключатели с характеристикой D. Но в бытовых сетях освещения, где пусковые токи практически не отличаются от рабочих гораздо уместнее использовать выключатели с характеристикой B, что видно по профессионально спроектированным щитам. Для электродвигателей применяют так называемые мотор-автоматы с регулируемой уставкой, например, 4..6,3 Ампера, настраиваемой на любой ток в данном диапазоне. Пример.

Также правильные характеристики автоматов очень хорошо сказываются на селективности, смотри следующий пункт.

5. Проверьте селективность аппаратов защиты в щите

Если вы видите в щите только автоматы С16 это повод задуматься. Обычно в щитках, даже самых простых есть так называемый «Вводной» автомат. Это может быть автоматический выключатель или рубильник, иногда УЗО с номиналом большим, чем автоматические выключатели на отходящих линиях, тех что идут к электропотребителям.

Чем больше разница между значениями, тем лучше селективность. Например вводной автомат 32А, отходящие линии 10А, 6А, 13А. Это означает то, что когда случается короткое замыкание или перегрузка в одной из групп — то отключается только один автомат, защищающий эту группу. Только один, все остальные потребители продолжают работать. Бывает грустно наблюдать как в доме с хорошим ремонтом при перегорании одной лампочки выключается электричество везде, срабатывает вводной автомат. А срабатывает он по той причине, что на отходящих линиях стоят автоматы с завышенным номиналом. Бывают еще ошибки в характеристике — например вводной автомат с характеристикой B, а отходящие с характеристикой C. Например, вводной B25 сработает 25*3=75А, отходящий C16 сработает 16*5=80А, то есть отключатся оба.  Желательно чтобы было наоборот, например, вводной С25 отходящий B16. В этом случае 25*5=125А, 16*3=48А, то есть имеется запас по селективности 2,5 раза.

6. Используйте УЗО для электроприемников во влажных помещениях или работающих с водой

УЗО — расшифровывается как Устройство Защитного Отключения. Оно реагирует на ток утечки. В отличии от автоматического выключателя оно обычно в два раза шире, и НЕ СРАБАТЫВАЕТ от короткого замыкания или перегрузки. Если в вашем квартирном щитке есть только обычные автоматические выключатели — это не очень хорошо.

Дело в том, что в кабеле, например, 3х2,5 мм2, есть три проводника — коричневый, синий и желто-зеленый. Могут быть другие цвета, вместо синего — белый, вместо коричневого — черный. Главное это то, что в них происходит. В коричневом проводнике, назовем его «фазным» есть электрическое напряжение. В синем проводнике, назовем его «нулевым», напряжение есть только когда к проводу подключен и работает электропотребитель. В желто-зеленом электричества не бывает почти никогда. Ток из фазного проводника идет в нулевой. В качестве нулевого проводника может выступать любая металлическая конструкция, соединенная с землей, например батарея, вентиляционный короб. И неметаллическая, но проводящая электрический ток — мокрый пол, земля на улице, сырая одежда во влажном помещении, вода в ванной.

А теперь главное — если вы дотронетесь до фазного проводника стоя в ванной с водой, то без УЗО в щитке можете не выжить. Мне рассказывали случай как мужчина сверлил электродрелью металлический парник сидя на нем в трусах. Что с ним стало опустим. Итак — это просто важно — иметь УЗО на группах с влажными помещениями или оборудованием с водой. Например — стиральная машина, посудомойка, бойлер. Если это коттедж, то добавьте уличное освещение и розетки выходящие на улицу, а также теплые полы и систему антиобледенения.

Принцип действия УЗО таков — оно считает ток, идущий в фазный проводник, и ток идущий по нулевому проводнику. Если разница более 0,03А, то выключает нагрузку. Почему 0,03А — есть диаграмма того, как реагирует организм на электрический ток, так вот 30мА (миллиампер) или 0,03А, это ток, при котором выжить вполне реально. Есть номиналы УЗО 100мА, 300мА, 10мА, 30мА. В нашей стране более распространены 300мА и 30мА. Первое для вводных цепей, второе для отходящих линий.

УЗО не отключается при коротком замыкании, поэтому должно использоваться совместно с автоматическим выключателем. Для удобства выпускают УЗО и автомат в одном корпусе и называют это — Дифавтомат, или дифференциальный автомат, или еще длиннее — автоматический выключатель с выключателем дифференциального тока. На сленге это просто — «дифы».

Бедные люди на них часто экономят, так как стоят они в 10 раз дороже обычных автоматов. Зато дешевле чем даже один рабочий день среднего человека, что говорить про целую жизнь. Также дифы могут помочь при неполадках в проводке, например, перегорании провода, если изоляция начнет терять сопротивление и ток сможет уйти в желто-зеленый, так называемый «заземляющий» проводник.

Трудность использования дифов состоит в том, что некачественно собранная или старая электропроводка может иметь утечки более 30мА, и тогда дифференциальный автомат будет часто срабатывать или не будет включаться вообще.

Зато в случае качественного электромонтажа такое устройство значительно понижает риск получения неприятных ощущений при совании пальцев в розетку и других случаях.

7. Подключайте кабели по цветам

В кабеле три или пять проводников. Их изоляция может быть например, черный-серый-коричневый-синий-желто-зеленый.

Самый стабильный цвет — желто-зеленый, у подавляющего большинства производителей есть этот цвет в кабеле — это заземляющий проводник. Подключается на шину PE в электрическом щитке. Наглядно это видно здесь и здесь.

Менее стабильный цвет синий — иногда его нет, но есть белый или бледно серый. Это нулевой проводник, подключается на шину N в электрическом щитке, либо на клемму N дифавтомата или УЗО.

Совсем большое разнообразие цветов у фазных проводников, обычно все какие есть остальные цвета — это фазные проводники. Они почти ничем не отличаются друг от друга, единственное что между фазным и нулевым проводником 220В, а между фазными проводниками 380В. Если кто-то помнит, как выглядит синусоида, то понимает, что если ее сместить относительно самой себя на 120 градусов, то между получившимися линиями будет расстояние по вертикали чуть больше чем между верхней точкой и средней точкой (нулем).

Сложная ситуация, когда попадается кабель 3х2,5 с цветами черный-серый-коричневый. В таком случае надо понять, что к чему подключили, это легче всего проверить, заглянув в щиток. И дополнительно убедиться пробником-индикатором на нагрузке, так как вполне возможен случай, когда «перепутали» цвета в коробке, или просто не придавали этому никакого значения.

Однако если выбран хороший кабель, например, «Севкабель» NYM-J, то цвета будут коричневывй-синий-желто-зеленый и в любой распределительной коробке можно будет понять, что в каком проводе находиться.

8. Имейте в щитке маркировку

Минимально это надписать автоматы по порядку слева на право и повесить табличку с понятными названиями групп электропотребителей. Например, 1-Гостинная 2 — Спальня 3 — Кухня  4 — Электроплита 5 — Санузел. Если пропадет свет вам будет гораздо легче, особенно если в щитке более 12 автоматов.

Часто автоматы маркируют буквами QF1, QF2 и так далее, чтобы не путать с номерами групп, которые маркируют Гр.1, Гр.2 и так далее.

По правилам также следует маркировать фазные проводники цветами Желтый-Зеленый-Красный, соответственно Фаза A — Фаза B -Фаза C, или тоже самое L1 — L2 — L3. Синим шину N, а желто-зеленым PE. Если вы организация, то нужно иметь знак «Молния в треугольнике» на крышке щитка для обозначения электрической опасности. Пример маркировки.

9. Имейте в щитке схему и план электропроводки

Это можно отнести к проектированию, но, если «просто электрик» пришел и все сделал сам, значит он еще и проектировщик. Может быть он сам себя так не назовет, но он тот, кто придумал как будет сделана электропроводка. И именно ему легче всех нарисовать ее на бумаге, чтобы любой электрик пришедший после него мог потратить меньше времени на поиски того «что же выключает этот автомат», или «сейчас найдем на какой группе это сидит». Иметь схему это очень-очень хорошо, а хорошую схему еще лучше. Предприятия даже обязывают иметь такие схемы в каждом щитке, это проверяет Ростехнадзор. Пример.

Планы этажей

По схеме вы можете понять какой автомат вводной, каково соответствие нагрузки, кабеля и номинала автоматического выключателя по каждой группе электропотребителей. То есть проверить многое из того что вы узнали выше. По плану вы можете знать какой автомат выключает какую розетку или лампочку в вашем доме, или магазине, или ресторане. В некоторых случаях приходиться помогать даже заводам с такими схемами, особенно если их проектировали иностранцы.

В самых хороших вариантах электромонтажа бывают подписаны распределительные коробки и розетки, к какой группе электропотребителей они подключены.

Благодаря схеме можно понять есть ли возможность сделать при уже имеющейся проводке «мастер-свет», на какие группы нужно установить УЗО, можно ли объединить какие-то группы на одно УЗО. Можно ли как-то перегруппировать электропотребителей для более равномерной нагрузки на фазы, или других практических целей.

10. Получайте удовольствие

Если электрика сделана грамотно и качественно, то щиток и все розетки и все светильники выглядят просто замечательно. Все установлено ровно, на одинаковой высоте, везде светло, в щитке все понятно и все работает как было задумано. В случае неполадок вы даже не замечаете, как сработал автомат, только в щитке обнаруживаете что рычажок смотрит вниз. Все провода аккуратно проложены, а соединения надежны.

Сегодня не все могут сделать качественный электромонтаж, так как это требует специальных знаний и практического опыта. Обращайтесь к проверенным мастерам, а в случае сложного электромонтажа с системами «умный дом» или сложным управлением к специализированным организациям. У нас вы можете получить надежную электроустановку и хорошо оформленную документацию.

Мы предлагаем Вам — качественный электромонтаж, проектирование и обслуживание объектов по адекватным ценам и всегда высоком качестве. Звоните и мы решим все Ваши задачи по электрике!

Главная > Статьи

ᐉ Установка и подключение автоматов 220 В: услуги электриков

Электричество обеспечивает нам комфортное существование, но может стать и фактором риска. Информация актуальна на 2021 г. Поэтому безопасное функционирование домашних электросетей очень важно. Популярные устройства для защиты — автоматические выключатели.

СПРАВКА: автоматический выключатель в случае перегрузки или замыкания отключает электроэнергию. Таким образом предупреждаются серьезные поломки в работе сети.

Подключение автоматических выключателей

Выбирая автомат, учитываем такие моменты:

  • Сколько в приборе полюсов. Для подключения однополюсного или двухполюсного автомата требуется однофазная сеть.
  • Напряжение работы выключателя. Уровень напряжения должен быть равным или больше уровня напряжения сети.
  • Максимальный (ожидаемый) ток. ТКЗ должен быть меньше тока, отключаемого выключателем.

В быту, как правило, устанавливаются однополюсные автоматические выключатели. Устанавливаются они в щитке. Последовательность действий при этом следующая:

  • Отключение электрической энергии.
  • Подготовка щитка. В корпус устанавливается din-рейка.
  • Установка автомата на рейку, закрепление фиксатором.
  • Зачистка проводников (на 8-10 мм).
  • Соединение проводов.
  • Проверка надежности соединений.
  • Подача энергии и проверка работоспособности автомата.

ВАЖНО: при подключении нужно соблюдать правило – подключение питания выполняется сверху, а нагрузка – снизу. На провода желательно нанести маркировку.

Специфика работ по установке однополюсного или двухполюсного автомата состоит в том, что даже незначительная помарка может повлечь серьезные последствия, вплоть до поломки бытовых приборов и порчи всей домашней электросети. Поэтому надежнее доверить подключение автоматов профессиональным электрикам.

На сайте «Все работники» вы сможете найти подходящего мастера, ведь с нами сотрудничает внушительное число специалистов. Выбрать своего можно двумя способами. Первый – в соответствующем разделе просмотреть профили мастеров, предоставляющих услуги по установке автоматов. Для проведения работ можно выбрать индивидуального электрика, бригаду или воспользоваться услугами компании. В профилях размещены подробные резюме, отзывы предыдущих клиентов, портфолио, лицензии, детальные прайсы, а также контактные данные. Связаться с мастером удобно прямо на сайте. Второй способ поиска специалиста – создание тендера. Заполните готовую форму с размером оплаты, описанием услуги, например «подключить автомат в щитке», и мастера сами выйдут с вами на контакт.

Стоимость работ на подключение автоматов в сети 220В

Среднерыночные цены указаны вверху страницы. Средние цены от специалистов приведены рядом с их именами. Цены на услуги электриков зависят от:

  • объема работ;
  • сложности работ;
  • места проведения работ;
  • опыта и квалификации мастера.

Наши электрики могут выехать на объект, и рассчитать, какой именно автоматический выключатель требуется установить. При желании клиента, они могут закупить и сам прибор, и все необходимые дополнительные материалы.

Заказав услуги у профессиональных электриков, можно быть уверенным в безопасной работе электросети.

Вводной автомат для частного дома | как расчитать и установить

Вводной автомат (ВА) является выключающим механическим устройством. Этот проводник пропускает через себя ток при нормальной работе электрической цепи, а в случае патологических явлений – перегрузки, замыкания и перегрева кабеля, — прерывает его подачу. Таким образом вводной автомат для частного дома обеспечивает безопасность, предотвращая возгорание из-за вышеназванных проблем.

Однако, чтобы этот прибор исправно выполнял свои функции, важно знать какой необходимо устанавливать. При неправильном выборе мощности устройства, оно может выбивать или вообще не позволит включить электрооборудование с повышенным потреблением электричества, типа бойлера, фена, электрочайника, индукционной плиты и т.п.

Как рассчитать вводной автомат для дома

Перед подключением этого устройства нужно узнать его номинал. Если прибор с этим значением будет превышать допустимый, то в случае проблем в электросети (перегрузка, замыкание) автомат не сработает, что чревато пожаром или даже смертью. Его выбор не составит сложностей, если знать максимальную мощность, которую он должен выдержать. Этот показатель устройства прямо пропорционален номиналу, подбирающийся из учета системы питания – однофазная или трехфазная сеть.

Если первый вариант, то расчет производится следующим образом: номинал делится на 220В (формула: I=P/U), где первое значение равняется 10000 (обычно столько выделяется на однофазную сеть, точную цифру сообщит облэнерго), а второе 220 (10000/220). Итого получается 45. Округляем до меньшего возможного ВА = 40А.

Многие задают вопросы типа «на сколько ампер вводной автомат для частного дома нужен в трехфазной сети?». Обычно расчет дает облэнерго. По ТУ на трехфазную сеть выделяется 7Квт, то есть предел составляет 21 (7*3). По стандарту берут не 7, а 5 Квт или чуть меньше, на которые ставят вводные автоматы по 16А каждый или же трехполюсный вариант, такой как автоматический выключатель ABB 40А. Формула расчета выглядит так: I=P/U*1.7 (последнее значение — это корень из 3).

Установка вводного автомата

Итак, мощность вводного автомата для частного дома и другие важные данные нам известны. Теперь пришло время к монтажу устройства. Установка ВА практически ничем не отличается от других защитных автоматов. Можно отметить то, что монтаж проводится вверху щитка, с левой стороны по отношению к другим приборам защиты. Отходящие линии удобнее спускать сверху вниз, а учитывая, что ВА является первым, то другие цепи подсоединяются снизу. В случаях с малой энерговооруженностью, может применяться однополюсный автоматический выключатель, который ставится на фазу.

 

 

О магнитном проводе | MWS Wire

Электромобили существуют с середины 1800-х годов. Роберт Андерсон получил первый патент на электромобиль в Англии в 1840 году.

На снимке изображен английский электромобиль 1887 года. Несмотря на то, что в XXI веке их затмевали двигатели внутреннего сгорания, в двадцатом веке электромобили резко возродились из-за опасений по поводу глобального потепления, финансовых стимулов и т. Д. специальный доступ к полосам движения HOV и более высокая производительность.

Tesla Model S P100D весом 4891 фунт установила рекорд, отмеченный во всем мире, когда он разогнался до 60 миль в час с места быстрее, чем любой другой серийный автомобиль, когда-либо испытанный Motor Trend. Ни один серийный автомобиль никогда не разгонялся 2,3 секунды от 0 до 60 миль в час. Но Tesla сделала это за 2,275507139 секунд.

Более полумили магнитного провода используется как в передних, так и в высокоэффективных задних двигателях каждой модели S. Хотя высокая скорость не является необходимой для управления транспортным средством в сегодняшних многолюдных городах и перегруженных шоссе, достижение Tesla устраняет любые сомнения. о потенциальных возможностях электромобиля.

Что будет дальше с электромобилями? NextEV!

Китайская стартап-компания по производству электромобилей NextEV представила свой новый бренд NIO в Лондоне в галерее Saatchi в ноябре 2016 года и выпустила, по ее словам, самый быстрый электромобиль в мире. NIO EP9 имеет 1360 л.с., которые разгоняют автомобиль до 160 миль в час за 7,1 секунды. Этот новый суперкар будет соответствовать или превосходить характеристики ведущих гибридных суперкаров, таких как Porsche 918 Spyder, LaFerrari и McLaren P1.В следующем году автомобиль поступит в продажу в Китае, а затем и по всему миру. О цене пока нет информации. Компания заявила, что в конечном итоге будет производить ряд электромобилей для массового рынка.

В современном магнитном проводе обычно используется от одной до четырех толщин (в случае четырехпленочного провода) или полимерная пленочная изоляция, часто двух разных составов, чтобы обеспечить прочный непрерывный изолирующий слой. В изоляционных пленках для магнитных проводов используются (в порядке увеличения диапазона температур) поливинилформаль (Formvar), полиуретан, полиамид, полиэфир, полиэфир-полиимид, полиамид-полиимид (или амид-имид) и полиимид.Магнитопровод с полиимидной изоляцией способен непрерывно работать при температуре до 240 ° C. Изоляция более толстого квадратного или прямоугольного магнитного провода часто усиливается путем обертывания его высокотемпературной полиимидной или стекловолоконной лентой, а готовые обмотки часто пропитываются изолирующим лаком в вакууме для повышения прочности изоляции и долговременной надежности обмотки.

Самонесущие катушки намотаны проволокой, покрытой по крайней мере двумя слоями, самый внешний из которых выполнен из термопласта, который связывает витки вместе при нагревании.

Другие типы изоляции, такие как стекловолокно с лаком, арамидная бумага, крафт-бумага, слюда и полиэфирная пленка, также широко используются во всем мире для различных применений, таких как трансформаторы и реакторы. В аудиосистеме можно найти провод серебряной конструкции и различные другие изоляторы, такие как хлопок (иногда пропитанный каким-либо коагулирующим агентом / загустителем, например пчелиным воском) и политетрафторэтилен (тефлон). Старые изоляционные материалы включали хлопок, бумагу или шелк, но они подходят только для низкотемпературных применений (до 105 ° C).

Для простоты изготовления некоторые низкотемпературные магнитные провода имеют изоляцию, которая может быть удалена высокой температурой пайки. Это означает, что электрические соединения на концах можно выполнять без предварительного снятия изоляции.

История электродвигателя

В начале 1800-х годов электричество было в воздухе. Изобретатели в Европе и Америке все время придумывали новые теории и изобретения. Обычно они ничего не знали друг о друге и независимо друг от друга разрабатывали аналогичные решения.

Расписание 1800 — 1834: Первые эксперименты с электромагнитными устройствами

1800 Алессандро Вольта (итальянец) впервые производит непрерывную электрическую энергию (в отличие от искры или статического электричества) из набора серебряных и цинковых пластин.

1820 Ганс Кристиан Эрстед (датчанин) обнаружил возникновение магнитного поля электрическими токами, наблюдая за отклонением стрелки компаса. Это был первый случай, когда механический механизм был вызван электрическим током

.

1820 Андре-Мари Ампер (француз) изобретает цилиндрическую катушку (соленоид).

1821 Майкл Фарадей (британец) создает два эксперимента для демонстрации электромагнитного вращения. Вертикально подвешенный провод движется по круговой орбите вокруг магнита.

1822 Первое вращающееся устройство, приводимое в движение электромагнетизмом, было построено англичанином Питером Барлоу (Колесо Барлоу).

1825 Уильям Стерджен (Великобритания) изобретает электромагнит, катушку проводов с железным сердечником для усиления магнитного поля.

1827 Йедлик (Венгрия) изобретает первую роторную машину с электромагнитами и коммутатором. Однако Джедлик публично сообщил о своем изобретении только десятилетия спустя, и фактическая дата изобретения неизвестна.

1830 Иоганн Михаэль Эклинг, механик из Вены, строит двигатель по планам и идеям профессора Андреаса фон Баумгартнера (австрийский физик). Этот прибор был приобретен в 1830 году Университетом Инсбрука за 50 австрийских флоринов.Год постройки неизвестен, но должно быть до 1830 года, поскольку дата покупки подтверждена.

1831 Майкл Фарадей (британец) обнаруживает и исследует электромагнитную индукцию, то есть генерацию электрического тока из-за переменного магнитного поля (инверсия открытия Эрстеда). Фарадей закладывает основы развития электрогенератора.

1834 После многих других попыток с относительно слабым вращающимся и возвратно-поступательным устройством немецкоязычный прусский Мориц Якоби создал первый настоящий вращающийся электродвигатель, который действительно развивал выдающуюся механическую выходную мощность.

1838 Якоби устанавливает мировой рекорд всего через четыре года после создания вращающегося электродвигателя в 1834 году. Его второй двигатель был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку.

Ранние двигатели обычно обматывали медным проводом с хлопковой изоляцией.

1837 Томас Давенпорт патентует электродвигатель. В американо-американской литературе есть несколько текстов пафоса, в которых Томас Дэвенпорт прославляется как изобретатель электродвигателя.Это утверждение основано на бесспорном факте, что Дэвенпорт был первым американцем, который создал пригодный для использования электродвигатель, а также первым получил патент на такое устройство. С 1837 по 1866 год только в Англии другим изобретателям было выдано около 100 патентов на электродвигатели. С тех пор, как Давенпорт модернизировал свой двигатель в 1837 году, его патент стал практически бесполезным.

Начало магнитной проволоки

1907 Джордж А. Джейкобс, американский изобретатель, создал процесс изоляции, который позволил изготавливать медную проволоку очень точного калибра.Эта эмалевая изоляция была долговечной, менее громоздкой и более экономичной. В это время Джейкоб основал компанию Dudlo Company, которая вскоре стала крупнейшим производителем изолированного медного магнитного провода.

1911 Джордж Джейкобс и его помощник Виктор Ри разработали проволоку любой толщины, которая должна быть равномерно покрыта химической изоляцией, которую можно обжигать в специальных печах, и при этом оставаться достаточно гибкой, чтобы ее можно было наматывать в бухты.

1927 Компания Dudlo объединилась с двумя другими компаниями и образовала General Cable Corporation.

1929 General Cable произвела в США первый подводный кабель на 75 000 вольт для перехода через реку Делавэр. Он был изготовлен длиной 4050 футов — самый длинный без стыков.

1933 Виктор Ри создает Rea Magnet Wire и получает свой первый заказ от Jefferson Electric Company на 10 000 фунтов эмалированного провода 38-го калибра на трехдюймовых катушках.

1936 Essex вошел в бизнес по производству магнитных проводов, приобретя свободный производственный комплекс, который ранее был производственной компанией Dudlo в Форт-Уэйне, штат Индиана.Дудло был создателем современного процесса эмалирования магнитной проволоки (см. 1906 г.).

Перенесемся в 1940-е годы, когда мы видим, как производители магнитной проволоки неустанно трудятся, чтобы поддержать усилия Второй мировой войны. Эссекс производил достаточно магнитных проводов, чтобы построить миллионы трансформаторов, используемых Америкой и ее союзниками во время Второй мировой войны, производил тысячи миль полевых телефонных проводов для армейских войск связи и жгуты проводов для бомбардировщиков B-24.

1954 Эссекс перемещает штаб-квартиру в Форт-Уэйн, штат Индиана.Пять лет спустя Ри также перенесет свою штаб-квартиру в Форт-Уэйн.

1963 Ультратонкая проволока, разработанная Sumitomo Electric.

1966 Elektrisola выходит на рынок с первой катушкой массой 10 кг для проволоки 0,05 мм.

1970 Термостойкость Разработана АТЗ-300.

1977 Сверхтонкий прямоугольный провод, разработанный Sumitomo Electric.

1994 Представлен Magneflex с алюминиевыми проводниками, изолированными высокотемпературной смолой.Современные полимерные покрытия очень успешно применяются в трансформаторах.

1997 REA представляет Pulse Shield, который устойчив к напряжениям, возникающим из-за высокой частоты, быстрого нарастания и скачков напряжения, обычно возникающих в инверторах типа IGBT.

1998 Эссекс приобрел Active Industries, компанию по переработке / изготовлению электроизоляционных изделий, используемых в основном производителями комплектного оборудования и ремонтными мастерскими.

2014 Nano Shield, представленный Rea, который демонстрирует исключительную устойчивость к напряжениям, создаваемым высокой частотой, быстрым временем нарастания и скачками напряжения, обычно возникающими в инверторах типа IGBT, значительно увеличил срок службы двигателя по сравнению со стандартным магнитным проводом MW-35C под этими напряжения напряжения и в широком диапазоне температур.

Магнитный провод используется в электродвигателях, которые преобразуют электрическую энергию в механическое движение за счет взаимодействия магнитных полей и проводников с током. Эти электродвигатели содержат медные катушки, которые создают магнитные поля.

Электродвигатели используются в различных продуктах, включая вентиляторы, бытовую технику, тяжелую технику и автомобили. Они бывают разных форм и размеров, самые маленькие из которых используются в электрических наручных часах, а самые большие — в больших кораблях.Некоторые преимущества электродвигателя включают низкую стоимость, низкие требования к техническому обслуживанию, отсутствие ископаемого топлива и многое другое.

Магнитный провод также можно найти в трансформаторах, которые по сути являются устройствами, передающими электрическую энергию от одной цепи к другой через медные катушки. Мощность может передаваться через магнитное поле, а не через металлическое соединение между двумя цепями. Можно использовать алюминиевую проволоку, однако медная магнитная проволока предпочтительнее, поскольку она более компактна и может быть намотана более плотно.Трансформаторы имеют большее влияние, чем можно было бы ожидать — почти вся электрическая энергия в мире проходит через серию трансформаторов к тому времени, когда достигает потребителя.

Электропроводность и соединения

Споры о медных и алюминиевых обмотках в двигателях до сих пор остаются горячей темой. Сегодня инженеры во всех отраслях промышленности задаются вопросом, могут ли алюминиевые обмотки по качеству и характеристикам сравниться с медными.

В 1960-х годах алюминиевая домашняя электропроводка вызывала некоторые разногласия из-за опасности возгорания, которую она создавала.Причиной пожаров оказались проблемы с подключением, а не сам провод. При работе соединения будут перегреваться, что приведет к передаче тепла самому проводу, что в конечном итоге приведет к ослаблению изоляции провода.

Следовательно, алюминиевый провод имеет тенденцию к отрицательному положению, несмотря на то, что он является подходящим материалом для обмоток двигателя во многих приложениях.

Что еще может делать магнитный провод?

Магнитный провод можно найти во множестве предметов повседневного обихода, даже в самолетах.Модели самолетов с электрическим приводом использовались с 1970-х годов, и один неподтвержденный отчет был сделан еще в 1957 году. С тех пор они превратились в небольшие беспилотные летательные аппараты с батарейным питанием или беспилотные летательные аппараты, которые в двадцать первом веке стали широко использоваться для многих целей.

Однако, хотя мы можем видеть на Земле невероятно быстрые электрические спортивные автомобили, такие как Tesla, скорость в небе — это совсем другое дело. Использование электроэнергии для приведения в движение самолетов, особенно больших и тяжелых коммерческих самолетов, является более сложной задачей.В обычном реактивном самолете двигатель всасывает воздух через его переднюю часть, компрессор сжимает его, и топливо распыляется и зажигается, создавая горящие газы и прямую тягу. Электроэнергетический самолет намного проще. Батареи питают электродвигатель, который вращает пропеллер. Он более эффективен, но требует гораздо меньшей тяги, поэтому электрические самолеты, как правило, медленные. Возможно, это намного более экологично, но в настоящее время коммерческие электрические самолеты не так эффективны при нашем напряженном графике поездок.

Магнитный провод также можно использовать для питания аэродинамических труб.Аэродинамические трубы используются для испытаний автомобилей и самолетов. В частности, они помогают инженерам определять характеристики и устранять «ошибки» в новых конструкциях гражданских и военных самолетов и транспортных средств без риска для безопасности водителя / пилота-испытателя или дорогостоящего самолета. Самая большая аэродинамическая труба на планете находится в Исследовательском центре Эймса НАСА. Этот дозвуковой туннель, в котором можно испытывать самолеты с размахом крыльев до 100 футов, имеет длину более 1400 футов и высоту 180 футов. У него есть две испытательные площадки: одна 80 футов высотой и 120 футов шириной, другая 40 футов высотой и 80 футов шириной.Воздух прогоняется через эти тестовые сегменты шестью 15-лопастными вентиляторами. Диаметр каждого вентилятора соответствует высоте четырехэтажного здания. Вентиляторы питаются от шести электродвигателей мощностью 22 500 лошадиных сил, которые используют магнитный провод для их питания.

Самый мощный электродвигатель

Northrop Grumman Corporation разработала для ВМС США первый в мире судовой высокотемпературный сверхпроводящий двигатель мощностью 36,5 мегаватт (49 000 лошадиных сил), что вдвое превышает рекорд, установленный военно-морскими силами.

Включает в себя катушки из ВТСП-провода, которые способны передавать в 150 раз больше мощности, чем медный провод аналогичного размера, двигатель в два раза меньше обычных двигателей. Это поможет сделать новые корабли более экономичными и освободить место для дополнительных боевых возможностей.

Эта система была спроектирована и построена по контракту с Управлением военно-морских исследований для демонстрации эффективности двигателей HTS в качестве основной двигательной установки для будущих полностью электрических кораблей и подводных лодок ВМФ.Командование военно-морских систем (NAVSEA) профинансировало и провело успешные испытания двигателя.

Этот грузовик может перевозить грузы весом более 500 метрических тонн, что эквивалентно более чем 350 автомобилям VW Golf или семи полностью загруженным самолетам Airbus A320-200. Грузовик приводится в движение четырьмя электродвигателями мощностью 1200 кВт. Он может перевозить свой груз с меньшими затратами на тонну транспортируемого материала, чем когда-либо прежде, и развивает максимальную скорость 64 км / ч в пустом состоянии.

Инженеров Siemens Drive Technologies попросили разработать электропривод, который мог бы перемещать грузовик с полной массой до 810 тонн и гарантировать, что этот грузовик сможет быстро и надежно транспортировать добытый материал.В отличие от предыдущей модели, этот новый грузовик оснащен восемью шинами, поскольку каждая шина рассчитана на нагрузку около 100 метрических тонн.

Полный привод позволяет динамически распределять мощность между двумя осями грузовика. Если один из электродвигателей выйдет из строя, у грузовика все равно будет возможность аварийного привода, что означает, что его можно будет доставить в мастерскую своим ходом — другими словами, его не нужно будет буксировать. Впервые грузовик был представлен публике в октябре 2013 года.Его длина составляет более 20 метров, ширина — почти десять метров, а высота — около восьми метров. Его полный привод и четырехколесное гидравлическое рулевое управление гарантируют, что шины высотой около четырех метров не застрянут на пересеченной местности.

Электромотор

Электропроводка — 480 В

480 Вольт Данные по проводке двигателя — токи Национальной ассоциации производителей электрооборудования (NEMA), размер стартера, защита цепи двигателя, фазные провода, заземление и размер кабелепровода:

235 3/4 12 9023 906 903 1 1/4
Мощность двигателя Амперы NEMA Размер стартера Перегрузка Тип устройства защиты двигателя HMCP
(ампер)
Размер кабелепровода
(дюймы)
Фазные провода
(AWG)
GG
1/2 1.0 1 W30 3 3/4 12 12
3/4 1,4 1 W33 3
1 1,8 1 W36 3 3/4 12 12
1 1/2 2,6 1 3/4 12 12
2 3.4 1 W42 7 3/4 12 12
3 4.8 1 W45 7 12352 9023 12352 12352 9023
5 7,5 1 W50 15 3/4 12 12
7 1/2 11 1 9023 9023

2 W50 / 4
12 12
10 14 1 W56 30 3/4 10 10
15 29023 50 3/4 10 10
20 27 2 W64 50 1 8 8
25 34 2 W67 70 1 1/4 6 ​​ 6 ​​
30 40 6 ​​ 6 ​​
40 52 3 W69 100 1 1/4 4 4
50 W72 100 1 1/4 4 4
60 77 4 W74 150 1 1/2 2 2 2

75 96 4 W77 150 1 1/2 2 2
100 125 4 W 36 200 2 2/0 2
125 156 5 W38 250 2 1/2 4/0 9023 9023 906
150 180 5 W40 400 2 1/2 4/0 1/0
  • 1 л.с. = 0.746 кВт
  • Заземление оборудования рассчитано на медный провод в соответствии с разделом 250.122 — Национальный электротехнический кодекс (NEC)

Заземляющий провод рассчитан на безопасное пропускание тока короткого замыкания в течение короткого времени до срабатывания выключателя — он также рассчитан на удерживайте падение напряжения из-за токов короткого замыкания в земле ниже опасного уровня. Электропроводка двигателя рассчитана на непрерывную работу при полной нагрузке и удержание падения напряжения при полной нагрузке во время запуска в пределах нескольких%.

Мультимедийные учебные программы — Основные электрические машины | MB862

Промышленные двигатели используются в широком спектре промышленных, коммерческих и жилых помещений. Мультимедийный учебный курс Amatrol — Основные электрические машины (MB862) обучает учащихся основным концепциям промышленных двигателей, применимым в современной промышленности. Учащиеся, использующие курс электронного обучения по основным электрическим машинам Amatrol, начинают с изучения двигателей постоянного тока, а затем переходят к нескольким типам двигателей переменного тока.На основе этих строительных блоков учащиеся начинают практиковать отраслевые навыки промышленной моторики, такие как подключение, тестирование, анализ, управление и реверсирование нескольких различных типов стандартных промышленных двигателей.

Углубленный, всеобъемлющий учебный план по основным электрическим машинам, связанный с практическими навыками

Учебная программа электронного обучения

Amatrol уникальна тем, что в ней продуманно сочетаются глубокие теоретические знания с практическими навыками. Это мощное сочетание знаний и навыков укрепляет понимание и создает прочную основу для развития более продвинутых навыков.

Например, курс электронного обучения по основным электрическим машинам охватывает такие важные темы, как:

Двигатели серии DC

Учащиеся начинают с ознакомления с двигателями серии постоянного тока, включая безопасность электродвигателя и работу двигателя постоянного тока. Отдельные уроки посвящены таким темам, как основные компоненты электродвигателей, конфигурации проводки двигателя постоянного тока и реверсирование двигателя постоянного тока. Учащиеся также будут практиковать такие навыки, как подключение и управление двигателем постоянного тока и изменение направления вращения двигателя постоянного тока.

Параллельные и комбинированные двигатели постоянного тока

Слушатели изучат компоненты и работу шунтирующих и составных двигателей постоянного тока. Отдельные уроки посвящены таким темам, как подключение двигателя постоянного тока для работы в режиме шунтирования с самовозбуждением, преимущества шунтирующего двигателя постоянного тока с отдельным возбуждением и типы конфигураций составного двигателя постоянного тока. Учащиеся также будут практиковать такие навыки, как подключение и управление шунтирующим электродвигателем постоянного тока с самовозбуждением, изменение направления вращения электродвигателя постоянного тока, а также подключение и управление комбинированным электродвигателем постоянного тока.

Скорость и крутящий момент двигателя

Слушатели, использующие курс электронного обучения Amatrol по основным электрическим машинам, будут изучать основные принципы скорости и крутящего момента двигателя, включая измерение скорости и крутящего момента двигателя. Отдельные уроки посвящены таким темам, как методы, используемые для измерения скорости двигателя, расчет крутящего момента и приложения для измерения крутящего момента. Учащиеся также будут практиковать такие навыки, как измерение скорости двигателя с помощью фототахометра, расчет нагрузки на двигатель, использующий зубчатую передачу или систему ременного привода, и определение крутящего момента, создаваемого двигателем, с использованием измерений тока.

Характеристики двигателя

Учащиеся изучат различные аспекты и компоненты моторных характеристик, включая мощность и эффективность мотора. Отдельные уроки посвящены таким темам, как важность КПД двигателя, рабочие характеристики двигателя и характеристики скорости / крутящего момента для конфигураций двигателей постоянного тока. Учащиеся также будут практиковать такие навыки, как вычисление эффективности двигателя с учетом входной и выходной мощности, измерение и расчет рабочих характеристик двигателя постоянного тока, а также построение и анализ зависимости эффективности откривая мощности двигателя постоянного тока.

Двухфазные двигатели переменного тока

Слушатели, использующие курс электронного обучения по основным электрическим машинам Amatrol, будут изучать различные аспекты и компоненты двигателей переменного тока с расщепленной фазой, включая характеристики переменного тока. Отдельные уроки посвящены таким темам, как методы представления напряжения переменного тока, типы однофазных двигателей переменного тока и расчет синхронной скорости двигателя переменного тока. Учащиеся также будут практиковать такие навыки, как преобразование эффективного значения переменного напряжения в пиковое напряжение, подключение и управление двигателем с расщепленной фазой, а также измерение и построение графиков рабочих характеристик электродвигателя с расщепленной фазой.

Двигатели переменного тока с конденсаторным пуском

Слушатели изучат компоненты и работу двигателей переменного тока с конденсаторным пуском, в том числе резисторы коэффициента мощности и утечки. Отдельные уроки посвящены таким темам, как расчет коэффициента мощности, преимущества двигателя с конденсаторным пуском и назначение спускного резистора. Учащиеся также будут практиковать такие навыки, как расчет полной мощности при входном напряжении и токе, корректировка коэффициента мощности путем расчета значения корректирующего конденсатора и изменение направления вращения двигателя с конденсаторным пуском.

Двигатели с постоянными и двумя конденсаторами

Слушатели, использующие курс электронного обучения Amatrol по основным электрическим машинам, будут изучать основные принципы работы двигателей с постоянными и двухконденсаторами. Отдельные уроки посвящены таким темам, как преимущества двигателей с постоянными конденсаторами, работа двигателя с конденсаторным пуском и управление скоростью двигателя с постоянными конденсаторами. Учащиеся также будут практиковать такие навыки, как измерение и построение графиков рабочих характеристик двигателя с постоянным конденсатором, подключение и эксплуатация двигателя с конденсаторным запуском, работающего от конденсатора, и реверсирование вращения двигателя с конденсаторным запуском.

Трехфазные асинхронные двигатели переменного тока

Слушатели изучат различные аспекты и компоненты трехфазных асинхронных двигателей переменного тока, включая их работу, характеристики и конфигурации. Отдельные уроки посвящены таким темам, как категории трехфазных двигателей переменного тока, применения трехфазного асинхронного двигателя и способы подключения двухполюсного двигателя с треугольником для низкого или высокого напряжения. Учащиеся также будут практиковать такие навыки, как подключение и управление трехфазным асинхронным двигателем, измерение и построение графиков рабочих характеристик асинхронного двигателя и изменение направления вращения трехфазного асинхронного двигателя.

Мультимедийный формат с высокой степенью интерактивности подходит для всех стилей обучения

Учебная программа курса электронного обучения

Amatrol по основным электрическим машинам представлена ​​в интерактивном мультимедийном формате. Потрясающая 3D-анимация, видео, изображения, озвучка всего текста, а также интерактивные викторины и упражнения оживляют обучение. Мультимедийная программа Amatrol содержит элементы, которые подходят для любого стиля обучения, сохраняя мотивацию и заинтересованность учащихся.

Щелкните изображение ниже, чтобы просмотреть демонстрацию электронного обучения Amatrol:

Доступ в любое время и в любом месте способствует самостоятельному обучению

В сегодняшнем быстро меняющемся мире, движимом технологиями, как никогда важно расширить охват обучения производственным навыкам за пределы традиционных классных комнат.Электронное обучение Amatrol решает задачу обеспечения гибкости, предлагая углубленное и всестороннее обучение техническим навыкам с помощью интуитивно понятной и простой в использовании веб-системы управления обучением (LMS).

Благодаря онлайн-доступу в любое время и в любом месте, электронное обучение Amatrol позволяет учащимся устанавливать свой собственный темп дома, на работе, в традиционном классе или сочетать эти варианты. Нажмите здесь, чтобы узнать больше об электронном обучении и LMS Amatrol.

Шесть шагов для идеальной установки электродвигателя

Итак, вы заказали электродвигатель для своего применения.Перед тем, как начать процесс установки, проверьте следующие шаги для безупречной установки.

Транспортировка и хранение

Сначала осмотрите новый двигатель на предмет царапин, дефектов или вмятин. Также убедитесь, что информация на паспортной табличке соответствует вашему заказу. Не принимайте поставку двигателя, если вас не устраивают условия и спецификации.

Убедитесь, что ваш двигатель будет храниться в чистых, сухих условиях и вдали от источников ударов или вибрации.В зоне хранения старайтесь поддерживать влажность окружающей среды не выше 60% и среднюю температуру от 10 до 50 градусов Цельсия.

Расположение

Для хранения выберите хорошо вентилируемое место, не окруженное стенами или другими предметами, которые могут повлиять на температуру окружающей среды. Температура, указанная на паспортной табличке двигателя, не должна быть превышена. Если рабочая среда подвергает двигатель воздействию пыли и влаги, убедитесь, что он имеет соответствующий класс защиты IP.

Крепление

Одним из важнейших компонентов для монтажа электродвигателя является ровное основание.Все точки крепления двигателя должны находиться в одной плоскости. Железобетонный фундамент позволяет крепить двигатель и снижает вибрацию. Небольшие регулировки можно выполнить, поместив регулировочные шайбы под опоры двигателя.

Последовательно затягивайте болты ножек, чтобы не повредить ножки. Кроме того, на ножках и монтажном основании не должно быть мусора.

Выравнивание

Если вы правильно выровняете электродвигатель относительно ведомой машины, вы уменьшите потери энергии, вызванные трением и вибрацией.Эффективность системного процесса улучшится, а производительность увеличится. Успешный монтаж и центровка с помощью лазера помогают выровнять валы с максимальной точностью.

Смазка

В большинстве случаев двигатели с масляной смазкой поставляются с завода в сухом виде. Ознакомьтесь с инструкциями производителя, чтобы подобрать наиболее подходящий тип и количество смазки. Эффективная смазка снижает трение между валом и подшипниками. Смазка также отводит тепло от горячих точек, надежно охлаждая двигатель.Неправильная смазка системы может вызвать трение и, в конечном итоге, привести к ее перегреву. Однако использование слишком большого количества смазки может привести к потере энергии и вытеснению смазки из системы.

Соединения

Убедитесь, что напряжение, частота и фаза источника питания соответствуют данным на паспортной табличке двигателя. Подтверждение этих сведений может помочь вам убедиться, что допустимая токовая нагрузка может поддерживать номинальное напряжение при любых условиях нагрузки.

Есть сомнения по поводу подключения вашего электродвигателя? Свяжитесь с Elite Controls сегодня для получения дополнительной информации об установке электродвигателя.Наша команда профессионалов стремится помочь вам убедиться, что ваша система работает эффективно.

Типичные причины отказов обмоток электродвигателей и способы их предотвращения — Accelix

Электродвигатели служат важнейшим компонентом любого объекта. Однако электродвигатели могут быть подвержены любому количеству проблем, которые приводят к неисправностям и сбоям электродвигателей, что может нарушить бизнес-операции, снизить производительность и отрицательно повлиять на чистую прибыль компании.

Тем не менее, мониторинг состояния электродвигателей обычно не является приоритетом для большинства организаций.Важность реализации программ профилактического обслуживания может дать огромные преимущества при обнаружении, выявлении и оценке неисправностей электродвигателя. Без надлежащей видимости увеличивается вероятность поломки двигателя, что приведет к неожиданным простоям.

Для обеспечения бесперебойной работы критически важно внедрение программ профилактического обслуживания для обнаружения, выявления и оценки участков электродвигателей, которые подвержены отказам. Для этого важно понимать основные причины отказа двигателя, чтобы определить наилучший курс действий в случае отказа.В рамках программы регулярного технического обслуживания инструменты диагностики и обслуживания нового поколения, включающие в себя подключенные инструменты, датчики и программное обеспечение, предлагают лучший способ контролировать состояние электродвигателя.

Причины выхода из строя обмоток электродвигателя

Что вызывает отказ электродвигателей? Неблагоприятные условия эксплуатации — электрические, механические или экологические — могут значительно сократить срок службы электродвигателя. Управление электромеханики (EASA) приводит множество причин отказов обмоток электродвигателей, в том числе:

  • Электрические сбои, включая однофазные сбои обмотки (соединение звездой или треугольником), вызванные размыканием из-за перегоревшего предохранителя, открытого контактора, обрыва линии питания или плохого соединения, которое нарушает подачу питания на двигатель.
  • Нарушения изоляции, в том числе закороченные междуфазные или межвитковые обмотки, закороченная катушка, заземление на краю разъема или в разъеме или закороченное соединение — все это обычно вызывается загрязнениями, истиранием, вибрацией или скачком напряжения.
  • Термическое ухудшение изоляции в одной фазе обмотки статора, которое может быть результатом неравномерного напряжения между фазами из-за несбалансированной нагрузки на источнике питания, плохого соединения на клеммах двигателя или контакта с высоким сопротивлением; или термическое повреждение всех фаз обмотки статора, как правило, из-за требований к нагрузке, превышающих номинальные параметры двигателя, или из-за очень высоких токов в обмотке статора из-за блокировки ротора.Это также может произойти в результате частых запусков или реверсирования.
  • Люфт и выход из строя подшипников. Другая распространенная неисправность возникает из-за механического трения, которое может быть результатом ослабления вала двигателя и / или подшипников двигателя. Наиболее частыми механическими неисправностями являются дисбаланс вала, неплотность, несоосность и подшипники. Часто эти механические неисправности связаны: дисбаланс, неплотность или несоосность вала, если их не исправить, вызовут повышенные нагрузки на подшипники, что приводит к быстрому износу подшипников.

Профилактическое обслуживание и диагностика Ключ к предотвращению выхода из строя обмотки электродвигателя

Процентная ставка (ROI) и преимущества надежности и обслуживания на основе состояния были известны в течение десятилетий, но только недавно объединились, чтобы создать методы прогнозного контроля, портативный мониторинг состояния, удаленное управление и мониторинг и программное обеспечение для компьютеризированного управления техническим обслуживанием SaaS (CMMS ) доступны и экономичны. Эти инструменты обслуживания и обеспечения надежности нового поколения поддерживают создание, сбор и консолидацию данных от датчиков, инструментов и существующих систем с возможностью удаленного мониторинга через подключенные устройства, включая настольный компьютер, планшет или смартфон.

Преимущества этих инструментов:

  • Облачная CMMS предоставляет гибкий и простой в использовании метод управления активами, управления рабочими процессами и отчетности.
  • Подключенные инструменты и датчики предлагают всем ключевым заинтересованным сторонам доступ к нужным им данным, включая руководителей предприятий, стремящихся поддерживать безотказную работу двигателей, инженеров, которые полагаются на точные данные для мониторинга состояния оборудования, и менеджеров по техническому обслуживанию, пытающихся опережать отказы двигателей .
  • Инструменты интеграции данных и мобильности объединяют сторонние системы для подключения отделов технического обслуживания объектов к операционным показателям.Сочетание интеграции данных, управления данными и мобильного интерфейса дает обслуживающему и операционному персоналу возможность сопоставлять информацию об автоматизации процессов с данными технического обслуживания и инвентарными записями.

Использование этих инструментов и технологий может дать ключевую информацию о состоянии электродвигателей. После выявления и понимания основных причин выполнение процедур профилактического обслуживания посредством диагностических испытаний — лучший способ помочь в устранении неисправностей обмоток электродвигателя.

Для диагностики проблемы в каждой категории есть три шага, которые помогут быстро и эффективно управлять рабочим процессом ремонта:

  • Шаг 1: Просмотрите свои машины, чтобы определить, какие из них исправны, а какие могут иметь проблемы. Используйте простые инструменты для проверки, такие как измерители вибрации и тепловизоры, которые дают быстрые ответы.
  • Шаг 2: Выполните поиск и устранение неисправностей, чтобы диагностировать основную причину проблемы и проверить машину на наличие неисправностей с указанием серьезности неисправности и рекомендаций по ремонту.Тестеры вибрации должны использоваться для механических неисправностей, а анализаторы двигателей — для электрических неисправностей.
  • Шаг 3: Устраните основную причину проблемы. Замените подшипники, сбалансируйте вал и / или выровняйте валы.

Перед возвратом машины в эксплуатацию произведите быструю проверку, чтобы убедиться, что ремонт завершен.

Если вы подозреваете, что проблема связана с обмоткой электродвигателя, существует три категории измерений, помогающих определить вероятный источник неисправностей — электрические, механические и тепловые.

Чтобы получить полную картину, оцените вероятные режимы отказа и сопоставьте правильные технологии обслуживания с наиболее вероятным режимом отказа. Программное обеспечение для обслуживания и устройства для сбора данных, которые интегрируются со сторонними поставщиками решений, идеально подходят для этого.

Проблемы с электрикой

ScopeMeter и датчик качества электроэнергии могут помочь в поиске неисправностей в приводе и выходе привода, распределении мощности, выявлении потерь энергии и повышении эффективности.Эти инструменты могут оценивать электронные гармоники, исследования искажений и нагрузки.

Тестер двигателя и изоляции обеспечивает безопасную работу, продлевает срок службы электрических систем и двигателей. Это устройство проверяет скорость, крутящий момент, мощность и КПД двигателя, а также проверяет ухудшение изоляции двигателя.

Проблемы с температурой

Инфракрасные тепловизоры — лучшая технология для обнаружения горячих точек в распределительных устройствах и контроллерах двигателей, для проверки процессов и механических активов.Тепловизоры проверяют неисправные соединения, перегретые подшипники и уровни в баке.

Механические проблемы

Инструменты для вибрации и центровки — лучшая технология для диагностики механических неисправностей вращающихся машин. Они могут проверить правильность центровки валов, дисбалансы, люфт, перекос и подшипники.

Владельцы, операторы и менеджеры предприятий могут получить выгоду как от интегрированных данных, так и от управления техническим обслуживанием в единой системе. Команды технического обслуживания могут рентабельно внедрить эту технологическую платформу для легкого удовлетворения своих потребностей, используя свой существующий персонал и масштабируясь по мере необходимости, без дорогостоящей модернизации и крупных инвестиций в ИТ-инфраструктуру.Использование этих инструментов предлагает предприятиям максимальную гибкость и мощность для управления исправностью обмоток электродвигателей, чтобы все активы организации работали без простоев.

Почему Уай? Почему Дельта? | Насосы и системы

Вы, наверное, заметили, что трехфазные двигатели могут иметь различное количество выводов, выходящих из распределительной коробки. Наиболее распространенные числа — три, шесть, девять или двенадцать.

Обратите внимание, что все эти числа кратны трем, поскольку их комбинации должны соответствовать трем входящим фазам.Эти комбинации проводов предназначены для работы с одним или двумя напряжениями и соединениями обмоток звезда, треугольник или звезда / треугольник. Двенадцатипроводный двигатель может работать как с двойным напряжением, так и со схемой звезда / треугольник. Мы подробно рассмотрим каждый из них чуть позже.

Какова цель этих двух соединений и почему двигатели намотаны звездой, треугольником или их комбинацией? Комбинация звезда / треугольник дает несколько преимуществ, и мы рассмотрим их в этой колонке.
Почему двигатели с одним и двумя напряжениями намотаны звездой или треугольником? Почему бы просто не стандартизировать одно или другое? Хотя схемы подключения звезды и треугольника довольно просты, фактические обмотки двигателя намного сложнее. Часто подключение будет зависеть от производственного процесса.

Например, соединение звезда требует меньше витков, чем соединение треугольником (1,732: 2) для достижения тех же электрических характеристик. Это упрощает намотку двигателей меньшего размера с узкими пазами статора.С другой стороны, часть выводов в соединении треугольником с двойным напряжением может быть меньшего диаметра, чем у соединения звезды. Это снижает стоимость проволоки и часто упрощает производство. Инженер крупного производителя двигателей недавно сказал мне: «Это жонглирование количеством витков, количеством цепей и размером провода».

Трехвыводные двигатели
Обмотки статора трехвыводного двигателя могут быть соединены треугольником или звездой (см. Рисунок 1).Эти двигатели намотаны на одно напряжение, и в процессе производства обмотки подключаются по схеме звезды или треугольника.

Рисунок 1. Подключение трехпроводного двигателя.

Входящее питание подключается к клеммам T1, T2 и T3. Преимущество этой конструкции состоит в том, что ошибки при электромонтаже во время установки обычно исключаются из-за предварительно подключенных обмоток. Правильное направление вращения еще необходимо проверить.

Двигатели с шестью выводами
Двигатель с шестью выводами намотан таким образом, чтобы обмотки можно было соединять по схеме звезды или треугольника (см. Рисунок 2).Если выводы T4, T5 и T6 соединены вместе и питание подается на выводы T1, T2 и T3, соединение звездой достигается. Если выводы T1 и T6, T2 и T4 и T3 и T5 соединены вместе и питание подается на вершины, соединение является треугольником.

Рис. 2. Подключение шестиконтактного двигателя.

В США соотношение высокого и низкого напряжения составляет 2: 1 (460 вольт: 230 вольт), но в Европе оно составляет √3: 1 (380 вольт: 220 вольт). Это позволяет Европе воспользоваться преимуществом 1.732 соотношение напряжений между соединениями звезда и треугольник (обсуждается в части 1) и используйте их для двойного напряжения. Поскольку импеданс соединения звездой в три раза больше, чем у соединения треугольником, высокое напряжение подключается звездой, а низкое напряжение — треугольником.

Еще одно применение шестипроводного двигателя, используемого в США и Европе, — это метод пуска при низком напряжении, известный как пуск звезды / треугольник. В этом приложении используется специальный стартер для соединения обмоток звездой во время пуска и переключения их на треугольник после того, как двигатель достигнет определенной скорости.

Более низкое пусковое напряжение снижает пусковой ток примерно до 1/3 от нормального. Пусковой крутящий момент также существенно снижается, поэтому скорость перехода от звезды к треугольнику будет зависеть от инерции нагрузки. Центробежные насосы и вентиляторы часто могут достичь полной скорости перед переключением в режим работы по треугольнику.

Двигатели с девятью выводами
Двигатели с девятью выводами могут быть подключены по схеме звезды или треугольника, но это решение принимается производителями.Их цель — обеспечить работу с двумя напряжениями в приложениях с соотношением напряжений 2: 1. На рис. 3 показаны подключения различных выводов.

Рисунок 3. Подключение девятивыводного двигателя.

Обратите внимание, что обмотки статора «звезда» и «треугольник» состоят из шести отдельных цепей. Если бы каждый из открытых выводов был соединен вместе (T4 и T7, T5 и T8 и T6 и T9), фазные катушки были бы включены последовательно, и приложенное фазное напряжение на T1, T2 и T3 было бы 460 вольт.Если фазное напряжение составляет 230 вольт, выводы должны быть соединены таким образом, чтобы образовались две параллельные цепи звезды или треугольника.

Поскольку эта диаграмма может быть сложной, я представлю ее другим способом и покажу только соединение звездой. На рисунке 4 показано последовательное соединение звездой, рассчитанное на напряжение 460 вольт. Обратите внимание, что соединения такие же, как указано выше, а выводы T7, T8 и T9 соединены в звезду.

Рисунок 4.Последовательное соединение звездой

Прямоугольники представляют собой катушки обмотки, и для простоты их по две на цепь. Если предположить, что сопротивление каждой цепи составляет 10 Ом, общее сопротивление в каждой фазе составит 20 Ом. В последовательной цепи сопротивление представляет собой сумму отдельных сопротивлений. Если двигатель должен работать от 230 вольт, сопротивление в цепи должно быть уменьшено, чтобы выходная мощность оставалась прежней.

На рис. 5 показаны те же наборы обмоток, что и на рис. 4, но подключенные на 230 вольт.В этом примере обмотки в T7, T8 и T9 подключены параллельно T1, T2 и T3. Если вы внимательно посмотрите на соединения с правой стороны, вы увидите, что они образуют две параллельные схемы звезды. В параллельной цепи сопротивление ведет себя иначе, чем в последовательной цепи.

Рисунок 5. Параллельное соединение звездой.

Каждая из фаз по-прежнему проходит через два сопротивления 10 Ом, но общее сопротивление сильно отличается.Это величина, обратная сумме обратных величин каждого из двух сопротивлений [R = 1 / (1 / R1 + 1 / R2)] или 5 Ом.

При сопротивлении 5 Ом ток в параллельной цепи будет вдвое больше, чем в последовательной цепи. Следовательно, мощность (ватты) остается одинаковой для обоих напряжений. Соединения треугольником обеспечивают одинаковые последовательные и параллельные конфигурации.

Двигатели с двенадцатью выводами
Двигатель с двенадцатью выводами сочетает в себе возможности конструкции с шестью и девятью выводами. Он обеспечивает возможность двойного напряжения и возможность выбора конфигурации звезды или треугольника.Следовательно, один и тот же двигатель может быть спроектирован так, чтобы поддерживать соотношение напряжений 2: 1 и 1,732: 1. P&S

Что нужно знать об электрическом использовании льдогенератора

Модели льдогенераторов 115 В

Как правило, большинство небольших коммерческих льдогенераторов, производящих менее 800 фунтов, имеют модели 115 В, за некоторыми исключениями. Этим машинам требуется только розетка на 110 В, чтобы обеспечить надлежащее количество энергии, необходимое для использования льдогенератора.

Эти розетки того же типа, что и практически во всех домах США. Они состоят из двух параллельных прорезей. Эти слоты могут быть одинаковой длины или иметь один больше другого.

Один из слотов, самый большой на большинстве розеток, называемый «горячим», подает электроэнергию на машину.

Более короткий слот — это «нейтраль», которая замыкает цепь, возвращая энергию в розетку.

Наконец, есть небольшое круглое отверстие, называемое «землей». Это посылает электрические токи в землю в качестве меры безопасности для защиты пользователей от ударов.В некоторых старых домах и на предприятиях есть торговые точки, у которых нет заземления.

У моделей

115 В также есть потребность в силе тока. Сила тока в стандартной розетке обычно составляет 15 ампер, а в автоматическом выключателе — 20 ампер. Для этих моделей вам понадобится отдельная цепь, в идеале розетка на 20 ампер и автоматический выключатель на 20 ампер.

При установке льдогенератора на розетку 110 В проверьте, не прикреплен ли к нему прерыватель GFCI. Прерыватель цепи замыкания на землю, или GFCI, является мерой безопасности, установленной на многих розетках на 110 В.У них есть две кнопки с надписью «тест» и «сброс». По сути, эти розетки действуют как дополнительная мера безопасности для предотвращения случайных ударов. К сожалению, они могут привести к отключению многих коммерческих льдогенераторов при включении компрессора, что может оставить предприятия без льда до тех пор, пока машина не будет перезагружена.

Такие производители, как Хошизаки, рекомендуют никогда не устанавливать льдогенератор на розетку GFCI.

Модели льдогенераторов 220 В

Для больших льдогенераторов, производящих более 800 фунтов, обычно требуется розетка 220 В для подачи питания на устройство.

Розетки на 220 В не так распространены в домашних хозяйствах и на предприятиях, как розетки на 115 В. Скорее всего, вы найдете розетку на 220 В в том месте, где находятся стиральная машина и сушилка.

В отличие от розеток на 110 В, льдогенератор на 220 В нельзя просто подключить к розетке на 220 В.

Например, розетки 220 В бывают трех- и четырехпроводными. Трехпроводные схемы имеют две точки доступа и одну землю. Четырехпроводные схемы имеют две точки доступа, одну нейтраль и одну землю.

Розетки

220В также имеют выходы на 20 и 30 ампер.Как правило, льдогенераторы, которые падают от 800 до 1200 фунтов льда в день, требуют розетки на 20 А и 220 В. Льдогенераторам, которые производят более 1200 фунтов льда в день, обычно требуется розетка на 30 А и 220 В.

Есть много других розеток на 220В, и разные производители льдогенераторов могут использовать разные схемы 220В. Вам нужно будет проверить тип модели, чтобы найти розетку, которую вам нужно предоставить.

Скорее всего, вам потребуется обратиться к электрику, чтобы установить розетку 220 В подходящего типа для вашего льдогенератора.

Модели трехфазных льдогенераторов

Трехфазные льдогенераторы

совместимы только с предприятиями, у которых в зданиях есть трехфазная электрическая сеть. Как правило, льдогенераторы большего размера выпускаются в трехфазной версии для предприятий, подключенных к трехфазной сети.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *