Определяем степень заряженности аккумулятора по напряжению
Степень заряда автомобильного аккумулятора замеряют при приобретении новой АКБ и при возникновении проблем во время эксплуатации. И если летом допустима определённая разряженность батареи, то с понижением температуры могут возникнуть трудности с энергообеспечением оборудования или даже запуском двигателя. Определение степени заряженности аккумулятора — простая процедура, которую можно осуществить самостоятельно.
Нормальный заряд аккумулятора
Приобретая новый источник питания, следует проверить степень заряженности аккумулятора, подразумевающую количество энергии, которое может выдавать аккумуляторная батарея на протяжении определённого времени. Именно поэтому замеряется заряд АКБ в Ампер-Часах. Для получения максимально грамотных показаний стоит проводить несколько замеров: без нагрузки или с ней.
Для новой АКБ уровень разности потенциалов должен быть больше 12 вольт. Если напряжение аккумулятора автомобиля упало до 10,8В, то использование такой батареи не рекомендуется — её следует зарядить. После полной зарядки АКБ показатель напряжения будет равен примерно 12,6 вольтам. Плотность электролита целиком заряженного аккумулятора составляет приблизительно 1,28 гр/см3.
Как изменяется напряжение при разряде аккумулятора
Прямая связь таких параметров, как напряжение и состояние химических элементов (электролита и пластин), а также уровня зарядки, отражается на работоспособности всей системы.
После полного заряда автомобильного аккумулятора электролит имеет высокую концентрацию кислоты, и напряжение батареи максимально. Во время эксплуатации плотность уменьшается, в связи с этим падает значение напряжения, следовательно и заряд АКБ. Стоит отметить, что разность потенциалов источника питания изменяется не только от заряда аккумулятора, но и от количества приборов, подключённых к сети.
Как соотносятся заряженность батареи и напряжение аккумулятора, можно увидеть на этом рисунке:
Тесно связаны напряжение и ёмкость АКБ. Оба параметра производитель указывает в модели источника питания.
Остаточную ёмкость аккумулятора принято проверять:
- по напряжению под мощностью при помощи нагрузочной вилки и постоянного тока;
- спектральным анализом;
- приборами, снимающими показания при переменном токе.
Все эти способы базируются на сведениях о сопротивлении АКБ, что позволяет только качественно оценить состояние источника питания. Зависимость ёмкости аккумулятора от напряжения не является причиной для установления работоспособности батареи. Связано это с возможным наличием плавающего заряда даст совершенно нормальный результат диагностики, что не будет соответствовать действительности. Поэтому мы рекомендуем проверять остаточную ёмкость АКБ от напряжения с помощью специалистов, которые проведут компьютерное исследование батареи.
Как правильно замерить напряжение аккумулятора
Максимально точные значения можно получить, осуществив комплекс диагностик. Для этого необходимо иметь при себе специальные устройства (мультиметр, вольтметр или нагрузочную вилку). Для осуществления измерений напряжения от аккумулятора необходимо соединить контакты устройства и клеммы батареи.
Во время диагностических процедур стоит понимать, что источник питания, подсоединённый к бортовой системе авто, потребляет энергию. Поэтому показания могут быть несколько ниже, но они не должны опускаться ниже значений 11—11,5 вольт. Проведение корректных измерений допустимо на полностью отключённой и заряженной АКБ, то есть электрическая цепь должна быть разомкнута. Однако это необязательное условие: если вы проверяете напряжение в замкнутой цепи, то учитывайте определённую погрешность.
- АКБ подсоединена к системе автомобиля, который не заведён. При этом условии бортовая сеть потребляет определённое количество энергии, поэтому показатель напряжений должен находиться в диапазоне 12,5—13,0 В.
- На заведённой машине с выключенными источниками потребления энергии показания прибора должны варьироваться в промежутке от 13,5 до 14 вольт. Более высокие показания говорят о том, что батарея разряжена, а генератор работает не в штатном режиме. Стоит учесть, что повышение данных в холодное время года не является точным свидетельством разряженности АКБ. Если в течение некоторого времени вольтаж вошёл в рамки, то система полностью работоспособна. Пониженные показатели (от 13 до 13,4 вольта) говорят о некоторой разряженности батареи. Необходима зарядка аккумулятора.
- На заведённой машине с включёнными источниками потребления электроэнергии значение напряжений должно быть больше 12,8—13,0 В.
Обращаем ваше внимание, работа с мультиметром или вольтметром допускает обратное соотношение полюсов измерительного прибора и клемм АКБ. Нагрузочная вилка должна использоваться строго в соответствии с полярностью.
Мы не рекомендуем проверять напряжение аккумулятора в машине с помощью бортовой системы, потому что она подключена не напрямую к батарее. Поэтому допускаются определённые погрешности измерений.
Проверка заряда аккумулятора по напряжению рекомендуется спустя некоторое время после полной зарядки аккумулятора автомобиля, а также в условиях рабочей температуры (около 20 градусов Цельсия).
Ниже представлена таблица «Степень заряда АКБ по напряжению».
Уровень заряда АКБ | Напряжение в разомкнутой цепи малосурьмянистых (Sb/Sb) и гибридных (Sb/Ca) аккумуляторов, вольт | Напряжение в разомкнутой цепи в кальциевых (Ca/Ca) и AGM/Gel (Ca/Ca) аккумуляторах, вольт |
100% | 12,516—12,663 | 12,666—12,813 |
75% | 12,316—12, 463 | 12,466—12,613 |
50% | 12,106—12,253 | 12,266—12,413 |
25% | 11,926—12,073 | 11,866—12,013 |
0% | 11,756—11,903 | 11,666—11,813 |
Таблица 1. Степень заряда аккумулятора по напряжению.
Как изменяется плотность электролита при разряде аккумулятора
Под плотностью следует понимать соотношение дистиллированной воды и серной кислоты (65% к 35% соответственно), являющееся максимально оптимальным для автомобильных источников электрического питания и обеспечивающее накопление заряда электричества. Чем ниже плотность электролита, тем ниже напряжение аккумулятора автомобиля и уровень его заряда. При увеличении плотности ухудшается работоспособность АКБ.
Определённая степень разряда батареи характеризуется активным поглощением серной кислоты и её оседанием на пластинах. Сульфация металлических элементов становится причиной увеличения их жёсткости и неспособности участвовать в химическом процессе. Так как серная кислота тратится, меняется соотношение компонентов — жидкость становится менее плотной, что сказывается на способности аккумулятора в машине держать заряд.
Наглядно увидеть зависимость уровень заряда аккумулятора от плотности электролита можно в этом графике:
Уровень заряда АКБ | Значение плотности электролита |
100% | 1,249—1,297 |
75% | 1,209—1,257 |
50% | 1,174—1,222 |
25% | 1,139—1,187 |
0% | 1,104—1,152 |
Таблица 2. Степень заряда аккумулятора по плотности.
Определение степени зарядки аккумулятора по встроенному гидрометрическому индикатору
Диагностика работоспособности источника питания вышеописанными способами нужна в тех случаях, когда аккумуляторная батарея не оснащена специальным индикатором. Наличие указателя зарядки аккумулятора автомобиля позволяет оценить состояние источника питания без использования дополнительных средств.
При заряде батареи свыше 60% индикатор горит зелёным светом. Это означает полную исправность АКБ и возможность запуска двигателя. Отсутствие зелёной индикации и тёмный цвет окошка сообщает о низком заряде батареи и необходимости её зарядить. Запуск автомобиля может быть затруднён. Светлый указатель информирует о том, что процент дистиллированной воды мал — её необходимо долить.
В данной статье мы постарались максимально развёрнуто ответить на все вопросы о степени зарядки АКБ по напряжению. Для диагностики состояния источника питания вам понадобится специальный инструмент:
- вольтметр или мультиметр, с помощью которых можно провести исследования как по вольтажу, так и по значениям сопротивления;
- ареометр, замеряющий плотности электролита;
- устройство необходимое для заряда АКБ, имеющей определённую степень разряженности.
Для удобства восприятия информации в тексте представлена таблица заряда аккумулятора и таблица напряжения аккумулятора автомобиля.
Во время работ не забывайте про степень зарядки источника питания, которая напрямую влияет на получаемые показания. Определить степень заряженности вам также помогут вышеперечисленные приборы.
Аккумулятор — важный элемент системы машины, позволяющий ей полноценно функционировать, даже когда она не заведена. Вряд ли кому-то хочется в неподходящий момент оказаться перед проблемой разряженного источника питания. Мы настоятельно рекомендуем проводить диагностику батареи с определённой периодичностью. А как вы проверяете заряд автомобильной АКБ, поделитесь с нами в комментариях.
Таблица заряда аккумулятора аккумулятора автомобиля на 12 вольт по напряжению
Автор Акум Эксперт На чтение 6 мин Просмотров 2.3к. Опубликовано Обновлено
Из-за разряженной батареи автомобиль может не завестись в нужный момент. Поэтому автолюбитель должен уметь определять степень заряженности аккумулятора. Самый простой способ – измерить разность потенциалов на клеммах. Для этого нужны вольтметр и таблица заряда аккумулятора автомобиля по напряжению. Можно также оценить количество запасенной энергии по плотности электролита, но этот метод подходит не для всех батарей.
Таблица для определения степени заряда автомобильного АКБ по напряжению
Определить степень разряженности автомобильного аккумулятора можно по таблице заряда аккумулятора. Для этого нужно измерить разность потенциалов на клеммах и посмотреть уровень заряда в процентах по приведенной ниже таблице.
Таблица заряда АКБОпределяем по плотности электролита
В состав электролита входит серная кислота и дистиллированная вода. Чистая серная кислота растворяет металлы. Поэтому, чтобы она не смогла повредить свинцовым пластинкам, ее разбавляют водой. Но если воды будет слишком много, протекание химических реакций затруднится.
Так как плотность воды и кислоты разные, то по плотности можно оценить соотношение компонентов в электролите. Если она выше нормы, значит, кислоты больше чем требуется. Соответственно, разложение свинцовых пластин идет быстрее. Оптимальной считается плотность 1,27 г/мл.
Плотность электролита зависит от температуры. Чем ниже температура, тем ниже плотность.
Зависимость плотности электролита от температурыАвтомобиль не будет постоянно эксплуатироваться в идеальных условиях. Он может использоваться для поездок на короткие дистанции. При этом двигатель часто запускается, а восстановить заряд не успевает. В таком случае будет идти ускоренная сульфатация свинцовых пластин, в результате чего плотность электролита снизится.
Если постоянно ездить на машине на большие расстояния, может произойти перезаряд аккумулятора. В результате этого электролит закипит, концентрация воды в нем уменьшится, а плотность увеличится.
В каждом из этих случаев напряжение на АКБ не будет соответствовать уровню заряда батареи. Поэтому, чтобы полностью контролировать состояние батареи, нужно регулярно измерять плотность электролита по методике .
Как измерить напряжение на батарее
Проще всего определить степень заряда аккумулятора по напряжению. Однако при этом нужно придерживаться правил:
- проводить измерения можно через 4-5 часов после заряда, чтобы параметры успели стабилизироваться;
- АКБ должен быть отключен от нагрузки;
- Если все условия выполнены нужно выставить на приборе необходимый предел измерения и подключить его к клеммам батареи.
О том, как пользоваться мультиметром и проверить с его помощью аккумулятор, можно .
До какого напряжения нужно заряжать аккумулятор и как правильно это делать
Сначала разберемся как правильно заряжать аккумулятор. Существует два способа:
- постоянным током;
- постоянным напряжением.
Зарядка постоянным током включает в себя три этапа:
- Сначала нужно установить величину тока. Она должна равняться 10% от емкости батареи. Например, для АКБ емкостью 80 Ач нужно, чтобы зарядный ток был равен 8 А. Разность потенциалов на клеммах начнет постепенно увеличиваться.
- Когда разность потенциалов достигнет уровня 14,4 В, начнется процесс электролиза воды. В результате этого вода разлагается на кислород и водород и электролит «закипает». Чтобы его замедлить, нужно уменьшить зарядный ток в 3 раза. Если он у нас был 8 А, то нужно снизить его до 3 А.
- Когда на клеммах напряжение станет равным 15 В, нужно еще раз уменьшить зарядный ток в два раза. В нашем случае он должен стать равным 1,5 А. На этом этапе нужно проверять показания приборов не реже 1 раза в 2 часа. Когда разность потенциалов и ток стабилизируются, то есть текущие показания мультиметра будут идентичны измеренным на один или два часа раньше, аккумулятор можно считать заряженным.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросНедостатком этого метода зарядки является необходимость постоянно контролировать параметры зарядки.
График процесса зарядки постоянным токомПроцесс зарядки постоянным напряжением заключается в поддержании постоянной разности потенциалов на выводах аккумулятора. Данную схему удобно использовать при использовании зарядки которая оснащена автоматической системой регулировки параметров зарядки.
По мере зарядки ток снижается. Когда он уменьшится до величины 0,2 А, АКБ будет считаться заряженным. При этом следует также обращать внимание на зарядный ток – он должен быть на уровне 10% от емкости. Если он больше 20%, то нужно временно уменьшить напряжение на батарее. Иначе она может выйти из строя.
При восстановлении АКБ после глубокого разряда ток не должен быть выше 5% от емкости. При этом начальная разность потенциалов обычно находится в диапазоне от 12 до 13 В.
При использовании данного способа пополнения энергии время заряда зависит от величины напряжения:
- если заряжать постоянным напряжением 14,4 В, то через 24 часа уровень энергии будет равен 80%;
- если установить показания вольтметра на уровне 15 В, то через 24 часа уровень заряда достигнет величины 90%;
- используя напряжение величиной 16 В можно зарядить батарею за сутки.
График заряда постоянным напряжениемВажно! Заряжать аккумулятор напряжением более 15,6 В небезопасно. А при глубокой разрядке на восстановление может потребоваться несколько суток.
После зарядки желательно определить уровень запасенной энергии. Для начала измерим разность потенциалов на клеммах. У полностью заряженной батареи оно должно быть равно 12,7 В. Если используется нестандартный АКБ разность потенциалов может достигать от 13 до 13,3 В.
Чтобы полнее оценить состояние батареи рекомендуется провести тестирование под нагрузкой. Для этого нам потребуется лампочка мощностью 40 Вт. Подключаем лампочку к выводам аккумулятора и измеряем разность потенциалов. Напряжение должно просесть на небольшую величину. Если оно уменьшится больше, чем на 0,5 В при незначительной нагрузке, то такой АКБ скоро выйдет из строя и его необходимо менять.
Для тестирования можно также воспользоваться нагрузочной вилкой. Здесь батарея нагружается большим током. Чтобы оценить состояние АКБ, нужно воспользоваться следующей таблицей.
Определение состояния с помощью нагрузочной вилкиРекомендуется также проверить напряжение на аккумуляторе при запущенном двигателе. Для этого нужно запустить двигатель и дать ему поработать в течение 15 минут. Обычно в этом случае показания приборов находятся в диапазоне от 13,5 до 14 В. Если они ниже (от 13 до 13,4 В), то батарея заряжена не полностью. Тогда энергия, получаемая от генератора, расходуется на зарядку батареи.
На втором этапе включаем имеющиеся электроприборы: отопительную систему, дальний свет, аудиоустройства и другие. В результате разность потенциалов должна просесть не более чем на 0,2 … 0,3 В. При большем падении нужно проверить генератор и реле.
О том, какое напряжение должно быть на заряженном АКБ .
Если аккумулятор относится к категории обслуживаемых, то желательно также измерить плотность электролита. Она должна быть равна 1,27 г/см3.
Спасибо, помогло!4Не помоглоСтепень заряда автомобильного аккумулятора
Нормальные значения параметров АКБ «надо знать в лицо». По ним контролируется степень ее заряженности. Если контроль взять за привычку, то можно продлить срок службы изделия и избавить себя от встречи с последствиями его разрядки. Обсудим допустимые цифры и способы их замера. Также порассуждаем о причинах отклонений и выработаем список действий по возвращению величин в приемлемые рамки.
Нормальное напряжение полностью заряженного аккумулятора автомобиля и методы его замера
Измерение вольтажа производится вольтметром. Он встречается в составе мультиметра, в конструкции нагрузочной вилки и в ассортименте дополнительного бортового оборудования. Вещь бездушная, но будучи присоединенной к АКБ, способна вызывать тревогу.
Без нагрузки: что показывает тестер при 100% заряде
12,6-12,7 Вольт при +20…+25°C. Именно такое напряжение должно быть на аккумуляторе автомобиля через 6 часов после полной зарядки от бытовой сети или стоянки с неработающим двигателем. При измерениях важно отсоединить одну из клемм и учитывать температуру аккумулятора. Скажем, при -10…-15°C «напруга» 12,7 В соответствует уже 75% заряду.
Сразу после отключения крокодилов зарядного устройства разность потенциалов несколько выше. Конкретной цифры нет. К примеру, у AGM она может быть в районе 13,8-14,8 В, у EFB и кальциевого – 13,8-14,4 В.
Под нагрузкой: что показывает нагрузочная вилка при 100% заряде и стоит ли вообще ей доверять
Все АКБ, которые держат более 10В в течение первых 5 секунд, считаются исправными. Да, статус размазанный, но точную степень разряженности или заряженности вилка без детального анализа параметров не скажет. Именно поэтому опираться на показания прибора с дополнительным сопротивлением не стоит даже при проверке нового аккумулятора перед покупкой в магазине.
Проблема в том, что у каждого АКБ свой показатель в А*ч, а единого напряжения, соответствующего 100% заряду под нагрузкой – нет. Таблиц тоже нет, зато есть еще одна головная боль. Отсутствуют единые требования к изготовлению нагрузочных вилок. В результате, можно купить прибор, потребляющий, скажем, 200 А или 100 А. И тогда вовсе возникает путаница.
Остается полагаться на реальные данные, которые берутся из опытов. Известно, что обычная батарея на 55 А*ч считается полностью заряженной, если нагрузочная вилка выдает 10,5 В, при этом:
- Напряжение после снятия нагрузки восстанавливается до 12,66-12,7 В.
- Температура окружающей среды – около +15°C.
- Нагрузка – 100 А.
В дополнение к вольтажу: плотность электролита заряженной АКБ
С эпохи дефицита батарей известно, что напряжение заряженного аккумулятора автомобиля напрямую зависит от плотности электролитической жидкости. С тех пор ничего не изменилось. Электролит – это по-прежнему смесь серной кислоты и дистиллированной воды, а ареометр – прибор №1 в комплекте юного аккумуляторщика.
1,26-1,28 г/см3 при +20…+25°C. Такая плотность химического вещества в каждой банке соответствует напряжению 12,6-12,7 В. Подобное соотношение показаний ареометра и мультиметра говорит о том, что емкость источника питания восстановлена до 100%. Говоря научным языком, сульфат, откладывающийся на пластинах при разряде в составе сульфата свинца, полностью покинул электроды и прореагировал с водородом, перейдя в серную кислоту.
Зимой: каким должно быть напряжение полностью восстановленного аккумулятора автомобиля в мороз
12,9 В при -10…-15°C. Эта разность потенциалов соответствует 100% заряду АКБ. При минусовой температуре ход электрохимических реакций замедляется и факты тому подтверждение:
- При -30°C фактическая емкость батареи составляет примерно 50% от указанной на этикетке.
- Плотность электролита – 1,28 г/см3. Напряжение при -30°C – 12,4 В, а при +25°C – 12,7 В.
- При температуре ниже -25°C аккумулятор перестает брать заряд от генератора.
В холодных регионах принято добавлять в электролит серную кислоту, благодаря чему повышается его плотность. При 1,30-1,32 г/см3 напряжение аккумулятора автомобиля на морозе должно быть 12,9 В без нагрузки (температура: -10…-15°C). Увеличивая концентрацию сернокислого компонента, не стоит превышать 1,35 г/см3, иначе он начнет разъедать пластины.
К сведению. При разряде выделяется вода, и плотность электролитической жидкости падает, отчего случается ее замерзание при минусовых температурах. Лед коробит пластины, чем выводит АКБ из строя.
Чем вызваны отклонения от нормы в 12,6-12,7 В
Глубокая сульфатация пластин препятствует восстановлению напряжения без нагрузки до нормальных величин. В целом, это не единственный ее признак:
- Уменьшается плотность электролитической жидкости в банках.
- Аккумулятор быстро разряжается и быстро заряжается.
- Пластины покрыты белым слоем.
Крупные сульфаты не растворяются в ходе обычного зарядного цикла с током 10% от емкости АКБ. Поэтому, время заряда от стандартного ЗУ сокращается, и электролит быстро закипает.
Прогресс сульфатации вызван хранением в разряженном состоянии. Частный случай – использование в режиме хронического недозаряда. Противостоять деструкции не способны ни кальциевые, ни прогрессивные батареи AGM и EFB.
Что делать, если разность потенциалов ниже 12,6 В
- Зарядить. 12,3-12,4 В. До этого напряжения можно разряжать аккумулятор автомобиля без особого для него вреда. Свыше 60% степени заряженности сульфатация протекает замедленным образом. Для восстановления батарею рекомендуется «погонять» током до 10% от емкости в течение 6-7 часов. Если изделие часто подзаряжается и в автономном состоянии держит норму, интересуйтесь, почему АКБ быстро разряжается при простое.
- Произвести десульфатацию. В незапущенных случаях достаточно подключить десульфатирующее устройство к клеммам АКБ на несколько дней и емкость восстановится. Спецприбор дорог, поэтому многие имитируют его функционал с помощью обычного зарядника и лампы из автомобильной фары.
Интересные факты из эксплуатации аккумуляторных батарей
Сколько потребляет стартер зимой, каков минимальный порог вольтажа для его срабатывания и сколько прокруток он может совершить в -20°C, прежде чем сядет аккумулятор? Как оценить степень заряженности АКБ только с помощью мультиметра, и как часто пользоваться зарядным устройством? Обо всем этом рассказывают эксперты журнала.
Батарея и стартер
Максимальный пусковой ток электромотора стартерного механизма на переднеприводных Ладах – не более 400 А. Зимой, как правило, дело доходит до 350 А. Летом требуется меньше – порядка 200 А.
Если сделать последовательно 5 попыток запуска двигателя при -20°C, аккумулятор сядет.
Результат получен при определенных условиях:
- Емкость АКБ – 60 А*ч.
- Изделие заряжено: при комнатной температуре тестер показывал 12,7 В.
- Батарея ночевала на улице.
- Длительность 1 попытки безуспешного запуска – 10 секунд.
- Машина – Lada Priora.
- Масло – полусинтетика Liqui Moly 10W-40.
К сведению. После отогревания в помещении батарея частично восстанавливается и способна еще несколько раз покрутить стартер.
11,9 В без нагрузки при температуре +15°C – минимальное напряжение, при котором двигатель еще может запуститься. Но ситуация опасна, поскольку при 11,9 В и ниже прогрессирует сульфатация.
Мультиметр – аккумулятор – ЗУ
Для оценки степени заряженности аккумулятора разработаны таблицы, увязывающие напряжение на клеммах с % заряда по шкале от 0 до 100%. Критическим принято считать 10,8 В. Это глубокий разряд. Обычная батарея переносит не более 2-3 таких предельных режимов.
Раз в два месяца при смешанном цикле езды. Такова периодичность подзаряда АКБ летом, весной и осенью. Зимой частота увеличивается до 2-3 недель при -10°C за бортом. При эксплуатации при температуре ниже -25°C зарядка должна производиться 1 раз в 5 дней.
Рабочее состояние аккумуляторной батареи определяется по ее напряжению, которое, надо заметить, при разряде, заряде и на холостом ходу будет очень сильно различаться и, тем не менее, эта характеристика АКБ является основной для определения степени заряженности аккумулятора вашего автомобиля.
Первый способ
Можно воспользоваться двумя простыми методами определения заряженности АКБ. Первый способ наиболее простой. Он заключается в обычном измерении электрического напряжения на контактных клеммах аккумуляторной батареи, для чего необходим цифровой вольтметр, поскольку он может показать при замере точное значение уровня напряжения АКБ, включая десятые и даже сотые доли вольта.
Напряжение аккумуляторной батареи измеряют на ее клеммах обязательно при отсутствии как разрядного, так и зарядного токов в течение 4-5 часов. Это время необходимо для того, чтобы напряжение могло придти в нормальное стабильное состояние. Нормальное напряжение стартерных аккумуляторных батарей с жидким электролитом составляет от 12,5 до 12,9 вольт. В таблице мы привели показатели напряжения для АКБ с жидким электролитом и степень его заряженности.
Ниже: степень заряженности, % -> Напряжение батареи (В.)
100 -> 12.71
95 -> 12.65
90 -> 12.57
85 -> 12.53
80 -> 12.47
78 -> 12.41
70 -> 12.37
65 -> 12.33
60 -> 12.29
55 -> 12.25
50 -> 12.21
40 -> 12. 13
30 -> 12.05
20 -> 11.99
10 -> 11.95
Более точно измерить уровень заряженности аккумулятора можно только с помощью специальных зарядных устройств с микропроцессором и памятью. Эти современные устройства могут отслеживать как разряд, так и заряд аккумулятора на протяжении нескольких циклов. Такой метод является наиболее точным и с его помощью можно сэкономить деньги при замене или обслуживании аккумулятора.
Второй способ определения заряженности АКБ
Второй способ заключается в измерении плотности электролита и по этому параметру можно будет определять степень заряженности аккумулятора вашей автомашины, но этот метод подходит не ко всем аккумуляторам, а только к АКБ с жидким электролитом.
В таблице приведены показатели плотности электролита и соответствующий этому показателю уровень заряженности аккумулятора.
Ниже: уровень заряженности, % -> Плотность электролита
100 -> 1.266
95 -> 1.258
90 -> 1.250
85 -> 1. 242
80 -> 1.234
78 -> 1.226
70 -> 1.219
65 -> 1.212
60 -> 1.205
55 -> 1.198
50 -> 1.191
40 -> 1.177
30 -> 1.163
20 -> 1.149
10 -> 1.135
Информационный сайт о накопителях энергии
Автомобильная батарея состоит из 6 элементов, соединенных последовательно. Каждая банка имеет полный заряд 2,10-2,15 В, поэтому общее напряжение суммируется, составляет 12,6 – 12,8 В. Какое напряжение у АКБ после отключения ЗУ? При установке аккумулятора в авто величина напряжения после зарядки должна быть 12,4 В. это нормально. Аккумулятор автомобиля стартовый, в период запуска двигателя разряжается, в процессе движения восстанавливает энергию от генератора машины. Если напряжение в аккумуляторе снижается до 12 В, устройство требует зарядки от сети. Большая потеря заряда в банках характеризуется, как глубокий разряд, разрушающий батарею.
Напряжение зарядки аккумулятора автомобильным зарядным устройством
Автомобиль, эксплуатируемый с преимуществом длинных пробегов, успевает полностью зарядиться от генератора для следующего пуска. Но заряд его не будет полным. Степень зарядки аккумулятора можно определить по напряжению на клеммах. Чем меньше величина, тем слабее концентрация электролита в банках.
Проверить заряд аккумулятора, можно воспользовавшись мультиметром. Следует установить градуировку «переменный ток» и замерить показатель на клеммах. Можно определить уровень заряда по плотности электролита.
Степень зарядки автомобильного аккумулятора определяется по напряжению, как в таблице.
Чтобы поднять емкость аккумулятора, необходимо зарядить его специальным зарядным устройством. Это преобразователь напряжения, выпрямитель. Аккумуляторы бывают обслуживаемые, необслуживаемые, гелевые, AGM, литиевые. Напряжение и ток зарядки их отличается по напряжению, времени, длительности циклов. Есть универсальные ЗУ, рассчитанные на переключение режимов для разных моделей АКБ, регулирование параметров.
Напряжение на клеммах аккумулятора при зарядке
Для зарядки аккумулятра от зарядного устройства выбирают режим с постоянным током или напряжением. Оба они одинаково эффективны, но применяются к разным батареям. В процессе зарядки и эксплуатации аккумулятора необходимо производить замеры напряжения на клеммах кислотного аккумулятора.
Чтобы зарядить батарею на 12 В, потребуется установить режим постоянного напряжения 16 -16,5 В. Используя ток 14,4 В можно зарядить аккумулятор на 75-85 %. При постоянном напряжении сила зарядного тока величина переменная, ограничивается только ЗУ.
Какое напряжение для зарядки нужно установить? Исходят из достижения критического напряжения, сопровождающегося «кипением» — выделением газа из банок автомобильного аккумулятора. Нормально заряженным считают аккумулятор, с напряжением на клеммах от 12,6 до 14,5 В. Снимать показания следует прибором, не полагаясь на бортовой компьютер. Замеры на работающем двигателе, и в отключенной батарее отличаются.
Допустимое напряжение зарядки на клеммах аккумулятора при работающем моторе варьируется 13,5 -14 В. Показатель показывает недозаряд батареи, если напряжение выше. Нужно повторить замер через 2 минуты, возможно, батарея разрядилась при запуске. Если напряжение зарядки низкое – аккумулятор теряет ресурс или проблемы исходят от автомобильного генератора. Проводить замеры нужно, отключив бортовые системы.
Замеряя напряжение зарядки аккумулятора на неработающем авто, невозможно выявить проблемы с генератором, однако хорошо определяется степень зарядки аккумулятора. Напряжение 12,5 – 14 В говорит об отсутствии проблем. При низком показателе необходимо проверить:
- состояние электролита – субстанция должна быть прозрачной, уровень нормальным;
- многое зависит от уровня заряда АКБ;
- определение возможности подзарядки до оптимального напряжения.
Тестирование выявит проблемы с аккумулятором, его работоспособность.
Зарядка аккумулятора постоянным сопротивлением
Возможна ли зарядка АКБ с постоянным сопротивлением? Из формулы I =U*R, понятно, если установить сопротивление величиной постоянной, то переменными станут ток или напряжение. Но внутри аккумулятора сопротивление – величина переменная, влияющая на поглощение энергии. Полное сопротивление складывается из сопротивления поляризации, которое меняется и омического, остающегося стабильным в одинаковых условиях и для конкретного аккумулятора.
На сопротивление влияют температура, степень разряженности, концентрация электролита, учтенные в характеристиках разрядных кривых АКБ. Но если в формуле сопротивление величина переменная во времени и состоянии автомобильного аккумулятора, то постоянным при зарядке может быть ток, напряжение или комбинирование тока и напряжения. Для сглаживания величины тока зарядки используется резистор — балластное сопротивление.
Какое напряжение выставлять при зарядке аккумулятора
Напряжение это разность потенциалов, и ток потечет в ту сторону, где эта величина будет меньшей. Поэтому напряжение зарядного устройства выбирается всегда выше, чем уровень зарядки автомобильного аккумулятора. Чем больше разница напряжения, тем быстрее и полнее наберет емкость аккумулятор автомобиля после зарядки.
Во время зарядки при постоянном напряжении предел установленного на ЗУ параметра ниже, чем характеристика, при которой начинается выделение газов из обслуживаемого аккумулятора. Какое значение разности потенциалов нужно для зарядки автомобильного аккумулятора? Максимальное напряжение, применяемое при зарядке батареи 16, 5 В. Какой параметр должен быть, зависит от вида АКБ. От напряжения зависит время и полнота зарядки аккумулятора. Соотношение напряжения заряда, восстановления емкости для батареи 12 В за 24 часа таково:
- Напряжением 14,4 В можно зарядить батарею на 75-80 %;
- Используя напряжение 15 В степень заряда 85 – 90 %;
- Напряжением 16 В батарея заряжается на 95 – 97 %;
- Максимальным напряжением 16,3 -16,5 В батареи заряжаются полностью.
При достижении напряжения на батарее 14,4 – 14,5 на ЗУ загорается сигнал окончания зарядки.
Установлено, что именно это напряжение автомобильного аккумулятора не создает газовыделения после и во время зарядки. Поэтому при реальной эксплуатации автомобилей, генератор через регулятор напряжения ограничивает максимальный уровень напряжения этим значением. Летом этот показатель близок к 100 % емкости, зимой соответствует 13,9-14,3 В, при работающем моторе, что соответствует 70-75 % емкости.
Максимальное напряжение зарядки аккумулятора
Мы знаем, современные авто высокого класса имеют бортовую систему, работающую на 16 В. Какие аккумуляторы применяются в этих АКБ? Для того чтобы не было газовыделения, ситема должна быть закрытой.
Значит, необслуживаемые Ca/Ca аккумуляторы могут выдержать жесткие условия эксплуатации. Для них используется особый режим зарядки. Использование кальция вместо сурьмы позволяет вести зарядку аккумулятора повышенным напряжением, при этом электролит вскипает. Необслуживаемый аккумулятор не терпит резких перепадов напряжения в бортовой сети. Он предназначен для автомобилей с хорошей системой электронного контроля напряжения. Более терпимы к условиям эксплуатации гибридные батареи, из малосурьмянистых и кальциевых пластин.
Напряжение аккумулятора в конце зарядки
После полной зарядки АКБ заряд несколько изменится. Происходит диссоциация электролита с заполнением пор токовыводящих пластин. Установленный в подкапотное пространство автомобильный аккумулятор принимает температуру окружающей среды, и емкость изменится в большую сторону при жаре или падает при минусовых температурах. Поэтому точно узнать после зарядки, какое напряжение аккумулятора автомобиля, можно, установив его на место. Даже, находясь в мастерской, напряжение на клеммах изменяется. Это особенно заметно, если не полностью проведен цикл и ток зарядки не упал до 200 мА. При этом происходит перераспределение заряда, и возможна дополнительная подпитка устройства энергией.
Но если после зарядки аккумулятора напряжение падает на работающей машине – это повод для ревизии генератора или замены аккумулятора.
Зависимость зарядки аккумулятора от напряжения
Каждый вид аккумуляторов заряжается на основании характеристик видов использованный конструкций. Самое низкое напряжение зарядки имеют обслуживаемые, гелевые и литиевые аккумуляторы. Причины вскипание, разрушение состава, пожароопасность. Если обслуживаемый аккумулятор можно зарядить простейшим ЗУ, литиевые и гелевые системы требуют соблюдения 2 ступенчатого комбинированного режима накопления энергии.
Все системы рассчитаны на предотвращение перезаряда, снабжены автоматическим отключением питания при достижении напряжения, какое требуется для автомобильного аккумулятора. При зарядке происходит постепенное снижение силы тока из-за повышения сопротивления, напряжение остается стабильным. После зарядки процесс электрохимической реакции продолжается, в виде незначительного саморазряда.
Важно, чтобы напряжение зарядки всегда превышало параметры, нужные для эксплуатации прибора. Чтобы ток перетекал, нужен уклон, которым является разность напряжения между ЗУ и батареей.
Видео
Предлагаем посмотреть советы специалиста, как правильно заряжать и обслуживать аккумулятор автомобиля, какое напряжение должно быть на аккумуляторе после зарядки.
Напряжение на аккумуляторе автомобиля: таблица заряда, как замерить
Аккумулятор (аккумуляторная батарея или АКБ) является один из ключевых узлов автомобиля. Основная роль автомобильного аккумулятора – подача тока на стартер в момент пуска двигателя. Кроме того, при неработающем двигателе АКБ обеспечивает функционирование различных устройств (подсветка, звуковая система, сигнал и другие потребители тока). На стоянке батарея обеспечивает работу охранной системы. Да и во время поездки, когда генератор не справляется с нагрузкой, аккумулятор приходит ему на помощь. Нормальное функционирование бортовой сети автомобиля возможно лишь с аккумулятором, у которого заряд в норме. Поэтому сегодня мы обсудим, какая же норма заряда для АКБ.
Норма заряда АКБ
Одним из основных параметров состояния автомобильной аккумуляторной батареи является напряжение. С помощью напряжения проверяется определённая норма заряда аккумулятора. Поэтому, владельцу автомобиля необходимо знать какое нормальное значение напряжения АКБ.
Если аккумулятор быстро разряжается, то следует проверить ток утечки на автомобиле. Ток утечки аккумулятора автомобиля: норма и способ измерения описаны в статье по ссылке.
Норма напряжения аккумуляторной батареи из шести банок в заряженном состоянии составляет 12,6─12,9 вольта. То есть, напряжение одного полностью заряженного элемента равно 2,1─2,15 вольта. Меньшее значение показывает, что аккумулятор разряжен.
Но это не значит, что его нельзя использовать. В идеале, конечно, нужно поддерживать батарею полностью заряженной. Но на практике такое можно осуществить, только если полностью зарядить аккумулятор, а затем подавать на выводы ток, равный саморазряду.
Так, что АКБ редко находится в полностью заряженном состоянии. Ниже можно посмотреть зависимость напряжения и степени зарядки батареи.
1,11 | 11,7 | 8,4 | -7 | |
1,12 | 11,76 | 8,54 | 6 | -8 |
1,13 | 11,82 | 8,68 | 12,56 | -9 |
1,14 | 11,88 | 8,84 | 19 | -11 |
1,15 | 11,94 | 9 | 25 | -13 |
1,16 | 12 | 9,14 | 31 | -14 |
1,17 | 12,06 | 9,3 | 37,5 | -16 |
1,18 | 12,12 | 9,46 | 44 | -18 |
1,19 | 12,18 | 9,6 | 50 | -24 |
1,2 | 12,24 | 9,74 | 56 | -27 |
1,21 | 12,3 | 9,9 | 62,5 | -32 |
1,22 | 12,36 | 10,06 | 69 | -37 |
1,23 | 12,42 | 10,2 | 75 | -42 |
1,24 | 12,48 | 10,34 | 81 | -46 |
1,25 | 12,54 | 10,5 | 87,5 | -50 |
1,26 | 12,6 | 10,66 | 94 | -55 |
1,27 | 12,66 | 10,8 | 100 | -60 |
Что касается нормы заряда, то в большинстве случаев не рекомендуется эксплуатировать аккумулятор с напряжением менее 12 вольт. В этом случае его нужно ставить на зарядку. Эксплуатация АКБ в таком состоянии отрицательно сказывается на состоянии батареи. Это способствует увеличению сульфатации пластин и как следствие, приводит к уменьшению ёмкости аккумулятора.
Критической нормой напряжения можно назвать 10,8 вольта. Ниже этого значения напряжение опускаться не должно.
Это называется глубокий разряд АКБ, который очень вреден для батареи и сильно сокращает срок её службы. Особенно вреден глубокий разряд для кальциевых необслуживаемых аккумуляторов.
Для них 2─3 таких глубоких разряда приводят к выходу из строя. После такого падения напряжения они необратимо теряют часть своей ёмкости.
Как вы видели в таблице выше, со степенью зарядки неразрывно связана плотность электролита. Это действительно так.
Норму заряда аккумулятора можно проконтролировать не только по напряжению на его выводах, но и по величине плотности электролита. У полностью заряженной аккумуляторной батареи значение плотности должно быть 1,27─1,29 гр./см3.
Измеряется плотность электролита специальным прибором – ареометром. Подробнее об электролите в аккумуляторе читайте по указанной ссылке.
Ареометр
Стоит отметить ещё один важный момент, связанный с нормой напряжения АКБ. Если быть точным в определениях, то величина, измеряемая на выводах аккумулятора в разомкнутой цепи (не подключён к автомобилю), называется ЭДС.
ЭДС, как и напряжение, измеряется в вольтах и представляет собой работу, затрачиваемую на перемещение плюсового заряда между выводами батареи. Без электродвижущей силы на выводах аккумуляторной батареи не будет напряжения. Напряжение и ЭДС присутствуют на выводах источника питания, даже без протекания тока в цепи.
Что это значит на практике? Допустим, вы зарядили аккумулятор и ЭДС на его выводах 12,6 вольта. После установки на автомобиль и замера напряжения величина будет 12,4─12,5 вольта.
Это норма и не стоит беспокоиться по этому поводу. Теперь поговорим об инструментарии для измерения напряжения АКБ. Советуем также прочитать статью о том, почему генератор не заряжает аккумулятор.
Вернуться к содержанию
Как проверить заряд автомобильного аккумулятора?
Для проверки напряжения аккумулятора используется вольтметр или мультиметр в режиме измерения напряжения.
Мультиметр
Для того чтобы измерить напряжение мультиметром, нужно перевести его в режим измерения напряжения. Затем щупами приложить к выводам батареи и прибор покажет значение напряжения. Полярность в этом случае соблюдать необязательно, поскольку вам нужна только величина.
Если вы приложите красный щуп на минус, а чёрный на плюс, то прибор просто покажет отрицательное значение. Кстати, можете подробнее прочитать о том, что это такое прямая полярность аккумулятора. Но фото ниже показан результат измерения напряжения подсевшего аккумулятора.
Измерения напряжения мультиметром
Также норму заряда аккумулятора можно проконтролировать с помощью такого прибора, как нагрузочная вилка. В составе этого прибора имеется вольтметр, с помощью которого и проводится измерение. Помимо нормы заряда АКБ, нагрузочная вилка даёт возможность оценить реальное состояние аккумуляторной батареи. Для этого делается измерение напряжения с сопротивлением в режиме замкнутой цепи. Фактически, вилка имитирует нагрузку на аккумулятор при пуске автомобильного мотора.
Нагрузочная вилка
Перед тем как проводить тест, батарею нужно полностью зарядить. Чтобы провести тест нагрузочной вилкой, подключите клеммы к выводам аккумулятора и подайте нагрузку на пять секунд. На пятой секунде засеките значение напряжения на вольтметре.
Если оно упало ниже 9 вольт, то пора подумать о замене АКБ. Норма на работоспособном аккумуляторе – это падение напряжение до 10─10,5 вольта. После падения величина напряжения должна немного увеличиться.
На видео ниже можно посмотреть процесс тестирования наглядно.
В принципе есть ещё один способ оценки нормы заряда аккумулятора. Можно измерить среднюю плотность электролита по банкам, а затем по таблице выше посмотреть степень заряженности. Но обычно так никто не делает. Гораздо удобнее воспользоваться вольтметром. Плотность электролита обычно измеряют после зарядки АКБ для оценки эффективности этого процесса.
Советуем также прочитать материал на тему, сколько заряжать автомобильный аккумулятор.
Вернуться к содержанию
Что делать, если заряд аккумулятора не соответствует норме?
Ответ на этот вопрос простой. Если заряд АКБ не в норме, батарею нужно зарядить. Процесс зарядки в подробностях был описан в статье «Как правильно заряжать аккумулятор автомобиля зарядным устройством». Здесь хотелось бы отметить некоторые нюансы.
Зарядное устройство
Можно выделить три основные разновидности зарядки:
- ускоренная. Этот режим ещё часто называют Boost и его можно встретить на многих современных зарядных устройствах (ЗУ). В таком режиме норма заряда АКБ не набирается, но его вполне хватает, чтобы завести двигатель. Этот вид зарядки используется, когда вам нужно срочно ехать, а батарея села. Такой режим не рекомендуется использовать постоянно. Здесь заряд ускоряется за счёт увеличения силы тока, что срок эксплуатации аккумулятора;
- с постоянным напряжением. Этот вид зарядки подразумевает поддержание постоянного напряжения на выводах. Такой режим используется в режиме автоматического заряда на большинстве ЗУ. Его рекомендуется использовать, когда аккумулятор разряжен не сильно (не ниже 12 вольт). Подробнее о напряжении аккумулятора автомобиля в статье по ссылке. Преимущества этого режима в том, что вам не нужно его контролировать. Зарядное устройство само определить, когда заряд будет в норме и остановит процесс;
- с постоянным током. Этот вариант зарядки подразумевает подачу постоянного тока на аккумулятор. Процесс ведётся в несколько стадий, на которых ток постепенно снижается. Такой режим рекомендуется при зарядке глубоко разряженной аккумуляторной батареи. Он позволяет наиболее полно и равномерно зарядить аккумулятор. Минус в том, что вам придётся постоянно контролировать процесс, измерять напряжение и прекратить процесс, когда заряд батареи будет в норме.
Процесс зарядки аккумулятора
В заключение хотелось бы напомнить о правилах безопасности при зарядке аккумулятора. Процесс должен вестись в проветриваемом помещении. Лучше не проводить зарядку в жилых помещениях. Рядом с заряжаемым аккумулятором не должно быть открытого огня и искр. В процессе заряда выделяется водород, который в сочетании с кислород образует взрывоопасную смесь!
Советуем также прочитать материал о том, сколько весит автомобильный аккумулятор. Надеемся, что материал помог составить представление о норме заряда автомобильного аккумулятора. Если в вас есть замечания или дополнения, оставляйте их в х. Голосуйте в опросе и оценивайте материал!
Вернуться к содержанию
Источник: https://akbinfo.ru/zaryadka/zarjad-akkumuljatora-avtomobilja-norma.html
Нормальное напряжение аккумулятора автомобиля: цифры, которые необходимо выучить наизусть
Вопросы, рассмотренные в материале:
- Какое напряжение на аккумуляторе автомобиля считается нормальным
- Как проверить напряжение аккумулятора под нагрузкой
- Каким должно быть напряжение аккумулятора зимой
- Как осуществлять контроль напряжения аккумулятора автомобиля
По аналогии с распространенным высказыванием о том, что «мотор является сердцем авто» аккумуляторную батарею можно назвать спинным мозгом машины. Состояние АКБ отражается на работоспособности электрооборудования и качестве запуска мотора. Наиболее важным параметром аккумулятора считается напряжение.
Именно этот показатель измеряют при диагностике авто. Для автовладельца важно знать, что такое нормальное напряжение аккумулятора автомобиля, какой должна быть величина этого параметра и допускается ли изменение напряжения АКБ в разное время года. Ответы на эти и другие вопросы вы найдете в нашей статье.
Какое напряжение на аккумуляторе автомобиля считается нормальным
Стоит отметить, что на приборном щитке современных моделей авто уже нет индикаторов, показывающих величину напряжения АКБ. Для того чтобы самостоятельно определить работоспособность аккумулятора, стоит приобрести мультиметр.
С помощью данного устройства нужно минимум один-два раза в месяц проверять показатель вольтажа АКБ.
Это позволит предупредить ситуацию, когда аккумулятор не сможет выдать нормальный пусковой ток, необходимый, чтобы завести силовой агрегат.
При каком минимальном показателе напряжения АКБ будет не в состоянии осуществить запуск мотора? Точное значение этого параметра указать сложно. В обычном состоянии напряжение аккумуляторной батареи находится на уровне 12,5-12,7 В. Эти цифры могут меняться в зависимости от эксплуатационных условий, что считается нормальной ситуацией.
Более того, некоторые бренды, которые выпускают АКБ для авто, указывают, что для их аккумуляторов нормой является напряжение от 13 В до 13,2 В. Эксперты считают, что такие показатели допустимы. При этом измерение стоит проводить не сразу после полной зарядки АКБ.
Если подождать около 60 минут, то его значение опустится, к примеру, с 13 В до 12,7 В.
В тоже время показатель вольтажа может меняться и в сторону уменьшения. Но если он опускается ниже 12 В, то можно утверждать, что аккумулятор автомобиля разрядился примерно на 50%.
В этом случае батарею следует зарядить до нормального напряжения.
Эксплуатация автомобиля с АКБ, которая имеет низкий уровень зарядки, сопровождается сульфатацией свинцовых пластин, что приводит к снижению срока эксплуатации батареи.
Стоит отметить, что в нормальных условиях завести силовой агрегат легкового авто можно и при низком напряжении АКБ. Если у аккумулятора нет неисправностей, а генератор во время работы мотора обеспечивает необходимый заряд, то и при низкой зарядке батарея может эксплуатироваться.
Если же нормальное напряжение аккумулятора автомобиля в покое (при отключенных потребителях и заглушенном двигателе) снижается до показателей менее 11,6 В, можно говорить о практически полной разрядке батареи. В этом случае недопустима эксплуатация АКБ без проверки ее исправности и подзарядки.
Подытоживая приведенную выше информацию, отметим, что нормальное напряжение аккумулятора автомобиля — от 12,6 В до 12,7 В, но в редких случаях оно может достигать и 13,2 В.
При этом достаточно часто при измерении этого параметра у АКБ легковых авто фиксируются показания на уровне 12,2-12,49 В (неполная зарядка).
Такие показатели нельзя назвать очень плохими, так как заметное снижение качества работы автомобильного аккумулятора наблюдается лишь при падении его напряжения ниже уровня 11,9 В.
Нормальное напряжение аккумулятора автомобиля под нагрузкой
Специалисты различают 3 вида напряжения АКБ автомобиля:
- Номинальное напряжение — это характеристики, которые приводятся в специальной технической литературе и в документации автопроизводителей. Всем, кто интересуется автотранспортными средствами, известно, что АКБ легковых автомобилей имеют напряжение 12 В. Но такие характеристики являются абстрактными.
- Нормальное или фактическое напряжение аккумуляторной батареи составляет 12,2 В — 12,7 В. Эти параметры аккумулятор автомобиля выдает без нагрузки.
- Напряжение под нагрузкой считается наиболее важной характеристикой для оценки состояния АКБ.
Для диагностики аккумулятор необходимо демонтировать с автомобиля, подать на него напряжение с помощью специального устройства, которое называется «нагрузочной вилкой». При этом подаваемая нагрузка на АКБ должна в 2 раза превышать ее емкость. Например, для аккумулятора емкостью 50 Ам/ч следует подать нагрузку в 100 Ампер.
Длительность подачи тока нагрузки составляет от 3 до 5 секунд. В это время необходимо фиксировать показания вольтметра. Для нормальной рабочей АКБ напряжение не должно опускаться менее 9 В. Если же этот показатель снижен до 5-6 В, то это говорит о необходимости зарядки аккумулятора.
Если после зарядки напряжение АКБ опускается ниже 5 В, то это может свидетельствовать о ее неисправности.
Нужно отметить еще один важный момент. Через 5 секунд после подачи нагрузки напряжение аккумулятора автомобиля должно возвращаться к нормальным цифрам(12,2 В – 12,7 В). Эти показатели зависят от плотности электролита в АКБ.
При разрядке батареи происходит расход кислоты, составляющей около 35 % от всего объема электролита. При расходе кислоты снижается плотность электролита.
Восстановление процентного содержания кислоты происходит во время зарядки аккумулятора автомобиля.
Нормальное напряжение аккумулятора автомобиля зимой
С понижением температуры воздуха меняется плотность электролита в аккумуляторе автомобиля. При этом характеристики АКБ зависят от степени ее заряженности.
Если аккумулятор заряжен, то с похолоданием плотность электролита будет повышаться, и напряжение батареи увеличится.
Когда заряд будет недостаточно высоким, то при минусовой температуре уровень плотности уменьшается, и завести мотор сложнее.
Среди владельцев авто существует представление, что нормальное напряжение аккумулятора автомобиля без нагрузки в зимнее время будет снижаться. В реальности при низких температурах напряжение АКБ не уменьшается, но происходит замедление химических реакций.
Какие параметры батареи в морозную погоду считаются нормальными? Если температура воздуха находится в пределах 10°C — 15°C со знаком «-», то при полностью заряженном аккумуляторе его нормальный вольтаж составляет 12 В. Но так как протекание электрохимических процессов замедляется, то во время морозов в АКБ происходят следующие изменения:
- При -30°C рабочая емкость аккумулятора автомобиля составляет около 50% от показателей, указанных в паспорте устройства.
- При плотности 1,28 г/см3 напряжение при -30°C составляет 12,4 В, а при +25°C – 12,7 В.
- Когда наружная температура становится менее -25°C, аккумуляторная батарея перестает брать заряд от генератора.
Для повышения плотности электролита аккумуляторов в автомобилях, которые эксплуатируются в северных регионах, часто добавляют серную кислоту.
При показателях плотности от 1,30 до 1,32 г/см3 нормальное напряжение АКБ без нагрузки в морозную погоду (от -10°C до -15°C) должно составлять 12,9В.
При увеличении концентрации H₂SO₄, нужно следить, чтобы плотность электролита не превышала 1,35 г/см3, так как это приведет к разъеданию пластин.
«Сколько заряжать аккумулятор автомобиля» Подробнее
Причины низкого напряжения в аккумуляторе автомобиля
Причин резкого падения напряжения в полностью заряженном аккумуляторе автомобиля может быть несколько:
- Аккумуляторная батарея выработала свой ресурс и ее нужно заменить.
- Из-за неисправного генератора АКБ не получает нужной зарядки.
- Случается, что и новый аккумулятор резко теряет напряжение даже при полностью исправном генераторе. Это происходит из-за утечки тока бортовой электроцепи автомобиля. Причиной такой ситуации может быть любое электрооборудование машины.
Все существующие причины падения напряжения автомобильного аккумулятора могут быть устранены без особых сложностей, за исключением случая, когда АКБ выработала свой ресурс. В этом случае необходимо купить и установить новую батарею.
Неправильная эксплуатация автомобиля также может привести к снижению нормального напряжения аккумулятора автомобиля. Если машина постоянно используется для поездок на короткие расстояния, то генератор не успевает полностью восстановить АКБ после запуска двигателя.
Кроме того, снижение напряжения батареи может произойти из-за не выключенного освещения в салоне, света фар, работающего во время стоянки магнитофона и т. д.
Даже один электроприбор, включенный во время стоянки автомобиля, всего за несколько часов может полностью «посадить» аккумулятор.
Не менее опасной является и перезарядка АКБ (напряжение батареи превышает 13 В). Чаще всего это происходит из-за неправильной работы генератора.
В некоторых случаях автовладельцы умышленно перезаряжают аккумулятор, чтобы повысить его плотность. Когда напряжение батареи превышает нормальные значения, то начинает выкипать электролит и сокращается ресурс АКБ.
Рассмотрим основные причины, которые приводят к перезарядке АКБ автомобиля:
- Неправильно работает реле, которое отключает генератор после того, как аккумулятор заряжается до нормального напряжения. Неисправность такого устройства приводит к тому, что ток зарядки продолжает поступать после того, как АКБ полностью зарядился. Данная поломка устраняется легко, да и реле стоит не очень дорого.
- Поломка генератора. В этом случае ремонт будет более дорогостоящим.
- Неправильно подобрано оборудование для зарядки автомобильного аккумулятора.
После того как причина повышенного напряжения АКБ устранена, необходимо выполнить повторные замеры этого параметра на клеммах батареи, чтобы убедиться в нормальной работе оборудования.
«Нужно ли делать сход-развал после замены сайлентблоков» Подробнее
Как осуществлять контроль напряжения аккумулятора автомобиля
Чтобы измерить напряжение АКБ, понадобится мультиметр либо стандартный вольметр. Рассмотрим процесс измерения с помощью первого вида оборудования. С аккумулятора нужно снять клеммы (замер производится при разомкнутой цепи). Мультиметр следует установить в режим измерения напряжения, а его щупы приложить к выводам АКБ автомобиля (красный к «+», а черный к «-»).
В автосервисах для измерения напряжения аккумулятора автомобиля часто используется такое устройство как нагрузочная вилка. Этот прибор имеет встроенный вольметр. Особенность нагрузочной вилки состоит в том, что с ее помощью можно провести тестирование аккумуляторной батареи в замкнутой цепи. Такой прибор позволяет оценить состояние АКБ, так как он позволяет имитировать запуск мотора авто.
Чтобы измерить напряжение аккумулятора с помощью нагрузочной вилки, необходимо присоединить ее клеммы к выводам батареи и на пять секунд включить нагрузку. Показания встроенного вольтметра нужно зафиксировать на последней секунде. Если измеренное напряжение меньше 9 В, значит АКБ исчерпала свой ресурс и подлежит замене.
Полностью заряженный аккумулятор при разомкнутой цепи выдаст напряжение от 12,6 В до 12,9 В. Если на такую батарею подать нагрузку, то показатель напряжения снизится до 10 – 10,5 В, а потом он будет понемногу расти.
Нужно отметить, что аккумулятор автомобиля может иметь нормальное напряжение, но его работоспособность будет низкой. Другими словами, напряжение показывает не состояние АКБ, а только уровень ее заряженности.
Степень зарядки аккумуляторной батареи можно контролировать не только по напряжению, но и по показателям плотности электролита. В процессе подзарядки за счет испарения влаги увеличивается процентное содержание кислоты, что и способствует повышению плотности. Для полностью заряженного аккумулятора автомобиля показатель плотности составляет 1,27 — 1,29 г/см3.
Чтобы провести измерения, нужно опустить ареометр в отверстие для залива электролита и сделать его забор путем нажатия груши так, чтобы внутренний поплавок начал свободно перемещаться. При этом показания шкалы измерительного прибора, соответствующие верхнему уровню электролита, покажут его плотность, которая может зависеть от температуры воздуха и состояния АКБ.
В заключение стоит еще раз напомнить, что периодическое диагностирование аккумулятора и устранение факторов, снижающих работоспособность АКБ, позволит увеличить ее ресурс и сэкономить деньги автовладельца на ремонт автомобиля.
Источник: https://rad-star.ru/pressroom/articles/normalnoe-napryazhenie-akkumulyatora/
Определяем степень заряженности аккумулятора по напряжению
Степень заряда автомобильного аккумулятора замеряют при приобретении новой АКБ и при возникновении проблем во время эксплуатации.
И если летом допустима определённая разряженность батареи, то с понижением температуры могут возникнуть трудности с энергообеспечением оборудования или даже запуском двигателя.
Определение степени заряженности аккумулятора — простая процедура, которую можно осуществить самостоятельно.
Нормальный заряд аккумулятора
Приобретая новый источник питания, следует проверить степень заряженности аккумулятора, подразумевающую количество энергии, которое может выдавать аккумуляторная батарея на протяжении определённого времени. Именно поэтому замеряется заряд АКБ в Ампер-Часах. Для получения максимально грамотных показаний стоит проводить несколько замеров: без нагрузки или с ней.
Для новой АКБ уровень разности потенциалов должен быть больше 12 вольт. Если напряжение аккумулятора автомобиля упало до 10,8В, то использование такой батареи не рекомендуется — её следует зарядить. После полной зарядки АКБ показатель напряжения будет равен примерно 12,6 вольтам. Плотность электролита целиком заряженного аккумулятора составляет приблизительно 1,28 гр/см3.
Как изменяется напряжение при разряде аккумулятора
Прямая связь таких параметров, как напряжение и состояние химических элементов (электролита и пластин), а также уровня зарядки, отражается на работоспособности всей системы.
После полного заряда автомобильного аккумулятора электролит имеет высокую концентрацию кислоты, и напряжение батареи максимально.
Во время эксплуатации плотность уменьшается, в связи с этим падает значение напряжения, следовательно и заряд АКБ.
Стоит отметить, что разность потенциалов источника питания изменяется не только от заряда аккумулятора, но и от количества приборов, подключённых к сети.
Как соотносятся заряженность батареи и напряжение аккумулятора, можно увидеть на этом рисунке:
Тесно связаны напряжение и ёмкость АКБ. Оба параметра производитель указывает в модели источника питания. Они показывают, какую нагрузку энергии выдаёт аккумуляторная батарея на протяжении определённого времени разряда. Большие токи и быстрый разряд уменьшают ёмкость источника питания, меньшие — могут способствовать увеличению этого показателя.
Остаточную ёмкость аккумулятора принято проверять:
- по напряжению под мощностью при помощи нагрузочной вилки и постоянного тока;
- спектральным анализом;
- приборами, снимающими показания при переменном токе.
Все эти способы базируются на сведениях о сопротивлении АКБ, что позволяет только качественно оценить состояние источника питания. Зависимость ёмкости аккумулятора от напряжения не является причиной для установления работоспособности батареи.
Связано это с возможным наличием плавающего заряда даст совершенно нормальный результат диагностики, что не будет соответствовать действительности.
Поэтому мы рекомендуем проверять остаточную ёмкость АКБ от напряжения с помощью специалистов, которые проведут компьютерное исследование батареи.
Как правильно замерить напряжение аккумулятора
Максимально точные значения можно получить, осуществив комплекс диагностик. Для этого необходимо иметь при себе специальные устройства (мультиметр, вольтметр или нагрузочную вилку). Для осуществления измерений напряжения от аккумулятора необходимо соединить контакты устройства и клеммы батареи.
Во время диагностических процедур стоит понимать, что источник питания, подсоединённый к бортовой системе авто, потребляет энергию. Поэтому показания могут быть несколько ниже, но они не должны опускаться ниже значений 11—11,5 вольт.
Проведение корректных измерений допустимо на полностью отключённой и заряженной АКБ, то есть электрическая цепь должна быть разомкнута.
Однако это необязательное условие: если вы проверяете напряжение в замкнутой цепи, то учитывайте определённую погрешность.
- АКБ подсоединена к системе автомобиля, который не заведён. При этом условии бортовая сеть потребляет определённое количество энергии, поэтому показатель напряжений должен находиться в диапазоне 12,5—13,0 В.
- На заведённой машине с выключенными источниками потребления энергии показания прибора должны варьироваться в промежутке от 13,5 до 14 вольт. Более высокие показания говорят о том, что батарея разряжена, а генератор работает не в штатном режиме. Стоит учесть, что повышение данных в холодное время года не является точным свидетельством разряженности АКБ. Если в течение некоторого времени вольтаж вошёл в рамки, то система полностью работоспособна. Пониженные показатели (от 13 до 13,4 вольта) говорят о некоторой разряженности батареи. Необходима зарядка аккумулятора.
- На заведённой машине с включёнными источниками потребления электроэнергии значение напряжений должно быть больше 12,8—13,0 В.
Обращаем ваше внимание, работа с мультиметром или вольтметром допускает обратное соотношение полюсов измерительного прибора и клемм АКБ. Нагрузочная вилка должна использоваться строго в соответствии с полярностью.
Мы не рекомендуем проверять напряжение аккумулятора в машине с помощью бортовой системы, потому что она подключена не напрямую к батарее. Поэтому допускаются определённые погрешности измерений.
Проверка заряда аккумулятора по напряжению рекомендуется спустя некоторое время после полной зарядки аккумулятора автомобиля, а также в условиях рабочей температуры (около 20 градусов Цельсия).
Ниже представлена таблица «Степень заряда АКБ по напряжению».
Уровень заряда АКБ | Напряжение в разомкнутой цепи малосурьмянистых (Sb/Sb) и гибридных (Sb/Ca) аккумуляторов, вольт | Напряжение в разомкнутой цепи в кальциевых (Ca/Ca) и AGM/Gel (Ca/Ca) аккумуляторах, вольт |
100% | 12,516—12,663 | 12,666—12,813 |
75% | 12,316—12, 463 | 12,466—12,613 |
50% | 12,106—12,253 | 12,266—12,413 |
25% | 11,926—12,073 | 11,866—12,013 |
0% | 11,756—11,903 | 11,666—11,813 |
Таблица 1. Степень заряда аккумулятора по напряжению.
Как изменяется плотность электролита при разряде аккумулятора
Под плотностью следует понимать соотношение дистиллированной воды и серной кислоты (65% к 35% соответственно), являющееся максимально оптимальным для автомобильных источников электрического питания и обеспечивающее накопление заряда электричества. Чем ниже плотность электролита, тем ниже напряжение аккумулятора автомобиля и уровень его заряда. При увеличении плотности ухудшается работоспособность АКБ.
Определённая степень разряда батареи характеризуется активным поглощением серной кислоты и её оседанием на пластинах.
Сульфация металлических элементов становится причиной увеличения их жёсткости и неспособности участвовать в химическом процессе.
Так как серная кислота тратится, меняется соотношение компонентов — жидкость становится менее плотной, что сказывается на способности аккумулятора в машине держать заряд.
Наглядно увидеть зависимость уровень заряда аккумулятора от плотности электролита можно в этом графике:
Уровень заряда АКБ | Значение плотности электролита |
100% | 1,249—1,297 |
75% | 1,209—1,257 |
50% | 1,174—1,222 |
25% | 1,139—1,187 |
0% | 1,104—1,152 |
Таблица 2. Степень заряда аккумулятора по плотности.
Определение степени зарядки аккумулятора по встроенному гидрометрическому индикатору
Диагностика работоспособности источника питания вышеописанными способами нужна в тех случаях, когда аккумуляторная батарея не оснащена специальным индикатором. Наличие указателя зарядки аккумулятора автомобиля позволяет оценить состояние источника питания без использования дополнительных средств.
При заряде батареи свыше 60% индикатор горит зелёным светом. Это означает полную исправность АКБ и возможность запуска двигателя. Отсутствие зелёной индикации и тёмный цвет окошка сообщает о низком заряде батареи и необходимости её зарядить. Запуск автомобиля может быть затруднён. Светлый указатель информирует о том, что процент дистиллированной воды мал — её необходимо долить.
В данной статье мы постарались максимально развёрнуто ответить на все вопросы о степени зарядки АКБ по напряжению. Для диагностики состояния источника питания вам понадобится специальный инструмент:
- вольтметр или мультиметр, с помощью которых можно провести исследования как по вольтажу, так и по значениям сопротивления;
- ареометр, замеряющий плотности электролита;
- устройство необходимое для заряда АКБ, имеющей определённую степень разряженности.
Для удобства восприятия информации в тексте представлена таблица заряда аккумулятора и таблица напряжения аккумулятора автомобиля.
Во время работ не забывайте про степень зарядки источника питания, которая напрямую влияет на получаемые показания. Определить степень заряженности вам также помогут вышеперечисленные приборы.
Аккумулятор — важный элемент системы машины, позволяющий ей полноценно функционировать, даже когда она не заведена. Вряд ли кому-то хочется в неподходящий момент оказаться перед проблемой разряженного источника питания. Мы настоятельно рекомендуем проводить диагностику батареи с определённой периодичностью. А как вы проверяете заряд автомобильной АКБ, поделитесь с нами в х.
Определяем степень заряженности аккумулятора по напряжению
Ссылка на основную публикацию
Источник: https://AkkumulyatorAvto.ru/konstrukciya/parametry/zaryad.html
Напряжение автомобильного аккумулятора: нормы, правила измерения
Напряжение с емкостью – два основных параметра автомобильного АКБ. Эти значения определяют качество функционирования элемента, поэтому водитель должен контролировать значения. Из обзора вы узнаете, какое напряжение должно быть на аккумуляторе в обычном рабочем состоянии и при повышенных нагрузках.
Общие моменты
Электродвижущая сила отвечает за нормальное прохождение тока по цепочке, дает запрограммированную разность выводных частей источника питания – то есть АКБ. Искомая величина рассчитываться будет как разница потенциалов.
Электродвижущая сила равна расходуемой на перенос заряда между выводами энергии. Значения токовых сил, напряжений связаны друг с другом неразрывным образом. Когда внутри батареи данная сила не возникает, отсутствует ток и на выводящих частях.
Когда цепные связи размыкаются, ток отсутствует, но в аккумуляторе начинает возбуждаться электродвижущая сила, в зоне выводов появляется движение.
Для измерения обеих величин используются вольты. Электродвижущая общая сила в автоаккумуляторе развивается в результате электрических и химических процессов, протекающих внутри него. ЭДС всегда больше напряжения в аккумуляторе на величину, равную падению внутреннего напряжения.
Для замеров применяются вольтметры с мультиметрами. В аккумуляторе для авто размеры ЭДС будут зависеть от плотности, температурных значений электролита.
Точных сведений по вопросу того, какое значение для батареи питания идеальное, нет. Специалисты во внимание принимают оптимальные показатели пуска для старта моторного механизма. Если АКБ новый, заряженный, данное значение должно быть 12,6–12,7 вольта.
Если напряжение заряженного аккумулятора автомобиля без нагрузки выше, это еще не указывает на наличие проблемы.
Например, сразу после зарядки АКБ ее ток при замерах будет выше на 0,5 вольта реального, и при итоговых подсчетах это нужно учитывать. 13,0–13,2 вольта – цифра, которая превышает допустимые значения напряжения, но для некоторых моделей батарей она является нормальной.
Близкие к рекомендованным значениям данные батарея показывает спустя пару часов после зарядки.
Критическим для АКБ считается 12 вольт и менее. Если значение меньше этой цифры, нужна срочная зарядка. Использовать элемент питания на ресурсном пределе нельзя, поскольку в данном случае запустится процесс сульфатации пластин. В будущем от последствий сульфатации избавиться проблематично, и придется покупать новую батарею.
При этом 12,1 вольта достаточно для старта мотора, проблемы возникают на 11,6 вольта и ниже. Это все цифры, о которых нужно знать и учитывать их во время работы. В большинстве случаев значение напряжения заряженного аккумулятора автомобиля находится на отметке в 12,2–12,5 вольта.
Таблица заряда
Чтобы не упустить момент, когда заряд батареи упадет до предельно критического уровня, используйте таблицу заряда АКБ. Если измерить U на клеммах, можно рассчитать общий заряд.
Также в таблице вы найдете значения плотности электролита, температурных значений, при которых он может замерзать зимой. Ознакомиться с основными значениями можно в таблице заряда аккумулятора автомобиля по напряжению.
Все способы проверки
Проверять напряжение аккумулятора автомобиля на степень разряженности можно разными способами. Рассмотрим их.
Мультиметром
Для проверки аккумуляторов «Акум», «Ватра» и других марок, устанавливаемых на авто «КамАЗ», «Вольво», «БМВ» удобно использовать мультиметр.
Прибор вы найдете в любом специализированном магазине, есть он на СТО. Для разовых замеров мультиметр проще одолжить, хотя большинству водителей он нужен регулярно.
Скорее всего, показания мультиметра и бортового компьютера будут различаться.
Стандартные устройства приборной панели часто ошибаются, дают незначительную погрешность, поскольку подключаются к АКБ не напрямую. Обычно отклонения идут в меньшую сторону.
При работающем моторе
Какое напряжение должно быть на заряженном аккумуляторе автомобиля, мы разобрались, теперь рассмотрим порядок измерения текущих показателей при работающем моторе.
Сначала сделайте замеры при заведенном двигателе – в норме значение должно быть в районе 13,5–14,0 вольт.
Если значение превышает 14,2 вольта, зарядка низкая, генератор будет направлять энергию на зарядку элемента питания. Чрезмерные показатели в зимнее время года в данном случае считаются нормой.
В высоком токе плохого ничего нет. Когда с электрооборудованием все в порядке, спустя 10 минут электронные части системы скинут текущие значения до стандартных максимальных 14 вольт.
При отсутствии данной реакции цифра до оптимальных величин постепенно не сбрасывается, возможен перезаряд аккумулятора. Он постоянно будет функционировать на максимальной отдаче, начнет выкипать электролит.
Когда при включенном моторе показатель составляет меньше 13,0–13,4 вольта, можно говорить об отсутствии полной зарядки. В сервис сразу не бегите, для начала измерьте показания при выключенных потребителях – это кондиционер, магнитола, фары, прикуриватель и пр.
Также резкое падение возможно в случае окисления контактов – проверьте их перед поездкой в сервис и, если нужно, зачистите шкуркой.
Другой метод проверки – при выключенных источниках потребления энергии, работающем моторе вы должны получить 13,6. Проверьте соответствие параметров, если все в норме, включите ближний свет, при этом показатель должен упасть на 0,1–0,2 вольта.
Теперь включайте в машине музыку, сплит-систему, прочие потребители энергии. Действия выполняйте постепенно, при каждом новом включении потребителя параметр должен немного падать.
При резких скачках, скорее всего, проблема в генераторной системе – он работает не на всю мощность, либо износились, загрязнились щетки.
Даже если включены все потребители энергии, показатель все равно в норме не падает ниже 13 В. Иначе батарея начнет разряжаться сильно и сядет полностью.
При отключенном моторе
Вам также потребуется для проведения работ мультиметр. Если показатель на выводах ниже 11,8 вольта, машина, скорее всего, просто не заведется, придется прикуривать ее от другого авто.
Показатель нормального уровня при отключенном моторе – 12,5–13,0 вольт. Значение 12,9 указывает на то, что АКБ заряжен примерно на 90 %, 12,5 – наполовину, 12,1 – осталось не более 10 %. Это расчеты на глаз, но многие автомобилисты пользуются ими.
Оптимально замерять напряжение непосредственно до поездки. Уровень зарядки аккумулятора указывает на его способность удерживать значения по несколько суток. Если батарея заряжена полностью, а вы не ездили неделю и больше, то параметр резко снизится. То есть константным значение не является.
С применением нагрузочной вилки
Проверка аккумулятора с применением нагрузочной вилки – точный, простой и эффективный способ проверить работоспособность батареи автомобиля. В итоге вы выясните, заряжен ли аккумулятор.
Подсоедините вилку к нужному полюсу батареи максимум на 5 секунд. Сначала должно быть в районе 12–13 вольт, после пятой секунды – больше 10 вольт, несмотря на снижение. Такой элемент питания считается полностью заряженным, может работать под разными нагрузками.
Когда показатель в ходе тестирования при проверке нагрузочной вилкой снижается до 9 вольт, АКБ неисправен, рекомендуется его замена.
В холодный сезон
Снижение температурных показателей среды вызывает изменения в номинальной плотности рабочего вещества – электролита. С учетом уровня заряда АКБ будет определяться реакция на пониженные температурные показатели.
У полностью заряженной батареи резко возрастет плотность, что вызовет резкий скачок измерений.
Когда блок питания сел, плотность понижается по причине морозов, возникают сложности при запуске мотора.
Водители совершенно ошибочно полагают, что в зимнее время АКБ дополнительно разряжается из-за низких температур воздуха. В реальности роль играет не низкая температура среды, а замедление химических процессов в элементе питания в результате морозов.
Полезные рекомендации
Рекомендации, которые пригодятся при эксплуатации, обслуживании АКБ для продления времени его работы:
- время от времени тестируйте батарею и как можно чаще (хотя бы раз в квартал) выполняйте подзарядку от сети;
- следите за исправностью генератора, проводов, функции регулировки напряжения авто для нормального заряда элемента питания во время поездок;
- замеряйте токовые утечки;
- замеряйте плотность электролитного вещества после полной зарядки, сравнивайте цифры из таблицы выше, исправляйте ситуацию, если это нужно;
- держите автоаккумулятор в чистоте, чтобы минимизировать ток утечки.
Не замыкайте выводные выходы автомобильной батареи накоротко, поскольку последствия в данном случае будут плачевными.
Заключение
Из обзора вы узнали, сколько вольт должен показывать заряженный аккумулятор и почему важно контролировать эти значения. Напряжение АКБ, как и емкость, плотность рабочего вещества, дает возможность делать выводы о рабочем состоянии элемента питания.
Первый параметр автоаккумулятора указывает на степень его заряда, показатель учитывайте для продления срока службы элемента питания. Контроль сложностей не представляет, для его выполнения применяется базовый набор инструмента.
На АКБ авто в норме параметр составляет 12,6–12,9 вольта при 100%-й зарядке. Замер значения позволяет оперативно оценивать степень заряда. При этом степень износа, текущее состояние батареи так по показателю понять невозможно.
Чтобы получить точные сведения о состоянии АКБ, проверьте ее емкость, сделайте тест, когда дадите нагрузку. Применяются разные варианты проверки работоспособности батареи, все были рассмотрены в обзоре.
Удобно пользоваться таблицей степени заряда АКБ для всех моделей авто, в которой указываются значения температуры промерзания электролита, его плотности с учетом заряда батареи.
Источник: https://3batareiki.ru/akkumulyatory/avtomobilnye-akkumulyatory/kakoye-napryazheniye-dolzhno-byt-na-akkumulyatore
Как определить степень заряженности аккумулятора?
Многие владельцы автомобилей ввиду отсутствия определенных навыков в обслуживании и недостатка времени не могут точно определить проблемы, которые возникают в процессе эксплуатации. Незнание может привести к тому, что деталь или элемент, который еще может послужить верой и правдой, меняются на новые.
В большинстве случаев владельцы автомобилей сталкиваются с проблемами разряда аккумуляторной батареи. Однако прежде, чем купить аккумулятор для автомобиля, необходимо убедиться, что батарея более непригодна для эксплуатации.
Показателем работоспособности аккумулятора является возможность заряда аккумулятора.
При возникновении проблем с аккумуляторной батареей необходимо определить степень заряженности акб. Каким образом это возможно сделать?
Во-первых, необходимо понимать, что степень заряженности батареи, чтобы определить ее работоспособность, рекомендуется измерять минимум через 8 часов после того, как будет выключен двигатель автомобиля. Именно столько времени необходимо для того, чтобы все системы автомобиля пришли в спокойное состояние и напряжение на аккумуляторе стало верным.
Рекомендуется также проводить измерения при температуре в пределах 20-25 градусов Цельсия. Именно такая температура считается оптимальной для получения корректных результатов.
Степень заряженности аккумуляторной батареи также может показать плотность электролита. Например, при 100% заряда акб плотность электролита составляет 1,28г на кубический сантиметр. При 20% заряда плотность электролита составит всего около 1,14г на один кубический сантиметр.
Если показатели сильно отклоняются от нормы, то это означает, что ресурс аккумуляторной батареи на исходе.
Заказать аккумулятор для своего автомобиля вы сможете в сети специализированных магазинов “Центр-АКБ”.
Адреса магазинов:
- Нижний Новгород, ул. Березовская, д. 96А
- Нижний Новгород, ул. Деловая, д. 7к5
- Нижний Новгород, проспект Кирова, 12
- Нижний Новгород, ул. Русская улица, 5.
Вы также сможете купить аккумулятор для автомобиля любой марки на нашем официальном сайте в любое удобное для вас время.
Как определить степень заряженности аккумулятора по напряжению
Информационный сайт о накопителях энергии
Автомобильная батарея состоит из 6 элементов, соединенных последовательно. Каждая банка имеет полный заряд 2,10-2,15 В, поэтому общее напряжение суммируется, составляет 12,6 – 12,8 В. Какое напряжение у АКБ после отключения ЗУ? При установке аккумулятора в авто величина напряжения после зарядки должна быть 12,4 В. это нормально. Аккумулятор автомобиля стартовый, в период запуска двигателя разряжается, в процессе движения восстанавливает энергию от генератора машины. Если напряжение в аккумуляторе снижается до 12 В, устройство требует зарядки от сети. Большая потеря заряда в банках характеризуется, как глубокий разряд, разрушающий батарею.
Напряжение зарядки аккумулятора автомобильным зарядным устройством
Автомобиль, эксплуатируемый с преимуществом длинных пробегов, успевает полностью зарядиться от генератора для следующего пуска. Но заряд его не будет полным. Степень зарядки аккумулятора можно определить по напряжению на клеммах. Чем меньше величина, тем слабее концентрация электролита в банках.
Проверить заряд аккумулятора, можно воспользовавшись мультиметром. Следует установить градуировку «переменный ток» и замерить показатель на клеммах. Можно определить уровень заряда по плотности электролита.
Степень зарядки автомобильного аккумулятора определяется по напряжению, как в таблице.
Чтобы поднять емкость аккумулятора, необходимо зарядить его специальным зарядным устройством. Это преобразователь напряжения, выпрямитель. Аккумуляторы бывают обслуживаемые, необслуживаемые, гелевые, AGM, литиевые. Напряжение и ток зарядки их отличается по напряжению, времени, длительности циклов. Есть универсальные ЗУ, рассчитанные на переключение режимов для разных моделей АКБ, регулирование параметров.
Напряжение на клеммах аккумулятора при зарядке
Для зарядки аккумулятра от зарядного устройства выбирают режим с постоянным током или напряжением. Оба они одинаково эффективны, но применяются к разным батареям. В процессе зарядки и эксплуатации аккумулятора необходимо производить замеры напряжения на клеммах кислотного аккумулятора.
Чтобы зарядить батарею на 12 В, потребуется установить режим постоянного напряжения 16 -16,5 В. Используя ток 14,4 В можно зарядить аккумулятор на 75-85 %. При постоянном напряжении сила зарядного тока величина переменная, ограничивается только ЗУ.
Какое напряжение для зарядки нужно установить? Исходят из достижения критического напряжения, сопровождающегося «кипением» — выделением газа из банок автомобильного аккумулятора. Нормально заряженным считают аккумулятор, с напряжением на клеммах от 12,6 до 14,5 В. Снимать показания следует прибором, не полагаясь на бортовой компьютер. Замеры на работающем двигателе, и в отключенной батарее отличаются.
Допустимое напряжение зарядки на клеммах аккумулятора при работающем моторе варьируется 13,5 -14 В. Показатель показывает недозаряд батареи, если напряжение выше. Нужно повторить замер через 2 минуты, возможно, батарея разрядилась при запуске. Если напряжение зарядки низкое – аккумулятор теряет ресурс или проблемы исходят от автомобильного генератора. Проводить замеры нужно, отключив бортовые системы.
Замеряя напряжение зарядки аккумулятора на неработающем авто, невозможно выявить проблемы с генератором, однако хорошо определяется степень зарядки аккумулятора. Напряжение 12,5 – 14 В говорит об отсутствии проблем. При низком показателе необходимо проверить:
- состояние электролита – субстанция должна быть прозрачной, уровень нормальным;
- многое зависит от уровня заряда АКБ;
- определение возможности подзарядки до оптимального напряжения.
Тестирование выявит проблемы с аккумулятором, его работоспособность.
Зарядка аккумулятора постоянным сопротивлением
Возможна ли зарядка АКБ с постоянным сопротивлением? Из формулы I =U*R, понятно, если установить сопротивление величиной постоянной, то переменными станут ток или напряжение. Но внутри аккумулятора сопротивление – величина переменная, влияющая на поглощение энергии. Полное сопротивление складывается из сопротивления поляризации, которое меняется и омического, остающегося стабильным в одинаковых условиях и для конкретного аккумулятора.
На сопротивление влияют температура, степень разряженности, концентрация электролита, учтенные в характеристиках разрядных кривых АКБ. Но если в формуле сопротивление величина переменная во времени и состоянии автомобильного аккумулятора, то постоянным при зарядке может быть ток, напряжение или комбинирование тока и напряжения. Для сглаживания величины тока зарядки используется резистор — балластное сопротивление.
Какое напряжение выставлять при зарядке аккумулятора
Напряжение это разность потенциалов, и ток потечет в ту сторону, где эта величина будет меньшей. Поэтому напряжение зарядного устройства выбирается всегда выше, чем уровень зарядки автомобильного аккумулятора. Чем больше разница напряжения, тем быстрее и полнее наберет емкость аккумулятор автомобиля после зарядки.
Во время зарядки при постоянном напряжении предел установленного на ЗУ параметра ниже, чем характеристика, при которой начинается выделение газов из обслуживаемого аккумулятора. Какое значение разности потенциалов нужно для зарядки автомобильного аккумулятора? Максимальное напряжение, применяемое при зарядке батареи 16, 5 В. Какой параметр должен быть, зависит от вида АКБ. От напряжения зависит время и полнота зарядки аккумулятора. Соотношение напряжения заряда, восстановления емкости для батареи 12 В за 24 часа таково:
- Напряжением 14,4 В можно зарядить батарею на 75-80 %;
- Используя напряжение 15 В степень заряда 85 – 90 %;
- Напряжением 16 В батарея заряжается на 95 – 97 %;
- Максимальным напряжением 16,3 -16,5 В батареи заряжаются полностью.
При достижении напряжения на батарее 14,4 – 14,5 на ЗУ загорается сигнал окончания зарядки.
Установлено, что именно это напряжение автомобильного аккумулятора не создает газовыделения после и во время зарядки. Поэтому при реальной эксплуатации автомобилей, генератор через регулятор напряжения ограничивает максимальный уровень напряжения этим значением. Летом этот показатель близок к 100 % емкости, зимой соответствует 13,9-14,3 В, при работающем моторе, что соответствует 70-75 % емкости.
Максимальное напряжение зарядки аккумулятора
Мы знаем, современные авто высокого класса имеют бортовую систему, работающую на 16 В. Какие аккумуляторы применяются в этих АКБ? Для того чтобы не было газовыделения, ситема должна быть закрытой.
Значит, необслуживаемые Ca/Ca аккумуляторы могут выдержать жесткие условия эксплуатации. Для них используется особый режим зарядки. Использование кальция вместо сурьмы позволяет вести зарядку аккумулятора повышенным напряжением, при этом электролит вскипает. Необслуживаемый аккумулятор не терпит резких перепадов напряжения в бортовой сети. Он предназначен для автомобилей с хорошей системой электронного контроля напряжения. Более терпимы к условиям эксплуатации гибридные батареи, из малосурьмянистых и кальциевых пластин.
Напряжение аккумулятора в конце зарядки
После полной зарядки АКБ заряд несколько изменится. Происходит диссоциация электролита с заполнением пор токовыводящих пластин. Установленный в подкапотное пространство автомобильный аккумулятор принимает температуру окружающей среды, и емкость изменится в большую сторону при жаре или падает при минусовых температурах. Поэтому точно узнать после зарядки, какое напряжение аккумулятора автомобиля, можно, установив его на место. Даже, находясь в мастерской, напряжение на клеммах изменяется. Это особенно заметно, если не полностью проведен цикл и ток зарядки не упал до 200 мА. При этом происходит перераспределение заряда, и возможна дополнительная подпитка устройства энергией.
Но если после зарядки аккумулятора напряжение падает на работающей машине – это повод для ревизии генератора или замены аккумулятора.
Зависимость зарядки аккумулятора от напряжения
Каждый вид аккумуляторов заряжается на основании характеристик видов использованный конструкций. Самое низкое напряжение зарядки имеют обслуживаемые, гелевые и литиевые аккумуляторы. Причины вскипание, разрушение состава, пожароопасность. Если обслуживаемый аккумулятор можно зарядить простейшим ЗУ, литиевые и гелевые системы требуют соблюдения 2 ступенчатого комбинированного режима накопления энергии.
Все системы рассчитаны на предотвращение перезаряда, снабжены автоматическим отключением питания при достижении напряжения, какое требуется для автомобильного аккумулятора. При зарядке происходит постепенное снижение силы тока из-за повышения сопротивления, напряжение остается стабильным. После зарядки процесс электрохимической реакции продолжается, в виде незначительного саморазряда.
Важно, чтобы напряжение зарядки всегда превышало параметры, нужные для эксплуатации прибора. Чтобы ток перетекал, нужен уклон, которым является разность напряжения между ЗУ и батареей.
Видео
Предлагаем посмотреть советы специалиста, как правильно заряжать и обслуживать аккумулятор автомобиля, какое напряжение должно быть на аккумуляторе после зарядки.
Степень заряженности можно определить по напряжению на аккумуляторной батарее или по плотности электролита.
Напряжение измеряется с помощью вольтметра , на аккумуляторе, который простоял без подзарядки, в спокойном состоянии , не менее 8 часов. Данная зависимость плотности электролита от напряжения верна при температуре 20-25 С . Плотность во всех ячейках должна быть равномерной и отличаться не более +-0,02-0,03 г/см3.
Степень заряженности | Степень разряженности | Плотность электролита, г/см3 | Напряжение аккумуляторной батареи, Вольт |
100% | 0% | 1.28 | 12.7 |
80% | 20% | 1.245 | 12.5 |
60% | 40% | 1.21 | 12.3 |
40% | 60% | 1.175 | 12.1 |
20% | 80% | 1.14 | 11.9 |
0% | 100% | 1.1 | 11.7 |
Вопрос-ответ
Ваш заказ
ВНИМАНИЕ.
Цены интернет-магазина при самовывозе действительны только по предварительному резерву. Пожалуйста, оформите заказ через корзину покупок или по телефону.
Мотоаккумуляторы по технологиям GEL AGM SLA DRY
• лучшие храктеристики
• высокие пусковые токи
• отличная энергоотдача
• длительный срок службы
Новости
это необслуживаемые стартерные аккумуляторные батареи класса премиум, предназначенные для уверенного пуска мощного двигателя.
Аком — аккумуляторы для автомобилей с высоким энергопотреблением и имеющим систему старт-стоп.
• все типы акб
• импульсный заряд
• заряжает сильно разряженные аккумуляторы
Этот способ по определению заряженности АКБ подходит в том случаи, если батарея находилась без подзарядки генератора автомобиля больше 8 часов и при этом не была подключена к источникам потребления.
Проводится измерение при температуре +20…+25 °С, у полностью заряженной батареи 12,7 — 12,9 Вольт, и не раньше чем 8 часов после остановки двигателя.
Важно знать! Эксплуатация АКБ не допустима, если батарея не до заряжается (это менее чем 13.9 V) или перезаряжается (это более чем 14.4 V) исходя из этого следует периодически проверять уровень зарядного напряжения.
Производить разряд нужно нагрузочным током (лампочкой) численность в амперах, которой равняется 1/5 номинальной емкости выраженной в ампер-часах, до напряжения 10,5 В.
и последующую зарядку до напряжения 14,2…14,5 при постоянном токе, равном 1/10 ёмкости батареи. Заряд считается законченным через 2 часа после достижении напряжения на батарее равного 16,0 В
Измерения тока утечки производим на разрыве клеммы батареи и составлять он должен до 60 мА
Если ток утечки больше чем 60 мА, нужно искать причину.контакты, земля, на магнитолу, на стартёр, на генератор, и т.п.
Как подключить магнитолу, чтобы уменьшить утечку
Красный — плюсовой, на включение магнитолы (от замка зажигания), слаботочные +12 вольт (логическая «1»).
Чёрный — земля
Желтый — силовое питание +12 вольт, от АКБ
Диоды — любые, достаточно слаботочных типа КД522Б
Синий — включение Антенны или др. устройств (слаботочные +12 вольт при вкл. магнитолы)
При работе генератор, должен выдавать 13.9-14.4 вольта (любых оборотах и при любой нагрузке) . Если меньше, ищем причину — массы, контакты, в генераторе — диодный мост (подкова), РН (регулятор напряжения), если это не помогает, то ставим РН нового образца или ставим диод типа КД219Б (или аналоги, прямой ток более 5 Ампер, обратное напряжение более 20 вольт, прямое напряжение 0.6-0.8 вольта) в разрыв цепи D (между подковой и РН или в разрыв земли РН).
Регулятор напряжения старого образца:
Регулятор напряжения нового абразца
Аккумулятор полностью заряжен: как убедиться и определить степень заряда
В среднем, аккумулятор заряжается 8–10 часов, но потраченное время зависит от многих факторов. Важно убедиться, что запитка полностью завершена и для этого можно определить остаточную емкость аккумулятора. Учитывая техническую сложность процесса, рекомендуется использовать более простой способ – проверка вольтметром.
Базовый принцип: установите вольтметр на клеммы аккумулятора с зарядкой. Если в течении часа напряжение не увеличивается при токе заряда, который не изменяется, значит АКБ заряжен на 100%. Для этого способа можно применять вольтметр даже с большой погрешностью, ведь главное не столько сами показатели, сколько постоянство напряжения.
Правила определения степени заряда аккумулятора
На выбор автомобилиста представлено несколько способов, проверенных временем и опытом, в частности:
· для моделей с жидкой кислотой, можно измерять плотность электролита с помощью ареометра;
· на выводах аккумулятора измерять напряжение нагрузочной вилкой. При рабочем стартере напряжение не должно быть ниже 9,5В. Этим методом определяется исправность стартера: если вы знаете и проверили зарядку АКБ другим методом, но напряжение ниже 9,5 В, значит, стартер подлежит ремонту.
· по показателям напряжения на выводах электрооборудования автомобиля;
· по показателям напряжения на выводах, но без нагрузки.
Наиболее популярный и простой метод – оценка показателей гидрометрического индикатора, если он встроен в салон авто.
Важно проводить все замеры при комнатной температуре, то есть 20–25 градусов. Для получения объективной информации стоит использовать таблицы, в которых подаются важные сравнительные данные. Для удобства водителей представлены таблицы, позволяющие получить данные на основе:
Таблица оценки степени заряда аккумулятора по напряжению |
||||||
Напряжение аккумулятора, В |
6 |
6,32 |
6,22 |
6,12 |
6,03 |
<6,0 |
12 |
12,65 |
12,35 |
12,10 |
11,95 |
<11,7 |
|
24 |
25,28 |
24,71 |
24,22 |
23,91 |
<23,4 |
|
Температура замерзания, °С |
-58 |
-40 |
-28 |
-15 |
-10 |
|
Степень заряда, % |
100 |
75 |
50 |
25 |
0 |
Таблица оценки степени заряда АКБ по плотности электролита |
|||||
Плотность электролита, г/см³ |
1,27 |
1,23 |
1,19 |
1,16 |
<1,12 |
Температура замерзания, °С |
-58 |
-40 |
-28 |
-15 |
-10 |
Степень заряда, % |
100 |
75 |
50 |
25 |
0 |
Таблица для оценки степени заряда аккумулятора по напряжению с подключенной нагрузочной вилкой |
|||||||||||||||
Напряжение на выводах аккумулятора, В |
10,5 |
9,9 |
9,3 |
8,7 |
<8,2 |
||||||||||
Степень заряда, % |
100 |
75 |
50 |
25 |
0 |
Для того чтобы измерять напряжение на выходе, предварительно стоит дать покой аккумулятору минимум на 6 часов и предварительно отключить его от автомобильной системы.
В среднем, для уверенного старта и поддержания всех электрических приборов в рабочем состоянии уровень зарядки АКБ должен быть не меньше 60%.
Определение уровня заряда аккумулятора
Знание количества энергии, оставшейся в батарее, по сравнению с энергией, которая была у нее, когда она была полной, дает пользователю представление о том, сколько времени батарея будет продолжать работать до того, как ей потребуется подзарядка. Это мера кратковременной емкости аккумулятора. Используя аналогию с топливным баком в автомобиле, оценку состояния заряда (SOC) часто называют функцией «Датчик уровня газа» или «Датчик уровня топлива».
См. Также State of Health (SOH), который показывает долговременную работоспособность батареи.
SOC определяется как доступная емкость, выраженная в процентах от некоторого эталонного значения, иногда от его номинальной емкости, но более вероятно, от ее текущей (т.е.на последний цикл заряда-разряда) емкости, но эта неоднозначность может привести к путанице и ошибкам. Обычно это не абсолютная мера в кулонах, киловатт-часах или ампер-часах оставшейся в батарее энергии, что было бы менее запутанно.
Предпочтительным эталоном SOC должна быть номинальная емкость нового элемента, а не текущая емкость элемента. Это связано с тем, что емкость ячейки постепенно уменьшается с возрастом. Например, к концу срока службы элемента его фактическая емкость будет приближаться только к 80% от его номинальной емкости, и в этом случае, даже если элемент был полностью заряжен, его SOC будет только 80% от его номинальной емкости. Влияние температуры и скорости разряда еще больше снижает эффективную емкость.Эта разница в контрольных точках важна, если пользователь зависит от оценки SOC, как это было бы в реальном приложении газового манометра в автомобиле.
К сожалению, эталон измерения SOC часто определяется как текущая емкость элемента, а не номинальная емкость. В этом случае полностью заряженный элемент, срок службы которого приближается к концу, может иметь SOC, равный 100%, но он будет иметь эффективную емкость только 80% от его номинальной емкости, и для расчетной емкости необходимо будет применить поправочные коэффициенты. сравните его с его новой номинальной мощностью.Использование текущей мощности, а не номинальной, обычно является сокращением или компромиссом при проектировании, чтобы избежать сложности определения и учета корректировок мощности, связанных с возрастом, которые обычно игнорируются.
Основание оценки SOC на текущей емкости аккумулятора, а не на его номинальной емкости в новом состоянии эквивалентно постепенному уменьшению емкости топливного бака в течение срока службы транспортного средства без уведомления водителя.Если требуется точная оценка оставшегося заряда аккумулятора, необходимо учитывать факторы старения и окружающей среды.
Для приложений балансировки ячеек необходимо знать только SOC любой ячейки относительно других ячеек в цепочке батарей. Поскольку все клетки будут подвергаться одинаковым воздействиям в течение своей жизни, для этой цели можно не принимать во внимание корректировки старения и окружающей среды, которые в равной степени относятся ко всем клеткам.
Требования к точности SOC
Знание SOC особенно важно для больших литиевых батарей. Из всех распространенных химических составов элементов литий является наиболее химически реактивным и единственным, которому необходимы электронные системы управления батареями (BMS), чтобы поддерживать батарею в безопасном рабочем интервале и обеспечивать длительный срок службы. Управление SOC — основная функция BMS.Кроме того, автомобильные приложения, которые являются одним из основных применений больших литиевых батарей, требуют очень точного контроля SOC для эффективного и безопасного управления потоками энергии.
- В приложениях EV SOC используется для определения дальности. Это должно быть абсолютное значение, основанное на емкости новой батареи, а не в процентах от текущей емкости, которая может привести к ошибке 20% или более из-за старения батареи.
Как известно, автомобильные датчики уровня топлива неточны, поэтому точность SOC в 5%, если бы она могла быть достигнута, вероятно, была бы удовлетворительной для таких приложений.
- В приложениях HEV SOC определяет, когда двигатель включается и выключается. Ошибки SOC более 5% могут серьезно повлиять на топливную экономичность системы. Поэтому желательна точность, значительно превышающая 5%.
См. «Возможности точности оценки» ниже
Методы определения заряда
Было использовано несколько методов оценки степени заряда аккумулятора.Некоторые из них специфичны для определенного химического состава клеток. Большинство из них зависит от измерения некоторого удобного параметра, который зависит от уровня заряда.
Прямое измерение
Это было бы легко, если бы аккумулятор мог разряжаться с постоянной скоростью. Заряд в батарее равен току, умноженному на время, в течение которого он протекал. К сожалению, здесь есть две проблемы.Во всех практических батареях ток разряда непостоянен, но уменьшается по мере разряда батареи, обычно нелинейным образом. Следовательно, любое измерительное устройство должно иметь возможность интегрировать ток с течением времени. Во-вторых, этот метод зависит от разрядки аккумулятора, чтобы узнать, сколько в нем заряда. В большинстве приложений, за исключением, возможно, квалификационных испытаний, пользователю (или системе) необходимо знать, сколько заряда находится в элементе, не разряжая его.
Невозможно также напрямую измерить эффективный заряд аккумулятора, отслеживая фактический заряд, вложенный в него во время зарядки.Это связано с кулоновской эффективностью батареи. Потери в батарее во время цикла заряда-разряда означают, что батарея будет заряжать меньше во время разряда, чем было заложено в нее во время зарядки.
Кулоновский КПД или прием заряда — это мера того, сколько полезной энергии доступно во время разряда по сравнению с энергией, используемой для заряда элемента. На эффективность заряда также влияют температура и SOC.
SOC по измерениям удельного веса (SG)
Это обычный способ определения состояния заряда свинцово-кислотных аккумуляторов.Это зависит от измерения изменения веса активных химикатов. По мере того, как аккумулятор разряжается, активный электролит, серная кислота, расходуется, и концентрация серной кислоты в воде снижается. Это, в свою очередь, снижает удельный вес раствора прямо пропорционально степени заряда. Таким образом, фактическая удельная плотность электролита может использоваться как индикатор состояния заряда батареи. Измерения удельного давления традиционно выполнялись с помощью ареометра всасывающего типа, который работает медленно и неудобно.
В настоящее время электронные датчики, которые обеспечивают цифровое измерение удельного веса электролита, могут быть встроены непосредственно в элементы, чтобы обеспечить непрерывное считывание состояния аккумулятора. Этот метод определения SOC обычно не подходит для другого химического состава клеток.
Оценка SOC на основе напряжения
Использует напряжение аккумуляторной ячейки как основу для расчета SOC или оставшейся емкости.Результаты могут сильно различаться в зависимости от фактического уровня напряжения, температуры, скорости разряда и возраста элемента, и для достижения разумной точности должна быть предусмотрена компенсация этих факторов. На следующем графике показана взаимосвязь между напряжением холостого хода и остаточной емкостью при постоянной температуре и скорости разряда для свинцово-кислотного элемента большой емкости. Обратите внимание, что напряжение ячейки уменьшается прямо пропорционально оставшейся емкости.
Свинцово-кислотный аккумуляторОднако могут возникнуть проблемы с некоторыми химическими составами элементов, особенно с литиевыми, которые демонстрируют лишь очень небольшое изменение напряжения в течение большей части цикла заряда / разряда.На следующем графике показана кривая разряда для литий-ионного элемента большой емкости. Это идеально для применения в аккумуляторных батареях, поскольку напряжение элемента не падает заметно при разряде элемента, но по той же причине фактическое напряжение элемента не является хорошим показателем SOC элемента.
Быстрое падение напряжения элемента в конце цикла можно использовать как указание на неизбежную полную разрядку аккумулятора, но для многих приложений требуется более раннее предупреждение.Полностью разряженные литиевые элементы резко сократят срок службы, и в большинстве приложений будет наложено ограничение на DOD, которому подвергается элемент, чтобы продлить срок службы в цикле. Хотя напряжение ячейки можно использовать для определения желаемой точки отсечки, для критически важных приложений предпочтительнее использовать более точные измерения.
См. Также, как измерение напряжения элемента во время «периодов покоя» может повысить точность оценок SOC в литиевых батареях на странице «Программно конфигурируемая батарея».
Текущая оценка SOC — (кулоновский счет)
Энергия, содержащаяся в электрическом заряде, измеряется в кулонах и равна интегралу по времени тока, который доставил заряд. Оставшуюся емкость элемента можно рассчитать путем измерения тока, входящего (заряжая) или покидающего (разряженного) элементов, и интегрируя (накапливая) его с течением времени.Другими словами, заряд, переносимый в ячейку или из нее, получается путем накопления стока тока с течением времени. Контрольной точкой калибровки является полностью заряженная ячейка, а не пустая ячейка, и SOC получается путем вычитания чистого потока заряда из заряда в полностью заряженной ячейке. Этот метод, известный как кулоновский счет, обеспечивает более высокую точность, чем большинство других измерений SOC, поскольку он измеряет поток заряда напрямую. Однако он все еще требует компенсации, чтобы учесть рабочие условия, как и в случае метода, основанного на напряжении.
Можно использовать три метода измерения тока.
- Токовый шунт Самый простой метод определения тока — это измерение падения напряжения на низкоомном, высокоточном, последовательном резисторе считывания между батареей и нагрузкой, известном как токовый шунт. Этот метод измерения тока вызывает небольшую потерю мощности на пути тока, а также нагревает батарею и является неточным для малых токов. Преобразователи на эффекте Холла
- позволяют избежать этой проблемы, но они более дорогие. К сожалению, они не переносят большие токи и подвержены шумам. Магниторезистивные датчики
- GMR еще дороже, но они имеют более высокую чувствительность и более высокий уровень сигнала. Они также обладают лучшей устойчивостью к высоким температурам, чем устройства на эффекте Холла.
Кулоновский счет зависит от тока, протекающего от батареи во внешние цепи, и не учитывает токи саморазряда или кулоновский КПД батареи.
Обратите внимание, что в некоторых приложениях, таких как автомобильные батареи, «непрерывный» ток батареи не отслеживается. Вместо этого производится выборка тока, и по этим выборкам восстанавливается непрерывный ток. В таких случаях частота дискретизации должна быть достаточно высокой, чтобы фиксировать текущие пики и впадины, связанные с ускорением и рекуперативным торможением, соответствующими стилю вождения пользователя.
Оценка SOC из измерений внутреннего импеданса
Во время циклов зарядки-разрядки элемента состав активных химикатов в элементе изменяется, поскольку химические вещества преобразуются между заряженным и разряженным состояниями, что отразится на изменениях импеданса элемента.Таким образом, измерения внутреннего импеданса ячейки также могут использоваться для определения SOC, однако они не используются широко из-за трудностей с измерением импеданса, когда ячейка активна, а также трудностей в интерпретации данных, поскольку импеданс также зависит от температуры.
Fuzzy Logic и другие подобные модели использовались для решения этих проблем, и для этой цели были разработаны ASIC.
Прочие меры государственной ответственности
При постоянной нагрузке и постоянных условиях окружающей среды литиевые элементы имеют линейную характеристику разряда SOC с течением времени, что, возможно, позволяет определить SOC по времени работы или, в случае чисто электрического транспортного средства, по пройденному расстоянию.Этот метод зависит от поддержания постоянного режима вождения, и при изменении режима вождения будут внесены серьезные неточности. Его также нельзя применять, когда используется прерывистая зарядка, как в случае с HEV.
Хотя этот показатель может не подходить в качестве основы для BMS в автомобильной промышленности, он может использоваться для простых приложений, таких как индикаторы запаса хода велосипеда, а также может обеспечивать контрольную проверку прогнозов модели BMS в целях безопасности.
Факторы, влияющие на степень заряда литиевых батарей
К сожалению, ни измерения напряжения, ни подсчета кулонов недостаточно для высокоточного измерения топлива, потому что заряд, который элемент может принять или доставить, зависит не только от основной конструкции элемента, но и от возраста элемента, а также от его краткосрочного и долгосрочного использования. рабочая среда.
Полезная емкость
ОценкаSOC для литиевых элементов усложняется тем фактом, что полезная емкость элемента не постоянна, а значительно варьируется в зависимости от температуры, скорости заряда, разряда и возраста элемента и меньшего влияния на другие параметры, такие как время между зарядками. (из-за скорости саморазряда).
Заряд — скорость разряда
Эффективная емкость элемента зависит от скорости, с которой он заряжается и разряжается, как показано на графике скорости разряда. Это связано с тем, что для завершения электрохимических воздействий в ячейке требуется конечное время, и они не могут мгновенно следовать за электрическим стимулом или нагрузкой, приложенной к ячейке. Это объясняется в разделе о времени зарядки.Если элемент подвергается кратковременным импульсам зарядки и разрядки, как в приложениях EV и HEV, химический эффект импульса зарядки может быть не полностью завершен до того, как последующий импульс разрядки начнет обратный процесс. Даже при подсчете кулонов это может привести к ошибкам в определении SOC клетки, если не принимать во внимание скорость химического воздействия.
Гистерезис
В том же состоянии заряда напряжение холостого хода (OCV) после заряда выше, чем OCV после разряда.Это еще одно проявление постоянной времени, связанное с задержкой химической реакции батареи в соответствии с электрическим стимулом.
Подробнее о гистерезисе и его влиянии на точность измерений SOC.
Температура и скорость нагнетания
На следующем графике показано, как емкость литиевого элемента зависит от температуры и скорости разряда.Он показывает, что при нормальных рабочих температурах кулоновский КПД элемента очень высок, но при низких температурах наблюдается значительное падение КПД, особенно при высоких скоростях разряда, что может привести к серьезным ошибкам в оценке SOC. Это явление не характерно для литиевых элементов, поскольку другие химические составы элементов также демонстрируют ухудшение характеристик при низких температурах.
На графике показан литиевый элемент, работающий между указанными верхним и нижним пределами отсечки напряжения, равным 4.2. Вольт и 2,5 Вольта соответственно. Они считаются полностью заряженными и пустыми состояниями ячейки. Линия «Полный» — это точка, в которой элемент достигает полного заряда с использованием метода зарядки постоянным током — постоянным напряжением при соответствующей температуре. Показаны две «пустые» линии, соответствующие двум разным скоростям разряда 0,2 ° C и 1,0 ° C.
Емкость ячейки при заданной скорости и температуре — это разница между строкой «Полный» и соответствующей строкой «Пустой».
На практике аккумулятор можно заряжать при одной температуре и разряжать при другой температуре, и это необходимо учитывать при расчете эффективной емкости аккумулятора. Обратите внимание, что элемент очень неэффективен при отказе от заряда при высоких скоростях разряда и низких температурах. Другими словами, его кулоновская эффективность резко ухудшается при низких температурах. Также обратите внимание, что указанный выше элемент может быть полностью разряжен при высоком уровне тока, но может быть дополнительно разряжен при низком уровне тока на количество миллиампер-часов между двумя «пустыми» точками, которые соответствуют текущей температуре элемента.
Стандартные технические характеристики элемента указывают емкость только при 25 ° C и 0,3 ° C. На приведенном ниже графике показано комбинированное влияние скорости и температуры на эффективную емкость ячейки. Обратите внимание, что доступная емкость уменьшается при высоких скоростях разряда, и хотя есть небольшое снижение емкости при работе при высоких температурах, есть существенное снижение при низких температурах. Подобные эффекты проявляются во время цикла зарядки.
Приведенный выше график характеризует производительность литиевого элемента в двух ожидаемых рабочих условиях. Матрица значений емкости, связанная со всеми возможными комбинациями тока и температуры, полезна в качестве справочной таблицы , используемой приведенными ниже алгоритмами оценки заряда.
Эта матрица характеристик батареи подобна «карте двигателя», в которой хранится множество кривых характеристик двигателя при различных условиях эксплуатации, используемых в системах управления, используемых в современных двигателях внутреннего сгорания.
Старение клеток
График ниже показывает, как старение влияет на емкость ячейки. Чтобы учесть это, формулы для расчета остаточной мощности должны динамически изменяться с течением времени, чтобы оставаться точными.
Цикл жизни элемента обычно считается завершенным, когда емкость элемента упала до 80% от своего значения, когда элемент был новым.Обратите внимание, что емкость уменьшается довольно линейно по мере старения элемента и продолжает уменьшаться после указанного срока службы батареи. Внезапной смерти нет, и батареи можно продолжать использовать, хотя и с меньшей емкостью.
Саморазряд
В дополнение к заряду, который вводится в аккумулятор и снимается с него во время нормального процесса заряда-разряда, необходимо также учитывать продолжающийся долгосрочный эффект саморазряда, потребляющий доступную энергию в элементе.
Прочие факторы
Другие факторы, такие как эффективность заряда / разряда, также влияют на емкость элемента.
Расчет SOC литиевых батарейКак отмечалось выше, измерения напряжения или тока могут дать приблизительное представление о состоянии заряда батареи, но для большей точности, особенно для литиевых батарей, необходимо учитывать другие факторы.
Теоретическая оценка SOC
Можно, но не обязательно, оценить SOC батареи из чисто теоретических соображений. Батарейки нелинейные. SOC можно было бы рассчитать на основе измеренных параметров ячейки и рабочих условий, если бы были доступны достаточные данные. К сожалению, это слишком сложно, поскольку существует 30 или более переменных, влияющих на производительность ячейки, некоторые из которых гораздо более значительны, чем другие.Они перечислены ниже только для информации, так как этот метод на практике не используется (если только в сильно урезанном виде) »
Теоретические расчеты основаны на кулоновском подсчете, измененном в зависимости от напряжения и температуры элемента, скорости, с которой элементы заряжались и разряжались, химического состава различных активных химических веществ и любого использованного легирования, возможности и воздействия загрязнение, форма и длина физических путей тока в ячейке, объем электролита, толщина электролита и сепаратора, удельное сопротивление компонентов, скорость массопереноса ионов через электролит, скорость химическое воздействие на поверхности электродов или скорость поглощения ионов интеркаляционными слоями, фактическая площадь поверхности электродов, эффективная площадь поверхности электродов с учетом размеров частиц химикатов, эффект пассивации на поверхности электрода, температура окружающей среды, эффект джоулева нагрева, скорость саморазряда ячеек, время между обугливанием ges плюс, возможно, несколько других факторов. |
Теоретический расчет SOC всегда будет ограничен количеством эффектов, для которых можно разработать уравнения.
Практическая оценка SOC
В качестве альтернативы можно измерить рабочие характеристики типичной ячейки (или ячеек) для образца, а результаты использовать в качестве шаблона для представления производительности остальной популяции.Основывать оценки производительности ячеек на справочных таблицах, построенных на основе данных измерений фактических ячеек, намного проще, чем проводить теоретические оценки, поскольку они автоматически учитывают большинство, если не все факторы, влияющие на SOC. Справочные таблицы представляют собой пошаговые аппроксимации кривых характеристик и характеристик, которые представляют характеристики разряда элемента как функцию температуры, скорости разряда или других параметров. См. Пример выше. Необходимые справочные таблицы разрабатываются на основе лабораторных измерений в контролируемых условиях.Процесс сбора данных и построения справочной таблицы называется характеристикой ячейки и должен выполняться только один раз, однако новый набор данных или справочная таблица должны быть созданы для каждого варианта химического состава ячейки и используемой конструкции ячейки.
Многоразовое стандартное программное обеспечение, которое можно использовать для обработки различных наборов данных
После того, как элементы были охарактеризованы, следующим шагом будет рассмотрение применения батареи.Кулоновский счет используется для обеспечения начальной оценки SOC ячейки, и это значение затем модифицируется, чтобы учесть неиспользуемую емкость ячейки, соответствующую ее рабочей точке, путем обращения к справочной таблице. Таким образом, оценка SOC выполняется путем построения модели батареи, которая воспроизводит характеристики батареи в программном обеспечении, и алгоритма, который предсказывает ее поведение в ответ на различные внешние и внутренние условия.
Для этого метода, конечно же, требуются датчики для предоставления данных измерений текущего состояния батареи, память для хранения модели батареи и микропроцессор для вычисления результатов.
Датчикив батарее обеспечивают аналоговые входы, представляющие температуру, напряжение и ток ячеек, для модели, а прецизионные аналого-цифровые преобразователи переводят эти входные данные в цифровую форму. Дополнительная информация, такая как температура окружающей среды и состояние различных аварийных сигналов, при необходимости, также может быть предоставлена модели. Эти входные данные постоянно контролируются и обновляются по запросу микропроцессора, который управляет моделью. Затем модель может использовать эти входные данные для оценки SOC или другого состояния батареи в любой момент времени.
В динамических приложениях, таких как автомобильные батареи, входы должны контролироваться не реже одного раза в секунду, чтобы гарантировать, что не будут пропущены значительные потоки заряда или критические события, и прогнозирование SOC для каждой отдельной ячейки в батарее должно быть выполнено в течение интервала выборки. Из-за сложности алгоритма и количества задействованных входов система должна выполнять более миллиона или более вычислений с плавающей запятой в секунду.Для этого нужен мощный микропроцессор. Пример необходимости постоянного обновления оценок SOC в работающей системе приведен в разделе «Системы управления батареями».
Оценка точности оценок SOC на основе справочных таблиц
- Ошибки смещения (учитываемое количество и значимость влияющих факторов)
- Размер и срок действия выборки
- Точки данных и алгоритмы прогнозирования
- Кулоновский КПД
- Скорость саморазряда
- Случайные ошибки (точность измерения)
- Напряжение элемента
- Температура ячейки
- Сила тока батареи
- Ошибка выборки тока
- Ошибки квантования аналого-цифрового преобразователя
- Скорость саморазряда
- Эффекты гистерезиса
- Возраст батареи / количество оборотов емкости (завершенных циклов)
- Накопительное накопление ошибок
Для точного представления характеристик заряда / разряда элемента должны быть разработаны аналогичные справочные таблицы для всех известных факторов, которые существенно влияют на емкость элемента (Ач) и импеданс, такие как температура элемента, температура окружающей среды, заряд и разряд. скорости, скорости рассеивания тепла, скорости заряда саморазряда элемента или кулоновской эффективности и деградации емкости в течение срока службы элемента.
Если любой из ключевых параметров, влияющих на полезную емкость соты, игнорируется, в оценке SOC будет соответственно большая ошибка смещения.
Ошибка смещенияSOC, основанная только на кулоновском подсчете, без компенсирующих факторов, может достигать 30%!
Точность может быть ограничена небольшим размером выборки, использованной для построения набора данных, и тем, были ли образцы, использованные для характеристики клеток, действительно репрезентативными для популяции на протяжении ожидаемого производственного цикла ячеек.
Точность также будет напрямую зависеть от количества точек данных в справочной таблице. Для получения более точных оценок на основе ограниченных наборов данных были разработаны различные алгоритмы (примеры ниже). По сути, это означает объединение измеренных точек производительности в наборе данных или поисковой таблице в непрерывную поверхность, чтобы можно было извлечь значения производительности из промежуточных точек.Каждый из этих алгоритмов имеет свою характеристическую точность оценки.
Подсчет кулонов также подвержен ошибкам, поскольку все кулоны, закачанные в аккумулятор во время зарядки, не могут быть преобразованы в доступный заряд. Часть энергии неизбежно теряется в процессе химического преобразования, обычно в виде тепла. Точно так же при обратном пути по тем же причинам часть доступного заряда теряется, и только часть сохраненного заряда доступна для выполнения работы.Потери энергии в оба конца для литиевой батареи составляют около 3%. Кулоновский КПД — это соотношение между энергией разряда и энергией заряда.
Другая причина, по которой вся энергия, вложенная в батарею, не может выйти снова, — это саморазряд элементов. Саморазряд литиевых батарей обычно составляет менее 3% в месяц, поэтому в течение суток или около того эффект очень мал, но становится тем значительнее, чем больше периоды между зарядками, и может быть источником накопления ошибок, если только схема контроля батареи регулярно сбрасывается или калибруется.
Случайные ошибки возникают из-за неточностей при измерении факторов, которые фактически учитываются при оценке SOC. Это относится как к характеристикам элементов, так и к элементам в работающих батареях, поэтому есть два потенциальных источника подобных ошибок.
Обычно чистый эффект от серии случайных ошибок, например, из-за неточностей измерений, можно рассчитать с использованием метода «корневой суммы квадратов».
Со временем «полностью заряженная» контрольная точка системы батареи может дрейфовать, поэтому систему следует регулярно калибровать для сброса контрольного SOC на 100%, когда батарея полностью заряжена. Регулярная калибровка системы оценки SOC необходима, чтобы избежать накопления кумулятивной ошибки. Это особенно верно для аккумуляторов HEV, которые при нормальных обстоятельствах никогда не достигают своего полностью заряженного состояния, когда систему можно сбросить до известного уровня заряда.
Принимая во внимание все эти факторы, расчет SOC может быть подвержен очень большим ошибкам, которые могут поставить под угрозу приложение, если в конструкции аккумуляторной системы не будут предприняты шаги для смягчения этих ошибок. Точность, заявленная для расчета SOC, должна соответствовать совокупной точности измерений составляющих параметров плюс любые ошибки смещения. Заявления производителя о точности SOC выше 5% являются типичными, но это кажется трудно оправданным, учитывая факторы, описанные здесь, и ошибки могут расходиться еще больше по мере того, как клетки стареют.
Сравните это с требованиями к точности выше
Алгоритмы оценки заряда
Несколько различных методов, таких как нечеткая логика, фильтрация Калмана, нейронные сети и рекурсивные методы самообучения, были использованы для повышения точности оценки SOC, а также оценки состояния здоровья (SOH).
Нечеткая логика
Fuzzy Logic — это простой способ сделать определенные выводы из расплывчатой, неоднозначной или неточной информации.Он напоминает процесс принятия решений человеком с его способностью работать с приблизительными данными для поиска точных решений.
В отличие от классической логики, которая требует глубокого понимания системы, точных уравнений и точных числовых значений, нечеткая логика позволяет моделировать сложные системы с использованием более высокого уровня абстракции, основанного на наших знаниях и опыте. Это позволяет выразить это знание с помощью субъективных понятий, таких как большой, маленький, очень горячий, ярко-красный, долгое время, быстро или медленно.Это качественное лингвистическое представление экспертных знаний представляет собой естественное, а не числовое описание системы и позволяет относительно легко разработать алгоритм по сравнению с числовыми системами. Затем выходные данные можно сопоставить с точными числовыми диапазонами, чтобы обеспечить характеристику системы. Нечеткая логика широко используется в системах автоматического управления.
Используя этот метод, мы можем использовать всю доступную нам информацию о характеристиках батареи, чтобы получить более точную оценку ее состояния заряда или состояния здоровья.Доступны пакеты программного обеспечения, упрощающие этот процесс.
Фильтр Калмана
Фильтрация Калмана решает давний вопрос: как получить точную информацию из неточных данных? Что еще более важно, как обновить «наилучшую» оценку состояния системы при поступлении новых, но все еще неточных данных? Примером такой ситуации является автомобильное приложение HEV.На SOC аккумулятора влияет множество одновременных факторов, и он постоянно меняется в зависимости от стиля вождения пользователя. Фильтр Калмана предназначен для удаления нежелательного шума из потока данных. Он работает, прогнозируя новое состояние и его неопределенность, а затем корректируя это с помощью нового измерения. Он подходит для систем с несколькими входами и широко используется в прогнозирующих контурах управления в системах навигации и наведения. С помощью фильтра Калмана точность модели прогнозирования SOC батареи может быть улучшена, и для таких систем заявлена точность более 1%.
Как и в случае с Fuzzy Logic, для облегчения его реализации доступны стандартные пакеты программного обеспечения.
Нейронные сети
Нейронная сеть — это компьютерная архитектура, смоделированная на основе взаимосвязанной системы нейронов человеческого мозга, которая имитирует процессы обработки информации, памяти и обучения. Он имитирует способность мозга сортировать закономерности и учиться методом проб и ошибок, распознавая и извлекая взаимосвязи, лежащие в основе данных, с которыми он представлен.
Каждый нейрон в сети имеет один или несколько входов и производит выход; каждый вход имеет весовой коэффициент, который изменяет значение, поступающее в нейрон. Нейрон математически манипулирует входными данными и выдает результат. Нейронная сеть — это просто нейроны, соединенные вместе, причем выход одного нейрона становится входом для других, пока не будет достигнут окончательный результат. Сеть учится, когда ей представляются примеры (с известными результатами); весовые коэффициенты корректируются на основе данных — либо посредством вмешательства человека, либо с помощью запрограммированного алгоритма, — чтобы приблизить конечный результат к известному результату.Другими словами, нейронные сети «учатся» на примерах (когда дети учатся узнавать собак на примерах собак) и демонстрируют некоторую способность к обобщению, выходящему за рамки обучающих данных.
Таким образом, нейронные сетинапоминают человеческий мозг двумя способами:
- Нейронная сеть приобретает знания в процессе обучения.
- Знания нейронной сети хранятся в пределах силы межнейронных связей, известных как синаптические веса.
Истинная сила и преимущество нейронных сетей заключается в их способности представлять как линейные, так и нелинейные отношения, а также в их способности изучать эти отношения непосредственно из моделируемых данных. Среди множества приложений — системы прогнозного моделирования и управления.
Методы нейронной сетиполезны для оценки производительности батареи, которая зависит от количественной оценки влияния множества параметров, большинство из которых не могут быть определены с математической точностью.Алгоритмы уточняются с помощью опыта, полученного при работе с аналогичными аккумуляторами.
Двухпараметрическая оценка SOC и повышение точности
В то время как изменение напряжения ячейки только от SOC недостаточно велико для обеспечения точного измерения SOC, тем не менее, достаточно предоставить ссылку на проверку ошибок для текущих (кулоновский счет) оценок SOC.Кроме того, поскольку точность SOC, определяемая кулоновским подсчетом, зависит от применения поправочных коэффициентов в зависимости от измеренного заряда батареи, температуры и напряжения, те же измерения напряжения могут использоваться для обеспечения альтернативной оценки SOC без заметного влияния на сложность измерения. система.
Общая точность оценки SOC затем может быть улучшена путем объединения подходящим образом взвешенных значений оценок SOC на основе тока и напряжения в одно значение.
Индикаторы состояния аккумуляторной батареи
Малые первичные элементы теперь доступны с аналоговыми индикаторами SOC на ячейках, известными как тестеры батарей или указатели уровня топлива. На боковой стороне ячейки имеется напечатанная полоса, напоминающая термометр, которая дает приблизительное представление об оставшейся емкости батареи.
На основе термохромных и проводящих чернил тонкий слой проводящих чернил наносится в форме клина.Самая узкая точка указывает на самый низкий уровень заряда, а самая широкая область указывает на полный заряд. Когда цепь замыкается и ток течет через проводящие чернила, сопротивление чернил заставляет их нагреваться. Небольшое количество тока может генерировать достаточно тепла, чтобы повлиять на наименьшую область клина, но по мере того, как область расширяется, требуется больше тока, чтобы поднять его температуру. Термохромные чернила, напечатанные поверх проводящих чернил, меняют цвет в зависимости от температуры, а степень изменения цвета вдоль клина указывает величину тока и, следовательно, напряжение батареи.
Дизайн завершен маскирующим слоем из обычных чернил, который создает иллюзию термометра или аналогового указателя уровня топлива.
Точность измерения зависит от температуры окружающей среды.
SOC конденсаторовСостояние заряда конденсатора определяется напряжением на его выводах.
Срок службы батареи и SOC
Узнайте больше о том, как эксплуатация SOC влияет на срок службы батареи.
BU-903: Как измерить состояние заряда
Изучите измерения SoC и почему они неточны.
Метод измерения напряжения
Измерение степени заряда по напряжению — это просто, но оно может быть неточным, поскольку на напряжение влияют материалы ячеек и температура. Самая вопиющая ошибка SoC, основанная на напряжении, возникает при нарушении работы аккумулятора зарядом или разрядом. Возникающее в результате перемешивание искажает напряжение и больше не соответствует правильному эталону SoC. Для получения точных показаний аккумулятор должен находиться в разомкнутой цепи не менее четырех часов; Производители свинцово-кислотных аккумуляторов рекомендуют 24 часа.Это делает метод SoC на основе напряжения непрактичным для батареи в активной нагрузке.
Каждый химический состав батареи имеет свой уникальный характер разряда. В то время как SoC на основе напряжения достаточно хорошо работает для свинцово-кислотных аккумуляторов, которые не работают, плоская кривая разрядки никелевых и литиевых аккумуляторов делает метод напряжения неприменимым.
Кривые напряжения разряда для литий-марганца, литий-фосфата и NMC очень плоские, и 80 процентов накопленной энергии остается в плоском профиле напряжения.Хотя эта характеристика желательна в качестве источника энергии, она представляет проблему для измерения топлива на основе напряжения, поскольку она показывает только полный заряд и низкий заряд; важная средняя часть не может быть оценена точно. На рисунке 1 показан плоский профиль напряжения литий-фосфатных (LiFePO) аккумуляторов.
Рисунок 1: Напряжение разряда фосфата лития-железа.
Li-фосфат имеет очень плоский профиль разряда, что затрудняет оценку напряжения для оценки SoC.
Свинцово-кислотная пластина поставляется с пластинами разного состава, которые необходимо учитывать при измерении SoC напряжением. Кальций, добавка, которая делает батарею необслуживаемой, повышает напряжение на 5–8 процентов. Кроме того, тепло повышает напряжение, а холод вызывает его уменьшение. Поверхностный заряд еще больше вводит в заблуждение оценки SoC, показывая повышенное напряжение сразу после заряда; кратковременная разрядка перед измерением нейтрализует ошибку. Наконец, аккумуляторы AGM вырабатывают немного более высокое напряжение, чем их эквивалент.
При измерении SoC по напряжению холостого хода (OCV) напряжение батареи должно быть «плавающим» без подключенной нагрузки. Это не относится к современным автомобилям. Паразитные нагрузки для служебных функций переводят аккумулятор в состояние напряжения квазизамкнутой цепи (CCV).
Несмотря на неточности, большинство измерений SoC частично или полностью полагаются на напряжение из-за простоты. SoC на основе напряжения популярна в инвалидных колясках, скутерах и гольф-карах. Некоторые инновационные BMS (системы управления батареями) используют периоды отдыха для корректировки показаний SoC в рамках функции «обучения».На рисунке 2 показан диапазон напряжений свинцово-кислотного моноблока 12 В от полностью разряженного до полностью заряженного.
Рисунок 2: Диапазон напряжения свинцово-кислотного моноблока 12 В от полностью разряженного до полностью заряженного. Источник: Power-Sonic |
Ареометр
Ареометр предлагает альтернативу измерению SoC затопленных свинцово-кислотных аккумуляторов. Вот как это работает: когда свинцово-кислотная батарея принимает заряд, серная кислота становится тяжелее, что приводит к увеличению удельного веса (SG).Когда SoC уменьшается из-за разряда, серная кислота удаляется из электролита и связывается с пластиной, образуя сульфат свинца. Плотность электролита становится легче и водоподобнее, а удельный вес — ниже. В таблице 2 приведены показания BCI стартерных батарей.
Приблизительное состояние заряда | Средний удельный вес | Напряжение холостого хода | |||
2V | 6V | 8V | 8V | %1.265 | 2,10 | 6,32 | 8,43 | 12,65 |
75% | 1,225 | 2,08 | 6,22 | 8,30 | 12,45 | 12,45 0 | 8,16 | 12,24 |
25% | 1,155 | 2,01 | 6,03 | 8,04 | 12,06 |
0% | 1,120 | 1.98 | 5,95 | 7,72 | 11,89 |
Таблица 2: Стандарт BCI для оценки SoC стартерной батареи с сурьмой.
Показания снимаются при 26 ° C (78 ° F) после 24-часового отдыха.
В то время как BCI (Международный совет по аккумуляторным батареям) указывает удельный вес полностью заряженной стартерной батареи на уровне 1,265, производители аккумуляторов могут использовать 1,280 и выше. Увеличение удельного веса приведет к перемещению показаний SoC вверх в справочной таблице.Более высокий удельный вес улучшит характеристики батареи, но сократит срок ее службы из-за повышенной коррозионной активности.
Помимо уровня заряда и плотности кислоты, низкий уровень жидкости также изменит SG. Когда вода испаряется, показания удельного веса повышаются из-за более высокой концентрации. Батарея также может быть переполнена, что снижает количество. Добавляя воду, дайте время для перемешивания, прежде чем проводить измерение удельного веса.
Удельный вес зависит от типа аккумуляторной батареи. В аккумуляторах глубокого разряда используется плотный электролит с удельной массой до 1.330 для получения максимальной удельной энергии; авиационные батареи имеют удельную плотность около 1,285; тяговые аккумуляторы для вилочных погрузчиков обычно стоят 1,280; стартерные батареи идут по 1,265; а стационарные батареи имеют низкий удельный вес 1,225. Это уменьшает коррозию и продлевает срок службы, но снижает удельную энергию или емкость.
В мире батарей нет ничего абсолютного. Удельный вес полностью заряженных аккумуляторов глубокого цикла той же модели может составлять от 1,270 до 1,305; полностью разряженные, эти батареи могут варьироваться от 1 до 1.097 и 1.201. Температура — еще одна переменная, которая изменяет показание удельного веса. Чем холоднее падает температура, тем выше (плотнее) становится значение удельного веса. В таблице 3 показана плотность удельного веса батареи глубокого разряда при различных температурах.
Температура электролита | Плотность при полной зарядке | Таблица 3: Соотношение удельного веса и температуры батареи глубокого разряда. Более низкие температуры обеспечивают более высокие значения удельного веса. | |
40 ° C | 104 ° F | 1.266 | |
30 ° C | 86 ° F | 1,273 | |
20 ° C | 68 ° F2 | 10 ° C50 ° F | 1,287 |
0 ° C | 32 ° F | 1,294 |
Погрешности в показаниях удельного веса также могут возникать, если батарея расслоена, что означает небольшую концентрацию сверху и тяжелый снизу.(См. BU-804c: Потеря воды, стратификация кислоты и поверхностный заряд). Высокая концентрация кислоты искусственно повышает напряжение холостого хода, что может ввести в заблуждение оценки SoC из-за ложных показаний SG и напряжения. Электролит должен стабилизироваться после заряда и разряда, прежде чем снимать показания SG.
Подсчет кулонов
Ноутбуки, медицинское оборудование и другие профессиональные портативные устройства используют подсчет кулонов для оценки SoC путем измерения входящего и выходящего тока.Ампер-секунда (As) используется как для заряда, так и для разряда. Название «кулон» было дано в честь Шарля-Огюстена де Кулона (1736–1806), который наиболее известен разработкой закона Кулона. (См. BU-601: Как работает интеллектуальная батарея?)
Хотя это элегантное решение сложной проблемы, потери сокращают общую поставленную энергию, а то, что доступно в конце, всегда меньше, чем было вложено. Несмотря на это, счет кулонов работает хорошо, особенно с литий-ионными батареями, которые обладают высокой эффективностью кулонов и низким саморазрядом.Были внесены улучшения за счет учета старения и саморазряда в зависимости от температуры, но все же рекомендуется периодическая калибровка, чтобы привести «цифровую батарею» в гармонию с «химической батареей». (См. BU-603: Как откалибровать «умную» батарею)
Чтобы преодолеть калибровку, современные датчики уровня топлива используют функцию «обучения», которая оценивает, сколько энергии аккумулятор выдал при предыдущей разрядке. Некоторые системы также соблюдают время зарядки, потому что выцветший аккумулятор заряжается быстрее, чем хороший.
Создатели современных BMS заявляют о высокой точности, но реальная жизнь часто показывает обратное. Большая часть выдумки скрыта за причудливым считыванием. Смартфоны могут показывать 100-процентный заряд, когда батарея заряжена только на 90 процентов. Инженеры-конструкторы говорят, что показания SoC на новых батареях для электромобилей могут отличаться на 15 процентов. Сообщается о случаях, когда у водителей электромобилей заканчивается заряд, а на указателе уровня топлива остается 25-процентное показание SoC.
Импедансная спектроскопия
Состояние заряда батареи также можно оценить с помощью импедансной спектроскопии с использованием комплексного метода моделирования Spectro ™.Это позволяет снимать показания SoC при постоянной паразитной нагрузке 30А. Поляризация напряжения и поверхностный заряд не влияют на показания, поскольку SoC измеряется независимо от напряжения. Это открывает возможности для применения в автомобилестроении, где одни батареи разряжаются дольше других во время тестирования и отладки и нуждаются в зарядке перед транспортировкой. Измерение SoC методом импедансной спектроскопии также можно использовать для систем выравнивания нагрузки, в которых батарея постоянно заряжается и разряжается.
Измерение SoC независимо от напряжения также поддерживает док-станции и выставочные залы.При открытии двери автомобиля возникает паразитная нагрузка около 20 А, которая вызывает возбуждение аккумулятора и искажает измерения SoC на основе напряжения. Метод Spectro ™ помогает отличить разряженную батарею от батареи с подлинным дефектом.
Измерение SoC методом импедансной спектроскопии ограничивается новой батареей с заведомо хорошей емкостью; емкость должна быть прибита гвоздями и иметь неизменное значение. Хотя показания SoC возможны при постоянной нагрузке, аккумулятор не может заряжаться во время теста.
На рисунке 4 показаны результаты испытаний импедансной спектроскопии после удаления с батареи паразитной нагрузки 50 А.Как и ожидалось, напряжение разомкнутой клеммы повышается как часть восстановления, но показания Spectro ™ остаются стабильными. Устойчивые результаты SoC также наблюдаются после снятия заряда, когда напряжение нормализуется как часть поляризации.
Рис. 4. Взаимосвязь напряжения и измерений, выполненных методом импедансной спектроскопии после снятия нагрузки. Аккумулятор восстанавливается после снятия нагрузки. Показания Spectro SoC остаются стабильными при повышении напряжения. |
Состояние заряда — обзор
В общем, зарядка или разрядка батареи ограничиваются низкочастотными колебаниями из-за ее электрохимических реакций, тогда как батарея суперконденсаторов хорошо поглощает высокочастотные колебания мощности из-за его электростатическое действие (Tummuru et al., 2015; Nehrir et al., 2011). Кроме того, уровень заряда (SOC) устройств накопления энергии должен быть ограничен до их крайних пределов. Принимая во внимание все эти факты, рекомендуется разделить команду полной мощности на высокочастотные и низкочастотные команды и подавать ее отдельно на батарею и батарею суперконденсаторов.Следовательно,
(3.9) Pess = Pess, hf + Pess, lf
, где P ess , hf и P ess , lf — низкочастотные колебания в команде мощности. P ess , lf и P ess , hf могут быть индивидуально разделены на команды разрядки и зарядки в зависимости от их знака.
(3.10) Песс, hf = Pess, hf, dis + Pess, hf, cha
(3.11) Pess, lf = Pess, lf, dis + Pess, lf, cha
, где P ess , hf , dis , P ess , hf , cha , P ess , lf , , ess , lf , cha — это команды высокочастотной разрядки, зарядки, низкочастотной разрядки и мощности зарядки соответственно.Фильтр нижних частот с частотой среза « ω c » используется для фильтрации низкочастотной команды мощности от P ess .
Значение SOC суперконденсатора должно быть ограничено между SOC sc, min и SOC sc, max . Точно так же SOC батареи должен быть ограничен между крайними значениями SOC bat, min и SOC bat, max .Лучше всего не допускать дальнейшего поглощения накопителем энергии, когда его предел SOC находится на верхнем пределе, и наоборот. Для этого энергосистема должна воспроизводить работу запоминающего устройства во время их работы с экстремальными предельными значениями SOC. Независимо от того, является ли значение P ess положительным, отрицательным или нулевым, следующие комбинации могут существовать в различных условиях системы. Это
- •
Батарея + суперконденсатор
Эта комбинация преобладает до тех пор, пока пределы SOC обоих устройств находятся в их крайних пределах или когда SOC HESD находится на / ниже своего нижнего предела и существует эталонная мощность зарядки на ESD или когда SOC HESD находится на своем верхнем пределе, и HESD настаивает на разрядке в этот момент.Во время такой комбинации устройств энергосистема остается подключенной к микросети постоянного тока при надлежащей синхронизации, но не передает мощность, то есть энергосистема остается в режиме ожидания.
- •
Батарея + электросеть
Эта комбинация устройств включается только тогда, когда SOC суперконденсатора находится на нижнем пределе и существует эталонная мощность разряда для устройства и / или когда SOC суперконденсатор находится на своем верхнем пределе, и в цепи постоянного тока имеется избыточная мощность.Во время этой комбинации устройств энергосистема остается подключенной к микросети постоянного тока при надлежащей синхронизации и обеспечивает необходимый двунаправленный высокочастотный поток энергии, то есть заменяет суперконденсатор.
- •
Суперконденсатор + энергосеть
Энергетическая сеть выполняет задачу батареи, когда SOC батареи находится на нижнем пределе и есть потребность в низкочастотной мощности в звене постоянного тока или когда SOC батареи находится на верхнем пределе, и в цепи постоянного тока имеется низкочастотная избыточная мощность.Во время этой комбинации устройств энергосистема остается подключенной к микросети постоянного тока при надлежащей синхронизации и обеспечивает требуемый двунаправленный поток энергии.
- •
Только энергосеть
Энергетическая сеть дополняет функцию блока батарей и блока суперконденсаторов только тогда, когда пределы SOC обоих устройств находятся на своих максимальных / минимальных пределах и есть требование для поглощения / отключения питание от / до промежуточного контура. Здесь энергосистема обеспечивает двунаправленный поток энергии как в высокочастотном, так и в низкочастотном направлении.
Высвободившиеся опорные токи подаются на соответствующие контроллеры тока на основе триггеров SR для надлежащего отслеживания.
Как мы оцениваем «состояние заряда» аккумуляторов?
Завершая отчет на своем ноутбуке поздно ночью, вы получаете предупреждение о том, что батарея разряжена и вам следует подключить зарядное устройство. «Еще несколько минут», — думаете вы и продолжаете работу. Внезапно вы получаете ненавистное сообщение о том, что батарея вашей системы критически разряжена, и если вы не подключите ее к зарядному устройству, компьютер выключится.
Только после этого вы отчаянно ищете адаптер для зарядки и надеетесь защитить свою несохраненную работу от цифровой катастрофы.
Наши ноутбуки и смартфоны могут делать так много вещей, что мы часто принимаем их как должное. Помимо прочего, почти все современные электронные устройства следят за своими батареями и сообщают вам в абсолютных процентных значениях, сколько заряда осталось или как долго они могут использоваться, прежде чем им понадобится подзарядка.
Вы когда-нибудь задумывались, как современные электронные устройства это делают?
Как смартфоны и ноутбуки подсчитывают, сколько заряда осталось в их батареях?
Краткий ответ: Точное определение количества оставшегося заряда в батарее — непростая задача, но есть несколько методов, которые можно использовать, включая оценку на основе напряжения, оценку на основе тока (подсчет кулонов) и оценку из измерений внутреннего импеданса.Все эти методы основаны на измерении удобного параметра, который изменяется по мере зарядки / разрядки аккумулятора.
(Фото предоставлено Bloomua / Shutterstock)
Однако все эти методы имеют свои недостатки, и поэтому нельзя полагаться на 100% точные показания «оставшегося заряда» аккумулятора. Кроме того, некоторые из этих методов специфичны для определенного химического состава клеток.
Прежде чем мы подробно рассмотрим некоторые из этих методов, важно сначала с удивительной последовательностью расшифровать термин, который будет использоваться в этой статье.
Что такое «Состояние заряда»?
Состояние заряда, как следует из названия, сообщает вам состояние батареи, а точнее, оставшийся в ней заряд в данный момент. Обычно сокращенно SOC, это эквивалент датчика уровня топлива для аккумуляторной батареи в электромобиле или гибридном транспортном средстве.
Еще один термин, тесно связанный с SOC, — это глубина разряда (DOD). На самом деле это просто инверсия SOC, то есть это альтернативный метод, чтобы указать, сколько заряда батареи было израсходовано.
Батарея держит заряд, и мы хотим измерить, сколько она держится в данный момент. Другими словами, мы хотим определить его состояние зарядки. Этого можно добиться несколькими способами. Поговорим о некоторых из них.
Определение состояния заряда путем измерения напряжения
Состояние заряда аккумулятора часто измеряется по его напряжению, так как этот процесс прост и дает довольно точные результаты. Он в основном преобразует показания напряжения батареи в SOC и отображает их пользователю.
Попробуем разобраться в этом процессе с помощью аналогии. Батарея похожа на резервуар с водой с краном у основания. У вас нет возможности заглянуть в резервуар, поэтому вы не можете знать, сколько в нем воды в данный момент. Как вы определите, сколько воды осталось в баке?
Один из способов оценить количество оставшейся воды — посмотреть на давление воды, выходящей из крана. Если вода выходит быстро, это означает, что она находится под большим давлением, что означает, что бак почти полностью заполнен.С другой стороны, если вода из крана течет очень медленно, значит, бак почти пустой.
То же самое и с батареями. Литий-ионный аккумулятор с напряжением 3,5 В может составлять 3,6 В при полном и 3,3 В при почти полном разряде (т. Е. Было использовано 92-98% его общей емкости). Обратите внимание, что литий-ионная батарея может быть разряжена до 3 В и ниже, но батарея показывает 0% или «полностью разряжена» при 3,3 В, чтобы обеспечить максимальную полезную емкость батареи. Разряд батареи ниже этого значения напряжения отключения может серьезно повредить батарею.
Устройство принимает это напряжение и, соответственно, оценивает, сколько заряда осталось в аккумуляторе, которое затем отображается пользователю на экране.
Проблемы с оценкой SOC по напряжению
Хотя процесс прост, на него нельзя положиться, чтобы обеспечить 100% точные результаты, потому что определенные факторы, такие как температура окружающей среды, скорость разряда, материалы элементов и возраст батареи, влияют на напряжение. Кривые напряжения в большинстве батарей имеют нелинейную кривую в зависимости от состояния заряда.
Если вы не находитесь на самых краях кривой заряда или разряда, напряжение на самом деле не сильно меняется — это означает, что довольно сложно определить разницу между батареей, заряженной на 60% и батареей, заряженной на 40%.
Кроме того, существует проблема гистерезиса, что означает, что батарея продолжает разряжаться даже после того, как перестала разряжаться. Чтобы предотвратить эту проблему, аккумулятор необходимо полностью «разрядить» на несколько часов, чтобы измерение напряжения работало точно.(Источник)
Определение состояния заряда с использованием тока (счетчик Кулона)
Другой метод оценки SOC — это измерение тока, входящего (когда он заряжается) и выходящего (когда он разряжается) в элементы, и его интеграция с течением времени. Проще говоря, вы можете подсчитать, сколько заряда осталось в аккумуляторе, посчитав, сколько заряда уже было израсходовано. Этот метод определения SOC удачно называется «кулоновским счетом», поскольку он учитывает заряда, входящего / выходящего из ячеек.
В некоторых электронных устройствах может быть установлено крошечное устройство, известное как счетчик кулонов , который измеряет ток, потребляемый ведущим устройством, суммирует его с течением времени, а затем сравнивает его с запрограммированной емкостью батареи, чтобы обеспечить оценку сколько заряда осталось в аккумуляторе.
Хотя он обеспечивает большую точность, чем большинство других методов оценки SOC, поскольку он измеряет ток напрямую, он имеет свой собственный набор ограничений, а именно то, что он не учитывает эффективность батареи.Кроме того, очень сложно (и дорого) проводить точные измерения тока (Источник).
Оценка SOC на основе измерений удельного веса (SG)
Это очень часто используемый метод для оценки SOC свинцово-кислотных аккумуляторов.
Свинцово-кислотный аккумулятор
Он включает в себя использование датчика, который измеряет изменения веса активных химикатов, присутствующих в аккумуляторе по мере его разряда. По мере того, как заряд, накопленный в аккумуляторе, израсходован, концентрация серной кислоты (активного электролита в аккумуляторе) уменьшается, что пропорционально снижает удельный вес раствора.
Хотя ареометры традиционно использовались для измерения удельного веса (SG), современные свинцово-кислотные батареи состоят из электронных датчиков, которые обеспечивают измерения удельного веса в реальном времени и дают довольно точные значения SOC. Однако этот метод используется исключительно для свинцово-кислотных аккумуляторов и не может использоваться с другими химическими составами элементов.
Ареометр. Его можно использовать для измерения заряда свинцово-кислотного аккумулятора. (Изображение предоставлено Butch / Wikimedia Commons)
Оценка SOC путем измерения внутреннего импеданса
Активные химические вещества внутри элемента меняют свой состав, поскольку они переходят из одной формы в другую во время зарядки / разрядки аккумулятора.Следовательно, измеряя внутренний импеданс (сопротивление, которое цепь представляет току при приложении напряжения) ячейки, можно определить ее SOC.
Однако этот метод не пользуется популярностью: во-первых, импеданс ячейки зависит от температуры; во-вторых, трудно измерить сопротивление ячейки, пока она еще активна.
Есть несколько других методов, которые можно использовать для определения состояния заряда батареи, но ни один из них не идеален, и каждый из них предлагает уникальный набор проблем.
Статьи по теме
Статьи по теме
Таким образом, всегда следует учитывать, что методы определения SOC могут обеспечить только оценку состояния заряда батареи, а не значение с точностью до 100%. Другими словами… держите зарядное устройство под рукой!
Методы оценки состояния заряда батареи: обзор
Дан обзор новых и текущих разработок в методах оценки состояния заряда (SOC) для батареи, в котором основное внимание уделяется математическим принципам и практическим реализациям.Поскольку SOC батареи является важным параметром, который отражает производительность батареи, точная оценка SOC не только защищает батарею, предотвращает перезаряд или разрядку и увеличивает срок службы батареи, но также позволяет приложению принимать рациональные стратегии управления для достижения цели: сохранение энергии. В данной статье дается обзор литературы по категориям и математическим методам оценки SOC. На основе оценки методов оценки SOC предлагается дальнейшее направление развития оценки SOC.
1. Введение
Рост цен на сырую нефть и мировая осведомленность об экологических проблемах привели к активному развитию систем хранения энергии. Батарея является одной из самых привлекательных систем хранения энергии из-за ее высокой эффективности и низкого уровня загрязнения окружающей среды [1]. В настоящее время в промышленности используются несколько типов батарей: свинцово-кислотные, никель-металлгидридные, никель-кадмиевые и литий-ионные. Батарея обладает преимуществами высокого рабочего напряжения ячейки, низкого уровня загрязнения, низкой скорости саморазряда и высокой плотности мощности.Батареи обычно используются в портативных коммунальных службах, гибридных электромобилях и в промышленности [2].
Оценка SOC является фундаментальной проблемой при использовании батарей. SOC батареи, который используется для описания ее оставшейся емкости, является очень важным параметром для стратегии управления [3]. Поскольку SOC является важным параметром, который отражает характеристики батареи, точная оценка SOC может не только защитить батарею, предотвратить переразряд и увеличить срок службы батареи, но также позволит приложению разработать рациональные стратегии управления для экономии энергии [4] .Однако батарея является источником химического хранения энергии, и к этой химической энергии нельзя получить прямой доступ. Эта проблема затрудняет оценку SOC батареи [5]. Точная оценка SOC остается очень сложной и трудной для реализации, потому что модели батарей ограничены и есть параметрические неопределенности [6]. На практике можно найти множество примеров плохой точности и надежности оценки SOC [7].
В этой статье представлен подробный обзор существующих математических методов, используемых при оценке SOC, и дополнительно определены возможные разработки в будущем.
2. Определение и классификация оценки SOC
SOC — один из наиболее важных параметров для батарей, но его определение связано с множеством различных проблем [5]. В общем, SOC батареи определяется как отношение ее текущей емкости () к номинальной емкости (). Номинальная емкость указывается производителем и представляет собой максимальное количество заряда, которое может храниться в аккумуляторе. SOC можно определить следующим образом:
Различные математические методы оценки классифицируются в соответствии с методологией.Классификация этих методов оценки SOC различается в разных литературных источниках. Однако в некоторых литературных источниках [5, 7] допускается разделение на следующие четыре категории. (I) Прямое измерение: этот метод использует физические свойства батареи, такие как напряжение и импеданс батареи. (Ii) Бухгалтерская оценка: это Метод использует ток разряда в качестве входа и интегрирует ток разряда с течением времени для расчета SOC. (iii) Адаптивные системы: адаптивные системы проектируются самостоятельно и могут автоматически настраивать SOC для различных условий разгрузки.Были разработаны различные новые адаптивные системы для оценки SOC. (Iv) Гибридные методы: гибридные модели извлекают выгоду из преимуществ каждого метода оценки SOC и обеспечивают глобально оптимальную производительность оценки. Литература показывает, что гибридные методы обычно дают хорошую оценку SOC по сравнению с отдельными методами.
В таблице 1 представлены конкретные методы оценки SOC с учетом методологии. Применение конкретных методов оценки SOC в системе управления батареями (BMS), как следствие, различается.
|
3.Обзор математических методов оценки SOC
3.1. Прямое измерение
Методы прямого измерения относятся к некоторым физическим свойствам батареи, таким как напряжение на клеммах и импеданс. Было использовано множество различных прямых методов: метод измерения напряжения холостого хода, метод измерения напряжения на клеммах, метод измерения импеданса и метод спектроскопии импеданса.
3.1.1. Метод измерения напряжения разомкнутой цепи
Существует приблизительно линейная зависимость между значением заряда свинцово-кислотной батареи и ее напряжением разомкнутой цепи (OCV), определяемая по формуле где — SOC батареи в, — напряжение на клеммах батареи, когда SOC = 0%, и получается из знания значения и при SOC = 100%.Согласно (2) оценка SOC эквивалентна оценке его OCV [8]. Метод OCV, основанный на OCV аккумуляторов, пропорционален SOC, когда они отключены от нагрузок на период более двух часов. Однако такое длительное время отключения может оказаться слишком большим, чтобы быть реализованным для батареи [9].
В отличие от свинцово-кислотной батареи, литий-ионная батарея не имеет линейной зависимости между OCV и SOC [10]. Типичное соотношение литий-ионных аккумуляторов между SOC и OCV показано на рисунке 1 [11].Взаимосвязь OCV и SOC была определена путем приложения импульсной нагрузки к литий-ионной батарее, которая затем позволяла батарее достичь равновесия [12].
Отношения между OCV и SOC не могут быть одинаковыми для всех батарей. Поскольку обычные OCV-SOC различаются между батареями, существует проблема, заключающаяся в том, что для точной оценки SOC необходимо измерять соотношение OCV-SOC. Ли и др. [13] предложили модифицированное отношение OCV-SOC, основанное на традиционном OCV-SOC.SOC и емкость литий-ионного аккумулятора оцениваются с помощью двойного расширенного фильтра Калмана по предложенному методу.
3.1.2. Метод напряжения на клеммах
Метод определения напряжения на клеммах основан на падении напряжения на клеммах из-за внутренних сопротивлений при разряде аккумулятора, поэтому электродвижущая сила (ЭДС) аккумулятора пропорциональна напряжению на клеммах. Поскольку ЭДС батареи приблизительно линейно пропорциональна SOC, напряжение на клеммах батареи также приблизительно линейно пропорционально SOC.Метод напряжения на клеммах использовался при различных токах и температурах разряда [14]. Но в конце разряда батареи оценочная погрешность метода измерения напряжения на клеммах велика, потому что напряжение на клеммах батареи внезапно падает в конце разряда [15].
3.1.3. Метод импеданса
Среди применяемых методов измерения импеданса позволяют получить информацию о нескольких параметрах, величина которых может зависеть от состояния заряда батареи.Хотя параметры импеданса и их вариации в зависимости от SOC не уникальны для всех аккумуляторных систем, представляется необходимым провести широкий спектр экспериментов по импедансу для идентификации и использования параметров импеданса для оценки SOC данной батареи [16, 17] .
3.1.4. Метод импедансной спектроскопии
Метод импедансной спектроскопии измеряет полное сопротивление батареи в широком диапазоне частот переменного тока при различных токах заряда и разряда. Значения импеданса модели находятся методом наименьших квадратов, аппроксимирующим измеренные значения импеданса.SOC может быть косвенно выведен путем измерения текущего импеданса батареи и сопоставления его с известным импедансом на различных уровнях SOC [18, 19].
3.2. Бухгалтерская оценка
Бухгалтерская оценка использует в качестве входных данных текущие данные о разряде батареи. Этот метод позволяет учесть некоторые внутренние эффекты батареи, такие как саморазряд, потеря емкости и эффективность разряда. Были использованы два вида методов бухгалтерской оценки: метод кулоновского счета и модифицированный метод кулоновского счета.
3.2.1. Метод кулоновского счета
Метод кулоновского счета измеряет ток разряда батареи и интегрирует ток разряда с течением времени для оценки SOC [20]. Метод кулоновского подсчета используется для оценки, которая оценивается по току разряда, и ранее оцененным значениям SOC,. SOC рассчитывается по следующей формуле:
Но есть несколько факторов, которые влияют на точность метода кулоновского счета, включая температуру, историю батареи, ток разряда и срок службы [20].
3.2.2. Модифицированный метод кулоновского счета
Для улучшения метода кулоновского счета предлагается новый метод, называемый модифицированным методом кулоновского счета. Модифицированный метод кулоновского счета использует скорректированный ток для повышения точности оценки.
Скорректированный ток является функцией тока разряда. Существует квадратичная зависимость между скорректированным током и током разряда батареи. По экспериментальным данным скорректированный ток рассчитывается по следующей форме: где, и — постоянные значения, полученные из практических экспериментальных данных.
В модифицированном методе кулоновского счета SOC рассчитывается по следующему уравнению:
Результаты экспериментов показывают, что точность модифицированного метода кулоновского счета превосходит точность обычного метода кулоновского счета.
3.3. Адаптивные системы
Недавно, с развитием искусственного интеллекта, были разработаны различные новые адаптивные системы для оценки SOC. Новые разработанные методы включают нейронную сеть с обратным распространением (BP), нейронную сеть с радиальной базисной функцией (RBF), методы нечеткой логики, опорную векторную машину, нечеткую нейронную сеть и фильтр Калмана.Адаптивные системы — это самопроектируемые системы, которые могут автоматически настраиваться в изменяющихся системах. Поскольку аккумуляторы подвержены влиянию многих химических факторов и имеют нелинейное SOC, адаптивные системы предлагают хорошее решение для оценки SOC [5].
3.3.1. Нейронная сеть BP
Нейронная сеть BP — самый популярный тип в искусственных нейронных сетях. Нейронная сеть BP применяется для оценки SOC из-за их хорошей способности к нелинейному отображению, самоорганизации и самообучению [1].В соответствии с постановкой задачи, взаимосвязь между входом и целью является нелинейной и очень сложной при оценке SOC [21]. Индикатор SOC на основе искусственной нейронной сети предсказывает текущий SOC, используя последние данные о напряжении, токе и температуре окружающей среды батареи [22].
Архитектура нейронной сети, оценивающей БП, показана на рисунке 2. Архитектура нейронной сети БП содержит входной уровень, выходной уровень и скрытый слой. Входной слой имеет 3 нейрона для конечного напряжения, тока разряда и температуры, скрытый слой имеет нейроны, а выходной слой имеет только один нейрон для SOC [1].
Суммарный вход нейрона в скрытом слое рассчитывается по следующей форме: где — суммарный вход нейрона скрытого слоя; является входом в нейрон скрытого слоя от нейрона входного слоя; — вес между нейроном входного слоя и нейроном скрытого слоя; — смещение нейрона скрытого слоя.
Функция активации, применяемая к нейрону в скрытом слое, является функцией гиперболического тангенса, которая вычисляется по следующему уравнению:
Суммарный вход нейрона в выходном слое рассчитывается по формуле где — суммарный вход нейрона выходного слоя; является входом в нейрон выходного слоя из нейрона скрытого слоя; — вес между нейроном скрытого слоя и нейроном выходного слоя; — смещение нейрона выходного слоя; — количество нейронов в скрытом слое.
Функция активации, применяемая к нейрону в выходном слое, представляет собой сигмовидную функцию в виде следующего уравнения:
3.3.2. Нейронная сеть RBF
Нейронная сеть RBF — полезная методология оценки для систем с неполной информацией. Его можно использовать для анализа отношений между одной основной (эталонной) последовательностью и другими сравнительными последовательностями в данном наборе. При оценке SOC использовалась нейронная сеть RBF. Метод был протестирован с данными, полученными в результате экспериментов с батареями.Результаты показывают, что скорость работы и точность оценивания оценочной модели могут соответствовать требованиям на практике, и модель имеет определенную ценность применения [23, 24].
В [1] метод оценки SOC нейронной сети RBF использует входные данные о напряжении на клеммах, токе разряда и температуре батареи для оценки SOC для LiFePO 4 батареи при различных условиях разряда. Получено хорошее согласие экспериментальных данных.
3.3.3. Метод нечеткой логики
Метод нечеткой логики обеспечивает мощное средство моделирования нелинейных и сложных систем. В [25] практический метод оценки SOC аккумуляторной системы был разработан и протестирован для нескольких систем. Метод предполагает использование нечетких логических моделей для анализа данных, полученных с помощью импедансной спектроскопии и / или методов кулоновского счета. В [26] метод оценки SOC на основе нечеткой логики был разработан для литий-ионных батарей для потенциального использования в портативных дефибрилляторах.Были выполнены измерения импеданса переменного тока и восстановления напряжения, которые используются в качестве входных параметров для модели нечеткой логики.
Singh et al. [27] представили систему оценки, которая может выбирать функции в базе данных для разработки нечетких логических моделей как для доступной емкости, так и для оценки SOC, просто путем измерения импеданса на трех частотах. В [28] SOC оценивается усовершенствованным методом кулоновской метрики, а изменение, зависящее от времени, компенсируется с помощью обучающей системы.Система обучения настраивает метод кулоновской метрики таким образом, чтобы в процессе оценки оставалось безошибочное изменение, зависящее от времени. Предлагаемая система обучения использует модели нечеткой логики, которые не используются для оценки SOC, но работают как компонент системы обучения.
3.3.4. Машина опорных векторов
Машина опорных векторов (SVM) применялась для классификации в различных областях распознавания образов. SVM также применяется для решения проблемы регрессии, даже если проблема регрессии по своей сути более сложна, чем проблема классификации.SVM, используемая в качестве нелинейной системы оценки, более надежна, чем система оценки наименьших квадратов, поскольку она нечувствительна к небольшим изменениям [29].
Хансен и Ван [29] исследовали применение SVM для оценки SOC литий-ионной батареи. Оценщик на основе SVM не только устраняет недостатки оценщика SOC с кулоновским счетом, но также дает точные оценки SOC.
3.3.5. Нечеткая нейронная сеть
Нечеткая нейронная сеть (FNN) использовалась во многих приложениях, особенно при идентификации неизвестных систем.При идентификации нелинейных систем FNN может эффективно соответствовать нелинейной системе путем вычисления оптимизированных коэффициентов механизма обучения [30].
Ли и др. [31] исследовали метод мягких вычислений для оценки состояния заряда отдельных батарей в цепочке батарей. Подход мягких вычислений использует сочетание FNN с функциями принадлежности B-сплайна и генетическим алгоритмом сокращенной формы.
3.3.6. Фильтр Калмана
Использование дорожных данных в режиме реального времени для оценки SOC батареи обычно бывает сложно или дорого измерить.В [32] показано, что применение метода фильтра Калмана обеспечивает поддающиеся проверке оценки SOC для батареи посредством оценки состояния в реальном времени.
Яцуи и Бай [33] представили метод оценки SOC на основе фильтра Калмана для литий-ионных батарей. Экспериментальные результаты подтверждают эффективность фильтра Калмана во время онлайн-заявки. Barbarisi et al. [34] представили расширенный фильтр Калмана (EKF) для оценки концентраций основных химических веществ, которые усредняются по толщине активного материала, чтобы получить SOC батареи, используя измерения тока и напряжения на клеммах.
На основе теории фильтра Калмана без запаха (UKF) и комплексной модели батареи в [35] предлагается новый метод оценки SOC. Результаты показывают, что метод UKF превосходит метод расширенного фильтра Калмана в оценке SOC для батареи. Sun et al. [36] представили адаптивный метод UKF для оценки SOC литий-ионной батареи для аккумуляторных электромобилей. Адаптивная регулировка ковариации шума в процессе оценки SOC реализована с помощью идеи ковариационного согласования в контексте UKF.
3.4. Гибридные методы
Цель гибридных моделей состоит в том, чтобы извлечь выгоду из преимуществ каждого метода и получить глобально оптимальную эффективность оценки. Поскольку информация, содержащаяся в отдельном методе оценки, ограничена, гибридный метод может максимизировать доступную информацию, интегрировать информацию отдельной модели и наилучшим образом использовать преимущества нескольких методов оценки, тем самым повышая точность оценки. Литература показывает, что гибридные методы обычно дают хорошие результаты оценки SOC по сравнению с отдельными методами [37–39].Гибридные методы сочетают в себе различные подходы, такие как метод прямого измерения и метод бухгалтерской оценки.
3.4.1. Комбинация кулоновского счета и ЭДС
Был разработан и реализован новый метод оценки SOC, который сочетает в себе метод прямого измерения с измерением ЭДС аккумуляторной батареи во время состояния равновесия и бухгалтерской оценкой с методом кулоновского счета во время состояния разряда, который был разработан и реализован в режиме оценки в реальном времени. система [37].
Любая батарея теряет емкость во время езды на велосипеде.Чтобы точно вычислить SOC и оставшееся время выполнения (RRT), а также улучшить способность системы оценки SOC справляться с эффектом старения, вводится простой алгоритм адаптации Qmax. В этом алгоритме используются стабильные условия зарядового состояния, чтобы адаптировать Qmax к эффекту старения.
Эта статья доказала, что алгоритм адаптации Qmax может улучшить точность оценки SOC и RRT даже для новой батареи. Поскольку батарея теряет емкость во время цикла, делается вывод, что алгоритм адаптации Qmax существенно увеличит SOC и точность оценки RRT.
3.4.2. Комбинация кулоновского счета и фильтра Калмана
Wang et al. [38] предложили новый метод оценки SOC, обозначенный как «метод Калмана», который использует метод фильтра Калмана для корректировки начального значения, используемого в методе кулоновского счета. В методе KalmanAh используется метод фильтра Калмана, чтобы приблизительное начальное значение сходилось к его реальному значению. Затем метод кулоновского счета применяется для оценки SOC для длительного рабочего времени. Ошибка оценки SOC равна 2.5% по сравнению с реальным SOC, полученным при испытании на разряд. Это выгодно отличается от ошибки оценки 11,4% при использовании метода кулоновского счета.
3.4.3. Система на единицу и комбинация EKF
Ким и Чо [39] описали применение EKF в сочетании с системой единиц (PU) для идентификации подходящих параметров модели батареи для высокоточной оценки SOC литий-ионной батареи. деградированный аккумулятор. Чтобы применить параметры модели батареи, изменяемые эффектом старения, на основе системы PU, абсолютные значения параметров в модели эквивалентной схемы в дополнение к напряжению на клеммах и току преобразуются в безразмерные значения относительно набора базовых значений.Преобразованные значения применяются к динамическим и измерительным моделям в алгоритме EKF.
4. Будущее оценки SOC
Поскольку системы накопления энергии были выдвинуты на первый план в портативной электронике и гибридных электрических транспортных средствах, точность оценки SOC становится все более важной. В последние годы многие ученые провели много исследований по оценке SOC. Точность оценок постоянно улучшается, и можно ожидать, что интенсивные исследования и разработки уже ведутся.В целях дальнейшего улучшения оценок SOC в сочетании с некоторыми литературными источниками ожидаемые улучшения для дальнейших исследований включают следующие области: (i) Проведите дальнейшие исследования гибридных методов, таких как сочетание метода прямого измерения и метода бухгалтерской оценки для достижения хороших результатов. результаты в онлайн-оценке SOC. (ii) Существующий метод оценки должен использоваться в различных типах аккумуляторов. Провести дальнейшие исследования практического универсального применения этих методов. (Iii) Углубить дальнейшие исследования по улучшению способности системы оценки SOC справляться с эффектом старения батареи.(iv) Изучение более новых методов искусственного интеллекта и улучшение их алгоритмов обучения для достижения точности оценки SOC. Кроме того, новые методы на сложной местности будут в центре внимания будущих исследований. (V) Для дальнейшего повышения эффективности оценки метода нейронной сети необходимо изучить и интегрировать оптимальные методы поиска для оптимального количества нейронов в скрытом слое. метод нейронной сети. (vi) Провести дальнейшие исследования по оценке адаптивных параметров. Эти модели могут автоматически адаптироваться к различным типам батарей, различным условиям разряда и разным старым батареям.(vii) Установить более точную систему оценки и стандарт для измерения эффективности метода оценки SOC.
5. Выводы
В этой статье представлен обзор оценки SOC батареи при различных условиях разряда. Обсуждались четыре категории оценочных математических методов, которые имеют свои особенности. Статьи были отобраны, чтобы подчеркнуть разнообразие математических методов оценки. Некоторые из этих методов имеют хорошие характеристики при фиксированном токе разряда, в то время как другие лучше работают в условиях переменного тока разряда.Трудно оценить производительность различных методов, поскольку существующие приложения находились в разных условиях разряда и разного размера батареи. Ожидается, что разработка различных методов оценки SOC будет полезна для аккумуляторных приложений, таких как BMS, в гибридных электромобилях. Основываясь на истории развития оценки SOC, в конце предлагаются будущие направления развития оценки SOC.
Благодарность
Автор выражает благодарность Национальному научному совету ОКР за финансовую поддержку в рамках гранта No.НСК 101-2221-Е-129-005.
Измерение уровня заряда литий-ионных аккумуляторов (SoC) — метод кулоновского счетчика
Измерение уровня заряда литий-ионных аккумуляторов (SoC)
Существует несколько способов измерения состояния заряда (SoC) литий-ионного аккумулятора или глубины разряда (DoD) для литиевой батареи. Некоторые методы довольно сложны в реализации и требуют сложного оборудования (спектроскопия импеданса или ареометр для свинцово-кислотных аккумуляторов).
Здесь мы подробно рассмотрим два наиболее распространенных и простых метода оценки состояния заряда батареи: метод напряжения или напряжение холостого хода (OCV) и метод подсчета кулонов .1 / Оценка SoC с использованием метода напряжения холостого хода (OCV)
Все типы аккумуляторов имеют одну общую черту: напряжение на их выводах уменьшается или увеличивается в зависимости от уровня их заряда. Напряжение будет самым высоким, когда батарея полностью заряжена, и самым низким, когда она разряжена.
Это соотношение между напряжением и SOC напрямую зависит от используемой аккумуляторной технологии. В качестве примера на диаграмме ниже сравниваются кривые разряда свинцовой батареи и литий-ионной батареи.
Литий LiFePO4 в зависимости от кривой разряда свинцаВидно, что свинцово-кислотные батареи имеют относительно линейную кривую, которая позволяет хорошо оценить состояние заряда: для измеренного напряжения можно довольно точно оценить значение соответствующей SoC.
Однако литий-ионные батареи имеют гораздо более пологую кривую разряда , что означает, что в широком рабочем диапазоне напряжение на клеммах батареи изменяется очень незначительно. Литий-железо-фосфатная технология
имеет самую ровную кривую разряда, что очень затрудняет оценку SoC с помощью простого измерения напряжения.Действительно, разница напряжений между двумя значениями SoC может быть настолько малой, что невозможно оценить состояние заряда с хорошей точностью.
На приведенной ниже диаграмме показано, что разница измерения напряжения между значением DoD , равным 40%, и 80% составляет около 6,0 В для 48-вольтовой батареи по свинцово-кислотной технологии , тогда как для литий-железного фосфата она составляет всего 0,5 В. !
Литий vs AGM Оценка Soc методом OCVОднако калиброванные индикаторы заряда могут использоваться специально для литий-ионных аккумуляторов в целом и литий-железо-фосфатных аккумуляторов в частности.Точное измерение в сочетании с смоделированной кривой нагрузки позволяет получать измерения SoC с точностью от 10 до 15% .
Калиброванный литий-железо-фосфатный измеритель SoC2 / Оценка SoC с использованием метода кулоновского счета
Чтобы отслеживать состояние заряда при использовании аккумулятора, наиболее интуитивно понятный метод — это отслеживать ток, интегрируя его во время использования элемента. Эта интеграция напрямую дает количество электрических зарядов, введенных или снятых с батареи, что позволяет точно количественно определить SoC батареи.
В отличие от метода OCV, этот метод может определять изменение состояния заряда во время использования батареи. Для проведения точных измерений не требуется, чтобы батарея находилась в состоянии покоя.
Кулоновский счетчикХотя измерение тока выполняется с помощью прецизионного резистора, могут возникать небольшие ошибки измерения, связанные с частотой дискретизации. Чтобы исправить эти предельные ошибки, счетчик кулонов повторно калибруется при каждом цикле загрузки.
Измерение состояния заряда литий-ионных аккумуляторов(SoC) путем подсчета кулонов допускает погрешность измерения менее 1%. позволяет очень точно определить оставшуюся в аккумуляторе энергию.В отличие от метода OCV, подсчет кулонов не зависит от колебаний заряда батареи (которые вызывают падение напряжения батареи), а точность остается постоянной независимо от использования батареи.
Кулоновский счетчик CC150 | Кулоновский счетчик CC150 — Шунтирующий резистор |
Кулоновский счетчик CC150 — Шунтирующий резистор | Кулоновский счетчик CC150 — Установка на PowerBrick + 48V 25Ah |
Воспроизведение без разрешения запрещено.
Li-Ion BMS — Белая книга
Нет прямого способа измерения состояния заряда (SOC) литий-ионной батареи. Есть косвенные способы его оценки, но каждый из них имеет свои ограничения. В этой статье описывается, как сочетание двух методов может привести к разумной оценке SOC.
Из различных методов оценки SOC два:
- Перевод напряжения АКБ
- Интеграция тока батареи («Кулоновский счет»)
Оба метода полезны, но каждый сам по себе не может надежно оценить SOC в литий-ионной батарее.
Во многих системах в качестве индикатора SOC используется простой вольтметр: напряжение батареи уменьшается более или менее линейно по мере разряда батареи. Этот эффект более или менее выражен в зависимости от химического состава батареи. В частности, напряжение в свинцово-кислотной батарее значительно снижается по мере ее разряда. Знание взаимосвязи напряжения батареи и SOC позволяет откалибровать вольтметр для отображения SOC: то есть напряжение преобразуется в оценочное SOC.
Основным ограничением этого метода является то, что на напряжение батареи также влияют температура и ток батареи.Знание того, как температура и ток влияют на напряжение, позволяет в значительной степени компенсировать эти эффекты, что позволяет использовать преобразователь напряжения для многих типов батарей.
Использование преобразования напряжения для оценки SOC в свинцово-кислотной батарее.
К сожалению, для большей части своего диапазона SOC напряжение литий-ионной батареи остается очень постоянным, что делает преобразование напряжения нецелесообразным. Тем не менее, напряжение литий-ионной батареи значительно изменяется на обоих концах ее диапазона SOC: напряжение быстро увеличивается, когда она полная, и значительно падает, когда она начинает разряжаться.Следовательно, преобразование напряжения можно использовать для оценки SOC очень полной или очень разряженной литий-ионной батареи.
Использование преобразования напряжения для оценки SOC с литий-ионными элементами.
Интегрирование тока в батарею или на выходе из нее дает относительную величину ее заряда, так же как подсчет валюты на банковском счете и из него дает относительную сумму на счете. Ключевое слово здесь — «относительный»: как и все определенные интегралы, «кулоновский счет» требует отправной точки. Если начальный заряд батареи известен, с этого момента можно использовать «Кулоновский счет» для расчета ее SOC.
Например, ток 2 А в батарее в течение 3 часов прибавит 2 * 3 = 6 Ач к заряду батареи. Если емкость аккумулятора составляет 24 Ач, это увеличит его SOC на 6/24 = 25%. Это на 25% больше, чем было в начале; но, не зная, каким был начальный SOC, мы не знаем окончательного SOC.
Использование кулоновского счета для оценки относительных изменений SOC.
В зависимости от химического состава батареи кулоновский счет может быть очень точным методом.Подсчет кулонов
не работает также со свинцово-кислотными батареями, потому что:
- Значительный ток утечки в свинцово-кислотных аккумуляторах не проходит через датчик тока аккумулятора и поэтому не принимается во внимание.
- Не весь заряд свинцово-кислотной батареи превращается в полезную работу: часть его превращается в отходящее тепло, эффект, который характеризуется показателем Пойкерта.
С другой стороны, кулоновский счет также работает с литий-ионными батареями из-за их низкой утечки и хорошего показателя Пойкерта.
Еще одно ограничение кулоновского счета — дрейф. При любом интегрировании любая небольшая постоянная ошибка в интегрируемой переменной приводит к дрейфу результата. В случае кулоновского счета любое небольшое смещение в измерении тока батареи приведет к смещению SOC вверх (или вниз) с течением времени.
Дрейф кулоновского счета из-за небольшого смещения измеряемого тока.
Дрейф может стать значительным в приложениях, которые в течение длительного времени потребляют очень мало тока батареи или челночного тока вперед и назад:
- Резервные батареи:
- Даже если батарея полностью заряжена, небольшое смещение в датчике тока приведет к тому, что сообщаемый SOC с течением времени полностью изменится до 0%.
- Гибридные автомобильные (HEV) аккумуляторы:
- Резервные батареи:
- Автомобиль использует энергию аккумуляторной батареи, когда она ему нужна, и пополняет ее, когда может, пытаясь поддерживать уровень заряда аккумулятора примерно на 50%;
- Что ж, заявленный SOC вполне может оставаться около 50%; но со временем из-за небольшого смещения на выходе датчика тока фактическое значение SOC будет дрейфовать вверх или вниз, и в конечном итоге фактический заряд батареи приближается к полному или разряженному состоянию
Следовательно, кулоновский счет может использоваться для оценки SOC литий-ионной батареи, если есть способ калибровки SOC в какой-то момент и достаточно часто, чтобы преодолеть дрейф.
Возвращаясь к аналогии с банковским счетом: балансировка вашей чековой книжки синхронизирует сумму, которая, по вашему мнению, находится на вашем счете, с суммой, которую ваш банк утверждает на этом счете.
Точно так же «Кулоновский счет» нуждается в способе калибровки своего результата, чтобы заряд, который он сообщает, был фактическим SOC.
Voltage Translation предоставляет способ сделать это, точно так же, как балансирование чековой книжки для банковского счета.
Комбинирование этих двух методов приводит к разумному способу оценки SOC в литий-ионной батарее:
- Ток батареи интегрирован («Кулоновский счет») для получения относительного заряда в батарее и вне ее.
- Напряжение аккумулятора контролируется, чтобы откалибровать SOC, когда фактический заряд приближается к любому концу
Комбинирование подсчета кулонов и преобразования напряжения для оценки SOC.
Если SOC, оцененный с помощью Coulomb Counting, не откалиброван (он не равен фактическому SOC), в конечном итоге батарея будет заряжена или разряжена до такой степени, что преобразование напряжения может использоваться для оценки SOC и калибровки оценочного значения. Например, если фактическое значение SOC составляет 80%, а расчетное значение SOC составляет 50%, а литий-ионный элемент заряжается, его напряжение вскоре становится выше порогового значения (скажем, 3,4 В), что соответствует фактическому значению SOC (скажем, , 90%). В этот момент BMS устанавливает расчетное значение SOC на 90%, чтобы откалибровать его.
Пример предполагаемого заряда литий-ионного элемента намного ниже, чем фактический SOC;
калибровка во время зарядки, когда напряжение элемента превышает пороговое значение.
Возвращаясь к вопросу о дрейфе, давайте посмотрим, как сочетание этих двух методов влияет на два приложения, которые мы рассматривали ранее.
- Резервные батареи:
- В режиме ожидания батарея полностью заряжена, что означает, что будет использоваться преобразование напряжения, что позволяет избежать дрейфа кулоновского счета.
- Гибридные автомобильные (HEV) аккумуляторы:
- Когда фактический заряд батареи действительно дрейфует на одном конце, преобразование напряжения используется для калибровки сообщаемого SOC.
- В HEV фактическое SOC не имеет большого значения: важно то, что автомобиль ожидает, что в аккумуляторе останется достаточно энергии, когда потребуется дополнительная энергия для ускорения, и иметь возможность принимать избыточную энергию при торможении.
- Проблема в том, что если автомобилю нужна дополнительная энергия, он понимает, что аккумулятор фактически разряжен (а сообщаемый SOC необходимо откалибровать): рабочие характеристики автомобиля оставляют желать лучшего.
- HEV попытается справиться с этой проблемой, определив, когда можно провести тест (например, в середине долгой поездки на скоростях по шоссе), и позволить батарее зарядиться до точки, в которой может быть использован метод преобразования напряжения. используется для калибровки SOC, а затем возврата к 50% SOC.
Чтобы описанный выше метод работал, емкость аккумулятора должна быть известна априори. Иначе:
- Скорость интегрирования кулоновского счета будет неправильной, в результате батарея будет менять SOC слишком медленно или слишком быстро.
- При использовании преобразования напряжения для калибровки SOC вверху, SOC внизу не откалиброван; наоборот
В приложении, в котором это может представлять проблему, необходимо измерить емкость аккумулятора.
Если аккумулятор используется в приложениях, где важно знать SOC (например, в электромобилях), необходимо измерить его фактическую емкость. Емкость аккумулятора измеряется путем интегрирования его тока от полностью полного до полностью разряженного (или наоборот).
Измерение емкости батареи: начиная с полной ячейки, используйте кулоновский счет, чтобы измерить ее заряд, пока она не разрядится (на что указывает ее напряжение). Этот заряд и есть емкость ячейки.
Проблема в том, что не все приложения израсходуют всю энергию батареи за один сеанс.И во многих случаях аккумулятор будет полностью заряжен, даже если изначально он был не полностью разряжен.
В следующих приложениях измерение емкости невозможно:
- Резервные батареи:
- Верхний предел: аккумулятор полностью заряжен, поэтому с этим концом все в порядке
- Нижний предел: батареи рассчитаны таким образом, что они не разряжаются полностью до того, как ожидается восстановление питания. Если бы аккумуляторы время от времени подвергались полному циклическому включению, просто чтобы измерить их фактическую емкость, отключение электроэнергии могло бы произойти прямо в его середине, и это было бы неприемлемо.
- Электромобили:
- Высокий уровень: перед использованием аккумулятор необходимо полностью зарядить, так что с этим концом все в порядке
- Нижний предел: если транспортное средство движется до тех пор, пока аккумулятор полностью не разрядится, пользователь окажется в затруднительном положении, поэтому на это нельзя полагаться.
- HEV:
- Высокий уровень: батарея всегда держится около 50% и никогда не должна превышать 75%
- Нижний предел: батарея всегда держится около 50% и никогда не может опуститься ниже 30%
- PHEV (подключаемые гибриды):
- Высокий уровень: аккумулятор следует полностью заряжать каждую ночь, так что с этим концом все в порядке
- Как конец: батарея никогда не может опуститься ниже 10%
В некоторых из вышеперечисленных приложений точное знание SOC или емкости не имеет значения; например, в автомобилях HEV и PHEV есть бензиновый двигатель, который доставит вас домой.