Обозначение резисторов зарубежных компаний
Единая структура условных обозначений резисторов зарубежных компаний отсутствует. Она произвольно устанавливается фирмами-изготовителями.
В основу обозначения постоянных резисторов положен буквенно-цифровой (или цифровой) код, которым обозначают тип, значения основных параметров (номинальная мощность, ТКС, номинальное сопротивление, допускаемое отклонение) и вид упаковки.
Для резисторов специального назначения (изготовляемые по стандартам MIL) условное обозначение формируется следующим образом:
ПЕРВЫЙ ЭЛЕМЕНТ — обозначает серию резистора, согласно таблицы:
Серия |
Наименование резисторов |
N стандарта |
RL |
|
MIL-R-22684 |
RN |
Металлопленочные прецизионные резисторы |
MIL-R-10509 |
RE |
Мощные проволочные резисторы с алюминиевым радиатором |
MIL-R-18546 |
RNC |
Металлопленочные резисторы с уровнем надежности «S» |
|
RLR |
Металлопленочные резисторы с уровнем надежности «Р» |
MIL-R-39017 |
RB |
Проволочные прецизионные резисторы миниатюрные и субминиатюрные |
MIL-R-93 |
RBR |
Проволочные прецизионные резисторы с уровнем надежности «R» |
MIL-R-39005 |
RW |
Проволочные мощные резисторы для поверхностного монтажа |
MIL-R-26 |
RNR |
Металлопленочные прецизионные резисторы с герметичным уплотнением |
MIL-R-55182 |
RCR |
Углеродистые композиционные резисторы |
MIL-R-39008 |
М55342 |
Толстопленочные кристаллы резисторов с уровнем надежности «R» |
MIL-R-55342 |
ВТОРОЙ, ТРЕТИЙ, ЧЕТВЕРТЫЙ И ПЯТЫЙ ЭЛЕМЕНТ — цифровой код, обозначающий номинальное сопротивление
ШЕСТОЙ ЭЛЕМЕНТ — буквенный код, которым обозначается уровень надежности резисторов в течение 1000 часов-
Код |
М |
|
R |
S |
Уровень надежности (число отказов в %) |
1 |
0,1 |
0,01 |
0,001 |
Обозначение номинального сопротивления представляет собой код из четырех цифр, первые три из которых указывают величину номинала сопротивления в Омах, а последняя — число последующих нулей.
Для резисторов с допуском более 10% код состоит из трех цифр, в котором значащими являются первые две. Некоторые фирмы указывают номинальное сопротивление, закодированное в соответствии с Публикацией МЭК № 62, 63:
Сопротивление |
код |
Сопротивление |
код |
Сопротивление |
код |
Сопротивление |
код |
0,1 Ом |
|
47 Ом |
47R |
4,7 кОм |
4К7 |
220 кОм |
М22 |
0,15 Ом |
R15 |
68 Ом |
68R |
6,8 кОм |
6К8 |
|
МЗЗ |
0,22 Ом |
R22 |
100 Ом |
100R |
10 кОм |
10К |
470 кОм |
М47 |
0,33 Ом |
R33 |
150 Ом |
150R |
15 кОм |
15К |
680 кОм |
М68 |
4,7 Ом |
4R7 |
220 Ом |
220R |
22 кОм |
22К |
1,0 МОм |
1МО |
6,8 Ом |
6R8 |
330 Ом |
330R |
33 кОм |
ЗЗК |
1,5 МОм |
1М5 |
10 Ом |
10R |
1 кОм |
1КО |
47 кОм |
|
2,2 МОм |
2М2 |
15 Ом |
15R |
1,5 кОм |
1К5 |
68 кОм |
68К |
3,3 МОм |
ЗМЗ |
22 Ом |
22R |
2,2 кОм |
2К2 |
100 кОм |
М10 |
4,7 МОм |
4М7 |
33 0м |
33R |
3,3 кОм |
ЗКЗ |
150 кОм |
М15 |
6,8МОм |
6М8 |
Для примера рассмотрим условное обозначение постоянных резисторов фирмы Philips :
ПЕРВЫЙ ЭЛЕМЕНТ — тип (класс) резистора:
AC, ACL (Cemented Wirewound’ Nonisolated) -мощные керамические проволочные,
CR (Carbon Resistor) -углеродистые пленочные,
EH (Power Wirewound Isolated) -мощные, опорные проволочные.
MPR (Metal film precision Resistor) -металлопленочные прецизионные,
MR (Vetal film Resistor) -металлопленочные,
NPR (Fussible) -предохранительные металлопленочные,
PR (Power metal film Resistor) -мощные металлопленочные,
RC (Chip Resistor) — бескорпусные (кристаллы),
SFR (Standart film Resistor) -стандартные пленочные,
VR (High- ohmic Voltage Resistor) -высоковольтные,
WR (Enamelled Wirewound Isolated Resistor) — мощные эмалированные пленочные;
ВТОРОЙ ЭЛЕМЕНТ — максимальный диаметр корпуса (кроме класса RC): 06 — 0,6 мм; 08 — 0,8 мм; 16—1,6 мм; 21 — 2,1 мм; 24 или 25 — 2,5 мм; 30—3 мм; 31 или 34 — 3,1 мм; 37 или 39 — 3,7 мм; 52 или 54 — 5,2 мм; 68 или 74 — 6,8 мм.
ПРИМЕЧАНИЕ: Для классов AC, ACL и ЕН цифры обозначают допустимую мощность рассеяния: 01 — 1 Вт; 02 — 2 Вт; 03-3 Вт; 04—4 Вт; 05—5 Вт; 07—7 Вт; 09-9 Вт; 10 — 10 Вт; 15 — 15 Вт; 17 — 17 Вт; 20 — 20 Вт.
ТРЕТИЙ ЭЛЕМЕНТ — кодируется буквенными символами и обозначает конструктивное исполнение контактных выводов и материал покрытия контактов.
Обозначение номинального сопротивления, в зависимости от типа резистора, может быть представлено:
— кодом из четырех (или трех) цифр, в котором первые три (или две) являются значащими, а последняя обозначает число последующих нулей;
— кодом в соответствии с Публикацией МЭК № 62;
— цветовым кодом в соответствии с Публикацией МЭК № 63.
Цветовое различие выпускаемых корпусов резисторов.
Цвет корпуса |
Тип резистора |
Светло-коричневый |
CR16, CR25, CR37, CR52, CR68 |
Светло-зеленый |
SFR16, SFR25, SFR30 |
Серый |
NFR25, NFR30 |
Зеленый |
MR16, MR25, MR30, MR52, MR24E(C), MR34E(C), MR54E(C), MR74E(C), MPR24, MPR34, AC04, AC05, AC07, AC10, AC15, AC20, ACL01, ACL02, ACL03 |
Светло-голубой |
VR25, VR37, VR68 |
Красный |
PR37, PR52 |
Коричневый |
WRO167E, WRO842E, WRO825E, WRO865E |
Некоторые фирмы применяют цветовое кодирование для отличия резисторов, изготавливаемых по стандартам MIL, от резисторов промышленного и бытового назначения или обозначения ТКС для отличия проволочных резисторов от постоянных.
ЗАО «РЕОМ» производит
источники питания ПНВ27 класса DC-DC.ИВЭП серии ПНВ27 рассчитаны на питание от сети постоянного тока напряжением в диапазоне от 22В до 34В.
Задать вопрос
<< Предыдущая Следующая >>Обозначение резисторов обозначение резисторов на схеме
Резистор представляет собой пассивный элемент, без которого практически неработоспособна любая электрическая схема. Основная задача данной детали – это осуществление линейных преобразований параметров электрического тока. Достаточно наглядно это можно уяснить из формулы закона Ома, которая для участка цепи имеет следующий вид — I=U/R. Изменяя значение R (характеризующее величину сопротивления) можно регулировать другие параметры электрического тока. Также литера «R» используется для обозначения резисторов на схеме.
Необходимо отметить, что схематическое изображение сопротивления (резистора) в разных странах имеют разный вид. Так для зарубежной документации нередко используется фигура, изображенная на рис.1. Для отечественных электриков привычным является условное обозначение резисторов пример, которого приведен на рис.2.
Рассмотрим более подробно варианты и особенности обозначения резисторов (сопротивлений), а также отображение их характеристик, свойственных для электрических схем, которые используются в отечественной электротехнике.
Графические обозначения резисторов имеют строго определенный вид, который определен ГОСТом 2.728-74. Рассмотрим основные варианты изображений сопротивлений в зависимости от их типа. Итак, резисторы бывают:
— постоянными, т.е. их сопротивление в Омах не меняется. На схемах они соответствуют примеру, изображенному на рис.2. В случае если требуется указать величину номинального рассеяния мощности, то в УГО (условное графическое изображение) вносятся некоторые изменения (рис.3).
Рис.3
— переменные резисторы. Эти элементы имеют плавную или ступенчатую регулировку величины сопротивления. Обозначение на схемах соответствуют рис.4.
Также в данном ГОСТе оговорены варианты обозначений для резисторов:
- с симметричными и несимметричными отводами;
- с нелинейным регулированием;
- связанных и несвязанных механически;
- с замыкающим контактом и т.д.
Обозначение на схемах характеристик сопротивления резисторов
Основной характеристикой резистора является величина его сопротивления. На схемах этот параметр, как правило, располагается с буквенным обозначение «R» в виде цифр. Есть небольшая особенность – если после числового номинала следует буквенная маркировка «К» или «М», то сопротивление данного резистора соответствует произведению данного числа на тысячу или миллион. Аналогично обозначается сопротивление и на корпусе самой детали, если площадь это позволяет. Иногда можно встретить маркировку другого вида, например, 2К4. Здесь все просто. Сопротивление данного резистора будет равно 2400 Ом. Более полную информацию по буквенно-цифровой маркировке можно посмотреть в табл.2 ГОСТа 28883-90 (МЭК 62-74).
Сложнее обстоит дело, когда деталь имеет настолько маленькие размеры, что нанести на корпус резистора его параметры технически невозможно. Это также относиться к обозначению SMD резисторов, которые получили в последнее время широкое распространение благодаря миниатюрным размерам. Используются они для поверхностной пайки в электронных платах различных изделий.
Обозначение номиналов SMD резисторов
Данные типы резисторов отличаются по внешнему виду от привычных изделий и как говорилось выше имеют минимальные размеры. Обозначение номинала сопротивления SMD резисторов может осуществляться их буквенно-цифровой маркировкой в следующих вариантах:
- трехзначное число. Первые две сообщают о величине сопротивления в Омах, а последняя является множителем. Проще говоря первые два числа умножаются на 10 в степени соответствующей последней цифре;
- четырехзначное число. Первые три цифры являются номиналом, а последняя множителем, как и в предыдущем случае;
- двухзначное число, дополненное буквенным индексом. Это наиболее непростой вариант и для выяснения номинала сопротивления такого SMD резистора необходимо воспользоваться специальной таблицей.
Цветовое обозначение характеристик резисторов
Идея маркировки резисторов цветами, появилась вследствие минимизации их размеров и невозможности нанесения на корпус деталей буквенно-цифрового кода. Данное обозначение наносится в виде полос или колец, таким образом, чтобы характеристики детали можно было определить вне зависимости от ее положения на плате или в электрической цепи устройства.
Требования к цветовому обозначение характеристик проволочных резисторов изложены в ГОСТ 28883-90 (МЭК 62-74), а сами значения приведены в таблице 1 данного документа.
Таблица 1 ГОСТ 28883-90
Количество цветных колец может колебаться от трех до шести. Считывание необходимо начинать с той полосы которая расположена наиболее близко к одному из контактов. В отдельных случаях, когда нет возможности нанести маркировку с однозначной интерпретацией какой цвет является начальным, первый цвет наносят в виде утолщённой в 2 раза полосы или кольца.
В заключение можно отметить, чтобы однозначно и правильно идентифицировать маркировку и обозначения характеристик резисторов необходимо обратиться к вышеуказанным нормативным документам. Также желательно отслеживать появление новых изменений в данную литературу, что является особенно актуальным в современных условиях развития электротехники и выпуску новых видов деталей, применяемых в электрических схемах приборов и устройств.
Что такое резистор. Окончание | Компьютер и жизнь
Приветствую, друзья.
В первой части статьи мы с вами узнали о еще одном «кирпичике» электроники – резисторе.
Сегодня мы продолжим знакомство с этими штуковинами и перейдем от теории к практике.
Сразу отметим, что резистор – это пассивный элемент (в отличие от активных – диодов и транзисторов, способных генерировать сигнал).
Для начала рассмотрим
Обозначения резисторов в схемах
Постоянные резисторы в электронных схемах обозначают прямоугольниками (отечественное обозначение) или ломаной линией (зарубежное обозначение).
Если придерживаться отечественного ГОСТ, то необходимо указывать еще и мощность резистора посредством черточек внутри прямоугольника.
Переменные и подстроечные резисторы обозначаются теми же прямоугольниками или ломаными линиями и стрелкой, символизирующей подвижный контакт.
Рядом с графическим изображением указывается значение сопротивления резистора и его порядковый номер в схеме.
Иногда указывается мощность резистора и его допустимое процентное отклонение сопротивления от номинала.
Величина сопротивления указывается в Омах, килоомах (кОм), мегомах (Мом).
Иногда в зарубежных схемах для обозначения Ом используется символ Ω (греческая буква «омега»).
Отметим, что в конструкторской документации в схемах зачастую указывают только порядковый номер резистора, а его номинал, отклонение, тип и другие данные сводят в отдельный документ.
Напомним, что о всех параметрах конкретного типа резистора можно почитать в соответствующем даташите (data sheet).
Примеры обозначений:
— 27 Ом, 27 Ohm, 27Ω, 27R, 27 – 27 Ом,
— 1,5 кОм, 1,5 к, 1,5 kOhm, 1,5 кΩ, 1k5 – 1,5 килоом,
— 3,3 Мом, 3,3 МOhm, 3,3 MΩ, 3M3, 3,3 – 3,3 мегом (мегаом)
Обратите внимание: если в обозначении стоит маленькая буква «м» – то это будут миллиомы, а не мегомы!
Если в обозначении стоит просто цифра без букв, то это могут быть и омы, и мегомы. В этом случае, если в цифре нет запятой – это будут омы, если есть – мегомы.
Маркировка резисторов
Резисторы могут маркироваться нанесением буквенно-цифровых обозначений, наносимых на корпус резистора.
Обычно указывается номинал резистора и его процентный допуск (±5%, ±10%, ±20%). Процентный допуск указывается чаще всего латинской буквой.
Иногда указывается тип резистора и его мощность рассеяния.
Примеры обозначений:
100kΩJ 2W – 100 килоом, допуск ±5%, мощность рассеяния – 2Вт,
4К3И МЛТ-1 – 4,3 кОм, допуск ±5%, тип – МЛТ, мощность рассеяния – 1 Вт (это старый резистор времен CCCР),
560Ω 5% — 560 Ом, допуск ±5%
Однако на корпус мелких резисторов трудно нанести такие обозначения, поэтому для них применяется маркировка посредством 4-х, 5-ти или 6-ти цветных колец.
Обычно маркировка читается слева направо, при этом первое кольцо шире, или находится ближе к выводу резистора.
Мы не будем здесь приводить полных таблиц с цветовой маркировкой.
Номинал резистора можно узнать в онлайн-калькуляторах. Например, здесь. Это удобно.
Измерение сопротивления резистора
Обычно сопротивление резистора указывается на его корпусе посредством маркировки.
Но иногда возникает необходимость измерить величину сопротивления.
Обычно такое происходит при ремонте.
Маркировка может потускнеть или стереться, сам резистор может подгореть.
Измерить сопротивление резистора можно цифровым мультиметром.
Мультиметр измеряет не только сопротивление, но другие величины – ток, напряжение, емкость, температуру и т.д.
Обычно мультиметр имеет переключатель диапазонов и величин и входные гнезда для щупов.
Для измерения сопротивления надо поставить переключатель на один из диапазонов измерения сопротивления (вблизи этих диапазонов обычно расположен символ Ω).
При этом цифра, например, «200» означает диапазон от 0 до 200 Ом, обозначение «20к» – диапазон от 0 до 200 килоом, а обозначение «200М» – диапазон от нуля до 200 Мегом.
Если сопротивление резистора превышает выбранный диапазон, в крайнем левом разряде будет цифра «1».
При измерении малых величин сопротивлений (единицы Ом – доли Ом) надо учитывать сопротивление щупов мультиметра.
Для этого надо замкнуть щупы между собой, при этом мультиметр покажет некоторое сопротивление (доли Ом).
Эту величину надо потом вычесть из измеренного значения сопротивления. При измерении сопротивлений более 100 Ом погрешность измерения будет менее 1%. Этого вполне достаточно для большинства практических применений.
Сопротивление в десятые – сотые доли Ома выполняются с помощью специальных измерителей – миллиомметров и измерительных мостов.
Отметим, что иногда резисторы в изделиях (особенно миниатюрные) изменяют свое сопротивление без изменения внешнего вида – без обгорания, потемнения и т.п. Это одна из самых трудно обнаруживаемых неисправностей. «Вычислить» такой резистор можно только измерением его сопротивления и сравнением его с маркировкой.
Схемы с резисторами
Параллельное и последовательное соединение резисторов
Еще из школьного курса физики мы помним, что резисторы могут соединяться последовательно и параллельно.
При последовательном соединении сопротивление цепочки будет равно сумме всех сопротивлений.
При параллельном сопротивлении суммируются величины, обратные сопротивлениям, поэтому сопротивление цепочки будет меньше резистора самого малого номинала.
В справедливости этих утверждений можно легко убедиться с помощью мультиметра.
Иногда не удается найти резистор нужного номинала – и в этом случае его можно получить последовательным или параллельным соединением нескольких резисторов.
Последовательное соединение резисторов используется и в том случае, если прилагаемое напряжение превышает максимально допустимое для данного типа резистора.
Так, для большинства современных SMD резисторов прилагаемое напряжение не должно превышать 200 В. Поэтому, при необходимости, например, включить SMD резистор в цепь сетевого напряжения 220 В (при этом амплитудное значение напряжения превышает 300 В) ставят цепочку из двух-трех резисторов одинакового номинала. При этом сетевое напряжение в соответствии с законом Ома поровну распределяется между ними.
Делитель напряжения
В электронных схемах часто бывает нужно получить часть от какой-то величины напряжения. Эту задачу решает делитель напряжения.
При этом входное напряжение подается на цепочку из двух последовательно соединенных резисторов, а выходное снимается с одного из них.
В соответствии с законом Ома, Iд = Uвх/(R1+R2) и Uвых = Iд*R2. Отсюда Uвых = Uвх*R2/(R1+R2). Величина R2/(R1+R2) называется коэффициентом передачи делителя (который всегда меньше единицы).
Поэтому выходное напряжение всегда меньше входного.
В первом приближении коэффициент передачи не зависит от частоты сигнала, так как сопротивление резисторов не зависит от частоты.
Кстати, переменный или подстроечный резистор можно включить по схеме 1 или 2.
В первом случае при вращении ручки резистора изменяется сопротивление, вносимое резистором в цепь сигнала.
Во втором случае резистор представляет собой управляемый делитель напряжения с переменным коэффициентом передачи.
Именно по такой схеме включен переменный резистор в регуляторе громкости акустических систем, стоящих у вас на столе.
Частотно-зависимые делители напряжения
Если в одно из плеч делителя вместо резистора установить конденсатор, получится частотно-зависимый делитель напряжения, так как сопротивление конденсаторы зависит от частоты.
В первом случае конденсатор стоит в верхнем плече делителя. При малой частоте сигнала его сопротивление очень велико, и на нем падает почти все входное напряжение.
Поэтому на выходе будет очень небольшой сигнал. При нулевой частоте (постоянном напряжении) на конденсаторе упадет все напряжение, и на выходе будет вообще 0 вольт.
По мере роста частоты сопротивление конденсатора будет уменьшаться, а коэффициент передачи делителя и, соответственно, выходное напряжение – возрастать.
Эту схему еще называют фильтром верхних частот.
В втором случае конденсатор стоит в нижнем плече.
В этом случае сигнал малой частоты пройдет без заметного ослабления, а сигнал высокой частоты будет сильно ослаблен.
Такую схему называют еще фильтром нижних частот. Он пропускает небольшие частоты и постоянную составляющую.
В заключение отметим, что, конечно же, резисторы (и другие компоненты) встречаются в самых различных комбинациях во множество других схем. И что анализ этих схем достаточно сложен, так как при этом привлекается серьезный математический аппарат.
Но на первых порах вполне достаточно простого качественного объяснения «на пальцах».
Можно еще почитать:
Что такое полевой транзистор.
РЕЗИСТОРЫ
Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах, они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах.Схематическое обозначение постоянных резисторов
Резисторы переменные
Конструкция переменного резистора
Подстроечный резистор
Схематическое изображение переменного резистора
Цветовая маркировка резисторов
Прецизионные резисторы цветовая маркировка
При последовательном соединении
При параллельном соединении
В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример: нанесена маркировка 332, это значит 33 плюс два нуля, получается 3300, то есть 3.3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:
Терморезисторы схематическое изображение
У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:Терморезистор фото
Фоторезистор схематическое изображение
Фоторезистор — внешний вид
Типовая схема полупроводникового фотодетектора
Форум по деталям
виды кодирования параметров, стандартное обозначение на схеме
Автор Aluarius На чтение 10 мин. Просмотров 1k. Опубликовано
Что такое номинал резистора
Номинальная мощность резистора – это спецификация, которая служит для определения максимальной мощности, которую может выдержать резистор. Таким образом, если резистор имеет номинальную мощность 1/4 Вт, 1/4 Вт – это максимальная мощность, которая должна подаваться на резистор.
Когда ток проходит через электрические компоненты, он обычно генерирует тепло. Если ток достаточно мал и подходит для цепи, это тепло обычно незначительно и незаметно в цепи. Но если ток достаточно велик, он может создать значительное количество тепла в цепи. Ток может расплавить компоненты и, возможно, создать замыкания в цепи.
Вот почему резисторы имеют номинальную мощность – для указания максимально допустимого количества энергии, которое может проходить через него. Если эта мощность будет превышена, резистор может не выдержать питания и может расплавиться и создать короткое замыкание в цепи, что может привести к еще большей опасности для цепи.
Как образуется ряд, какие бывают, принципы построения
Давайте теперь определим силу так, чтобы мы точно знали, что имеется в виду, когда речь идет о власти. Мощность определяется как электрическая энергия, которую может обеспечить цепь. Уравнение, которое показывает мощность цепи, равно P = VI, где P – мощность, V – напряжение, а I – ток. В качестве альтернативы, поскольку закон Ома может быть подставлен в это уравнение, мощность также выражается как
и . Мы можем использовать эти формулы, чтобы определить, на какой мощности будет работать схема, и, таким образом, мы можем знать, какая номинальная мощность нам нужна для резистора.Давайте сейчас рассмотрим несколько примеров резисторов и номиналов мощности, которые нам понадобятся для того, чтобы вы получили практическую идею:
– Допустим, у нас есть резистор 800 Ом с напряжением 12 вольт, питающий цепь для зажигания светодиода. Пренебрегая сопротивлением провода и светодиода, которые пренебрежимо малы, мощность, которую будет обеспечивать схема, будет:
Здесь достаточно 1/4 Вт резистора, который подходит для схемы.
– Допустим, теперь у нас есть резистор 150 Ом с напряжением 15 В, питающий цепь для управления двигателем. Мощность, которую схема будет подавать на двигатель, – это:
2-ваттный резистор подходит для схемы. Резистор с более низкой номинальной мощностью, такой как резистор 0,25 Вт, 0,5 Вт или 1 Вт, скорее всего, вызовет дым в цепи, поскольку резистор будет получать больше энергии, чем он мог бы выдержать.
Обычно в электронных цепях номинальная мощность не учитывается, поскольку обычно подходит стандартный резистор 0,25 Вт, поскольку электронные схемы в подавляющем большинстве работают с низким напряжением и низким током; и, таким образом, низкая мощность. По таким характеристикам можно легко узнать Е24 резисторы.
Но в случае цепей с высоким напряжением и низким сопротивлением (высокая мощность) следует тщательно выбирать номиналы мощности резисторов, поскольку в цепи подается больше энергии. Всегда выбирайте резистор с более высокой номинальной мощностью, чем мощность, используемая в цепи, чтобы резистор не разрушался из-за перегрева; это только послужит причиной других опасностей или неисправностей в цепи.
Стандартные номинальные значения мощности резисторов: 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт и 25 Вт. Таким образом, разработчик схемы должен выбрать соответственно для схемы.
Номиналы у резисторов постоянного и переменного сопротивления
Когда электрический ток проходит через резистор из-за наличия на нем напряжения, электрическая энергия теряется резистором в виде тепла, и чем больше этот ток протекает, тем горячее резистор. Это известно как номинальная мощность резистора .
Резисторы оцениваются по значению их сопротивления и электрической мощности, выраженной в ваттах ( Вт ), которые они могут безопасно рассеивать, основываясь в основном на их размере. Каждый резистор имеет максимальную номинальную мощность, которая определяется его физическим размером, поскольку, как правило, чем больше площадь его поверхности, тем большую мощность он может безопасно рассеивать в окружающем воздухе или в радиаторе.
Резистор может использоваться при любой комбинации напряжения (в пределах разумного) и тока, если его «Номинальная мощность рассеивания» не превышена, а номиналы резисторов указывают, сколько мощности резистор может преобразовывать в тепло или поглощать без какого-либо ущерба для себя.
Резистор. Номинальная мощность
Иногда называют Резисторы Ваттность Оценка и определяется как количество тепла , что резистивный элемент может рассеивать в течение неопределенного периода времени без ухудшения его производительности. Рассмотрим далее как обозначается резистор.
Номинальная мощность резистора, пример №1
Какова максимальная номинальная мощность в ваттах фиксированного резистора, который имеет напряжение 12 вольт на своих клеммах и ток 50 миллиампер, протекающий через него.
Учитывая то , что мы знаем значения напряжения и тока выше, мы можем подставить эти значения в следующее уравнение: P = V * I .
Номинальная мощность резистора, пример №2
Рассчитайте максимальный безопасный ток, который может пройти через резистор 1,8 кОм, рассчитанный на 0,5 Вт.
Опять же , как мы знаем , рейтинг резисторов питания и его сопротивление, теперь мы можем подставить эти значения в стандартное уравнение мощности: P = I 2 R .
Все резисторы имеют максимальную мощность рассеиваемой мощности , которая представляет собой максимальное количество энергии, которое оно может безопасно рассеивать без ущерба для себя. Резисторы, которые превышают максимальную номинальную мощность, как правило, поднимаются в дыму, обычно довольно быстро, и повреждают цепь, к которой они подключены. Если резистор должен использоваться вблизи его максимальной номинальной мощности, тогда требуется некоторая форма радиатора или охлаждения.
Номинальная мощность резистора является важным параметром, который следует учитывать при выборе резистора для конкретного применения. Его работа заключается в сопротивлении току, протекающему через цепь, и это происходит за счет рассеивания нежелательной энергии в виде тепла. Выбор резистора с малым значением мощности, когда ожидается высокое рассеивание мощности, приведет к перегреву резистора, разрушая как резистор, так и цепь.
До сих пор мы рассматривали резисторы, подключенные к постоянному источнику постоянного тока, но в следующем уроке о резисторах мы рассмотрим их поведение, подключенных к синусоидальному источнику переменного тока, и покажем, что напряжение, ток и, следовательно, потребляемая мощность резистором, используемым в цепи переменного тока, все в фазе друг с другом.
Виды кодирования параметров с использованием цветных колец
Номинальная мощность резисторов может варьироваться от менее одной десятой ватта до многих сотен ватт в зависимости от его размера, конструкции и рабочей температуры окружающей среды. Максимальная резистивная мощность большинства резисторов дана для температуры окружающей среды +70 o C или ниже.
Электрическая мощность – это скорость, с которой энергия используется или потребляется (преобразуется в тепло). Стандартной единицей электрической мощности является ватт , символ W, а номинальная мощность резисторов также указывается в ваттах. Как и в случае других электрических величин, к слову «Ватт» добавляются префиксы при выражении очень больших или очень малых величин мощности резистора. Некоторые из наиболее распространенных из них:
Единицы электропитания
Единица измерения | Символ | Ценность | Сокращение |
милливатт | мВт | 1/1000 Вт | 10 -3 Вт |
киловатт | кВт | 1000 Вт | 10 3 Вт |
мегаватт | МВт | 1 000 000 Вт | 10 6 Вт |
Мощность резистора (P)
Из закона Ома мы знаем, что когда ток протекает через сопротивление, на него падает напряжение, создавая продукт, связанный с мощностью. Обычно за стандарт для сравнения берут Е24 резисторы, резистор R1 используется куда реже.
Другими словами, если сопротивление подвергается воздействию напряжения или оно проводит ток, то оно всегда будет потреблять электроэнергию, и мы можем наложить эти три величины мощности, напряжения и тока в треугольник, называемый силовым треугольником, с мощностью , который будет рассеиваться в виде тепла в резисторе сверху, с потребляемым током и напряжением на нем внизу, как показано. Ряд сопротивлений резисторов рассмотрим ниже.
Стандартная цветовая маркировка резисторов
Стандартное обозначение резисторов. Маркировка резисторов по мощности.
Нестандартная цветная маркировка импортных резисторов
Ряд резисторов Е24 маркируется так:
Маркировка советских резисторов
Цифро-буквенная маркировка
Стандартная таблица маркировки:
Маркировка помогает использовать треугольник мощности, который отлично подходит для расчета мощности, рассеиваемой в резисторе, если мы знаем значения напряжения на нем и тока, протекающего через него. Но мы также можем рассчитать мощность, рассеиваемую сопротивлением, используя закон Ома. Ряды резисторов невозможно было бы установить без таких рассчетов.
Закон Ома позволяет нам рассчитать рассеиваемую мощность с учетом значения сопротивления резистора. Используя закон Ома, можно получить два альтернативных варианта приведенного выше выражения для мощности резистора, если нам известны значения только двух, напряжения, тока или сопротивления, следующим образом:
[P = V x I] Мощность = Вольт х Ампер
[P = I 2 x R] Мощность = ток 2 x Ом
[P = V 2 ÷ R] Мощность = Вольт 2 ÷ Ом
Рассеивание электрической мощности любого резистора в цепи постоянного тока может быть рассчитано с использованием одной из следующих трех стандартных формул:
где:
- V – напряжение на резисторе в вольтах
- Я в ток, протекающий через резистор в амперах
- R – сопротивление резистора в омах (Ом)
Поскольку номинальная мощность рассеиваемого резистора связана с его физическим размером, резистор 1/4 (0,250) Вт физически меньше, чем резистор 1 Вт, и резисторы с одинаковым омическим значением также доступны в различных номиналах мощности. Углеродные резисторы, например, обычно изготавливаются с номинальной мощностью 1/8 (0,125) Вт, 1/4 (0,250) Вт, 1/2 (0,5) Вт, 1 Вт и 2 Вт.
Вообще говоря, чем больше их физический размер, тем выше его номинальная мощность. Однако всегда лучше выбрать резистор определенного размера, который способен рассеивать в два или более раз больше расчетной мощности. Когда требуются резисторы с более высокой номинальной мощностью, резисторы с проволочной обмоткой обычно используются для отвода избыточного тепла.
Номиналы резисторов. Таблица:
Тип | Оценка мощности | Стабильность |
Металлическая пленка | Очень низкий, менее 3 Вт | Высокий 1% |
углерод | Низкая, менее 5 Вт | Низкий 20% |
Проволочный | Высокая до 500 Вт | Высокий 1% |
Маркировка SMD резисторов
Силовые резисторы с проволочной обмоткой бывают самых разных конструкций и типов: от стандартного меньшего алюминиевого корпуса с 25-ваттным радиатором, установленного на радиаторе, как мы видели ранее, до больших трубчатых керамических или фарфоровых силовых резисторов мощностью 1000 Вт, используемых для нагревательных элементов.
Значение сопротивления проволочных резисторов очень низкое (низкие омические значения) по сравнению с углеродной или металлической пленкой. Диапазон сопротивления силового резистора колеблется от менее 1 Ом (R005) до всего 100 кОм, поскольку для больших значений сопротивления потребуется провод с тонкой калибровкой, который может легко выйти из строя.
Резисторы с низким омическим сопротивлением и низким значением мощности, как правило, используются для датчиков тока, по закону Ома ток, протекающий через сопротивление, вызывает падение напряжения на нем.
Это напряжение может быть измерено, чтобы определить значение тока, протекающего в цепи. Этот тип резистора используется в испытательном измерительном оборудовании и контролируемых источниках питания.
Силовые резисторы большего размера с проволочной обмоткой изготовлены из коррозионностойкой проволоки, намотанной на формирователь из фарфора или керамического сердечника, и обычно используются для рассеивания высоких пусковых токов, например, возникающих в цепях управления электродвигателем, электромагнитом или элеватором / краном и тормозных цепях двигателя.
Обычно эти типы резисторов имеют стандартную номинальную мощность до 500 Вт и, как правило, соединяются вместе, образуя так называемые «банки сопротивления».
Еще одна полезная особенность силовых резисторов с проволочной обмоткой заключается в использовании нагревательных элементов, таких как те, которые используются для электрического огня, тостера, утюгов и т. Д. В этом типе применения значение мощности сопротивления используется для производства тепла, а тип проволоки из сплава сопротивления используется, как правило, из никель-хрома (нихрома), допускающего температуру до 1200 o C.
Все резисторы, будь то углерод, металлическая пленка или проволока, подчиняются закону Ома при расчете значения их максимальной мощности (мощности). Стоит также отметить, что, когда два резистора соединены параллельно, их общая мощность увеличивается. Если оба резистора имеют одинаковое значение и одинаковую номинальную мощность, общая номинальная мощность удваивается.
Стандартное обозначение резисторов на схеме
Как обозначается резистор на схеме:
Обозначение резисторов на схеме может отличаться от международного стандарта.
Резисторы | Физика
Более половины деталей, используемых в современных радиоэлектронных устройствах, составляют резисторы.
Резистором (от лат. resisto — сопротивляюсь) называют выпускаемую промышленностью деталь, обеспечивающую заданное (номинальное) электрическое сопротивление цепи. Сопротивление резистора указывают на его корпусе либо в виде числового значения, либо в закодированной форме (например, в виде определенных цветных полосок). Условное обозначение резистора приведено в таблице 2 (см. § 9).
В зависимости от материала, из которого изготовлена токопроводящая часть резистора, различают металлические, углеродистые, керамические и другие резисторы. Для защиты от пыли, влаги и механических повреждений снаружи их покрывают стеклоэмалью или каким-либо другим твердым материалом (рис. 34, а).
Лабораторные резисторы, используемые в школе, имеют вид проволочных спиралей, помещенных в углубление пластмассовой колодки (рис. 34, б).
В школьных экспериментах применяют также демонстрационные магазины сопротивлений, состоящие из нескольких резисторов в виде проволочных спиралей, рассчитанных на 1, 2 и 5 Ом (рис. 34, в).
Существуют резисторы как с постоянным сопротивлением, так и с переменным. К последним относятся реостаты. Условное обозначение реостата приведено в таблице 2.
Действие реостатов основано на зависимости сопротивления проводника от его длины. Конструкция реостатов позволяет изменять длину участка, по которому идет ток. При увеличении этой длины сопротивление реостата возрастает, при уменьшении убывает.
Различают рычажные и ползунковые реостаты.
Рычажный реостат изображен на рисунке 35. Передвигая рычаг реостата от одного контакта к другому, можно вводить в цепь большее или меньшее число проволочных спиралей и тем самым скачком (ступенчато) изменять сопротивление цепи.
Ползунковый реостат изображен на рисунке 36. Его сопротивление можно изменять плавно. Для этого реостат снабжен скользящим контактом (ползунком). Перемещая его, мы постепенно включаем большую или меньшую часть обмотки реостата, и его сопротивление плавно изменяется.
Путем изменения сопротивления цепи можно влиять на силу тока в ней. От нее, в свою очередь, зависят действия, оказываемые током в различных устройствах. Реостаты позволяют эти действия как усиливать, так и ослаблять.
??? 1. Что такое резистор? Как он обозначается на схемах? 2. Что такое реостат? 3. Какие виды реостатов вы знаете? Чем они отличаются друг от друга? 4. Как обозначается реостат на схемах? 5. Зачем нужны реостаты? 6. В какую сторону следует передвинуть рычаг реостата, изображенного на рисунке 35, чтобы его сопротивление уменьшилось? 7. В какую сторону следует переместить ползунок реостата, изображенного на рисунке 36, чтобы его сопротивление увеличилось?
Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора
Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора
Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.
В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.
Характеристики резисторов
1. Основной параметр резистора – это номинальное сопротивление.
2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.
3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.
4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.
5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.
6. Шумовые характеристики.
7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.
8. Влаго- и термоустойчивость.
Есть еще две характеристики, о которых начинающие чаще всего не знают, это:
1. Паразитная индуктивность.
2. Паразитная ёмкость.
Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.
На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.
Мощность резистора
Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I
Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:
I=U/R
Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:
I=U/R
Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.
У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.
В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).
На картинке пример кристаллической решетки, для наглядности.
Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?
То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.
Но как это относится к резисторам?
Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам.2/1=144/1=144 Вт.
Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.
Какие бывают резисторы и как они обозначаются на схеме
Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5
Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.
Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.
Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.
Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).
Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).
Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.
В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.
Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.
Что делать, если нет резистора нужной мощности?
Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.
На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.
1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3
2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.
На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.
Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I
Мощность, выделяемая на каждом из них, снизится соответствующим образом.
Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.
Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.
Заключение
Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.
При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.
Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.
Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%. Компания также разработала модуль мощностью 469,3 Вт. Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.
По материалам: electrik.info.
Калькулятор цветового кода резистора• Калькуляторы электрических, радиочастотных и электронных устройств • Онлайн-преобразователи единиц
Определения и расчетыРезистор и сопротивление
Резистор — это пассивный электрический компонент, который создает электрическое сопротивление в электронных схемах. Резисторы можно встретить практически во всех электрических цепях. Они используются для различных целей, например, для ограничения электрического тока, в качестве делителей напряжения, для обеспечения смещения активных элементов схемы, для завершения линий передачи, в цепях резистор-конденсатор в качестве синхронизирующего компонента… Список бесконечен.
Блок прецизионных декадных резисторов
Электрическое сопротивление резистора или электрического проводника является мерой сопротивления потоку электрического тока. Единицей измерения сопротивления в системе СИ является ом. Любой материал показывает некоторое сопротивление, кроме сверхпроводников, у которых сопротивление нулевое. Дополнительная информация об сопротивлении, удельном сопротивлении и проводимости.
Допуск резистора
Конечно, можно сделать резистор с очень точным сопротивлением, но это будет безумно дорого.Кроме того, относительно редко используются прецизионные резисторы. Для измерений используются очень дорогие резисторы. Здесь мы поговорим о недорогих резисторах, используемых в электрических схемах, не требующих высокой точности. Во многих случаях достаточно точности ± 20%. Для резистора 1 кОм это означает, что подходит любой резистор со значением в диапазоне от 800 Ом до 1200 Ом. Для некоторых критических компонентов допуск может быть указан как ± 1% или даже ± 0,05%. В то же время 20% резисторы сегодня найти сложно — они были обычным явлением в начале эры транзисторного радио.Резисторы 5% и 1% сегодня очень распространены. Раньше они были относительно дорогими, но сейчас это не так.
Сравнение резисторов SMD 0,1 Вт в корпусах 1608 (1,6 × 0,8 мм) с керамическим резистором 10 Вт 1 Ом
Рассеиваемая мощность
Когда электрический ток проходит через резистор, он нагревается, и электрическая энергия преобразуется в тепловая энергия, которую он рассеивает. Эта энергия должна рассеиваться резистором без чрезмерного повышения его температуры. И не только его температура, но и температура компонентов, окружающих этот резистор.Мощность, потребляемая резистором, рассчитывается как
, где В, в вольтах — это напряжение на резисторе с сопротивлением R в омах, а I — ток в амперах, протекающий через него. Мощность, которую резистор может безопасно рассеивать в течение неопределенного периода времени без ухудшения своих характеристик, называется номинальной мощностью резистора или номинальной мощностью резистора в ваттах . Как правило, чем больше размер резистора, тем больше мощности он может рассеять.Выпускаются резисторы разной мощности, чаще всего от 0,01 Вт до сотен ватт. Угольные резисторы обычно производятся с номинальной мощностью от 0,125 до 2 Вт.
Резисторы с цветовой кодировкой 1/8 Вт, 1/4 Вт, 1/2 Вт и 1 Вт в блоке питания компьютера
Предпочтительные значения
Хотя можно производить резисторы любого номинала, более полезно делать ограниченное количество компонентов, особенно с учетом того, что любой изготовленный резистор подлежит определенному допуску.Стоимость более точных резисторов намного выше, чем их менее точных аналогов. Общая логика требует выбора логарифмической шкалы значений, чтобы все значения были равномерно распределены по логарифмической шкале и соответствовали допуску диапазона. Например, для допуска ± 10% имеет смысл охватить декаду (интервал от 1 до 10, от 10 до 100 и т. Д.) В 12 шагов: 1,0, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3. , 3.9, 4.7, 5.6, 6.8, 8.2, затем 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. Эти значения называются предпочтительными и стандартизированы как E series предпочтительных чисел, которые используются не только для резисторов, но и для конденсаторов, катушек индуктивности и стабилитронов.Каждая серия E (E3, E6, E12, E24, E48, E96 и E192) делит декаду на 3, 6, 12, 24, 48, 96 и 192 шага. Обратите внимание, что серия E3 устарела и почти не используется.
Списки значений серии E
Современный керамический резистор 10 Вт 8,6 Ом (вверху) и резистор VZR 2 Вт 3,3 кОм, произведенный в Советском Союзе в 1969 году
Значения E6 (допуск 20%):
1,0 , 1,5, 2,2, 3,3, 4,7, 6,8.
E12 значения (допуск 10%):
1.0, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3, 3,9, 4,7, 5,6, 6,8, 8,2.
E24 значения (допуск 5%):
1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1.
E48 значения (допуск 2%):
1,00, 1,05, 1,10, 1,15, 1,21, 1,27, 1,33, 1,40, 1,47, 1,54, 1,62, 1,69, 1,78, 1,87, 1,96, 2,05, 2,15, 2,26, 2.37, 2.49, 2.61, 2.74, 2.87, 3.01, 3.16, 3.32, 3.48, 3.65, 3.83, 4.02, 4.22, 4.42, 4.64, 4.87, 5.11, 5.36, 5.62, 5.90, 6.19, 6.49, 6.81, 7.15, 7.50, 7.87, 8.25, 8.66, 9.09, 9.53.
E96 значения (допуск 1%):
1,00, 1,02, 1,05, 1,07, 1,10, 1,13, 1,15, 1,18, 1,21, 1,24, 1,27, 1,30, 1,33, 1,37, 1,40, 1,43, 1,47, 1,50, 1,54, 1,58, 1,62, 1,65, 1,69, 1,74, 1,78, 1,82, 1,87, 1,91, 1,96, 2,00, 2,05, 2,10, 2,15, 2,21, 2,26, 2,32, 2,37, 2,43, 2,49, 2,55, 2,61, 2,67, 2,74, 2,80, 2,87, 2,94, 3,01, 3,09, 3,16, 3,24, 3,32, 3,40, 3,48, 3,57, 3,65, 3,74, 3,83, 3.92, 4.02, 4.12, 4.22, 4.32, 4.42, 4.53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23, 5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49, 6.65, 6.81, 6.98, 7,15, 7,32, 7,50, 7,68, 7,87, 8,06, 8,25, 8,45, 8,66, 8,87, 9,09, 9,31, 9,53, 9,76.
E192 Значения (допуск 0,5% и ниже):
1,00, 1,01, 1,02, 1,04, 1,05, 1,06, 1,07, 1,09, 1,10, 1,11, 1,13, 1,14, 1,15, 1,17, 1,18, 1,20, 1,21, 1,23, 1,24, 1,26, 1,27, 1,29, 1,30, 1,32, 1,33, 1,35, 1,37, 1,38, 1,40, 1,42, 1,43, 1,45, 1.47, 1,49, 1,50, 1,52, 1,54, 1,56, 1,58, 1,60, 1,62, 1,64, 1,65, 1,67, 1,69, 1,72, 1,74, 1,76, 1,78, 1,80, 1,82, 1,84, 1,87, 1,89, 1,91, 1,93, 1,96, 1,98, 2,00, 2,03, 2,05, 2,08, 2,10, 2,13, 2,15, 2,18, 2,21, 2,23, 2,26, 2,29, 2,32, 2,34, 2,37, 2,40, 2,43, 2,46, 2,49, 2,52, 2,55, 2,58, 2,61, 2,64, 2,67, 2,71, 2,74, 2,77, 2,80, 2,84, 2,87, 2,91, 2,94, 2,98, 3,01, 3,05, 3,09, 3,12, 3,16, 3,20, 3,24, 3,28, 3,32, 3,36, 3,40, 3,44, 3,48, 3,52, 3,57, 3.61, 3.65, 3.70, 3.74, 3.79, 3.83, 3.88, 3.92, 3.97, 4.02, 4.07, 4.12, 4.17, 4.22, 4.27, 4.32, 4.37, 4.42, 4.48, 4.53, 4.59, 4.64, 4.70, 4.75, 4.81, 4.87, 4.93, 4.99, 5.05, 5.11, 5.17, 5.23, 5.30, 5.36, 5.42, 5.49, 5.56, 5.62, 5.69, 5.76, 5.83, 5.90, 5.97, 6.04, 6.12, 6.19, 6.26, 6.34, 6.42, 6.49, 6.57, 6.65, 6.73, 6.81, 6.90, 6.98, 7.06, 7.15, 7.23, 7,32, 7,41, 7,50, 7,59, 7,68, 7,77, 7,87, 7,96, 8,06, 8,16, 8,25, 8,35, 8,45, 8,56, 8,66, 8,76, 8,87, 8,98, 9,09, 9,20, 9,31, 9,42, 9,53, 9,65, 9,76, 9,88.
Цветовая кодировка резистора
Маркировка резистора
Большие резисторы, как показано на рисунке, обычно обозначаются цифрами и буквами, и их легко читать.Однако значение не может быть легко напечатано даже с использованием современной технологии печати на небольших резисторах (и других электронных компонентах), особенно если они имеют цилиндрическую форму. Поэтому в течение последних 100 лет для маркировки компонентов использовались цветные полосы. Электронный цветовой код для этой цели был введен в начале 1920 года. Цветовые коды используются не только для резисторов, но также для конденсаторов, диодов, катушек индуктивности и других электронных компонентов.
Цветовой код резистора
Для резисторов используется до шести цветных полос.Наиболее распространенным является четырехполосный цветовой код, в котором первая и вторая полосы представляют первую и вторую значащие цифры значения сопротивления, третья полоса представляет собой десятичный множитель, а четвертая полоса указывает допуск. Между третьей и четвертой полосой есть небольшой, иногда плохо различимый зазор, который помогает различать левую и правую стороны симметричного компонента. Резисторы 20% обычно маркируются всего тремя полосами — у них нет полосы допуска. Их полосы означают цифру, цифру, множитель.
Для резисторов с точностью 2% или более используются пять или более полос, а первые три полосы представляют значение сопротивления. Последняя полоса в 6-полосной маркировке представляет температурный коэффициент в ppm / K (частей на миллион на кельвин). На рисунке выше представлен принцип цветовой маркировки.
Полосы читаются слева направо. Обычно они сгруппированы ближе к левому краю. Если есть видимый зазор между последней цветной полосой и другими полосами, значит, это показывает правую сторону резистора.Кроме того, серебряные или золотые полосы (если есть) всегда на правой стороне. Когда вы определили значение по цветным полосам, сравните его с предпочтительными диаграммами значений. Если его там нет, то попробуйте читать с другого конца. Обратите внимание на , что в данном калькуляторе цветовая маркировка выполнена в соответствии с международным стандартом IEC 60062: 2016 .
Щелкните или коснитесь ссылок, чтобы просмотреть примеры цветовой маркировки:
10 кОм ± 20%, 12 Ом ± 20%, 15 МОм ± 1%, 18 МОм ± 2%, 22 кОм ± 10%, 27 Ом ± 5 %, 33 кОм ± 5%, 39 МОм ± 0.5%, 0,47 Ом ± 0,25%, 0,56 Ом ± 0,1%, 68 Ом ± 0,05%, 0,82 Ом ± 20%
Цифровая маркировка
Числовые значения напечатаны на резисторах для поверхностного монтажа (SMT — технология поверхностного монтажа или SMD — устройство поверхностного монтажа) больших размеров и на более крупных резисторах с осевыми выводами. Поскольку место для маркировки очень мало, иногда бывает непросто прочитать и понять номинал резистора. Маркировка в основном используется для обслуживания, потому что во время производства резисторы подаются в машины для поверхностного монтажа в лентах, которые имеют соответствующую маркировку.Многие, особенно малые резисторы SMD, вообще не имеют маркировки, и после того, как они сброшены с лент, единственный способ определить их сопротивление — это измерить.
39 × 10⁰ = 39 Ом 0,1 Вт SMD резисторы в 1608 (1,6 × 0,8 мм) корпусах
Для маркировки используется несколько систем: трех- или четырехзначное, двухзначное с буквой, трехзначное с буквой, код РКМ , и другие системы. Если вы видите только три цифры, они обозначают значащие цифры, а третья — множитель. Например, 103 на резисторе SMD представляет 10 × 10³ = 10 кОм.
Четырехзначная система используется для резисторов с высокими допусками, например, для резисторов серии E96 или E192. Например, 2743 = 274 × 10³ = 274 кОм.
Для резисторов меньшего размера можно использовать другую систему. Например, для серии E96 используются две цифры плюс одна буква. Эта система может сохранить один символ по сравнению с четырехзначной системой. Это потому, что E96 содержит менее 100 значений, которые могут быть представлены двумя числами, если они пронумерованы последовательно, то есть 01-100, 02-102, 03-105 и т. Д.Буква представляет множитель. Обратите внимание, что производители часто используют собственные системы. Поэтому лучший способ определить сопротивление — всегда измерить его мультиметром.
В Кодексе РКМ, также называемом «нотацией R», вместо десятичного разделителя помещается буква, обозначающая единицу сопротивления, которая не может быть надежно напечатана или просто исчезнет на компонентах или дублированных документах. К тому же этот метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2K7 означает 2.7 кОм и 1М5 означает 1,5 МОм.
Измерение резистора 3,3 МОм 0,5 Вт с помощью осциллографа-мультиметра
Измерение сопротивления
Сопротивление можно измерить с помощью аналогового (с помощью иглы) или цифрового омметра или мультиметра с функцией измерения сопротивления. Чтобы измерить сопротивление, подключите щупы к выводам резистора и прочтите значение. Иногда можно измерить сопротивление, не удаляя резистор из цепи. Однако перед подключением мультиметра к измеряемой цепи необходимо отключить питание схемы и разрядить все конденсаторы.
Мультиметр может использоваться не только для измерения сопротивления резисторов, но и контактного сопротивления различных компонентов переключения, таких как реле или переключатели. Например, вы можете определить, нуждается ли кнопка мыши в замене, измерив ее сопротивление, предпочтительно с помощью аналогового мультиметра или цифрового измерителя с аналоговым полосковым дисплеем. Аналоговая гистограмма полезна при диагностике или настройке. Гистограмма действует как стрелка в аналоговом измерителе и может показывать колеблющееся сопротивление, когда цифровой дисплей с мигающими цифрами будет совершенно бесполезен.С помощью этого типа измерителя вы можете легко найти множество периодически возникающих проблем, например, дребезг контактов вибрирующего реле.
В заключение приведу несколько примеров:
Резистор 2,7 кОм ± 5%: красный, фиолетовый, красный, золотой
Резистор 100 кОм ± 5%: коричневый, черный, желтый, золотой.
Резистор 220 кОм ± 5%: красный, красный, желтый, золотой.
Резистор 330 кОм ± 5%: оранжевый, оранжевый, желтый, золотой.
Резистор 390 кОм ± 5%: оранжевый, белый, желтый, золотой.
Резистор 430 кОм ± 5%: желтый, оранжевый, желтый, золотой
Резистор 470 кОм ± 5%: желтый, фиолетовый, желтый, золотой
Резистор 510 кОм ± 5%: зеленый, коричневый, желтый, золотой
Резистор 560 кОм ± 5%: зеленый, синий, желтый, золотой
Резистор 750 кОм ± 5%: фиолетовый, зеленый, желтый, золотой
Резистор 910 кОм ± 5%: белый, коричневый, желтый, золотой
ЦВЕТ РЕЗИСТОРА КОД КАЛЬКУЛЯТОР
Как видно из приведенной выше диаграммы 4-х полосных цветовых кодов резистора , первые две цветовые полосы имеют значения коричневый = 1, красный = 2, оранжевый = 3 и т. Д. Третья цветовая полоса является множителем первых двух полос. Здесь черный — 1, коричневый — 10, красный — 100 и так далее.
Другими словами, значение третьей полосы (множителя) — это число 10, возведенное в степень цветового кода. Например,
красный в третьей полосе равен 10² или 100.
Эта третья полоса также имеет 2 новых цвета, где золото = 0,1 и серебро = 0,01.
Четвертая полоса — это допуск резистора и показывает, насколько точно резистор был изготовлен.Золото = 5%, серебро = 10% и вообще никакого браслета = 20%.
Теперь, когда мы знаем значения каждого цвета, давайте попробуем вычислить несколько примеров значения сопротивления.
Глядя на резистор № 1, мы видим красный цвет , красный, зеленый, золотой, золотой .
Таблица цветовых кодов «переводит» это в 2 2 и 100 000
, что равняется 2 2 × 100 000 или 2 200 000 Ом, и не забывайте золотую 4-ю полосу, которая указывает на допуск 5%.
Резистор №2 имеет цвет оранжевый оранжевый желтый серебристый что «переводится» в 3 3 × 10 000 или 330 000 Ом и допуск 10%.
Резистор № 3 имеет цвета , желтый, фиолетовый, серебристый, , что означает 4 7 × 0,01 или 0,47 Ом, и отсутствие четвертой полосы указывает на допуск 20%.
Пятиполосный резистор
Используйте 5-полосную диаграмму, чтобы решить следующие проблемы.
Для резистора 4 мы видим первые 3 полосы — фиолетовую, зеленую и красную, которые «переходят» в 7, 5 и 2. Глядя на
четвертая полоса (множитель), мы видим, она коричневая и имеет значение 10.
Итак, значение сопротивления составляет 7 5 2 × 10, что равно 7 520 Ом или 7.52 кОм.
Полоса 5 красного цвета, что указывает на допуск 2%, а коричневая шестая полоса означает, что температурный коэффициент составляет 100 частей на миллион (ppm).
Изучив резистор 5, первые 3 полосы — коричневые, черные и синие, а четвертая полоса (множитель) — зеленая. Итак, эти цвета преобразуются в
1 0 6 × 100 000, что соответствует 10 600 000 Ом или 10,6 Мега Ом.
Коричневая пятая полоса и красная 6-я полоса означают, что резистор имеет допуск 1% и температурный коэффициент 50 ppm.
Если вы читали эти инструкции, вы, вероятно, хорошо понимаете, как определять номинал резистора по его цветам. Опять же, всегда есть калькулятор, который значительно упрощает решение задач.
_____________________ Вернуться на главную страницу
Авторские права © 1999 — 1728 Программные системы
Резисторы
Резисторы Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | ДругойЦветовой код | Толерантность | Реальные ценности (серии E6 и E12) | Номинальная мощность
См. Также: Сопротивление | Закон Ома
Пример: Обозначение цепи:
Функция
Резисторы ограничивают прохождение электрического тока, например, резистор включен последовательно с светодиод (LED) для ограничения тока, проходящего через светодиод.Подключение и пайка
Резисторы можно подключать любым способом. Они не повреждаются от тепла при пайке. Резистор Цветовой код | |
Цвет | Номер |
Черный | 0 |
Коричневый | 1 |
Желтый | 4 |
Зеленый | 5 |
Синий | 6 |
Фиолетовый | 7 |
6 Серый | |
6 Серый |
Номиналы резисторов — цветовой код резистора
Сопротивление измеряется в омах, символ ом — омега. .1 довольно мала, поэтому номиналы резисторов часто приводятся в k И м.
1 к = 1000 1 млн = 1000000.
Номиналы резисторов обычно отображаются с помощью цветных полос.
Каждый цвет представляет собой число, как показано в таблице.
Большинство резисторов имеют 4 полосы:
- Первая полоса дает первую цифру .
- Вторая полоса дает вторую цифру .
- Третья полоса указывает на количество нулей .
- Четвертая полоса показывает допуск (точность) резистора, это может быть проигнорировано почти для всех цепей, но даны более подробные сведения. ниже.
Этот резистор имеет красную (2), фиолетовую (7), желтую (4 нуля) и золотую полосы.
Значит, его значение 270000
= 270 к.
На принципиальных схемах
обычно опускается и записывается значение 270К.
Узнайте, как сделать свой собственный калькулятор цветовой кодировки резистора
Резисторы малого номинала (менее 10 Ом)
Стандартный цветовой код не может отображать значения меньше, чем 10. Чтобы показать эти маленькие значения, для третьего диапазона используются два специальных цвета: золота что означает × 0,1 и серебро , что означает × 0,01. Первая и вторая полосы представляют цифры как обычно. Например:
красный , фиолетовый , золота полос представляют
27 × 0.1 = 2,7
зеленый , синий , серебра полосы представляют
56 × 0,01 = 0,56
Допуск резисторов (четвертая полоса цветового кода)
Допуск резистора показан четвертой полосой цветового кода. Допуск — это , точность резистора, он указан в процентах. Например 390 резистор с допуском ± 10% будет иметь значение в пределах 10% от 390, г. между 390 — 39 = 351 и 390 + 39 = 429 (39 — это 10% от 390). Для четвертой полосы используется специальный цветовой код:
серебро ± 10%, золото ± 5%, красный ± 2%, коричневый ± 1%.
Если четвертая полоса не отображается, допуск составляет ± 20%.
Допуском можно пренебречь почти для всех цепей, поскольку точные значения резисторов редко требуются.
Сокращенное обозначение резистора
Значения резисторов часто записываются на принципиальных схемах с использованием кодовой системы. что позволяет избежать использования десятичной точки, потому что маленькую точку легко пропустить.Вместо десятичной точки используются буквы R, K и M. Чтобы прочитать код: замените букву десятичной точкой, затем умножьте значение на 1000, если буква была K, или 1000000, если буква была M. Буква R означает умножение на 1.Например:
Реальные значения резисторов (серии E6 и E12)
Возможно, вы заметили, что резисторы доступны не со всеми возможными значениями, например 22к и 47к есть в наличии, но 25к а 50к нет!Почему это? Представьте, что вы решили делать резисторы каждые 10 дает 10, 20, 30, 40, 50 и так далее.Кажется, это нормально, но что произойдет, когда вы достигнете 1000? Делать 1000, 1010, 1020, 1030 и так далее было бы бессмысленно, потому что для этих значений 10 — очень маленькая разница, слишком мала, чтобы быть заметной в большинстве схем. На самом деле это Было бы сложно сделать резисторы достаточно точными.
Чтобы получить разумный диапазон значений резистора, вам необходимо увеличить размер «шага». по мере увеличения значения. Стандартные номиналы резисторов основаны на этой идее и образуют серия, которая следует одному и тому же образцу для каждого числа, кратного десяти.
Серия E6 (6 значений для каждого кратного десяти, для резисторов с допуском 20%)
10, 15, 22, 33, 47, 68, … затем продолжается 100, 150, 220, 330, 470, 680, 1000 и т. Д.
Обратите внимание, как размер шага увеличивается с увеличением значения. Для этой серии шаг (к
следующее значение) примерно вдвое меньше.
Серия E12 (12 значений для каждого кратного десяти, для резисторов с допуском 10%)
10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, … затем продолжается 100, 120, 150 и т. д.
Обратите внимание, это серия E6 с дополнительным значением в промежутках.
Серия E12 — наиболее часто используемая для резисторов. Это позволяет вам выбирать значение в пределах 10% от необходимого вам точного значения. Это достаточно точно почти для всех проектов, и это разумно, потому что большинство резисторов имеют точность только ± 10% (так называемая «толерантность»). Например резистор с маркировкой 390 может отличаться на ± 10% × 390 = ± 39, так что это может быть любое значение от 351 и 429.
Последовательные и параллельные резисторы
Для получения информации о резисторах, подключенных последовательно и параллельно, см. Страница сопротивления,Номинальная мощность резисторов
Электрическая энергия преобразуется в тепло, когда через резистор протекает ток. Обычно эффект незначителен, но если сопротивление низкое (или напряжение на резистор высокий) может пройти большой ток, в результате чего резистор заметно нагреется.Резистор должен выдерживать воздействие нагрева, а резисторы должны иметь номинальную мощность. чтобы показать это.Номинальная мощность резисторов редко указывается в списках запчастей, потому что для большинства цепей подходят стандартные значения мощности 0,25 Вт или 0,5 Вт. В редких случаях, когда требуется более высокая мощность, она должна быть четко обозначена. указанных в перечне деталей, это будут схемы с резисторами малого номинала (менее около 300) или высокого напряжения (более 15В).
Мощность P, развиваемая в резисторе, определяется по формуле:
P = I² × R или P = V² / R | где: | P = мощность, развиваемая в резисторе, в ваттах (Вт) I = ток через резистор в амперах (A) R = сопротивление резистора в Ом () В = напряжение на резисторе в вольтах (В) |
Примеры:
- А 470
резистору с напряжением 10 В на нем требуется номинальная мощность P = V² / R = 10² / 470 = 0.21Вт.
В этом случае подойдет стандартный резистор 0,25 Вт. - А 27
резистору с напряжением 10 В на нем требуется номинальная мощность P = V² / R = 10² / 27 = 3,7 Вт.
Подойдет резистор большой мощности с номинальной мощностью 5 Вт.
Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой
© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker.
Что такое резистор?
Ранее мы узнали, что такое напряжение, как его можно сделать и как оно работает в электронике. В этой статье мы узнаем о самом фундаментальном компоненте электроники — резисторе!
Что такое сопротивление?
Прежде чем мы сможем узнать о резисторах, нам сначала нужно понять, что такое сопротивление.Сопротивление — это способность материала сопротивляться электрическому потоку, и все материалы обладают измеримой величиной сопротивления. Некоторые материалы, такие как резина и стекло, обладают невероятно высоким сопротивлением и называются изоляторами. Такие материалы, как медь и золото, имеют очень низкое сопротивление и называются проводниками. Однако некоторые материалы имеют сопротивление между проводниками и изоляторами и называются полупроводниками. Сантехника может быть очень удобной аналогией сопротивления с большими трубами, имеющими низкое сопротивление, в то время как маленькие трубы имеют большое сопротивление.
Характеристики сопротивления
Сопротивление измеряется в омах, имеет символ Ω и было названо в честь Джорджа Саймона Ома, открывшего закон Ома. Закон Ома гласит, что ток через проводник обратно пропорционален сопротивлению проводника при фиксированной разности потенциалов. Короче говоря, если сопротивление понижается, то ток повышается, а если сопротивление повышается, то ток понижается. Сопротивление 1 Ом определяется как сопротивление, необходимое для создания тока 1 А с разностью потенциалов 1 В.
Сопротивление против удельного сопротивления
Важно понимать разницу между сопротивлением и удельным сопротивлением, поскольку, хотя они и связаны, они относятся к двум разным вещам. Сопротивление — это общее измеренное сопротивление материала, тогда как удельное сопротивление материала — это его сопротивление на единицу длины и площади поперечного сечения. Это означает, что медный провод может иметь очень низкое удельное сопротивление, но может иметь высокое сопротивление, если сделать его очень длинным и очень узким.Это также означает, что резина теоретически может быть очень широкой и очень короткой и будет иметь низкое сопротивление. Для обозначения удельного сопротивления используется символ ρ (rho) с единицей измерения Ом / м.
Что такое резистор
Теперь, когда мы узнали об сопротивлении и удельном сопротивлении, пора узнать о резисторах! Резисторы — это компоненты в электронике, которые добавляют сопротивление цепи и, возможно, являются наиболее фундаментальным компонентом. В то время как все компоненты (включая провода) в цепи имеют сопротивление, резисторы устанавливаются для преднамеренного добавления сопротивления, но также могут использоваться для регулировки выходных сигналов усилителя, установки битов конфигурации и управления выходным напряжением регулятора.В электронных схемах резисторы могут иметь один из двух символов в зависимости от того, следуете ли вы американскому стандарту или международному стандарту. В американских схемах используются волнистые линии, появившиеся в то время, когда резисторы изготавливались из тонких жилок проволоки, намотанных вокруг тела. В международных схемах используется прямоугольный прямоугольник, который является наиболее часто используемым символом. Какой из них вы будете использовать, зависит от вас, но лучше придерживаться международного стандарта, поскольку он используется в большем количестве стран.
Существует два основных типа резисторов; фиксированные и переменные. Фиксированные резисторы — это те, сопротивление которых не изменяется, в то время как переменные резисторы могут регулировать свое сопротивление. Два показанных выше символа относятся только к фиксированным резисторам, в то время как все переменные резисторы имеют разные символы в зависимости от их типа.
Типы резисторов — сквозные, SMD, подстроечные резисторы, потенциометры, LDR и
Существует несколько типов резисторов.Существуют сквозные резисторы, резисторы для поверхностного монтажа (SMD), подстроечные резисторы, потенциометры, светозависимые резисторы (LDR) и термисторы. Каждый выполняет одну и ту же задачу по оказанию сопротивления, но по-разному. Узнайте все о различных разновидностях резисторов!
Различные типы резисторов:
- сквозное отверстие
- Подстроечные резисторы
- Устройство для поверхностного монтажа или SMD
- Легкозависимые резисторы (LDR)
- Термисторы
- Потенциометры
Что такое резисторы в сквозные отверстия?
Резисторы для сквозных отверстий — это резисторы, у которых есть ножки, которые вставляются в сквозные отверстия в печатной плате, а затем припаяны.Эти резисторы бывают самых разных типов в зависимости от их применения, причем углеродная пленка является наиболее распространенной, а металлическая пленка используется в приложениях, требующих точности. В углеродных и металлопленочных резисторах используются цветные полосы для обозначения их сопротивления, причем наиболее распространенными являются четырехполосные резисторы. Резисторы в сквозное отверстие также бывают разной номинальной мощности, причем 1 / 4Вт являются наиболее популярными среди производителей, но доступны и более мощные. Резисторы очень большой мощности часто изготавливаются из керамических материалов и имеют монтажные отверстия, но не часто встречаются в электронике.
Что такое резисторы SMD?
РезисторыSMD — это те, которые размещаются в корпусах для устройств поверхностного монтажа (SMD) и в основном встречаются в современных коммерческих продуктах. Хотя производители могут использовать SMD-компоненты, их зачастую сложнее использовать из-за их очень небольшого размера. Эти резисторы, однако, значительно дешевле, а также их проще использовать в автоматизированных процессах (например, в установках для захвата и установки), отсюда и их популярность в коммерческой сфере. Как и сквозные резисторы, резисторы SMD бывают самых разных форм и размеров в зависимости от рассеиваемой мощности и области применения.Большинство этих резисторов используют цифры на корпусе для обозначения их сопротивления, но более современные резисторы SMD теперь настолько малы, что на них даже нельзя напечатать цифры.
Что такое подстроечные резисторы?
Подстроечные резисторы— это переменные резисторы, которые позволяют проектировщику выполнять точную настройку схемы. Эти типы резисторов могут быть либо в сквозном отверстии, либо в корпусе SMD, и, как правило, на них напечатано их общее значение сопротивления. Подстроечным резисторам обычно требуется несколько полных оборотов на входе, чтобы внести небольшие изменения в их сопротивление, и это полезно в приложениях, требующих тщательного контроля сопротивления цепи, например, в усилителях.
Что такое потенциометры?
Потенциометры — это переменные резисторы с тремя контактами, которые позволяют регулировать сопротивление (с использованием двух ножек) или регулируемое напряжение (с использованием всех трех ножек). В отличие от подстроечных резисторов, потенциометры часто используются для основных элементов управления, где точность не требуется, но требуется управление. Потенциометры обычно не допускают более полного оборота, например, регуляторы громкости. У них есть два предела, минимальный и максимальный, и регулировка между этими двумя точками регулирует громкость.Хотя потенциометры SMD действительно существуют, их часто можно найти в корпусах со сквозными отверстиями, поскольку они требуют механической стабильности при использовании.
Что такое LDR или светозависимые резисторы?
Light Dependent Resistors, или LDR, — это резисторы, сопротивление которых зависит от падающего на них света. Эти резисторы доступны как для поверхностного монтажа, так и для сквозных отверстий, причем чаще используются сквозные отверстия. Однако эти устройства сделаны с использованием сульфида кадмия, который является токсичным веществом и запрещен согласно RoHS, поэтому эти устройства быстро исчезают.Если требуется светочувствительная схема, лучше использовать фотодиод.
Что такое термисторы?
Термисторы — это переменные резисторы, сопротивление которых зависит от их температуры, и доступны как в исполнении для сквозного монтажа, так и в исполнении для поверхностного монтажа. Из этих категорий существуют еще две, которые показывают, как сопротивление термистора изменяется в зависимости от температуры; Положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC). Термисторы PTC — это те, сопротивление которых увеличивается с температурой, в то время как сопротивление термистора NTC уменьшается при повышении температуры.
Наборы резисторов
При использовании резисторов в цепях важно знать два уравнения, которые сообщают вам общее сопротивление цепи в зависимости от их конфигурации. Короче говоря, резисторы, включенные последовательно, складываются, а резисторы, включенные параллельно, вычитаются (но очень сложным образом).
Для резисторов серии
Для резисторов, включенных параллельно
1 / Rобщ = 1 / R1 + 1 / R2 + ⋯ 1 / Rn
Цветовая кодировка резистора
Большинство стандартных резисторов имеют цветовую маркировку, которая помогает рассчитать сопротивление резистора.Как правило, на резисторе указаны значение сопротивления, номинальная мощность и допуск. Для резисторов меньшего размера это указывается цветными полосами. Таким образом, цветовая кодировка резистора указывает общее значение сопротивления конкретного резистора. Резисторы бывают трех-, четырех-, пяти- и шестиполосными. У трехполосного резистора первые две полосы показывают значение сопротивления, а третья полоса — множитель. В случае четырехполосного резистора первые две полосы дают значения сопротивления, затем множитель, затем промежуток между третьей и четвертой полосами, указывающий направление считывания, а четвертая полоса указывает свой допуск.Пятиполосный резистор дает сопротивление с первыми тремя полосами, умножитель с четвертой и допуск с пятой. Шестиполосный резистор указывает сопротивление своими первыми тремя полосами, множитель — четвертой, допуск — пятой, а интенсивность отказов — шестой.
Обычное применение резисторов в реальных условиях
Так как же резисторы используются в реальной жизни? Это довольно распространенные компоненты. Часто можно встретить резисторы, используемые для управления усилением, тепловыделения, деления напряжения и управления колебаниями напряжения вместе с конденсатором, поглощением мощности в РЧ-передатчиках и других приложениях.
Реальное применение резисторов:
- Светодиоды — последовательно включенные резисторы предельного тока и пониженного напряжения
- Регулировка усиления в амперах
- Контроль колебаний напряжения у конденсатора (например, светофор)
Что такое резистор и что такое сопротивление — последние мысли
Резисторыимеют решающее значение в современной электронике, поскольку они способны ограничивать ток, управляющие напряжения и обеспечивать конфигурацию схем.Понимание того, как их использовать, как они выглядят и какие типы доступны, не только поможет вам в будущих проектах, но и поможет лучше использовать компоненты. Возможно, вашему следующему проекту потребуется датчик температуры или он должен быть очень маленьким; теперь вы можете пойти и начать исследовать мир сопротивления самостоятельно!
резисторов последовательно и параллельно
Введение
Цепи постоянного тока (DC) характеризуются величинами тока, напряжения и сопротивления.Ток — это скорость потока заряда. Единица СИ — ампер (А). Условно направление тока — это направление потока заряда, хотя в металлических проводниках ток возникает из-за потока отрицательного заряда (электронов) в противоположном направлении. Из-за сохранения заряда ток одинаков во всех точках однопетлевой цепи. В точке ветвления в цепи, где проводящий путь разделяется на два или более, общий ток в точке ветвления равен полному току из этой точки.Обычно ток течет от положительной клеммы батареи или источника питания к отрицательной клемме. Для поддержания тока в цепи должен быть полностью проводящий путь. Напряжение — это мера разности электрических потенциалов между двумя точками в цепи. Единица СИ — вольт (В). Поскольку электрическая сила является консервативной, сумма напряжений увеличивается и уменьшается вокруг любого замкнутого контура, равная нулю. Сопротивление — это свойство элемента схемы (проводника) препятствовать прохождению тока.Сопротивление определяется где В, — напряжение на элементе схемы, а I — ток, протекающий через него. Если R постоянный, одинаковый для всех V , то элемент схемы подчиняется закону Ома. Единицей измерения сопротивления в системе СИ является ом (Ом). Сопротивление резистивного элемента цепи изменяется в зависимости от температуры. Два резистора R 1 и R 2 соединены последовательно, если весь ток, который проходит через R 1 , также проходит через R 2 .Следовательно, для двух последовательно соединенных резисторов ток от I 1 до R 1 совпадает с током от I 2 до R 2 , и этот ток такой же, как ток ток, I , который входит в последовательную сеть:I = I 1 = I 2 .
Общее напряжение В в последовательной сети представляет собой сумму напряжений В 1 и В 2 на каждом резисторе.То естьV = V 1 + V 2 .
Эквивалентное сопротивление, R с , R 1 и R 2 последовательно определяется выражением Два резистора R 1 и R 2 подключены параллельно, если напряжения В 1 и В 2 на каждом из них одинаковы и равны напряжению В , через параллельную сеть.То естьV = V 1 = V 2 .
Токи I 1 и I 2 через каждый из резисторов складываются, чтобы получить общий ток, I , текущий в сеть и из нее:I = I 1 + I 2 .
Эквивалентное сопротивление R p из R 1 и R 2 параллельно определяется выражением Это также можно записать как Амперметры используются для измерения тока.Амперметр подключается последовательно к цепи, так что весь измеряемый ток течет через амперметр. Следовательно, амперметры должны иметь очень маленькое сопротивление, чтобы не изменять ток в цепи. Вольтметры используются для измерения напряжений. Вольтметр подключается параллельно в двух точках, между которыми должна быть измерена разность потенциалов. Следовательно, вольтметр должен иметь большое сопротивление, чтобы через него проходил очень небольшой ток.Цель
В этой лаборатории мы будем измерять и анализировать токи и напряжения для цепей, содержащих один резистор, а также для двух последовательно включенных резисторов и двух параллельно.Аппарат
- Источник питания постоянного тока 0-40 вольт
- Лампочка на 12 вольт и розетка
- Резисторы 150 и 700 Ом
- Цифровой мультиметр
Процедура
Распечатайте лист для этой лабораторной работы. Этот лист понадобится вам для записи ваших данных.Измерение напряжения
1
Блок питания является источником разности потенциалов (напряжения).Найдите источник питания постоянного тока за столом. Нажмите кнопку POWER ON / OFF в положение ON. Затем нажмите кнопку RANGE в положение IN (0,85 A). Это устанавливает источник питания в диапазоне 0-35 В / 0-0,85 А. Поверните ручку регулировки напряжения и тока ADJUST против часовой стрелки. Затем установите максимальный выходной ток для этого эксперимента, нажав кнопку CC Set и, удерживая ее, поверните текущую ручку ADJUST по часовой стрелке, пока на дисплее AMPS не появится 0.30 A. Отпустите кнопку CC Set . Не перемещайте ручку текущей настройки ( CC Set ) в любой момент во время эксперимента.2
Мультиметр — это измерительное устройство, которое используется для измерения разности напряжений, электрических токов и электрических сопротивлений. Он также может измерять другие электрические свойства. См. Рис. 1. В верхней части измерителя находится ЖК-дисплей (жидкокристаллический дисплей), в середине — переключатель функций / диапазона (диск), а внизу — четыре входных разъема.Примечание. Измеритель особенно чувствителен (и склонен к перегоранию предохранителя) при использовании входного разъема 200 мА (см. I в обозначении на Рисунке 1).
Ключ для рисунка 1:А
3-1 / 2-разрядный ЖК-дисплей с сигнализаторами.В
Кнопка ВКЛ / ВЫКЛ: включает и выключает питание измерителя.С
Кнопка HI / LO: выбирает высокий или низкий уровень запуска для измерения частоты.D
Кнопка MAX: выбирает функцию удержания максимального показания.E
Кнопка DC / AC: выбирает напряжение постоянного или переменного тока.F
Переключатель функции / диапазона: выбирает желаемую функцию и диапазон.G
Входной разъем V Ω: входной разъем для напряжения, сопротивления, проверки диодов, целостности цепи, частоты и логики.H
Входной разъем COM: входной разъем заземления.I
Входной разъем 200 мА: входной разъем для тока до 200 мА, L x (индуктивность), C x (емкость).Дж
Входной разъем на 10 А: входной разъем для тока до 10 А.
Осторожно:
Для защиты счетчик гудит при перегрузке; если гудит, немедленно отсоедините провода счетчика!
3
Чтобы включить мультиметр, нажимайте верхнюю левую кнопку на измерителе, пока на его циферблате не появится дисплей. Чтобы настроить мультиметр на измерение постоянного напряжения, В, , переключите верхнюю правую кнопку на постоянный ток. Убедитесь, что на дисплее глюкометра отображается постоянный ток. Поверните переключатель функций / диапазонов в положение диапазона напряжения (В) и установите значение 20.Теперь измеритель настроен на считывание напряжений до 20 вольт постоянного тока. Подключите банан к банановым выводам к общему разъему (COM) и к разъему напряжения (V).4
Подключите выводы мультиметра к клеммам + и — источника питания. См. Рисунок 2. На блоке питания поверните ручку регулировки напряжения ADJUST по часовой стрелке, пока на дисплее вольт не отобразится 5,0 вольт. Сравните показания напряжения на мультиметре и на измерителе блока питания. Эти два показания могут не совпадать.Ожидается, что мультиметр будет точнее.Ток и напряжение для одиночного резистора
1
Уменьшите напряжение источника питания (против часовой стрелки) до нуля вольт. Подключите блок питания к резистору на печатной плате с маркировкой 700 Ом. (Не настраивайте и не изменяйте настройку тока на источнике питания.) Мы будем использовать мультиметр для измерения постоянного тока через резистор 700 Ом в зависимости от приложенного напряжения. Для этого мы должны соединить мультиметр серии с резистором, чтобы одинаковый ток проходил через оба. Так как предохранитель легко перегорит, когда мультиметр установлен на текущую настройку, внимательно следуйте инструкциям. Установите шкалу мультиметра на шкалу тока 20 мА и подключите банановые штекеры к гнездам COM и мА на измерителе. Осторожно:
Не повышайте напряжение на блоке питания, пока ТА не проверит вашу цепь.
2
После того, как ваш ТА даст добро, установите источник питания на 1 В и запишите в Таблице 1 ток через резистор, как показано на мультиметре.Повторите то же самое с источником питания, установленным на 2, 3, 4 и 5 вольт.3
Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Инструкции по построению графиков в Excel см. В приложении к интерактивному руководству лаборатории. Если вы получите ожидаемые результаты, данные будут располагаться близко к прямой линии, проходящей через начало координат. Используйте Excel, чтобы найти наклон прямой линии, который лучше всего соответствует вашим данным, и запишите результат, включая единицы измерения.4
Используйте закон Ома и наклон графика, чтобы рассчитать сопротивление резистора R в единицах Ом (Ом). Запишите свой результат.Ток и напряжение для лампочки
1
УСТАНОВИТЕ НАПРЯЖЕНИЕ ПИТАНИЯ НА НУЛЬ, но не выключайте питание. Не изменяйте текущую настройку источника питания ( CC Set ). Мы будем использовать мультиметр для измерения постоянного тока через лампочку в зависимости от приложенного напряжения.Для этого мы должны соединить мультиметр серии с лампочкой, чтобы через оба проходил одинаковый ток. Так как предохранитель легко перегорит, когда мультиметр установлен на текущую настройку, внимательно следуйте инструкциям.2
Установите шкалу мультиметра на шкалу постоянного тока 10 А. Используйте входные гнезда COM и 10 A. Подключите схему, как показано на рисунке 3. Осторожно:
Не повышайте напряжение на блоке питания, пока ТА не проверит вашу цепь.
3
После того, как ваш ТА даст добро, переключите напряжение питания на 2 вольта. В таблице 2 запишите текущие показания мультиметра. Повторите эти действия для напряжений источника питания 4, 6, 8, 10 и 12 вольт.4
Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Ожидается, что ваши данные не будут приближаться к прямой. Определите и вычислите R для каждого набора значений V и I в таблице 2 и запишите в третий столбец таблицы 2. R увеличивается, уменьшается или остается таким же, как ток I через лампочку увеличивается?Два последовательно подключенных резистора
1
Подключите на печатной плате два резистора с маркировкой 150 Ом и 700 Ом, как показано на рисунке 4. Говорят, что они подключены последовательно, потому что весь ток, проходящий через один, также проходит через другой. Убедитесь, что напряжение источника питания установлено на ноль. Подключите источник питания к комбинации последовательных резисторов, как показано на рисунке 4.Установите блок питания на 5 вольт. Установите шкалу мультиметра на диапазон 20 В и используйте гнезда COM и V. С помощью мультиметра измерьте и запишите разности потенциалов (напряжение) В 150 и В 700 на каждом резисторе и напряжение В на комбинации из двух резисторов.2
Когда вы закончите эти измерения, установите напряжение источника питания на ноль и отключите мультиметр от цепи.Что из следующего лучше отражает ваши результаты?•
В = В 150 + В 700
•
В = В 150 = В 700
3
При нулевом напряжении источника питания подключите мультиметр последовательно с резисторами, как показано на рисунке 5. Установите мультиметр на диапазон постоянного тока 200 мА и подключите выводы мультиметра к правильным гнездам. Осторожно:
Перед тем, как продолжить, попросите инструктора лаборатории проверить правильность настройки: предохранитель может перегореть, если измеритель не подключен к нужным точкам в цепи.
4
Продолжая схему, показанную на рисунке 5, установите напряжение источника питания на 2 вольта. В таблице 3 запишите текущее показание мультиметра. Повторите эти действия для напряжений источника питания 4, 6, 8, 10 и 12 вольт.5
Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Используйте Excel, чтобы найти наклон прямой линии, который лучше всего соответствует вашим данным, и запишите результат, включая единицы измерения.6
Используйте закон Ома и наклон графика, чтобы вычислить эквивалентное сопротивление, R s , двух последовательно соединенных резисторов в единицах Ом (Ом). Запишите свой результат.Два параллельных резистора
1
Подключите на печатной плате два резистора с маркировкой 150 Ом и 700 Ом, как показано на Рисунке 6a. Они считаются параллельными, поскольку напряжение на каждом резисторе равно напряжению источника питания, а резисторы обеспечивают параллельные пути для прохождения тока.2
Убедитесь, что напряжение источника питания установлено на ноль. Подключите источник питания к комбинации параллельных резисторов, как показано на рисунке 6b. Установите блок питания на 5 вольт. С помощью мультиметра измерьте и запишите токи I 150 и I 700 , протекающие через каждый резистор, и общий ток, I , протекающий через источник питания.3
Когда вы закончите эти измерения, установите напряжение источника питания на ноль и отключите мультиметр от цепи.4
Что из следующего лучше отражает ваши результаты?•
Я = Я 150 + Я 700
•
Я = Я 150 = Я 700
5
Продолжите параллельную сеть резисторов. Когда напряжение источника питания установлено на ноль, подключите мультиметр для измерения полного тока, I , протекающего через источник питания.Установите мультиметр на диапазон постоянного тока 200 мА. Осторожно:
Перед тем, как продолжить, попросите инструктора лаборатории проверить правильность настройки: предохранитель может перегореть, если измеритель не подключен к нужным точкам в цепи.
6
В таблице 4 запишите текущие показания мультиметра.Повторите эти действия для напряжений источника питания 4, 6, 8, 10 и 12 вольт.7
Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Используйте Excel, чтобы найти наклон прямой линии, который лучше всего соответствует вашим данным, и запишите результат, включая единицы измерения.8
Используйте закон Ома и наклон графика, чтобы вычислить эквивалентное сопротивление R p двух параллельно включенных резисторов в единицах Ом (Ом). Запишите свой результат.Авторские права © 2012-2013 Advanced Instructional Systems Inc. и | Кредиты
Как рассчитать и понять номиналы резисторов — Kitronik Ltd
Резисторы
Резистор — это устройство, которое препятствует прохождению электрического тока. Чем больше номинал резистора, тем сильнее он противодействует току. Величина резистора выражается в омах и часто называется его «сопротивлением».Определение номиналов резистора
Цвет ремешка | 1-я полоса | 2-я группа | Множитель x | Допуск |
Серебро | ÷ 100 | 10% | ||
Золото | ÷ 10 | 5% | ||
Черный | 0 | 0 | 1 | |
Коричневый | 1 | 1 | 10 | 1% |
Красный | 2 | 2 | 100 | 2% |
Оранжевый | 3 | 3 | 1000 | |
Желтый | 4 | 4 | 10 000 | |
Зеленый | 5 | 5 | 100 000 | |
Синий | 6 | 6 | 1 000 000 | |
фиолетовый | 7 | 7 | ||
Серый | 8 | 8 | ||
Белый | 9 | 9 |
Пример: Диапазон 1 = красный, диапазон 2 = фиолетовый, диапазон 3 = оранжевый, диапазон 4 = золото
Значение этого резистора будет:
2 (красный) 7 (фиолетовый) x1000 (оранжевый)
= 27 x 1000
= 27000 с допуском 5% (золото)
= 27 кОм
Слишком много нулей?
Можно использовать кОм и мегаом:
1000 Ом = 1 кОм
1000 кОм = 1 МОм
Задача идентификации резистора
Рассчитайте номиналы резисторов, указанные в полосах, указанных ниже.Диапазон допуска игнорируется.1-я полоса | 2-я группа | Множитель x | Значение |
Коричневый | Черный | Желтый | |
Зеленый | Синий | Коричневый | |
Коричневый | серый | Желтый | |
Оранжевый | Белый | Черный |
Расчет маркировки резисторов
Рассчитайте, какими будут цветовые полосы для следующих номиналов резисторов.Значение | 1-я полоса | 2-я группа | Множитель x |
180 Ом | |||
3900 Ом | |||
47000 Ом (47 кОм) | |||
1000000 Ом (1 МОм) |
Что означает терпимость?
У резисторов всегда есть допуск, но что это значит? Это относится к точности, с которой он был изготовлен.Например, если вы должны были измерить сопротивление резистора с золотым допуском, вы можете гарантировать, что измеренное значение будет в пределах 5% от заявленного значения. Допуски важны, если точность номинала резисторов критична для рабочих характеристик конструкции.Предпочтительные значения
Для резисторов существует ряд различных диапазонов значений. Два самых популярных — E12 и E24. Они учитывают производственный допуск и выбираются таким образом, чтобы было минимальное перекрытие между верхним возможным значением первого значения в серии и наименьшим возможным значением следующего.Следовательно, в диапазоне допуска 10% меньше значений.Допуск сопротивления E-12 (± 10%) | |||||||||||
10 | 12 | 15 | 18 | 22 | 27 | 33 | 39 | 47 | 56 | 68 | 82 |
Допуск сопротивления E-24 (± 5%) | |||||||||||
10 | 11 | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 24 | 27 | 30 |
33 | 36 | 39 | 43 | 47 | 51 | 56 | 62 | 68 | 75 | 82 | 91 |
ответов
Обозначение резистора
1-я полоса | 2-я группа | Множитель x | Значение |
Коричневый | Черный | Желтый | 100000 Ом |
Зеленый | Синий | Коричневый | 560 Ом |
Коричневый | серый | Желтый | 180000 Ом |
Оранжевый | Белый | Черный | 39 Ом |
Маркировка резисторов
Значение | 1-я полоса | 2-я группа | Множитель x |
180 Ом | Коричневый | серый | Коричневый |
3900 Ом | Оранжевый | Белый | Красный |
47000 Ом (47 кОм) | Желтый | фиолетовый | Оранжевый |
1000000 Ом (1 МОм) | Коричневый | Черный | Зеленый |
© Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.
Электроника — Постоянные резисторы
Постоянные резисторы
Резисторы — это компоненты, препятствующие прохождению электрического тока. ток или, другими словами, резисторы ограничивают ток. Идеальный резистор подчиняется закону Ома, который гласит, что напряжение (или потенциал) на резистор пропорционален ток протекает с через резистор .Ом маленький значение, поэтому обычно вы будете работать в Ом, кОм или М Ом.
Ом Закон |
|
Обычно резисторы состоят из непроводящего сердечника. (керамический или стеклянный стержень), намотанный проводящим материалом и покрыт изоляционным слоем. Проводящий материал определяет рабочие характеристики резистора и способ намотка определяет номинал резистора. Углеродная пленка дешево, но металлическая пленка или оксид металла позволяет точность; они будут использоваться в наиболее типичных схемах Приложения.Намотка проволоки очень точна и может быть сконструирован для сильноточных приложений; они будут использоваться в измерительной технике и источниках питания.
Резисторыбывают разных размеров, форм, упаковок и композиции.
- Резисторы могут быть фиксированные (имеют одно значение сопротивления) или переменная (можно настроить на одно значение из диапазон значений сопротивления). На этой странице будет обсуждаться только постоянные резисторы.
- На принципиальной схеме представлены постоянные резисторы символом (Север Америка, Япония; традиционный) или (Европа; современный).
- На печатной плате постоянные резисторы обычно помечены буквой R, за которой следует буквенно-цифровой код который соответствует метке на схематической диаграмме, как в этом секция поверхностного монтажа печатная плата.
- Резисторы могут быть выводами или сквозными (используется для макетов и монтажных плат со сквозными отверстиями) или поверхностный монтаж (используется для монтажных плат поверхностного монтажа). Резисторы
- обычно упаковываются как одиночные дискретный компонент. Однако группа резисторов может Поставляются в одной упаковке сетевых резисторов (с выводами) или набором резисторов (с выводами) или массивом резисторы (поверхностный монтаж). Пакеты сетевых резисторов все внешне похожи, но имеют различные внутренние конфигурации. Точно так же пакеты матричных резисторов имеют различные внутренние конфигурации.
Характеристики резистора
1. Сопротивление
Идеальный резистор характеризуется сопротивлением измеряется в Ом (например, 1,2 Ом или 1,2 Ом). Как это не практично производить резисторы всех возможных номиналов, резисторы доступны в предварительно выбранных диапазонах, известных как предпочтительных значений или стандартных значений . E12 серия, которая является наиболее распространенной, (12 значений на 100) равна обозначается как: 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 56 Ом, 68 Ом, 82 Ом.Это не ограничивает номенклатуру резисторов общим двенадцати значений, но каждое значение резистора должно начинаться с число из ряда и умножить на 10, т.е. 1,5 Ом, 15 Ом, 150 Ом, 1500 Ом, 15000 Ом и т. Д. Стандартные значения EIA для E12, E24, E96, E192, можно найти на сайте каждого производителя резистора.
2. Допуск
Физические компоненты резистора будут отличаться от идеальных из-за вариабельность изготовления, состав резистора и, с течением времени, деградация из-за старения.Чтобы охарактеризовать резистор вариативность состава и изготовления, производители резисторов всегда указывайте допуск. Допуск определяет точность сопротивления как «плюс или минус заданное в процентах от номинальной стоимости ». Другими словами, допуск — это максимально допустимое отклонение от заявленного значение сопротивления. Например, резистор с маркировкой 1,2 Ом. ± 10% имеет номинальное сопротивление 1,2 Ом, допуск ± 10% номинального сопротивления и фактического сопротивления в диапазон
1.2 Ом от -10% до 1,2 Ом + 10%
= 1,2 Ом — от 0,12 Ом до 1,2 Ом + 0,12 Ом
= 1,08–1,32 Ом.
Если допуск не указан, обычно предполагается быть ± 20%. Допуски, выраженные в процентах, например 10%, всегда следует интерпретировать как «±» заданное процент.
Обратите внимание, что стандартные значения EIA относятся к допуск резистора: E6 (20%), E12 (10%), E24 (5%), E96 (1%), и E192 (0.5%).
3. Мощность
Чтобы резисторы не перегревались, резистор должен иметь правильный номинал мощность измеряется в ваттах. мощность = P = V I = I 2 рэндНаиболее распространенные номиналы резисторов: 1/8 Вт, 1/4 Вт, 1/2 Вт, 1 Вт и 2 Вт. Для цифровые системные приложения, обычно 1/4 Вт.В номинальная мощность резистора указывает способность рассеивать тепло и сохранять работоспособность температура в пределах рабочего диапазона резистора. Если температура выходит за пределы рабочего диапазона, сопротивление компонента изменится. Рассеять тепло, резистор использует площадь поверхности. Поэтому, как номинальная мощность резистора увеличивается, физический размер резистора увеличивается и строительная техника изменения.Физический размер резистора — , а не . связано с его значением сопротивления. На графике к правильно, все резисторы имеют одинаковое значение и одинаковые допуск, но диапазон мощности от 0,25 Вт до 25 Вт. максимальная номинальная мощность для резистора определяется состав резистора. |
4.Частота отказов
Некоторые составные резисторы можно приобрести за гарантии максимальной частоты отказов. Показано количество отказов только на резисторах установленной надежности и указывают процент отказов на 1000 часов. Например, сбой 0,01% скорость будет интерпретирована как отказ одного резистора из 10000 за 1000 часов.
5. Температурный коэффициент
Температурный коэффициент сопротивления (TCR) указывает максимальное изменение сопротивления при изменении температура, измеряемая в миллионных долях на градус Цельсия (PPM / C).Чтобы преобразовать PPM в%, разделите количество PPM на 10 000. Например, TCR 100 PPM / C совпадает с TCR. 0,01% / с. Температурный коэффициент указан только на более точные резисторы. Для этих резисторов резисторы с температурные коэффициенты 100 PPM / C являются наиболее популярными, и будет работать в наиболее разумных температурных условиях. В другие специально разработаны для критических температур Приложения.
Резисторы с выводами или сквозными отверстиями
Резисторы с выводами или сквозными отверстиями бывают небольшого размера, цилиндрические корпуса с осевыми проводами (провода совмещены с главной осью цилиндра; параллельно с основным оси) или большие прямоугольные пакеты с осевыми или радиальными провода отводы (провода выровнены по радиусу цилиндр; перпендикулярно главной оси).Резисторы входят различные составы и, следовательно, разные тактико-технические характеристики.
| | | |
[Щелкните изображение, чтобы лучший вид] |
В зависимости от физического размера резистора значение резистор либо напечатан на резисторе, либо закодирован в серия цветных полос.4-полосный цветовой код используется для резисторы из углеродного композита, углеродной пленки и металлооксидной пленки и часто называется EIA [Electronic Industries Ассоциация] цветовой стандарт. 5-полосный код используется для более точные металлопленочные резисторы. 6-полосный цветовой код включает полосу температурных коэффициентов.
4-диапазонный код | 5-диапазонный код | 6-полосный код | |
Ориентация | |||
Значение | диапазоны 1, 2 | диапазоны 1, 2, 3 | диапазоны 1, 2, 3 |
Множитель | полоса 3 | полоса 4 | полоса 4 |
Допуск | если полоса 4, ± 5% или ± 10% | полоса 5 [менее ± 5%] | полоса 5 [менее ± 5%] |
Температура Коэффициент | 1,500 PPM / C (углерод состав) | полоса 6 | |
Отказ Оценка | группа 5 по составу резисторы (опционально) | ||
Терминал Тип | широкая полоса 5 на пленке резисторы (опционально) |
Для правильного считывания полос резистор должен быть ориентирован так что полоса 1 находится слева, а полосы читаются слева направо верно.Для 4-полосных резисторов с цветовой кодировкой и более крупных 5-, 6-полосных резисторы с цветовой кодировкой, цветные полосы будут отдавать предпочтение одному концу резистор. Сориентируйте резистор так, чтобы полосы сгруппировались в левая сторона резистора. Для 5-, 6-полосной цветовой кодировки резисторы и некоторые 4-полосные резисторы, может быть более широкое пространство между множителем и диапазонами допусков. Резисторы с более полосы или резисторы физически меньшего размера используют ширину полосы вместо интервал между полосами для обозначения ориентации; положить широкую полосу на верно.
Группа Цвет | Значение Браслеты | Множитель (Ом) ** | Допуск | Температура Коэффициент | Отказ Оценка | |
без полосы | нет группы | ± 20% | ||||
Серебро | 0.01 | ± 10% | ||||
Золото | 0,1 | ± 5% | ||||
Черный | 0 | 1 | ||||
Коричневый | 1 | 10 | ± 1% | 100 частей на миллион | 1.0 | |
Красный | 2 | 100 | ± 2% | 50 частей на миллион | 0,1 | |
Оранжевый | 3 | 1 к | 15 частей на миллион | 0.01 | ||
Желтый | 4 | 10 тыс. | 25 частей на миллион | 0,001 | ||
Зеленый | 5 | 100 тыс. | ± 0.5% | |||
Синий | 6 | 1 млн | ± 0,25% | 10 частей на миллион | ||
фиолетовый | 7 | 10 млн | ± 0.10% | 5 частей на миллион | ||
Серый | 8 | 0,01 * | ± 0,05% | 1 частей на миллион | ||
Белый | 9 | 0.1 * | паяемый терминал |
Резистор только с одной черной полосой — это резистор с нулевым сопротивлением. А Резистор с нулевым сопротивлением представляет собой просто перемычку. Этот резистор существует для упрощения конструкции печатной платы. Вместо того, чтобы использовать специальную машину для размещения одиночного провода перемычка, штатная система автоматического размещения резистора может быть используется с резистором с нулевым сопротивлением.Каждый производитель резисторов будет нести резистор нулевым сопротивлением.
Резисторы также могут иметь маркировку в соответствии с военными спецификации (например, MIL-HDBK-217). По сути, это система нумерации деталей, она используется как военные и коммерческие фирмы.
Цвет корпуса резистора
Для более старых 4-полосных резисторов с цветовой кодировкой цвет корпуса может использоваться в качестве одной из четырех полос, как показано в резисторе RMA и Цветовые коды гибких резисторов [старые вариации по 4-полосной системе.Более новый 4-полосный цвет кодированные резисторы соответствуют цветовому стандарту EIA, описанному выше. Изолированные резисторы с осевыми выводами обозначаются корпусом. любого цвета кроме черного. Обычный цвет — натуральный загар (бежевый) или коричневый для 4-х полосных резисторов. Обычный цвет бледный синий для 5-ти полосных резисторов. Черные тела используются для неизолированные резисторы композиционного типа.
Для новых резисторов цвет корпуса может использоваться для идентификации резистор определенного типа.На некоторых непромышленных веб-страницах указано что синие резисторы негорючие, а белые резисторы плавкий. Фактически вы можете приобрести плавкие резисторы с белым корпусом (IEC стандарт?), или бежевое тело, или вы можете заказать резисторы специального назначения и запросить синий добавляется огнестойкое покрытие.
Резисторы поверхностного монтажа
Резисторы для поверхностного монтажа (SMT) поставляются в миниатюрных размерах. «чип-подобные» корпуса с керамическим корпусом и проволочные выводы.Резисторы для поверхностного монтажа имеют серию числа для обозначения номинала резистора. Первый За n-1 цифрами следует указанное количество нулей по последнему номеру. Например, резистор для поверхностного монтажа с кодом 1-0-5 будет означать, что первые две цифры (1-0) будет сопровождаться 5 нулями, чтобы дать значение 1000000 Ом или 1 МОм.
Если номер содержит буквы R (1), K (1000) или M (1000000) в ряду чисел интерпретируйте букву в виде десятичной точки и при необходимости умножьте.Например, код 3R5 будет интерпретироваться как 3,5 Ом, 3K5 будет интерпретироваться как 3,5 кОм, а 3M5 будет интерпретироваться как интерпретируется как 3,5 МОм. Это обозначение также используется на схематические диаграммы, когда десятичная точка может быть затруднена читать.
За цифрой может следовать буква, обозначающая толерантность. Используемые буквы: M = ± 20%, K = ± 10%, J = ± 5%, G = ± 2%, F = ± 1%. Иногда количество цифр, используемых в число указывает допуск с 3-мя цифрами = ± 5% и 4 цифры = ± 1%.Однако по мере того, как микросхемы становятся меньше, дополнительные кодирование может произойти.
[Щелкните изображение, чтобы лучше рассмотреть.]
R2A = 100 Ом, R2B = 1,00 Ом, а R29 — нет. установлен. .