+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Ионисторы, суперконденсаторы, ультраконденсаторы » что это такое, их устройство и работа.

Ионисторы (суперконденсаторы, ультраконденсаторы) — это электрические устройства в которых накапливается заряд между двумя обкладками на границе раздела двух сред — электролитом и электродами. Вся энергия в данных устройствах имеется в виде статического электрозаряда. Накопление электроэнергии происходит за счёт приложения постоянного напряжения на его внешние выводы. Проще говоря — это простые конденсаторы, которые в отличие от обычных, имеют очень большую емкость (исчисляемую в фарадах).

Как Мы с Вами знаем, обычные конденсаторы имеют внутри обкладки из фольги, что разделены диэлектриком. Ионисторы (суперконденсаторы, ультраконденсаторы), это уже своеобразное объединение работы емкости с электрохимической батареей. В ионисторе используется специальный электролит и обкладки. В основном увеличение общей ёмкости ионистора происходит за счёт использования материалов имеющих очень большую собственную поверхностную площадь.

У ионистора обкладки бывают следующих типов: на основе активированного угля, проводящих полимеров и оксидов металлов. Применение сверхпористых угольных материалов даёт возможность получить общую плотность емкости в пределах 10 Фарад/см3 и даже больше. Ионисторы (суперконденсаторы, ультраконденсаторы) на основе актив. угля получаются более экономичными при своём изготовлении. Их также называют ещё DLC-конденсаторами либо двухслойными, так как электрический заряд накапливается в двойном слое, что образуется на поверхности самой обкладки ионистора.

Что касается электролита ионисторов, он может быть водным или органическим. Ионисторы (суперконденсаторы, ультраконденсаторы), что содержат водный электролит, обладают довольно малым внутренним сопротивлением, но, есть также и значительный минус водного электролита, напряжение заряда для них ограничено до 1 Вольта. Ионисторы на органическом электролите обладает наиболее большим сопротивлением, зато они способены к работе с напряжением заряда 2-3 В.

Поскольку для питания электронных схем используется обычно более высокие напряжения, чем у ионистора, то для получения нужного значения их соединяют последовательно. Как Мы знаем, что величина обычных емкостей конденсаторов измеряется в приделах от пикофарад до микрофарад. Емкость ионисторов (суперконденсаторы, ультраконденсаторы) измеряется уже в фарадах (в одном фараде миллион микрофарад). В ионисторах возможно достичь плотности мощности на массу рабочего вещества от 1 до 10 Вт/кг. Это больше, чем у обычных конденсаторов, и меньше, чем у аккумуляторов.

К основным недостаткам ионистора (суперконденсаторы, ультраконденсаторы) можно отнести его постоянное линейное снижение напряжения в течение всего времени его работы до полного разряда (за один цикл заряда и разряда). Из-за этого ионисторы не способны удерживать полный заряд. Общая степень его заряда исчисляется в процентах и будет зависеть, в первую очередь, от того, какое напряжение к нему изначально будет приложено.

Если ионистор заряжен до напряжения 8 вольт, а схема нормально может работать с минимальным напряжением 4 вольта, то получается, что используемый заряд составляет всего 50%. Оставшаяся электроэнергия в ионисторе оказывается совершенно бесполезной. Для увеличения степени использования накопленной энергии в ионисторе применяют различные виды преобразователей, но и этот путь неидеален, поскольку ведёт к удорожанию всей системы на 10-15%. Плюс, значительно снижается КПД.

Применение ионисторам нашлось в электропитании микросхем памяти, использование в цепях фильтрации. Они также хорошо работают в паре с батареями с целью защиты их от внезапных перепадов электрического тока нагрузки: при малых токах электрической нагрузки батарея работает на подзарядку ионистора, а как только произойдёт скачек тока, ионистор выдаст накопленную электроэнергию, в итоге значительно снижается общая нагрузка на батарею.

Перечень преимуществ ионисторов:

  • малое внутреннее сопротивление
  • большой срок службы
  • нет ограничений по количеству циклов заряд/разряд
  • относительно малая стоимость
  • довольно широкий диапазон рабочих температур: от -25 до +70 °С
  • быстрый процесс заряда и разряда
  • работа при любом напряжении, что не превышает номинального
  • использование простых способов заряда
  • отсутствие контроля за режимом заряда

Перечень недостатков ионисторов:

  • довольно малая энергетическая плотность
  • не может обеспечить достаточного накопления электроэнергии
  • весьма низкое напряжение на одной единицы элемента
  • высокая степень саморазряда

P. S. Данная разновидность электрических устройств находится между классом источников электропитания и элементов электрических схем, так как с одной стороны он ближайший родственник обычным конденсаторам, а с другой, обладает свойствами электроисточника.

Суперконденсаторы, что это такое

Ионистор (суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор) — электрохимическое устройство, конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита.

Ионисторы, суперконденсаторы, ультраконденсаторы — история создания и развития технологии

7 июня 1962 года, Роберт Райтмаер, химик американской компании Standard Oil Company (SOHIO), располагавшейся в городе Кливленд, штата Огайо, подал заявку на получение патента, где подробно описывался механизм сохранения электрической энергии в конденсаторе, обладающем «двойным электрическим слоем».

Если в обычном конденсаторе алюминиевые обкладки, традиционно, были изолированы слоем диэлектрика, то в предлагаемом изобретателем варианте акцент делался непосредственно на материал обкладок. Электроды должны были иметь различную проводимость: один электрод должен был обладать ионной проводимостью, а другой – электронной.

Таким образом, в процессе заряда конденсатора происходило бы разделение электронов и положительных центров в электронном проводнике, и разделение катионов и анионов в ионном проводнике.

Электронный проводник предлагалось сделать из пористого углерода, тогда ионным проводником мог бы быть водный раствор серной кислоты. Заряд в таком случае сохранялся бы на границе раздела этих особых проводников (тот самый двойной слой). Разность потенциалов этих первых ионисторов могла достигать значения в 1 вольт, а емкость – единиц фарад, ведь теперь расстояние между обкладками было меньше 5 нанометров.

В 1971 году лицензия была передана японской компании NEC, занимающейся к тому моменту всеми направлениями электронной коммуникации. Японцам удалось успешно продвинуть технологию на рынок электроники под названием «Суперконденсатор».

Спустя семь лет, в 1978 году, компания Panasonic, в свою очередь, выпустила «Золотой конденсатор» («Gold Cap»), так же завоевавший успех на этом рынке. Успех был обеспечен удобством применения ионисторов для питания энергозависимой памяти SRAM. Однако эти ионисторы обладали высоким внутренним сопротивлением, которое ограничивало возможность быстрого извлечения энергии, а значит, сильно сужала диапазон сфер применения.

В 1982 году специалисты американского Научно-исследовательского Института Pinnacle (PRI), расположенного в городе Лос-Гатос, штат Калифорния, работая над улучшением материалов электродов и электролитов, разработали ионисторы с чрезвычайно высокой плотностью энергии, которые появились на рынке под названием «PRI Ultracapacitor».

Спустя 10 лет, в 1992 году, компания Maxwell Laboratories (позже сменившая название на Maxwell Technologies, г. Сан-Диего, штат Калифорния, США) начала развивать технологию PRI под названием «Boost Caps». Целью теперь стало создание конденсаторов высокой емкости с низким сопротивлением, чтобы получить возможность питания мощного электрооборудования.

Рис. 1. Суперконденсатор DH5U308W60138TH фирмы SAMWHA ELECTRIC

В 1999 году тайванская компания UltraCap Technologies Corp. также начала сотрудничество с PRI, которые разработали к тому времени электродную керамику чрезвычайно большой площади, и к 2001 году на рынок вышел первый высокоемкостной ультраконденсатор производства Тайваня. С этого момента началось активное развитие технологии во многих НИИ мира.

На Российском рынке тоже присутствуют свои игроки, так компания «Ультраконденсаторы Феникс» (ООО «УКФ») является инжиниринговой компанией, специализирующейся на проектировании, разработке, производстве и практическом применении решений и систем на базе суперконденсаторов/ионисторов. Компания работает в плотной связке с лучшими мировыми производителями и активно перенимает их опыт.

 

Применение ионисторов

Ионисторы на единицы фарад получили заслуженное применение в качестве источников резервного питания во множестве устройств. Начиная с питания таймеров телевизоров и СВЧ-печей, и заканчивая сложными медицинскими приборами. На платах памяти, как правило, установлены ионисторы.

При смене батареи в видео или фотокамере, ионистор поддерживает питание схем памяти, отвечающих за настройки, это же касается музыкальных центров, компьютеров и другой подобной техники. Телефоны, электронные счетчики электроэнергии, охранные системы сигнализации, электронные измерительные приборы и приборы медицинского применения – везде нашли применение суперконденсаторы.

Рис. 2. Суперконденсаторы (ионисторы)

Малые ионисторы на основе органических электролитов обладают максимальным напряжением около 2,5 вольт. Для получения более высоких допустимых напряжений, ионисторы соединяют в батареи, обязательно применяя шунтирующие резисторы.

К преимуществам ионисторов относится: высокая скорость заряда-разряда, устойчивость к сотням тысяч циклов перезаряда по сравнению с аккумуляторами, малый вес по сравнению с электролитическими конденсаторами, низкий уровень токсичности, допустимость разряда до нуля.

Рис. 3. Источник бесперебойного питания на суперконденсаторах

Рис. 4. Суперконденсаторные автомобильные модули

Перспективы

При разработке ионисторов все более и более повышается их удельная емкость, и по всей вероятности, рано или поздно это приведет к полной замене аккумуляторов на суперконденсаторы во многих технических сферах.

Последние исследования группы ученых Калифорнийского университета в Риверсайде показали, что новый тип ионисторов на основе пористой структуры, где частицы оксида рутения нанесены на графен, превосходят лучшие аналоги почти в два раза.

Исследователи обнаружили, что поры «графеновой пены» обладают наноразмерами, подходящими для удержания частиц оксидов переходных металлов. Суперконденсаторы на основе оксида рутения теперь являются самым перспективным из вариантов. Безопасно работающие на водном электролите, они обеспечивают увеличение запасаемой энергии и повышают допустимую силу тока вдвое по сравнению с самыми лучшими из доступных на рынке ионисторов.

Они запасают больше энергии на каждый кубический сантиметр своего объёма, поэтому ими целесообразно будет заменить аккумуляторы. Прежде всего, речь идёт о носимой и имплантируемой электронике, но в перспективе новинка может обосноваться и на персональном электротранспорте.

На частицы никеля послойно осаживают графен, выступающий опорой для углеродных нанотрубок, которые вместе с графеном формируют пористую углеродную структуру. В полученные нанопоры последней из водного раствора проникают частицы оксида рутения диаметром менее 5 нм. Удельная ёмкость ионистора на основе полученной структуры составляет 503 фарад на грамм, что соответствует удельной мощности 128 кВт/кг.

Рис. 4. Зарядное устройство на графеновом суперконденсаторе

Возможность масштабирования этой структуры уже положила начало и создала основу на пути создания идеального средства хранения энергии. Ионисторы на основе «графеновой пены» прошли успешно первые тесты, где показали способность к перезаряду более восьми тысяч раз без ухудшения характеристик.

Ранее ЭлектроВести писали, что АО «Турбоатом» (Харьков) изготовит конденсатор блочно-модульного исполнения с трубными системами из коррозийно-стойкого материала турбоустановки К-1000-60/1500-2 для энергоблока №2 Запорожской АЭС.

По материалам: electrik.info.

Ионисторы — аккумуляторы будущего?

Статья о современных ионисторах. Их особенностью является способность отдавать большое количество энергии за очень небольшой временной интервал. Устройство уже широко применяется в различных отраслях. Возможно, что ионисторы скоро повсеместно заменят обычные химические элементы питания.

Ионистор (другие названия: суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор) – электрохимическое устройство, конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита.

Функционально представляет собой гибрид конденсатора и химического источника тока.

Ионисторы или суперконденсаторы появились сравнительно недавно. Первое такое электрическое устройство запатентовала фирма General Electric в 1957 году. Особенностью ионистора является способность отдавать большое количество энергии за очень небольшой временной интервал. Обыкновенный конденсатор – это две пластины из металла, между которыми расположен слой диэлектрика. Причем электрическая ёмкость конденсатора напрямую зависит от площади пластин, которые исполняют роль электродов. А поскольку увеличение пластин в размерах приводило к увеличению самого прибора, долгое время повысить ёмкость конденсаторов не удавалось. Однако выход всё же нашелся. Благодаря применению для изготовления электродов пористых материалов. Площадь пор такой пластины в десятки раз больше площади поверхности электрода из обычного металла.

После долгих опытов был найден и наиболее подходящий пористый металл. Им оказался обычный активированный уголь. Следующим шагом от конденсатора к ионистору стала замена диэлектрика на кристаллический твёрдый электролит, сделанный на основе растворов кислот и щелочей. При взаимодействии пористого металла с электролитом на его поверхности образуется двойной электрический слой из ионов и электронов. Эти заряды не могут сблизиться из-за сопротивления молекул воды и ионов металла. Таким образом, получается устройство схожее по принципу действия с конденсатором.

Однако расстояние между зарядами, которые, по сути, являются электродами, гораздо меньше толщины диэлектрика, применяемого в обычном конденсаторе, поэтому и электрическая ёмкость такого устройства в десятки раз больше. Для сравнения: энергии обычного конденсатора хватит, чтобы поднять его в воздух примерно на полтора метра, а ионистор весом в 0,5 граммах может подпрыгнуть за счёт своего заряда на целых 293 метра. Во время зарядки ионистора на порах металла с одной стороны образуются положительные ионы, а с другой – накапливаются электроны. В процессе отдачи энергии они плавно перетекают друг к другу, образуя нейтральные атомы металла. Чтобы таким образом не произошла полная разрядка прибора, между слоями металла применяется разделительный слой из нейтрального вещества (пластика, бумаги, ваты и т.д.). Ионистор очень быстро накапливает заряд и также быстро его отдаёт. Кроме этого, у него есть ряд других преимуществ:

  • неограниченное количество циклов заряда и разряда;
  • накапливаемая энергия обладает высокой плотностью;
  • прибор не нагревается в отличие от энергоносителей, в основу действия которых заложены химические реакции;
  • удобство зарядки: когда ионистор заряжается полностью, он просто перестает принимать заряд;
  • выдерживает температуру от –50 до +85 градусов Цельсия;
  • ионистор экологически безопасен;
  • коэффициент полезного действия может достигать 98%.

Все эти преимущества позволяют говорить о том, что масштабы применения ионисторов безграничны. Они получили широкое распространение в компьютерных устройствах в качестве источников питания для элементов памяти. В микроэлектронике и радиотехнике ионисторы применяют в качестве кратковременных мощных источников тока и источников бесперебойного питания. В популярных сегодня новых автомобилях с гибридной силовой установкой также используются суперконденсаторы для уменьшения нагрузки на аккумулятор. В качестве замены батарей ионисторы уже применяются во многих областях. Ионисторы малой емкости устанавливают в мобильные телефоны, а особо мощные – в автомобили. Если сравнивать их с обычными химическими батареями, то последние проигрывают по целому ряду показателей. Они экологически небезопасны, имеют ограниченное количество циклов заряда, долго заряжаются, склонны к перегреву. На сегодняшний день более широкому использованию ионисторов препятствует только их высокая цена. Однако компании-производители рассчитывают в течение ближайших 5 лет снизить ее вдвое, применяя нанотехнологии.

Что такое ионистор, его устройство область применения и характеристики | Энергофиксик

Ионистор или по-другому суперконденсатор — это своеобразный гибрид обычного конденсатора с аккумуляторной батареей. Давайте познакомимся с этим необычным элементом поближе и узнаем его принцип работы и область применения в современной электронике.

yandex.ru

yandex.ru

Как устроен ионистор

За рубежом этот элемент именуется как EDLC (Electric Double Layer Capacitor), что переводится как «конденсатор с двойным электрическим слоем». И работа изделия базируется на электрохимических процессах.

Ионистор от конденсатора отличается тем, что между электродами нет привычного диэлектрического слоя. Вместо этого сами электроды выполнены из веществ с противоположными типами носителей заряда.

Вы несомненно в курсе, что емкость конденсатора имеет прямую зависимость от площади обкладок. Именно поэтому в ионисторах использованы электроды из вспененного углерода либо же активированного угля.

Разделение электродов осуществляется сепаратором. И вся внутренняя область заполнена электролитом, производящийся на основе растворов кислот и щелочей и имеет кристаллическую и твердую структуру.

yandex.ru

yandex.ru

Например, благодаря использованию твердого электролита RbAg4I5 (рубидий, серебро, йод) можно создать ионистор с крайне незначительным саморазрядом, повышенной емкостью и при этом изделие будет выдерживать низкие температуры.

Современные ионисторы, в основе которых используется электролит, из растворов щелочей и кислот не производятся по причине токсичности компонентов.

Принцип работы

yandex.ru

yandex.ru

Протекающая электрохимическая реакция заставляет часть электронов оторваться от электродов, в результате чего электрод становится носителем положительного заряда.

Отрицательные ионы, расположенные в электролите, начинают притягиваться электродами с плюсовым зарядом.

Весь этот процесс является условием для формирования так называемого электрического слоя.

А накопленный заряд хранится в пограничной области раздела между электродом и электролитом. И толщина сформированного анионами и катионами слоя составляет от 1 до 5 нм.

Плюсы и минусы суперконденсаторов

yandex.ru

yandex.ru

Итак, к плюсам такого изделия как суперконденсатор, можно отнести следующее:

1. Минимальное время зарядки и разрядки изделия. Иначе говоря ионистор можно зарядить за очень короткое время и применять накопленный заряд в то время как на накопление заряда в аккумуляторе уходит довольно продолжительное время.

2. Большое количество циклов заряд-разряд (более 100 000).

3. Нет необходимости обслуживать изделие.

4. Незначительный вес и скромные размеры.

5. Во время зарядки нет необходимости использовать сложные зарядные устройства.

6. Изделие нормально функционирует в температурном коридоре от –40 до +70 градусов по Цельсию.

yandex.ru

yandex.ru

К минусам же ионисторов относят

1. Высокая стоимость изделия. До сих пор ионистор стоит существенно дороже обычных конденсаторов и аккумуляторов.

2. Низкое напряжение изделия, на которое рассчитан ионистор. Особенность суперконденсатора такова, что они рассчитаны на довольно низкое напряжение, величина которого зависит от вида применяемого электролита. Для увеличения напряжения ионисторы соединяют последовательно. Но помимо такого соединения необходимо каждый суперконденсатор шунтировать резистором по причине выравнивания напряжение на отдельном ионисторе.

3. Если превысить рабочую температуру в 70 градусов по Цельсию, то высока вероятность, что изделие просто разрушится.

4. Суперконденсатор – полярный элемент, поэтому при подключении необходимо соблюдать полярность.

Ионистор на схемах

На схемах ионистор обозначается точно так же как и электролитический конденсатор и различить их можно лишь по сопутствующей надписи. Так, например, если рядом со схематическим изображением будет написано 0,47F 5,5V, то сразу станет понятно, что перед вами суперконденсатор. Так как обычных конденсаторов на такую емкость не производят да и низкое напряжение помогает определить.

yandex.ru

yandex.ru

Область применения

Суперконденсаторы стали активно применяться в современной цифровой аппаратуре. Например, они выступают в роли резервного питания для энергозависимой памяти, микроконтроллеров, электронных часов и т.д.. Так что можно сделать вывод, что они получили довольно широкое распространение.

Заключение

В этой статье мы поговорили об ионисторах, впервые появившихся в 1960 годах в США, а с 1978 года выпускающиеся уже в СССР под маркой К58 – 1. Надеюсь, статья оказалась вам интересна или полезна. Спасибо за ваше внимание и не забываем оценить материал.

ИОНИСТОР

   Ионисторы — это электрохимические приборы предназначенные для хранения электрической энергии. Они характеризуются большим числом заряда — разряда (до нескольких десятков тысяч раз), у них очень длительный срок службы в отличии от других элементов питания (аккумуляторные батареи и гальванические элементы), малый ток утечки, и самое главное — ионисторы могут иметь большую емкость и очень маленькие размеры. Ионисторы нашли широкое применение в персональных компьютерах, автомагнитолах, мобильных устройствах и так далее. Предназначены для хранения памяти когда оснавную батарейку вынимают или устройство отключено. В последнее время ионисторы очень часто стали применить в автономных системах питания на солнечных батарейках.

   Ионисторы также очень долго хранят заряд, независимо от погодных условий, они выносливы к морозам и к жаре, и на работу устройства это никак не повлияет. В некоторых электронных схемах для хранения памяти нужно иметь напряжение которое выше, чем напряжение ионистора, для решения этого вопроса ионисторы подключают последовательно, а для увеличения емкости ионистора их подключают параллельно. Последний вид подключения в основном используют для повышения времени работы ионистора, а также для увеличения тока отдаваемого в нагрузку, для балансировки тока в параллельном соединении каждому ионистору подключают резистор.

   Ионисторы часто используются с аккумуляторами питания и в отличии от них не боятся коротких замыканий и резкого перепада температур окружающей среды. уже сегодня разрабатываются специальные ионисторы с большой емкостью и силой ток которых доходит до 1 ампера, как известно ток ионисторов которые сегодня используют в технике для хранении памяти не превышает 100 миллиампер, это один и самый главный недостаток ионисторов но этот косяк компенсируется выше перечисленными достоинствами ионисторов. В интернете можно встретить немало конструкций на так называемых суперконденсаторах — они-же ионисторы. Ионисторы появились совсем недавно — 20 лет тому назад. 

   По словам ученых, электрическая емкость нашей планеты составляет 700 мкф, сравните с простым конденсатором… Ионисторы в основном делают из древесного угля, который в последствии активировки и специальной обработки становится пористым, две металлические пластинки плотно прижимаются к отсеку с углем. Сделать ионистор в домашних условиях очень просто, но достать пористый уголь почти не реально, нужна домашняя обработка древесного угля, а это несколько проблематично, так что проще купить ионистор и ставить интересные эксперименты на нем. Например параметры (мощность и напряжения) одного ионистора достаточно, чтобы ярко и длительно засветился светодиод или же работала простая мигалка на основе мультивибратора. До новой встречи — А. Касьян (АКА).

   Форум для начинающих

   Форум по обсуждению материала ИОНИСТОР


ИК ДАТЧИК ПРИБЛИЖЕНИЯ

Инфракрасный датчик приближения объектов к транспортным средствам — схема для самостоятельной сборки на базе E18-D80NK.




РОБОТ ЕЗДЯЩИЙ ПО ЛИНИИ

Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.


Что такое ионисторы, где они применяются и в чем их особенность | Энергофиксик

Ионистор (он же суперконденсатор) – это своеобразный гибрид самого обычного конденсатора и привычного нам аккумулятора. В этом материале будет подробно рассказано про сам ионистор, а также про его область применения в современной электронике.

Устройство ионистора

За границей ионистор называют EDLC (Electric Double Layer Capacitor), что переводится на русский как «конденсатор с двойным электрическим слоем». И вся работа изделия базируется на электрохимических процессах.

Ионистор отличается от обычного конденсатора тем, что между электродами отсутствует привычный диэлектрик. Вместо этого, сами электроды реализованы из материалов с противоположными типами носителей заряда.

Вы, безусловно, знаете, что емкость конденсатора напрямую зависит от площади обкладок. По этой причине в ионисторах применены электроды из вспененного углерода или активированного угля.

При этом разделение электродов в ионисторе реализовано за счет применения сепаратора. И вся внутренняя полость заполнена электролитом, который выполнен на основе растворов кислот и щелочей и при этом имеет твердую кристаллическую структуру.

Так за счет применения твердого электролита RbAg4I5 (рубидий, серебро, йод) можно реализовать ионистор с минимальным саморазрядом, высокой емкостью и с высокой устойчивостью к воздействию отрицательных температур.

На текущий момент ионисторов с твердым кристаллическим электролитом на основе растворов щелочей и кислот уже не найдешь, так как они сняты с производства по причине высокой токсичности компонентов.

Как работает ионистор

Протекающая электрохимическая реакция заставляет часть электронов оторваться от электродов. В результате этого электрод становится носителем положительного заряда.

Отрицательные ионы, которые присутствуют в электролите, начинают притягиваться электродами с положительным зарядом.

Весь этот процесс является условием для образования так называемого электрического слоя. И весь запасенный заряд начинает храниться в пограничной области раздела между электродом и электролитом. И толщина сформированного анионами и катионами слоя равняется от 1 до 5 нм.

В чем преимущества и недостатки ионисторов

К плюсам суперконденсаторов можно отнести следующие моменты:

1.       Минимальное время зарядки и разрядки. То есть ионистор способен как зарядиться, так и отдать весь накопленный заряд практически мгновенно.

2.       Повышенное количество циклов заряд/разряд (составляет более 100 000).

3.       Не требует обслуживания.

4.       Скромный вес и малые размеры.

5.       Процесс зарядки не требует использования сложных зарядных устройств.

6.       Ионистор полноценно работает в температурном диапазоне от -40 до +70 градусов по Цельсию.

На этом с плюсами заканчиваем и переходим к минусам изделия.

К минусам относят следующие явления

1.       Достаточно высокая стоимость. Ионистор стоит существенно дороже, чем обычные конденсаторы и аккумуляторы.

2.       Изделие рассчитано на довольно низкое напряжение. Эта особенность суперконденсатора и величина рабочего напряжения зависит от того, какой тип электролита в нем применен. При этом для того чтобы увеличить рабочее напряжение, ионисторы соединяют последовательно. Но при таком раскладе нужно также каждый суперконденсатор шунтировать резистором, так как необходимо выровнять напряжение на отдельном ионисторе.

3.       При превышении рабочей температуры в +70 градусов по Цельсию изделие довольно быстро разрушится.

4.       Суперконденсатор – это полярный элемент, поэтому при его установке следует строго соблюдать полярность.

Обозначение ионисторов на схеме

На схемах ионистор обозначается точно так же, как и обычный электролитический конденсатор и поэтому различить их между собой можно только по наличию или отсутствию сопутствующей надписи.

Допустим, если рядом со схематическим обозначением будет присутствовать надпись 0,47F 5,5V, то сразу становится понятно, что перед вами суперконденсатор. Так как обычные конденсаторы на такие низкие напряжения и на такие емкости не производят.

Где применяются ионисторы

Сейчас суперконденсаторы стали активно использоваться в современной цифровой аппаратуре. Так в некоторых изделиях ионисторы играют роль резервного питания для энергозависимой памяти, микроконтроллеров, электронных часов и т. п. Из чего можно сделать вывод, что суперконденсаторы нашли довольно широкое применение.

Заключение

В этом материале мы поговорили об ионисторах, которые впервые появились в 1960 году в США, а с 1978 года выпускались в СССР под маркировкой К58-1. Статья оказалась полезна и интересна? Тогда оцените ее и не забудьте подписаться на канал. Спасибо за ваше внимание!

2.1.4. Ионисторы — особые конденсаторы. Электронные самоделки

2.1.4. Ионисторы — особые конденсаторы

Ионисторы — это оксидные конденсаторы большой общей емкости (в несколько десятков и сотен фарад, рассчитанные на рабочее напряжение 10…50 В). В современных усилителях применение ионисторов оправдано в качестве фильтрующих элементов по питанию. Эквивалент электрической схемы ионистора в последовательном соединении (в прямом направлении) кремниевого диода, ограничительного резистора, конденсатора большой емкости (отрицательная обкладка подключена к общему проводу) и параллельно ему Rнапр. Как примеры ионисторов — распространенные приборы К58-3 и К58-9.

Третий элемент в обозначении конденсатора — порядковый номер разработки: (П — для работы в цепях постоянного и переменного тока, Ч — для работы в цепях переменного тока, У — для работы в цепях переменного тока и в импульсных режимах, И — для работы в импульсных режимах).

Из старых типов, которые еще можно встретить в отечественных усилителях выпуска 1980…1990 гг. встречаются обозначения: КД — конденсаторы дисковые, КМ — конденсаторы керамические монолитные, КЛС — керамические литые секционные, КСО — конденсаторы слюдяные опрессованные, СГМ — слюдяные герметизированные малогабаритные, КБГИ — бумажные герметизированные изолированные, МБГЧ — металлобумажные герметизированные высокочастотные, КЭГ — электролитические герметизированные, ЭТО — электролитические танталовые объемно-пористые.

Типы (КД, КЛС, КСО, КГМ, КБГИ, МБГЧ, КЭГ) в усилителях желательно не применять по причине их иного предназначения и повышенным внутренним шумам.

Конденсаторы, как и постоянные резисторы, разделяются по группам допуска отклонения от номинальной емкости. Эти данные сведены в табл. П2.7. В табл. П2.8 представлены данные буквенного обозначения напряжения (маркировки) на конденсаторах.

Малогабаритные конденсаторы с малой величиной допуска (0,001…10 %), рекомендуемые к применению в высококачественных усилителях, маркируются шестью цветовыми кольцами на корпусе. Первые три кольца — численная величина емкости в пикофарадах (пФ), четвертое кольцо — множитель, пятое — допуск, шестое — ТКЕ.

Температурный коэффициент емкости (ТКЕ) характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Буквенное обозначение ТКЕ может быть: М — отрицательное, П — положительное, МП — близким к нулю, Н — не нормируется. Следующие за буквой Н цифры определяют допустимые изменения емкости в интервале рабочих температур. У слюдяных конденсаторов ТКЕ обозначен первой буквой на корпусе, у керамических — каждой группе соответствует определенный цвет корпуса или цветовая точка на корпусе. В усилителях керамические конденсаторы группы «Н» по ТКЕ применяют в качестве шунтирующих, фильтровых элементов и для связи между каскадами на низкой частоте сигнала. Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Чем больше емкость и размеры обкладок конденсаторов, тем больше паразитная индуктивность.

Зарубежные производители конденсаторов не имеют единой системы обозначения своих приборов. Конденсаторы малой емкости используются в усилительной технике в качестве разделительных между каскадами усилителя. Не желательно для этой цели применять лакопленочные, пленочные, металлопленочные и однослойные металлобумажные конденсаторы, т. к. при эксплуатации на малых (менее 1 В) напряжениях у данных типов наблюдается нестабильность сопротивления изоляции.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Как работают суперконденсаторы? — Объясни, что это за штука

Если вы думаете, что электричество играет сегодня большую роль в нашей жизни, вы «еще ничего не видели»! В ближайшие несколько десятилетий наши автомобили и системы отопления, работающие на ископаемом топливе, должны будут перейти на электроэнергию. также, если у нас есть надежда предотвратить катастрофический климат изменение. Электричество — чрезвычайно универсальный вид энергии, но он имеет один большой недостаток: в спешке складировать относительно сложно.Батареи могут удерживать большое количество энергии, но на то, чтобы заряжать. Конденсаторы, с другой стороны, заряжаются почти мгновенно, но хранят лишь крошечные количества энергии. В нашем электрическом будущем когда нам нужно хранить и выделять большое количество электроэнергии очень быстро, вполне вероятно, мы обратимся к суперконденсаторам (также известные как ультраконденсаторы), которые объединить лучшее из обоих миров. Какие они и как работают? Давайте посмотрим внимательнее!

Фото: Стек суперконденсаторов Maxwell, используемых для хранения энергии в электромобилях.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Как можно хранить электрический заряд?

Фото: В типичной угольно-цинковой батарее на заводе хранится электричество, и ее можно разрядить только один раз, прежде чем ее придется выбросить. Такие батареи дороги в использовании и вредны для окружающей среды — миллиарды выбрасываются во всем мире каждый год.

Батареи и конденсаторы выполняют аналогичную работу — накапливают электричество, но совершенно по-разному.

Батареи имеют две электрические клеммы (электроды), разделенные химическим веществом. вещество называется электролитом. Когда вы включаете питание, химические реакции происходят с участием как электродов, так и электролит. Эти реакции преобразуют химические вещества внутри батареи в другие вещества, высвобождая электрическую энергию, когда они идти. Как только химические вещества будут исчерпаны, реакции прекращаются и аккумулятор разряжен. В перезаряжаемой батарее, например, в литий-ионном блоке питания. в портативном компьютере или MP3-плеере реакция может с радостью бегите в любом направлении — так что обычно вы можете заряжать и разряжать сотни раз перед заменой батареи.

Фотография: Типичный конденсатор в электронной схеме. В нем хранится меньше энергии, чем в аккумуляторе, но его можно заряжать и разряжать мгновенно, почти любое количество раз. В отличие от батареи, положительный и отрицательный заряды в конденсаторе полностью создаются статическим электричеством; никаких химических реакций не происходит.

В конденсаторах для хранения энергии используется статическое электричество (электростатика), а не химия. Внутри конденсатора есть две проводящие металлические пластины с изолирующим материалом, называемым диэлектриком, между ними — это диэлектрик. бутерброд, если хотите! Зарядка конденсатора немного похожа на натирание воздушного шара о джемпер. чтобы заставить его приклеиться.На пластинах накапливаются положительные и отрицательные электрические заряды, и разделение между ними, предотвращающее их соприкосновение, — это то, что сохраняет энергию. Диэлектрик позволяет конденсатору определенного размера сохранять больше заряда при том же напряжении, поэтому можно сказать, что это делает конденсатор более эффективным в качестве устройства для хранения заряда.

Конденсаторы имеют много преимуществ перед батареями: они меньше весят, как правило, не имеют содержат вредные химические вещества или токсичные металлы, и их можно заряжать и разряжался бесчисленное количество раз без износа.Но они есть и большой недостаток: килограмм на килограмм, их базовая конструкция не позволяет им хранить что-либо вроде того же количества электрическая энергия в виде батарей.

Что мы можем с этим поделать? Вообще говоря, вы можете увеличить энергию конденсатор будет хранить либо за счет использования лучшего материала для диэлектрика или с помощью металлических пластин большего размера. Для хранения значительного количества энергии, вам нужно будет использовать абсолютно колоссальные тарелки. Грозовые облака, например, по сути, это сверхгигантские конденсаторы, которые накапливают огромное количество энергии — и все мы знаем, насколько они велики! Какие об усилении конденсаторов за счет улучшения диэлектрического материала между тарелками? Изучение этого варианта привело ученых к разработке суперконденсаторы в середине 20 века.

Artwork: Батареи отлично подходят для хранения большого количества энергии в относительно небольшом пространстве, но они тяжелые, дорогие, медленно заряжаются, имеют ограниченный срок службы и часто сделаны из токсичных материалов. Обычные конденсаторы лучше почти во всех отношениях, но не так хороши для хранения большого количества энергии.

Что такое суперконденсатор?

Суперконденсатор (или ультраконденсатор) отличается от обычного конденсатора двумя важными способами: его пластины фактически имеют гораздо большую площадь, а расстояние между ними намного меньше, потому что разделитель между ними работает иначе, чем обычный диэлектрик.Хотя слова «суперконденсатор» и «ультраконденсатор» часто используются как синонимы, есть разница: они обычно построены из разных материалов и имеют несколько разную структуру, поэтому они хранят разное количество энергии. В целях этого простого введения мы предположим, что это одно и то же.

Как и обычный конденсатор, суперконденсатор состоит из двух разделенных обкладок. Пластины сделаны из металла, покрытого пористым веществом, таким как порошкообразный активированный уголь, что фактически дает им большую площадь для хранения гораздо большего заряда.Представьте на мгновение, что электричество — это вода: там, где обычный конденсатор похож на ткань, которая может вытереть только крошечные пятна, пористые пластины суперконденсатора делают его больше похожим на толстую губку, которая может впитать во много раз больше. Пористые пластины суперконденсатора — это электрические губки!

А как насчет разделителя между пластинами? В обычном конденсаторе пластины разделены относительно толстым диэлектриком, сделанным из чего-то вроде слюды (керамики), тонкой пластиковой пленки или даже просто воздуха (в чем-то вроде конденсатора, который действует как шкала настройки внутри радио).Когда конденсатор заряжен, на одной пластине формируются положительные заряды, а на другой — отрицательные, создавая между ними электрическое поле. Поле поляризует диэлектрик, поэтому его молекулы выстраиваются в линию, противоположную полю, и уменьшают его напряженность. Это означает, что пластины могут хранить больше заряда при заданном напряжении. Это проиллюстрировано на верхней диаграмме, которую вы видите здесь.

Изображение: Вверху: Обычные конденсаторы накапливают статическое электричество, накапливая противоположные заряды на двух металлических пластинах (синей и красной), разделенных изоляционным материалом, называемым диэлектриком (серый).Электрическое поле между пластинами поляризует молекулы (или атомы) диэлектрика, заставляя их ориентироваться в направлении, противоположном полю. Это снижает напряженность поля и позволяет конденсатору сохранять больше заряда при заданном напряжении. Подробнее читайте в нашей статье о конденсаторах.

Внизу: суперконденсаторы накапливают больше энергии, чем обычные конденсаторы, создавая очень тонкий «двойной слой» заряда между двумя пластинами, которые сделаны из пористых материалов на основе углерода, пропитанных электролитом.Пластины имеют большую площадь поверхности и меньшее разделение, что дает суперконденсатору способность накапливать гораздо больше заряда.

В суперконденсаторе нет диэлектрика как такового. Вместо этого обе пластины пропитаны электролитом и разделены очень тонким изолятором (который может быть сделан из углерода, бумаги или пластика). Когда пластины заряжаются, по обе стороны от сепаратора образуется противоположный заряд, создавая так называемый двойной электрический слой толщиной, возможно, всего одну молекулу (по сравнению с диэлектриком, толщина которого может варьироваться от нескольких микрон до миллиметра или больше в обычном конденсаторе).Вот почему суперконденсаторы часто называют двухслойными конденсаторами, также называемыми электрическими двухслойными конденсаторами или EDLC). Если вы посмотрите на нижнюю диаграмму рисунка, вы увидите, как суперконденсатор похож на два обычных конденсатора, расположенных рядом.

Емкость конденсатора увеличивается с увеличением площади пластин и уменьшением расстояния между пластинами. Короче говоря, суперконденсаторы получают свою гораздо большую емкость за счет комбинации пластин с большей эффективной площадью поверхности (из-за их конструкции из активированного угля) и меньшим расстоянием между ними (из-за очень эффективного двойного слоя).

Первые суперконденсаторы были изготовлены в конце 1950-х годов с использованием активированного угля в качестве пластин. С тех пор достижения в области материаловедения привели к разработке гораздо более эффективных пластин, сделанных из таких вещей, как углеродные нанотрубки (крошечные углеродные стержни, построенные с использованием нанотехнологии), графен, аэрогель и титанат бария.

Чем суперконденсаторы сравниваются с батареями и обычными конденсаторами?

Фотографии: Суперконденсаторы иногда можно использовать как прямую замену батареям.Вот аккумуляторная дрель на базе суперконденсаторов для использования в космосе, разработанная НАСА. Большим преимуществом перед обычной дрелью является то, что ее можно заряжать за секунды, а не за часы. Астронавтам-космическим астронавтам не всегда удается дождаться ночи, когда они начнут учиться! Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Основная единица электрической емкости называется фарад (F) в честь британского химика и физика Майкла Фарадея (1791–1867). Типичные конденсаторы, используемые в электронных схемах, хранят лишь незначительное количество электричества (они обычно измеряются в единицах, называемых микрофарадами (миллионными долями фарада), нанофарадами (миллиардными долями фарада), или пикофарады (триллионные доли фарада).В отличие от этого типичный суперконденсатор может хранить заряд в тысячи, миллионы или даже миллиарды раз больше (измеренный в фарадах). Самые большие коммерческие суперконденсаторы, производимые такими компаниями, как Maxwell Technologies®, имеют емкость до нескольких тысяч фарад. Это все еще составляет лишь часть (возможно, 10–20 процентов) электроэнергии, которую вы можете упаковать в аккумулятор. Но большим преимуществом суперконденсатора является то, что он может хранить и высвобождать энергия почти мгновенно — намного быстрее, чем батарея.Это потому, что суперконденсатор работает за счет накопления статического электричества. заряжается на твердых телах, в то время как батарея полагается на заряды, медленно производимые в результате химических реакций, часто с жидкостями.

Вы часто видите батареи и суперконденсаторы, сравниваемые с точки зрения их энергии и мощности. В повседневной речи эти два слова используются как синонимы; в науке мощность — это количество энергии, использованное или произведенное за определенный период времени. Батареи имеют более высокую плотность энергии (они хранят больше энергии на единицу массы), но суперконденсаторы имеют более высокую плотность мощности (они могут быстрее выделять энергию).Это делает суперконденсаторы особенно подходящими для относительно быстрого хранения и высвобождения большого количества энергии, но батареи по-прежнему важны для хранения большого количества энергии в течение длительных периодов времени.

Хотя суперконденсаторы работают при относительно низких напряжениях (возможно, 2–3 вольта), их можно подключать последовательно (как батареи) для получения более высоких напряжений для использования в более мощном оборудовании.

Так как суперконденсаторы работают электростатически, а не через обратимые химические реакции, теоретически они могут заряжаться и разряжены любое количество раз (спецификации для коммерческих суперконденсаторы предполагают, что вы можете включить их, возможно, миллион раз).У них небольшое внутреннее сопротивление или оно отсутствует, что означает, что они накапливают и выделяют энергию. без особых затрат энергии — и работать на очень близких к 100 процентный КПД (обычно 97–98 процентов).

Для чего используются суперконденсаторы?

Если вам нужно сохранить разумное количество энергии в течение относительно короткого периода времени (от нескольких секунд до нескольких минут), у вас слишком много энергии, чтобы храните в конденсаторе, и у вас нет времени зарядить аккумулятор, суперконденсатор может быть именно тем, что вам нужно.Суперконденсаторы были широко используется в качестве электрических эквивалентов маховиков в машинах — «энергия резервуары », сглаживающие подачу питания на электрические и электронное оборудование. Суперконденсаторы также можно подключать к батареи, чтобы регулировать подачу питания.

Фотографии: большой суперконденсатор, используемый для хранения энергии в гибридном автобусе. Суперконденсаторы используются в рекуперативных тормозах, широко используемых в электромобилях. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Одно из распространенных применений — ветряные турбины, где очень большие суперконденсаторы помогают сглаживать прерывистую мощность, поставляемую ветром. В электрическом и гибридном транспортных средств, суперконденсаторы все чаще используются как временные запасы энергии для рекуперативного торможения (где энергия, которую транспортное средство обычно тратит при остановке, ненадолго сохраняется и затем повторно используется, когда он снова начинает двигаться). Двигатели, которые приводят в движение электромобили работают от источников питания, рассчитанных на сотни вольт, Это означает, что сотни последовательно соединенных суперконденсаторов необходим для хранения нужного количества энергии в типичном регенеративном тормоз.

Благодаря таким приложениям будущее суперконденсаторов выглядит очень радужным. А Отчет Allied за 2020 год Маркетинговые исследования оценили мировой рынок суперконденсаторов в скромные 3,27 миллиарда долларов в 2019 году, но предсказали, что достигнет 16,95 миллиарда долларов в 2027 году — пятикратный рост всего за несколько лет!

Суперконденсаторы в качестве альтернативы батареям

Представьте, что вы заряжаете свой мобильный телефон всего за несколько секунд. Или подумайте, как изменился бы транспорт, если бы заправка электромобиля занимала всего несколько минут.

Технология быстрого включения питания существует уже несколько десятилетий — в суперконденсаторах. Суперконденсаторы не только заряжаются быстрее, чем батареи, но и служат дольше, потому что не страдают от физических потерь при зарядке и разрядке, которые изнашивают батареи. У них также есть ряд преимуществ в плане безопасности. Однако суперразмер суперконденсаторов — они должны быть намного больше, чтобы удерживать ту же энергию, что и батареи, — и их сверхвысокая стоимость сдерживают их.

Но ряд ученых считает, что недавние открытия сделали быстрые, надежные и потенциально более безопасные накопители энергии в суперконденсаторах, иногда называемых ультраконденсаторами, в пределах досягаемости, позволяя лучше конкурировать с батареями.

«Ультраконденсаторы похожи на молнию в бутылке, если хотите, — сказал Майкл Сунд, вице-президент Maxwell Technologies, ведущего производителя новой технологии, который продает тысячи единиц для зарядки автобусов в Китае.

Проблемы с безопасностью аккумуляторов

Любой, у кого закончился заряд во время важного телефонного разговора или кто пытался успокоить ребенка, чей игрушечный грузовик внезапно остановился, знает пределы заряда аккумуляторов. Аккумуляторы заряжаются долго, они относительно тяжелые — большая проблема для рынка электромобилей — и их безопасность часто возникает как проблема.

Этим летом крупному розничному торговцу пришлось отозвать тысячи запасных батарей для ноутбуков, произведенных Apple, только одним из многих производителей ноутбуков и сотовых телефонов, у которых были отозваны собственные батареи из соображений безопасности. (См. Соответствующий тест: «Что вы не знаете о батареях».)

Пожары с батареями в начале этого года также помогли временно заземлить новый Dreamliner Boeing. В одной из самых страшных трагедий, связанных с отказом аккумуляторной батареи, два члена экипажа погибли в 2010 году в результате крушения самолета UPS в Дубае, которое следователи связали с пламенем, поднимающимся из груза батарей.(См. Статью по теме: «Преобразование полета для повышения топливной эффективности: пять технологий на взлетно-посадочной полосе».)

Опасные подводные камни использования батарей — это часть того, что способствует возобновлению интереса к суперконденсаторам.

Безопасность — это гораздо большая проблема, чем это было в прошлом, сказал Питер Харроп, председатель IDTechEx, исследовательской фирмы, базирующейся в Кембридже, Великобритания. Он и другие поклонники новых технологий утверждают, что суперконденсаторы будут процветать по мере того, как компании будут искать новые. и более надежные источники питания, которые к тому же более безопасны, чем современные батареи.

Вместо химических веществ, затрудняющих управление батареями, суперконденсаторы используют своего рода статическое электричество для хранения энергии. Это означает, что их характеристики более предсказуемы, их материалы более надежны и менее уязвимы к перепадам температуры, и они могут быть полностью разряжены для более безопасной транспортировки, сказал Харроп. (См. Соответствующие фотографии: «Семь ингредиентов для улучшения аккумуляторов электромобилей».)

Открытие для суперконденсаторов?

Ученым давно известно, что энергия может храниться в виде электрического заряда, а не в химических реактивах, как в батареях.Знаменитый эксперимент Бенджамина Франклина с рядами лейденских сосудов, которые он назвал «батареей» после военного термина, обозначающего совместное функционирование оружия, на самом деле был ранней версией конденсатора.

Но недавний прорыв в материалах суперконденсаторов может сделать их конкурентами батареям в большем количестве приложений. «Суперконденсаторы улучшаются намного быстрее, чем батареи», — сказал Харроп.

С другой стороны, суперконденсаторы уже много лет находятся на грани коммерческого успеха. Заголовок 1995 года, например, предполагал, что ультраконденсаторы «рвутся вперед».«Но они остались небольшим бизнесом по сравнению с аккумуляторными батареями — в первую очередь потому, что они хранят относительно мало энергии по сравнению с обычными элементами.

В аккумуляторах накопление электрического заряда называется« плотностью энергии », в отличие от« плотности мощности »или как быстро доставляется энергия.

Плотность энергии суперконденсаторов бледнеет по сравнению с литий-ионными батареями — технологией, обычно используемой сегодня в телефонах и ноутбуках. Литий-ионные батареи хранят, возможно, в 20 раз больше энергии, чем суперконденсаторы для данного веса и размера.Это означает, что iPhone 5, возможно, должен быть на два или три дюйма толще, чтобы удерживать суперконденсатор, что делает устройство едва ли стройным.

Суперконденсаторы, с другой стороны, выделяются, когда дело доходит до удельной мощности. Они обладают огромной мощностью — их можно быстро заряжать и высвобождать эту мощность быстрыми всплесками тока. Подумайте о тех резких электрических ударах, которые могут возникнуть, если неправильно натереть ворсистое ковровое покрытие. Или, может быть, лучше подумайте о разрядах электричества, которые зажигают летнюю бурю.

Производитель суперконденсаторов Maxwell Technologies сообщил, что наибольшие продажи идут производителям автобусов. Операторы используют суперконденсаторы, чтобы улавливать энергию, генерируемую при торможении автобуса на одной из своих многочисленных остановок, а затем разряжать электроэнергию, чтобы автобус начал движение с полной остановки. С этой целью суперконденсаторы могут полностью заменить батареи в гибридных автобусах, в то время как полностью электрические автобусы требуют меньше батарей.

Это, вероятно, лучший способ продолжить продажу суперконденсаторов в качестве дополнения к батареям или двигателям, работающим на топливе, сказал Сунд.«Суперконденсаторы часто дополняют батареи», — сказал он. «Поэтому мы стараемся держаться подальше от того, что мы называем« вышибанием батарей »».

Тем не менее, есть и другие места, где суперконденсаторы полностью заменяют батареи. Один из примеров — ветряные турбины, особенно расположенные на море и труднодоступные. Суперконденсаторы могут обеспечивать, например, всплески мощности, необходимые для регулировки лопастей турбины при изменении ветровых условий.

Аккумуляторы традиционно удовлетворяли эту потребность.Но батареи изнашиваются, потому что их химические вещества со временем теряют свою эффективность. Поскольку они не используют химические вещества для хранения электроэнергии, конденсаторы служат намного дольше, что является важным фактором для турбин, чья высота и удаленное расположение делают их обслуживание дорогостоящим.

Некоторые европейские автомобили также используют суперконденсаторы аналогично автобусам. Европейские «микрогибридные» автомобили выключаются, когда обычно работают на холостом ходу. Эта технология «старт-стоп» обычно работает только от батарей, но французский автопроизводитель PSA использует суперконденсаторы Maxwell в некоторых своих автомобилях Citroen и Peugeot.

Аккумуляторы, тем не менее, продолжают занимать большую часть рынка микрогибрид, потому что суперконденсаторы и сопутствующая электроника могут добавить пару сотен долларов к стоимости автомобиля. Сторонники технологии утверждают, что в долгосрочной перспективе суперкапсы стоят меньше, потому что они служат дольше, чем батареи, и экономят больше топлива, поскольку работают более надежно.

Тем не менее, когда дело доходит до микрогибридных автомобилей, начальная цена покупки пока превосходит эффективность и долгосрочную стоимость владения, сказал Сунд.

Преодолеть препятствия

Новые материалы могут помочь суперконденсаторам лучше конкурировать по плотности энергии. Многие ученые сосредотачиваются на графене, углероде толщиной всего в один атом, который вызвал большое волнение с тех пор, как он был усовершенствован около десяти лет назад. Производство графена оказалось дорогим. Но недавно лаборатория показала, что дешевое обычное бытовое устройство может производить графен в недорогих высококачественных листах. Аспирант использовал записывающее устройство DVD, чтобы сделать графен в химической лаборатории, которой руководит Рик Канер, профессор Калифорнийского университета в Лос-Анджелесе.

DVD-привод имеет функцию под названием LightScribe, которая наносит изображения на поверхность DVD-дисков. Оказывается, лазер также преобразует обычный материал, оксид графита, в листы графена. Открытие было описано в прошлом году в журнале Science.

Лазер производит графен с характеристикой, которая делает его особенно перспективным для суперконденсаторов: он выходит с отверстиями или порами. Этот высокопористый графен можно уложить в несколько слоев, при этом обе стороны каждого слоя остаются доступными.В экспериментах это удвоило или утроило плотность энергии суперконденсаторов, сделанных из графена.

Диск размером с DVD из лаборатории Рика Канера содержит микроконденсаторы.

Фотография любезно предоставлена ​​Аргоннской национальной лабораторией

Пожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.

Один слой атомов углерода не хранит много энергии, сказал Канер. «Это когда вы можете складывать сотни или даже тысячи слоев — и это то, что мы делаем.«

Он не предсказывает, когда новый материал может появиться в коммерческих суперконденсаторах, кроме как надеется, что это произойдет не через десять или даже пять лет. Даже в этом случае суперконденсаторы, вероятно, будут работать в тандеме с батареями». «пока они не заменят батареи», — сказал Канер. сказал.«Кроме того, в отличие от батарей, они не перезаряжаются и не перегреваются».

По словам Харропа из IDTechEX, преимущества суперконденсаторов в области безопасности будут расти по мере роста спроса на портативную энергию. Сами по себе конденсаторы представляют собой проблему безопасности, потому что любая технология, которая хранит энергию, потенциально опасна. Но производители постепенно отказываются от токсичных и легковоспламеняющихся химикатов, которые использовались в суперконденсаторах, и даже эти суперконденсаторы имеют лучшие показатели безопасности, чем литий-ионные батареи, сказал он.

Между тем безопасность аккумуляторов станет более важной проблемой по мере увеличения размеров элементов, таких как те, которые сейчас используются в электромобилях. Харроп добавил, что чем больше батарея, тем больше вероятность того, что что-то пойдет не так. «Легче сделать аккумулятор безопасным для чего-то вроде телефона, чем для автомобиля».

Эта история — часть специальной серии, посвященной вопросам энергетики. Для получения дополнительной информации посетите The Great Energy Challenge.

Что такое суперконденсатор? Объяснение следующего шага для электромобилей и гибридов

► Суперконденсаторы имеют несколько преимуществ перед батареями
► Но в настоящее время есть и недостатки
► Они используются в новом Lamborghini Sian

В 2019 году электромобили широко рассматриваются как преемники автомобилей с ДВС, и производители спешат электрифицировать свои модельные ряды: на автосалоне во Франкфурте в 2019 году будут представлены готовые к производству электромобили от Porsche, VW и Honda, и это лишь некоторые из них.И легко понять почему.

Увеличенный запас хода, больше точек зарядки и общие усовершенствования теперь делают электромобили серьезным соперником бензиновых аналогов. Но для многих они все еще далеки от совершенства: требуется время на зарядку и по-прежнему отсутствует по-настоящему широко распространенная инфраструктура, по крайней мере, в Великобритании.

Хотя сейчас литий-ионная технология используется по умолчанию, она не может быть окончательным ответом, когда дело доходит до питания электромобилей. Суперконденсаторы позволяют решить некоторые давние проблемы, связанные с полностью электрическими автомобилями с батарейным питанием, а также имеют дополнительные преимущества для гибридов.Они могли бы стать толчком для мира электромобилей, но что такое суперконденсаторы, как они работают и настолько ли они научно-фантастические, как кажутся?

Что такое суперконденсатор?

Давайте сначала объясним, что такое суперконденсатор. Иногда называемый ультраконденсатором, суперконденсатор, как и батарея, является средством хранения и высвобождения электричества. Но вместо того, чтобы хранить энергию в виде химикатов, суперконденсаторы хранят электричество в статическом состоянии, что позволяет им быстрее заряжать и разряжать энергию.

В химическую лабораторию!

Литий-ионные батареи

работают с использованием слоев ячеек с использованием положительных и отрицательных электродов, разделенных электролитом. Они генерируют заряд, когда ионы лития переходят от отрицательного к положительному положению при разряде, а при зарядке происходит обратное.

Как работают суперконденсаторы?

Конденсаторы

, с другой стороны, хранят электричество в статическом состоянии, а не оставляют его «запертым» в химических реакциях. Взломайте конденсатор, и вы обнаружите две проводящие пластины, называемые электродами, разделенные изоляционным материалом, известным как диэлектрик.Эти две пластины, одна положительная, а другая отрицательная, создают электрическое поле при подключении к электрической цепи, которая поляризует атомы в диэлектрике, поэтому положительные атомы сидят на стороне отрицательной пластины, а отрицательные атомы — на стороне положительной пластины. пластина, создавая таким образом заряд.


Во многих отношениях суперконденсатор — это просто конденсатор большего размера с большими электродными пластинами и меньшим расстоянием между ними, что позволяет хранить больший заряд в виде потенциальной электрической энергии.Суперконденсатор не использует диэлектрик; вместо этого пористые электродные пластины пропитаны электролитом и разделены очень тонким разделительным материалом. Когда заряд проходит через электроды, атомы в них становятся поляризованными, придавая электродам положительный или отрицательный заряд.

Затем они притягивают электроны противоположной полярности в электролите и, таким образом, создают двойной электрический слой, а это означает, что суперконденсаторы хранят намного больше энергии, чем их обычные конденсаторные аналоги.

В чем преимущества суперконденсаторов?

Суперконденсаторы уже существуют в автомобилях с системами рекуперативного торможения. Это связано с их большей удельной мощностью, чем у батарей, основанных на химических реакциях, что позволяет им быстро накапливать и разряжать электричество, что удобно для сбора энергии, генерируемой при торможении, а затем быстрого высвобождения ее при ускорении.

В автомобилях, полностью построенных на элементах, таких как Toyota FCHV, также используются суперконденсаторы для обеспечения дополнительной ускоряющей мощности, которую водородные топливные элементы не могут сделать в одиночку.

Им еще предстоит заменить литий-ионные батареи в качестве основного источника энергии, но электрические и гибридные автомобили развиваются из года в год, поэтому у суперконденсаторов есть большой потенциал, чтобы играть большую роль в электромобилях и автомобилях следующего поколения. зарядная инфраструктура для их поддержки.

Поскольку суперконденсаторы в значительной степени полагаются на физику, а не на химию для хранения своей энергии, они не разлагаются так же, как литий-ионные батареи. Это может предоставить огромные возможности для увеличения срока службы электромобиля, а также для снижения воздействия на окружающую среду использования литий-ионных элементов питания.

Но самым большим преимуществом суперконденсаторов перед литий-ионными и никель-кадмиевыми батареями является их способность быстро заряжаться и разряжаться; мы говорим о зарядке в минутах, а не в часах. Таким образом, суперконденсаторы могут стать панацеей для сокращения часов, которые в настоящее время уходит на перезарядку полностью электрического автомобиля, или могут повысить скорость гибридов, о чем мы расскажем позже в этой статье.

Суперконденсаторы

также очень хорошо справляются с беспроводной зарядкой, что в сочетании с их способностью заряжаться на высокой скорости может избавить от необходимости подключать электромобили к точкам питания и сделать процесс зарядки более плавным.

Какие недостатки у суперконденсаторов?

В настоящее время с суперконденсаторами связаны две основные проблемы, и самая тревожная — это плотность энергии. Конечно, суперконденсаторы могут поглощать и выдавать большое количество энергии быстрее, чем литий-ионные батареи, но сейчас они не могут хранить столько энергии.

Это проблема, которая делает их менее подходящими для электромобилей, но не означает, что они должны быть исключены в будущем. Не забывайте, что потребовалось время, чтобы извлечь приемлемый диапазон пробега из литий-ионных аккумуляторных систем, поэтому есть возможности для повышения плотности энергии суперконденсаторов, если умные люди работают над повышением их эффективности.

Исследователи из Университета Суррея заявили о прорыве в материалах для суперконденсаторов, которые могут позволить им использовать весь диапазон бензиновых автомобилей, но это первые дни, и вы не увидите этого на современных суперконденсаторах.

Вторая проблема с суперконденсаторами в том виде, в каком они стоят, — это разрядка или время, в течение которого они могут удерживать заряд. В настоящее время суперконденсаторы не могут удерживать заряд так же долго, как литий-ионные батареи. Например, если вы оставите автомобиль с суперконденсаторным питанием в гараже на неделю, вы, вероятно, найдете его бесплатно, когда вернетесь.

Быстрая зарядка может решить эту проблему, но вам нужно убедиться, что у вас есть под рукой зарядное устройство, имеющее достаточную силу тока, чтобы обеспечить высокий заряд, с которым может справиться суперконденсатор. У вас вряд ли будет домашнее зарядное устройство на пару тысяч ампер в запасе.

По мере того, как в суперконденсаторах совершаются прорывы, мы неизбежно можем ожидать лучшего накопления энергии и способов предотвращения быстрого разряда, что в конечном итоге может привести к тому, что суперконденсаторы вытеснят литий-ионные аккумуляторные системы.Но это похоже на долгий путь.

Суперконденсаторы прямо сейчас? Рука помощи гибридам

По мере того, как в суперконденсаторах совершаются прорывы, мы неизбежно можем ожидать лучшего накопления энергии и способов предотвращения быстрого разряда, что в конечном итоге может привести к тому, что суперконденсаторы вытеснят литий-ионные аккумуляторные системы. Но это похоже на долгий путь.

Так что насчет сейчас? Хотя суперконденсаторы, возможно, какое-то время не будут использоваться в электромобилях, эта технология уже идеально подходит для гибридных силовых агрегатов.Суперконденсаторы уже используются для быстрой зарядки источников питания в гибридных автобусах при их движении от остановки к остановке, но такие производители автомобилей, как Lamborghini, обнаруживают, что они также могут добавить серьезную дополнительную производительность.

Когда гибридная энергия используется исключительно для повышения производительности, такие вопросы, как дальность полета и способность удерживать заряд, не так важны — и именно поэтому мы уже наблюдаем, как технологии проникают в мир гиперкаров.

Lamborghini Sian сочетает в себе электромотор мощностью 34 л.с. с питанием от суперконденсатора и двигатель Sant’Agata V12 для sub 3.0 с 0 до 100 км / ч.

В Сиане использование суперконденсатора является единственным методом хранения электроэнергии, но вполне возможно, что мы могли бы получить автомобили, которые также сочетают суперконденсатор и литий-ионную технологию, используя преимущества обоих; литий-ионные батареи по-прежнему будут основным источником энергии, но суперконденсаторы могут их дополнить для более быстрого разряда и перезарядки энергии во время разгона и торможения.


Что ждет суперконденсаторы в будущем?

Мы просто обдумываем идею, но такая машина могла бы работать на суперконденсаторе вокруг города, где есть инфраструктура для поддержки быстрой зарядки, эффективно переключаясь с powerpoint на powerpoint.Затем для более длительных прогулок автомобиль может переключиться на литий-ионный аккумулятор с рекуперативным торможением, помогающим увеличить запас хода.

Учитывая, что Тесла купила Максвелла, специалиста по суперконденсаторам и батареям, в 2019 году, есть шанс, что именно производитель автомобилей сделает такой электромобиль реальностью; время покажет, для чего Tesla использует технологию Максвелла.

Суперконденсаторы

уже используются для быстрой зарядки блоков питания в гибридных автобусах при их движении от остановки к остановке. В настоящее время такие зарядные устройства коммерчески нецелесообразны для массового производства, но по мере того, как все больше людей покупают электромобили, инфраструктура зарядки, вероятно, разовьется до такой степени, что широко распространенные зарядные устройства для суперконденсаторов станут реальностью.

Итак, мы можем ожидать увидеть точки зарядки суперконденсаторов и беспроводные зарядные устройства, питаемые от них на станциях, как электрический эквивалент бензонасоса, способного заправить автомобиль за считанные минуты.

Чтобы получить немного научной фантастики о вещах, такую ​​зарядку можно было бы расширить с помощью суперконденсаторов, встроенных в дороги, постоянно поставляющих энергию электромобилям, когда они мчатся и останавливаются на светофоре. За пределами выделенных полос на автомагистралях такое видение может показаться немного надуманным.

Но системы электромобилей, аккумуляторы, зарядка и технологии постоянно совершенствуются, поэтому возможности для суперконденсаторов для усиления будущих электромобилей огромны.

Суперконденсаторы — обзор | Темы ScienceDirect

Суперконденсаторы

Суперконденсаторы — это устройства, которые обладают высокой кулоновской эффективностью и высокой плотностью мощности в течение продолжительных циклов заряда / разряда. Материал электрода сильно влияет на работу устройства. Поэтому важно использовать материалы, которые потенциально увеличивают плотность энергии суперконденсатора при сохранении высокой плотности мощности и стабильности цикла.

Конденсаторы с двойным электрическим слоем (EDLC) — это тип суперконденсаторов, которые похожи на традиционные конденсаторы в том, что они накапливают энергию за счет разделения зарядов. Следующее уравнение определяет емкость устройства:

(6) C = εrε0Ad

Где ε r — диэлектрическая проницаемость электролита, ε 0 диэлектрическая проницаемость вакуума, A — площадь поверхности электрод, а d — расстояние разделения зарядов.

Псевдоконденсаторы (ПК) используют фарадеевские окислительно-восстановительные процессы на границе раздела электрод / электролит. Во время зарядки также может наблюдаться поверхностная адсорбция или интеркаляция, в зависимости от структуры материала. Следовательно, электродные материалы также требуют большой площади поверхности и электропроводности. ПК обычно демонстрируют более высокую плотность энергии, но быстро теряют емкость.

Гибридная форма обеих конфигураций приводит к суперконденсаторам, которые состоят из асимметричных электродов фарадеевских и нефарадеевских свойств, которые потенциально могут повысить плотность энергии, не ограничивая возможности устройства по плотности мощности.Для упомянутых типов суперконденсаторов материалы электродов, необходимые для обеспечения исключительных характеристик, должны иметь большую площадь поверхности и высокую электропроводность.

Структуры на основе углерода считаются большими конкурентами в EDLC и изучались в качестве потенциальных электродов. Они не только демонстрируют высокую площадь поверхности и электрическую проводимость, они также демонстрируют широкие окна потенциалов в водных средах, а также хорошую химическую стабильность во многих электролитических растворах с широким диапазоном рабочих температур.Широко известные углеродные материалы, которые используются для применения EDLC, включают, но не ограничиваются: активированный уголь, графен и УНТ с характеристиками, способными достигать прямоугольных циклических вольтамперограмм почти полной емкости и симметричных гальваностатических профилей заряда-разряда.

При правильной структуре чистые углеродные материалы, демонстрирующие доступные площади поверхности и хорошие электрические и механические свойства, такие как УНТ и графен, могут быть использованы в качестве потенциальных электродов в EDLC и показали хорошую циклическую стабильность и процессы накопления заряда с высокой степенью обратимости.Улучшения электродов все еще продолжаются для возможности создания EDLC с высокой плотностью энергии, а также свойствами с высокой плотностью мощности. Повышение объемной плотности энергии устройства EDLC при сохранении плотности мощности является основной целью текущих исследований для различных приложений. Этого можно добиться, увеличивая площадь поверхности для образования двойного электрического слоя, но этому может препятствовать перенос ионов с плохой связью между порами, которые могут захватывать ионы.Следовательно, также важно облегчить быструю передачу заряда на границе раздела электрод / электролит с длительной структурной стабильностью и эффективно соединенными порами во время циклов заряда / разряда.

В ПК углеродные материалы либо функционализированы, либо составлены для интеграции в качестве электрода. Функционализацию углеродных материалов, таких как УНТ, обычно получают с помощью кислотной и щелочной обработки, они, как видно, демонстрируют повышенную емкость, которая является результатом дополнительных фарадеевских окислительно-восстановительных реакций.В дополнение к улучшенным характеристикам функционализированные УНТ также обладают большой площадью поверхности и подходящими размерами пор для использования в качестве электродов для ПК. Однако функционализация может привести к снижению проводимости материала и потенциально может сделать его нестабильным для длительного использования.

В ПК большинство фарадеевских электродов, демонстрирующих поверхностную окислительно-восстановительную емкость и свойства интеркаляции ионов, также страдают от пониженной электропроводности (Liu et al ., 2018a, b). По этой причине электроды, изготовленные из электрохимически превосходных оксидов или гидроксидов металлов, например, могут быть составлены из проводящих углеродов, таких как УНТ, чтобы не только обеспечить лучшую электрическую проводимость (в зависимости от их хиральности), но и потенциально ограничить изменение объема. оксидов металлов во время циклов заряда / разряда.

Для обоих типов симметричных суперконденсаторов активация углеродных материалов играет роль в повышении эффективности материала за счет увеличения площади его поверхности для обеспечения более высоких значений емкости. Кроме того, введение микропор, которое также может быть предпринято путем активации, в пористые углеродные структуры с размерами микропор, которые соответствуют размерам микропор выбранного электролита, положительно влияет на электрохимические характеристики. В ПК активация пористых углеродных структур также вводит функциональные группы с добавленной псевдоемкостью.Шаблонные угли, хотя и являются дорогостоящими из-за их сложного приготовления, могут быть специально адаптированы для определения оптимального соотношения размера пор и результирующих характеристик микропористой структуры электрода. Очень важно, чтобы после обработки микропоры были доступны для электролита, чтобы этот процесс был эффективным.

Еще одно усовершенствование углеродных материалов — инициирование активных центров с переносом заряда, что потенциально увеличивает их электрическую проводимость.Этого можно добиться с помощью легирования гетероатомом, и, таким образом, также было замечено, что это увеличивает емкость устройства. Кроме того, обработка материалов в наномасштабе может привести к более короткой длине диффузии ионов.

Еще один интересный подход к улучшению свойств материала — намеренное создание дефектов в структуре материала. В графене, например, ионный перенос обычно происходит вдоль листов и, таким образом, представляет собой гораздо более длинные пути для переноса ионов.Введение дырчатых графеновых или графеновых сеток, в которых дырки вводятся в структуру решетки, позволило осуществить межплоскостной ионный перенос после того, как слои подвергаются сжимающим силам, что привело к сокращению пути переноса заряда (Xu et al . , 2014).

Примечательно, что синергетический эффект объединения различных углеродных материалов вместе может также привести к улучшенным электрохимическим характеристикам. Например, сетки ОСУНТ, образующие мезопористую углеродную структуру, могут быть вставлены вместе с листами восстановленного оксида графена, легированными азотом, для получения микроволокна, показанного на рис.12. Выровненные ОУНТ имеют относительно низкую емкость двойного электрического слоя, но обладают исключительной электропроводностью и способствуют быстродействию, тогда как восстановленный оксид графена имеет большую площадь поверхности и, следовательно, демонстрирует высокую емкость двойного электрического слоя. Это привело к увеличению площади поверхности, а также электропроводности электрода.

Рис. 12. СЭМ-изображения волокна изображены как (а) площадь поперечного сечения волокна, которая выделена на (b), и при большем увеличении на (c) жгуты SWCNT можно увидеть прикрепленными к краям восстановленная поверхность оксида графена на шкале (а) 15 мкм, (б) 0.5 мкм и (в) 300 нм. Шоу

Воспроизведено Yu, D., Goh, K., Wang, H., et al. ., 2014. Масштабируемый синтез иерархически структурированных волокон УНТ-графен для емкостного накопления энергии. Nat. Nanotechnol. 9, 555–562. Авторское право Springer Nature, 2014 г.

Дополнительные исключительные механические свойства углеродных материалов, таких как УНТ, углеродные нановолокна и графен, позволяют использовать их в гибких суперконденсаторах для носимых технологий (He et al ., 2013). Конденсаторы могут быть в форме проволоки или пленки и могут быть отдельно стоящими или с подложкой.Ожидается, что гибкие электроды сохранят структурную стабильность и будут способны выдерживать длительные механические нагрузки с оптимальной химической стабильностью с электролитами. Предполагается, что электроды для медицинских целей также будут биосовместимыми.

Интересно, что прозрачные EDLC привлекают большое внимание в приложениях, требующих визуальной тенденции. ОУНТ в данном случае используются в качестве электродов с оптической прозрачностью 92% (Kanninen et al ., 2016).

В целом, поддержание высоких значений энергии и плотности мощности с соответствующей механической и химической стабильностью, а также высоких скоростей заряда / разряда с длительным сроком службы и низким спадом емкости важно контролировать с появлением новых концепций электрохимических устройств.

Суперконденсаторы — жизнеспособная альтернатива технологии литий-ионных батарей?

11 ноя 2020

15930 Просмотры

8 мин чтения

Введение

Суперконденсаторы

, также называемые ультраконденсаторами, двухслойными конденсаторами или электрохимическими конденсаторами, представляют собой тип системы накопления энергии, привлекающий в последние годы многих экспертов.Проще говоря, их можно представить как нечто среднее между обычным конденсатором и батареей; тем не менее, они отличаются от обоих.

Прежде чем мы углубимся в нюансы того, могут ли суперконденсаторы сами по себе влиять на то, как можно хранить энергию в будущем, стоит узнать больше о том, как они работают и чем они отличаются от литий-ионных аккумуляторов.

Суперконденсаторы и батареи, они оба являются методами хранения. Если мы посмотрим на литий-ионные батареи, они полностью зависят от химических реакций.Они состоят из положительной и отрицательной стороны, технически называемых анодом и катодом. Эти две стороны погружены в жидкий электролит и разделены микроперфорированным сепаратором, через который проходят только ионы. Во время зарядки и разрядки аккумуляторов ионы имеют тенденцию перемещаться взад-вперед между анодом и катодом. В процессе переноса ионов батарея нагревается, расширяется, а затем сжимается. Эти реакции постепенно разрушают батарею, что приводит к сокращению срока ее службы.Однако существенным преимуществом аккумуляторной технологии является то, что она имеет очень высокую удельную энергию или плотность энергии для хранения энергии для последующего использования.

Но суперконденсаторы разные; они не полагаются на химическую игру, чтобы функционировать. Вместо этого они накапливают в себе потенциальную энергию электростатически. В суперконденсаторах между пластинами используется диэлектрик или изолятор, чтобы разделить совокупность положительных (+ ve) и отрицательных (-ve) зарядов на пластинах каждой стороны. Именно такое разделение позволяет устройству накапливать энергию и быстро ее высвобождать.Он в основном улавливает статическое электричество для использования в будущем. Самым значительным преимуществом этого является то, что конденсатор 3 В теперь по-прежнему будет конденсатором 3 В через 15-20 лет. Напротив, с другой стороны, аккумулятор может терять емкость по напряжению со временем и при повторном использовании.

Кроме того, в отличие от батареи, они имеют более высокую пропускную способность, что означает, что они могут заряжаться и разряжаться за меньшее время. Тем не менее, они имеют очень низкую удельную энергию по сравнению с батареями. Суперконденсаторы лучше всего подходят для очень небольших всплесков мощности.

Сама концепция «суперконденсатора » вовсе не нова. Первый суперконденсатор был создан GE (General Electric) в 1957 году. Standard Oil, случайно в 1966 году открыли двухслойный конденсатор при работе с топливными элементами. Тем не менее, только в конце 1970-х годов японская компания NEC начала коммерчески предлагать первый «суперконденсатор» для резервного копирования памяти компьютера.

Мы находимся на этапе, когда применение суперконденсаторов только начинается.В целом было обнаружено, что суперконденсаторы обладают наибольшим потенциалом для применения в гибридных транспортных средствах (намекает на приобретение Tesla — Maxwell).

Peugeot-Citroen, Toyota, Mazda и даже Lamborghini выпустили модели автомобилей, в которых используется определенная комбинация суперконденсаторов и обычных литий-ионных аккумуляторов. Такие автомобили, как концепт Toyota Hybrid-R и мощный Sian от Lamborghini, используют суперконденсаторы для определенной роли. Например, они использовали его в системах рекуперации энергии во время замедления автомобиля.Проще говоря, когда автомобили замедляются, энергия, генерируемая в результате этого действия, накапливается бортовыми суперконденсаторами и позже используется для ускорения. Приводит к экономии батарей для менее напряженных действий, чем ускорение и замедление. В нем используется превосходная пропускная способность суперконденсаторов.

Интересно, что Илон Маск недавно заявил, что приобретение Tesla компании Maxwell окажет значительное влияние на батареи . Это было связано с объявлением Tesla о приобретении компании Maxwell, производящей ультраконденсаторы и аккумуляторы из Сан-Диего, за более чем 200 миллионов долларов.Было неясно, было ли это для основного бизнеса компании, суперконденсаторов, или для ее новейшей технологии аккумуляторов, такой как новая технология сухих электродов для аккумуляторных элементов.

В Швейцарии можно увидеть фантастический пример того, насколько эффективны суперконденсаторы. Парк автобусов имеет зарядные станции на различных остановках на своем ежедневном коммутационном маршруте. Всего за 15 секунд можно зарядить аккумулятор, а для полной зарядки хватит всего нескольких минут. За счет частых дозаправок он восполняет недостаток плотности и накопления энергии.А поскольку суперконденсаторы потребляют более низкий ток в течение нескольких минут за раз, это снижает нагрузку на сеть.

Почему суперконденсаторы вызывают большой интерес и чем они отличаются, например, от литий-ионных батарей?

Ответ на этот вопрос может во многом зависеть от приложений, для которых они могут использоваться. У каждой технологии действительно есть несколько явных преимуществ и недостатков. Как упоминалось ранее, батареи имеют гораздо более высокую плотность энергии , чем суперконденсаторы.

Это означает, что батареи больше подходят для приложений с более высокой плотностью энергии, например, для приложений, в которых устройство должно работать в течение длительных периодов времени на одной зарядке. С другой стороны, суперконденсаторы имеют гораздо более высокую удельную мощность, чем батареи. Это делает их идеальными для приложений с высоким энергопотреблением, таких как питание электромобиля. Пожалуйста, обратитесь к выставке ниже для сравнительного обзора.

Суперконденсаторы

также имеют гораздо больший срок службы, чем батареи. Обычная батарея может выдерживать около 2000-3000 циклов зарядки и разрядки, в то время как ультраконденсаторы обычно выдерживают более 1000000 циклов.Это может дать значительную экономию материалов и затрат.

Волнение действительно кажется заслуженным. Суперконденсаторы могут перезаряжаться за секунды, и в отличие от батарей, которые зависят от внутренних химических реакций и, следовательно, быстро изнашиваются, суперконденсаторы не разрушаются со временем. Суперконденсатор на 2,7 В сегодня будет суперконденсатором на 2,7 В через 15 лет. Для сравнения, все современные конструкции аккумуляторов постепенно теряют производительность, а это означает, что ваша 12-вольтовая батарея сегодня может быть 11-вольтовой.Аккумулятор на 4 вольта всего за три года.

Возможно, все еще существует некоторая распространенная путаница с точки зрения хранения энергии. Таблица 6, показанная ниже, может прояснить, как эти две технологии сравниваются по характеристикам плотности мощности и плотности энергии, включая некоторые другие формы накопления энергии.

Хотя суперконденсатор с таким же весом, как батарея, может выдерживать большую мощность, его ватт / кг (удельная мощность) до 10 раз лучше, чем у литий-ионных батарей. Однако неспособность суперконденсаторов медленно разряжаться означает, что их количество ватт-часов / кг (плотность энергии) составляет лишь небольшую часть того, что предлагает литий-ионный аккумулятор.

Суперконденсаторы ждут захватывающие времена — следите за ними!

С учетом приведенных выше сравнений и всех примеров различных приложений суперконденсаторов, исследуемых многочисленными производителями оригинального оборудования, похоже, не наблюдается какого-либо массового движения к замене батарей на суперконденсаторы. Итак, почему все это волнение?

Суперконденсаторы

превосходят традиционные конденсаторы благодаря своей способности накапливать и выделять энергию; однако они не смогли заменить функции обычных литий-ионных батарей.Это происходит главным образом потому, что литий-ионные аккумуляторы обладают такой мощностью, которую суперконденсаторы не могут дать в виде удельной энергии или плотности энергии (литий-ионные ~ 250 Втч / кг по сравнению с суперконденсаторами ~ 20 Вт-час / кг).

Основываясь на недавних исследованиях суперконденсаторов, можно сделать прорыв в суперконденсаторах на основе графена, что приведет к значительному прогрессу в суперконденсаторах. В результате исследования, проведенного в Квинслендском технологическом университете и Университета Райса , были опубликованы две статьи, опубликованные в журналах Journal of Nanotechnology и Power Sources .Исследователи из этих университетов предложили решение, состоящее из двух слоев графена со слоем электролита между ними. Эта пленка получается прочной, тонкой и может выделять большое количество энергии за короткое время. Эти факторы даны как данность — в конце концов, это суперконденсатор. Это исследование делает это исследование уникальным и интересным, потому что исследователи предполагают, что новые, более тонкие суперконденсаторы могут заменить более громоздкие батареи в будущих электромобилях.

Даже такие компании, как Skeleton Technologies, которые в значительной степени сосредоточились на технологии суперконденсаторов, признают, что гибридизация литий-ионных систем и систем, управляемых суперконденсаторами, может продвинуть электрические технологии в новую эру.

Соавтор исследования

Цзиньчжан Лю говорит, что «Ожидается, что в будущем суперконденсаторы можно будет модифицировать так, чтобы они сохраняли больше энергии, чем литий-ионные батареи, сохраняя при этом способность выделять свою энергию в 10 раз быстрее. Это означает, что суперконденсаторы в его кузовных панелях могут полностью питать автомобиль ». Он добавляет, что «после одной полной зарядки этот автомобиль должен иметь возможность проехать до 500 км (310 миль) — аналогично автомобилю с бензиновым двигателем и более чем вдвое превышает лимит тока электромобиля.”

Для технологии, которой почти 65 лет, суперконденсаторы еще не нашли свое место в электрических технологиях. Но похоже, что вместе с литий-ионными батареями и с более широким применением графена суперконденсаторы постепенно становятся жизненно важной ролью в гибридно-электрических технологиях. Суперконденсаторы могут сыграть роль в создании литий-ионных аккумуляторов с высокой плотностью энергии, более полезных в течение более продолжительных периодов времени.

Список литературы

  1. Разница между батареей и суперконденсатором
  2. Как работают суперконденсаторы?
  3. Суперконденсатор и батарея — сравнение и практический пример
  4. Могут ли суперконденсаторы заменить батареи?
  5. Суперконденсаторы против батарей — выдержат ли батареи испытание временем?
  6. Конденсаторы заменят батареи?
  7. Новые материалы делают суперконденсаторы лучше аккумуляторов
  8. Узнайте, как суперконденсатор может улучшить аккумулятор
  9. Могут ли ультраконденсаторы заменить батареи в электромобилях будущего?

Суперконденсаторы: основы и применение | Основы для начинающих

Энергетический кризис и загрязнение окружающей среды послужили толчком к развитию систем хранения чистой и возобновляемой энергии.Суперконденсаторы, также называемые ультраконденсаторами или электрическими двухслойными конденсаторами (EDLC), обеспечивают очень высокую емкость в небольшом корпусе. Он накапливает электрическую энергию в виде электрического поля между двумя проводящими пластинами и может выполнить на сотни тысяч циклов заряда-разряда больше, чем батареи, потому что они не подвержены износу, связанному с химической реакцией. По этой причине и его более широкое использование в электроприводах, ИБП, активных фильтрах, тяговых и автомобильных приводах привлекло внимание, чтобы узнать его особенности.

Конструкция суперконденсатора

Прежде чем мы перейдем к работе суперконденсаторов, давайте сначала разберемся со структурой суперконденсатора.

Рис. 1. Сечение суперконденсатора

Он не состоит из диэлектрического материала, как керамические конденсаторы или электролитические конденсаторы. Как показано на рисунке 1, суперконденсаторы состоят из двух пористых электродов, электролита, сепаратора и токосъемников. Давайте посмотрим на каждый из них.

Токосъемник:

Токосъемники изготавливаются из металлической фольги, как правило, из алюминия, так как она дешевле титана, платины и т. Д. Они покрыты электродным материалом.

Электроды:

Значение емкости пропорционально площади поверхности электрода. Обычно в качестве электродного материала используют высокопористый активный углеродный материал с порошковым покрытием или углеродные нанотрубки. Пористая природа материала позволяет хранить гораздо больше носителей заряда (ионов или радикалов из электролита) в заданном объеме.Это увеличивает значение емкости суперконденсаторов. Электроды нанесены на токосъемник и погружены в электролит.

Электролит:

Электролит является ключевым фактором при определении внутреннего сопротивления (ESR). Раствор электролита должен быть водным или неводным по своей природе. Наиболее предпочтительны неводные электролиты, поскольку они обеспечивают высокое конечное напряжение V. Неводный раствор состоит из проводящих солей, растворенных в растворителях. Наиболее предпочтительными растворителями являются ацетонитрил или пропиленкарбонат.В качестве растворенных веществ можно использовать ионы тетраалкиламмония или лития.

Разделитель:

Разделитель находится между электродами и изготовлен из прозрачного для ионов материала, но является изолятором для прямого контакта между пористыми электродами во избежание короткого замыкания.

Конструкция суперконденсатора уникальна и поэтому отличается от обычных батарей и конденсаторов. Использование активированного угля увеличивает площадь поверхности и, следовательно, увеличивает значение емкости. Электролит с низким внутренним сопротивлением увеличивает удельную мощность.Оба эти фактора вместе обеспечивают способность суперконденсаторов быстро накапливать и выделять энергию. Мощность суперконденсатора [Вт] дается выражением,

P = V 2 / 4R
, где V [Вольт] — рабочее напряжение, а R [Ω] — внутреннее сопротивление.

Накопление энергии в суперконденсаторах

При подаче напряжения начинается зарядка, это означает, что электрическое поле начинает развиваться. Давайте разберемся в процессе зарядки, используя рисунки 2 и 3.

Процесс начисления выглядит следующим образом:

При подаче напряжения каждый коллектор притягивает ионы противоположного заряда.
Ионы электролита собираются на поверхности двух токосъемников.
Заряд создается на каждом токоприемнике.
Как мы видим на рисунке 3, были сформированы два отдельных слоя заряда, поэтому суперконденсатор также называется двойным электрическим конденсатором (EDLC).

Теперь мы сможем понять процесс разряда, снова обратившись к рисунку 3 и рисунку 4.

Процесс выписки следующий:

  • Ионы больше не притягиваются к токосъемникам.
  • Ионы распределяются через электролит.
  • Уменьшается заряд на обоих токоприемниках.

Преимущества суперконденсаторов

  • Использование активированного угля увеличивает значение емкости, поэтому суперконденсаторы имеют большую емкость хранения энергии по сравнению с электролитными конденсаторами и батареями.
  • Длительный срок хранения по сравнению с батареями. В батареях энергия накапливается и высвобождается в результате химической реакции внутри материала электрода, которая вызывает деградацию.
  • Суперконденсаторы
  • могут заряжаться за короткое время и обеспечивать высокие и частые пики потребления энергии.
  • Суперконденсаторы
  • обладают высокой плотностью мощности и могут обеспечивать значительный всплеск мощности в течение короткого времени.

Применение суперконденсаторов

Благодаря уникальной емкости суперконденсаторов, он широко используется в различных приложениях, таких как электроприводы, ИБП, тяга, электромобили, твердотельные накопители, светодиодные фонарики и т. Д. Давайте обсудим некоторые из них.

Гибридные автобусы

Транспорт — крупнейший рынок суперконденсаторов.В Индии в конце месяца, в октябре 2017 года, компания BEST (Brihan Electric Supply and Transport) представила безэмиссионные электрические автобусы. Ранее в этом документе мы обсуждали, что суперконденсаторы быстро заряжаются. Батареям нужно время, чтобы зарядиться. При торможении двигателями создается обратная ЭДС. Эта обратная ЭДС в качестве регенеративной энергии используется для зарядки суперконденсаторов. Суперконденсаторы как комбинированное решение с аккумулятором увеличивают срок службы аккумулятора, уменьшают размер аккумулятора.

BU-209: Как работает суперконденсатор?

Узнайте, как суперконденсатор может улучшить аккумулятор.

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора очень высокой емкостью. Конденсатор накапливает энергию за счет статического заряда, в отличие от электрохимической реакции. Применение разности напряжений на положительной и отрицательной обкладках заряжает конденсатор. Это похоже на накопление электрического заряда при ходьбе по ковру.Прикосновение к объекту высвобождает энергию через палец.

Существует три типа конденсаторов, самый простой из которых — электростатический конденсатор с сухим сепаратором. Этот классический конденсатор имеет очень низкую емкость и в основном используется для настройки радиочастот и фильтрации. Размер варьируется от нескольких пикофарад (пФ) до низких микрофарад (мкФ).

Электролитический конденсатор обеспечивает более высокую емкость, чем электростатический конденсатор, и рассчитан на микрофарады (мкФ), что в миллион раз больше, чем пикофарад.Эти конденсаторы используют влажный сепаратор и используются для фильтрации, буферизации и передачи сигналов. Подобно батарее, электростатическая емкость имеет положительный и отрицательный стороны, которые необходимо учитывать.

Третий тип — это суперконденсатор , измеренный в фарадах, что в тысячи раз выше, чем у электролитического конденсатора. Суперконденсатор используется для накопления энергии, подвергаясь частым циклам зарядки и разрядки при высоком токе и короткой продолжительности.

Фарад — единица измерения емкости, названная в честь английского физика Майкла Фарадея (1791–1867).Один фарад сохраняет один кулон электрического заряда при приложении одного вольта. Один микрофарад в миллион раз меньше фарада, а один пикофарад снова в миллион раз меньше микрофарада.

Инженеры General Electric впервые экспериментировали с ранней версией суперконденсатора в 1957 году, но коммерческих приложений не было. В 1966 году Standard Oil вновь открыла эффект двухслойного конденсатора случайно, работая над экспериментальными конструкциями топливных элементов.Двойной слой значительно улучшил способность накапливать энергию. Компания не стала коммерциализировать изобретение и передала его по лицензии NEC, которая в 1978 году представила технологию как «суперконденсатор» для резервного копирования памяти компьютера. Только в 1990-х годах достижения в области материалов и методов производства привели к повышению производительности и снижению стоимости.

Суперконденсатор эволюционировал и перешел в аккумуляторную технологию с использованием специальных электродов и электролита. В то время как основной электрохимический двухслойный конденсатор (EDLC) зависит от электростатического воздействия, асимметричный электрохимический двухслойный конденсатор (AEDLC) использует электроды, похожие на аккумуляторные, для получения более высокой плотности энергии, но это имеет более короткий срок службы и другие проблемы, которые разделяются с аккумулятор.Графеновые электроды обещают усовершенствовать суперконденсаторы и батареи, но до таких разработок еще 15 лет.

Было опробовано несколько типов электродов, и наиболее распространенные сегодня системы построены на электрохимическом двухслойном конденсаторе на основе углерода, с органическим электролитом и простом в производстве.

Все конденсаторы имеют ограничения по напряжению. В то время как электростатический конденсатор можно сделать так, чтобы он выдерживал высокое напряжение, суперконденсатор ограничен 2,5–2.7V. Возможны напряжения 2,8 В и выше, но с сокращенным сроком службы. Чтобы получить более высокие напряжения, несколько суперконденсаторов соединены последовательно. Последовательное соединение снижает общую емкость и увеличивает внутреннее сопротивление. Для цепочек из более чем трех конденсаторов требуется балансировка напряжения, чтобы предотвратить перенапряжение любой ячейки. Литий-ионные аккумуляторы имеют аналогичную схему защиты.

Удельная энергия суперконденсатора колеблется от 1 Втч / кг до 30 Втч / кг, что в 10–50 раз меньше, чем у литий-ионных.Кривая нагнетания — еще один недостаток. В то время как электрохимическая батарея обеспечивает стабильное напряжение в используемом диапазоне мощности, напряжение суперконденсатора уменьшается в линейном масштабе, сокращая спектр полезной мощности. (См. BU-501: Основные сведения о разрядке)

Возьмите источник питания 6 В, который может разрядиться до 4,5 В до отключения оборудования. К тому времени, когда суперконденсатор достигает этого порога напряжения, линейный разряд дает только 44% энергии; остальные 56% зарезервированы.Дополнительный преобразователь постоянного тока в постоянный помогает восстанавливать энергию, находящуюся в диапазоне низкого напряжения, но это увеличивает затраты и приводит к потерям. Для сравнения, батарея с плоской кривой разряда обеспечивает от 90 до 95 процентов своего запаса энергии до достижения порогового значения напряжения.

На рисунках 1 и 2 показаны вольт-амперные характеристики при заряде и разряде суперконденсатора. При зарядке напряжение линейно увеличивается, а ток по умолчанию падает, когда конденсатор полон, без необходимости в схеме обнаружения полного заряда.Это верно для источника постоянного тока и предельного напряжения, подходящего для номинального напряжения конденсатора; превышение напряжения может повредить конденсатор.

Рис. 1. Профиль заряда суперконденсатора
Напряжение линейно увеличивается во время заряда постоянным током. Когда конденсатор заполнен, по умолчанию ток падает. Рисунок 2: Разрядный профиль суперконденсатора
Напряжение линейно падает при разряде. Дополнительный преобразователь постоянного тока в постоянный поддерживает уровень мощности, потребляя более высокий ток при падении напряжения.

Время заряда суперконденсатора 1–10 секунд. Зарядная характеристика аналогична электрохимической батарее, а зарядный ток в значительной степени ограничивается способностью зарядного устройства выдерживать ток. Первоначальная зарядка может быть произведена очень быстро, а дополнительная зарядка займет дополнительное время. Необходимо предусмотреть ограничение пускового тока при зарядке пустого суперконденсатора, так как он будет всасывать все, что может. Суперконденсатор не подлежит перезарядке и не требует обнаружения полного заряда; ток просто перестает течь, когда он наполняется.

В таблице 1 суперконденсатор сравнивается с типичным литий-ионным.

Функция Суперконденсатор Литий-ионный (общий)
Время зарядки 1–10 секунд 10–60 минут
Срок службы 1 миллион или 30 000 ч 500 и выше
Напряжение элемента 2.От 3 до 2,75 В 3,6 В номинал
Удельная энергия (Втч / кг) 5 (типовая) 120–240
Удельная мощность (Вт / кг) До 10 000 1 000–3 000
Стоимость кВтч 10 000 долларов (номинал) 250–1000 долларов (большая система)
Срок службы (производственный) 10-15 лет от 5 до 10 лет
Температура заряда от –40 до 65 ° C (от –40 до 149 ° F) от 0 до 45 ° C (от 32 до 113 ° F)
Температура нагнетания от –40 до 65 ° C (от –40 до 149 ° F) от –20 до 60 ° C (от –4 до 140 ° F)
Таблица 1: Сравнение характеристик суперконденсатора и литий-ионного аккумулятора [2]

Суперконденсатор можно заряжать и разряжать практически неограниченное количество раз.В отличие от электрохимической батареи, которая имеет определенный срок службы, при включении суперконденсатора происходит небольшой износ. Возраст также благоприятнее для суперконденсатора, чем для батареи. В нормальных условиях суперконденсатор теряет свою первоначальную 100-процентную емкость до 80 процентов за 10 лет. Применение более высокого напряжения, чем указано, сокращает срок службы. Суперконденсатор не боится высоких и низких температур, а батареи не могут удовлетворить его одинаково хорошо.

Саморазряд суперконденсатора существенно выше, чем у электростатического конденсатора, и несколько выше, чем у электрохимической батареи; Этому способствует органический электролит.Суперконденсатор разряжается от 100 до 50 процентов за 30-40 дней. Для сравнения, свинцовые и литиевые батареи саморазряжаются примерно на 5 процентов в месяц.

Суперконденсатор и батарея

Сравнение суперконденсатора с батареей имеет свои достоинства, но полагаться на сходство мешает более глубокое понимание этого отличительного устройства. Вот уникальные различия между батареей и суперконденсатором.

Химический состав батареи определяет рабочее напряжение; заряд и разряд — это электрохимические реакции.Для сравнения, конденсатор не является электрохимическим, и максимально допустимое напряжение определяется типом диэлектрического материала, используемого в качестве разделителя между пластинами. Присутствие электролита в некоторых конденсаторах увеличивает емкость, что может вызвать путаницу.

Поскольку суперконденсатор не является химическим, напряжение может расти до тех пор, пока не сломается диэлектрик. Часто это происходит в виде короткого замыкания. Избегайте повышения напряжения выше указанного.

Приложения

Суперконденсатор часто понимают неправильно; это не замена батареи для длительного хранения энергии.Если, например, время зарядки и разрядки превышает 60 секунд, используйте аккумулятор; если короче, то суперконденсатор становится экономичным.

Суперконденсаторы

идеально подходят, когда требуется быстрая зарядка для удовлетворения кратковременной потребности в энергии; в то время как батареи выбраны для длительного использования энергии. Объединение этих двух аккумуляторов в гибридную батарею удовлетворяет обе потребности и снижает нагрузку на аккумулятор, что отражается на более длительном сроке службы. Такие батареи сегодня доступны в семействе свинцово-кислотных аккумуляторов.

Суперконденсаторы

наиболее эффективны для устранения перерывов в питании, длящиеся от нескольких секунд до нескольких минут, и их можно быстро перезаряжать. Маховик предлагает аналогичные качества, и приложение, в котором суперконденсатор конкурирует с маховиком, — это испытание Long Island Rail Road (LIRR) в Нью-Йорке. LIRR — одна из самых загруженных железных дорог Северной Америки.

Чтобы предотвратить провал напряжения во время разгона поезда и снизить потребление пиковой мощности, в Нью-Йорке тестируется батарея суперконденсаторов мощностью 2 МВт против маховиков, обеспечивающих 2.5 МВт мощности. Обе системы должны обеспечивать непрерывное питание в течение 30 секунд при соответствующей мощности в мегаваттах и ​​одновременно полностью заряжаться. Цель состоит в том, чтобы добиться регулирования в пределах 10 процентов от номинального напряжения; обе системы не требуют особого обслуживания и прослужат 20 лет. (Власти считают, что маховики более надежны и энергоэффективны для этого применения, чем аккумуляторы. Время покажет.)

Япония также использует большие суперконденсаторы. Системы мощностью 4 МВт устанавливаются в коммерческих зданиях, чтобы снизить потребление энергии в сети в периоды пиковой нагрузки и облегчить загрузку.Другие приложения — запускать резервные генераторы во время перебоев в подаче электроэнергии и обеспечивать питание до стабилизации переключения.

Суперконденсаторы

также широко используются в электрических силовых агрегатах. Благодаря сверхбыстрой зарядке во время рекуперативного торможения и выдаче большого тока при ускорении суперконденсатор идеально подходит в качестве усилителя пиковой нагрузки для гибридных транспортных средств, а также для приложений на топливных элементах. Широкий температурный диапазон и долгий срок службы дают преимущество перед батареей.

Суперконденсаторы

имеют низкую удельную энергию и дороги с точки зрения стоимости ватта. Некоторые инженеры-конструкторы утверждают, что деньги на суперконденсатор лучше потратить на батарею большего размера. Таблица 2 суммирует преимущества и ограничения суперконденсатора.

Преимущества
  • Практически неограниченный срок службы; можно повторять миллионы раз
  • Высокая удельная мощность; низкое сопротивление обеспечивает высокие токи нагрузки
  • Заряжается за секунды; окончание зарядки не требуется
  • Простая зарядка; рисует только то, что ему нужно; не подлежит завышению
  • Сейф; простит при злоупотреблении
  • Превосходные характеристики заряда и разряда при низких температурах
Ограничения
Таблица 2: Преимущества и ограничения суперконденсаторов

Ссылки

[1] Источник: PPM Power

[2] Источник: Maxwell Technologies, Inc.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.