+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

АО «НИИ Гириконд»

 

 

 

СКАЧАТЬ

КАТАЛОГ

ПРОДУКЦИИ

 

АО «НИИ «Гириконд» — ведущее предприятие в России и СНГ по разработке и производству конденсаторов, нелинейных полупроводниковых резисторов, и материалов для них, основан в 1939 году.


       Научно-исследовательский институт «Гириконд», основанный в 1939 году, стал родоначальником новой подотрасли — конденсаторостроения. 
       Сегодня АО «НИИ» Гириконд» — ведущее предприятие в России и СНГ по разработке и производству электронных компонентов: конденсаторов, керамических фильтров, нелинейных полупроводниковых резисторов, фотоэлектрических полупроводниковых приемников излучения, полупроводниковых излучателей, датчиков и приборов на их основе, а также материалов для электронной техники. Его научно-исследовательская, экспериментальная и производственная база, коллектив высококвалифицированных специалистов позволяют разрабатывать и производить изделия, отвечающие современным требованиям технического прогресса, традиционно отличающиеся высокой надежностью и качеством.
       На протяжении более чем 60-летней научно-технической деятельности институт продолжал заниматься разработкой традиционных видов своей продукции – конденсаторов и нелинейных полупроводниковых резисторов.
       Более 90 процентов отечественной номенклатуры этих изделий, выпускаемых предприятиями России и СНГ в настоящее время, разработаны в НИИ «Гириконд».
       Кроме того, в течение последних 50 лет в институте проводятся разработки в области ИК-техники, в результате которых создана не имеющая мировых аналогов технология изготовления полупроводниковых ИК-приемников излучения. На базе этой технологии разработан и освоен в серийном производстве модельный ряд инфракрасных многодиапазонных помехозащищенных пожарных извещателей пламени «НАБАТ» (ИП332-1/1…5) для применения в обычной и взрывоопасной среде. 
       Сегодня основная задача нашего института – разработка конкурентоспособных изделий, соответствующих мировому уровню. Интеллектуальная собственность института составляет 41 патент РФ и 480 авторских свидетельств СССР на изобретения. Наши изделия отмечены более чем 500 медалями различных выставок и ярмарок, из них 31 золотой. Только за последние 5 лет разработки в области пожарных извещателей «НАБАТ» удостоены 6 золотых и одной серебряной медалей специализированных выставок «За лучшее техническое решение». 
       АО «НИИ» Гириконд» входит в состав холдинга «Российская электроника и является базовым предприятием радиоэлектронного комплекса РФ в области конденсаторов и нелинейных полупроводниковых резисторов».
       Институт в настоящее время разрабатывает и производит электронные компоненты, датчики и приборы, как универсального применения, так и уникальные изделия для специфических и экстремальных условий эксплуатации (для СВЧ-диапазона частот, для работы при повышенных температурах и механических нагрузках и др.) и материалы для них.


 

Противодействие коррупции

www.giricond.ru

технические характеристики, принцип работы, применение

Любые механические контакты подвержены износу. Чтобы уменьшить влияние этого деструктивного фактора, в первой половине прошлого века было разработаны магнитоуправляемые коммутационные устройства, контактная группа которых помещалась в вакуумную колбу. В СССР такие элементы получили название «Геркон», по сокращению от «герметизированный контакт», в англоязычной технической документации принято название «reed switch».

Давайте рассмотрим принцип действия этих устройств, конструкцию, основные характеристики, достоинства и недостатки. В завершении статьи будет приведена пара полезных схем, где используются герконы.

Внешний вид и особенности конструкции

Данные устройства представляют собой контактную группу, изготовленную на основе ферримагнитного материала, которая помещается в стеклянную колбу. Из нее откачен воздух (созданы условия максимально приближенные к вакууму), как вариант возможно наполнение инертным газом. Внешний вид устройства и его обозначение на принципиальных схемах представлены ниже.

А) внешний вид геркона; В) обозначение на принципиальных схемах

С конструктивным исполнением, можно ознакомиться на рисунке 2.

Конструкция геркона

Обозначение:

  • А – выводы устройства.
  • В – стеклянная колба.
  • С – контактная группа.
  • D – инертный газ или вакуум.

Разновидности

Коммутационные устройства данного класса принято разделять в зависимости от устройства контактной группы на следующие виды:

  1. Элементы с нормально-разомкнутыми контактами (внешний вид такого устройства показан на рис. 1).
  2. Элементы с нормально-замкнутым контактом.
  3. С переключающимся контактом.

Помимо функциональных признаков, перечисленных выше, имеются и технологические, разделяющие герметичные коммутирующие устройства на две группы: сухие и ртутные. Отличительная особенность последних заключается в том, что внутри колбы содержится капля ртути. Она служит для «смачивания» контактной группы, это позволяет существенно снизить переходное сопротивление и вибрацию (дребезг) контактов при коммутации, что положительно отражается на качестве контакта.

Принцип действия

Срабатывание устройства (замыкание, размыкание или переключение контактов) требуется воздействовать на элемент магнитным полем, напряженность которого будет достаточной для коммутации. В качестве источника такого поля может выступать обычный или электромагнит.

Под воздействием силовых линий происходит намагничивание контактов и по преодолению порога упругости они коммутируют цепь.

Принцип работы нормально-разомкнутого геркона

Соответственно, как только на контактную группу перестанет действовать магнитное поле, она вернется в исходное состояние. То есть, функционально контакты помимо своего прямого назначения играют роль магнитопровода и упругого элемента.

Устройства с нормально-замкнутыми контактами действуют несколько иначе. Их ферримагнитные упругие элементы, попадая под воздействие магнитного, поля приобретают одинаковый заряд, что заставляет их отталкиваться, разрывая контакт.

Принцип действия нормально-замкнутого геркона

Иногда в таких коммутаторах только один упругий элемент выполнен из ферримагнитного сплава, в результате приближения магнита он притягивается к нему, отключая цепь.

Подобный принцип задействован в герконах с переключающей группой контактов, в котором два из них изготавливаются из магнитного материала. Под воздействием магнита они притягиваются друг к другу, а немагнитный контакт остается в исходном положении. В результате происходит перекоммутация цепи.

Срабатывание переключающего геркона

Основные параметры

Свойства герметичных коммутаторов определяются механическими и электрическими параметрами. К первым относятся:

  • Nmax – число, указывающее максимально допустимое количество срабатываний без изменения основных характеристик.
  • Vcp – величина отображающая интенсивность поля необходимую для реакции устройства. В технической терминологии данную характеристику называют магнитодвижущей силой.
  • Vотп – величина соответствующая силе размыкания.
  • tcp – время, необходимое на срабатывание контактной группы.
  • tотп – интервал времени, необходимый на отпускание.
  •  Последние два параметра наиболее значимые из механических характеристик, поскольку описывают скорость коммутации.
  • Теперь перечислим основные электрические характеристики:
  • RK – сопротивление между контактами в замкнутом состоянии.
  • RИЗ – сопротивление разомкнутых контактов.
  • UПР – напряжения пробоя, данная характеристика зависит как от предыдущего параметра, так и расстояния между группой контактов. Помимо этого на электрическую прочность влияет наполнение колбы.
  • Pmax – коммутируемая мощность.
  • CK – емкость, образуемая разомкнутыми контактами.

Как осуществляется управление?

Управлять герметичным коммутатором можно двумя способами:

  • используя постоянный магнит;
  • воздействуя катушкой, подключенной к постоянному источнику тока.

В первом варианте управление может осуществляться путем линейного или углового перемещения постоянного магнита. Также встречается способ, при котором поле перекрывается при помощи специальной шторки.

В качестве примера использования способа управления при помощи магнита можно привести датчики уровня, а также положения, охранную сигнализацию и т.д.

Второй вариант позволяет создать реле на основе геркона. В отличие от традиционной конструкции, такое устройство будет более надежным и долговечным, поскольку практически не содержит в себе подвижных механических элементов. Что касается небольшого количества контактных групп, то этот недостаток легко устраняется путем увеличения количества задействованных герконов.

Упрощенное изображение конструкции герконового реле

Примером применения данного способа управления может служить токовое реле на основе геркона. Оно представляет собой катушку, намотанную проводом толстого сечения, внутри которой размещается герметичный коммутатор. Данное приспособление может служить в качестве защитной системы от перегрузки в цепях постоянного тока. Чувствительность прибора легко регулировать путем линейного перемещения коммутатора внутри катушки.

Плюсы и минусы

Любая конструкция помимо преимуществ не лишена недостатков. Зная сильные и слабые стороны устройства можно найти оптимальную сферу для его применения. Давайте рассмотрим, в чем заключается преимущества герметичных коммутаторов, к таковым свойствам можно отнести:

  • Высокую надежность коммутации. Она практически на два порядка превышает этот показатель у открытых контактных групп. Это достигается за счет высокого сопротивления между разомкнутыми контактами (R
    ИЗ
    ), оно может исчисляться десятками МОм. Немаловажную роль играет и показатель электрической прочности (UПР), напряжение пробоя у некоторых моделей превышает 10 кВ.
  • Быстродействие также является неоспоримым преимуществом. Частота коммутации многих моделей приближается к 1 кГц. Что касается параметров, описывающих скорость коммутации, то они находятся в следующих диапазонах: tcp – от 0,4 до 1,8 мс, tотп – от 0,25 до 0,9 мс, что намного превышает подобные характеристики открытых контактных групп.
  • Долговечность, число срабатываний исчисляется миллиардами, ни одна открытая контактная группа даже близко не может приблизиться к этому рубежу.
  • Данный тип коммутаторов нетребователен к согласованию с нагрузкой.
  • Управление может производиться без использования электроэнергии.

Характерные недостатки:

  • Низкие показатели коммутируемой мощности.
  • Небольшое число контактов.
  • Дребезг при срабатывании (конструкции «мокрого» типа избавлены от этого недостатка).
  • Большие размеры для современной радиотехнической базы.
  • Недостаточная прочность стеклянной колбы.
  • Чувствительность к воздействию внешних магнитных полей.

Несмотря на явное преобладание положительных качеств, данные устройства постепенно вытесняются полупроводниковыми аналогами, такими как датчики Холла. Отсутствие дребезга, небольшие размеры и более высокая прочность сыграли решающую роль.

Примеры практического применения в быту

Как и было обещано в начале статьи, приводим пару полезных схем, в которых используются герконы. Начнем с универсального управления освещением в прихожей. Принцип работы заключается в следующем: при открытии входной двери автоматически включается свет, и спустя несколько минут выключается. При достаточном уровне освещения, свет в прихожей не включается.

Схема управления освещением прихожей

Обозначения:

  • Резисторы: R1 – 68 кОм, R2 – 33 кОм, R3 – 470 кОм, R4 – 10 кОм, R5 – 27 кОм.
  • Конденсаторы: С1 – 0,1 мкФ, С2 – 100 мкФ х 25 В, С3 – 470 мкФ х 25 В.
  • Стабилитрон и диоды: VD1 – КС212Ж, VD2 и VD3 – КД522 (1N4148), VD4 – КД209 (1N4004).
  • Транзисторы: VT1 и VT2 – ÌRF840.
  • SG1 – любой обычный герконовый датчик, например, 59145-030.
  • FR1 – фоторезистор, подойдет любого типа с сопротивлением на свету не ниже 8 кОм, в темноте – 120-180 кОм.
  • Триггер D1 – К561ТМ2 (СD4013).

Настройка схемы сводится к подбору сопротивления R1, для выбора оптимального времени задержки отключения освещения.

Теперь рассмотрим схему простой домашней сигнализации, где в также используется типовой герконовый датчик для двери.

Простая домашняя сигнализация

Обозначения:

  • Резисторы: R1, R2 и R3 – 100 кОм, R4 – 33 кОм, R5 – 100 кОм, R6 – 1 кОм.
  • Конденсаторы: С1 – 100 мкФ х 16 В, С2 – 50 мкФ х 16 В, С3 0,068 мкФ.
  • Диоды и светодиод: VD1 и VD2 – КД522 (1Т4148), HL1 – АЛ307Б.
  • Транзисторы: VT1 – КТ829, VT2 – К361.
  • Микросхема: К561ЛА7.
  • S1 – герконовый датчик 59145-030.

В качестве сирены используется звуковой оповещатель АС-10.

Питание схемы осуществляется от аккумулятора 12 В, емкостью 4 А*ч.

www.asutpp.ru

что это такое, технические характеристики, принцип работы

Ни одна современная система охраны, контроля, пожаротушения, экстренного оповещения не может функционировать без применения датчиков, связывающих ее с окружающим миром. Датчики определяют наличие задымления, пыли в воздухе, движение объектов и еще множество других изменений.

Герконовый датчик по-прежнему используется во многих подобных системах благодаря своей надежности.

Что такое геркон

Геркон – электромеханическое устройство, замыкающее либо размыкающее электрические контакты под влиянием магнитного поля, генерируемого электромагнитом, либо постоянным магнитом.

Термин «геркон» означает герметичный контакт. Обусловлено это его конструкцией. Состоит он из двух ферромагнитных пластин, запаянных в стеклянную капсулу с двумя выходными контактами и заполненную инертным газом. Такая оболочка минимизирует воздействие окружающей среды и обеспечивает надежное функционирование устройства.

Колба может содержать азот, иссушенный воздух, иной инертный газ. Также из колбы может быть откачан весь газ до состояния вакуума. Этим добиваются повышения уровня коммутируемого напряжения.

Назначение и область применения

Герконовые датчики, несмотря на вытеснение их датчиками Холла, по-прежнему находят применение во многих устройствах и системах:

  1. Клавиатуры синтезаторов и промышленного оборудования. Конструкция датчиков исключает возможность возникновения искры. Поэтому в первую очередь их применяют на взрывоопасном производстве, где присутствуют горючие испарения или пыль.
  2. Бытовые счетчики.
  3. Автоматические системы охраны и контроля положения.
  4. Оборудование, работающее под водой или в условиях высокой влажности.
  5. Телекоммуникационные системы.
  6. Медицинское оборудование.

В системах безопасности применяются устройства, состоящие из геркона и магнита. Они сообщают об открытии или закрытии дверей.

Также применяются герконовые реле, состоящие из контактного датчика и проволочной обмотки. Такая система обладает некоторыми преимуществами: простота, компактность, влагостойкость, отсутствие движущихся деталей.

Используются герконы и в особых областях – это механизмы защиты от перегрузок и короткого замыкания высоковольтных и радиотехнических электроустановок. Также это высокомощные радары, лазеры, радиопередатчики и прочее оборудование, работающее под напряжением до 100 кВ.

Разновидности

В зависимости от нормального состояния контактов устройства разделяют на:

  • замкнутые – цепь размыкается под воздействием магнитного поля;
  • переключаемые – под воздействием поля замыкается один контакт, а при отсутствии поля – другой;
  • разомкнутые – срабатывание геркона происходит при появлении магнитного поля.

В зависимости от конструкции датчики бывают:

  • газовые – стеклянная гильза заполнена сухим воздухом или инертным газом;
  • ртутные – на контакты, дополнительно наносится ртуть, которая способствует улучшению коммутации, минимизирует сопротивление и убирает вибрацию замыкаемых пластин.

Герконы по техническим характеристикам подразделяются на:

  1. Герконы.
  2. Газакон – устройство, обладающее функцией памяти. То есть положение контактов сохраняется после отключения магнитного поля.
  3. Геркотроны – реле с высоковольтной изоляцией. Предназначено для работы в устройствах с напряжением от 10 до 100 кВ.
  4. Герсикон – реле, предназначенное для управления оборудованием и автоматикой с мощностью до 3 кВт. Конструкция характеризуется увеличенным коммутационным током и наличием дугогасительных контактов.

Благодаря разнообразию конструкций герконы продолжают использовать во многих областях.

Принцип действия

Геркон по принципу работы схож с выключателем. Реле состоит из пары токопроводящих сердечников с зазором между ними. Они герметично запаяны в стеклянной колбе с инертной средой, исключающей процесс окисления.

Вокруг колбы размещается управляющая обмотка, питаемая постоянным током. При подаче питания обмотка генерирует магнитное поле, воздействующее на сердечники, и приводит к замыканию контактов между собой.

При отключении катушки от питания магнитный поток исчезает и контакты размыкаются пружинами. Надежность обеспечивается отсутствием трения между контактами, которые, в свою очередь, выполняют роль проводника, пружины и магнитопровода.

Особенностью герконового датчика является то, что на пружины реле в состоянии покоя не действуют никакие силы. Это позволяет им замыкать контакт за доли секунды.

Применяться могут и постоянные магниты. Такие устройства называют поляризованными.

Нормально замкнутые устройства имеют другой принцип функционирования. Под воздействием электромагнитной силы система магнитов заряжает сердечники одним потенциалом, заставляя их отталкиваться друг от друга, размыкая цепь.

Переключаемые герконы состоят из трех контактов. Один из них установлен стационарно и не магнитится, 2 других сделаны из ферромагнитного сплава. При наведении магнитного поля пара разомкнутых контактов замыкается, размыкая пару с немагнитным контактом.

Подключение герконового датчика

Документация, поставляемая в комплекте с датчиками, дает исчерпывающую информацию о том, как подключить геркон.

Для функционирования и безопасности датчика часть реле, генерирующая магнитное поле, монтируется на подвижную часть конструкции. Сам геркон крепится на стационарно установленный элемент конструкции или здания.

Подвижная часть плотно примыкает, воздействуя магнитным полем катушки на контактную сеть геркона и замыкая этим электрическую цепь. Датчик системы информирует о правильном функционировании системы. Как только катушка, расположенная на подвижной части, перестает воздействовать на датчик, сеть размыкается и автоматика сообщает о нарушении целостности системы.

По способу монтажа датчики бывают:

  • скрытого крепления;
  • наружного крепления.

В зависимости от физических свойств поверхности, на которой происходит подключение геркона, бывают:

  • датчики для монтажа на стальных конструкциях;
  • датчики, монтируемые на магнитопассивных конструкциях.

При монтаже герконового реле необходимо помнить о некоторых особенностях установки:

  1. Рекомендуется избегать расположения вблизи источников ультразвука. Он в состоянии оказать негативное воздействие на параметры датчика.
  2. Не допускать расположения рядом с источником постороннего магнитного поля.
  3. Обезопасить колбу датчика от ударов и повреждений. В противном случае газ испарится, нарушится контакт, и сердечники быстро придут в негодность.

Герконовые переключатели не могут коммутировать большие токи в силу маломощности сердечников. Поэтому их нельзя использовать для включения и выключения мощных электрических устройств.

Их включают в маломощную коммутационную схему для контроля реле, которое осуществляет управление оборудованием.

Преимущества

Герконовые датчики обладают следующими преимуществами:

  1. Полная герметичность позволяет использовать их в пожароопасных помещениях и агрессивных средах.
  2. Моментальное срабатывание позволяет использовать их в устройствах с высокой коммутационной частотой.
  3. Исключение дребезга контактов у ртутных датчиков. Они применяются в оборудовании с повышенными требованиями к чистоте сигнала.
  4. Малые габариты от 4 мм, простота конструкции, низкая стоимость изготовления.
  5. Высокая функциональность и универсальность реле.
  6. Возможность коммутировать маломощные сигналы.
  7. Большой температурный диапазон работы – от -55 до + 110 ºC.
  8. Высокая прочность сердечников.
  9. Отсутствие поверхностей трения.

Высокая универсальность, надежность и цена по-прежнему позволяют герконам соперничать с прямыми конкурентами.

Недостатки

Как и все устройства, герконы обладают и недостатками:

  1. Низкая чувствительность магнитов.
  2. Высокая восприимчивость к внешним магнитным потокам. Как следствие, может потребоваться использование дополнительных экранов.
  3. Иногда контакты после снятия магнитного поля могут остаться в замкнутом положении, из которого их не вывести.
  4. Капсула выполнена из тонкого стекла и легко разрушается при падениях и ударах.
  5. При подаче напряжения с низкой частотой контакты самопроизвольно размыкают и замыкают цепь.
  6. При подаче больших токов контакты сердечников могут самопроизвольно размыкаться.

По этим причинам при использовании реле необходимо соблюдать ряд ограничительных мер, указанных в сопроводительной документации.

odinelectric.ru

Герконы. Виды и устройство. Особенности и работа. Применение

Устройства коммутации, или контакты применяют в радиотехнике и электронных устройствах. В электромагнитном реле контакты – это ненадежная конструкция, имеются трущиеся детали из металла. Они изнашиваются, работоспособность реле снижается. Герконы – это магнитоуправляемые герметические контакты. Выключатели на герконах были придуманы для качественной эксплуатации, повышения срока службы. Первые устройства на основе герконов возникли в прошлом веке в 30-е годы, а изобретен геркон был в 1922 году.

В современное время герметические контакты применяются не слишком широко, их постепенно вытесняют датчики Холла. Но есть места, где геркон не имеет конкурентов, он простой в использовании, имеет сухой контакт, гальваническую развязку. До сих пор магнитоуправляемый контакт используется в электронике. Герконы устанавливают там, где нужна долговечность коммутации, надежность работы. Они входят в разные датчики, реле, позиционные выключатели.

Виды

Как и все контактные группы, герметические контакты разделяются на виды по функциям:

  • Замыкающие.
  • Переключающие.
  • Размыкающие.

По технологии изготовления и конструкции, герконы разделяются на группы:

  • Сухие.
  • Ртутные.

Сухие магнитные контакты работают как обычные. В ртутных образцах внутри корпуса из стекла расположены контакты с капелькой ртути. Капля ртути нужна для смачивания контактов в работе, улучшения контакта, уменьшить сопротивление перехода, устранить дребезг контактов.

Дребезг – это вибрация контактной группы при срабатывании на замыкание или размыкание. При одной сработке возникает ложная коммутация сигнала передачи, повышается время срабатывания. Если дребезг окажется в усилителе звука при включении сигнала, то произойдет искажение звука, работа усилителя нарушится. При использовании геркона в цифровых микросхемах необходимо подавлять дребезг фильтрами RS триггеров или RC цепочек. Герконовые контакты используют в схемах микроконтроллеров, в которых дребезг герконов устраняют с помощью программ, что уменьшает скорость работы системы.

Устройство

Конструкция магнитоуправляемого контакта выполнена из стеклянного баллона. В баллоне расположены контакты, изготовленные из магнитных сердечников, которые приварены с торцов колбы. Наружные элементы магнитных сердечников подключены к сети питания. Это видно на схеме.

  1. Колба стеклянная.
  2. Контакт переключения.
  3. Стационарный контакт.

Наиболее распространены замыкающие герметические контакты. У них контакты из проволоки прямоугольного сечения, с ферромагнитными свойствами. Также сердечники могут быть выполнены из пермаллоевой проволоки. Это зависит от размера и мощности герконового датчика. Покрытие контактов выполняют также из родия, золота и т.д.

В колбу закачивают инертный газ, либо создают вакуум. Это не позволяет развиваться коррозии и ржавчине в датчике геркона. При производстве герконов необходимо учитывать, что имеется промежуток между сердечниками.

Работа геркона

Простое реле с контактами замыкания имеет в составе два сердечника с контактами, имеющие повышенную магнитную проницаемость. Они находятся в герметичном баллоне из стекла, с инертным газом, либо смесь газов. Создается давление в баллоне 50 кПа. Среда инертности не дает окисляться контактам.

Баллон геркона ставится внутри управляющей обмотки, подключенной к постоянному току. При включении питания на реле образуется магнитное поле, проходящее по сердечникам контактов, по зазору и замыкается по управляющей катушке. Магнитный поток создает тяговую силу, соединяющую контакты друг с другом.

Чтобы сопротивление контактов сделать наименьшим, касающиеся поверхности покрыты серебром, радием, палладием и т.д. При выключении питания в катушке электромагнита геркона усилие исчезает, пружины размыкают контакты. В герконовых реле нет поверхностей трения деталей, контакты имеют много функций, выполняют работу магнитопровода, проводника и пружины.

Чтобы уменьшить габариты катушки магнита, повышают плотность тока. Применяют провод в эмали для намотки катушки. Детали геркона штампованные, соединения производятся пайкой или сваркой. В герконах используются магнитные экраны для снижения зоны состояния включения.

Пружины в герконовых реле установлены без дополнительного натяга, они включаются сразу, не тратя время на старт. Вместо электромагнита могут применяться также постоянные магниты. Такие герконы называются поляризованными. Усилие нажатия контактов герконового реле обуславливается магнитной силой катушки, в отличие от обычных электромагнитных реле, у которых усилие зависит от пружин.

На размыкание геркон работает по-другому. Система магнитов реле при действии электромагнитной силы намагничивают сердечники одноименно, которые отталкиваются между собой и размыкают цепь.

У геркона с переключением один из 3-х контактов замкнутый, выполнен из немагнитного металла. Остальные два контакта сделаны из ферромагнитного состава. Под действием магнитного поля разомкнутые контакты замыкаются, а замкнутый немагнитный размыкается. Хотя магнитное поле есть всегда, как поле Земли, но такого поля не хватает для срабатывания геркона, поэтому им пренебрегают.

Применение герконов

Герконовые датчики и выключатели используют:

  • Медицинские приборы и аппараты коммуникации.
  • Аппараты для подводников.
  • Синтезаторы и клавиатуры.
  • Тестирующие приборы, измерители.
  • Приборы автоматики и безопасности.

В охранных системах датчики на герконах применяют в качестве реле. Охранный датчик включает магнит и геркон. Простейшее герконовое реле состоит из обмотки и геркона.

Достоинствами реле на герконах можно назвать:

  • Небольшие габариты, простое устройство.
  • Защита от влаги, подгорания контактной группы.
  • Нет трущихся частей.

Такие датчики на герконах широко применяются, но в них имеются и недостатки, такие как подверженность к механическим повреждениям. Это большой минус для применения во многих системах.

В системах сигнализации герконы незаменимы. Установить датчик не составляет большого труда. Когда дверь закрыта, то контакт геркона замкнут. При открывании двери магнит, закрепленный на косяке, отходит от геркона, магнитная сила снижается, цепь питания размыкается. Это служит сигналом для срабатывания схемы оповещения.

Похожая ситуация с применением геркона в лифтах. Чтобы определить расположение кабины лифта, используют герконы. С помощью магнитов и геркона просто управлять оборудованием освещения. В счетчиках учета электроэнергии также присутствуют герконы.

Советы по использованию

При использовании герконовых реле или датчиков можно дать несколько советов, которые учитывают нюансы применения таких устройств:

  • При монтаже герконов по возможности избегайте источников ультразвука, он может отрицательно влиять на электрические параметры датчика, изменять их.
  • Находящийся рядом источник магнитного поля также может менять характеристики и свойства магнитного выключателя.
  • Герконовые реле и датчики боятся ударов и механических повреждений. Инертный газ внутри датчика при ударе может выйти вследствие нарушения герметичности резервуара с газом. Это выведет геркон из строя.
  • При осуществлении пайки необходимо руководствоваться предписаниями инструкции производителя герконового датчика.
Герсиконы

Реле на герконах имеет широкий разброс коэффициента возврата по причине погрешности технологии изготовления. Чтобы повысить номинальную мощность и ток коммутации в герконовые реле встраивают вспомогательные контакты для погашения дуги.

Такие реле получили название герсиконов, или силовых герметичных контактов. Промышленное производство выпускает герсиконы на силу тока до 180 ампер. У них частота коммутации достигает до 1200 включений в час. Герсиконами запускают асинхронные электродвигатели с номинальной мощностью до 3000 Вт.

Ферритовые герконовые реле

Это особый класс реле на герконах с ферритовыми сердечниками. Они имеют функцию памяти. Чтобы сделать переключение в герконах такого типа, нужно подать токовый импульс обратной полярности для того, чтобы размагнитить сердечник из феррита. Их называют запоминающими герметичными контактами, или гезаконами.

Преимущества реле на герконах
  • Абсолютная герметичность контактов дает возможность применять их в агрессивных средах, при условиях запыленности, влажности и т.д.
  • Небольшие габариты, малый вес, простая конструкция датчика.
  • Повышенная скорость работы дает возможность применять герконы при высокой коммутационной частоте.
  • Безотказность эксплуатации в широком интервале температур (от -60 до +120 градусов).
  • Широкая сфера применения в сочетании с функциональностью реле.
  • Наличие гальванической развязки цепей коммутации и управляемости реле на герконах.
  • Повышенная прочность электрических контактов.
  • Продолжительный срок службы датчика.
Недостатки герконов
  • Малая чувствительность магнитов герконов.
  • Излишняя восприимчивость устройства датчика к магнитным полям. Это требует защитных мер от воздействия магнитных сил.
  • Баллон геркона из хрупкого материала, чувствительного к повреждениям и ударам.
  • Мощность коммутации небольшая, как у герсиконов, так и у герконов.
  • При больших токах контакты герконов самопроизвольно размыкаются.
  • При работе на низкочастотном напряжении контакты размыкаются и замыкаются без контроля.
Похожие темы:

electrosam.ru

Контакты / АО «НИИ Гириконд»

Контактная информация

Наш адрес: АО «НИИ «Гириконд», Россия, 194223, Санкт-Петербург, ул. Курчатова, 10.
Тел: (812) 247-14-50, факс: (812) 552-60-57

Address: «NII «GIRICOND» JS Co, 10 Kurchatova str., St.Petersburg, 194223, Russia.
Tel: (812) 247-14-50, fax: (812) 552-60-57

 

Генеральный директор — тел.(812)247-14-50
Главный инженер —
[email protected],
тел.(812)247-14-91
Зам. Генерального директора по науке — 
[email protected],
тел.(812)247-14-51
Зам. Генерального директора по общим вопросам —
[email protected],
тел.(812)247-14-55
 

Отдел кадров — [email protected],
тел.(812)247-14-54
Отдел сбыта и маркетинга —
[email protected],
тел.(812)552-21-53
 

 

Подразделения: 

Конденсаторы керамические — [email protected],
тел.(812)247-14-62
Керамические фильтры — [email protected],
тел.(812)247-14-53 (номер предназначен для вопросов технического характера)  
тел.(812)247-14-61 (номер предназначен для выставления и прохождения счетов на керамические конденсаторы и фильтры)
Конденсаторы с оксидным диэлектриком (танталовые) — [email protected],
тел.(812)247-14-52
Конденсаторы с органическим диэлектриком [email protected] ,
тел.(812)552-98-05
Конденсаторы с двойным электрическим слоем (ионисторы) — [email protected] ,
тел (812)552-34-97
Нелинейные полупроводниковые резисторы —
[email protected] ,
тел.(812)552-24-50
Фотоэлектрические и оптоэлектронные приборы — [email protected],
тел.(812)552-94-35
Пожарные извещатели —[email protected],
тел.(812)552-94-35, 552-90-53
Полупроводниковые излучатели для ИК-области света —[email protected] ,
тел.(812)552-25-96
Отдел надежности и стойкости изделий. Центральное бюро применения радиодеталей — [email protected],
тел.(812)552-93-27
Потенциометры прецизионные непроволочные — [email protected],
тел.(812) 552-96-54
Научно-технический отдел — [email protected], 
тел.(812)247-14-66 
Отдел научно-технической информации — [email protected]
тел.(812)552-96-25

 

 

 

 

www.giricond.ru

Конденсаторы и фильтры / Продукция / АО «НИИ Гириконд»

КОНДЕНСАТОРЫ

 

Конденсаторы являются одним из самых «древних» изделий электронной техники и электротехники. Первые конденсаторы, так называемые «лейденские банки», появились еще в середине 18 века, задолго до начала их практического применения.

Сегодня конденсаторы являются одними из самых массовых компонентов радиоэлектронной  аппаратуры, а мировое конденсаторостроение представляет собой мощную индустрию с ежегодным приростом объема продаж около 30%. Одновременно с количественными изменениями в производстве конденсаторов происходят серьезные качественные изменения в их номенклатуре, связанные с внедрением новых материалов и технологий, новых конструктивных решений, отражающих требования и тенденции развития сферы применения.

АО «НИИ «Гириконд» более 60 лет является ведущим научным предприятием России в области конденсаторостроения и осуществляет научно-техническую и производственную деятельность в этом направлении от материаловедческих и технологических НИР до разработки новых типов конденсаторов по требованиям заказчиков и постановки их на производство.

Ниже приводится краткие сведения о различных видах конденсаторов, их месте в общей номенклатуре конденсаторов, сведения о новых разработках и ожидаемых значениях параметров конденсаторов, определяющих их технический уровень.

Для начала напомним коротко сведения об основных параметрах конденсаторов и определяемых ими потребительских свойствах.

Как известно, основным параметром конденсатора является его электрическая емкость или просто емкость, обозначаемая обычно С. Вообще говоря, электрической емкостью обладают не только конденсаторы. Любое находящееся в определенном пространстве тело имеет собственную емкость, которая зависит от размеров и конфигурации тела и количественно определяет его заряд при единичном его потенциале в окружающем пространстве или, иными словами, является размерным коэффициентом пропорциональности между потенциалом тела и его зарядом. Если в определенном пространстве  находятся два тела на расстоянии, при котором их электрические поля могут значимо взаимодействовать, то это взаимодействие характеризуется взаимной емкостью тел, которая количественно определяется как соотношение  абсолютного значения заряда тел (предполагается, что тела имеют заряды противоположного знака при одинаковом абсолютном значении) и разности потенциалов или, иначе, напряжения между ними. Не требует дополнительных пояснений тот факт, что рассматриваемая нами емкость конденсатора и является, по существу, взаимной емкостью между его электродами или, как иногда принято говорить, обкладками.

Каким же образом формируется и какими факторами определяется емкость конденсатора? Представим себе два плоских электрода, один из которых имеет заряд +q, а другой –q.  При отсутствии взаимного влияния электродов их электрические поля будут соответствовать рис.1 (искажение поля на краю электродов для простоты восприятия не учитываем). При сближении электродов произойдет наложение их электрических полей, в результате чего суммарное электрическое поле сосредоточится между электродами (рис.2), при этом разность потенциалов или напряжение между ними будет соответствовать выражению

U = q/C

где C и является, по определению, емкостью образовавшегося простейшего конденсатора.

Рис. 1                                                                                                                                         Рис. 2

Е – вектор напряженности электрического поля

Если между электродами этого конденсатора поместить диэлектрик, то при приложении к конденсатору напряжения под воздействием электрического поля электродов произойдет поляризация диэлектрика, в результате чего в нем установится собственное электрическое поле, так называемых, связанных зарядов, вектор напряженности которого направлен против вектора напряженности поля электродов. Это, в свою очередь, при сохранении заряда на электродах приведет к снижению напряжения между электродами, что будет свидетельствовать о соответствующем увеличении емкости конденсатора. Относительное увеличение емкости конденсатора при помещении между его электродами диэлектрического материала называется относительной диэлектрической проницаемостью или просто диэлектрической проницаемостью диэлектрика и обычно обозначается ε. В общем случае емкость конденсатора описывается выражением:

С= εо ε S/d,

где:      εо – диэлектрическая постоянная,

S – площадь электродов,

d – расстояние между электродами.

Подавляющее большинство используемых в конденсаторостроении материалов обладают линейными свойствами, что означает практическое отсутствие  зависимости их диэлектрической проницаемости от напряженности электрического поля. Типичными представителями нелинейных материалов являются сегнетоэлектрики. У конденсаторов на их основе в определенном интервале температур наблюдается отсутствие пропорциональности между напряжением и зарядом, поэтому в общем случае справедливыми оказываются выражения:

С =Δq / ΔU,            или точнее:          С = dq / dU.

Важнейшим параметром конденсатора является его номинальное напряжение (Uном).

В нормативной документации на конденсаторы, предназначенные для комплектации радиоэлектронной аппаратуры, под номинальным напряжением понимается то предельное напряжение, при котором конденсатор может работать в заданных условиях с обеспечением определенных показателей надежности и долговечности и с сохранением нормируемых параметров в допускаемых пределах. В зависимости от назначения конденсатора номинальное напряжение может быть задано постоянным, переменным, импульсным и т.п.

Для правильного выбора конденсатора необходимыми и важными являются сведения о параметрах, описывающих ряд свойств конденсатора в отличие от идеального конденсатора, «поведение» которого в электрической схеме определяется лишь его емкостью.

В первом приближении свойства реального конденсатора могут быть представлены его схемой замещения, приведенной на рис. 3.

Рис. 3

 

Первое отличие реального конденсатора от идеального определяется объемной и поверхностной проводимостью диэлектрика, элементов конструкции и корпуса или оболочки конденсатора. Доля каждой составляющей общей проводимости существенным образом зависит от вида диэлектрика, конструктивного оформления конденсатора, его емкости и номинального напряжения. В зависимости от вида конденсатора его общая проводимость нормируется предельными значениями его общего сопротивления (сопротивление изоляции – R из на рис.3) либо тока утечки Iут при номинальном напряжении. Следует отметить, что с увеличением емкости конденсатора все большая доля проводимости конденсатора приходится на объемную проводимость диэлектрика, что, в свою очередь, определяет практически обратно пропорциональную зависимость сопротивления изоляции от емкости конденсатора. В связи с изложенным для конденсаторов относительно большой емкости в нормативной документации приводят не сопротивление изоляции, а постоянную времени, равную RизС. Поскольку сопротивление изоляции и ток утечки конденсаторов значимо зависят от температуры и влажности окружающей среды и, в общем случае, от напряжения и времени его приложения, методы и условия их измерения регламентируют в нормативной документации на конденсаторы.

Другим отличием реального конденсатора являются потери энергии в нем, связанные с поляризацией диэлектрика (диэлектрические потери) и прохождением тока по электродам и выводам конденсатора. Доля каждой составляющей общих потерь зависит от вида диэлектрика и конструкции конденсатора и, в общем случае, может изменяться в зависимости от частоты воздействующего на конденсатор напряжения. Суммарные потери энергии в конденсаторе при работе его на переменном напряжении  определяются, как известно, таким параметром, как tgδ, который  равен отношению активной мощности (мощности потерь) к реактивной мощности конденсатора на заданной частоте, а сам угол δ, является углом, дополняющим на векторной диаграмме угол сдвига фаз тока и напряжения на конденсаторе до 90о. Однако, параметр tgδ по определению имеет физический смысл только при гармонической форме воздействующего напряжения. Поэтому при более сложных формах напряжения на конденсаторе, а также  для характеристики добротности конденсатора  при частотах, близких к резонансной (зависит от собственной индуктивности конденсатора – L на рис.3), потери энергии в конденсаторе характеризуют величиной эквивалентного  последовательного сопротивления ( Rэпс на рис.3), потери в котором в данном конкретном режиме равны суммарным потерям в конденсаторе. Представляется очевидным, что и tgδ и Rэпс являются частотно-зависимыми параметрами, поэтому их значения нормируют и определяют на конкретной, заданной частоте. В отдельных случаях, например, при необходимости минимизации собственной индуктивности конденсатора, ее предельное значение устанавливают в нормативной документации.

Как накопитель электрического заряда и энергии конденсатор, как известно, отличается от других видов накопителей тем, что накопление энергии в нем происходит в электрическом поле между его электродами, при этом приращения заряда и напряжения описываются приведенными выше функциональными зависимостями. Представляется естественным то обстоятельство, что основные параметры и свойства конденсатора определяются параметрами и свойствами среды или, иначе, материалов, в которых формируется его электрическое поле.

Основная, наиболее массовая часть современной номенклатуры конденсаторов для радиоэлектронной аппаратуры формируется на основе трех видов конденсаторов:

—   керамические конденсаторы,

—   конденсаторы с оксидным диэлектриком,

—   конденсаторы с органическим диэлектриком.

В последние годы все большее применение в радиоэлектронной аппаратуре находят так называемые конденсаторы с двойным электрическим слоем (ионисторы), у которых электрическое поле сосредоточено не в поляризованном диэлектрике, как у названных выше конденсаторов, а в двойном электрическом слое, образующемся при определенных условиях на границе «электрод-электролит».

Остановимся коротко на основных особенностях указанных видов конденсаторов и их месте в общей номенклатуре этих изделий.

Наибольшая доля мирового выпуска конденсаторов приходится на керамические конденсаторы, в качестве диэлектрика которых используются поликристаллические структуры на основе оксидов металлов и их соединений, в основном, в виде твердых растворов. Современные физические представления о связи химического состава и структуры керамических конденсаторных материалов с их диэлектрическими и физико-механическими характеристиками позволяют, варьируя рецептурой и технологическими режимами, получать эти материалы с широкими, не свойственными другим диэлектрическим материалам, диапазоном диэлектрической проницаемости и диапазоном рабочих частот. Диэлектрическая проницаемость материалов для изготовления конденсаторов I типа (высокочастотных), лежит в пределах от единиц до сотен, в то время как у материалов для конденсаторов II типа (низкочастотных) этот параметр лежит в пределах от тысяч до десятков тысяч относительных единиц. Деление керамических материалов на низкочастотные и высокочастотные достаточно условно, поскольку все керамические конденсаторы могут применяться при любой частоте тока, в зависимости от предъявляемых к ним технических требований. Основой керамических материалов с высокой диэлектрической проницаемостью являются соединения, относящиеся к классу сегнетоэлектриков, поэтому эти материалы в большей или меньшей степени, в зависимости от состава, характеризуются нелинейными свойствами и специфическими температурными зависимостями диэлектрической проницаемости.

В конденсаторах с оксидным диэлектриком в качестве основного диэлектрического материала, определяющего  потребительские свойства и основные характеристики этого вида конденсаторов, используются оксидные слои на вентильных металлах: алюминии, тантале, ниобии.  Ориентировочные значения относительной диэлектрической проницаемости оксидных слоев составляют: Al2О3 – 10,  Та2О5 – 25,  Nb2O5 – 40. В общем случае, в зависимости от требований к конденсаторам и технологических возможностей оксидные слои могут формироваться, как непосредственно на поверхности фольги из указанных металлов, так и на развитой поверхности объемно-пористого тела на основе порошков из тех же металлов. Эти конденсаторы, как правило, являются полярными, при этом одним из электродов конденсаторов (анодом) является сам вентильный металл, вторым электродом (катодом) является электролит, либо, что характерно для конденсаторов относительно малой емкости с объемно-пористым анодом, слой полупроводника, например, двуокиси марганца.

В современных конденсаторах с органическим диэлектриком в качестве основного диэлектрического материала широко используются  различные полимерные пленки толщиной порядка единиц – десятков мкм, основными из которых в настоящее время  являются  полипропиленовая с относительной диэлектрической проницаемостью около 2 и полиэтилентерефталатная с диэлектрической проницаемостью примерно 3,2.

Из вышеприведенных зависимостей следует, что диапазоны реализуемых емкостей на том или ином виде диэлектрика определяются не только его диэлектрической проницаемостью, но и технологическими возможностями реализации толщины диэлектрика и площади электродов конденсаторов. Диапазон реализации номинальных напряжений конденсаторов на том или ином виде диэлектрика определяется диапазоном реализуемых толщин диэлектрика и уровнем рабочей напряженности электрического поля в нем, которая, в свою очередь, зависит от электрической прочности используемых материалов и требований к электрическим режимам и долговечности конденсатора.

На рис.4 представлены наиболее характерные для рассматриваемых видов диэлектрика сочетания их диэлектрической проницаемости и практически реализуемых толщин.

Рис. 4

Рассматриваемые нами виды конденсаторных диэлектрических материалов существенно отличаются друг от друга не только значениями диэлектрической проницаемости и технологически реализуемыми диапазонами толщин в конденсаторах, но и значениями электрической прочности. В результате, значения рабочей напряженности электрического поля в керамических конденсаторах не превышают единиц кВ/мм, в конденсаторах с органическим диэлектриком – лежат, как правило, в пределах порядка десятков кВ/мм, а в конденсаторах с оксидным диэлектриком – порядка сотен кВ/мм.

Совокупность перечисленных выше характеристик различных видов диэлектрика и технологических особенностей  переработки соответствующих материалов определяют диапазоны реализации номинальных емкостей и напряжений конденсаторов на основе этих диэлектриков. Как указывалось выше, в ионисторах, роль поляризованного диэлектрика, если можно так выразится, «играет» двойной электрический слой, образующийся на границе электрода и электролита при напряжениях ниже потенциала начала химической реакции на электроде. В связи с этим номинальное напряжение отдельного ионистора, в зависимости от материала электролита лежит в пределах порядков десятых долей – единиц вольт. За счет последовательного соединения рабочие напряжения блоков ионисторов повышают до порядка десятков вольт. Высокая емкость ионисторов достигается за счет использования в электродах специальных углеродных материалов с высокой удельной поверхностью.

На рис.5 представлена совокупность наиболее характерных областей сочетаний номинальных емкостей и напряжений различных видов конденсаторов. Рис. 5 даёт лишь самые общие, приблизительные представления о возможностях реализации основных параметров конденсаторов на тех или иных диэлектрических материалах, однако и этих представлений вполне достаточно, чтобы выделить области типономиналов, реализация которых возможна только на определенных видах диэлектриков. Так, область относительно малых емкостей в широком интервале напряжений является прерогативой керамических конденсаторов, в области больших емкостей и относительно малых напряжений «господствуют» конденсаторы с оксидным диэлектриком и, далее, – с двойным электрическим слоем. Область сочетания относительно больших емкостей и напряжений, т.е. область относительно больших единичных зарядов и энергий конденсаторов, оптимально реализуется на органическом диэлектрике. Тем не менее, как видно на рис. 5, существует достаточно обширная область типономиналов, в которой возможен и целесообразен выбор вида конденсатора, наиболее соответствующего комплексу предъявляемых требований. Остановимся коротко на особенностях рассматриваемых видов конденсаторов, учет которых необходим для оптимального выбора конденсатора.

Рис. 5

Керамические конденсаторы, отличающиеся наиболее широким диапазоном номинальных напряжений, подразделяются на низковольтные (Uн до 1600 В), имеющие условное обозначение  К10-, и высоковольтные (Uн=1600 В и выше), обозначаемые К15- .

В свою очередь, как низковольтные, так и высоковольтные керамические конденсаторы, подразделяются на конденсаторы общего назначения и специального назначения. Конденсаторы общего назначения, как правило, аттестовываются и, соответственно, используются в широком диапазоне электрических режимов с преимущественным воздействием постоянной составляющей напряжения. Эти конденсаторы, как правило, представлены широкими унифицированными сериями, конструкция и технология которых ориентированы на крупносерийное и массовое  производство. Обычно эти серии имеют несколько групп, отличающихся температурной стабильностью емкости. Поскольку диэлектрические проницаемости керамических материалов различных групп стабильности существенно отличаются, конденсаторы с повышенной температурной стабильностью емкости имеют, при прочих равных условиях, заметно большие габариты и, соответственно, массу. Примерами керамических конденсаторов общего назначения являются разработанные и выпускаемые АО «НИИ «Гириконд» конденсаторы К10-69, К10-47, К15-20 и др.

Конструкция и технология конденсаторов специального назначения ориентированы на реализацию определенных специальных требований к параметрам или электрическим режимам работы конденсаторов. Примерами таких конденсаторов являются прецизионные конденсаторы К10-68, отличающиеся повышенными требованиями к допускам по емкости (1%; 2%; 5%)  и частым рядом её номинальных значений, а также конденсаторы К10-57, К10-65, К15-33, отличающиеся повышенными значениями допустимой переменной составляющей напряжения в УВЧ и СВЧ диапазоне частот. Поскольку в этих конденсаторах используются высокочастотные  материалы, диэлектрические потери в которых пренебрежимо малы в широком диапазоне частот, основным фактором, ограничивающим допустимые переменные высокочастотные составляющие напряжения, являются потери в электродах и контактных узлах конденсаторов. Поэтому указанные типы конденсаторов имеют специальную конструкцию, позволяющую заметно снизить их эквивалентное последовательное сопротивление и, соответственно, реализовать в них существенно повышенные допускаемые значения реактивной мощности и реактивных токов по сравнению с конденсаторами общего назначения. Еще одним примером специальных керамических конденсаторов являются помехоподавляющие конденсаторы, для которых нормируется вносимое затухание в определенном диапазоне частот (более подробная информация по этой группе конденсаторов приведена в специальном разделе). Основная часть современной номенклатуры, как низковольтных, так и высоковольтных керамических конденсаторов имеет многослойную конструкцию, пригодную, в том числе, для монтажа на поверхность.

Как следует из выше изложенного, применяемые в современной радиоэлектронной аппаратуре конденсаторы с оксидным диэлектриком подразделяются:

— по материалу основы оксидного слоя – на алюминиевые, танталовые, ниобиевые;

— по конструкции анода – на фольговые и объемно-пористые,

— по материалу катода – на оксидно-электролитические и оксидно-полупроводниковые.

Наиболее распространенными в современной аппаратуре являются:

—   алюминиевые фольговые оксидно-электролитические конденсаторы (К50- ),

—   танталовые объемно-пористые оксидно-электролитические конденсаторы (К52- ),

—   танталовые объемно-пористые оксидно-полупроводниковые конденсаторы (К53-. ),

—   ниобиевые объемно-пористые оксидно-полупроводниковые конденсаторы (К53-.).

Каждый из указанных видов конденсаторов с оксидным диэлектриком имеет свои области реализации емкостей и напряжений и свои области применения. Так, в соответствии с физической природой оксидного слоя и спецификой технологии изготовления конденсаторов, номинальные напряжения алюминиевых конденсаторов, как правило, не превышают 600 В, танталовых оксидно-электролитических – 125 В, танталовых и ниобиевых оксидно-полупроводниковых – 50 В. При прочих равных условиях танталовые конденсаторы по сравнению с алюминиевыми имеют меньшие габариты и меньшее эквивалентное последовательное сопротивление, что особенно важно для обеспечения работоспособности конденсаторов в области низких температур. Следует отметить, что эквивалентное последовательное сопротивление или близкое по значению полное сопротивление конденсатора при частотах, близких к резонансной, являются для конденсаторов с оксидным диэлектриком важнейшими параметрами, определяющими выбор того или иного конденсатора в каждом конкретном случае. Именно эти параметры ограничивают рабочий диапазон частот и, соответственно, область применения танталовых оксидно-электролитических конденсаторов, несмотря на их лучшие массо-габаритные характеристики и возможность реализации больших номинальных емкостей и напряжений по сравнению с оксидно-полупроводниковыми танталовыми конденсаторами. Конструктивно-технологические особенности оксидно-полупроводниковых конденсаторов позволяют реализовать характерный для них диапазон емкостей и напряжений, в том числе, в безвыводном исполнении для монтажа на поверхность. Для ниобиевых оксидно-полупроводниковых конденсаторов характерными по сравнению с аналогичными танталовыми конденсаторами являются несколько меньшие предельные значения номинального напряжения и существенно больший ток утечки. Последнее обстоятельство не позволяет в целом ряде случаев осуществить эквивалентную замену танталовых конденсаторов ниобиевыми, несмотря на привлекательность последних в силу большей доступности и, соответственно, меньшей стоимости ниобиевого сырья по сравнению с танталовым.

АО «НИИ «Гириконд» в последние годы специализируется на разработках и производстве  наиболее перспективных из конденсаторов с оксидным диэлектриком – танталовых конденсаторов. Как и другие виды конденсаторов, эти изделия разделяются на конденсаторы общего назначения, предназначенные для работы в широком диапазоне электрических режимов, а также специальные конденсаторы, применение которых целесообразно при предъявлении особых требований к параметрам конденсаторов, режимам или условиям их эксплуатации. Примерами современных конденсаторов общего назначения являются разработанные и выпускаемые АО «НИИ «Гириконд» оксидно-электролитические конденсаторы К52-15, оксидно-полупроводниковые чип-конденсаторы для поверхностного монтажа К53-46, К53-56 и К53-56А. Примерами конденсаторов специального назначения являются разработанные в «НИИ «Гириконд» высокочастотные конденсаторы К53-25 и К53-28, оригинальная конструкция которых, и уникальная, не имеющая мировых аналогов, технология формирования объемно-пористого анода позволили качественно снизить эквивалентное последовательное сопротивление  конденсаторов и существенно расширить их рабочий частотный диапазон. Еще одним примером таких изделий являются высокотемпературные конденсаторы К52-13, максимальная рабочая температура которых повышена до 250оС.

В соответствии с принятой  классификацией упомянутые выше наиболее широко применяемые конденсаторы с органическим диэлектриком  по типу диэлектрика подразделяются  на:

—   полиэтилентерефталатные  (К73-…),

—   полипропиленовые  (К78-…),

—   комбинированные  (К75-…).

Первые два вида конденсаторов имеют чисто пленочный диэлектрик на основе одного из указанных полимеров, Диэлектрик последнего представляет собой или комбинацию указанных пленок, или их комбинацию в любом сочетании с конденсаторной бумагой, пропиточным составом и т.п. При прочих равных условиях конденсаторы на основе полиэтилентерефталатной пленки имеют лучшие массо-габаритные характеристики, что обусловлено большей диэлектрической проницаемостью этой полярной пленки, однако уступают конденсаторам на основе полипропиленовой (неполярной) пленки по величине допустимой переменной составляющей воздействующего напряжения из-за сравнительно повышенных диэлектрических потерь. Встречающееся на практике деление конденсаторов с органическим диэлектриком на низковольтные и высоковольтные весьма условно, поскольку граница этого деления не определена в действующей нормативной документации. Фактически, конденсаторы на напряжение в пределах порядков до сотен вольт принято считать низковольтными, а порядков единиц киловольт и выше – высоковольтными.

Конденсаторы с органическим диэлектриком общего назначения, предназначенные для работы в широком диапазоне электрических режимов, принято условно делить на низкочастотные (на основе полярной пленки) и высокочастотные (на основе неполярной пленки). Примерами первых являются низковольтные конденсаторы К73-11, К73-17, К73-50, высоковольтные К75-63; примерами вторых – К78-2, К78-10. Специальные конденсаторы с органическим диэлектриком включают в себя:

—   конденсаторы переменного напряжения (например, К73-62),

—   помехоподавляющие конденсаторы (например, сетевые К73-43, проходные К73-56, опорные К73-57),

—   импульсные (например, К75-40, К75-80).

Как уже отмечалось выше, конденсаторы с двойным электрическим слоем (ионисторы, К58-…) имеют свою, характерную только для этого вида конденсаторов, область реализации номинальных емкостей и их сочетаний с номинальными напряжениями. Номенклатура этих изделий для радиоэлектронной аппаратуры находится, по существу, в стадии формирования. Область их применения определяется тем важным обстоятельством, что по уровню удельной энергоемкости и величине внутреннего сопротивления эти изделия занимают промежуточное положение между конденсаторами и электрохимическими источниками. Это обстоятельство предполагает их применение, как в качестве самостоятельных накопителей заряда и энергии, так и в сочетании с другими конденсаторами и аккумуляторами, в том числе, и в качестве источников относительно большой мощности при их разряде. Кроме того, на применяемость ионисторов существенным образом влияют их большая по сравнению с аккумуляторами долговечность и отсутствие необходимости обслуживания, поскольку, в отличие от аккумуляторов, накопление заряда в двойном электрическом слое происходит до начала химической реакции на электроде.

Каждый из рассмотренных видов конденсаторов имеет свою область применения в современной аппаратуре и свои тенденции развития в соответствии с требованиями их сферы применения. Формирование этих тенденций и их реализация в исследованиях и разработках новых изделий с постановкой их на производство являются  основными задачами научно-технической деятельности АО «НИИ «Гириконд».

Традиционным требованием сферы применения, определяющим направления развития практически  всей номенклатуры  конденсаторов,  является требование дальнейшего улучшения массо-габаритных характеристик изделий при сохранении высоких показателей их надежности и долговечности. Реализация этих, по существу, противоречивых требований  возможна только на основе изыскания и исследования новых материалов, разработки и  реализации в производстве новых прогрессивных технологий. Так, для дальнейшего снижения габаритов низковольтных керамических конденсаторов необходим переход на толщину диэлектрика порядка единиц микрон, что, в свою очередь требует проведения материаловедческих работ по изысканию новых моно- и мелкодисперсных керамических материалов, получаемых по химической технологии. Кроме того, потребуется проведение технологических работ по созданию и реализации в производстве керамических конденсаторов новой базовой технологии обработки тонкой керамической пленки и формирования на её основе пакетов с числом слоев порядка сотен.

В области танталовых конденсаторов дальнейшее совершенствование связывается, прежде всего, с улучшением массо-габаритных характеристик, снижением диэлектрических потерь, увеличением рабочего напряжения и единичной номинальной емкости. Решение этих задач предполагает проведение комплекса поисковых материаловедческих и технологических работ, связанных с разработкой и внедрением танталовых порошков с максимально высоким удельным зарядом, поиском конструкторских и технологических решений по созданию высокочастотных конденсаторов с плоскостным анодом, исследованиями в области органических полупроводников, поиском путей повышения формовочных напряжений высокоемких анодов.

Для современного этапа развития конденсаторов с органическим диэлектриком характерно то обстоятельство, что полимерные материалы в них используются при плотности энергии и электрической прочности, близких к физическому пределу. Обеспечение высокой работоспособности конденсаторов при этом может быть достигнуто только путем локализации пробоев и восстановления электрической прочности диэлектрика за счет специальной структурированной металлизации пленки. В связи с изложенным, технология металлизации полимерных пленок становится сегодня критически важной и определяющей возможность реализации мирового уровня по этой группе конденсаторов. Разработка соответствующей базовой технологии позволит создать на ее основе серии нового поколения конденсаторов как общего, так и специального назначения

Обеспечение высоких значений удельной запасаемой энергии ионисторов требует изыскания и исследования новых микро- и нано-пористых углеродных материалов и супер-электролитов. Для создания специальных  ионисторов, отличающихся высокой мощностью при разряде, потребуется изыскание новых конструктивно-технологических решений, позволяющих существенно снизить их внутреннее сопротивление.

Решение приведенного выше, далеко не полного, перечня научно-технических проблем в области конденсаторостроения, позволит обеспечить конкурентоспособность научно-технической и производственной продукции АО «НИИ «Гириконд» на отечественном и мировом рынках.

www.giricond.ru

Принцип работы геркона

Геркон (сокр. герметизированный контакт) – электромагнитное устройство, управляемое магнитным полем.

Свою широкую распространённость герметизированный контакт приобрел благодаря своим защитным свойствам от вредной окружающей среды. Благодаря тому, что контакт герметизирован, его используют во взрывоопасных средах, там, где обычные контакты применять нельзя из-за возникающей искры.  

Конструкция геркона

Конструктивно геркон состоит из двух ферромагнитных проводников, заключенных в герметичную стеклянную колбу.

Внутри стеклянной колбы (капсулы) может находиться инертный газ (например, азот). Благодаря азоту повышается предел максимально коммутируемого напряжения, появляется возможность использовать его в электрических цепях 220 В . Вместо инертного газа капсула может быть вакуумизирована. Это позволяет геркону работать при напряжении в тысячи вольт.

Проводящие контакты изготовлены из ферромагнетиков и могут иметь напыление из стойкого к эрозии металла: иридия, рутения или родия. Это напыление позволяет многократно увеличить количество срабатываний (до 5 миллиардов раз).

Существуют герконы со “смачиваемыми ” ртутью контактами. Ртуть обеспечивает надежность срабатывания контактов и уменьшает их дребезг. Но такие герконы требуют установки в правильном положении, так как в противном случае, капли ртути могут соединить контакты даже при отсутствии воздействия магнитного поля.

По типу срабатывания различают замыкающие, размыкающие и переключающие герконы.

Принцип работы

Принцип работы геркона прост, но есть свои нюансы. При воздействии магнитного поля (например, от постоянного магнита), контакты геркона поляризуются и срабатывают (замыкаются, размыкаются или переключаются). Надежность включения зависит от ориентации магнита, каким полюсом он будет повернут, и как он будет приближаться к геркону.

Где используют герконы?

Герконы используются повсюду, например, в вашем ноутбуке. Когда вы опускаете крышку, при касании о корпус, срабатывает геркон и ноутбук переходит в спящий режим.

Во второй половине 20-го столетия широкое применение получили герконовые реле. Они использовались там, где не требовались большие рабочие токи, обеспечивая при этом высокую производительность и долговечность. Чаще они использовались в телефонной связи, в системах подсчета, а также в лифтовой промышленности.

Герконы также используют как бесконтактные датчики в системах сигнализации на окнах и дверях, как датчики положения, концевые выключатели и т.д.

Как датчики положения герконы в настоящий момент используются редко, по тому что на смену пришли датчики Холла.

Основные параметры и характеристики

Коммутируемая мощность, Вт – максимально коммутируемая мощность, не вызывающая повреждение геркона.

Диапазон коммутируемых токов, А – значения постоянного или действительные значения переменного токов, в пределах которых, может работать геркон.

Магнитодвижущая сила (МДС) срабатывания, А – величина характеристики магнитного поля, при которой происходит срабатывание геркона. Единицы измерения в системе СИ – Ампер-витки.

Магнитодвижущая сила (МДС) отпускания, А – МДС при которой происходит отпускание контактов геркона.

Время срабатывания, мс – время которое проходит от момента приложения магнитного поля до замыкания контактов.

Контактное сопротивление, Ом – сопротивление геркона в замкнутом состоянии.

Резонансная частота, Гц – частота колебаний геркона, при которой начинается вибрация контактов, что приводит к снижению напряжения пробоя.

  • Просмотров:
  • electroandi.ru

    Разное

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о