+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

сборка статора, крыльчатки и выбор количества фаз генератора

Самодельный ветряк

Приобретение ветрогенератора — дорогостоящая и не всегда полностью эффективная затея. Образцы ветряков, имеющиеся в продаже, имеют ограниченный срок службы, низкую ремонтопригодность и высокую цену. Покупка такого комплекта не по карману многим потенциальным пользователям. Выходом из положения становится самостоятельное изготовление ветрогенератора, обходящееся гораздо дешевле и позволяющее получить устройство с высокой эффективностью и производительностью.

Самодельный ветряк имеет высокую ремонтопригодность и, как следствие, длительный срок службы. Зачастую конструкцию по ходу эксплуатации модернизируют, улучшают и доводят до максимально возможных параметров, чего нельзя сделать с заводскими комплектами.

Тихоходные ветрогенераторы

Наиболее привлекательными конструкциями ветряков для большинства регионов России являются образцы, дающие высокие показатели на слабых и средних ветрах — тихоходные ветряки. Для них характерна возможность начинать вращение при низких скоростях потока, выдавая достаточное напряжение для питания приборов потребления.

Выработка энергии на таких устройствах производится генераторами, адаптированными к работе с ветряками. Специфика конструкции таких генераторов состоит в высокой чувствительности, поскольку устройство изначально рассчитывается на работу с низкими скоростями вращения.

Для того, чтобы обеспечить заданный режим работы, необходимо обмотку возбуждения исключить из конструкции, заменив ее постоянными магнитами. В результате отпадет необходимость подачи напряжения для образования электромагнитов, индукция станет более стабильной, независимой от источника питания на обмотке ротора. Кроме того, отпадет надобность в щеточном узле, подающем питание на обмотку возбуждения.

Изготовление ротора на постоянных магнитах

Конструкция генератора на постоянных магнитах в каком-то смысле проще, чем с электромагнитным возбуждением.

Создание такого устройства может выполняться как на базе готового генератора, так и при помощи подручных материалов.

Модификация автомобильного генератора

Создание ротора на постоянных магнитах требует достаточно серьезного вмешательства в конструкцию. Необходимо уменьшить диаметр на толщину магнитов плюс толщину стальной гильзы, которая одевается на ротор для образования сплошного магнитного потока и одновременно служит посадочной площадкой под магниты. Некоторые специалисты обходятся без гильзы, устанавливая магниты прямо на ротор с уменьшенным диаметром и фиксируя на эпоксидку.

Процесс изготовления требует участия производственного оборудования. В токарный станок зажимается ротор и аккуратно снимается слой с таким расчетом, чтобы установленные магниты вращались с минимальным зазором, но вполне свободно. Установка магнитов производится на пластины ротора с чередованием полюсности.

Наибольшего эффекта удается добиться при установке относительно небольших по размерам магнитов, расположенных рядами в продольном направлении. Достигается ровный и мощный магнитный поток, воздействующий на силовые обмотки статора с равномерной плотностью во всех точках.

Изготовление ротора из ступицы и тормозного диска

Рассмотренный способ относится к готовым генераторам, нуждающимся в небольших изменениях конструкции. К таким устройствам относятся автомобильные генераторы, часто применяющиеся самодеятельными конструкторами в качестве базового устройства. Зачастую генераторы собирают полностью самостоятельно, не имея готового устройства.

В таких случаях действуют несколько иначе. За основу берется автомобильная ступица с тормозным диском. Она качественно отбалансирована, прочна и приспособлена к нагрузкам определенного рода. Кроме того, размер ступицы позволяет разместить по окружности большое число магнитов, позволяя получить трехфазное напряжение.

Магниты с чередованием полюсности размещают на равноудаленном от центра расстоянии. Очевидно, что наибольшее число можно установить, если приклеивать их как можно ближе к наружному краю. Наиболее точным показателем станет размер магнитов, который определит возможность размещения на определенном расстоянии. Число магнитов должно быть четным, чтобы не сбивался ритм чередования полюсов при вращении.

Наклейка магнитов на ступицу производится при помощи любого клея, оптимальным вариантом считается эпоксидная смола, которой заливают магниты полностью. Это защищает их от воздействия влаги или от механических воздействий. Перед заливкой по краю ступицы рекомендуется сделать бортик из пластилина, не позволяющий эпоксидке стекать со ступицы вниз.

Конструкция генератора на автомобильной ступице наиболее удобна при изготовлении вертикального ветряка. Примечательно, что подобную схему можно использовать и без ступицы, на диске, вырезанном из обычной фанеры. Такая конструкция намного легче, позволяет выбирать удобный размер, что делает возможным создание чувствительного и производительного устройства.

Ветряк с аксиальным генератором на неодимовых магнитах

Наиболее сильными магнитами, обладающими оптимальными параметрами для использования в конструкции генератора, являются

неодимовые магниты. Они несколько дороже обычных, но превосходят их многократно и дают возможность создать мощное устройство при относительно компактном размере.

Принципиального отличия в конструкции не имеется. Неодимовые магниты изготавливаются в различных формфакторах, позволяющих выбрать наиболее удобный для себя вариант — тонкие продолговатые брусочки, форма таблетки, цилиндры и т.д. если используется металлический ротор, то приклеивать магниты необязательно, они сами по себе с усилием прикрепляются к основанию. Остается лишь залить их эпоксидкой для защиты от коррозии.

Приобрести такие магниты проще всего через Интернет, заодно можно сразу же выбрать самую удобную форму.

Изготовление статора

Статор — это неподвижная часть генератора, несущая силовую обмотку, индуцирующую электрический ток. В зависимости от типа конструкции, статор может быть использован от готового устройства (например, от автомобильного генератора), или изготовлен с нуля самостоятельно. Техника изготовления в каждом случае своя, но принцип остается общий — по окружности, охватывающей вращающийся ротор, располагаются катушки, вырабатывающие переменный ток.

При модификации автомобильного генератора иногда силовые обмотки не трогают, предпочитая изменить конструкцию ротора и на этом остановиться. Чаще всего причиной тому является слабая техническая или теоретическая подготовка, когда мастер имеет весьма смутное представление, как именно подобные вещи делаются. Рассмотрим вопрос внимательнее:

Выбор количества фаз

Многие мастера пытаются облегчить себе задачу, делая генератор на одну фазу. В данном случае простота весьма сомнительная, так как экономия усилий получается только на стадии намотки катушек. Зато при эксплуатации получается неприятный эффект — амплитуда напряжения имеет классический вид, отчего выпрямленный ток имеет пульсирующую структуру.

Скачки противопоказаны аккумуляторам, создают отрицательное воздействие на все узлы комплекса и способствуют быстрому выходу из строя. Появляется вибрация, которая может стать причиной жалоб соседей, источником неприятных ощущений для людей или животных.

Трехфазная конструкция, напротив, имеет более мягкую огибающую, в выпрямленном состоянии ток практически не имеет каких-либо отклонений. Мощность устройства имеет стабильное значение, сохраняется в рабочем состоянии механическая и электрическая часть агрегата.

Выбор между трех- и однофазным устройством однозначно следует делать в сторону трехфазной конструкции. Количество намотанных катушек возрастает, но число витков не настолько велико, чтобы отказываться от более качественного результата из-за призрачной экономии времени.

Модификация статора автогенератора

Автомобильный генератор имеет готовые силовые катушки, плотно уложенные в каналах статора. Для получения качественного результата требуется изменить чувствительность статора, поскольку номинальная частота вращения автомобильного двигателя находится в пределах 2000-3000 об/мин, а на пике может подниматься до 5000-6000 об/мин.

Таких параметров ветряк выдать не в состоянии, а использование повышающей передачи значительно снизит мощность крыльчатки.

Решением вопроса становится увеличение количества витков, для чего старые обмотки демонтируются, а на их место наматываются новые, с большим числом витков из более тонкого провода. При этом, нельзя использовать слишком тонкий провод, так как с возрастанием числа витков растет и сопротивление, делающее генератор менее производительным. Необходимо соблюдать «золотую середину», увеличивая количество аккуратно, без излишнего рвения.

Важно! Подобная операция требует расчета, но на практике чаще всего поступают проще — наматывают столько витков, сколько способна вместить конструкция статора. Результат обычно достигается положительный, поскольку слишком большое число витков вместить не получится.

Изготовление статора аксиального типа

Такая конструкция подойдет для генератора аксиального типа, ротор которого создан из ступицы и тормозного диска от автомобильного колеса. Статор имеет форму плоского диска, по окружности которого расположены силовые обмотки. Они должны быть намотаны из достаточно толстого провода, чтобы число витков было достаточным, но и сопротивление не снижало эффективность конструкции. Количество катушек кратно трем, чтобы на каждую фазу приходилось одинаковое количество.

Соединяются они между собой звездой, для каждой фазы соединяются 1, 4, 7, 10 и т.д. При намотке однофазного статора каждая катушка мотается в противоположном направлении — первая по часовой стрелке, вторая — против, затем опять по часовой и т.д. соединяются они последовательно.

Готовый статор устанавливается соосно с ротором. Зазор между катушками и неодимовыми магнитами должен быть минимальным, но ход ротора свободный, без соприкосновения с катушками.

Для защиты от влаги, пыли или прочих воздействий катушки обычно заливают эпоксидной смолой. Для этого предварительно делается по внешнему краю диска статора бортик из пластилина высотой, немного превышающей слой заливки.

Сборка крыльчатки

Крыльчатка должна обеспечивать максимальную чувствительность. Перед тем, как начать создание ветряка, следует подробно изучить метеорологическую обстановку в регионе, направление и скорость преобладающих ветров, частоту и силу шквалистых порывов, возможность ураганов. Эта информация поможет выбрать наиболее подходящую конструкцию ветряка (вертикальный или горизонтальный, размер, количество лопастей и т.п.).

Создание крыльчатки производится из подручного материала на основании параметров генератора. Размер лопастей должен обеспечивать начало вращения при невысоких скоростях потока, но не создавать чрезмерно большой преграды. Это снизит риск падения мачты при сильном порыве или шквале.

Регионы с нестабильными и часто меняющимися ветрами (каких большинство в России) больше подходят для эксплуатации вертикальных конструкций.  Горизонтальные ветряки считаются более эффективными, но нуждаются в установке на высокие мачты, что создает проблемы при обслуживании.

Рабочее колесо ветрогенератора должно быть качественно отбалансировано и прочно соединено. Установка комплекта на крышу дома запрещается, особенно, если в нем проживает несколько семей. Рекомендуется выбирать открытое место на возвышении неподалеку от дома, чтобы длина кабеля не создавала большого сопротивления. Поблизости не должно быть преград, высоких деревьев или зданий, заслоняющих прямой поток ветра.

Рекомендуемые товары

Ветрогенератор на неодимовых магнитах своими руками

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

к содержанию ↑

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

к содержанию ↑

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

к содержанию ↑

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

к содержанию ↑

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

к содержанию ↑

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

к содержанию ↑

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.




магнитВетрогенератор на постоянных магнитах своими руками.

 

Аксиальный 20-ти полюсной ветрогенератор

Ветрогенератор аксиального типа на основе готовой ступицы и трехфазного генератора, который содержит 15 катушек, намотанных проводом 0.7 мм по 70 витков. Ротор данного генератора имеет 20 пар магнитов размером 20 на 5 мм, а толщина статора равна 8 мм. В этой модели используется двухлопастной винт и система защиты от сильного ветра.

Материалы и агрегаты использованные для постройки данного ветрогенератора:


1) автомобильная ступица
2) эпоксидная смола
3) металлические уголки
4) магниты размером 20 на 5 мм в количестве 40 штук
5) труба 20
6) суперклей
7) вазелин
8) ступица от прицепа «зубренок»
9) фанера
10) ламинат 8 мм
11) провод толщиной 0.7 мм

Рассмотрим более подробно основные этапы постройки и особенности конструкции данной модели ветрогенератора.

Для начала автор занялся намоткой катушек для статора. Чтобы облегчить данный процесс автор изготовил специальное приспособление:

 


Для его изготовления автор использовал трубу диаметром 20 мм, таким образом она как раз подходит под размеры магнитов. Автор решил изготовить катушки толщиной 7 мм.
Еще одно изображение самодельного станка для намотки катушек:

 

 


Автор отмечает, что благодаря данному станку, собранному из подручных материалов, намотка катушек прошла без особых трудностей. Главное мотать катушки виток к витку давая несильную натяжку для того, чтобы витки плотнее прижимались друг к другу.

 

 


Итак, автор приступил к изготовлению катушек для генератора. Для того, чтобы катушки не развалились после намотки автор промазывал их клеем для пластика, а так же дополнительно обернул оконным скотчем. Для намотки катушек автор использовал провод толщиной 0.7 мм по 70 витков на каждую катушку. Хотя после конечной сборки автор решил, что нужно было делать по 90 витков, это позволило бы выиграть по напряжению.

 


Далее была изготовлена форма для заливки статора. Автор решил сделать форму на подложке из фанеры. Для этого на фанеру была нанесена разметка, которая позволит более точно разместить катушки. Средняя часть формы сделана из ламината толщиной 8 мм. Для того, чтобы эпоксидная смола не приставала к форме, автор смазал ее вазелином, это позволит затем легко извлечь статор из заготовки после затвердевания эпоксидной смолы.

Для проводов были сделаны специальные канавки при помощи болгарки.

 


При заливке статора автор использовал стеклосетку, чтобы увеличить прочность статора. Уложив стеклосетку с каждой стороны статора, автор через заранее просверленные отверстия притянул крышку и оставил статор остывать.

 

Катушки статора были соединены пофазно, все шесть проводов от фаз были выведены по канавкам наружу, после чего провода были замазаны пластилином для того, чтобы смола не вытекала. В последствии автор соединил фазы звездой.

 


На следующий день статор был извлечен из формы, и автор слегка обработал края для ровности. Магниты на дисках автор так же решил залить эпоксидной смолой для большей надежности.

На фотографиях ниже можно рассмотреть, как была выполнена поворотная ось ветрогенератора:

 

 

Основой для изготовления поворотной оси послужила автомобильная ступица. Для того, чтобы защитить будущий ветрогенератор от слишком сильного ветра автор использовал стандартную конструкцию увода от ветра путем складывания хвоста. Важно заметить, что ветроголовку необходимо вынести минимум на 100 мм, иначе защита от ветра не будет работать так как ось генератора будет расположена слишком близко к поворотной оси.
Так же к конструкции был приварен штырь под углом в 20 градусов и на 45 градусов относительно винта, на этот штырь одевается хвост ветрогенератора.

Рассмотрим конструкцию ступицы генератора.


За основу самого генератора была взята ступица от прицепа «Зубренок». Автор использовал неодимовые магниты размером 20х5 мм. На каждый диск ушло по 20 магнитов. Ступица была закручена через пластину, на которую прикреплены уголки. Статор генератора будет держаться на шпильках.

Далее автор приступил к изготовлению дисков с магнитами.
Магниты были прикреплены на диски при помощи суперклея. Для того, чтобы сделать все максимально точно автор изготовил шаблон из картона. Так же важно заметить, что магниты должны клеиться с чередованием полюсов, таким образом, чтобы на генераторе диски с магнитами притягивались.

 

 


Ниже можно рассмотреть, как именно был закреплен хвост ветрогенератора, который будет защищать его от сильного ветра:

 

На фотографии ветроголовка была размещена слишком близко к поворотной оси ветрогенератора, что в последующем было выявлено на испытаниях и устранено. Однако само крепление хвоста и углы наклона верные. После доведения конструкции до ума, она отлично себя проявила: при усилении ветра винт отворачивается, а хвост складывается и поднимается вверх.

 

 


Автор решил сделать для начала двухлопастной вариант винта для своего генератора. Лопасти были изготовлены из ПВХ трубы. Так же был сооружен кожух, который будет закрывать генератор от дождя.

Затем генератор был собран и покрашен. После покраски автор решил испытать работу генератора. От руки удалось раскрутить генератор до 30 вольт с силой тока кз 4.5 А.

 

 

 
 
Данный генератора работает на 3 светодиодные ленты по 25 ватт каждая, но в будущем автор планирует более серьезно подойти к расчету винта для генератора и подключить аккумулятор.

статья взята с сети интернет: http://usamodelkina.ru/

Следите за новостями!

Самодельный генератор на постоянных магнитах

Магниты у меня были дисковые 25*8 в количестве 12 штук, катушек столько же. Материал магнитов — NdFeB , а какой конкретно (N35, N40, N45) понятия не имею. Промежутки между магнитами 5 мм.  

Диаметр статора 140 мм, внутренний — 90 мм, высота железа статора — 20 мм. Белое под магнитами — пластик. В нем отверстия просверлены под магниты, а под пластиком оцинковка, а под ней фанерка.

Число витков кажется по 50, диаметр провода 1мм. Все соединены последовательно: конец одной с концом другой, начало одной с началом другой. Я сначала не подумал соединил начало с концом. Напряжение на статоре 0. Даже приятно — значит катушки одинаковые получились.

Толщина катушки то ли 6 то ли 7 мм. Можно и до 10 увеличить. Я зазор разным делал. Разница в напряжении есть, но не очень страшная. И еще чего у меня неправильно это то что под магнитами подложен кусок кровельного железа около 0.5 мм толщиной. Надо бы раз в десять толще как я теперь понимаю для нормального замыкания потока.

В качестве железа для статора использовал какую-то стальную ленту шириной сантиметра 2. По-моему, та, которая используется при упаковке оборудования в большие деревянные ящики.

Никаких усилий для страгивания прикладывать не надо. Генератор получился с такими характеристиками: сопротивление обмоток 1 Ом, напряжение 1.5 вольта при 1 об/с.Все тщательно промазал кисточкой эпоксидкой так что по моему никакой дождь не страшен.

Вес всего ветряка килограммов 8 получился вместе с винтом, хвостом и поворотным узлом. Сам генератор 4 кг.   Подшипники в генераторе запрессованы прямо в фанеру.

Поставил на ветряк 1.5 метра диаметром двухлопастный, т.е при 6 мс должен начать аккумулятор заряжать (быстроходность около 6 пытался получить, угол поворота лопасти очень маленький). Не ахти какая стартоваая скорость, но думал, что ветер такой не редкость.

Поставил вечером, ветра не было, но к утру ветер появился и он начал крутиться, но больше вольт 7 я с него не увидел. Понаблюдать больше одного дня выходных за ним не получилось, но приехав через неделю, а потом через две я убедился, что ветер в Подмосковье-редкость (не то что 12м/с как некоторые производители пишут расчетную, а вообще хоть какой-нибудь).

Т.к. аккумулятор щелочной на 110 А*ч зарядился только до 10 Вольт (был разряжен до 8, а может и вовсе прокис от долгих лет стояния в разряженном состоянии). Расчитывать генератор и весь ветряк надо на стартовую скорость метра 3.

Сейчас привез генератор с дачи. Буду проводить более детальные эксперименты. Сегодня вот уже лампочку спалил на 12 Вольт, дрель подключив. Подключал мой генератор к осциллографу — там вроде синус, на мой взгляд, ровный такой.

Из моего опыта постройки такого миниатюрного ветряка сделал несколько выводов (только про мощность ничего сказать не могу и про пропеллер тоже,переделывать буду):

  1. Генератор надо рассчитать, а потом умножить все это на два :-). По крайней мере, у меня с расчетами генератор разошелся почти в два раза.
  2. При изготовлении генератора, катушки должны быть с дыркой по всей ширине статора (или чуть больше ширины магнитов если дисков два). Это очевидно, но в целях уменьшения сопротивления я по незнанию сделал катушки маленькими.
  3. Ничего запихивать в катушки для увеличения магнитного потока через них не надо. Я попробовал наложить металлических обрезков, ничего не поменялосьл, но стронуть стало невозможно, пришлось все выковыривать. А я все эпоксидкой залил.
  4. Система ограничения мощности не нужна в подмосковье. Может у Финского залива это актуально, но у нас ограничивать нечего. Даже на otherpower.com первые ветряки они делали без складывающегося хвоста и ничего у них не ломалось. А в горах ветер посильнее чем у нас бывает.
  5. Никаких скользящих контактов. Ну, не видел я чтобы мой ветряк хоть пару оборотов сделал вокруг своей оси. Ветер на самом деле редко меняет свое направление на диаметрально противоположное. Спустил многожильный провод на землю и привезал к колышку. Хотя я сделал на скользящих контактах, а потом понял, что это не нужно. Даже в Сапсане на весьма мощных ветряках в мачте спрятан перекручивающийся кабель. 
  6. Поворотный узел на подшипниках — долой. Площадь хвоста из фанеры увеличить для компенсации трения возросшего, и все.

Даже легкий ветер поворачивал мой ветряк с небольшим хвостом, хотя мачта была наклонена от вертикали. У меня было с подшипниками, а мачта из плохо закрепленного елового ствола.

Ни на каком импортном самопальном ветряке я такого не видел. Лишние подшипники смазывать — никакого удовольствия, по-моему. Да и хорошие подшипники очень дорогие. А зачем разоряться, когда не очень то и надо?

Автор: Алексей Л. (rosinmn.ru).

Ветрогенератор на неодимовых магнитах: чертежи, расчет, своими руками

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Содержание статьи

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм2, наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

 

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:

  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.


Вероятно, Вам также понравятся следующие материалы:Супермаховик- альтернативный накопитель энергии


Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:        

ALTER220 Портал о альтернативную энергию

и предлагайте темы для обсуждений, вместе будет интереснее!!!

Генераторы на постоянных магнитах

В последнее время большое внимание уделяется разработке и созданию генераторов с возбуждением от постоянных магнитов. Интерес к этому классу генераторов обусловлен их лучшими энергетическими показателями, простотой конструкции, большим сроком службы, надежностью, способностью работать при высоких частотах вращения в тяжелых условиях эксплуатации. Электрические машины с применением постоянных магнитов феррита бария FeBa и феррита стронция FeSr, а также магнитов ЮНДК появились в 30-е годы прошлого столетия. Невысокие удельные характеристики выпускаемых в то время постоянных магнитов ограничивали возможности по наращиванию мощности генераторов собранных на этих магнитах.

Разработанные в 80-90-е годы из нового материала постоянные магниты NdFeB получили широкое распространение в промышленном изготовлении генераторов на постоянных магнитах. В настоящее время многие мастера-исследователи собирают своими руками различные вариации генераторов, стоит только купить неодимовый магнит для генератора или найти его в неисправном электрооборудовании. Чаще всего для изготовления пробных образцов генераторов используют плоский магнит 30Х5 или 30Х10 мм, пластину 60х10х5 мм, магниты в форме бруска например: 40х10х10 мм, 100х15х15 мм.

Генератор — (лат. generator «производитель») прибор, преобразующий какой – либо вид энергии (химическую, тепловую, световую, механическую) в электрическую. В упрощенном виде в генераторе можно выделить следующие части:

а) индуктор — магнит или электромагнит, создающий магнитное поле;

б) якорь — обмотка, в которой при изменении магнитного потока возникает индуцированная ЭДС;

в) контактные кольца и скользящие по ним контактные пластинки (щетки), при помощи которых снимается или подводится ток к вращающейся части генератора.

Вращающаяся часть называется ротором генератора, а неподвижная часть его — статором.

Генератор на постоянных магнитах вырабатывает как переменный, так и постоянный ток. Переменный ток – это электрический ток, который изменяется по модулю и направлению. Переменный ток широко применяется в устройствах связи (радио, телевидение, проволочная телефония на дальние расстояния и т. п.), промышленности и бытовых целях. В основе своей работы генераторы переменного тока на постоянных магнитах используют вращающееся магнитное поле, создаваемое магнитами. В зависимости от мощности энергопотребления различают однофазные и трехфазные генераторы переменного тока. Примерами генераторов переменного тока на постоянных магнитах могут служить автомобильные генераторы на постоянных магнитах и ветрогенераторы на постоянных магнитах.

Хотя в промышленности применяется главным образом переменный ток, генераторы постоянного тока используются в различных промышленных, транспортных и других установках — в электролизной промышленности, на судах, тепловозах и т. д. Генераторы постоянного тока могут быть выполнены с магнитным, электромагнитным возбуждением и комбинированным возбуждением. Для создания магнитного потока в генераторах первого и последнего типов используют также постоянные магниты.

По типу конструкции ротора различают синхронные и асинхронные генераторы.

Синхронный генератор – механизм, работающий в режиме генерации энергии, в котором частота вращения магнитного поля стартера равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку стартера, наводит в ней ЭДС электродвижущая сила. В синхронном генераторе ротор выполнен в виде постоянного магнита. Число полюсов ротора может быть два, четыре и т.д., но обязательно кратно двум. В бытовых электростанциях чаще всего применяют ротор с двумя полюсами. Синхронный генераторы способны кратковременно выдавать ток в 3-4 раза выше номинального. Также синхронные генераторы оптимальны для подключения оборудования с высокими стартовыми токами. Опыт разработок синхронных генераторов с постоянными магнитами показал, что наибольший эффект достигается у генераторов с большими частотами вращения. Поэтому не случайно они находят применение в авиации с приводом от авиационных двигателей. Синхронные генераторы используют обычно в качестве источников переменного тока постоянной частоты и устанавливают на электростанциях, в электрических установках, на транспорте.

Асинхронный генератор работает в режиме торможения. В этом случае ротор вращается в одном направлении с магнитным полем стартера, но с опережением. Теоретически асинхронные генераторы на постоянных магнитах возможны, но на практике они редко изготавливаются. Также они имеют ряд недостатков: высокая себестоимость, зависимость от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных нагрузках; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

По типу первичного двигателя генераторы можно разделить на турбогенераторы, гидрогенераторы, двигатели внутреннего сгорания, ветрогенераторы, парогенераторы, то есть по виду двигателей, которые преобразуют природные энергетические ресурсы в механическую работу. Применение высокоэнергетических постоянных магнитов состава неодим-железо-бор позволило упростить конструкцию и значительно уменьшить размеры и вес генераторов, что послужило толчком к развитию малой ветроэнергетике, как в России, так и за рубежом.

Опыт проектирования, разработки, производства и эксплуатации генераторов с высококоэрцитивными постоянными магнитами показал их высокие технико-экономические характеристики, обоснованность и целесообразность их применения в системах электроснабжения. Особенностями параметров редкоземельных магнитов являются низкое значение магнитной проницаемости, высокое значение коэрцитивной силы по намагниченности от напряженности магнитного поля. Генераторы на неодимовых магнитах нашли применение в ветроэнергетике, автотранспорте, авиации, машиностроении и других областях.

Создание вечного двигателя на неодимовых магнитах

Создание вечного двигателя на неодимовых магнитах

Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа.

Кто из нас в детстве не пытался или хотя бы не размышлял о том, чтобы построить вечный двигатель на постоянных магнитах? Казалось бы, если магниты отталкиваются друг от друга одноименными полюсами, то, наверное, можно найти такую конфигурацию магнитов, когда отталкивание станет действовать непрерывно, и сможет, например, вращать ротор «вечного» двигателя.

Однако, стоило нам попробовать реализовать эту идею практически, как тут же выяснялось, что в реальности ротор все равно находит такое положение, в котором останавливается. Словно ротор и вращался лишь для того, чтобы в конце концов найти эту точку и остановиться в ней. То есть неизбежно наступало устойчивое равновесие ротора.

Стремление термодинамических систем к равновесию

И это вовсе не удивительно, ведь ученым давно известно, что термодинамические системы стремятся к равновесию, и в конце концов пребывают в устойчивом равновесии (статическом или динамическом).

Из механики мы знаем, что тело покоится либо движется равномерно и прямолинейно, если на него не действуют никакие внешние силы, либо если действие этих внешних сил на тело скомпенсировано, то есть суммарная сила равна нулю (результирующее внешнее воздействие отсутствует).

Как вы понимаете, принцип стремления термодинамических систем к равновесию относится и к чисто механическим системам. Так, если система изначально пребывает в устойчивом равновесии (и конструкция с постоянными неодимовыми магнитами не является исключением), то при воздействии на такую конструкцию внешнего фактора, выводящего систему из равновесия, неизбежно возникнет реакция со стороны данной системы.

Это значит, что в системе начнут усиливаться процессы, стремящиеся уменьшить влияние внешнего фактора, который систему из равновесия вывел (Принцип Ле Шателье — Брауна).

Модель магнитного генератора индийского блогера с канала Creative Think:

Чтобы вызвать стремление к равновесию, необходимо создать условия не равновесия

Известный пример из электродинамики — правило Ленца. Если бы правило Ленца не работало, то электродвигатели не могли бы функционировать.

В электродвигателе электрический ток создает магнитное поле, которое заставляют ротор непрерывно искать равновесие, и чтобы ротор не останавливался, магнитное поле все время действует таким образом, что вынуждает ротор (даже под механической нагрузкой) постоянно догонять точку, в которой должно будет наступить равновесие.

Но при этом электрическим полем, действующим в проводниках, совершается работа, то есть расходуется энергия источника, ведь в двигателе есть как минимум трение вала о подшипники, на преодоление которого, даже если ротор не нагружен и двигатель работает вхолостую, требуется работа, то есть расход энергии.

Если бы трения (даже о воздух) не было, и вал не был бы нагружен, то ротор бы вращался очень долго, например в полном вакууме в отсутствие силы притяжения к Земле. Но тогда никакая работа этим ротором бы уже не совершалась, и это был бы уже не двигатель, а вращающийся без сопротивления кусок металла.

Вернемся теперь к постоянным магнитам. Для системы с постоянными магнитами предсказать направление протекания процесса уравновешивающей реакции несложно.

Так, еще в 90-е годы японский экспериментатор Кохеи Минато исследовал возможность создания непрерывного вращения используя постоянные магниты на роторе и статоре своего мотора. В конце концов он был вынужден также создавать изменяющееся магнитное поле, которое заставляло бы ротор искать равновесие.

Минато демонстрировал, как приближая или отдаляя постоянный магнит, можно вынудить ротор с постоянными магнитами вращаться. Но в итоге он просто дошел в экспериментах до двигателя с постоянными магнитами на роторе.

Никакого вечного двигателя не получилось. На изменение внешнего магнитного поля, от которого бы отталкивался ротор с магнитами, требуется энергия извне. То есть, для создания условий, в которых ротор с магнитами будет искать равновесие, необходимо параллельно совершать работу.

Еще одна модель магнитного генератора с Интернета:

Динамическое равновесие при низкотемпературной сверхпроводимости как частный случай

Рассмотрим крайний случай. Многие знают, что свинцовая катушка с током, помещенная в жидкий гелий, способна поддерживать ток (и магнитное поле тока) на протяжении многих лет, поскольку сопротивление проводника исчезает.

Почему сопротивление исчезает? Потому что колебания атомов в металле, обуславливающие электрическое сопротивление металла, прекращаются при критической температуре. Две такие катушки будут вести себя по отношению друг к другу как постоянные магниты. Но опять же, они найдут устойчивое равновесие и остановятся.

Движения под действием силы не будет, то есть двигателя совершающего работу не получится. Движущиеся в сверхпроводнике электроны также работы не совершают, хотя и пребывают в устойчивом динамическом равновесии.

Чтобы двигатель совершал работу — он обязан расходовать энергию, но откуда ей взяться?

Допустим, что двигатель на постоянных магнитах реально возможен. Тогда для совершения механической работы, то есть на перемещение какого-нибудь объекта под действием силы со стороны вала такого двигателя (даже на преодоление силы трения при вращении ротора вхолостую), необходимо преобразование некой энергии внутри двигателя.

А что это за энергия, если не энергия постоянных магнитов или не энергия подводимая извне? Раз по условию задачи энергия извне не подводится, значит остается энергия постоянных магнитов.

Однако, будучи просто расположены на роторе и статоре, магниты энергию не отдадут. Чтобы заставить магнит размагничиваться, необходимо совершить работу, то есть опять же подвести к устройству энергию извне. Остается делать выводы…

Ранее ЭлектроВести писали, что французский автопроизводитель Citroen официально представил обновленный кросс-хэтчбек C4, включая его электрическую версию Citroen ë-C4. Покупатель сможет выбрать бензиновый двигатель мощностью 100-155 л.с., дизельный двигатель мощностью 110-130 л.с. или электрическую установку мощностью 100 кВт (136 л.с.).

По материалам: electrik.info.

Top Magnetic Generator — Постройте генератор бесплатной энергии прямо сейчас!

Привет, Джон. Если вы ищете в Интернете решение
для бесплатного питания вашего дома…
Я рад, что вы нашли мой веб-сайт.
Результаты моего недавнего исследования
, вероятно, сэкономят вам деньги и избавят от лишних хлопот.
Если вы не один из моих постоянных подписчиков, позвольте мне рассказать вам немного о себе
, и тогда вы сами убедитесь, почему вам следует подумать о том, чтобы попробовать
для производства ВСЕЙ вашей домашней энергии.

Обо мне

Я инженер-электрик , и за последние 30 лет
я устанавливал и контролировал крупные промышленные электрические системы.

Последние 12 лет я работал над системами возобновляемой энергии.

Я работаю в некоторых из крупнейших корпораций, которые строят электростанции,
большинство из них в области солнечной и ветровой энергии, а некоторые находятся на ранней стадии,
новаторских технологий свободной энергии.

Новинка! — Видео-отзыв

Вот БОЛЬШАЯ проблема

Многие люди ищут бесплатный генератор энергии для питания своих домов.

При поиске в Интернете они сбивают с толку объемом информации и доступных предложений.

Большая проблема — понять, кому вы действительно можете доверять.

У обычного человека нет времени, энергии или опыта для тестирования этих решений.

Итак, несколько месяцев назад я решил разобрать 25 самых популярных решений
«домашних энергетических систем» на рынке, чтобы посмотреть, какие из них действительно работают!



Вот что произошло

По правде говоря, многие из этих программ не соответствовали основным критериям, а некоторые были просто плохими копиями друг друга.
Чтобы понять, насколько плохи некоторые из них, я рассмотрел один под названием Willis Generator в разделе «Блог» на этом веб-сайте.

Из 25, которые я изучил, я выделил 7 программ, которые, по моему мнению, действительно могут работать.
Два решения, в частности, содержали возможные способы обеспечения вашего дома достаточным количеством энергии, и, что удивительно, оба они реализуют для этого схожую технологию магнитных генераторов свободной энергии.

Эти два решения: и «Magnets 4 Energy» сработали настолько хорошо, что мне удалось собрать достаточно электроэнергии, которая могла бы легко обеспечить всю мощность, необходимую для среднего дома.

Здесь я должен признать, что результаты превзошли мои ожидания!


Вот обзор обоих продуктов

* и обратите внимание на мой вывод в конце.

Давайте начнем с нового захватывающего « Easy Power Plan », в котором рассказывается, как автор создал генератор свободной энергии, используя несколько творческие методы.

После этого сразу стало очевидно, что эта программа подлинная. Средний человек, готовый потратить время, действительно мог бы построить этот магнитный генератор.

Я уже слышал хорошие отзывы о «Easy Power Plan», и когда я перешел на страницу доставки продукта, я понял, почему. Их методы действительны, а идеи работают. Я знаю это, потому что использую некоторые из них годами.

Они предоставляют вам подробные схемы, которым вы должны следовать, чтобы построить магнитный генератор. Каждый из них содержит логические и понятные инструкции, изложенные в простой пошаговой форме.

Хотя я не могу раскрыть здесь всю информацию, я могу вам сказать, что это работает! Однако мои результаты не совсем соответствовали заявленным в книге — фактически, они составили около 85% от предсказанного.

Тем не менее, после 3 дней работы над магнитным генератором мне удалось построить генератор среднего размера, который производил очень хорошее количество электроэнергии. Масштабируя его, вы действительно можете получить всю мощность, необходимую для среднего дома.

Эта электронная книга прямо сейчас в продаже, поэтому я надеюсь, что вы успеете получить свой экземпляр. В этой книге содержится отличная информация, которую вы можете немедленно применить, чтобы сэкономить на счетах за электроэнергию. Кроме того, вы даже получите информацию о том, где можно дешево купить в Интернете материалы для сборки магнитного генератора.

В целом «‘ — отличный продукт. Это лучший продукт из 7, которые я тестировал, и я рекомендую его.

Вот ссылка, по которой вы можете дополнительно проверить это, и вы можете увидеть мои выводы ниже.

Магниты 4 Энергия

Пожалуйста, обратите внимание: многие люди ответили мне, что с ним трудно добраться до веб-сайта, и много раз он выходит из строя и ломается.

Когда я впервые увидел веб-сайт Magnets4Energy Generator, я подумал: «Вот и все. Очередной DIY Guru обещает нереальные результаты.«Обычно я избегаю таких вещей и никогда не оглядываюсь назад.

Но поскольку целью моего исследования было найти в сети лучшие программы «бесплатной домашней энергии» (которые может создать средний человек), я пошел дальше и загрузил их.

Программа тренировок выглядела великолепно, также я получил подробные схемы каждого шага работы. Я также убедился, что информация о том, где искать материалы для изготовления магнитного генератора, верна.

Я знаю, что среднестатистический человек понятия не имеет, где достать материалы достаточно дешево, не сломав свой сберегательный счет, поэтому эта информация имеет решающее значение для того, чтобы вы начали как можно быстрее.

Я немедленно приступил к работе над созданием магнитного генератора, используя инструкции, и первое, что мне стало очевидно, это то, что расположение магнитов совершенно иное, чем я ожидал.

Я продолжил и вопреки всякой логике просто выполнил инструкции. В конце концов, суть заключалась в том, чтобы проверить это, как это сделал бы обычный человек.

Результаты?
Не отлично. Магнитный генератор среднего размера, который я построил, производил на 50% меньше, чем генератор Easy Power Plan.

Я не хотел отказываться от этого эксперимента, поэтому я пошел дальше и изменил расположение магнита на магнитном генераторе, исходя из моих знаний.

На этот раз это сработало как шарм, и выработка энергии выросла.

Магниты 4 Энергия действительно работают, но вы должны прочитать мой вывод ниже, прежде чем принимать решение о внедрении его в вашем доме.

Заключение:

После некоторых размышлений я пришел к следующему выводу:

— лучший выбор для производства электроэнергии для вашего дома.

Не поймите меня неправильно, генератор энергии Magnets 4 ДЕЙСТВИТЕЛЬНО работает, но я могу порекомендовать его только в том случае, если вы планируете построить этот магнитный генератор с помощью сертифицированного электрика, который может легко обнаружить ошибку размещения магнита.

Если да, то попробуйте магнитный генератор Easy Power Plan.

Вот и все. Если вы хотите сэкономить тысячи долларов на счетах за электроэнергию и начать работу в ближайшие несколько дней, продолжайте и…

Как построить магнитный двигатель на свободной энергии

Многие пытались построить магнитный двигатель, производящий бесплатную энергию. Я многое вижу в своем ежедневном поиске из новостей об альтернативной энергии, но я узнал, что энергия не бесплатна, вечных двигателей не существует, все берется откуда-то и помещается в другое место.

Свободная энергия от магнитов соответствует тому же правилу.

Существует также так называемая «свободная энергия», энергия нулевой точки, математически подтвержденная многими учеными. Моя обязанность как зеленого оптимиста — собрать все, что я вижу, что кто-то изо всех сил пытается объяснить и продемонстрировать, поместить это в одно место и позволить людям увидеть и прокомментировать.Таков пример этого магнитного двигателя.

Но есть и «зеленые пессимистические» сайты. Когда они видят что-то, выходящее за рамки «здравого смысла», они пугаются и кричат ​​что-то вроде: «Боже, этого не может быть! Мне не нужны доказательства! Я не должен думать об этом! Погиби, сатана! »

Я взял такую ​​статью сегодня как вдохновение, потому что в ней рассказывается о магнитном двигателе, одной из моих любимых тем о свободной энергии, о которой я мало слышал в последнее время.

Вот весь процесс преобразования свободной магнитной энергии в механическую, объясненный автором изобретения (Сандип Ачарья):

«Представьте себе два мощных магнита.Одна неподвижная пластина над вращающимся диском с северной стороной, параллельной поверхности диска, а другая на вращающейся пластине, соединенной с малой шестерней G1. Если магнит на северной стороне шестерни G1 параллелен той, что находится над вращающимся диском, то они оба будут отталкивать друг друга. Теперь магнит над левым диском будет пытаться повернуть диск внизу (подумайте) по часовой стрелке.

Теперь есть еще один магнит на угловом расстоянии 30 ° на вращающемся диске по обе стороны от магнита M1. Теперь большая шестерня G0 соединена непосредственно с вращающимся диском стержнем.Таким образом, после отталкивания, если вращающийся диск вращается, он будет вращать шестерню G0, которая соединена с шестерней G1. Таким образом, магнит над G1 вращается в направлении, перпендикулярном направлению поверхности неподвижного диска.

Теперь угол и соотношение зубцов G0 и G1 таковы, что когда магнит M1 перемещается на 30 градусов, другой магнит, который пришел в положение, в котором был M1, он будет отталкиваться магнитом фиксированного диска, как магнит на фиксированном диске. -диск переместился на 360 градусов по пластине над шестерней G1. Таким образом, если первое отталкивание Магнитов M1 и M0 будет достаточно мощным, чтобы заставить вращающийся диск повернуться на 30 градусов или более, диск будет вращаться до тех пор, пока не возникнет ошибка положения диска, потеря трения или потеря магнитной энергии.

Пространство между двумя дисками чуть больше ширины магнитов M0 и M1 и пространства, необходимого для соединения шестерни G0 с вращающимся диском стержнем. Сейчас я не тестировал на реальных объектах. При проектировании вы можете подумать о потерях или можете подумать, что когда вращающийся диск поворачивается на 30 градусов, а магнит M0 будет вращаться по часовой стрелке на пластине над G2, он может начать отталкивать M1 после того, как он повернулся примерно на 25 градусов, решение состоит в том, чтобы используйте более мощные магниты.

Если все объекты сделаны точно с заданными размерами, а прямоугольные кубические магниты достаточно мощны, чтобы повернуться более чем на 30 градусов при первом отталкивании, система будет работать.

Здесь трением и другими потерями пренебрегаем, так как магниты намного мощнее. Но подумайте о трении между вращающимся диском и валом, им можно пренебречь, используя магнитное соединение между ними.

Слева указаны первичные размеры необходимых объектов. Если вы найдете причину, по которой этот механизм не работает, дайте мне знать ».

Мне кажется, что это в основном мотор Perendev, представленный в одноименной категории нашего блога. Перендева обвинили в мошенничестве с некоторыми людьми и даже некоторое время служили.Тем не менее, возможно, когда-нибудь кто-то сможет производить бесплатную энергию с помощью магнитных двигателей.

Как вы думаете? Может сработать?

(Посещали 141502 раза, сегодня 7 посещений)

Как создать магнитное динамо

Обновлено 28 декабря 2020 г.

Автор С. Хуссейн Атер

Точно так же, как электрические генераторы вырабатывают электричество с помощью химических реакций, гидростатических сил, ветра и других форм энергии для энергоснабжения городов, магнитные генераторы могут создают магнитные силы, а также подают электричество.Вы даже можете создать магнитный генератор или магнитное динамо-устройство из материалов, которые вы можете купить в магазине или, возможно, валять дома.

Самодельная установка рамы динамо-генератора

Вы можете сделать самодельный генератор или динамо-машину с помощью некоторых простых предметов, которые могут валяться у вас дома. Для его изготовления вам понадобится толстый полутолстый картон, четыре небольших керамических магнита, пистолет для горячего клея, около 200 футов магнитного провода, небольшая лампочка и большой гвоздь. Генератор лучше всего работает с этими материалами, поэтому старайтесь не заменять их.Этот самодельный динамо-генератор должен быть достаточно мощным, чтобы зажечь несколько маленьких лампочек.

Первое, что вам понадобится, это картонная рамка в виде прямоугольной призмы без верхней и нижней граней. Хороший размер — сделать верхнее и нижнее пустое пространство примерно 8 см x 3 см, при этом стороны будут обращены влево и вправо 8 см x 8 см, а лица будут обращены вперед и назад 8 см x 3 см. Другие размеры могут быть более выгодными в зависимости от размера используемых вами магнитов.

Вместо того, чтобы вырезать грани картона, а затем склеивать их вместе, может быть более эффективным вырезать длинную полосу картона с шириной рамки и длиной как суммой длин в одном направлении, чтобы Вы можете сложить его по форме рамы.Это означает вырезание длины

8 \ text {cm} + 3 \ text {cm} + 8 \ text {cm} + 3 \ text {cm} = 22 \ text {cm}

с шириной 8 см, сложите и закрепите лентой. Убедитесь, что рама не качается и не изгибается слишком сильно.

Повернув самую большую грань рамы к себе, сделайте небольшое отверстие посередине и небольшое отверстие посередине грани напротив нее. Это отверстие, через которое вы вставите гвоздь, чтобы обнаружить магнитный ток. Убедитесь, что отверстие достаточно маленькое, чтобы закрепить ноготь, но достаточно большое, чтобы гвоздь мог свободно вращаться в ответ на магнитное поле.Посмотрите, сможете ли вы крутить его самостоятельно, не повредив раму.

Самодельная проводка магнитного поля генератора

Удалите гвоздь из рамы и прикрепите конец провода к коробке. Начните наматывать проволоку на коробку. Вам понадобятся сотни катушек вокруг рамы, чтобы создать значительное магнитное поле, которое вы сможете измерить. Вы можете рассмотреть возможность размещения магнитов в раме, когда вы ее оборачиваете, чтобы сделать раму достаточно прочной и надежной, чтобы выдержать силу наматывания проволоки вокруг нее.

Вставьте гвоздь обратно в два отверстия и прикрепите два магнита внутри рамы к обеим сторонам гвоздя. Используйте горячий клей, чтобы убедиться, что они остаются в отличие от ленты или другого материала, который может не проводить электрический ток. Соедините концы проволоки с двумя концами лампочки и покрутите ноготь, чтобы посмотреть, загорится ли он. Если можете, попробуйте покрутить магнитный гвоздь, чтобы вращать его как можно быстрее.

Испытание самодельного динамо-генератора

Этот хобби-динамо-генератор или генератор «сделай сам» должен работать, преобразовывая магнитное поле, создаваемое движением гвоздя, в ток, чтобы питать свет.Магнитное поле должно индуцировать напряжение в обмотках проводов. Вы можете создать самодельный динамо-генератор другого типа, используя другие методы, такие как изменение количества обмоток катушки, использование катушки разных размеров и использование различных материалов магнитной катушки.

Лампочки с более высоким напряжением могут работать более эффективно, поскольку они могут загораться с меньшим током. Светодиодные фонари могут работать даже лучше, потому что они также могут загораться при небольшом токе.Более мощные генераторы можно использовать для питания целых цепей лампочек.

Генератор DIY, преобразовывающий энергию

Этот генератор DIY является примером генератора переменного тока (переменного тока). Ток на концах двух проводов, которые подключаются к лампочке, чередуется между прямым и обратным направлениями каждый раз, когда вы вращаете магнит. При каждом повороте магнита ток проходит прямой полупериод и обратный полупериод, и ток меняется между ними, используя форму синусоидальной волны.Переменный ток присутствует в большинстве бытовых приборов.

Этот тип динамо-машины для хобби показывает, как магнитные генераторы преобразуют механическую энергию в электромагнитную. Когда вы используете гальванометр , прибор для измерения электрического тока, для измерения силы тока, проходящего через генератор или провод, вы можете увидеть, что игла инструмента отклонена. Вы можете измерить это изменение магнитного поля на динамо-машине, чтобы проверить, насколько оно сильное. Ученые и инженеры продолжают изучать потенциал магнитных двигателей для повышения эффективности двигателей.

В промышленных условиях коммерческие электрические генераторы плотно наматывают катушки проволоки вокруг кольцевых магнитов. Магнитное поле катушки индуцирует электромагнитную силу в магнитах. Гидроэлектростанции преобразуют механическую энергию через водяную турбину за счет падающей воды. Это преобразование механической энергии генераторами в электрическую отличается от двигателей, которые преобразуют электрическую энергию в механическую.

Magnet Dynamo Physics

Вы можете рассчитать электродвижущую силу ( ЭДС, ) , создаваемую количеством катушек в вашем генераторе, используя уравнение V = NBAω sin ωt для напряжения ЭДС V , количество катушек N , магнитное поле B , площадь, на которой расположены катушки A , угловая частота ω («омега») и во времени т .Угловая частота измеряет частоту, количество электрических волн, которые проходят через одно место за секунду, умноженное на 2π.

С магнитным динамо-машиной можно обращаться как с электрическим генератором, потому что электричество и магнетизм являются частью одной и той же силы. Изменения электрического поля создают магнитное поле, а изменения магнитного поля создают электрическое поле. В то время как этот самодельный генератор показывает, как магнитное поле может создавать электрический ток, другие наблюдения могут показать вам, как электричество может вызывать магнитные явления как часть той же электромагнитной силы.

Если вы поместите магнитный компас рядом с проводом в электрической цепи, вы заметите отклонение стрелки компаса. Это происходит потому, что ток через провода в цепи создает магнитные поля, которые заставляют стрелку компаса менять направление. Компасы созданы для того, чтобы реагировать на изменения магнитного поля Земли, поэтому наличие внешнего магнитного поля также может вызвать это отклонение.

Эта фундаментальная связь между электричеством и магнетизмом также означает, что вы можете создать свой собственный электрический генератор таким же образом, как и магнитный. Вращение магнитного объекта вокруг катушки проводов генерирует как электрическое, так и магнитное поле. Другие творческие идеи могут потребовать использования более мощных источников механической энергии, таких как велосипедные машины или ветряные мельницы, для получения электричества таким же образом.

Центр творческой науки — доктор Джонатан П. Хэйр

Центр творческой науки — доктор Джонатан П. Хэйр ссылка на 6 самодельный электрогенератор страница
Описанный ниже очень простой генератор является примитивным, но показывает основные операции.Он был намеренно оставлен как можно более простым, чтобы иметь максимальные возможности для использования в творческих проектах и ​​изобретениях. Следовательно, он может стать основой для более сложного устройства, как будет показано ниже.

Генератор состоит из катушки с проволокой (около 1000 витков), намотанной на последние 3 см или около того большого гвоздя. Когда вращающийся магнит помещается рядом с устройством, он индуцирует напряжение в катушке, которое затем может использоваться для зажигания лампочки (или, еще лучше, светодиода, см. Подробности на конце) — таким образом, можно просто продемонстрировать генерацию электричества.

Схема простого генератора

Шаг 1
Сделайте два картонных круга диаметром около 3 см (толщиной 1-2 мм). Посередине кругов аккуратно проткните дырочку. Найдите большой (10-15 см длиной, 6 мм шириной) чистый (неноржавый) гвоздь с большой шляпкой. Проденьте один из кружочков на гвоздь и продвиньте его прямо к голове.

Шаг 2
Закройте последние 3-4 см ногтя одинарным слоем изоляционной ленты (шляпку ногтя не закрывайте).Наденьте второй круг на гвоздь, но только до изоляционной ленты. Наклейте еще одну ленту на другую сторону круга, чтобы закрепить круг на месте. Теперь у вас должна быть готовая «катушка», на которую можно наматывать катушку.

Шаг 3
Возьмите немного тонкой изолированной медной проволоки (скажем, 25 м или около того 30SWG, примерно 0,3 мм в диаметре), оставьте около 20-30 см свободными и начинайте наматывать витки на изолированную часть гвоздя между двумя кругами. Сделайте 1000-1500 оборотов (точное количество не имеет большого значения и будет зависеть от того, насколько аккуратно вы сможете их надеть, прежде чем они выйдут за сдерживающие картонные круги).Оставьте на конце еще 20-30 см и перережьте проволоку. Заклейте всю сборку изолентой, чтобы проволока не развязывалась.

Шаг 4
Возьмите свободные концы проводов и соскребите изоляцию. Подключите их к лампочке или к светодиоду. Поднесите магнит к шляпке гвоздя и, удерживая его на расстоянии около 5 мм от головки, быстро перемещайте магнит из стороны в сторону. Загорится лампочка или светодиод, показывая выработку электричества !!

КАК РАБОТАЕТ ГЕНЕРАТОР

Генератор работает за счет магнитного поля, индуцирующего напряжение в катушке с проволокой.Важно отметить, что напряжение увеличивается по мере увеличения количества витков провода на катушке, размера катушки и силы магнитного поля. Магнитное поле (или катушка) должно находиться в постоянном движении, чтобы производить / индуцировать электричество в катушке. Это можно сделать, перемещая магнит или катушку — эффект тот же. Катушка (или магнит) должна двигаться так, чтобы катушка постоянно проходила через магнитное поле.
Железный гвоздь также важен в нашем простом генераторе, поскольку он имеет тенденцию концентрировать магнитное поле.Когда катушка наматывается на гвоздь, она имеет тенденцию втягивать больший магнитный поток в область катушки, что увеличивает общую эффективность устройства и увеличивает создаваемое напряжение.
Тип провода в катушке также важен. Например, толстый провод означает меньшие потери мощности, но недостаток в том, что катушка станет очень большой, когда потребуется большое количество витков. Поэтому в практическом генераторе необходимо найти компромисс между размером магнита, катушки и провода.

переменного или постоянного тока
Этот простой генератор называется генератором переменного тока. Это означает, что напряжение, появляющееся на двух проводах, меняется между + и -, и — и + каждый раз, когда магнит совершает полный оборот. В результате генератор может зажечь лампочку или светодиод, не беспокоясь о том, в каком направлении должны проходить соединения (поскольку они все равно эффективно реверсируют все время). Однако этот простой генератор не подходит для работы радиоприемников, калькуляторов или других устройств, которым требуется постоянный ток (DC), который вырабатывается, например, от батареи.Вы можете повеселиться, подключив динамики к выходу генератора, так как вы можете услышать переменное электричество — но, пожалуйста, не используйте лучшие Hi-Fi динамики своих родителей! Попробуйте использовать наушники типа Walkman и т. Д.

ГЕНЕРАТОР ДОПОЛНИТЕЛЬНО

На фото ниже показан простой генератор с ручным коленчатым валом, который я построил, в котором использовались два из этих гвоздей-генераторов, соединенных вместе (чтобы дать вдвое большую мощность). Таким образом, одновременно используются как северная, так и южная сторона магнита. Необходимо правильно выполнить проводку между катушками, иначе напряжение исчезнет, ​​и вы не получите никакой энергии от генератора! Катушки подключаются одна за другой, а не одна через другую (т. е.последовательная цепь, а не параллельная). Была использована простая деревянная зубчатая передача, чтобы вы могли с комфортом вырабатывать электричество, не поворачивая ручку слишком быстро.

Простой генератор с двумя гвоздями и рукояткой

Генератор крупным планом

ВОЗМОЖНО САМЫЙ ПРОСТОЙ ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР В МИРЕ
Щелкните здесь, чтобы увидеть еще более простой генератор

ЛАМПОЧКУ КАКОГО ТИПА Я МОГУ ИСПОЛЬЗОВАТЬ?
Может показаться здравым смыслом использовать лампочку с как можно более низким напряжением в этом типе генератора, но на самом деле лампа с более высоким напряжением часто работает лучше.Например, лампочка 1,5 В (напряжение) часто требует 0,25 А (ампер — электрический ток), чтобы зажечься, в то время как лампочка 6 В может потреблять всего 0,05 А. Этот простой генератор может подавать только относительно небольшой ток (скажем, 0,05-0,1 А), поэтому лампы с более высоким напряжением, как правило, работают лучше. Кстати, светодиод (светоизлучающий диод) очень хорошо работает в этой конструкции, потому что потребляет очень небольшой ток (около 0,01 А). Светодиоды можно получить от Tandys или Maplins (подойдет почти любой) или выбросить из старого радио или игрушки, в которой они есть.

Щелкните здесь для получения информации о светодиодах

КАКОЙ ТИП МАГНИТА Я ДОЛЖЕН ИСПОЛЬЗОВАТЬ?
Как правило, чем сильнее магнит, тем лучше. Eclipse производит всевозможные магниты, и их можно купить в большинстве хозяйственных магазинов. Описанный выше генератор «кривошипной рукоятки» использовал магнит E825 Eclipse. Стоит попробовать другие типы магнитов, но вам, возможно, придется разработать другие способы вращения магнитов, чтобы убедиться, что магнитное поле изменяется правильным образом по отношению к катушке.Хорошие генераторы можно сделать из кнопок, планок, часовых туфель и цилиндрических магнитов — это просто ваше воображение!

ПЕРЕЧЕНЬ ДЕТАЛЕЙ И ИНСТРУМЕНТЫ
Картон из крупяной коробки например
Железный гвоздь с головкой (диаметр 1/4 дюйма (6 мм), длина ~ 6 дюймов (15 см))
Катушка (прибл. 25 м) с эмалированной медной проволокой (30 SWG или диаметром ~ 0,3 мм)
E825 Магнит кнопки Eclipse
Лампа фонаря (6 В, 0,06 А) и патрон, а еще лучше — светодиод
Ручная дрель (стандартный тип ящика для инструментов)
Большинство этих запчастей можно приобрести в магазине «Сделай сам» или в электронных магазинах, таких как Tandy или Maplins.

Книг и статей:
Продвинутая физика, Том Дункан, 4-е изд., Джон Мюррей, ISBN 0 7195 5199 4
хороший раздел по генераторам и электричеству.

Идеи для дальнейшей работы:
1) попробуйте варьировать количество оборотов. Всегда ли верно, что напряжение растет с количеством витков для этого простого генератора? Что произойдет, если катушка станет настолько большой, что ее пятна перестанут находиться очень близко к гвоздю?

2) Вы можете найти лучший штамповщик, чем гвоздь?

3) как насчет того, чтобы попробовать другие формы энергии для питания вращающегося магнита, например?энергия ветра, энергия волн (например, см. раздел строительство собственной ветряной мельницы)

goto ‘build your own windmill’

4) Можете ли вы встроить подвижный переключатель, чтобы напряжение было постоянным (DC) вместо переменного (AC) — это называется коммутатором?

5) Можно ли использовать катушку для гвоздей (без магнита) в качестве «поисковая» катушка для обнаружения магнитных полей? Попробуйте поставить катушку с гвоздем рядом с динамиком, проигрывающим загруженную музыку, светодиод мигает вместе с музыкой?
ПРИМЕЧАНИЕ: никогда не приближайтесь к устройствам с питанием от сети с этим устройством

НЕ ИГРАЙТЕ С ЭЛЕКТРОПИТАНИЕМ — ЭТО УБИВАЕТ

Информация о сайте:
Подробная информация о магните, использованном в этом проекте:
www.magnets2buy.com/acatalog/Buttons.html

ВОЗМОЖНО САМЫЙ ПРОСТОЙ ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР В МИРЕ
Щелкните здесь, чтобы увидеть еще более простой генератор

ссылка на страницу 6 генов


ЦЕНТР ТВОРЧЕСКОЙ НАУКИ

Д-р Джонатан Хэйр, Университет Сассекса
Брайтон, Восточный Суссекс. BN1 9QJ

домой | дневник | что на | Резюме CSC | последние новости


Генератор переменного тока, простой проект DIY с пошаговыми инструкциями

Генератор переменного тока, простой проект DIY с пошаговыми инструкциями

Генератор переменного тока, простой проект DIY с пошаговыми инструкциями

Введение

В генераторе переменного тока

обсуждается преобразование механической энергии (кинетической энергии) в электрическую с помощью магнитной индукции и ЭДС.Основное внимание уделяется принципам работы и компонентам, которые в нем используются. Обмен различными энергиями и выработка электроэнергии за счет индукции полностью объясняется генератором переменного тока.

Необходимый материал:

Для постройки электрогенератора вам понадобятся следующие вещи и инструменты.

  1. Клей для ужина (Эльфи) 20 мл
  2. Бумажная лента
  3. Железные полосы 2
  4. Труба ПВХ 1/5 ′ ”
  5. Железный гвоздь длиной 6 дюймов
  6. светодиоды
  7. Медный провод 30-34 калибра
  8. 4 магнита
  9. Деревянная деталь 6 дюймов

инструментов:

  1. Пила по металлу
  2. Солдатское железо
  3. Сверлильный станок
  4. Отвертка
  5. плоскогубцы
  6. Ролик Инструменты

Схемы частей генератора переменного тока

1 Статор

Статор выполнен из 2-х частей. 10 железных полос длиной 5 дюймов соединяются бумажной лентой и имеют медную обмотку.

Обмотка медной катушки

Медная катушка

2 Ротор:
Ротор

изготовлен из отрезка трубы из ПВХ, 4-х магнитов и железного гвоздя.

Переменный ток (переменный ток) Вид сбоку ротора генератора

Переменный ток (переменный ток) Вид сбоку ротора генератора

Переменный ток (переменный ток) Вид сбоку ротора генератора

Переменный ток (переменный ток) Вид спереди ротора генератора


Электрогенератор переменного тока (переменного тока)


Электрогенератор переменного тока в действии

Habab Idrees, Пакистанский научный клуб Ведущий

Этапы строительства

Изготовление катушки
  • Отмерьте 2 ½ дюйма железной полосы и вырежьте из нее 10 равных частей.
  • Крепко скрепите и сложите все части вместе бумажной лентой так, чтобы не было промежутков между полосками.
  • Намотайте примерно 300 витков медной проволоки вокруг жгута лент вертикально. Оберните его бумажной лентой, чтобы он не разматывался.
  • Нам нужны две такие катушки, чтобы сделать генератор переменного тока.
Изготовление ротора
  • Возьмите трубу из ПВХ диаметром полдюйма и отрежьте кусок 2 ½ дюйма
  • Наклеить 4 стержневых магнита на кусок трубы с помощью суперклея
  • Убедитесь, что одинаковые полюса магнитов должны быть альтернативными.Это будет порядок Север-Юг-Север-Юг.
  • Проверьте, правильно ли выровнены полюса магнитов с помощью другого магнита.
Привод осей
  • Сделайте ось, используя длинный железный гвоздь 6 дюймов.
  • Отступите на полдюйма от хвоста гвоздя и отметьте длину магнитного ротора.
  • Оберните гвоздь бумажной лентой так, чтобы магнитный ротор закрепился на нем.
Корпус генератора
  • Возьмите кусок дерева 6 × 6 дюймов и два куска труб из ПВХ (один — 2 дюйма, другой — 1 дюйм).
  • Сделайте вертикальную канавку на трубе из ПВХ диаметром 1 дюйм.
  • Совместите его с 2-дюймовым элементом и проделайте в нем отверстие.
  • Закрепите ось через обе трубы из ПВХ и проверьте, идеально ли она выровнена.
  • Прикрепите трубы ПВХ к деревянной основе с помощью суперклея.
  • Сделайте еще 2 катушки, как обсуждалось ранее, оставив оба их вывода вне ленты.
  • Отрежьте 2 куска ПВХ-труб размером полдюйма.
  • Соедините детали перпендикулярно оси (по одной с каждой стороны) у основания.
  • Закрепите змеевик на каждой трубе ПВХ.
  • Прожгите покрытие катушек на клеммах зажигалкой.

Тестирование

  • Соедините светодиод с катушкой и поверните гвоздь, светодиод загорится.
  • Если обе катушки соединены последовательно, светодиод будет светиться ярче.

Примечание: Конструкция генератора можно увидеть на этом видео (язык урду). Для иностранных посетителей добавлены английские субтитры.


Посмотреть видео


  • Ведущий: Habab Idrees
  • Дизайн проекта: Абдул Рауф
  • Переводчик: Эрум Хабиб

См. Также

Скачать PDF

как сделать генератор переменного тока (241 загрузок)

Абдул Рауф

Учитель, новатор, любит творить, исследует новые способы рассматривать и воображать вещи, а затем воплощать их в реальность

Электрогенератор своими руками, как это работает

Когда круг из проволоки окружает магнитное поле, и если Затем магнитное поле изменяется, появляется круговое «давление», называемое напряжением. Чем быстрее изменяется магнитное поле, тем больше становится напряжение. Это круговое напряжение пытается заставить подвижные заряды внутри провода вращаться по кругу. Другими словами, движущиеся магниты вызывают изменение магнитные поля, которые пытаются создать электрические токи в замкнутых кругах провод. Движущийся магнит вызывает насосное действие. Если схема не полная, если есть обрыв, то сила откачки не вызовет заряда поток. Вместо этого на концах провода появится разница напряжений. es.Но если цепь «замкнута» или «замкнута», то магнит действие накачки может заставить электроны катушки начать движение. А движущийся магнит может создать электрический ток в замкнутой цепи. В эффект называется Электромагнитная индукция. Это основной закон физики, и он используется всеми электрогенераторами с катушкой / магнитом.

У генераторов нет только одного круга провода. Предположим, что вокруг много металлических кругов. движущийся магнит. Предположим, что все окружности последовательно соединены с образуют катушку. Небольшое напряжение от каждого круга складывается чтобы дать гораздо большее напряжение. Катушка на 100 витков будет иметь сто в разы больше напряжения, чем на однооборотной катушке.

Почему этот генератор переменного тока, а не постоянного? Когда магниты переворачиваются, они создают импульс напряжения. Но когда они переворачиваются во второй раз, они создать противоположный импульс? Да. Итак, вращающийся магнит всегда делает электрические сигналы, которые идут плюс-минус-плюс-минус? Ага. Это происходит потому, что для создания напряжения и тока полюс магнита должен двигаться вбок по проводу.Если вместо этого он проведет вдоль провода, ничего не произойдет. В нашем маленький генератор, полюса магнита не качаются постоянно по изгиб провода. Вместо этого сначала северный магнитный полюс проходит через одну сторона катушки, и в то же время южный полюс магнита перемещается назад через другую сторону. Два эффекта складываются вместе. Но дальше магнит продолжает вращаться, и теперь противоположные полюса проведите по этим частям катушки. Магнит перевернулся, магнит полюса поменяны местами, поэтому второй импульс напряжения катушки будет назад.И если лампочка подключена, тогда любой ток тоже будет обратным. Каждый раз магнит делает один полный оборот, он создает прямой импульс, а затем обратный пульс. Быстро крутите магнит, и он издает переменную волну: AC.

Если вам нужен генератор постоянного тока, вам придется добавить специальный реверсивный переключатель. к валу магнита. Это переключатель, который называется «коммутатор». Все DC у генераторов они есть. Через каждые пол-оборота он меняет соединение к катушке. Таким образом получается импульсный постоянный ток.Если вы посмотрите на некоторые DIY В проектах генераторов постоянного тока вы увидите, как построить коммутатор. Но эти генераторы не очень простые!

Теперь о лампочке. Если соединить концы катушки вместе, то всякий раз, когда магнит движется, заряды металла будут двигаться и большой в катушке появится электрический ток. Змеевик немного нагревается. Что, если вместо этого мы подключим лампочку между концами катушки? А лампочка на самом деле просто кусок тонкой проволоки.Заряды света нить лампы будет продвигаться. Когда заряды внутри меди провода продеваем в тонкую нить накала лампочки, их скорость сильно увеличивается. Когда заряды покидают нить и движутся обратно в медный провод большего размера, они замедляются опять таки. Внутри узкой нити быстро движущиеся заряды нагревают металл. своего рода электрическим «трением». Металлическая нить нагревается настолько, что он светится. Движущиеся заряды также нагревают провода генератора немного, но так как провода генератора намного толще, и поскольку тонкая нить накала лампы замедляет ток во всем змеевике, почти весь нагрев происходит в лампочка накаливания.

Итак, просто подключите лампочку к катушке провода, поместите короткую мощную магнит в катушке, затем быстро переверните магнит. Чем быстрее вы вращаете магнит, тем выше становится сила накачки напряжения и тем ярче лампочка загорается. Чем мощнее ваш магнит, тем выше напряжение и ярче лампочка. И чем больше кругов проволоки у тебя катушки, тем выше напряжение и ярче лампочка. Теоретически вы должен иметь возможность зажечь обычную лампочку фонарика 3 В, но только если вы может вращать ваши магниты нечеловечески быстро.


Отсоедините один провод от лампочки. Крутите магнит. Пока все еще вращая магнит, попросите друга соединить провода вместе так что лампочка снова загорится. Гвоздь по-прежнему легко вращается? Продолжайте крутить магнит, пока ваш друг подключается и отключается лампочка. Чувствуете разницу в том, насколько сильно нужно крутить гвоздь? Также попробуйте крутить магниты, пока ваш друг подключает генератор провода вместе (без подключенной лампы).

ТАК ЧТО?

Когда вы запускаете генератор и зажигаете лампочку, вы работает против электрического трения, чтобы создать тепло и свет.Вы можете ПОЧУВСТВОВАТЬ выполняемую работу, потому что всякий раз, когда вы подключаете лампочку, вдруг становится труднее провернуть генератор. При отключении лампочка, становится легче.

Подумайте об этом так. Если слегка потереть руки, кожа остается прохладным, но если сильно потирать руки, кожа становится горячей. Нужно приложить больше усилий, чтобы сильно натереть кожу, чтобы она нагрелась; это требует работы. И точно так же лампочку нагреть сложно. нить накала, это требует работы. Вы крутите вал генератора, генератор проталкивает заряд провода через крошечную нить накала, и если вы не держите вращая магнит, магнит быстро замедлится.


ПОЧУВСТВУЙТЕ ЭЛЕКТРОНЫ

Когда ваша рука вращает магниты, вы можете почувствовать дополнительную работу, которая требуется зажечь лампочку. Попробуйте крутить магниты при отключенной лампочке. Магниты крутить стало намного сложнее. Это происходит потому, что ваш рука связана с течет заряд в лампочке, и когда вы на нее нажимаете, вы можете это почувствовать оттолкнуть вас! Как ваша рука связана с текущими зарядами? Ваша рука крутит гвоздь, гвоздь крутит магнит, магнит толкает невидимые магнитные поля, поля толкайте подвижные заряды, заряды медленно текут через свет нить накала лампы, и крошечная нить вызывает трение о поток заряжается и нагревается. Но тогда происходит обратное! Заряд не может сильно двигаться из-за крошечной нити накала, поэтому она сопротивляется давление со стороны магнитных полей, которые, в свою очередь, сопротивляются давлению от магнита, который выдерживает скручивающее давление ногтя, который сопротивляется скручивающему давлению ваших пальцев. Итак, в очень реальным способом, вы можете ПОЧУВСТВОВАТЬ электроны в нити накала лампочки. Когда вы толкаете их, вы можете ЧУВСТВОВАТЬ их нежелание двигаться дальше. узкая нить!

ВЫКЛЮЧИТЕ ПОЛЕ

Попробуйте изменить положение магнитов.Снимите магниты, затем скотчем их вокруг гвоздя так, чтобы две стопки цеплялись бок о бок, скорее чем сложены в линию. Крутите магниты. Лампочка все еще загораться? Нет. Это происходит потому, что полюс N одного блока магнитов очень близко к S-полюсу другого, и наоборот. Магнитное поле теперь растягивается между двумя стопками магнитов и не распространяется наружу. Большая часть поля находится между соседними противоположными полюсов, поэтому поле не распространяется через катушку. Когда магниты бок о бок, вот так, они образуют один больший, но слабый магнит. На Другой рука, когда вместо этого вы делаете одну стопку магнитов, поле расширяется наружу на много дюймов. Сложенные друг на друга магниты образуют более крупный, но очень сильный магнит. Если вы вращаете стек с одним магнитом, поле прорезает провода и качает их электроны в движение.

ИЗМЕРИТЬ НАПРЯЖЕНИЕ И ТОК

Если у вас есть цифровой вольтметр или цифровой мультиметр, вы можете провести некоторые измерения.(Как только вы увидите некоторые цифры, вы можете заняться профессиональной наукой. эксперименты. Это отлично подходит для проектов научной ярмарки.) Вращайте магниты чтобы зажечь лампочку, затем подсоедините провода счетчика к лампочке соединения. Установите измеритель напряжения переменного тока. Вращайте магниты и смотрите насколько высокое напряжение производит ваш генератор.

Насколько высоким вы можете сделать напряжение просто пальцами? Или с помощью ручной дрели? Попробуйте просто крутить магниты. достаточно быстро, чтобы едва зажечь лампочку в темной комнате.Как мало напряжение необходим? Также попробуйте отключение лампочку, затем измерьте напряжение переменного тока на двух концах катушки. Можете ли вы сказать, осталось ли оно таким же, как при подключении лампы? Намекать: чтобы вращать магниты с постоянной скоростью, используйте электродрель с полностью заряженный аккумулятор. Или, возможно, зацепите гвоздь за электродвигатель и подключите двигатель к источнику постоянного тока с настраиваемым напряжением.

Примечание: электрическая лампочка имеет сопротивление около 50 Ом. Кроме того, 250 футов # 30 проволока вокруг Сопротивление 21 Ом.Из-за сопротивления провода Генератор может создавать ток не более 60 миллиампер (0,06 ампер.) Если вы намотаете на генератор дополнительный провод №30, он увеличится максимальное напряжение и максимальная мощность. Но поскольку это добавляет больше сопротивление это НЕ увеличивает максимально возможный ток. Увеличить максимально возможный ток, либо замените провод №30 на более толстый проволокой, крутите магниты быстрее или используйте более прочный магнитный материал.


ДВИГАТЕЛЬ ВЫЗОВ!

Есть простой способ превратить ваш генератор в мотор.Это включает использование краски или ленты для изоляции пятна на одной стороне гвоздь затем, используя батарею 6 В и провода генератора, касаясь гвоздя, чтобы сформировать переключатель. Вращающиеся магниты поворачивают гвоздь, который включает катушку и выключаемся в нужное время. Вы можете обнаружить уловку?

ИЗГОТОВЛЕНИЕ DC

Вы можете изменить этот генератор, чтобы он создавал постоянный ток, а не переменный. Напряжение все еще очень низкий, поэтому он не очень полезен. Если вращаться очень быстро, вы можете иметь возможность перезарядить крошечный 1.Аккумулятор 2в. (Может быть, ты мог бы добавить много витков провода к катушке, чтобы увеличить напряжение?)

Преобразование в постоянный ток:

Сложный путь: добавить вращающийся переключатель «коммутатор» и скользящие металлические «щетки», так что каждый раз, когда магниты поворачиваются наполовину, переключатель меняет местами подключения генератора.

Простой способ: добавить односторонний клапан! Электроклапан называется диодом. или выпрямитель. Если вы подключите диод последовательно с одним из ваших двигателей провода, это будет только пусть заряды текут в одном направлении.Это изменит Переменный ток в односторонний поток (так называемый «пульсирующий постоянный ток»). Попробуйте диоды от Radio Shack, например 1N4000 или 1N4001. К сожалению диоду требуется около 3/4 вольт для протекания любых зарядов, и это напряжение вычитает из вывода вашего генератора. Если ваш генератор выдает только один вольт, диод снизит его до 1/4 вольт. Итак, если вы хотите добавить диод, попробуйте удвоить или утроить количество проводов на ваш генератор. Также попробуйте использовать специальный диод «Шоттки» с меньшим напряжение, чем 0.7V, например 1N5819 с сайта digikey.com


ИСТОРИЯ «УЛЬТРАПРОСТОГО» ГЕНЕРАТОРА

Смотрите мою оригинальную версию 1996 года

Работая в магазине техники в Музее науки в Бостоне, я работал над новыми идеями для экспонатов Зала электричества в 1988 году. знал, что в Эксплоратории есть выставка электрогенераторов, где Посетитель музея протаскивал пластиковую катушку через ряд огромные магниты (большие магнетронные рупоры-магниты от военного радара ВОВ.) Делая это загорится маленькая лампочка. Я просто знал , что там было быть каким-то методом, который использует менее дорогие обычные магниты. Я сложил стопку по 3 дюйма громкоговоритель магниты (эти черные пончики) и размахивали им мимо различных катушек. Наконец, я намотал около пяти фунтов проволоки №26 на кольцо с гвоздями. толкнул в доску, подключил лампочку # 49, затем переместил стопку магниты динамика внутрь и наружу. От этого легко загорелась лампочка.

Примерно в 1994 году я думал об сверхпростом электродвигателе, который позже стал известен в Интернете как «Beakman Motor».»Разве это не было бы круто, если бы дети могли так же просто сделать электрогенератор ? Но это нужно делать с использованием деталей из магазина Radio Shack, так как Radio Shack имела специальную лампочку, а также магниты и катушки провод электромагнита. После нескольких часов экспериментов я понял, что едва мог зажечь лампочку на 20 миллиампер, используя одну катушку провода №30 от радиорубки. Но провод должен был быть ОЧЕНЬ близким к быстрому вращающийся магнит, причем магнит должен был состоять из четырех мощных керамические магниты в стопке.

Чтобы произвести впечатление на всех учителей физики, я старался сделать детали легкими. в наличии, а стоимость минимально возможна. Чтобы сделать проект популярным, я убедился, что никаких инструментов, кроме ножниц, не требуется. Я отказался использовать мяч подшипники или детали из распиленного пластика. Поэтому я сделал свою картонную коробку для катушка, и гвоздь для вращающегося вала. Чтобы избежать лишних деталей, гвоздь просто зажимается мощными магнитами. Вот вызов: попробуйте зажечь лампочку, но сделать это с помощью генератора, что еще проще.


Хотите гораздо более мощный двигатель или генератор? Те, которые нуждаются в штамповке листы железа для ламината. Но есть другой способ. Посмотрите на Эдисона тактика: он взял 1873 Мотор с кольцом Грамма, модифицированный добавление отдельного тихоходного коммутатора, и продавал их как горячие пирожки.

Магнитопровод, «пластинки» ротора Грамма, могут быть изготовлены из длинная длина железная проволока, обернутая как обруч, залитая эпоксидной смолой, смолой и т. д. не знаю если тонкую железную проволоку легко найти, а колючая проволока и проволока для тюков сена — общий.Оберните толстую медную проволоку вокруг всего железного кольца и установите его. на маховике. Плоско отшлифуйте внешний обод, чтобы медная спираль стала его собственный коммутатор. Статор может быть постоянным магнитом или не слоистым. твердые железные блоки, так как это DC. Ранние версии использовали «кисти» из тонкой железной проволоки в качестве щеток, позже замененных блоками скользкий графит.

Но затем сделайте то же, что и Tesla, и измените свои первоначальные конструкции статора. в компактную цилиндрическую форму с закрытыми катушками вместо использования огромных длинные подковообразные магниты, как у Эдисона Дизайн «длинноногая Мэри Энн».

Motor Triva: электродвигатели были всего лишь лабораторные диковинки до Зеноби Грамм разработал генератор, предназначенный для замены аккумуляторных батарей, поскольку он давал чрезвычайно плавное выходное напряжение постоянного тока. Во время выставки изобретателей помощник случайно подключил неиспользованный Gramme Dynamo до другого, работавшего под действием пара. Второй бежал как мотор, как мотор * сотни лошадиных сил *. Этот момент был началом электрический век в промышленности. Но об этом прорыве много не говорят. в американских учебниках, возможно потому, что это заставит Томаса Эдисона появиться меньше гения.


ВНИМАНИЕ: держите магниты подальше от компьютеров, дисков, видеокассет, цветных Телевизоры, бумажники и кошельки с кредитными картами. Попробуйте это: сохранить генератор вдали от цветного телевизора, включите телевизор, начните крутить гвоздь, чтобы магнит вращался быстро, затем поднесите генератор примерно на 2 фута подальше от экрана телевизора. НЕ ПРИНОСИТЕ БЛИЖЕ !!! Продолжайте крутить магниты, и вы увидите крутой эффект качания на телевизионном изображении, с некоторыми изменениями цвета. Поле магнита искривляет электронный луч, рисующий картинку на экране.Будьте осторожны, если вы принесите магнит примерно на 15 см, железный лист внутри изображения телевизора трубка намагнитится, и искаженные цвета останутся неизменными.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередачи бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрогенератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из нескольких источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Практически все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы.Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной формой используемого переменного тока является синусоидальная волна, которая имеет форму, показанную на рисунке 1. Она была выбрана, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате.Тогда в идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидно, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Encyclopædia Britannica, Inc. Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рисунке 2.Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в прорези, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна наружу вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Encyclopædia Britannica, Inc.

Статор элементарного генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены друг с другом изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Структура ротора генератора на рис. 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь.Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *