+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Генераторы

Генераторы

Серии электродвигателей: ВСГ, ГС, СГВ, СМ, СМВ, СГД, СГ3, СГ, ГСБ, СГ2, СГДМ, ТПС, ТПСМ, СГТ

Наименование Мощность,
кВт
Синхронная частота
вращения, об/мин
Напряжение, В

ГСБ-1800-6,3-1500УХЛ2

1800

1500

6300

ГСБ-1800-10,5-1500УХЛ2

1800

1500

10500

ГСБ-1120-0,69-1000УХЛ2

1120

1000

690

ГСБ-1120-6,3-1000УХЛ2

1120

1000

6300

ГСБ-1650-6,3-1000УХЛ2

1650

1000

6300

ГСБ-1650-10,5-1000УХЛ2

1650

1000

10500

ГСБ-1120-0,69-1000Т2

1120

1000

690

ГСБ-1650-10,5-1000Т2

1650

1000

10500

СГ-1250-1500У2

1250

1500

400

СГ-1500-6,3-500УХЛ4

1500

500

6300

СГД-16-69-6УХЛ4

3500

1000

6300

СГД-16-84-6УХЛ4

3500

1000

10500

СГД-16-84-8УХЛ4

3500

750

10500

СГД-16-69-6Т4

3500

1000

6300

СГД-16-84-6Т4

3500

1000

11000

СГД-16-71-8Т3

3500

750

6300

ГС-100-0,4-1500

100

1500

400

СГВ-500-10,5-300УХЛ4

500

300

10500

СМ-500-6,3-300УХЛ4

500

300

6300

СМВ-4000-18УХЛ4

4000

333,3

6300

ТПС-1,5-2M2У3

1500

3000

10500; 6300

ТПС-2,5-2M2У3

2500

3000

10500; 6300

ТПС-4-2M2У3

4000

3000

10500; 6300

ТПС-6-2ЕУ3

6000

3000

10500; 6300

ТПС-8-2ЕУ3

8000

3000

10500; 6300

ТПС-12-2ЕУ3

12000

3000

10500; 6300

ТПС-16-2ЕУ3

16000

3000

10500; 6300

СГДМ-1500

1500

1000; 750

400; 690

СГДМ-1850

1850

1000; 750

400; 690

СГДМ-2850

2850

1000; 750

6600; 690

СГДМ-3500

3500

1000; 750

6600; 690

СГДМ-4500

4500

1000; 750

6600; 690

СГДМ-6300

6300

1000; 750

6600

СГДМ-8000

8000

750

6600

СГДМ-9000

9000

750

6600

СГ3-200

200

1000; 5000

400; 690

СГ3-500

500

1000; 5000

400; 690

СГ3-630

630

1000; 5000

400; 690

СГ3-800

800

1000; 5000

400; 690

СГ3-1100

1100

1000; 5000

400; 690


Наши конкурентные преимущества:

  • концерн разрабатывает и изготавливает электрические машины по индивидуальным заказам без увеличения сроков изготовления
  • более высокий КПД относительно продукции иных производителей России и стран СНГ
  • изготовление электродвигателей с промежуточной нестандартной мощностью, что сокращает издержки без потери качества и гарантийного срока
  • показатель уровня обслуживания покупателей 95%
  • изготовление электродвигателей под вашей торговой маркой
  • условия оплаты и поставки с учетом особенностей склада на вашей территории
  • процедура trade in, которая распространяется не только на двигатели, но и на агрегаты

При заказе вы можете выбрать:

  • изготовление сертифицированных двигателей для работы в составе частотно-регулируемого привода
  • подшипники различных производителей – SKF, FAG или отечественные. При необходимости в двигателе могут устанавливаться токоизолированные подшипники
  • смазку различных производителей. Унификация еще на этапе поставки смазки с принятой на предприятии эксплуатации позволяет запускать в эксплуатацию двигатель без замены смазки и требующейся при этом промывки подшипник
  • необходимую конфигурацию мест под датчики вибрации. Наиболее частыми являются заказы двигателей с местами под датчики вибрации и датчики ударных испульсов SPM, SLD. При заказе нами предлагается удобная графическая схема выбора осей измерения вибрации. Для установки уровней вибрации «Предупреждение» и «Отключение» рекомендуется использовать нормы, установленные ГОСТ Р ИСО 10816-3
  • диаметр кабельного ввода силовой коробки выводов
  • овальные установочные размеры в лапах
  • необходимый цвет двигателя или поставку в загрунтованном виде
  • протокол приемо-сдаточных испытаний

Как сделать генератор 220В из мотора стиралки и двигателя мотокосы | Сделай Сам — Своими Руками

Чтобы не оставаться без электричества на время перебоев в сети, а также пользоваться электроприборами там, где вообще нет электрификации, нужен электрогенератор. Это не обязательно должен быть покупной прибор, для неприхотливых потребителей достаточно и самодельного генератора. Сделать его можно на базе двигателя от стиральной машины.

Материалы:

  • Двигатель от стиральной машины;
  • акриловая или эпоксидная смола;
  • неодимовые магниты 30х5 мм –16 шт. — http://ali.pub/4yy1yd
  • мотокоса.

Процесс изготовления электрогенератора

Для изготовления генератора необходимо извлечь ротор из рабочего электродвигателя со стиральной машины.

Якорь нужно сточить, уменьшив его диаметр. Это можно сделать, зажав его вал в сверлильном станке, и стачивая сердечник болгаркой с лепестковым кругом. Еще проще это делается на токарном станке.

На проточенный якорь нужно установить в 8 рядов по 2 неодимовых магнита. Полярность соседних пар должна чередоваться.

Теперь требуется закрепить магниты смолой. Для этого на якоре собирается опалубка из компакт-диска и отрезка пластиковой трубы. Ее можно приклеить горячим клеем. Затем в нее заливается смола.

После отвердевания смолы опалубка срезается. Затем якорь протачиваете, чтобы его сбалансировать. В итоге он должен без проблем входить в статор двигателя.

Двигатель собирается обратно с уже доработанным ротором. Теперь нужно определить мультиметром его рабочую обмотку, так как с нее при раскручивании генератора можно снимать 220В. В данном случае это желтый и красный провод. Синяя жила пусковой обмотки отрезается.

К генератору привариваются крепления. Затем он прикручивается к доске. Сбоку нужно закрепить бензиновый двигатель, можно поставить мотор от мотокосы. Затем они соединяются приводным ремнем. К доске также закрепляется розетка, подключенная к проводам генератора.

Теперь при пуске бензинового мотора, тот будет раскручивать генератор, что позволяет получать 220В. Частота тока выходит не такая стабильная, как в обычной сети, так что без регулятора напряжения чувствительные электроприборы к нему лучше не подключать. Однако такой генератор способен питать помпу, вентилятор и т. д.

Смотрите видео

Как из трансформаторов сделать генератор на 220 В — https://sdelaysam-svoimirukami.ru/7686-kak-iz-transformatorov-sdelat-generator-na-220-v.html

Генератор из электродвигателя без топлива от 3 кв. Как сделать асинхронный электрогенератор своими руками. В разрезе показаны основные элементы

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

Внешний вид асинхронного электродвигателя

В разрезе показаны основные элементы:

  1. чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
  2. корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
  3. коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
  4. плотные жгуты медных проводов обмотки статора;
  5. стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.

Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

Детальная разборка асинхронного двигателя

Достоинства генераторов, переделанных из асинхронных двигателей:

  1. простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
  2. возможность вращения генератора электротока ветряной или гидротурбиной;
  3. генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
  4. возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.

Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.

Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.

Принцип работы генератора

В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.

Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.

Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.

Преобразование

Как практически своими руками преобразовать асинхронный электродвигатель в генератор?

Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

Открытое борно с контактной группой

Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

Схемы включения «Звезда» и «Треугольник»

На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:

  • максимальные токи;
  • напряжение питания;
  • потребляемая мощность;
  • количество оборотов в минуту;
  • КПД и другие параметры.

Параметры двигателя, которые указаны на шильдике

В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».

Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

Схема подключения конденсаторов на генераторе в «Треугольник»

Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

Как выглядит бесполюсный конденсатор марки КБГ-МН

Расчёт ёмкости конденсаторов для используемого двигателя

Номинальная выходная мощность генератора, в кВтПредположительная ёмкость в, мкФ
260
3,5100
5138
7182
10245
15342

В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.

Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.

Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.

Монтаж системы мотор-генератор

При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

Схема мотор-генератора на ременной передаче

На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:

1230 + 10% =1353 об/м.

Ременная передача рассчитывается по формуле:

Vг = Vм x Dм\Dг

Vг – необходимая скорость вращения генератора 1353 об/м;

Vм – скорость вращения мотора 1200 об/м;

Dм – диаметр шкива на моторе 15 см;

Dг – диаметр шкива на генераторе.

Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.

Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.

Генератор на ниодимовых магнитах

Как сделать генератор из асинхронного электродвигателя?

Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:

  • Снять переднюю и заднюю крышки асинхронного электродвигателя.
  • Извлечь ротор из статора.

Как выглядит ротор асинхронного двигателя

  • Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
  • На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.

Установка магнитов на ротор

  • Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
  • Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
  • После просушки, ротор можно поставить на место и закрыть крышки;
  • Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
  • Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.

Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.

Видео. Генератор из асинхронного двигателя.

Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.

Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.


Часто возникает необходимость обеспечить автономное электропитание в дачном домике. В подобной ситуации выручит генератор из асинхронного двигателя, сделанный своими руками. Его несложно изготовить самостоятельно, обладая определенными навыками в обращении с электротехникой.

Принцип работы

Благодаря простой конструкции и эффективному функционированию асинхронные двигатели широко используются в промышленности. Они составляют значительную долю всех двигателей. Принцип их работы заключается в создании магнитного поля действием переменного электрического тока.

Экспериментами доказано, что вращением металлической рамки в магнитном поле можно индуцировать в ней электрический ток, появление которого подтверждается свечением лампочки. Это явление называется электромагнитной индукцией.

Устройство двигателя

Асинхронный двигатель состоит из металлического корпуса, внутри которого находятся:

  • статор с обмоткой, по которой пропускается переменный электрический ток;
  • ротор с витками намотки, по которой проходит ток противоположного направления.

Оба элемента находятся на одной оси. Стальные пластины статора плотно прилегают друг к другу, в некоторых модификациях их прочно сваривают. Медная обмотка статора изолирована от сердечника картонными прокладками. В роторе обмотка выполнена из алюминиевых прутьев, замкнутых с двух сторон. Магнитные поля, образующиеся при прохождении переменного тока, действуют друг на друга. Между обмотками возникает ЭДС, которая вращает ротор, так как статор неподвижен.

Генератор из асинхронного двигателя состоит из тех же составных частей, однако в данном случае происходит обратное действие, то есть переход механической или тепловой энергии в электрическую. При работе в режиме двигателя у него сохраняется остаточная намагниченность, индуцирующая электрическое поле в статоре.

Скорость вращения ротора должна быть выше изменения магнитного поля статора. Затормозить его можно реактивной мощностью конденсаторов. Накапливаемый ими заряд противоположен по фазе и дает «подтормаживающий эффект». Вращение можно обеспечить энергией ветра, воды, пара.

Схема генератора

Генератор из асинхронного двигателя отличается простой схемой. После достижения синхронной скорости вращения происходит процесс образования в обмотке статора электрической энергии.

Если присоединить к обмотке конденсаторную батарею, происходит возникновение опережающего электрического тока, образующего магнитное поле. При этом конденсаторы должны обладать емкостью выше критической, которая определяется техническими параметрами механизма. Сила образующегося тока будет зависеть от емкости батареи конденсаторов и характеристик мотора.

Технология изготовления

Работа по преобразованию асинхронного электромотора в генератор достаточно проста при наличии необходимых деталей.

Для начала процесса по переделке необходимо наличие следующих механизмов и материалов:

  • асинхронного двигателя – подойдет однофазный мотор от старой стиральной машины;
  • прибора для измерения частоты вращения ротора – тахометра или тахогенератора;
  • неполярных конденсаторов – пригодны модели вида КБГ-МН с величиной рабочего напряжения 400 В;
  • набора подручных инструментов – дрели, ножовок, ключей.






Пошаговая инструкция

Изготовление генератора своими руками из асинхронного двигателя производится по представленному алгоритму.

  • Генератор должен настраиваться так, чтобы его скорость была больше частоты оборотов двигателя. Величина скорости вращения измеряется тахометром или другим прибором при включении двигателя в электросеть.
  • Полученная величина должна быть увеличена на 10% от имеющегося показателя.
  • Подбирается емкость для конденсаторной батареи – она не должна быть чересчур большой, в противном случае оборудование будет сильно нагреваться. Для ее расчета можно воспользоваться таблицей зависимости между емкостью конденсатора и реактивной мощностью.
  • На оборудование устанавливается конденсаторная батарея, которая обеспечит расчетную скорость вращения для генератора. Ее установка требует особого внимания – все конденсаторы нужно надежно изолировать.

Для 3-фазных двигателей конденсаторы подключают по типу «звезды» или «треугольника». Первый тип соединения делает возможным выработку электроэнергии при меньшей скорости вращения ротора, но на выходе показатель напряжения будет ниже. Для уменьшения его до 220 В используют понижающий трансформатор.

Изготовление генератора на магнитах

В магнитном генераторе не требуется применение конденсаторной батареи. В этой конструкции используются неодимовые магниты. Для выполнения работы следует:

  • расположить магниты на роторе по схеме, с соблюдением полюсов – на каждом из них должно быть не меньше 8 элементов;
  • предварительно ротор нужно проточить на токарном станке на толщину магнитов;
  • с помощью клея прочно зафиксировать магниты;
  • остаток свободного пространства между магнитными элементами залить эпоксидкой;
  • после установки магнитов нужно проверить диаметр ротора – он не должен увеличиться.

Преимущества самодельного электрогенератора

Генератор из асинхронного двигателя, сделанный своими руками, станет экономичным источником тока, который позволит снизить потребление централизованной электроэнергии. С его помощью можно обеспечить питание бытовых электроприборов, компьютерной техники, обогревателей. Самодельный генератор из асинхронного двигателя обладает несомненными достоинствами:

  • простой и надежной конструкцией;
  • эффективной защитой внутренних частей от пыли или влаги;
  • устойчивостью к перегрузкам;
  • длительным сроком эксплуатации;
  • возможностью подключать приборы без инверторов.

При работе с генератором следует учесть также возможность случайных изменений электрического тока.

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Бензиновые, газовые и дизельные модели

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

  • В качестве двигателя для ;
  • В виде небольших ГЭС.

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

Схема включения асинхронного двигателя

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости. Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.

В случае необходимости, в качестве генератора переменного тока может быть применен трехфазный асинхронный электродвигатель с короткозамкнутым ротором типа «беличья клетка».

Это решение удобно в силу широкой доступности асинхронных двигателей, а также благодаря отсутствию в подобных двигателях коллекторно-щеточного узла, что делает такой генератор надежным и долговечным. Если есть удобный способ приводить его ротор во вращение, то для генерации электроэнергии достаточно будет подключить к обмоткам статора три одинаковых конденсатора. Практика показывает, что такие генераторы могут работать годами без необходимости обслуживания.

Поскольку на роторе присутствует остаточная намагниченность, то при его вращении в статорных обмотках возникнет ЭДС индукции, а поскольку к обмоткам подключены конденсаторы, будет иметь место соответствующий емкостный ток, который станет намагничивать ротор. При дальнейшем вращении ротора произойдет самовозбуждение, благодаря чему в обмотках статора установится трехфазный синусоидальный ток.

В генераторном режиме частота вращения ротора должна соответствовать синхронной частоте двигателя, которая выше его рабочей (асинхронной) частоты. Например: у двигателя АИР112МВ8 обмотка статора имеет 4 пары магнитных полюсов, значит, его номинальная синхронная частота составляет 750 об/мин, но при работе под нагрузкой, ротор этого двигателя вращается с частотой 730 об/мин, поскольку это асинхронный двигатель. Значит, в генераторном режиме нужно вращать его ротор с частотой 750 об/мин. Соответственно, для двигателей с двумя парами магнитных полюсов номинальная синхронная частота составляет 1500 об/мин, а с одной парой полюсов — 3000 об/мин.

Конденсаторы подбираются в соответствии с мощностью применяемого асинхронного двигателя и характером нагрузки. Реактивную мощность, которую обеспечивают конденсаторы в таком режиме работы, в зависимости от их емкостей, можно вычислить по формуле:

Например, есть асинхронный двигатель, рассчитанный на номинальную мощность в 3кВт при работе от трехфазной сети с напряжением 380 Вольт и частотой 50 Гц. Значит, конденсаторы при полной нагрузке должны обеспечить всю эту мощность. Поскольку ток трехфазный, то речь здесь идет о емкости каждого конденсатора. Емкость можно найти по формуле:

Следовательно, для данного трехфазного асинхронного двигателя на 3кВт емкость каждого из трех конденсаторов при полной активной нагрузке составит:

Отлично подойдут для этой цели пусковые конденсаторы серий К78-17, К78-36 и им подобные на напряжение 400 Вольт и выше, лучше на 600 Вольт, или металлобумажные конденсаторы аналогичных номиналов.

Говоря о режимах работы генератора из асинхронного двигателя, важно отметить, что на холостом ходу подключенные конденсаторы будут создавать реактивный ток, который станет просто греть статорные обмотки, поэтому имеет смысл сделать конденсаторные блоки составными, и подключать емкости в соответствии с требованиями конкретной нагрузки. Ток холостого хода, при таком решении, будет значительно снижен, что позволит разгрузить систему в целом. Нагрузки же реактивного характера — наоборот потребуют подключения дополнительных конденсаторов, превышающих расчетный номинал из-за характерного для реактивных нагрузок коэффициента мощности.

Допускается соединение статорных обмоток как в звезду, для получения 380 Вольт, так и в треугольник, для получения 220 Вольт. Если нет необходимости в трехфазном токе, можно использовать лишь одну фазу, подключив конденсаторы только к одной из статорных обмоток.

Можно работать и с двумя обмотками. Между тем нужно помнить, что мощность, отдаваемая каждой из обмоток в нагрузку, не должна превышать трети общей мощности генератора. В зависимости от нужд, можно подключить трехфазный выпрямитель, или использовать непосредственно переменный ток. Для удобства контроля, полезно организовать индикаторный стенд с измерительными приборами — вольтметрами, амперметрами, и частотомером. Для переключения конденсаторов отлично подойдут автоматы (автоматические выключатели).

Особое внимание следует уделить технике безопасности, учесть критические значения токов, и соответствующим образом рассчитать сечения всех проводов. Надежная изоляция — также немаловажный фактор безопасности.

Анализ конструкции электродвигателя и генератора с помощью COMSOL®

В этом сообщении блога мы исследуем 12-контактный 10-полюсный двигатель с постоянными магнитами (PM), смоделированный в программном обеспечении COMSOL Multiphysics® и модуле AC / DC. Машина в этом примере служит типичным примером вращающегося устройства и имеет внешний диаметр 35 мм и осевую длину 80 мм. С небольшими изменениями входных условий та же модель может стать двигателем или генератором. В следующих статьях блога мы подробно остановимся на каждом из обсуждаемых здесь аспектов дизайна.

Это первая запись в блоге из серии, в которой обсуждается, как получить представление о некоторых аспектах проектирования вращающихся машин, используя возможности моделирования и постобработки программного обеспечения COMSOL Multiphysics®. Часть 2 посвящена вычислению потерь, температуры и эффективности электродвигателей.

Конструкции электродвигателей и генераторов

: установка модели

В двигателе с постоянными магнитами магнитные поля от ротора вращаются синхронно с магнитными полями, создаваемыми токами статора.Взаимодействие магнитных полей ротора и статора создает чистый крутящий момент, который позволяет двигателю преобразовывать токи обмоток в механическую энергию. Вследствие синхронного характера возбуждения в двигателе с постоянными магнитами на мгновенный крутящий момент сильно влияет угловое положение ротора, поскольку положение синхронизируется с токами статора. Это отличается от асинхронных машин, где обмотки статора индуцируют магнитные поля ротора в зависимости от отставания в скорости между ротором и статором (отсюда и его популярное название, индукционная машина ).{\ circ} / N_p}, где N_p — количество полюсов ротора. Знаменатель дает угловой размах одного полюса ротора.

Исследование и оптимизация распределения магнитного поля

Распределение магнитного поля — очень важный фактор при проектировании электрических машин. В синхронно вращающихся машинах ключевым параметром для исследования индуцированных напряжений является пространственное распределение потока в воздушном зазоре (поток, передаваемый между ротором и статором). Напряжение фазы статора будет синусоидальным только в том случае, если радиальный магнитный поток имеет синусоидальное распределение по периферии ротора.Эта пространственная форма волны также называется волной магнитодвижущей силы (МДС) воздушного зазора. Если волна MMF несинусоидальна, в индуцированное напряжение вводятся гармоники более высокого порядка.

В этой модели, чтобы получить волну MMF воздушного зазора, мы оцениваем радиальную составляющую плотности магнитного потока вдоль границы сплошности. По мере вращения ротора мы можем наблюдать, как волна MMF развивается с течением времени. Просто осмотрев, мы можем понять, что индуцированное напряжение не будет идеально синусоидальным.В следующей серии блогов мы объясним, как получить пространственные и временные преобразования Фурье магнитного потока в воздушном зазоре и как связать их с конкатенированным потоком и гармоническим искажением напряжения.

Слева: изменение плотности магнитного потока при вращении ротора. Справа: развитие волны MMF в воздушном зазоре при вращении ротора.

Исследование и оптимизация механического крутящего момента

Существует несколько способов возбуждения обмоток статора для конкретной комбинации паз / полюс двигателя с постоянными магнитами.Схема, показанная на схеме модели машины с постоянными магнитами (первая фигура в сообщении в блоге), является одним из способов управления 12-контактным 10-полюсным двигателем с постоянными магнитами. Возбуждение обмотки статора (или начальное положение ротора) необходимо отрегулировать так, чтобы к ротору прилагался максимальный крутящий момент. Для этого ротору придается начальное угловое смещение. Угол ротора \ alpha изменяется в пределах углового диапазона одного магнита ротора, и вычисляется средний крутящий момент. В качестве начального положения ротора выбрано значение начального углового смещения, соответствующее максимальному среднему крутящему моменту.Таким образом, становится легче визуализировать, какое относительное положение статора и ротора создает максимальный крутящий момент.

В представленном здесь случае наблюдаются два максимума:

  1. Положительный максимум, который будет соответствовать вращению против часовой стрелки — после применения правильной последовательности фаз.
  2. Отрицательный максимум, который приведет к вращению по часовой стрелке (также здесь, после точной настройки последовательности фаз)

Кривая крутящего момента ротора, приведенная в следующем разделе, соответствует положительному максимуму кривой среднего крутящего момента.{\ circ}).

Исследование и оптимизация использования железа и потерь

Используя график плотности магнитного потока, мы можем исследовать распределение плотности магнитного потока в железном сердечнике. В некоторых частях геометрии ярмо может образовывать узкое место, которое может подтолкнуть значение плотности магнитного потока к области насыщения кривой B-H. В других случаях он достаточно широкий, чтобы создавать области с низкой напряженностью поля. Когда определенная часть ярма постоянно показывает слабое поле, эта часть недостаточно используется для создания крутящего момента.{\ circ}, как получено из кривой среднего крутящего момента в предыдущем разделе. Как видно из графиков и кривой крутящего момента ниже, использование чугуна оптимально, когда толщина чугуна составляет около 2 мм: переход менее 2 мм отрицательно повлияет на крутящий момент, а увеличение количества добавит ненужный материал. — и поэтому; вес и стоимость — к мотору.

Распределение плотности магнитного потока для различных значений толщины железа. Слева: 1 мм. Центр: 2 мм.Справа: 3 мм.


Изменение формы кривой крутящего момента ротора в зависимости от толщины железа.

Но это еще не все: при определении толщины железа необходимо учитывать дополнительные факторы, такие как механическая прочность, резистивные и магнитные потери. При исследовании плотности магнитного потока и крутящего момента можно также оценить влияние различной толщины железа на потери в стали. Начиная с версии COMSOL Multiphysics 5.6, имеется встроенная функция Loss Calculation , позволяющая легко оценить потери в меди и потери в стали с использованием уравнения Steinmetz , формулировки Bertotti или определяемой пользователем модели потерь.В следующих статьях блога мы продолжим обсуждение мультифизических аспектов моделирования вращающихся машин, таких как расчет эффективности, оценка повышения температуры, анализ вибрации и исследование шума.

Распределение потерь в железе для различных значений толщины железа. Слева: 1 мм. Центр: 2 мм. Справа: 3 мм.

Сводка

Мы обсудили использование некоторых функций COMSOL Multiphysics и модуля AC / DC, чтобы легко понять некоторые аспекты конструкции вращающихся машин.Мы видели, как линейный график радиальной плотности магнитного потока в воздушном зазоре показывает нам, будет ли индуцированное напряжение синусоидальным. Используя COMSOL Multiphysics, можно использовать параметр Parametric Sweep для определения начального угла ротора, который будет обеспечивать максимальный крутящий момент ротора. Поверхностный график плотности магнитного потока в машине позволяет визуально определить, оптимально ли использование чугуна для эффективного производства крутящего момента. Влияние толщины железа на потери в стали также можно наблюдать с помощью встроенных моделей потерь, предлагаемых COMSOL Multiphysics.

В этом первом сообщении из серии показано, как мощные возможности моделирования и постобработки COMSOL Multiphysics могут быть использованы для получения ценной информации о конструкции вращающихся машин. В следующих статьях блога будут подробно обсуждаться методы расчета крутящего момента, расчет эффективности, анализ потерь в стали и тепловых характеристик, а также проверка вибрации и шума двигателя. Будьте на связи!

Попробуйте сами

Попробуйте смоделировать обсуждаемый здесь электродвигатель, нажав кнопку ниже:

Различий между двигателем и генератором

Различия между двигателем и генератором — Электродвигатель и генератор могут состоять из различных характеристик, таких как основной принцип работы или функции этих инструментов.Производство или потребление электроэнергии, наличие тока в обмотке и их ведомый элемент являются важными факторами, определяющими различия между двигателем и генератором. И двигатель, и генератор по своему принципу следуют правилу Флеминга.

Каковы основные различия между двигателем и генератором?

Электродвигатели и генераторы существенно различаются по своим функциям и назначению, но оба тесно связаны с законом Фарадея для поддержки принципа электромагнитной индукции.

Различия между двигателем и генератором (Ссылка: kindpng.com )

Когда-то экспериментальная новинка, электричество теперь является важной частью нашей современной жизни. Электричество представляет собой климат-контроль, освещение, развлечения и многое другое. Энергия преобразуется из других видов в электричество, чтобы обеспечить электроэнергией, питая устройства и системы для людей.

Преобразование энергии из одного типа в другой — важный ключ к выявлению различий между двигателями и генераторами.Электродвигатель преобразует электричество в механическую энергию, обеспечивая источник энергии для машин. Генератор работает по противоположному принципу, преобразуя механическую энергию в электрическую.

Несмотря на такую ​​значительную разницу в характеристиках, электродвигатели и электрогенераторы тесно связаны по своей фундаментальной структуре и лежащим в основе механизмам. Оба опираются на основной закон физики: закон Фарадея.

Закон электромагнитной индукции Фарадея: электричество и магнетизм

Сегодня хорошо известно, что электричество и магнетизм — это две части одного фундаментального явления, представленного как электромагнетизм.

В 1831 году физик Майкл Фарадей обнаружил электромагнитную индукцию, обнаружив важную взаимосвязь между наблюдаемыми явлениями электричества и магнетизма. Интересно, что в 1832 году другой физик, Джозеф Генри, обнаружил его независимо. Фарадей был первым, кто объединил свои открытия, и по сей день ему приписывают это открытие. Позже Джеймс Клерк Максвелл найдет метод математической формулировки открытий Фарадея, что приведет к разработке формулы Фарадея-Максвелла.

Закон индукции Фарадея — это закон физики, предназначенный для точного прогнозирования и обнаружения того, как магнитное поле будет взаимодействовать с электрической цепью, чтобы генерировать электродвижущую силу (ЭДС). ЭМП преобразуют другие виды энергии, например механическую, в электричество. Этот закон физики позволяет нам создавать как электродвигатели, так и генераторы. Хотя эти две формы машин работают на основе противоположных функций, обе они полагаются на одни и те же основные законы физики.

И двигатель, и генератор относятся к категории машин.Основное различие между двигателем и генератором заключается в том, что двигатель преобразует электрическую энергию в механическую форму, а генератор — наоборот. Двигатель использует электричество, а генератор вырабатывает электричество. Расскажите нам больше о различиях между двигателем и генератором, ознакомившись с их основами.

Разница между двигателем и генератором, вероятно, наиболее типичный вопрос с точки зрения электричества в физике. В этом посте приведены основные отличия двигателя от генератора.Прежде чем объяснять различия между двигателем и генератором, важно узнать, что они собой представляют, их структуру, функции и другие связанные детали. Чтобы узнать больше о различиях между двигателем и генератором, посетите здесь.

Что такое мотор?

Двигатель — это тип электрической машины, преобразующей электрическую энергию в механическую. Электродвигатели получают питание либо от постоянного тока (источники постоянного тока), включая автомобили, батареи или выпрямители, либо от переменного тока (источники переменного тока), включая инверторы, электрические сети или электрические генераторы.

Электродвигатели: от электрической энергии к механической энергии

Электродвигатель работает по простому принципу. Вместо того, чтобы преобразовывать механическую энергию в электричество, электродвигатель принимает электрическую энергию и преобразует ее в механическую мощность. Электродвигатели находят широкое применение — от бытовых приборов до промышленного производственного оборудования.

Ротор вращает вал для выработки механической энергии.Статор состоит из постоянных магнитов или обмоток катушки с сердечником из тонких дисков, соединенных вместе. Эти слои генерируют меньшие потери энергии, чем сплошная сердцевина, введенная в виде пластин. Между ротором и статором есть небольшой воздушный зазор, который помогает улучшить ток намагничивания.

Хотя электродвигатели могут быть электростатическими, пьезоэлектрическими или магнитными, в подавляющем большинстве новых двигателей используются магниты. Некоторые модели работают на постоянном токе, в то время как другие используют переменный ток. Вы можете использовать электродвигатели разных размеров в очень широком диапазоне применений.От массивных электродвигателей, которые приводят в действие промышленное производственное оборудование, до крошечных двигателей в часах с батарейным питанием, эта надежная, но элегантная технология жизненно важна в нашей современной жизни, как мы ее понимаем.

Что такое генератор?

Генератор работает с обратным током мощности, преобразуя механическую энергию в электрическую. Прежде чем узнать о различиях между двигателем и генератором, важно тщательно изучить детали тока и напряжения.

Электрические генераторы: преобразование механической энергии в электрическую

Согласно закону Фарадея, всякий раз, когда происходит изменение магнитного поля внутри проводника, такого как проволочная катушка, электроны могут двигаться перпендикулярно этой магнитной среде. Это создает электродвижущую силу, которая генерирует поток электронов в одном направлении. Это явление можно использовать для выработки электроэнергии в генераторе.

Магниты и проводник перемещаются относительно друг друга, создавая этот магнитный поток.Провода соединяются в тугие катушки, увеличивая количество проводов и выходную электродвижущую силу. Постоянная циркуляция магнита или катушки при удерживании другого на месте дает постоянное изменение магнитного потока. Подвижная часть называется ротором, а неподвижная часть называется статором.

Электрические генераторы делятся на два основных типа: «динамо-машины», вырабатывающие постоянный ток, и «генераторы переменного тока», вырабатывающие переменный ток. Динамо-машина была первым типом генератора, который можно было использовать в промышленности.Он был изобретен независимо несколькими людьми во время промышленной революции. В электрическом динамо-машине используются циркулирующие катушки из проволоки и магнитные поля для преобразования механической энергии в постоянный ток. Динамо-машины использовались для производства энергии, обычно с использованием пара в качестве источника необходимой механической энергии.

Сегодня электрическое динамо имеет несколько применений, кроме нескольких видов использования с низким энергопотреблением. Генераторы гораздо чаще используются для выработки электроэнергии. Эта форма генератора преобразует механическую энергию в источники переменного тока.Вращающийся магнит представлен как ротор, вращающийся внутри набора проводящих катушек на железном сердечнике, введенном как статор. Магнитное поле создает в статоре переменное напряжение. Магнитное поле может создаваться либо электромагнитом катушки возбуждения, либо постоянными магнитами.

Генератор переменного тока в автомобиле, а также основные источники энергии, обеспечивающие подачу электроэнергии в сеть, являются электрогенераторами.

Различия между двигателем и генератором (Ссылка: eoenergy.com )

Определение двигателя

Двигатель выполняет координацию между электрическим током в обмотке провода и магнитным полем двигателя для создания силы в форме крутящего момента, приложенной к валу. Электродвигатель работает в постоянном движении или в линейном движении на значительном расстоянии по сравнению с его размером. Он работает с тремя различными физическими методами: электростатикой, магнетизмом и пьезоэлектричеством.

Классификация двигателя
Двигатель переменного тока

Он может легко преобразовать переменный ток в механический выходной сигнал.Далее мы делим его на три формы; они бывают индукционного типа, синхронного типа, линейного типа.

  • Асинхронный двигатель дополнительно классифицируется на основе ротора, включая ротор с фазовой обмоткой и ротор с короткозамкнутым ротором, а также на основе фазы, включая однофазную форму и трехфазную форму.
  • Линейный двигатель
  • Синхронный двигатель, который далее классифицируется как электродвигатель с сопротивлением и гистерезисным двигателем
Двигатель постоянного тока

Он может просто преобразовывать мощность постоянного тока в механическую мощность.Он разделен на две основные формы:

  • Тип с раздельным возбуждением
  • Тип с самовозбуждением дополнительно классифицируется как последовательный двигатель, подмешивающий электродвигатель, электродвигатель с комбинированной обмоткой, электродвигатель с длинным шунтом и электродвигатель с коротким шунтом.

Определение генератора

Генератор преобразует механическую энергию в электрическую для использования во внешней цепи. Источники механической энергии включают газовые турбины, водяные турбины, паровые турбины и т. Д. Есть две широко распространенные категории электромагнитных генераторов, включая динамо-машины и генераторы переменного тока.

Динамо вырабатывает пульсирующий постоянный ток внутри коммутатора, а генераторы переменного тока вырабатывают переменный ток.

Специализированные типы генераторов
Постоянный ток (DC)

В динамо-машине используются коммутаторы для генерации постоянного тока. Он также самовозбуждается.

  • Одной из таких форм является униполярный генератор. Это электрическая система постоянного тока, содержащая электропроводящий диск или цилиндр, движущийся в плоскости, перпендикулярной однородному магнитному полю.
  • Еще один — магнитогидродинамический (МГД) генератор. Он может напрямую извлекать электрическую энергию из движущихся горячих газов в магнитном поле без использования движущихся электромагнитных систем.
Переменный ток (AC)

Индукционное устройство механически вращает ротор быстрее, чем синхронная скорость, обеспечивая отрицательное скольжение.

Линейный электрический генератор: в этом типе движущийся магнит скользит вперед и назад внутри соленоида — катушки из медного материала, который, в свою очередь, стимулирует в проводе переменный ток.

Генераторы с переменной скоростью и постоянной частотой: эти генераторы могут использоваться для сбора природных ресурсов механической энергии (приливов, ветра и т. Д.) Для выработки электроэнергии.

Основные различия между двигателем и генератором Основные различия между двигателем и генератором (Ссылка: toppr.com )

Определение

Электродвигатель — это устройство, преобразующее электрическую энергию в механическую, а электрический генератор это инструмент, преобразующий механическую энергию в электрическую.

Правило

Двигатель следует правилу левой руки Флеминга, в то время как электрический генератор работает на основе правила правой руки Флеминга.

Принцип

Принцип работы двигателя зависит от токоведущего проводника, который использует силу, когда он находится в магнитной среде. Однако принцип работы генератора основан на электромагнитном явлении.

Приводная сила вала

Вал двигателя приводится в движение магнитной силой, которая усиливается между якорем и полем.Вал электрогенератора прикреплен к ротору, который приводится в движение механической силой.

Источник энергии

Источниками энергии двигателя являются электросети и электроснабжение. В то время как водяные турбины, паровые турбины и двигатели внутреннего сгорания являются основными источниками генератора.

Использование тока

В двигателе ток обеспечивается обмоткой якоря. Напротив, в обмотке якоря генератора генерируется ток.

Типы

Щеточные двигатели постоянного тока, линейные двигатели, бесщеточные двигатели постоянного тока, прямой привод, бесщеточные двигатели переменного тока, серводвигатели и шаговые двигатели — это основные типы двигателей. Три основных вида генераторов: переносные, инверторные и резервные.

Пример

Потолочные вентиляторы, автомобили и т. Д. — все это примеры двигателей. В то же время генератор обычно используется для производства электроэнергии на электростанциях.

Ключевые различия между двигателем и генератором
  • Двигатель преобразует электрическую энергию в механическую, а генератор — наоборот.
  • Электроэнергия используется в двигателе, но генератор вырабатывает электричество.
  • Вал двигателя приводится в движение магнитной силой, возникающей между якорем и обмотками возбуждения, в то время как в случае генератора вал соединен с ротором и приводится в движение механической энергией.
  • В двигателе ток должен подводиться к обмоткам якоря, а в генераторе ток создается в обмотках якоря.
  • Двигатель работает на основе правила левой руки Флеминга, в то время как генератор следует правилу правой руки Флеминга.
  • Примером двигателя является электрический велосипед или автомобиль, где электрический ток подается на систему или устройство, и он преобразуется в механическое движение, и в результате автомобиль или велосипед можно использовать. Примером генератора является то, что на электростанциях турбина используется как инструмент, который преобразует механическую силу воды, падающей с плотины, в производство электроэнергии.

Это основные различия между двигателем и генератором. Соответствующий выбор может быть сделан между двигателями и генераторами в зависимости от требований, применения и типа источника питания.

Разница между электрическим генератором и электродвигателем | by Starlight Generator

  1. Электрогенератор : — Электрогенератор — это тип машины, которая преобразует механический вход (энергию) в электрический выход (энергию). В генераторах реактивное сопротивление, которое необходимо преодолеть, представляет собой обратную силу, возникающую из-за взаимодействия между родительским магнитным полем и магнитным полем, создаваемым из-за индуцированного тока. В этом случае питание подается только на обмотки возбуждения.
  1. Электродвигатель : — Электродвигатель — это тип машины, которая преобразует входную электрическую энергию (энергию) в механическую мощность (энергию). Преодолеваемое реактивное сопротивление — это обратная ЭДС. В этом питание подается как на обмотку возбуждения, так и на обмотку якоря одновременно.

Структура генераторов и двигателей: —

Сам генератор может быть двух типов: —

  1. Если в генераторе используются коммутаторы с разъемным кольцом, он может вырабатывать постоянный или постоянный ток.
  1. Но если это связано с использованием коммутаторов с контактными кольцами, оно может производить переменный или переменный ток.

Коммутаторы изготовлены из таких материалов, как медь.

В случае генераторов постоянного тока коммутаторы с разъемным кольцом обеспечивают протекание однонаправленного тока.

В случае генераторов переменного тока коммутаторы с контактными кольцами обеспечивают протекание двунаправленного тока.

В случае двигателей необходимо создание однонаправленного крутящего момента.

Помимо коммутаторов, другие важные части генераторов включают: —

  1. Якорь : — Он имеет намотанную на него токопроводящую катушку. Этот якорь вращается вокруг оси. Обычно он состоит из железа. Он имеет прочную цилиндрическую форму. Хотя железо тяжелое, оно все же используется, потому что его реактивное сопротивление меньше, что, в свою очередь, создает больший магнитный поток. Таким образом создается больший ток.
  2. Щетки : — Они касаются коммутаторов и проводят индуцированное электричество во внутреннюю цепь.Он состоит из таких материалов, как углерод или латунь.
  3. Вал : — Он соединен с якорем и, таким образом, отвечает за его вращение.
  4. Полюса : — Полюса отвечают за создание исходного магнитного поля и сделаны из мягкого железа. Важно отметить, что магнит — самая важная часть любой вращающейся машины. Магнитное поле служит средой. Обычно для небольших машин используется постоянный магнит. В других случаях для создания этого магнитного поля можно использовать электромагнит.В генераторах такого типа всего четыре клеммы. Два из них выходят из электромагнитов и подключены к источнику постоянного тока и, таким образом, образуют внешнюю цепь. Остальные два — это концы катушки якоря, образующие внутреннюю цепь, в которой протекает наш индуцированный ток. (Этот тип машин постоянного тока известен как , машины постоянного тока с раздельным возбуждением . Создание или производство поля известно как возбуждение, . Другой тип машин постоянного тока называется , самовозбуждающиеся машины постоянного тока .Эти самовозбуждающиеся машины постоянного тока подразделяются на три типа, а именно: — серии, тип , шунтирующий тип и комбинированный тип . Шунтирующий тип также бывает двух типов: короткий шунт типа и длинный шунт типа . Комбинированный тип использует как последовательный, так и шунтирующий тип). Эти столбы состоят из двух частей. Корпус полюса / жилы и полюсные наконечники . Башмаки полюсов имеют изогнутую форму, чтобы идеально окружать арматуру и, таким образом, создавать равномерно распределенную полевую среду.
  5. Хомут : — Все вышеупомянутые части генератора окончательно закрываются крышкой из чугуна для поддержки и обеспечения прочности и жесткости конструкции.

Это все о конструкции генераторов.

В двигателях используется электромагнит, который при взаимодействии с полюсами вращается, производя механическую энергию.

Демонстрация двигателя / генератора


Идентичные генераторы с ручным заводом можно использовать, чтобы показать, что генератор может работать как двигатель, и наоборот.Если механическая энергия передается в одно из устройств путем поворота рукоятки, может производиться электрическая энергия. Если эта электрическая энергия в виде напряжения приложена к другому, то может быть произведена механическая энергия (моторное действие).

На видео ниже кривошип одного из устройств поворачивается для передачи механической энергии, в результате чего на выходе выделяется электрическая энергия. Ручка другого устройства повернута, потому что электрический ввод работает как двигатель.Последний отрезок пленки выравнивает ручки устройств и затем поворачивает генератор на 1 оборот. Вы можете заметить, что ручка «двигателя» поворачивается примерно на 60% оборота, что указывает на КПД примерно 60% для замены генератора / двигателя. Но это почти вдвое выше эффективности системы производства электроэнергии в США, которая дает электричество с КПД около 33%! Причина в том, что эта пара генератор / двигатель не должна проходить через «тепловое узкое место», накладываемое вторым законом термодинамики на обычные электростанции, работающие как тепловые машины.

Высокая эффективность передачи энергии от генератора к двигателю находит широкое применение при эксплуатации дизель-электрических локомотивов. Трудно механически передать энергию от мощных дизельных двигателей на колеса локомотива, которые имеют металлический контакт со стальными рельсами с низким коэффициентом трения. Таким образом, мощность дизельных двигателей используется для запуска генератора, а вырабатываемая электроэнергия используется для приведения в действие тяговых электродвигателей, приводящих в движение колеса.Вырабатываемая электроэнергия может очень медленно и плавно передаваться на колеса с помощью электродвигателей, приводящих в движение оси. На большом локомотиве со стальными колесами нельзя «щелкнуть сцеплением»! Вы просто сидели и крутили колеса, пока не расплавили рельсы.

Индекс

Концепции трансформатора

Концепции магнитного поля

Электрогенератор

Электродвигатель — устройство для преобразования электрической энергии в механическую; электрический генератор делает обратное, используя механическую энергию для выработки электричества.В основе двигателей и генераторов лежит катушка с проводом в магнитном поле. Фактически, одно и то же устройство можно использовать как двигатель или генератор.

Когда устройство используется в качестве двигателя, через катушку пропускается ток. Взаимодействие магнитного поля с током заставляет катушку вращаться. Чтобы использовать устройство в качестве генератора, катушка вращается, вызывая в катушке ток.

Магнитное поле при моделировании находится на экране. Когда площадь контура уменьшается, в каком направлении индуцируется ток в контуре?

  1. По часовой стрелке
  2. против часовой стрелки

Индуцированный ток идет по часовой стрелке, когда область, которую мы видим, уменьшается, и против часовой стрелки, когда область увеличивается.

В какой момент величина тока максимальна?

  1. Когда плоскость петли перпендикулярна полю (максимальная площадь)
  2. Когда плоскость петли параллельна полю (нулевая зона)
  3. Поскольку петля вращается с постоянной скоростью, величина тока постоянна.

График зависимости потока от времени имеет наибольший наклон по величине, когда плоскость контура параллельна полю, так что именно тогда наведенная ЭДС и наведенный ток имеют максимальную величину.

Допустим, мы вращаем катушку из N витков и площади A с постоянной скоростью в однородном магнитном поле B. По закону Фарадея наведенная ЭДС определяется выражением:

ε =
-N d (BA cosθ)
дт

B и A являются константами, и если угловая скорость ω контура постоянна, угол равен:
θ = ωt

Тогда наведенная ЭДС равна:

ε = -NBA
d (cos (ωt))
дт
= ωНБА sin (ωt) = ε o sin (ωt)

Вращение петли в магнитном поле с постоянной скоростью — простой способ генерировать синусоидально колеблющееся напряжение… Другими словами, для выработки электроэнергии переменного тока. Амплитуда напряжения составляет:
ε o = ωNBA

В Северной Америке частота переменного тока от настенной розетки составляет 60 Гц. Следовательно, угловая частота катушек или магнитов, на которых вырабатывается электричество, составляет 60 Гц.

Для выработки электроэнергии постоянного тока используйте тот же тип коммутатора с разъемным кольцом, который используется в двигателе постоянного тока, чтобы полярность напряжения всегда была одинаковой. В очень простом генераторе постоянного тока с одним вращающимся контуром уровень напряжения будет постоянно колебаться.Напряжение от многих контуров (не синхронизированных друг с другом) обычно складывается, чтобы получить относительно стабильное напряжение.

Вместо того, чтобы использовать вращающуюся катушку в постоянном магнитном поле, другой способ использования электромагнитной индукции состоит в том, чтобы удерживать катушку в неподвижном состоянии и вращать постоянные магниты (обеспечивающие магнитное поле и поток) вокруг катушки. Хорошим примером этого является способ производства электроэнергии, например, на гидроэлектростанции. Энергия падающей воды используется для вращения постоянных магнитов вокруг фиксированного контура, производящего мощность переменного тока.

Электромотор-генератор премиум-класса для легких и тяжелых задач

Замечательный. Электродвигатель-генератор , который продается на Alibaba.com, предоставляет отличную возможность для различных организаций, от частных лиц до крупных организаций, повысить свою производительность. Они доступны в огромном количестве. электродвигатель-генератор различных форм, размеров и производительности. Такое разнообразие гарантирует, что все покупатели, заинтересованные в этих инновационных товарах, найдут наиболее подходящие для удовлетворения их потребностей.

На сайте Alibaba.com есть функции, обеспечивающие высочайшую производительность и надежность. электродвигатель-генератор производителей, которые поставляют бесспорно первоклассную продукцию. Они изготовлены из прочных материалов, которые выдерживают внешние и внутренние силы, такие как механические удары, химическое воздействие и тепло, среди прочего. В этом смысле они впечатляюще долговечны, а их производительность безупречна. Они просты в установке и обслуживании благодаря своей креативной форме и дизайну, которые позволяют оптимизировать работу с другими компонентами в более крупной системе.Это делает их удобными и популярными среди многих пользователей.

При покупке. Электродвигатель генератор на сайте покупатели могут получить продукцию высочайшего качества. Они поставляются ведущими мировыми брендами и производителями, которые соблюдают строгие требования к качеству и нормативным требованиям в энергетическом секторе. Возможность вторичной переработки и биоразлагаемость их материалов увеличивает их популярность среди пользователей, поскольку они поддерживают экологическую устойчивость. Они идеально подходят для людей и организаций, которые выступают за экологически чистую энергию и экологически чистые методы.

Изучение Alibaba.com обнаруживает непреодолимые скидки на эти товары. Все покупатели найдут для себя самое подходящее. Электродвигатель генератор вариантов по мощности и бюджетным параметрам. Благодаря своим высочайшим характеристикам эти предметы стоят всех денег, которые покупатели вкладывают в них.

Комплект электродвигателя / генератора — STEM

Обзор

Товар № 351053

. Средний рейтинг:

Рекомендуемый сорт (ы): 5-12

Описание
Исследуйте чудеса электричества, построив двигатель / генератор, который заставляет мигать светодиодную лампу! В комплект входят: диск, защелка и неодимовые магниты, компас, проволока, наждачная бумага, пружина, канцелярские скрепки, гайки, гвозди, винты, болты, светоизлучающий диод (LED), пластиковые пластины и трубки, а также подробный буклет с шестью экспериментами и 6 проектов.Соответствует научным стандартам нового поколения.

Детали
  • Тип: Манипуляторы
  • ISBN / UPC 094051311017
  • Габаритные размеры в упаковке (высота, ширина и длина): -1 х -1 х -1
Безопасность
ВНИМАНИЕ: МАГНИТНЫЕ КОМПОНЕНТЫ — Этот продукт содержит (а) небольшой магнит (ы).
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *