+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Закон электромагнитной индукции Фарадея: значение, задачи, формулы

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет  успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику.

Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.

 

Майкл Фарадей (1791-1867)

 

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

 

Рамка в поле

 

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС, возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Для определения направления индукционного тока применяется знаменитое правило буравчика, или правило правой руки, оно же правило правого винта.

Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока.  

 

Правило правой руки

 

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть — обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!

Автор: Иван

Иван Колобков, известный также как Джони.

Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Формула закона электромагнитной индукции

Это основной закон, который используют при вычислениях, которые связаны с электромагнитной индукцией.

Формула данного закона выглядит следующим образом:

   

где – электродвижущая сила (ЭДС) индукции, которая возникает в проводнике, если он находится в переменном магнитном поле. Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции. – магнитный поток, через поверхность, ограниченную этим контуром. Формула (1) означает то, что ЭДС индукции равна по модулю и противоположна по знаку скорости изменения магнитного потока через некоторую поверхность.

Магнитный поток, который пронизывает контур, может изменяться из-за разных причин, например, перемещения контура, его деформации, изменения самого магнитного поля. Полная производная в формуле закона электромагнитной индукции охватывает весь спектр действия этих причин.

Следует учесть, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки.

Знак минус в законе индукции отражает правило Ленца.

В виде (1), закон электромагнитной индукции записывается в международной системе единиц (СИ).

Если изменение магнитного потока происходит равномерно, то формулу закона электромагнитной индукции можно записать как:

   

Формулу закона для электромагнитной индукции, если контур состоит из N витков, соединенных последовательно, записывают в виде:

   

где – потокосцепление.

Результаты применения основного закона электромагнитной индукции

Формулы ЭДС индукции для частных случаев

ЭДС индукции в прямом проводнике, имеющем длину l, движущемся в магнитном поле и пересекающем линии магнитной индукции, если скорость его движения () перпендикулярна вектору магнитной индукции (), равна:

   

Разность потенциалов (U), возникающая на концах проводника длиной l, движущегося в однородном магнитном поле со скоростью v равна:

   

где – угол между направлением вектора скорости и направлением вектора магнитной индукции.

Если в однородном магнитном поле вращается плоский контур со скоростью , при этом ось вращения находится в плоскости витка и составляет угол в 900 с направлением вектора внешнего магнитного поля, то в контуре появляется ЭДС индукции равная:

   

где S – площадь, которую ограничивает виток; – мгновенное значение угла между и вектором нормали к плоскости рамки; – поток самоиндукции витка.

Если в рамке, вращающейся со скоростью в однородном магнитном поле, имеется N витков, то

   

в формуле (6) самоиндукцией витков пренебрегли.

Пусть проводник находится в покое, при этом изменяется во времени само магнитное поле, тогда ЭДС индукции можно найти как:

   

Примеры решения задач по теме «Закон электромагнитной индукции»

Закон фарадея: формула для электромагнитной индукции и открытие

Закон электромагнитной индукции Фарадея для начинающих

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью.

Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет  успешно извлечь из недр памяти закон Фарадея.

Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Обратите внимание

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.

Майкл Фарадей (1791-1867)

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Рамка в поле

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Для определения направления индукционного тока применяется знаменитое правило буравчика, или правило правой руки, оно же правило правого винта.

Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока. Прямо у нас на сайте, вы также можете купить диплом по ПГС.

Правило правой руки

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть — обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!

Источник: https://Zaochnik. ru/blog/zakon-elektromagnitnoj-indukcii-faradeya-dlya-nachinayushhix/

Законы Фарадея в химии и физике — краткое объяснение простыми словами

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем.

Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям.

Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны).

На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор.

Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Важно

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г.

Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея.

Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Совет

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора.

В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле).

Обратите внимание

Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m=k*Q

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t, тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

Bт = 100% * mрасч/mтеор

Важно

Ну и напоследок рекомендуем просмотреть подробное объяснение закона Фарадея для электролиза:

Источник: https://samelectrik.ru/zakony-faradeya-v-ximii-i-fizike. html

Закон электромагнитной индукции. Правило Ленца

В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции. Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция — это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую — и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока, кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром. 

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n: 

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением: 

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в  проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.

Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита.

Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу.

Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

Рекомендуем к прочтению — закон Ампера 

1 1 1 1 1 1 1 1 1 1 4.15 (52 Голоса)

Источник: https://electroandi.ru/elektrichestvo-i-magnetizm/zakon-elektromagnitnoj-induktsii-pravilo-lentsa.html

Закон ЭДС индукции Фарадея для трансформаторов

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока.

Совет

Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным.

До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита.

Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу.

Ток будет перемещаться в сторону движения часовой стрелки.

Обратите внимание

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС.

Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле.

Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Важно

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях.

Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Источник: https://ProTransformatory.ru/raschety/zakon-faradeya

Закон Фарадея об электромагнитной индукции: формула явления, силы индукционного тока и скорости изменения магнитного потока

В нашем мире все виды существующих сил, за исключением сил тяготения, представлены электромагнитными взаимодействиями. Во Вселенной, несмотря на удивительное разнообразие воздействий тел друг на друга, в любых веществах, живых организмах всегда встречается проявление электромагнитных сил. Как произошло открытие электромагнитной индукции (ЭИ), расскажем ниже.

Открытие ЭИ

Поворот магнитной стрелки вблизи проводника с током в опытах Эрстеда впервые указал на связь электрических и магнитных явлений. Очевидно: электроток «окружает» себя магнитным полем.

Так нельзя ли добиться его возникновения посредством магнитного поля — подобную задачу поставил Майкл Фарадей. В 1821 году он отметил это свойство в своем дневнике о превращении магнетизма в электричество.

Успех к ученому пришел не сразу. Лишь глубокая уверенность в единстве природных сил и упорный труд привели его через десять лет к новому великому открытию.

Решение задачи долго не давалось Фарадею и другим его коллегам, потому как они пытались получить электричество в неподвижной катушке, используя действие постоянного магнитного поля. Между тем, впоследствии выяснилось: изменяется количество силовых линий, пронизывающих провода, и возникает электроэнергия.

Явление ЭИ

Процесс появления в катушке электричества в результате изменения магнитного поля характерен для электромагнитной индукции и определяет это понятие.

Вполне закономерно, что разновидность тока, возникающего в ходе данного процесса, называется индукционным. Эффект сохранится, если саму катушку оставить без движения, но перемещать при этом магнит.

С использованием второй катушки можно и вовсе обойтись без магнита.

Если пропустить электричество через одну из катушек, то при их взаимном перемещении во второй возникнет индукционный ток. Можно надеть одну катушку на другую и менять величину напряжения одной из них, замыкая и размыкая ключ. При этом магнитное поле, пронизывающее катушку, на которую воздействуют ключом, меняется, и это становится причиной возникновения индукционного тока во второй.

Закон

Во время опытов легко обнаружить, что увеличивается число пронизывающих катушку силовых линий — стрелка используемого прибора (гальванометр) смещается в одну сторону, уменьшается – в иную. Более тщательное исследование показывает, что сила индукционного тока прямо пропорциональна скорости изменения числа силовых линий. В этом заключен основной закон электромагнитной индукции.

Данный закон выражает формула:

Она применяется, если за период времени t магнитный поток изменяется на одну и ту же величину, когда скорость изменения магнитного потока Ф/t постоянна.

Важно! Для индукционных токов справедлив закон Ома: I=/R, где — это ЭДС индукции, которую находят по закону ЭИ.

Замечательные опыты, проведенные когда-то знаменитым английским физиком и ставшие основой открытого им закона, сегодня без особого труда способен проделать любой школьник. Для этих целей используются:

  • магнит,
  • две проволочные катушки,
  • источник электроэнергии,
  • гальванометр.

Закрепим на подставке магнит и поднесем к нему катушку с присоединенными к гальванометру концами.

Поворачивая, наклоняя и перемещая ее вверх и вниз, мы меняем число силовых линий магнитного поля, пронизывающих ее витки.

Гальванометр регистрирует возникновение электричества с постоянно меняющимися в ходе опыта величиной и направлением.

Находящиеся же относительно друг друга в покое катушка и магнит не создадут условий и для возникновения электричества.

Другие законы Фарадея

На основе проведенных исследований были сформированы еще два одноименных закона:

  1. Суть первого состоит в такой закономерности: масса вещества m, выделяемая электрическим напряжением на электроде, пропорциональна количеству электричества Q, прошедшему через электролит.
  2. Определение второго закона Фарадея, или зависимости электрохимического эквивалента от атомного веса элемента и его валентности формулируется так: электрохимический эквивалент вещества пропорционален его атомному весу, а также обратно пропорционален валентности.

Из всех существующих видов индукции огромное значение имеет обособленный вид данного явления – самоиндукция. Если мы возьмем катушку, которая имеет большое количество витков, то при замыкании цепи, лампочка загорается не сразу.

На этот процесс может уйти несколько секунд. Очень удивительный на первый взгляд факт. Чтобы понять, в чем здесь дело, необходимо разобраться, что же происходит в момент замыкания цепи. Замкнутая цепь словно «пробуждает» электроток, начинающий свое движение по виткам провода. Одновременно в пространстве вокруг нее мгновенно создается усиливающееся магнитное поле.

Катушечные витки оказываются пронизанными изменяющимся электромагнитным полем, концентрирующимся сердечником. Возбуждаемый же в витках катушки индукционный ток при нарастании магнитного поля (в момент замыкания цепи) противодействует основному.

Совет

Мгновенное достижение им своего максимального значения в момент замыкания цепи невозможно, оно «растет» постепенно. Вот и объяснение, почему лампочка не вспыхивает сразу.

Когда цепь размыкается, основной ток усиливается индукционным в результате явления самоиндукции, и лампочка ярко вспыхивает.

Важно! Суть явления, названного самоиндукцией, характеризуется зависимостью изменения, возбуждающего индукционный ток электромагнитного поля от изменения силы текущего по цепи электротока.

Направление тока самоиндукции определяет правило Ленца. Самоиндукция легко сравнима с инерцией в области механики, поскольку оба явления обладают схожими характеристиками.

И действительно, в результате инерции под влиянием силы тело приобретает определенную скорость постепенно, а не сиюминутно. Не сразу – под действием самоиндукции — при включении батареи в цепь появляется и электричество.

Продолжая сравнение со скоростью, заметим, он так же не способен мгновенно исчезнуть.

Вихревые токи

Наличие вихревых токов в массивных проводниках может послужить еще одним примером электромагнитной индукции.

Специалисты знают, что металлические трансформаторные сердечники, якоря генераторов и электродвигателей никогда не бывают сплошными. При их изготовлении на отдельные тонкие листы, из которых они состоят, накладывается слой лака, изолирующий один лист от другого.

Нетрудно понять, какая сила заставляет человека создавать именно такое устройство. Под действием электромагнитной индукции в переменном магнитном поле сердечник пронизывают силовые линии вихревого электрополя.

Обратите внимание

Представим, что сердечник изготовлен из сплошного металла. Поскольку его электрическое сопротивление невелико, возникновение индукционного напряжения большой величины было бы вполне объяснимым.

Сердечник бы в итоге разогревался, и немалая часть электрической энергии терялась бесполезно. Кроме того, возникла бы необходимость принятия специальных мер для охлаждения.

А изолирующие слои не позволяют достигать больших величин.

Индукционные токи, присущие массивным проводникам, называются вихревыми не случайно – их линии замкнуты подобно силовым линиям электрополя, где они и возникают. Чаще всего вихревые токи применяются в работе индукционных металлургических печей для выплавки металлов. Взаимодействуя с породившим их магнитным полем, они иногда становятся причиной занимательных явлений.

Возьмем мощный электромагнит и поместим между вертикально расположенными его полюсами, к примеру, пятикопеечную монету. Вопреки ожиданию, она не упадет, а будет медленно опускаться. Для прохождения нескольких сантиметров ей потребуются секунды.

Поместим, например, пятикопеечную монету между вертикально расположенными полюсами мощного электромагнита и отпустим ее.

Вопреки ожиданию, она не упадет, а будет медленно опускаться. Для прохождения нескольких сантиметров ей потребуются секунды. Передвижение монеты напоминает перемещение тела в вязкой среде. Почему такое происходит.

По правилу Ленца направления возникающих при передвижении монеты вихревых токов в неоднородном магнитном поле таковы, что поле магнита выталкивает монету вверх.

Эту особенность используют для «успокоения» стрелки в измерительных приборах.

Алюминиевая пластина, находящаяся между магнитными полюсами, прикрепляется к стрелке, и вихревые токи, возникающие в ней, способствуют быстрому затуханию колебаний.

Демонстрацию явления электромагнитной индукции поразительной красоты предложил профессор Московского университета В.К. Аркадьев. Возьмем свинцовую чашу, обладающую сверхпроводящей способностью, и попробуем уронить над ней магнит. Он не упадет, а будет словно «парить» над чашей.

Объяснение здесь простое: равное нулю электрическое сопротивление сверхпроводника способствует возникновению в нем электричества большой величины, способных сохраняться продолжительное время и «удерживать» магнит над чашей.

Важно

По правилу Ленца, направление магнитного поля их таково, что отталкивает магнит и не дает ему упасть.

Изучаем физику — закон электро-магнитной индукции

Правильна формулировка закона Фарадея

Вывод

Электромагнитные силы – это силы, которые позволяют людям видеть окружающий мир и чаще других встречаются в природе, например, свет — тоже пример электромагнитных явлений. Жизнь человечества невозможно представить без данного явления.

Источник: https://uchim.guru/fizika/zakon-elektromagnitnoj-induktsii-formula.html

Закон электромагнитной индукции Фарадея

Источник: https://electric-220.ru/news/zakon_ehlektromagnitnoj_indukcii_faradeja/2018-09-29-1576

Формула закона электромагнитной индукции

Это основной закон, который используют при вычислениях, которые связаны с электромагнитной индукцией.

Формула данного закона выглядит следующим образом:

где– электродвижущая сила (ЭДС) индукции, которая возникает в проводнике, если он находится в переменном магнитном поле.

Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции.– магнитный поток, через поверхность, ограниченную этим контуром.

Обратите внимание

Формула (1) означает то, что ЭДС индукции равна по модулю и противоположна по знаку скорости изменения магнитного потока через некоторую поверхность.

Магнитный поток, который пронизывает контур, может изменяться из-за разных причин, например, перемещения контура, его деформации, изменения самого магнитного поля. Полная производная в формуле закона электромагнитной индукции охватывает весь спектр действия этих причин.

Следует учесть, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки.

Знак минус в законе индукции отражает правило Ленца.

В виде (1), закон электромагнитной индукции записывается в международной системе единиц (СИ).

Если изменение магнитного потока происходит равномерно, то формулу закона электромагнитной индукции можно записать как:

Формулу закона для электромагнитной индукции, если контур состоит из N витков, соединенных последовательно, записывают в виде:

где– потокосцепление.

Результаты применения основного закона электромагнитной индукции

Формулы ЭДС индукции для частных случаев

ЭДС индукции в прямом проводнике, имеющем длину l, движущемся в магнитном поле и пересекающем линии магнитной индукции, если скорость его движения () перпендикулярна вектору магнитной индукции (), равна:

Разность потенциалов (U), возникающая на концах проводника длиной l, движущегося в однородном магнитном поле со скоростью v равна:

где – угол между направлением вектора скорости и направлением вектора магнитной индукции.

Важно

Если в однородном магнитном поле вращается плоский контур со скоростью , при этом ось вращения находится в плоскости витка и составляет угол в 900 с направлением векторавнешнего магнитного поля, то в контуре появляется ЭДС индукции равная:

где S – площадь, которую ограничивает виток;– мгновенное значение угла междуи вектором нормали к плоскости рамки;– поток самоиндукции витка.

Если в рамке, вращающейся со скоростью в однородном магнитном поле, имеется N витков, то

в формуле (6) самоиндукцией витков пренебрегли.

Пусть проводник находится в покое, при этом изменяется во времени само магнитное поле, тогда ЭДС индукции можно найти как:

Примеры решения задач по теме «Закон электромагнитной индукции»

Содержание:
  1. История открытия
  2. Законы электромагнитной индукции
  3. Видеоурок

Если взять замкнутую проводящую систему и создать в ней условия для того чтобы магнитный поток изменился в магнитном поле, то в результате этих движений появится электрический ток.

Данное обстоятельство описывает закон электромагнитной индукции Фарадея – английского ученого, который при проведении опытов добился превращения магнитной энергии в электричество. Оно получило название индукционного, поскольку до того времени его можно было создать лишь гальваническим путем.

История открытия

Явление электромагнитной индукции было открыто сразу двумя учеными. Это были Майкл Фарадей и Джозеф Генри, сделавшие свое открытие в 1831 году. Публикация Фарадеем результатов проведенных экспериментов была сделана раньше его коллеги, поэтому индукцию связывают именно с этим ученым. В дальнейшем это понятие было включено в систему СГС.

Для демонстрации явления использовался железный тор, напоминающий конфигурацию современного трансформатора. Противоположные стороны его были обмотаны двумя проводниками с целью использования электромагнитных свойств.

К одному из проводов подключался ток, вызывающий своеобразную электрическую волну при прохождении сквозь тор, и некоторый электрический всплеск с противоположной стороны. Наличие тока было зафиксировано гальванометром. Точно такой же всплеск электричества наблюдался и в момент отключения провода.

Постепенно были обнаружены и другие формы проявления электромагнитной индукции. Кратковременное возникновение тока наблюдалось во время генерации его на медном диске, вращающемся возле магнита. На самом диске был установлен скользящий электропровод.

Наибольшие представление о том, что такое индуктивность, дал эксперимент с двумя катушками. Одна из них, с меньшими размерами, подключена к жидкостной батарее, расположенной на рисунке с правой стороны. Таким образом, через эту катушку начинает протекать электрический ток, под действием которого возникает магнитное поле.

Когда обе катушки находятся в неподвижном положении относительно друг друга, никаких явлений не происходит. Когда небольшая катушка начинает двигаться, то есть выходить из большой катушки или входить в нее, наступает изменение магнитного потока. В результате, в большой катушке наблюдается появление электродвижущей силы.

Открытие Фарадея доработал другой ученый – Максвелл, который обосновал его математически, отображая данное физическое явление дифференциальными уравнениями. Еще одному ученому-физику – Ленцу удалось определить направление электротока и ЭДС, полученных под действием электромагнитной индукции.

Законы электромагнитной индукции

Сущность электромагнитной индукции определяется замкнутым контуром с электропроводностью, площадь которого пропускает через себя изменяющийся магнитный поток. В этот момент под влиянием магнитного потока появляется электродвижущая сила Еi и в контуре начинает течь электрический ток.

Закон Фарадея для электромагнитной индукции заключается в прямой зависимости ЭДС и скорости, составляющих пропорцию. Данная скорость представляет собой время, в течение которого магнитный поток подвергается изменениям.

Данный закон выражается формулой Еi = — ∆Ф/∆t, в которой Еi – значение электродвижущей силы, возникающей в контуре, а ∆Ф/∆t является скоростью изменения магнитного потока. В этой формуле не совсем понятным остается знак «минус», но ему тоже имеется свое объяснение.

Совет

В соответствии с правилом русского ученого Ленца, изучавшего открытия Фарадея, этот знак отображает направление ЭДС, возникающей в контуре.

То есть, направление индукционного тока происходит таким образом, что создаваемый им магнитный поток на площади, ограниченной контуром, препятствует изменениям, вызванным этим током.

Открытия Фарадея были доработаны Максвеллом, у которого теория электромагнитного поля получила новые направления. В результате, появился закон Фарадея и Максвелла, выраженный в следующих формулах:

  • Edl = -∆Ф/∆t – отображает электродвижущую силу.
  • Hdl = -∆N/∆t – отображает магнитодвижущую силу.

В этих формулах Е соответствует напряженности электрического поля на определенном участке dl, Н является напряженностью магнитного поля на этом же участке, N – поток электрической индукции, t – период времени.

Оба уравнения отличаются симметричностью, позволяющей сделать вывод, что магнитные и электрические явления связаны между собой. С физической точки зрения эти формулы определяют следующее:

  • Изменениям в электрическом поле всегда сопутствует образование магнитного поля.
  • Изменения в магнитном поле всегда происходят одновременно с образованием электрического поля.

Изменяющийся магнитный поток, проходящий сквозь замкнутую конфигурацию проводящего контура, приводит к возникновению в этом контуре электрического тока. Это основная формулировка закона Фарадея. Если изготовить проволочную рамку и поместить ее внутри вращающегося магнита, то в самой рамке появится электричество.

Это и будет индукционный ток, в полном соответствии с теорией и законом Майкла Фарадея. Изменения магнитного потока, проходящего через контур, могут быть произвольными.

Следовательно, формула ∆Ф/∆t бывает не только линейной, а в определенных условиях принимает любую конфигурацию. Если изменения происходят линейно, то ЭДС электромагнитной индукции, возникающей в контуре, будет постоянной.

Временной интервал t становится каким угодно, а отношение ∆Ф/∆t не будет зависеть от его продолжительности.

Если же изменения магнитного потока принимают более сложную форму, то ЭДС индукции уже не будет постоянной, а будет зависеть от данного промежутка времени. В этом случае временной интервал рассматривается в качестве бесконечно малой величины и тогда соотношение ∆Ф/∆t с точки зрения математики станет производной от изменяющегося магнитного потока.

Существует еще один вариант, трактующий закон электромагнитной индукции Фарадея. Его краткая формулировка объясняет, что действие переменного магнитного поля вызывает появление вихревого электрического поля.

Этот же закон можно трактовать как одну из характеристик электромагнитного поля: вектор напряженности поля может циркулировать по любому из контуров со скоростью, равной скорости изменения магнитного потока, проходящего через тот или иной контур.

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/formuly-po-fizike/formula-zakona-elektromagnitnoj-indukcii/

§23. Закон электромагнитной индукции Фарадея

В 1831 г. Фарадей экспериментально открыл явление электромагнитной индукции. Суть явления состояла в том, что если через замкнутый контур происходило изменение магнитного потока, то в контуре возникала электродвижущая сила, приводящая к возникновению замкнутого тока.

Этот ток был назван индукционным током. Правило, устанавливающее направление индукционного тока было сформулировано в 1833г. Э. Х. Ленцем (1804 — 1865) и называется правилом Ленца.

Оно гласит: индукционный ток направлен так, что создаваемый им магнитный поток стремится компенсировать изменение магнитного потока, вызывающего данный ток.

Опыты Фарадея состояли в следующем: катушка индуктивности подключалась к чувствительному гальванометру и в катушку вдвигался и выдвигался постоянный магнит.

Из опытов следовало, что. Но сила тока зависит еще и от сопротивления контура. Поэтому закон электромагнитной индукции формулируется не для индукционного тока, а для причины, вызывающий этот ток, т. е. для. В 1845г. Ф. Э. Нейман (1799 — 1895) дал математическое определение закона электромагнитной индукции в современной форме:

(23.1)

Хотя внешне формулы (22.6) и (23.1) одинаковы, между ними существует принципиальное различие. Возникновениев (22.6) связано с движением проводников в магнитном поле и с действием на заряды силы Лоренца. Тогда как в (23.

1) на заряды в контуре действует электрическое поле, причем сам контур лишь только инструмент или прибор, который может обнаружить это изменяющееся электрическое поле, которое возникает в пространстве. Следовательно закон Фарадея отражает новое физическое явление, а именно: изменяющееся магнитное поле порождает изменяющееся электрическое поле.

Совет

А это означает, что электрическое поле порождается не только зарядами, но и изменяющимся магнитным полем. Закон электромагнитной индукции является фундаментальным законом природы.

Дифференциальная формулировка закона

, а тогда магнитный поток, а.

.

К левой части применим формулу Стокса. Тогда. После того как перенесем все слагаемые в одну сторону получим:

В силу произвольностиможно заключить, что подынтегральная функция равна нулю, а значит

(23.2)

Уравнение (23.2) является дифференциальной формой закона электромагнитной индукции. В переменных магнитных полях, а значити следовательно, в отличие от электростатического поля, порождаемого неподвижными зарядами, переменное электрическое поле не является потенциальным и работапри перемещении зарядапо замкнутому контуру не равна нулю:

.

Так как закон электромагнитной индукции не затрагивает закона порождения магнитного поля, то уравнение (18.6)остается в силе, а значит в силе остается и выражение (19.2):.

Если подставить (19.2) в (23.2), то, а значит

. (23.3)

Отсюда следует, что в переменных полях потенциальным является вектор, а значит он равен градиенту скалярной функции, т. е., а значит

. (23.4)

Второе слагаемое в (23.4) означает, что электрическое поле может порождаться неподвижными зарядами, а первое означает, что электрическое поле может порождаться переменным магнитным полем.

Источник: https://www.webpoliteh.ru/23-zakon-elektromagnitnoj-indukcii-faradeya/

Явление электромагнитной индукции. Закон Фарадея



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса — ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший «Салат из свеклы с чесноком»

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Обратите внимание

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года.

Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Явление электромагнитной индукции можно обнаружить в таких ситуациях:

1. при относительном движении катушки и магнита;

2. при изменении индукции магнитного поля в контуре, который расположен перпендикулярно линиям магнитного поля.

3. при изменении положения контура, расположенного в постоянном магнитном поле.

Закон Фарадея.

Согласно закону электромагнитной индукции Фарадея (в СИ):

где

— электродвижущая сила, действующая вдоль произвольно выбранного контура,

— магнитный поток через поверхность, ограниченную этим контуром.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

— электродвижущая сила,

— число витков,

— магнитный поток через один виток,

— потокосцепление катушки.

Векторная формула:

В дифференциальной форме закон Фарадея можно записать в следующем виде:

(в системе СИ)

или

(в системе СГС).

В интегральной форме (эквивалентной):

(СИ)

или

(СГС)

Важно

Здесь— напряжённость электрического поля,— магнитная индукция,— произвольная поверхность,— её граница. Контур интегрированияподразумевается фиксированным (неподвижным).

Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

· В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[2].

Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенствопродолжает соблюдаться, но ЭДС в левой части теперь не сводится к(которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).

· Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[3] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п.

к формулев случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[4].

В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.

· Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной.

Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности.

А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы её рассчитали.

· Потенциальная форма

При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

(в случае отсутствия без вихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

В общем случае, при учёте и без вихревого (например, электростатического) поля имеем:

.

Источник: https://megapredmet.ru/1-64669.html

Закон электромагнитной индукции Фарадея, колебательный контур

§ 3. Электродинамика

3.1. Основные понятия и законы электростатики Закон Кулона:
сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности в этом законе

В СИ коэффициент k записывается в виде

где ε0 = 8, 85 · 10−12 Ф/м (электрическая постоянная).

Точечными зарядами называют такие заряды, расстояния между которыми гораздо больше их размеров.
 Электрические заряды взаимодействуют между собой с помощью электрического поля. Для качественного описания электрического поля используется силовая характеристика, которая называется «напряжённостью электрического поля» (E). Напряжённость электрического поля равна отношению силы, действующей на пробный заряд, помещённый в некоторую точку поля, к величине этого заряда:

 Направление вектора напряжённости совпадает с направлением силы, действующей на положительный пробный заряд. [E]=B/м. Из закона Кулона и определения напряжённости поля следует, что напряжённость поля точечного заряда

где q — заряд, создающий поле; r — расстояние от точки, где находится заряд, до точки, где создаётся поле.
 Если электрическое поле создаётся не одним, а несколькими зарядами, то для нахождения напряжённости результирующего поля используется принцип суперпозиции электрических полей: напряжённость результирующего поля равна векторной сумме напряжённостей полей, созданных каждым из зарядов — источников в отдельности:

Работа электрического поля при перемещении заряда: найдём работу перемещения положительного заряда силами Кулона в однородном электрическом поле. Пусть поле перемещает заряд q из точки 1 в точку 2:


 В электрическом поле работа не зависит от формы траектории, по которой перемещается заряд. Из механики известно, что если работа не зависит от формы траектории, то она равна изменению потенциальной энергии с противоположным знаком:

Отсюда следует, что

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:

 Запишем работу поля в виде

Здесь U = ϕ1 − ϕ2разность потенциалов в начальной и конечной точках траектории. Разность потенциалов называют также напряжением

 Часто наряду с понятием «разность потенциалов» вводят понятие «потенциал некоторой точки поля». Под потенциалом точки подразумевают разность потенциалов между данной точкой и некоторой заранее выбранной точкой поля. Эту точку можно выбирать в бесконечности, тогда говорят о потенциале относительной бесконечности.
Потенциал поля точечного заряда подсчитывается по формуле

 Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением

3.2. Электроёмкость. Конденсаторы. Энергия электрического поляЭлектроёмкостью тела называют величину отношения

 Формула для подсчёта ёмкости плоского конденсатора имеет вид:

где S — площадь обкладок, d — расстояние между ними.
 Конденсаторы можно соединять в батареи. При параллельном соединении ёмкость батареи C равна сумме ёмкостей конденсаторов:

Разности потенциалов между обкладками одинаковы, а заряды прямо пропорциональны ёмкостям.
 При последовательном соединении величина, обратная ёмкости батареи, равна сумме обратных ёмкостей, входящих в батарею:

 Заряды на конденсаторах одинаковы, а разности потенциалов обратно пропорциональны ёмкостям.
 Заряженный конденсатор обладает энергией. Энергию заряженного конденсатора можно подсчитать по любой из следующих формул:

3.3. Основные понятия и законы постоянного токаЭлектрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

Коэффициент пропорциональности R, называемый электрическим сопротивлением, является характеристикой проводника [R]=Ом. Сопротивление проводника зависит от его геометрии и свойств материала:

где l — длина проводника, ρ — удельное сопротивление, S — площадь поперечного сечения. ρ является характеристикой материала и его состояния. [ρ] = Ом·м.
 Проводники можно соединять последовательно. Сопротивление такого соединения находится как сумма сопротивлений:

 При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

 Для того чтобы в цепи длительное время протекал электрический ток, в составе цепи должны содержаться источники тока. Количественно источники тока характеризуют их электродвижущей силой (ЭДС). Это отношение работы, которую совершают сторонние силы при переносе электрических зарядов по замкнутой цепи, к величине перенесённого заряда:

 Если к зажимам источника тока подключить нагрузочное сопротивление R, то в получившейся замкнутой цепи потечёт ток, силу которого можно подсчитать по формуле

Это соотношение называют законом Ома для полной цепи.

 Электрический ток, пробегая по проводникам, нагревает их, совершая при этом работу

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.

Закон Джоуля-Ленца:

3.4. Основные понятия и законы магнитостатики  Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
 Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции.

 Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:

Единица магнитной индукции называется тесла (1 Тл)

Магнитным потоком Φ через поверхность контура площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь этой поверхности и на косинус угла между вектором магнитной индукции ➛B и нормалью к поверхности ➛n:

Единицей магнитного потока является вебер (1 Вб).
 На проводник с током, помещённый в магнитное поле, действует сила Ампера

Закон Ампера:
на отрезок проводника с током силой I и длиной l, помещённый в однородное магнитное поле с индукцией ➛B , действует сила, модуль которой равен произведению модуля вектора магнитной индукции на силу тока, на длину участка проводника, находящегося в магнитном поле, и на синус угла между направлением вектора ➛B и проводником с током:

 Направление силы Ампера определяется с помощью правила левой руки:
если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца указывали бы направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.
 На электрический заряд, движущийся в магнитном поле, действует сила Лоренца. Модуль силы Лоренца, действующей на положительный заряд, равен произведению модуля заряда на модуль вектора магнитной индукции и на синус угла между вектором магнитной индукции и вектором скорости движущегося заряда:

 Направление силы Лоренца определяется с помощью правила левой руки: если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда, то отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряд. Для отрицательно заряженной частицы сила Лоренца направлена против направления большого пальца.

3.5. Основные понятия и законы электромагнитной индукции  Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:

Знак «−» связан с направлением индукционного тока. Оно определяется по правилу Ленца:
индукционный ток имеет такое направление, что его действие противодействует причине, вызвавшей появление этого тока.
 Магнитный поток, пронизывающий контур, прямо пропорционален току, протекающему в этом контуре:

Коэффициент пропорциональности L зависит от геометрии контура и называется индуктивностью, или коэффициентом самоиндукции этого контура. [L] = 1 Гн

Энергию магнитного поля тока можно подсчитать по формуле

где L — индуктивность проводника, создающего поле; I — ток, текущий по этому проводнику

3.6. Электромагнитные колебания и волныКолебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).

 Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой

 Период свободных колебаний в контуре определяется формулой Томсона:

 Если в LC-контур последовательно с L, C и R включить источник переменного напряжения, то в цепи возникнут вынужденные электрические колебания. Такие колебания принято называть переменным электрическим током
 В цепь переменного тока можно включать три вида нагрузки — конденсатор, резистор и катушку индуктивности.

 Конденсатор оказывает переменному току сопротивление, которое можно посчитать по формуле

 Ток, текущий через конденсатор, по фазе опережает напряжение на π/2 или на четверть периода, а напряжение отстаёт от тока на такой же фазовый угол.

 Катушка индуктивности оказывает переменному току сопротивление, которое можно посчитать по формуле

 Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:

Если K > 1, трансформатор понижающий, если K

Закон электромагнитной индукции., калькулятор онлайн, конвертер

Законы электромагнитной индукции

Сущность электромагнитной индукции определяется замкнутым контуром с электропроводностью, площадь которого пропускает через себя изменяющийся магнитный поток. В этот момент под влиянием магнитного потока появляется электродвижущая сила Еi и в контуре начинает течь электрический ток.

Закон Фарадея для электромагнитной индукции заключается в прямой зависимости ЭДС и скорости, составляющих пропорцию. Данная скорость представляет собой время, в течение которого магнитный поток подвергается изменениям.

Данный закон выражается формулой Еi = – ∆Ф/∆t, в которой Еi – значение электродвижущей силы, возникающей в контуре, а ∆Ф/∆t является скоростью изменения магнитного потока. В этой формуле не совсем понятным остается знак «минус», но ему тоже имеется свое объяснение. В соответствии с правилом русского ученого Ленца, изучавшего открытия Фарадея, этот знак отображает направление ЭДС, возникающей в контуре. То есть, направление индукционного тока происходит таким образом, что создаваемый им магнитный поток на площади, ограниченной контуром, препятствует изменениям, вызванным этим током.

Открытия Фарадея были доработаны Максвеллом, у которого теория электромагнитного поля получила новые направления. В результате, появился закон Фарадея и Максвелла, выраженный в следующих формулах:

  • Edl = -∆Ф/∆t – отображает электродвижущую силу.
  • Hdl = -∆N/∆t – отображает магнитодвижущую силу.

В этих формулах Е соответствует напряженности электрического поля на определенном участке dl, Н является напряженностью магнитного поля на этом же участке, N – поток электрической индукции, t – период времени.

Оба уравнения отличаются симметричностью, позволяющей сделать вывод, что магнитные и электрические явления связаны между собой. С физической точки зрения эти формулы определяют следующее:

  • Изменениям в электрическом поле всегда сопутствует образование магнитного поля.
  • Изменения в магнитном поле всегда происходят одновременно с образованием электрического поля.

Изменяющийся магнитный поток, проходящий сквозь замкнутую конфигурацию проводящего контура, приводит к возникновению в этом контуре электрического тока. Это основная формулировка закона Фарадея. Если изготовить проволочную рамку и поместить ее внутри вращающегося магнита, то в самой рамке появится электричество.

Это и будет индукционный ток, в полном соответствии с теорией и законом Майкла Фарадея. Изменения магнитного потока, проходящего через контур, могут быть произвольными. Следовательно, формула ∆Ф/∆t бывает не только линейной, а в определенных условиях принимает любую конфигурацию. Если изменения происходят линейно, то ЭДС электромагнитной индукции, возникающей в контуре, будет постоянной. Временной интервал t становится каким угодно, а отношение ∆Ф/∆t не будет зависеть от его продолжительности.

Если же изменения магнитного потока принимают более сложную форму, то ЭДС индукции уже не будет постоянной, а будет зависеть от данного промежутка времени. В этом случае временной интервал рассматривается в качестве бесконечно малой величины и тогда соотношение ∆Ф/∆t с точки зрения математики станет производной от изменяющегося магнитного потока.

Существует еще один вариант, трактующий закон электромагнитной индукции Фарадея. Его краткая формулировка объясняет, что действие переменного магнитного поля вызывает появление вихревого электрического поля. Этот же закон можно трактовать как одну из характеристик электромагнитного поля: вектор напряженности поля может циркулировать по любому из контуров со скоростью, равной скорости изменения магнитного потока, проходящего через тот или иной контур.

Закон электромагнитной индукции формула

Закон Фарадея для электролиза

Индукция магнитного поля

Закон полного тока

Клетка Фарадея

Закон Ома для полной цепи

История

Электромагнитная индукция была обнаружена независимо друг от друга Майклом Фарадеем и Джозефом Генри в 1831 году, однако Фарадей первым опубликовал результаты своих экспериментов.

В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея»).

Диск Фарадея

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий. Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл, который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла.

Эмилий Христианович Ленц сформулировал в 1834 году закон (правило Ленца), который описывает «поток через цепь» и даёт направление индуцированной ЭДС и тока в результате электромагнитной индукции.

Эксперимент Фарадея, показывающий индукцию между витками провода: жидкостная батарея (справа) даёт ток, который протекает через небольшую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется. Но когда маленькая катушка вставляется или извлекается из большой катушки (B), магнитный поток через катушку изменяется, вызывая ток, который регистрируется гальванометром (G).

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Электрический генератор

Рис. 8. Электрический генератор на основе диска Фарадея. Диск вращается с угловой скоростью ω, при этом проводник, расположенный вдоль радиуса, движется в статическом магнитном поле B. Магнитная сила Лоренца v × B создаёт ток вдоль проводника по направлению к ободу, затем цепь замыкается через нижнюю щётку и ось поддержки диска. Таким образом, вследствие механического движения генерируется ток.

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов. Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея, показанный в упрощённом виде на рис. 8

Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» — Induced B). Обод, таким образом, становится электромагнитом, который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Математический вид

Законы Фарадея можно записать в виде следующей формулы:

m = (QF)(Mz),{\displaystyle m\ =\ \left({Q \over F}\right)\left({M \over z}\right),}

где:

  • m{\displaystyle m} — масса осаждённого на электроде вещества,
  • Q{\displaystyle Q} — полный электрический заряд, прошедший через вещество
  • F=96485,33(83){\displaystyle F=96\,485,33(83)} Кл·моль−1 — постоянная Фарадея,
  • M{\displaystyle M}— молярная масса вещества (Например, молярная масса воды h3O{\displaystyle {\ce {h3O}}} = 18 г/моль),
  • z{\displaystyle z} — валентное число ионов вещества (число электронов на один ион).

Заметим, что Mz{\displaystyle M/z} — это эквивалентная масса осаждённого вещества.

Для первого закона Фарадея M,F{\displaystyle M,\,F} и z{\displaystyle z} являются константами, так что, чем больше величина Q{\displaystyle Q}, тем больше будет величина m{\displaystyle m}.

Для второго закона Фарадея Q,F{\displaystyle Q,\,F} и z{\displaystyle z} являются константами, так что чем больше величина Mz{\displaystyle M/z} (эквивалентная масса), тем больше будет величина m{\displaystyle m}.

В простейшем случае используется постоянный ток и полный электрический заряд (прошедший через систему) за время электролиза равен: Q=It{\displaystyle Q=It} , что приводит к выражению:

m = (ItF)(Mz),{\displaystyle m\ =\ \left({It \over F}\right)\left({M \over z}\right),} где размерность тока I{\displaystyle I} ампер-час (ампер-секунда и др.) определяет размерность времени электролиза t{\displaystyle t}.

и тогда

n = (ItF)(1z),{\displaystyle n\ =\ \left({It \over F}\right)\left({1 \over z}\right),}

где:

  • n{\displaystyle n} — выделенное количество вещества («количество молей»): n=mM{\displaystyle n=m/M},
  • t{\displaystyle t} — время действия постоянного тока.{t}I(\tau )\ d\tau .}

    Здесь t{\displaystyle t} — полное время электролиза, τ{\displaystyle \tau } переменная времени, ток I{\displaystyle I} является функцией от времени τ{\displaystyle \tau }.

    История развития

    После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

    Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

    Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

    При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

    Рамка в поле

    Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

    А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

    Правило правой руки

    Опытное доказательство

    Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

    Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

    Закон Фарадея как два различных явления

    Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС, генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС, генерируемую действием электрической силы вследствие изменения магнитного поля

    Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений

    Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

    Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности:

    Паразитная индукция и тепловые потери

    В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

    В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

    Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

    • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
    • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

    Расслоение электромагнита


    Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

    На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

    Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

    Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

    Паразитные потери в катушках индуктивности


    На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

    Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d)

    Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

    Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

    Примечания

    1. , с. 208.
    2. Michael Faraday, by L. Pearce Williams, p. 182-3
    3. Michael Faraday, by L. Pearce Williams, p. 191-5
    4. Michael Faraday, by L. Pearce Williams, p. 510
    5. Maxwell, James Clerk (1904), A Treatise on Electricity and Magnetism, Vol. II, Third Edition. Oxford University Press, pp. 178-9 and 189.
    6. В-поле наведенного тока ведет к снижению магнитного потока, в то время как движение цикла имеет тенденцию к увеличению (так как В (х) возрастает по мере цикла движений). Эти противоположные действия — пример принципа Ле Шателье в форме закона Ленца.
    7. K. Simonyi, Theoretische Elektrotechnik, 5th edition, VEB Deutscher Verlag der Wissenschaften, Berlin 1973, equation 20, page 47
    8. В этом примере предполагается, что скорости движения намного меньше скорости света, поэтому корректировкой поля, связанной с преобразованиями Лоренца, можно пренебречь.
    9. Единственным способом определения этого является измерение x от xC в движущемся контуре, скажем ξ = x — xC (t). Тогда за время t движущийся наблюдатель увидит поле B (ξ, t), тогда как неподвижный наблюдатель увидит в той же точке поле B [ ξ + xC (t) ] = B (ξ + xC0 + v t) при xC0 = xC (t = 0).
    10. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 272—273, Copyright 1917 by Theo. Audel & Co., Printed in the United States
    11. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 270—271, Copyright 1917 by Theo. Audel & Co., Printed in the United States

    Электродинамика

    Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

    Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

    Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

    Формула выглядит следующим образом:

    Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

    Здесь же поток можно выразить по такой формуле:

    B – магнитное поле, а dS – площадь поверхности.

    Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

    Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

    Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

    В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

    Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

    Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

    Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

    И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

    В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

    Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

    Работа Э. Ленца

    Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

    Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

    Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

    Закон электромагнитной индукции — Chip Stock

    Электромагнитная индукция – FIZI4KA

    ЕГЭ 2018 по физике ›

    Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

    Явление электромагнитной индукции было открыто М. Фарадеем.

    Опыты Фарадея

    • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
    • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
    • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

    Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

    Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

    Объяснения возникновения индукционного тока

    Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

    Обратите внимание

    Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

    Свойства вихревого электрического поля:

    • источник – переменное магнитное поле;
    • обнаруживается по действию на заряд;
    • не является потенциальным;
    • линии поля замкнутые.

    Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

    Магнитный поток

    Магнитным потоком через площадь ​( S )​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​( B )​, площади поверхности ​( S )​, пронизываемой данным потоком, и косинуса угла ​( alpha )​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

    Обозначение – ​( Phi )​, единица измерения в СИ – вебер (Вб).

    Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

    Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

    В зависимости от угла ​( alpha )​ магнитный поток может быть положительным (( alpha ) 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

    Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

    В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

    Закон электромагнитной индукции Фарадея

    Закон электромагнитной индукции (закон Фарадея):

    ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

    Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

    Если контур состоит из ​( N )​ витков, то ЭДС индукции:

    Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​( R )​:

    При движении проводника длиной ​( l )​ со скоростью ​( v )​ в постоянном однородном магнитном поле с индукцией ​( vec{B} )​ ЭДС электромагнитной индукции равна:

    где ​( alpha )​ – угол между векторами ​( vec{B} )​ и ( vec{v} ).

    Важно

    Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

    Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

    Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

    Важно!
    Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

    • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
    • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

    Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

    • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
    • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

    Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

    Алгоритм решения задач с использованием правила Ленца:

    • определить направление линий магнитной индукции внешнего магнитного поля;
    • выяснить, как изменяется магнитный поток;
    • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
    • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

    Совет

    Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

    Самоиндукция

    Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

    При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

    В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

    Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

    При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

    Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

    Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

    При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

    ЭДС самоиндукции ​( varepsilon_{is} )​, возникающая в катушке с индуктивностью ​( L )​, по закону электромагнитной индукции равна:

    ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

    Индуктивность

    Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​( Phi )​ через контур из этого проводника пропорционален модулю индукции ​( vec{B} )​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

    Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

    Индуктивность – коэффициент пропорциональности ​( L )​ между силой тока ​( I )​ в контуре и магнитным потоком ​( Phi )​, создаваемым этим током:

    Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

    Совет

    Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

    Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

    Энергия магнитного поля

    При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

    Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

    Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

    Основные формулы раздела «Электромагнитная индукция»

    Алгоритм решения задач по теме «Электромагнитная индукция»:

    1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

    2. Записать формулу:

    • закона электромагнитной индукции;
    • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

    3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

    4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

    5. Решить полученную систему уравнений относительно искомой величины.

    6. Решение проверить.

    Источник: https://fizi4ka.ru/egje-2018-po-fizike/jelektromagnitnaja-indukcija.html

    Закон электромагнитной индукции. Правило Ленца

    В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции. Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

    В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

    Электромагнитная индукция – это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую – и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока, кроме гальваники.

    Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

    Закон электромагнитной индукции

    Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром. 

    В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n: 

    Но в общем случае, применяют формулу ЭДС с общим потокосцеплением: 

    ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в  проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.

    Правило Ленца

    Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

    В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита.

    Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу.

    Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

    В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

    Рекомендуем к прочтению – закон Ампера 

    1 1 1 1 1 1 1 1 1 1 4.15 (52 Голоса)

    Источник: https://electroandi.ru/elektrichestvo-i-magnetizm/zakon-elektromagnitnoj-induktsii-pravilo-lentsa.html

    Закон электромагнитной индукции Фарадея для начинающих

    Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью.

    Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет  успешно извлечь из недр памяти закон Фарадея.

    Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

    Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

    Обратите внимание

    Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

    Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.

    Майкл Фарадей (1791-1867)

    История и определение

    Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

    При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

    Рамка в поле

    Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

    Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

    Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

    ЭДС, возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

    А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

    Для определения направления индукционного тока применяется знаменитое правило буравчика, или правило правой руки, оно же правило правого винта.

    Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока. Прямо у нас на сайте, вы также можете купить диплом по ПГС.

    Правило правой руки

    Примеры решения задач

    Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

    И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть – обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!

    Источник: https://Zaochnik.ru/blog/zakon-elektromagnitnoj-indukcii-faradeya-dlya-nachinayushhix/

    Закон электромагнитной индукции Фарадея

    В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.

    До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств.

    Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

    Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

    Рис. 1. Схема опыта Фарадея

    На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

    Важно

    Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

    Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

    Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

    Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

    Рис. 2. Формула закона электромагнитной индукции

    И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея.

    По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е.

    индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

    В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

    • Edl = -dФ/dt – уравнение электродвижущей силы
    • Hdl = -dN/dt – уравнение магнитодвижущей силы.

    Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

    Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

    • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
    • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

    Рис. 3. Возникновение вихревого магнитного поля

    Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

    Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

    Средняя оценка: 4.2. Всего получено оценок: 134.

    Будь в числе первых на доске почета

    Источник: https://obrazovaka.ru/fizika/zakon-elektromagnitnoy-indukcii-faradeya-formula.html

    Закон электромагнитной индукции (закон Фарадея)

    Федун В.И. Конспект лекций по физике Электромагнетизи

    Лекция 26.

    Электромагнитная
    индукция. Открытие Фарадея
    .

    В 1831 г. М. Фарадеем было сделано одно из
    важнейших фундаментальных открытий в
    электродинамике – обнаружено явлениеэлектромагнитной
    индукции
    .

    В замкнутом проводящем
    контуре при изменении магнитного потока
    (потока вектора ),
    охватываемого этим контуром, возникает
    электрический ток
    .

    Этот ток получил название индукционного.

    Появление индукционного тока означает,
    что при изменении магнитного

    потока в контуре возникает э.д.с. индукции (работа по перенесению единичного заряда по замкнутому контуру). Отметим, что значениесовершенно не зависит от того, каким образом осуществляется изменение магнитного потока, и определяется лишь скоростью его изменения, т.е. величиной. Изменение знака производнойприводит к изменению знакаэ.д.с. индукции .
    Рисунок 26.1.

    Фарадей обнаружил, что индукционный
    ток можно вызвать двумя различными
    способами, которые удобно объяснить с
    помощью рисунка.

    1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см.
    рис.26.1).

    2-й способ: изменение магнитного поля
    ,
    создаваемого катушкой,
    за счет ее движения или вследствие
    изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.

    В обоих этих случаях гальванометр будет показывать наличие индукционного
    тока в рамке.

    Совет

    Направление индукционного тока и,
    соответственно, знак э.д.с. индукции определяются правилом Ленца.

    Правило Ленца.

    Индукционный
    ток всегда направлен так, чтобы
    противодействовать причине, его
    вызывающей
    .

    Правило Ленца выражает важное
    физическое свойство – стремление
    системы противодействовать изменению
    ее состояния. Это свойство называют
    электромагнитной
    инерцией
    .

    Какова бы ни была причина
    изменения магнитного потока, охватываемого
    замкнутым проводящим контуром, возникающая
    в контуре э.д.с. индукции определяется
    формулой

    Природа электромагнитной индукции.

    С целью выяснения физических причин,
    которые приводят к возникновению э.д.с.
    индукции, последовательно рассмотрим
    два случая.

    1. Контур движется в постоянном магнитном поле

    Пусть контур с подвижной перемычкой длиной находится в магнитном поле, перпендикулярном плоскости контура (см.Рисунок 26.2). Если двигать перемычку со скоростьювправо, то с такой же скоростью начнут двигаться и носители тока в перемычке – электроны. В результате на каждый электрон начинает
    Рисунок 26.2

    действовать сила

    вызывающая перемещение электронов по
    перемычке вниз, т.е. потечет ток,
    направленный вверх.

    Перераспределившиеся заряды создадут
    электрическое поле, которое возбудит
    ток и в остальных участках контура.

    Это и есть индукционный ток.

    Магнитная сила играет роль сторонней силы. Ей можно
    сопоставить эквивалентное поле сторонних
    сил

    Электродвижущая сила,
    создаваемая этим полем, называется
    электродвижущей
    силой индукции

    .
    В нашем случае

    Здесь знак «минус» поставлен
    потому, что стороннее поле направлено против положительного обхода
    контура, определяемого правилом правого
    винта. Произведениеесть скорость приращения площади контура
    (приращение площади в единицу времени),
    поэтому

    где
    – приращение магнитного потока сквозь
    контур.

    Тогда,

    Полученный результат можно обобщить
    на случай произвольной ориентации
    вектора индукции магнитного поля относительно плоскости контура и на
    любой контур, движущийся (и/или
    деформируемый) произвольным образом в
    постоянном неоднородном внешнем
    магнитном поле.

    Итак, возбуждение э.д.с. индукции при
    движении контура в постоянном магнитном
    поле объясняется действием магнитной
    составляющей силы Лоренца, пропорциональной ,
    которая возникает при перемещении
    проводника.

    2. Контур покоится в переменном магнитном поле

    Наблюдаемое на опыте возникновение
    индукционного тока свидетельствует о
    том, что и в этом случае в контуре
    появляются сторонние силы, которые
    теперь связаны с изменяющимся во времени
    магнитным полем. Какова же их природа?
    Ответ на этот принципиальный вопрос
    был дан Максвеллом.

    Поскольку проводник покоится, то скорость
    упорядоченного движения электрических
    зарядов и, следовательно, магнитная сила,
    пропорциональная,
    также равна нулю и уже не может привести
    заряды в движение.

    Однако кроме магнитной
    силы на электрический заряд может
    действовать только сила со стороны
    электрического поля, равная.
    Поэтому остается заключить, чтоиндукционный ток обусловлен
    электрическим полем ,
    возникающим при изменении во времени
    внешнего магнитного поля
    .

    Именно
    это электрическое поле и ответственно
    за появление э.д.с. индукции в неподвижном
    контуре. Согласно Максвеллу,изменяющееся
    во времени магнитное поле порождает в
    окружающем пространстве электрическое
    поле
    .

    Возникновение электрического
    поля не связано с наличием проводящего
    контура, который лишь позволяет обнаружить
    по возникновению в нем индукционного
    тока существование этого поля.

    Формулировка закона
    электромагнитной индукции
    ,
    данная Максвеллом, принадлежит к числу
    наиболее важных обобщений электродинамики.

    Всякое изменение
    магнитного поля во времени возбуждает
    в окружающем пространстве электрическое
    поле
    .

    Математическая формулировка закона
    электромагнитной индукции в понимании
    Максвелла имеет вид:

    Циркуляция вектора
    напряженности этого поля по любому неподвижному
    замкнутому контуруопределяется выражением

    где – магнитный поток, пронизывающий контур.

    Используемый для обозначения скорости
    изменения магнитного потока знак частной
    производной указывает на то, что контур
    является неподвижным.

    Поток вектора через поверхность, ограниченную контуром,
    равен,
    поэтому выражение закона электромагнитной
    индукции можно переписать следующим
    образом:

    Воспользовавшись теоремой Стокса можно
    получить закон электромагнитной индукции
    в дифференциальной форме:

    Это одно из уравнений системы уравнений
    Максвелла.

    Тот факт, что циркуляция электрического
    поля, возбуждаемого переменным во
    времени магнитным полем, отлична от
    нуля, означает, что рассматриваемое
    электрическое поле не
    потенциальное
    .Оно, как и магнитное
    поле, являетсявихревым.

    В общем случае электрическое поле может быть представлено векторной
    суммой потенциального (поля статических
    электрических зарядов, циркуляция
    которого равна нулю) и вихревого
    (обусловленного изменяющимся во времени
    магнитным полем) электрических полей.

    В основе рассмотренных нами явлений,
    объясняющих закон электромагнитной
    индукции, не просматривается общего
    принципа, позволяющего установить
    общность их физической природы.

    Обратите внимание

    Поэтому
    эти явления следует рассматривать как
    независимые, а закон электромагнитной
    индукции – как результат их совместного
    действия. Тем более удивительным
    оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения
    магнитного потока сквозь контур.

    В тех
    случаях, когда меняется и поле и расположение или конфигурация контура
    в магнитном поле, э.д.с. индукции следует
    рассчитывать по формуле

    а закон электромагнитной индукции можно
    представить в виде

    Выражение, стоящее в правой части этого
    равенства, представляет собой полную
    производную магнитного потока по
    времени: первое слагаемое связано с
    изменением магнитного поля во времени,
    второе – с движением контура.

    Можно сказать, что во всех случаях
    индукционный ток вызывается полной
    силой Лоренца

    Какая часть индукционного тока вызывается
    электрической, а какая магнитной
    составляющей силы Лоренца – зависит от
    выбора системы отсчета.

    О работе сил Лоренца и Ампера.

    Из самого определения работы следует,
    что сила, действующая в магнитном поле
    на электрический заряд и перпендикулярная
    его скорости, не может совершать работы.
    Однако при движении проводника с током,
    увлекающего за собой заряды, сила Ампера
    все же работу совершает. Наглядным
    подтверждением этого служат электромоторы.

    Это противоречие исчезает, если принять
    во внимание, что движение проводника в
    магнитном поле неизбежно сопровождается
    явлением электромагнитной индукции.
    Поэтому наряду с силой Ампера работу
    над электрическими зарядами совершает
    и возникающая в проводнике электродвижущая
    сила индукции. Т.о.

    , полная работа сил
    магнитного поля складывается из
    механической работы, обусловленной
    силой Ампера, и работы э.д.с., индуцируемой
    при движении проводника. Обе работы
    равны по модулю и противоположны по
    знаку, поэтому их сумма равна нулю.

    Действительно, работа амперовой силы
    при элементарном перемещении проводника
    с током в магнитном поле равна ,
    за это же время э.д.с. индукции совершает
    работу

    тогда полная работа .

    Силы Ампера совершают работу не за счет
    энергии внешнего магнитного поля,
    которое может оставаться постоянным,
    а за счет источника э.д.с., поддерживающего
    ток в контуре.

    Источник: https://StudFiles.net/preview/5735864/

    Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца

    • Явление электромагнитной индукции

    Электрические и магнитные поля порождаются одними и теми же источниками – электрическими зарядами, поэтому можно предположить, что между этими полями существует определенная связь. Это предположение нашло экспериментальное подтверждение в 1831 г. в опытах выдающегося английского физика М.Фарадея. Он открыл явление электромагнитной индукции.

    Явление электромагнитной индукции лежит в основе работы индукционных генераторов электрического тока, на которые приходится вся вырабатываемая в мире электроэнергия.

    Замкнутый контур, помещенный в однородное магнитное поле

    Количественной характеристикой процесса изменения магнитного поля через замкнутый контур является физическая величина называемая магнитным потоком.

    Магнитным потоком (Ф) через замкнутый контур площадью (S) называют физическую величину, равную произведению модуля вектора магнитной индукции (В) на площадь контура (S) и на косинус угла  между вектором В и нормалью к поверхности:  Φ = BS cos α.   Единица магнитного потока Ф — вебер (Вб): 1 Вб = 1 Тл · 1 м2.

    Важно

    Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.

    Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.

    • Закон электромагнитной индукции

    Опытным путем был установлен закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Эта формула носит название закона Фарадея.

    Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея. В нем, чем быстрее перемещать магнит через витки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.

    Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем установил русский физик Э.Х.Ленц.

    Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим  магнитным  полем противодействует тому изменению  магнитного потока, которым он вызван.

     Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей. Правило Ленца отражает тот экспериментальный факт, что    всегда имеют противоположные знаки (знак «минус» в формуле Фарадея).

    Ленцем был сконструирован прибор, представляющий собой два алюминиевых кольца, сплошное и разрезанное, укрепленные на алюминиевой перекладине. Они могли вращаться вокруг оси, как коромысло.

    При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая соответственно коромысло. При вынесении магнита из кольца оно стремилось «догнать» магнит. При движении же магнита внутри разрезанного кольца никакого движения не происходило.

    Ленц объяснял опыт тем, что магнитное поле индукционного тока стремилось компенсировать изменение внешнего магнитного потока.

    Совет

    Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

    Источник: http://kaplio.ru/yavlenie-elektromagnitnoj-induktsii-magnitnyj-potok-zakon-elektromagnitnoj-induktsii-pravilo-lentsa/

    Закон ЭДС индукции Фарадея для трансформаторов

    Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

    История развития

    После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

    Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

    Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока.

    Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным.

    До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

    Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

    Опытное доказательство

    Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

    Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

    Количественное выражение

    Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

    Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

    Обратите внимание

    Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

    Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

    Работа Э. Ленца

    Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

    Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита.

    Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу.

    Ток будет перемещаться в сторону движения часовой стрелки.

    Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

    Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

    Понятие самоиндукции

    Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

    Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

    где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

    Индуктивность

    Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

    Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

    Фс = L*I

    Значение индуктивности также формируется из закона Фарадея.

    Недвижимая система

    Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

    Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС.

    Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле.

    Важно

    Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

    При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

    Труды в области электролиза

    При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

    Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

    Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

    Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

    Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях.

    Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

    Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

    Источник: https://ProTransformatory.ru/raschety/zakon-faradeya

    Закон электромагнитной индукции Фарадея

    Содержание:

    1. История открытия
    2. Законы электромагнитной индукции
    3. Видеоурок

    Если взять замкнутую проводящую систему и создать в ней условия для того чтобы магнитный поток изменился в магнитном поле, то в результате этих движений появится электрический ток. Данное обстоятельство описывает закон электромагнитной индукции Фарадея – английского ученого, который при проведении опытов добился превращения магнитной энергии в электричество. Оно получило название индукционного, поскольку до того времени его можно было создать лишь гальваническим путем.

    История открытия

    Явление электромагнитной индукции было открыто сразу двумя учеными. Это были Майкл Фарадей и Джозеф Генри, сделавшие свое открытие в 1831 году. Публикация Фарадеем результатов проведенных экспериментов была сделана раньше его коллеги, поэтому индукцию связывают именно с этим ученым. В дальнейшем это понятие было включено в систему СГС.

    Для демонстрации явления использовался железный тор, напоминающий конфигурацию современного трансформатора. Противоположные стороны его были обмотаны двумя проводниками с целью использования электромагнитных свойств.

    К одному из проводов подключался ток, вызывающий своеобразную электрическую волну при прохождении сквозь тор, и некоторый электрический всплеск с противоположной стороны. Наличие тока было зафиксировано гальванометром. Точно такой же всплеск электричества наблюдался и в момент отключения провода.

    Совет

    Постепенно были обнаружены и другие формы проявления электромагнитной индукции. Кратковременное возникновение тока наблюдалось во время генерации его на медном диске, вращающемся возле магнита. На самом диске был установлен скользящий электропровод.

    Наибольшие представление о том, что такое индуктивность, дал эксперимент с двумя катушками. Одна из них, с меньшими размерами, подключена к жидкостной батарее, расположенной на рисунке с правой стороны. Таким образом, через эту катушку начинает протекать электрический ток, под действием которого возникает магнитное поле.

    Когда обе катушки находятся в неподвижном положении относительно друг друга, никаких явлений не происходит. Когда небольшая катушка начинает двигаться, то есть выходить из большой катушки или входить в нее, наступает изменение магнитного потока. В результате, в большой катушке наблюдается появление электродвижущей силы.

    Открытие Фарадея доработал другой ученый – Максвелл, который обосновал его математически, отображая данное физическое явление дифференциальными уравнениями. Еще одному ученому-физику – Ленцу удалось определить направление электротока и ЭДС, полученных под действием электромагнитной индукции.

    Законы электромагнитной индукции

    Сущность электромагнитной индукции определяется замкнутым контуром с электропроводностью, площадь которого пропускает через себя изменяющийся магнитный поток. В этот момент под влиянием магнитного потока появляется электродвижущая сила Еi и в контуре начинает течь электрический ток.

    Закон Фарадея для электромагнитной индукции заключается в прямой зависимости ЭДС и скорости, составляющих пропорцию. Данная скорость представляет собой время, в течение которого магнитный поток подвергается изменениям.

    Данный закон выражается формулой Еi = – ∆Ф/∆t, в которой Еi – значение электродвижущей силы, возникающей в контуре, а ∆Ф/∆t является скоростью изменения магнитного потока. В этой формуле не совсем понятным остается знак «минус», но ему тоже имеется свое объяснение.

    В соответствии с правилом русского ученого Ленца, изучавшего открытия Фарадея, этот знак отображает направление ЭДС, возникающей в контуре.

    То есть, направление индукционного тока происходит таким образом, что создаваемый им магнитный поток на площади, ограниченной контуром, препятствует изменениям, вызванным этим током.

    Открытия Фарадея были доработаны Максвеллом, у которого теория электромагнитного поля получила новые направления. В результате, появился закон Фарадея и Максвелла, выраженный в следующих формулах:

    • Edl = -∆Ф/∆t – отображает электродвижущую силу.
    • Hdl = -∆N/∆t – отображает магнитодвижущую силу.

    В этих формулах Е соответствует напряженности электрического поля на определенном участке dl, Н является напряженностью магнитного поля на этом же участке, N – поток электрической индукции, t – период времени.

    Оба уравнения отличаются симметричностью, позволяющей сделать вывод, что магнитные и электрические явления связаны между собой. С физической точки зрения эти формулы определяют следующее:

    • Изменениям в электрическом поле всегда сопутствует образование магнитного поля.
    • Изменения в магнитном поле всегда происходят одновременно с образованием электрического поля.

    Изменяющийся магнитный поток, проходящий сквозь замкнутую конфигурацию проводящего контура, приводит к возникновению в этом контуре электрического тока. Это основная формулировка закона Фарадея. Если изготовить проволочную рамку и поместить ее внутри вращающегося магнита, то в самой рамке появится электричество.

    Это и будет индукционный ток, в полном соответствии с теорией и законом Майкла Фарадея. Изменения магнитного потока, проходящего через контур, могут быть произвольными.

    Следовательно, формула ∆Ф/∆t бывает не только линейной, а в определенных условиях принимает любую конфигурацию. Если изменения происходят линейно, то ЭДС электромагнитной индукции, возникающей в контуре, будет постоянной.

    Обратите внимание

    Временной интервал t становится каким угодно, а отношение ∆Ф/∆t не будет зависеть от его продолжительности.

    Если же изменения магнитного потока принимают более сложную форму, то ЭДС индукции уже не будет постоянной, а будет зависеть от данного промежутка времени. В этом случае временной интервал рассматривается в качестве бесконечно малой величины и тогда соотношение ∆Ф/∆t с точки зрения математики станет производной от изменяющегося магнитного потока.

    Существует еще один вариант, трактующий закон электромагнитной индукции Фарадея. Его краткая формулировка объясняет, что действие переменного магнитного поля вызывает появление вихревого электрического поля.

    Этот же закон можно трактовать как одну из характеристик электромагнитного поля: вектор напряженности поля может циркулировать по любому из контуров со скоростью, равной скорости изменения магнитного потока, проходящего через тот или иной контур.

    Источник: https://electric-220.ru/news/zakon_ehlektromagnitnoj_indukcii_faradeja/2018-09-29-1576

    Закон электромагнитной индукции фарадея для начинающих. Электролиз. законы фарадея

    В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.

    История развития и опыты Фарадея

    До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

    Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

    Рис. 1. Схема опыта Фарадея

    На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

    Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

    Закон Фарадея

    Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

    Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

    Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

    Рис. 2. Формула закона электромагнитной индукции

    И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

    Закон Фарадея-Максвелла

    В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

    • Edl = -dФ/dt – уравнение электродвижущей силы
    • Hdl = -dN/dt – уравнение магнитодвижущей силы.

    Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

    Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

    • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
    • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

    Рис. 3. Возникновение вихревого магнитного поля

    Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

    Всего получено оценок: 134.

    Законыэлектролиза (законыФарадея)

    Поскольку прохождение электрического тока через электрохимические системы связано с химическими превращениями, между количеством протекающего электричества и количеством прореагировавших веществ должна существовать определенная зависимость. Она была открыта Фарадеем и получила свое выражение в первых количественных законах электрохимии, названных впоследствии законами Фарадея.

    Первый закон Фарадея . Количества веществ, превращённых при электролизе, пропорциональны количеству электричества, прошедшего через электролит :

    D m =k э q =k э It ,

    D m – количество прореагировавшего вещества; k э – некоторый коэффициент пропорциональности; q – количество электричества, равное произведению силы тока I на время t . Еслиq = It = 1, то D m = k э, то есть коэффициент k э представляет собой количество вещества, прореагировавшего в результате протекания единицы количества электричества. Коэффициент k э называется электрохимическим эквивалентом .

    Второй закон Фарадея отражает связь, существующую между количеством прореагировавшего вещества и его природой: при постоянном количестве прошедшего электричества массы различных веществ, испытывающие превращение у электродов (выделение из раствора, изменение валентности), пропорциональны химическим эквивалентам этих веществ :

    D m i /A i = const .

    Можно объединить оба закона Фарадея в виде одного общего закона : для выделения или превращения с помощью тока 1 г-экв любого вещества (1/z моля вещества) необходимо всегда одно и то же количество электричества, называемое числом Фарадея (или фарадеем ):

    D m =It = It .

    Точно измеренное значение числа Фарадея

    F = 96484,52 ± 0,038Кл/г-экв.

    Таков заряд, несомый одним грамм-эквивалентом ионов любого вида. Умножив это число на z (число элементарных зарядов иона), получим количество электричества, которое несёт 1 г-ион . Разделив число Фарадея на число Авогадро, получим заряд одного одновалентного иона, равный заряду электрона:

    e = 96484,52 / (6,022035 × 10 23) = 1,6021913 × 10 –19 Кл.

    Законы, открытые Фарадеем в 1833 г., строго выполняются для проводников второго рода. Наблюдаемые отклонения от законов Фарадея являются кажущимися . Они часто связаны с наличием неучтённых параллельных электрохимических реакций. Отклонения от закона Фарадея в промышленных установках связаны с утечками тока, потерями вещества при разбрызгивании раствора и т.д. В технических установках отношение количества продукта, полученного при электролизе, к количеству, вычисленному на основе закона Фарадея, меньше единицы и называется выходом по току :

    В Т = = .

    При тщательных лабораторных измерениях для однозначно протекающих электрохимических реакций выход по току равен единице (в пределах ошибок опыта). Закон Фарадея точно соблюдается, поэтому он лежит в основе самого точного метода измерения количества электричества, прошедшего через цепь, по количеству выделенного на электроде вещества. Для таких измерений используюткулонометры . В качестве кулонометров используют электрохимические системы, в которых нет параллельных электрохимических и побочных химических реакций. По методам определения количества образующихся веществ кулонометры подразделяют на электрогравиметрические, газовые и титрационные . Примером электрогравиметрических кулонометров являются серебряный и медный кулонометры. Действие серебряного кулонометра Ричардсона, представляющего собой электролизер

    (–) Ag ï AgNO 3 × aq ï Ag (+) ,

    основано на взвешивании массы серебра, осевшей на катоде во время электролиза. При пропускании 96500 Кл (1 фарадея) электричества на катоде выделится 1 г-экв серебра (107 г). При пропускании n F электричества на катоде выделяется экспериментально определенная масса (D m к ). Число пропущенных фарадеев электричества определяется из соотношения

    n = D m /107 .

    Аналогичен принцип действия медного кулонометра.

    В газовых кулонометрах продуктами электролиза являются газы, и количества выделяющихся на электродах веществ определяют измерением их объемов. Примером прибора такого типа является газовый кулонометр, основанный на реакции электролиза воды. При электролизе на катоде выделяется водород:

    2Н 2 О+2е – =2ОН – +Н 2 ,

    а на аноде – кислород:

    Н 2 О=2Н + +½ О 2 +2е – V – суммарный объем выделенного газа, м 3 .

    В титрационных кулонометрах количество вещества, образовавшегося в процессе электролиза, определяют титриметрически. К этому типу кулонометров относится титрационный кулонометр Кистяковского, представляющий собой электрохимическую систему

    (–) Pt ï KNO 3 , HNO 3 ï Ag (+) .

    В процессе электролиза серебряный анод растворяется, образуя ионы серебра, которые оттитровывают. Число фарадеев электричества определяют по формуле

    n = mVc ,

    где m – масса раствора, г;V – объем титранта, пошедший на титрование 1 г анодной жидкости;c –концентрация титранта, г-экв/см 3 .

    1. Первый закон Фарадея — фундаментальный количественный закон электрохимии.

    2.Электрохимический эквивалент.

    3.Кулонометры.Классификация кулонометров.

    4. Выход вещества по току.

    5.Способы определения выхода по току при использовании постоянного и импульсного тока.

    6.Второй закон Фарадея.

    7.Кажущиеся случаи отклонения от законов Фарадея.

    1. Первый закон Фарадея

    Известны три основных типа кулонометров: весовые (гравиметрические), объемные (волюметрические) и титрационные .

    В весовых кулонометрах (к ним относятся серебряные и медные) количество прошедшего в них электричества рассчитывается по изменению массы катода или анода. В объемных кулонометрах расчет производится на основании измерения объема получающихся веществ (газа в водородном кулонометре, жидкой ртути в ртутном кулонометре). В титрационныхкулонометрах количествоэлектричества определяется по данным титрования веществ, образующихся в растворе в результате электродной реакции.

    Медный кулонометр наиболее распространен в практике лабораторных исследований, т.к. он является простым в изготовлении и достаточно точным. Точность определения количества электричества составляет 0,1 %. Кулонометр состоит из двух медных анодов и катода из тонкой медной фольги, расположенного между ними. Электролитом в медномкулонометре служит водный раствор состава: CuSO 4 ∙ 5H 2 O, H 2 SO 4 и этанол C 2 H 5 OH.Серная кислота повышает электрическую проводимость электролита и, кроме того, препятствует образованию основных соединений меди в прикатодном пространстве, которые могут адсорбироваться на катоде, увеличивая тем самым его массу. H 2 SO 4 в электролите медного кулонометра необходима для предотвращения накопления соединений Cu 1+ , которые могут образовываться в результате реакции диспропорционирования:

    Cu 0 + Cu 2+ → 2Cu +

    Этиловый спирт добавляют в электролит для получения более мелкокристаллических, компактных катодных осадков и с целью предотвращения окисления медных электродов кулонометра.

    О количестве прошедшего электричества судят по изменению массы катода, до и после электролиза.

    катодом, а анод готовится из чистого серебра.

    В качестве электролита в серебряном кулонометре используется нейтральный или слабокислый 30% раствор нитрата серебра.

    Газовый водородно-кислородный кулонометр применяется для приближенных измерений малых количеств электричества. В нем измеряют общий объем водорода и кислорода, выделяющихся при электролизе водного раствора H 2 SO 4 или NaOH, а из этой величины вычисляют количество прошедшего электричества. Применяют эти кулонометры сравнительно редко, т.к. точность их небольшая, а в работе они менее удобны, чем весовые кулонометры.

    К объемным кулонометрам относится также ртутный кулонометр . Он применяется главным образом в промышленности для измерений количества электричества. Точность ртутного кулонометра составляет 1%, но он может работать при больших плотностях тока. Анодом служит ртуть. Уголь – катод. Электролитом служит раствор иодида ртути и иодида калия. По уровню ртути в трубке рассчитывают количество электричества.

    Наиболее распространенные из титрационныхкулонометров – йодный

    и кулонометрКистяковского .

    Йодныйкулонометр представляет собой сосуд с разделенными катодным и анодным пространствами платиновоиридиевыми электродами. В анодное отделение вводят концентрированный раствор иодида калия с добавлением соляной кислоты, в катодное отделение – раствор соляной кислоты. При пропускании тока на аноде выделяется йод, который затем титруют тиосульфатом натрия (Na 2 S 2 O 3). По результатам титрования рассчитывают количество электричества.

    Кулонометр Кистяковского — это стеклянный сосуд. Анодом служит серебряная проволока, впаянная в стеклянную трубку со ртутью, для обеспечения контакта. Сосуд заполняют раствором нитрата калия (15-20%). В этот раствор погружают платиновоиридиевый катод. При пропускании тока происходит анодное растворение серебра. И также по результатам титрования раствора рассчитывают количество электричества.

    4. Выход по току

    Zn 2+ +2ē →Zn

    Если на электроде протекает несколькопараллельных электрохимических реакций, то I закон Фарадея будет справедлив для каждой из них.

    Для практических целей, для того, чтобы учесть какая доля тока или количества прошедшего через электрохимическую систему электричества расходуется на каждую конкретную реакцию введено понятие выхода вещества по току .

    Таким образом, ВТ позволяет определить часть количества прошедшего через электрохимическую систему электричества, которая приходится на долю данной электрохимической реакции.

    Знание ВТ необходимо, как при решении теоретических вопросов: например, при построении парциальных поляризационных кривых и выяснении механизма электрохимической реакции, так и в практике электроосаждения металлов, неметаллов, сплавов, с целью оценки эффективности технологической операции. ВТ на практике чаще всего определяют делением практической массы вещества на теоретическую массу, определенную по закону Фарадея.

    m практ – масса вещества, практически превратившегося в результате прохождения определенного количества электричества; m теор — масса вещества, которая должна превратиться теоретически при прохождении того же количества электричества.

    ВТ для процессов, протекающих на катоде, как правило, не совпадают с ВТ анодных процессов, поэтому следует различать катодный и анодный выход по току. До сих пор были рассмотрены случаи определения ВТ когда через границу раздела проводник I рода — проводник II рода протекает постоянный электрический ток.

    5. Способы определения ВТ при использовании импульсного тока

    Если же через границу раздела фаз протекает импульсный ток, то при определении ВТ возникают большие трудности. Единой методики или прибора для определения ВТ при импульсномэлектролизе не существует. Сложность определения ВТ в условиях импульсногоэлектролиза обусловлена тем, что проходящий через систему ток расходуется не только на электрохимическую реакцию, но и на заряжение двойного электрического слоя. Электрический ток, проходящий через границу раздела и вызывающий электрохимическое превращение, называется часто фарадеевским током. Ток заряжения расходуется на заряжение двойного электрического слоя, реорганизацию растворителя, самого реагента, т.е. на все на то, что создает условия для протекания электрохимической реакции, поэтому выражение для общего тока, проходящего через электрохимическую систему, будет выглядеть следующим образом:

    I = Iз + Iф, где Iз – ток заряжения, Iф – фарадеевский ток.

    Если не требуется определения абсолютных значений ВТ, то в качестве критерия оценки эффективности импульсного электролиза можно использовать отношения количества электричества, затраченного на растворение осадка к количеству электричества, затраченного на его формирование.

    6. Второй закон Фарадея.

    Математически этот закон выражается уравнением:

    Второй закон Фарадея является непосредственным следствием первого закона. Во втором законе Фарадея отражена связь, существующая между количеством прореагировавшего вещества и его химической природой.

    Согласно второму закону Фарадея:

    Если на границе раздела проводник I рода — проводник II рода протекает одна и только одна, электрохимическая реакция, в которой участвует несколько веществ, то массы участников реакции, претерпевших превращения, относятся друг к другу как их химические эквиваленты.

    7. Кажущиеся случаи отклонения от законов Фарадея

    I закон Фарадея , базирующийся на атомистической природе вещества и электричества, является точным законом природы. Отклонений от него быть не может. Если на практике при расчетах наблюдаются отклонения от этого закона, то они всегда обусловлены неполным учетом процессов, сопутствующих основной электрохимической реакции. Например, при электролизе водного раствора NaCl в системе с платиновыми электродами и разделенными пористой диафрагмой анодным и катодным пространствами на катоде протекает реакция:

    2H 2 O + 2ē = H 2 + 2OH —

    а на аноде: 2Cl — — 2ē = Cl 2

    Количество образующегося газообразного хлора всегда меньше, чем это следует по закону Фарадея из-за того, что Cl 2 растворяется в электролите и вступает в реакцию гидролиза:

    Cl 2 + H 2 O → HCl+ HClO

    Если учесть массу хлора, прореагировавшего с водой, получим результат, соответствующий рассчитанному по закону Фарадея.

    Или при анодном растворении многих металлов параллельно идут два процесса – образование ионов нормальной валентности и так называемых субионов – т.е. ионов низшей валентности, например: Cu 0 — 2ē → Cu 2+ и

    Cu- 1ē → Cu + . Поэтому расчет по закону Фарадея в предположении, что образуются только ионы высшей валентности, оказывается неправильным.

    Часто на электроде протекает не одна электрохимическая реакция, а несколько самостоятельных параллельных реакций. Например, при выделении Zn из кислого раствора ZnSO 4 наряду с разрядом ионов Zn:

    Zn 2+ +2ē →Zn

    протекает реакция восстановления ионов гидроксония: 2Н 3 О + +2ē → Н 2 + 2H 2 O.

    Если на электроде протекает несколько параллельных электрохимических реакций, то I закон Фарадея будет справедлив для каждой из них.

    Электролиз — это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

    При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

    Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K — коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

    Второй закон Фарадея

    В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

    Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M — молярная масса, n — валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

    Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

    Возникновение электродвижущей силы индукции было важнейшим открытием в области физики. Оно явилось основополагающим для развития технического применения этого явления.

    Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-24.jpg 765w»>

    Майкл Фарадей

    История

    В 20-е годы 19-го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток.

    Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель – преобразовать магнетизм в электричество.

    Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

    Исследователь видоизменил эксперименты, и в 1831 году они увенчались успехом. Опыты Фарадея начинались с наматывания медной проволоки вокруг бумажной трубки и соединения ее концов с гальванометром. Затем ученый погружал магнит внутрь катушки и замечал, что стрелка гальванометра давала мгновенное отклонение, показывая, что в катушке был индуцирован ток. После вынимания магнита наблюдалось отклонение стрелки в противоположном направлении. Вскоре в ходе других экспериментов он заметил, что в момент подачи и снятия напряжения с одной катушки появляется ток в рядом находящейся катушке. Обе катушки имели общий магнитопровод.

    Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-21-120×74..jpg 706w»>

    Опыты Фарадея

    Многочисленные опыты Фарадея с другими катушками и магнитами были продолжены, и исследователь установил, что сила индуцированного тока зависит от:

    • количества витков в катушке;
    • силы магнита;
    • скорости, с которой магнит погружался в катушку.

    Термин «электромагнитная индукция» (эми) относится к явлению, что ЭДС генерируется в проводнике переменным внешним магнитным полем.

    Формулирование закона электромагнитной индукции

    Словесная формулировка закона электромагнитной индукции: индуцированная электродвижущая сила в любом замкнутом контуре равна отрицательной временной скорости изменения магнитного потока, заключенного в цепь.

    Это определение математически выражает формула:

    Е = — ΔΦ/ Δt,

    где Ф = В х S, с плотностью магнитного потока В и площадью S, которую пересекает перпендикулярно магнитный поток.

    Дополнительная информация. Существуют два разных подхода к индукции. Первый – объясняет индукцию с помощью силы Лоренца и ее действия на движущийся электрозаряд. Однако в определенных ситуациях, таких как магнитное экранирование или униполярная индукция, могут возникнуть проблемы в понимании физического процесса. Вторая теория использует методы теории поля и объясняет процесс индукции с помощью переменных магнитных потоков и связанных с ними плотностей этих потоков.

    Физический смысл закона электромагнитной индукции формулируется в трех положениях:

    1. Изменение внешнего МП в катушке провода индуцирует в ней напряжение. При замкнутой проводящей электроцепи индуцированный ток начинает циркулировать по проводнику;
    2. Величина индуцированного напряжения соответствует скорости изменения магнитного потока, связанного с катушкой;
    3. Направление индукционной ЭДС всегда противоположно причине, ее вызвавшей.

    Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2018/03/3-18-600×367.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-18-768×470..jpg 120w, https://elquanta.ru/wp-content/uploads/2018/03/3-18.jpg 900w»>

    Закон электромагнитной индукции

    Важно! Формула для закона электромагнитной индукции применяется в общем случае. Не существует известной формы индукции, которая не может быть объяснена изменением магнитного потока.

    ЭДС индукции в проводнике

    Для расчета индукционного напряжения в проводнике, который движется в МП, применяют другую формулу:

    E = — B x l x v х sin α, где:

    • В – индукция;
    • l – протяженность проводника;
    • v – скорость его движения;
    • α – угол, образованный направлением перемещения и векторным направлением магнитной индукции.

    Важно! Способ определения, куда направлен индукционный ток, создающийся в проводнике: располагая правую руку ладонью перпендикулярно вхождению силовых линий МП и, отведенным большим пальцем указывая направление перемещения проводника, узнаем направление тока в нем по распрямленным четырем пальцам.

    Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-17-210×140.jpg 210w»>

    Правило правой руки

    Законы электролиза

    Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

    В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

    На основании этих экспериментов формулируются два закона электролиза:

    1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

    m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

    Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

    Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2018/03/5-13-600×342.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-13-768×438..jpg 960w»>

    Первый закон электролиза

    1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).

    Для второго закона электролиза используется запись:

    Здесь F постоянная Фарадея, которая определяется зарядом 1 моля электронов:

    F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.

    Запишите другое выражение для второго закона Фарадея:

    m1/m2 = К1/К2.

    Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/6-7-768×528..jpg 800w»>

    Второй закон электролиза

    Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это Оцените статью:

    Поделитесь статьей с друзьями:

    Похожие статьи

    Закон Фарадея, закон Ампера, закон Ленца и сила Лоренца

    Работа электродвигателей регулируется различными законами электричества и магнетизма, включая закон индукции Фарадея, закон Ампера, закон Ленца и силу Лоренца. Первые два — закон Фарадея и закон Ампера — включены в уравнения Максвелла. Вместе с законом Ленца и силой Лоренца эти принципы составляют основу электромагнетизма.


    Закон индукции Фарадея

    Закон индукции Фарадея — это основной закон, по которому работают электродвигатели.Майкл Фарадей приписывают открытие индукции в 1831 году, но Джеймс Клерк Максвелл описал ее математически и использовал в качестве основы своей количественной электромагнитной теории в 1860-х годах.


    Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве (или на самом себе).


    Закон Фарадея обычно гласит, что в замкнутой катушке (петле) из провода изменение магнитной среды катушки вызывает в катушке напряжение или ЭДС (электродвижущая сила).

    Изменение магнитной среды может быть вызвано изменением напряженности магнитного поля, перемещением магнита по направлению к катушке или от нее, перемещением катушки в магнитное поле или из него или вращением катушки в поле.

    Индуцированная ЭДС равна отрицательной скорости изменения магнитного потока, умноженной на количество витков в катушке:

    Где:

    E = ЭДС (В)

    N = количество витков в катушке

    Φ = магнитный поток (Вебер, Вт)

    t = время (с)


    Обратите внимание, что магнитный поток равен среднему магнитному полю, B (тесла, или Вт / м 2 ), умноженному на площадь перпендикуляра катушки, которая проникает в магнитное поле, A (m 2 ).


    Закон Ленца

    Закон Ленца демонстрирует причину отрицательного знака в законе индукции Фарадея. Другими словами, закон Ленца объясняет , почему ЭДС, генерируемая в соответствии с законом Фарадея, отрицательна.

    Обычный способ сформулировать закон Ленца: «Когда ЭДС генерируется изменением магнитного потока, полярность наведенной ЭДС такова, что она генерирует ток, магнитное поле которого направлено в направлении, противоположном изменению, которое его вызвало. (исходное магнитное поле).То есть индуцированное магнитное поле всегда поддерживает постоянный магнитный поток.

    Когда магнитный поток изменяется (ΔB), магнитное поле наведенной ЭДС (B Induced ) работает, чтобы противодействовать изменению.
    Изображение предоставлено: К. Р. Нейв, Государственный университет Джорджии

    Закон Ленца аналогичен третьему закону Ньютона в механике, который гласит, что для каждого действия существует равное и противоположное противодействие.


    Сила Лоренца

    Существуют разногласия по поводу того, была ли сила Лоренца первоначально получена Джеймсом Клерком Максвеллом или Оливером Хевисайдом, но, как правило, заслуги передаются Хевисайду.Хендрик Лоренц вывел современную форму уравнения в 1891 году.

    Сила Лоренца — это сила, которую частица испытывает из-за электрического и магнитного полей. Электрические поля действуют на частицу независимо от того, движется она или нет, в то время как магнитные поля действуют только тогда, когда частица находится в движении. Комбинация сил электрического и магнитного полей определяется как:

    Что упрощается до:

    Где:

    F = сила (Н)

    q = частица заряда (кулон, Кл)

    E = электрическое поле (N / C)

    v = скорость перпендикулярно магнитному полю (м / с)

    B = магнитное поле (тесла, Тл)

    Поскольку ток представляет собой поток движущихся заряженных частиц, он также испытывает силу, обусловленную магнитным полем.В случае тока в магнитном поле уравнение силы Лоренца принимает вид:

    Где:

    I = ток (А)

    l = длина провода в поле (м)

    Направление силы Лоренца определяется с использованием правила правой руки: направьте большой палец в направлении тока, первый палец — в направлении магнитного поля, а второй (средний) палец — в направлении тока. сила.


    Окружной закон Ампера

    Несмотря на свое название, круговой закон Ампера был выведен не Андре-Мари Ампером, а Джеймсом Клерком Максвеллом в 1860 году и является одним из уравнений Максвелла электромагнетизма. (Ампер сформулировал закон силы Ампера, который описывает силу притяжения или отталкивания между двумя токоведущими проводами.)

    Магнитное поле действует на прямой провод, по которому течет ток. По закону движения Ампера напряженность магнитного поля может быть определена по формуле:

    Где:

    B = магнитное поле (Тл)

    μ 0 = магнитная проницаемость воздуха, Т-м / А

    I = ток (А)

    r = расстояние от провода (м)

    Когда провод представляет собой петлю, магнитное поле вызывает силу в одном направлении на одной стороне петли и в противоположном направлении на другой стороне петли.Это создает крутящий момент, который заставляет катушку вращаться. Обратите внимание, что при подаче постоянного тока катушка будет колебаться вперед и назад, но не будет совершать полных оборотов — это причина, по которой в двигателях постоянного тока используются коммутаторы. Двигатели, работающие на переменном токе (двигатели переменного тока), не имеют этой проблемы.

    Изображение предоставлено: TutorVista.com

    Электромагнитная индукция и закон Фарадея

    Электромагнитная индукция (также известный как закон электромагнитной индукции Фарадея или просто индукция , но не путать с индуктивным рассуждением) — это процесс, при котором проводник помещается в изменяющееся магнитное поле (или проводник движется через стационарное магнитное поле) вызывает образование напряжения на проводнике.Этот процесс электромагнитной индукции, в свою очередь, вызывает электрический ток — говорят, что индуцирует ток .

    Открытие электромагнитной индукции

    Майклу Фарадею приписывают открытие электромагнитной индукции в 1831 году, хотя некоторые другие отмечали подобное поведение в годы до этого. Формальное название физического уравнения, которое определяет поведение индуцированного электромагнитного поля от магнитного потока (изменение магнитного поля), — это закон электромагнитной индукции Фарадея.

    Процесс электромагнитной индукции также работает в обратном направлении, так что движущийся электрический заряд генерирует магнитное поле. Фактически, традиционный магнит — это результат индивидуального движения электронов внутри отдельных атомов магнита, выровненного таким образом, что генерируемое магнитное поле имеет однородное направление. В немагнитных материалах электроны движутся таким образом, что отдельные магнитные поля указывают в разных направлениях, поэтому они компенсируют друг друга, и генерируемое суммарное магнитное поле незначительно.

    Уравнение Максвелла-Фарадея

    Более обобщенное уравнение — это одно из уравнений Максвелла, называемое уравнением Максвелла-Фарадея, которое определяет взаимосвязь между изменениями в электрических и магнитных полях. Он принимает форму:

    ∇ × E = — B / ∂t

    где обозначение ∇ × известно как операция скручивания, E — электрическое поле (векторная величина), а B — магнитное поле (также векторная величина).Символы ∂ представляют собой частные дифференциалы, поэтому правая часть уравнения — это отрицательный частный дифференциал магнитного поля по времени. И E , и B изменяются во времени t , и, поскольку они перемещаются, положение полей также изменяется.

    Закон Фарадея и закон электромагнитной индукции Ленца

    Законы электромагнитной индукции Фарадея объясняют взаимосвязь между электрической цепью и магнитным полем.Этот закон является основным принципом работы большинства электродвигателей, генераторов, трансформаторов, индукторов и т. Д.

    Первый закон Фарадея:

    Всякий раз, когда проводник помещается в изменяющееся магнитное поле, ЭДС индуцируется поперек проводника (называемая индуцированной ЭДС), и если проводник представляет собой замкнутую цепь, то индуцированный ток течет через него.
    Магнитное поле можно варьировать различными методами —
    1. Перемещая магнит
    2. Перемещая катушку
    3. Вращая катушку относительно магнитного поля

    Второй закон Фарадея:

    Второй закон электромагнитной индукции Фарадея гласит, что величина наведенной ЭДС равна скорости изменения магнитных связей с катушкой.Магнитопровод представляет собой произведение числа витков и магнитного потока, связанного с катушкой.

    Формула закона Фарадея:

    Если считать, что проводник движется в магнитном поле, тогда
    потокосцепление с катушкой в ​​исходном положении проводника = NΦ 1 (Wb) (N — скорость двигателя, Φ — поток)
    потокосцепление с катушкой в ​​конечном положении проводника = NΦ 2 (Wb)
    изменение потокосцепления с начального на конечное = N (Φ 1 — Φ 2 )
    пусть Φ 1 — Φ 2 = Φ
    следовательно, изменение потокосцепления = NΦ
    и скорость изменения потокосцепления = NΦ / t
    взяв производную от RHS
    скорость изменения магнитных связей = N (dΦ / dt)

    Согласно закону электромагнитной индукции Фарадея , скорость изменения магнитных связей равна наведенной ЭДС

    Итак, E = N (dΦ / dt) (вольт )

    Феномен взаимной индукции

    Переменный ток, протекающий в катушке, создает вокруг нее переменное магнитное поле.Когда две или более катушек магнитно связаны друг с другом, тогда переменный ток, протекающий через одну катушку, вызывает наведенную ЭДС в других связанных катушках. Это явление называется взаимной индукцией.

    Закон Ленца

    Закон электромагнитной индукции Ленца гласит, что, когда ЭДС индуцируется в соответствии с законом Фарадея, полярность (направление) этой индуцированной ЭДС такова, что она противодействует причине ее возникновения.

    Таким образом, учитывая закон Ленца


    E = -N (dΦ / dt) (вольт)

    Отрицательный знак показывает, что направление наведенной ЭДС и направление изменения магнитных полей имеют противоположные знаки.

    Закон Ленца — Физика колледжа: OpenStax

    Существует множество приложений закона индукции Фарадея, которые мы исследуем в этой и других главах. На этом этапе позвольте нам упомянуть несколько, которые имеют отношение к хранению данных и магнитным полям. Очень важное приложение связано с записью аудио и видео на магнитные ленты . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана катушка с проволокой — электромагнит (рис. 2).Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые являются функцией амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке. Когда лента проходит мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, таким образом записывая сигнал. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по конструкции записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в проволочной катушке в воспроизводящей головке.Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

    Аналогичные принципы применимы и к жестким дискам компьютера, только с гораздо большей скоростью. Здесь записи находятся на вращающемся диске с покрытием. Исторически считывающие головки создавались по принципу индукции. Однако входная информация передается в цифровой, а не аналоговой форме — на вращающемся жестком диске записывается серия нулей или единиц. Сегодня большинство считывающих устройств с жестких дисков не работают по принципу индукции, а используют технологию, известную как гигантское магнитосопротивление .(Открытие того, что слабые изменения магнитного поля в тонкой пленке из железа и хрома могут вызывать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Еще одно применение индукции можно найти на магнитной полосе на магнитной полосе. на оборотной стороне вашей личной кредитной карты, которая использовалась в продуктовом магазине или в банкомате. Это работает по тому же принципу, что и аудио- или видеолента, упомянутая в последнем абзаце, в которой голова считывает личную информацию с вашей карты.

    Другое применение электромагнитной индукции — это когда электрические сигналы должны передаваться через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном на внешней стороне черепа и используется для создания переменного магнитного поля. Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе. Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы должны передаваться через различные среды.

    Еще одна современная область исследований, в которой электромагнитная индукция успешно реализуется (и имеет значительный потенциал), — это транскраниальное магнитное моделирование. Множество расстройств, включая депрессию и галлюцинации, можно связать с нерегулярной локальной электрической активностью в головном мозге. В транскраниальной магнитной стимуляции быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в головном мозге. В идентифицированных участках индуцируются слабые электрические токи, которые могут привести к восстановлению электрических функций в тканях мозга.

    Апноэ сна («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей, и это может быть причиной внезапной детской смерти [SID]). У таких людей дыхание может неоднократно останавливаться во время сна. Прекращение действия более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. У младенцев проблема заключается в задержке дыхания на это более длительное время. Один из типов мониторов, предупреждающих родителей о том, что ребенок не дышит, использует электромагнитную индукцию.В проводе, намотанном вокруг груди младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца при его дыхании изменяет площадь спирали. В расположенной рядом катушке датчика индуцируется переменный ток из-за изменения магнитного поля исходного провода. Если ребенок перестанет дышать, наведенный ток изменится, и родитель может быть предупрежден.

    Установление соединений: сохранение энергии

    Закон Ленца — это проявление сохранения энергии.Индуцированная ЭДС создает ток, который противодействует изменению потока, потому что изменение потока означает изменение энергии. Энергия может входить или уходить, но не мгновенно. Закон Ленца — следствие. Когда изменение начинается, закон гласит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не дала бы нам бесплатную энергию из любого видимого источника — закон сохранения энергии был бы нарушен.

    Пример 1: Расчет ЭДС: насколько велика индуцированная ЭДС?

    Рассчитайте величину наведенной ЭДС, когда магнит, изображенный на Рисунке 1 (а), вдавливается в катушку, учитывая следующую информацию: одноконтурная катушка имеет радиус 6.00 см, а среднее значение [latex] \ boldsymbol {B \; \ textbf {cos} \; \ theta} [/ latex] (это дано, поскольку поле стержневого магнита сложное) увеличивается с 0,0500 Тл до 0,250 Тл. через 0,100 с.

    Стратегия

    Чтобы найти величину ЭДС , мы используем закон индукции Фарадея, как указано в [latex] \ boldsymbol {\ textbf {emf} = -N \ frac {\ Delta \ phi} {\ Delta t}} [ / latex], но без знака минус, указывающего направление:

    [латекс] \ boldsymbol {\ textbf {emf} = N} [/ latex] [латекс] \ boldsymbol {\ frac {\ Delta \ phi} {\ Delta t}} [/ латекс]

    Решение

    Нам дано, что [латекс] \ boldsymbol {N = 1} [/ latex] и [латекс] \ boldsymbol {\ Delta t = 0.100 \; \ textbf {s}} [/ latex], но мы должны определить изменение потока [latex] \ boldsymbol {\ Delta \ phi} [/ latex], прежде чем мы сможем найти ЭДС. Поскольку площадь петли фиксирована, мы видим, что

    [латекс] \ boldsymbol {\ Delta \ phi = \ Delta (BA \; \ textbf {cos} \ theta) = A \ Delta (B \; \ textbf {cos} \; \ theta)} [/ latex]

    Теперь [латекс] \ boldsymbol {\ Delta (B \; \ textbf {cos} \; \ theta) = 0.200 \; \ textbf {T}} [/ latex], поскольку было указано, что [латекс] \ boldsymbol { B \; \ textbf {cos} \; \ theta} [/ latex] изменяется с 0.2) (0.200 \; \ textbf {T})} {0.100 \; \ textbf {s}}} [/ latex] [latex] \ boldsymbol {= 22.6 \; \ textbf {mV}} [/ latex]

    Обсуждение

    Хотя это напряжение легко измерить, его явно недостаточно для большинства практических приложений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

    Закон электромагнитной индукции Фарадея: уравнение и применение — класс физики (видео)

    Электромагнитная индукция позволяет нам индуцировать напряжение с движением магнитного поля.Это открытие, приписываемое Майклу Фарадею, было не только революционным в то время, но и с тех пор привело к множеству применений в повседневной жизни.

    Майкл Фарадей

    Если вы попадете в грозу, одно из самых безопасных мест, где вы можете укрыться, — это ваша машина. Это потому, что автомобиль представляет собой защитную клетку вокруг вас, известную как «клетка Фарадея». Названный в честь Майкла Фарадея, этот тип клетки защищает все, что находится внутри клетки, от электрических полей за пределами клетки.В наши дни клетки Фарадея можно найти повсюду, потому что этот принцип используется для защиты электрического оборудования, внутренних частей зданий и многого другого. Самое крутое в клетках Фарадея то, что их тоже можно переворачивать: микроволновые печи и телевизоры удерживают электрические волны внутри клетки, что позволяет готовить еду и смотреть любимую программу без электрических помех. Жаль, что это не работает в рекламе, хотя …

    Поговорка «Величие исходит изнутри» не может быть более верной, чем с кем-то вроде Майкла Фарадея.Он происходил из бедной семьи и имел небольшое научное образование, но в конце концов стал одним из величайших ученых всех времен. Фактически, он известен как «отец электричества» и почитается как превосходный физик и химик. Но почему его так уважают? Это не только потому, что он изобрел современный воздушный шар, хотя лично я считаю, что одно только это должно было принести ему такое звание. Это также не потому, что он начал программу рождественских лекций, чтобы научить детей, и она все еще работает.

    Это из-за крупного открытия, которое он сделал в отношении электричества и магнитов, известного как электромагнитная индукция . Это когда напряжение индуцируется изменяющимся магнитным полем. Фарадей обнаружил, что электрический ток может быть получен в катушке с проволокой, перемещая магнит в катушке или из нее или перемещая катушку через магнитное поле. В любом случае напряжение индуцируется или создается посредством этого движения. Звучит достаточно просто, но в то время это был действительно шок.

    Закон Фарадея

    Это открытие было настолько фундаментальным и важным, что теперь известно как Закон Фарадея , который гласит, что величина индуцированного напряжения равна скорости изменения магнитного потока. Это можно представить в виде уравнения:

    Это довольно много, поэтому давайте разберемся, чтобы посмотреть, что здесь происходит.

    Сначала нам нужно освежить наш греческий язык. Для этого закона мы собираемся использовать греческую букву эпсилон , чтобы обозначить величину индуцированного напряжения, также известного как ЭДС .Это означает «электродвижущая сила». Думайте об этом как об электрическом токе, вызванном движением силы. Также может быть полезно увидеть, что epsilon выглядит как курсив E для «EMF». Далее идет буква , дельта , что означает «изменение». Наконец, у нас есть phi , который представляет магнитный поток. Это просто величина магнитного поля, проходящего через заданную площадь поверхности. В случае Фарадея площадь поверхности проходила через катушку с проволокой, в которую он перемещал магнит и из него.Наконец, t в нижней части уравнения означает «время».

    Теперь, когда мы знаем, как читать закон Фарадея, давайте посмотрим, что именно он означает. Мы можем сказать, просто взглянув на уравнение, что ЭДС и магнитный поток пропорциональны, потому что оба находятся на вершине уравнения. Это означает, что по мере увеличения или уменьшения одной переменной другая переменная будет изменяться в том же направлении на ту же величину. Изменение времени находится внизу, это означает, что оно обратно пропорционально ЭДС.Изменение здесь будет противоположным. Когда одна переменная увеличивается или уменьшается, другая переменная будет изменяться в противоположном направлении на ту же величину. По мере увеличения изменения магнитного потока увеличивается и ЭДС. Но если изменение во времени увеличится, ЭДС уменьшится. Помните: «дельта» означает «изменение», так что это не величина потока или время, а величина изменения одной из тех переменных, которые нас интересуют.

    Возьмем катушки Фарадея с проволокой, Например.Если у вас есть магнит, и вы пропустите его через петлю из проволочной катушки, вы создадите или индуцируете определенное количество напряжения. Но если вы пропустите тот же магнит через катушку с вдвое большим количеством витков, вы создадите вдвое больше напряжения, потому что вы удвоили площадь поверхности, через которую проходит магнитное поле. Если вы пропустите магнит через катушку с 20 петлями, вы наведете в 20 раз больше напряжения. Таким образом, мы можем увидеть, как магнитный поток и ЭДС пропорциональны, потому что они изменяются на одинаковую величину.

    Мы можем использовать провод катушки Фарадея, чтобы увидеть, как время также влияет на ЭДС. При очень медленном перемещении магнита по виткам катушки создается небольшое напряжение, потому что изменение во времени очень велико. Однако быстро перемещайте этот магнит через петлю, и вы создадите большое напряжение, потому что изменение во времени очень мало. Это показывает нам, как эти двое обратно пропорциональны — когда один растет, другой опускается на ту же величину. Большое изменение во времени (медленное движение) означает, что создается небольшое напряжение, а небольшое изменение во времени (быстрое движение) означает, что индуцируется большое напряжение.

    ×

    Разблокировать содержимое

    Более 83000 уроков по всем основным предметам

    Получите доступ без риска на 30 дней,
    просто создайте аккаунт.

    Попробуй это сейчас

    Нет обязательств, отмените в любой момент.

    Хотите узнать больше?

    Выберите предмет для предварительного просмотра связанных курсов:

    Применение закона Фарадея

    Закон Фарадея выходит далеко за рамки классных лабораторных экспериментов с магнитами и проводами.Реальные применения этого типа индукции напряжения многочисленны, и, знаете ли вы об этом или нет, они окружают вас в повседневной жизни.

    И генераторы, и двигатели используют закон Фарадея. Генератор преобразует механическую энергию в электрическую, поэтому он полезен при отключении электроэнергии. Двигатель делает обратное и преобразует электрическую энергию в механическую. Это делает их полезными для питания транспортных средств. Генератор вырабатывает электрический ток, вращая катушку в постоянном магнитном поле.В двигателе через катушку проходит ток, который заставляет его вращаться. В любом случае оба используют катушки с проволокой и магнитные поля для наведения напряжения. Каждый раз, когда вы едете на работу или в школу, вы применяете закон Фарадея!

    Индукционная готовка также использует закон Фарадея. Это когда через катушку на плите протекает ток, который создает магнитное поле. Когда другой проводящий материал, такой как сковорода, помещается поверх этой области, на нее наводится ток, нагревая его и готовя все, что находится в сковороде.Что действительно приятно в этом, так это то, что сама плита не нагревается, и нет прямой передачи тепла, как в газовой или электрической плите. Сковорода нагревается магнитным полем, так что вы можете прикоснуться к плите, не обжеся

    Электрогитары, трансформаторы и электромагнитные расходомеры также используют закон Фарадея. Как видите, уважение к Фарадею и его творчеству заслужено.

    Краткое содержание урока

    Майкл Фарадей считается одним из наших величайших ученых, и это очень подходящее название.Изобретатель и первооткрыватель многих вещей, одно из величайших открытий Фарадея заключалось в том, как напряжение может быть индуцировано изменяющимся магнитным полем, известным как электромагнитная индукция .

    Закон Фарадея резюмировал электромагнитную индукцию следующим образом: величина индуцированного напряжения равна скорости изменения магнитного потока. Это говорит о том, что величина напряжения равна изменению магнитного потока с течением времени, или, в форме уравнения: Эпсилон = Дельта Фи / Дельта t .Здесь эпсилон, — индуцированное напряжение или ЭДС, дельта, — «изменение», фи, — магнитный поток, и t — время. Поток и ЭДС пропорциональны, потому что они увеличиваются или уменьшаются на одну и ту же величину.

    Увеличение количества витков в катушке с проволокой увеличивает магнитный поток, что, следовательно, увеличивает ЭДС. Время и ЭДС обратно пропорциональны, потому что по мере увеличения изменения времени величина индуцированного напряжения уменьшается. Если вы очень быстро перемещаете магнит через катушку с проволокой, величина индуцированного напряжения увеличивается, потому что изменение во времени уменьшается.

    Закон Фарадея применим не только к лабораторным экспериментам, и мы можем видеть его примеры в действии повсюду вокруг нас в повседневной жизни. В генераторах, двигателях, трансформаторах, электрических инструментах и ​​индукционных плитах используется закон Фарадея, который позволяет нам ездить на работу, обеспечивать электроэнергией дома, готовить еду и, конечно же, зажигать!

    Результаты обучения

    После этого видеоурока вы сможете:

    • Описать, что такое электромагнитная индукция
    • Объясните, что такое закон Фарадея, и определите уравнение, которое с ним совпадает
    • Обобщите взаимосвязь между магнитным потоком, временем и ЭДС согласно закону Фарадея
    • Найдите примеры закона Фарадея в бытовой технике

    Physics4Kids.com: Электричество и магнетизм: закон Фарадея


    Закон индукции Фарадея — одно из важных понятий электричества. Он рассматривает то, как изменение магнитных полей может вызвать протекание тока по проводам. По сути, это формула / концепция, описывающая, как создается разность потенциалов ( разность напряжений ) и сколько создается. Очень важно понимать, что изменение магнитного поля может создавать напряжение. Майкл Фарадей был английским физиком, работавшим в начале 1800-х годов.Он работал с другим ученым по имени сэр Хамфри Дэви . Большое открытие Фарадея произошло в 1831 году, когда он обнаружил, что при изменении магнитного поля можно создать электрический ток. Он много работал с электричеством, например, создавал генераторы и экспериментировал с электрохимией и электролизом.

    Эксперименты Фарадея начались с магнитных полей, которые остались прежними. Эта установка не вызывала тока. Только когда он начал изменять магнитные поля, были индуцированы (созданы) ток и напряжение.Он обнаружил, что изменения магнитного поля и размера поля связаны с величиной создаваемого тока. Ученые также используют термин магнитный поток . Магнитный поток — это величина, которая представляет собой силу магнитного поля, умноженную на площадь поверхности устройства.

    Вам придется пересмотреть свои греческие буквы, когда вы запомните настоящую формулу. Вот основы …

    E = дБ / dt

    «E» — это значение индуцированного напряжения (старое название напряжения было «ElectroMotive Force» или EMF.Это буква «E» в уравнении). Изменение времени эксперимента — «dt». Время измеряется в секундах. Последний — «дБ», который означает изменение магнитного потока. Магнитный поток — это силовые линии магнитного поля. Поток равен BA, где B — напряженность магнитного поля, A — площадь. Эта формула немного сложнее, чем те, которые вы, возможно, видели раньше.

    По-английски: величина создаваемого напряжения равна изменению магнитного потока, деленному на изменение во времени.Чем больше изменение магнитного поля, тем больше напряжение.



    Или выполните поиск на сайтах по определенной теме.


    Радиоволны и электричество (видео NASA SciFiles)



    Encyclopedia.com:
    http://www.encyclopedia.com/topic/Faradays_law.aspx
    Википедия (Электромагнитная индукция):
    http: // en.wikipedia.org/wiki/Electromagnetic_induction
    Encyclopædia Britannica (Закон индукции Фарадея):
    http://www.britannica.com/EBchecked/topic/201744/Faradays-law-of-induction

    Physics4Kids Разделы

    Сеть сайтов по науке и математике Рейдера


    Молекулярные выражения: электричество и магнетизм



    Эксперимент Фарадея по индукции магнитного поля

    Когда Майкл Фарадей сделал свое открытие электромагнитной индукции в 1831 году, он предположил, что изменяющееся магнитное поле необходимо для индукции тока в соседней цепи.Чтобы проверить свою гипотезу, он сделал катушку, обмотав бумажный цилиндр проволокой. Он подключил катушку к гальванометру, а затем перемещал магнит вперед и назад внутри цилиндра.

    Щелкните и перетащите магнит назад и вперед внутри катушки.

    Когда вы перемещаете магнит вперед и назад, обратите внимание, что стрелка гальванометра движется, указывая на то, что в катушке индуцируется ток. Также обратите внимание, что стрелка сразу же возвращается в ноль, когда магнит не движется.Фарадей подтвердил, что для возникновения электромагнитной индукции необходимо движущееся магнитное поле.

    НАЗАД К РУКОВОДСТВАМ ПО ЭЛЕКТРИЧЕСТВЕ И МАГНЕТИЗМУ

    Вопросы или комментарии? Отправить нам письмо.
    © 1995-2019, автор — Майкл В. Дэвидсон и Государственный университет Флориды. Все права защищены. Никакие изображения, графика, программное обеспечение, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения владельцев авторских прав.Использование этого веб-сайта означает, что вы соглашаетесь со всеми Правовыми положениями и условиями, изложенными владельцами.
    Этот веб-сайт обслуживается нашим

    Команда разработчиков графики и веб-программирования
    в сотрудничестве с оптической микроскопией в Национальной лаборатории сильного магнитного поля
    .
    Последнее изменение: пятница, 31 марта 2017 г., 09:10
    Счетчик доступа с 6 сентября 1999 г . Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *