Что такое освещенность, цветовая температура и яркость света
Трудно встретить человека, который не разбирался бы в мерах длины, площади, объема, веса. Не вызывает сложностей исчисление времени, определение температуры. Но вот если спросить кого-нибудь о фотометрических величинах, то в большинстве случаев внятного ответа ожидать не приходится. А между тем, с освещением, естественным или искусственным, мы живём в постоянном контакте. Значит, надо научиться и его оценивать каким-то образом.
Освещенность это…Безусловно, такая оценка производится всегда и всеми, но чаще всего – чисто на уровне субъективного восприятия: достаточно света или нет. Однако, подобная «градация» именно что субъективная, и может давать существенные ошибки. Последствия таких некорректных оценок нельзя недооценивать — и недостаточность освещения, и его избыточность негативно влияют и на органы зрения человека, и на его психоэмоциональное состояние.
А между тем, существует специальная величина – освещенность, значение которой регламентируется законодательными актами в области строительства и санитарии. То есть освещенность это как раз тот критерий качества, позволяющий правильно оценить организацию системы освещения помещений. В этой статье мы как раз и поговорим об этом параметре и связанными с ним другими фотометрическими величинами, посмотрим, как это можно использовать в практическом приложении.
Какие фотометрические величины используются при расчетах освещения
По укоренившейся привычке многие продолжают считать, что оценку освещенности помещения можно производить в единицах измерения энергии – ваттах. Такое заблуждение легко объяснимо – в наследство от времен полного господства ламп накаливания нам остался этот устойчивый стереотип.
Лампы накаливания выпускались различной потребляемой мощности – 15, 25, 40, 60, 75, 100, 150 и более ватт. И каждый хозяин дома или квартиры на собственном опыте знал, что для нормального освещения в гостиной, например, он должен ввернуть в люстру три лампочки по 60 ватт, для настольной лампы достаточно будет «сороковки», в кухню нужно приобрести стоваттную и т.д.
Кстати, явным наследием этого до сих пор остаётся практика, применяемая производителями ламп – указывать на их упаковке, кроме потребляемой мощности, светоотдачу, выраженную в эквиваленте мощности старых ламп накаливания.
Так что запомним первое – в ваттах ни световой поток, излучаемый лампой, ни получающаяся от нее освещенность поверхности не измеряются. Указанные на корпусе прибора ватты – это количество потребленной лампой электроэнергии, которая путем тех или иных физических преобразований превращается в видимый свет.
Некоторые люди старшего поколения вообще уверены, что световая отдача осветительного прибора измеряется в свечах. Кстати, это не столь далеко от истины, а почему – станет понятно ниже. Но это опять же – никак не освещенность.
Так что имеет смысл рассмотреть основные фотометрические величины по порядку, от источника света к освещаемой поверхности. Сразу оговоримся – тема эта довольно сложная для восприятия неподготовленным человеком. Поэтому постараемся максимально упростить изложение, не будем его перегружать громоздкими формулами. Так, чтобы просто сложилось общее понимание вопроса.
Световой поток
Свет, как известно, имеет волновую природу. В определённом диапазоне длин волн электромагнитное излучение воспринимается органами зрения человека, то есть становится видимым. Примерные границы этого диапазона – от 400÷450 нм (красная часть спектра) до 630÷650 (фиолетовая область).
Электромагнитные волны являются переносчиком энергии – именно энергия Солнца обеспечивает жизнь на Земле. Но отвлечёмся от астрономических категорий, вернемся к обычным источникам света.
Итак, раз источник излучает свет, то это означает излучение и перенос определённой энергии. Количество этой лучистой энергии (We), перенесенной в единицу времени, носит название лучистого потока (Фе). И измеряется он в ваттах.
Однако, речь идет об освещении, то есть восприятии цвета человеческим зрением. И оценить количество энергии «на глаз» — это сразу заложить большую погрешность. Например, два источника, обладающих равной мощностью излучения, но с разным цветом свечения, будут восприниматься глазом тоже по-разному.
Чтобы унифицировать этот параметр, введена специальная физическая величина – световой поток (Ф). Это тоже показатель мощности лучистого потока, но только той его части, что воспринимается среднестатистическим здоровым человеческим глазом.
Измеряться световой поток также может в ваттах (это, скорее, энергетический показатель), или в люменах (световой показатель). На практике обычно применяются люмены.
Для точного значения одного люмена в качества эталона взято излучение из центральной, зеленой части видимого спектра, длиной 555 нм.
Итак, принято, что лучистый поток с длиной волны 555 нм величиной 1 ватт соответствует 683 люменам. Почему такой странный коэффициент? Просто окончательное утверждение этой единицы в системе СИ состоялось в 1979 году, а первые опыты по фотометрии с введением показателя светового потока начали производиться задолго до этого. В ту пору, когда электрического освещения еще не существовало, и более-менее стабильным, «эталонным» источником света служила обычная свеча. И сложившееся соотношение энергетического ватта и светового люмена было со временем пересчитано и перешло до наших дней.
Еще раз напомним — упомянутые выше ватты, которыми также может измеряться световой поток, не имеют никакого отношения к тем, что указаны на упаковке лампы. Там показывается потребление светильника, то есть то количество энергии, которое он «заберет» из сети. Нас же должна больше волновать его энергетическая световая отдача – какое количество видимой лучистой энергии он «выдаст». Так что гораздо правильнее будет при выборе лампы обращать внимание не на эфемерные сравнительные аналогии в ваттах, а на четко указанное значение светового потока в люменах.
Световая отдача
Это – очень интересная в практическом плане величина, так как она, по сути, характеризует эффективность источника света. Важно выбирать лампу не исходя из ее потребляемой электрической мощности, а из того, как эта мощность расходуется при преобразовании в световую энергию.
Итак, величина светоотдачи показывает, какой световой поток вырабатывается лампой при преобразовании одного ватта затраченной энергии. Понятно, что и измеряется она в люменах на ватт (лм/Вт).
Преобразование одного вида энергии в другой производится по-разному. Например, в привычных лампах накаливания применен резистивный принцип – свечение вызывает раскаленная спираль с большим электрическим сопротивлением. Понятно, что это сопровождается огромными тепловыми потерями. Более эффективными являются современные осветительные приборы, основанные на принципах свечения полупроводниковых матриц при пропускании тока или специально подобранных газовых смесей при их ионизации. Здесь на ненужный нагрев расходуется значительно меньше затраченной энергии.
Выше уже говорилось, что пик нормального восприятия света человеческим глазом приходится на длину волны в 555 нм. И в идеальных условиях, при полном преобразовании электрической энергии в монохроматический световой поток указанной длины волны, то есть при совершенном отсутствии потерь, теоретически возможно добиться светоотдачи в 683 лм/Вт. Это называется идеальным источником света, которого в природе, увы, не существует.
В таблице ниже приведены сравнительные характеристики для наиболее применяемых в быту ламп – накаливания, люминесцентных и светодиодных. Хорошо видно, насколько экономичнее становится использование современных источников света, то есть как возрастает показатель светоотдачи.
(Значения в таблице указаны примерные. В любой из категории ламп могут быть отклонения в ту или иную сторону – это зависит от качества конкретной модели. Но общую картину таблица представляет довольно наглядно).
Световой поток, Лм | Лампы накаливания | Люминесцентные лампы | Светодиодные лампы | |||
---|---|---|---|---|---|---|
Потребляемая мощность, Вт | Светоотдача, лм/Вт | Потребляемая мощность, Вт | Светоотдача, лм/Вт | Потребляемая мощность, Вт | Светоотдача, лм/Вт | |
250 | 20 | 12.5 | 5÷7 | 41.7 | 2÷3 | 100 |
400 | 40 | 10 | 10÷13 | 36.4 | 4÷5 | 88.9 |
700 | 60 | 11.7 | 15÷16 | 45.2 | 6÷10 | 87.5 |
900 | 75 | 12 | 18÷20 | 47.4 | 10÷12 | 81.8 |
1200 | 100 | 12 | 25÷30 | 43.6 | 12÷15 | 88.9 |
1800 | 150 | 12 | 40÷50 | 40 | 18÷20 | 94.7 |
2500 | 200 | 12.5 | 60÷80 | 38.5 | 25÷30 | 90.9 |
Конкретное значение светоотдачи не всегда, но все же указывается некоторыми производителями ламп на их упаковке. Это может быть надпись «светоотдача» или же «Lighting effect». Если нет, то его несложно определить и самому, разделив паспортный световой поток на указанную потребляемую мощность.
На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.Совершенно очевидно, что из всех ламп, применяемых в бытовых условиях, наилучшими показателями светоотдачи обладают светодиодные приборы – у них этот показатель доходит до 100 лм/Вт, и даже может быть несколько выше. Но прогресс не стоит на месте, и разработчики заявляют о скором выходе в серийное производства ламп со светоотдачей порядка 200 лм/Вт. Но до идеального источника еще ой как далеко…
Кстати, ученым удалось оценить световую отдачу Солнца, и она – не столь высока: примерно 93 лм/Вт.
Про световую отдачу источников света различного типа рассказывается и в предлагаемом видеосюжете:
Видео: Что такое световая отдача, и каково практическое применение этого параметра?
Сила света
В физике есть понятие точечного источника света – он распространяет излучение совершенно одинаково во всех направлениях. На практике такое если и бывает, то крайне редко, да и то – с некоторым упрощением понятий. На деле световой поток в разные стороны бывает неравномерен. И чтобы оценить, скажем так, его пространственную плотность, оперируют величиной силы света. А чтобы разобраться, что это такое, придется вспомнить еще и понятие телесного угла.
Начнем именно с геометрии. Итак, телесный угол – это часть пространства, объединяющая все лучи, исходящие из одной точки и пересекающую определенную поверхность (ее называют стягивающей поверхностью). В фотометрии, понятно, это освещаемая поверхность. Измеряется этот угол в особых величинах – стерадианах (ср), и обычно в формулах обозначается символом Ω.
Схема, помогающая понять, что же такое телесный угол.Величина телесного угла – это отношение площади стягивающей поверхности к радиусу сферы.
Ω = S/R²
То есть если взять, к примеру, сферу с радиусом один метр, то телесный угол в один стерадиан «вырежет» на ее поверхности пятно площадью один квадратный метр.
Для чего это знать? Дело в том, что понятие силы света напрямую связано с телесным углом. А конкретно – световой поток в один люмен, распространяющийся в пространстве, ограниченном телесным углом в один стерадиан, обладает силой света в одну канделу. Математически эта зависимость выглядит так:
I = Ф/ Ω
А если говорить об энергетической силе света, равной одной канделе, то это 1/683 Вт/ср.
Кстати, кандела – это одна из семи основных величин системы СИ.
Кандела в буквальном переводе с латинского означает свечу. Это как раз тот «пережиток прошлого», о котором уже говорилось выше, но зато он очень наглядно показывает всю взаимосвязь величин.
Поясним на рисунке:
Рисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величинИтак, имеется точечный источник света – свеча. Ее горящий фитиль излучает свет силой в одну канделу (поз. 1).
В пространстве, ограниченном телесным углом, равным одному стерадиану (поз. 2), будет при этом распространяться световой поток (поз. 3), равным одному люмену. На некотором расстоянии от источника (радиусе сферы – поз. 4) этот поток освещает поверхность определённой площади (поз. 5). Забегая вперёд сразу скажем, если площадь равна одному квадратному метру, то что при таких условиях в этом «световом пятне» обеспечивается освещенность, равная одному люксу (лк).
Если вернуться к свече, как к эталонному источнику света, то несложно рассчитать и ее общий световой поток. Полная сфера имеет телесный угол, равный 4π, то есть, с небольшим округлением, он равен 12.56 стерадиан. А это значит, что свеча, излучающая во все стороны свет силой в одну канделу, дает общий световой поток, равный 12.56 люмен.
Интересно, что еще не столь давно излучающую способность источников света и оценивали «в свечах». Например, говорили – нужна «лампочка на шестьдесят свечей». Продавцы и покупатели прекрасно понимали друг друга – приобреталась лампочка накаливания на 60 Вт, хотя, по сути, эти величины никак между собой в данном случае, с точки зрения физики, не связаны. И что забавно – это было близко к истине.
Давайте посмотрим – 60 свечей по 12,56 люмен дадут в сумме 753,6 люмена. Заглянем в таблицу выше – лампа накаливания с потреблением 60 ватт обладает световым потоком в примерно в 700 люмен. Совсем рядышком!
Но, повторимся, правильна оценка источников света все же должна осуществляться в люменах.
Яркость света
Стоит рассмотреть еще один параметр – это яркость источника света. Дело в том, что с точечными источниками дело иметь практически не приходится. То есть большинство источников обладает какой-то определенной излучающей поверхностью. И при равном световом потоке, но отличающейся площади излучения света, зрением это будет восприниматься по-разному.
Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.
То есть, по сути, яркость – эта сила света, излучаемого с определенной единицы площади видимой поверхности источника света.
L = I/S
Понятно, что единицей яркости будет кандела на квадратный метр.
Это важная величина, так как органы зрения, если смотреть на источник света, реагируют, скорее, не на силу света как таковую, а именно на яркость. При большой ее величине (свыше 160 тыс. кандел на квадратный метр) свет может вызвать раздражение глаз, болезненные ощущения, слезливость. Поэтому производители осветительных приборов и выпускают лампы с матовыми колбами. Практически без потери светового потока, излучение идет не конкретно от волоска накаливания или светодиода с их небольшими площадями, а с куда большей по площади поверхности колбы. Такое свечение значительно безопаснее для сетчатки глаза, воспринимается зрением намного комфортнее.
Освещенность поверхности
Вот, наконец, добрались мы и до освещенности. Эту величину можно считать самой прикладной, так как именно освещенностью того или иного участка оценивается общая работа осветительных приборов.
Образно выражаясь, освещенность (Е) – это поверхностная плотность светового потока (Ф), распределенного на той или иной площади (S). Если подходить с некоторым упрощением, то это можно выразить такой формулой:
Е = Ф/ S
Как мы видели выше, один люмен светового потока на площади в один квадратный метр создает освещенность, равную одному люксу (лк).
Зависит освещенность от целого ряда факторов, если даже не принимать во внимание собственные характеристики источника света.
- Во-первых, чем дальше расположен источник от освещаемой поверхности, тем больше площадь «светового пятна» (вспоминаем конус телесного угла). То есть световой поток распределяется по большему участку. Причём, как мы помним, эта зависимость – квадратичная. То есть при изменении расстояния вдвое, освещённость снизится в четыре раза, втрое – в девять раз, и т.п.
Если рассматривать точечный источник, то можно применить формулу Кеплера:
Е = I / r²
О значении входящих в формулу величин повторяться не будем – они приведены выше.
- Во-вторых, показанная выше формула Кеплера справедлива лишь для поверхности, перпендикулярной направлению светового потока. На деле, безусловно, так бывает нечасто. То есть в том случае, когда освещаемая плоскость расположена под каким-то углом α к направлению потока, приходится делать поправку и на это:
Е = (I / r²) × cos α.
Вспомните – когда вам необходимо максимально ярко осветить поверхность, вы направляете фонарь перпендикулярно к ней. Но если его расположить под углом – освещенность резко упадет, так как свет как будто «размазывается» по поверхности.
- В-третьих, освещенность конкретного участка зависит еще и от его, так сказать, окружения. Дело в том, что большинство поверхностей не поглощают весь попадающий на них свет, а в значительной степени отражают его. И тем самым сами становятся своеобразными источниками света.
Вспомним что говорилось в разделе про яркость свечения. Да, действительно, яркость таких подсвеченных участков бывает не особо высока. Но зато излучение идет с приличной площади, и в итоге создается весьма значимый световой поток.
А яркость такой подсвеченной поверхности зависит и от ее освещенности, и от диффузно-отражающей способности, которая имеет отдельное название – альбедо. Чем выше это альбедо, тем ярче свечение. А раз ярче – то и больше изучаемый «вторичный» цветовой поток.
Несколько наглядных примеров отраженного света. Лист белой бумаги при освещённости всего в 50 люкс будет иметь яркость в 15 кд/м². Свечение полной луны (а это, как мы знаем – отраженный от ее поверхности солнечный свет) характеризуется яркостью в 2500 кд/м². А поверхность чистого белого снега в солнечный день достигает яркости до 3000 кд/м². Немало!
Это явление очень широко используется при организации освещения и в дизайнерском оформлении комнат. Выпускаются целые модельные линейки светильников, специально рассчитанных на направленность в сторону стен или потолка, то есть «в работу» по общему освещению помещения включаются именно подсвеченные участки. Этот же эффект применяется при создании многоярусных потолочных конструкций со светодиодной ленточной подсветкой.
Несложно догадаться, что освещенность помещения будет зависеть и от выбранного стиля его отделки. Одна и та же лампочка, скажем, в белой комнате даст куда большую освещенность, чем в выкрашенной в темных тонах.
Так как конечным ожидаемым результатом работы осветительных приборов является создание комфортных и безопасных для здоровья показателей освещения в помещении, именно значение освещенности поверхностей и подлежит регламентации. В законодательных актах (СНиП и СанПиН) указывается, какая освещенность должна достигаться в различных помещениях, в зависимости от их предназначения.
Так, действующим СНиП 23-05-95 в его актуализированной редакции (Свод Правил СП 52.13330.2011 ) указанные следующие нормативные показатели освещенности для жилых домов:
Тип (предназначение) помещения | Нормы освещенности в соответствии с действующими СНиП, люкс |
---|---|
Жилые комнаты | 150 |
Детские комнаты | 200 |
Кабинет, мастерская или библиотека | 300 |
Кабинет для выполнения точных чертежных работ | 500 |
Кухня | 150 |
Душевая, санузел раздельный или совмещенный, ванная комната | 50 |
Сауна, раздевалка, бассейн | 100 |
Прихожая, коридор, холл | 50 |
Вестибюль проходной | 30 |
Лестницы и лестничные площадки | 20 |
Гардеробная | 75 |
Спортивный (тренажерный) зал | 150 |
Биллиардная | 300 |
Кладовая для колясок или велосипедов | 30 |
Технические помещения – котельная, насосная, электрощитовая и т.п. | 20 |
Вспомогательные проходы, в том числе на чердаках и в подвалах | 20 |
Площадка у основного входа в дом (крыльцо) | 6 |
Площадка у запасного или технического входа | 4 |
Пешеходная дорожка у входа в дом на протяжении 4 метров | 4 |
При этом оценка освещенности должна вестись на горизонтальной плоскости на высоте пола. Для лестниц – как на высоте пола, так и на переходных площадках и ступенях.
Для оценки уровня освещенности применяются специальные приборы – люксметры. Они состоят из фотоприемника со сферической поверхностью датчика, и блока-преобразователя с аналоговой (стрелочной) или цифровой индикацией показаний.
Компактный люксметр – прибор для измерения освещенностиПонятно, что люксметр – это узкопрофессиональный дорогостоящий прибор, которым пользуются специалисты, и иметь который дома совершенно не требуется. Но разбираться в вопросах основных фотометрических величин – не помешает любому хозяину дома или квартиры.
Зачем? — могут спросить многие. Да хотя бы для того, чтобы суметь самостоятельно спланировать использование тех или иных источников света, чтобы добиться нужной освещённости. Ведь от нее напрямую зависит здоровье и общее настроение всех членов семьи.
О практическом положении этих знаний как раз пойдет речь в следующем разделе публикации.
Цветовая температура
Чтобы закончить разговор об основных характеристиках источников света, необходимо остановиться и на их цветовой температуре.
При совершенно равных показателях излучаемого светового потока одна лампочка может давать тёплый желтоватый цвет, другая – белый нейтральный, а третья, например – светиться холодным оттенком синевы. Как их различить по этому параметру? Для этого разработана специальная шкала цветовой температуры.
Сразу оговоримся – здесь нет никакой связи между температурой воздуха в помещении или температурой нагрева самого источника света. Просто в качестве эталона взято свечение физического тела, разогретого до больших температур.
Любое тело, если его температура выше абсолютного нуля, само по себе является источником инфракрасного излучения. По мере роста температуры, длина волны этого излучения меняется, и в определенный момент доходит до видимого участка спектра.
Это, наблюдал, наверное, каждый – металлический пруток при нагревании сначала краснеет, затем начинает светиться ярко-красным светом, можно его раскалить, как говорят, и «добела». А при выполнении электросварочных работ, когда температура дуги достигает очень высоких показателей, плавящийся метал может приобрести и голубой оттенок.
Именно эта градация и положена в основу шкалы цветовой температуры. Она указывается в Кельвинах – а по шкале можно увидеть, какое свечение будет излучать лампа.
Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.Эта цветовая температура обычно указывается в маркировке ламп. Иногда она сопровождается и текстовым пояснением, или даже миниатюрной шкалой, показывающей, в какой области видимого спектра будет светиться лампа.
На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.Выбор ламп по их цветовой температуре зависит от того, какую обстановку планируется поддерживать в помещении. Безусловно, здесь будет играть немалую роль и субъективный фактор – то есть предпочтения хозяев. И готовых «рецептов» на этот счет нет. Но в таблице ниже приведен рекомендательный обзор ламп по их свечению. Возможно, это кому-то поможет при выборе.
Цветовая температура | Зрительное восприятие | Возможные определения создаваемой атмосферы | Характерные области применения |
---|---|---|---|
2700 К | Теплый свет | Открытая, теплая, дружеская, уютная, расслабляющая | Жилые комнаты, вестибюли гостиниц, небольшие бутики, рестораны, кафе |
3000 К | Белый свет | Интимнаая, дружеская, располагающая к общению | Жилые комнаты, библиотеки, магазины, офисы |
3700 К | Нейтральный свет | Дружеская, располагающая к общению, дающая ощущение безопасности, повышающая внимательность | Музеи и выставочные залы, книжные магазины, офисы |
4100 К | Холодный свет | Способствующая концентрации вниимания, чистая, ясная, продуктивная | Учебные помещения, конструкторские бюро, офисы, больгицы, крупные магазины, вокзалы |
5000 — 6500 К | Холодный дневной свет | Тревожная, излишне яркая, подчеркивающае цвета, стерильная, со временем — утомляющая | Музеи, ювелирные магазины, некоторые кабинеты в медицинских учреждениях |
Проведение самостоятельных расчетов.
Как и было обещано, в этом разделе публикации будет рассмотрен алгоритм проведения расчета освещенности. Точнее, если быть более корректным, расчет имеет как раз обратную направленность. То есть нормальное значение освещенности нам уже известно. И вычисления должны нас привести к результату, сколько ламп и с каким световым потоком потребуется для его обеспечения.
Общая формула для проведения расчетов
Итак, начнем с той формулы, которая будет у нас служить основой расчетов.
Fл = (Ен × Sп × k × q) / (Nc × n × η)
Fл — это световой поток лампы, которую требуется установить в светильник. То есть эта та самая величина, которая поставлена целью проведения вычислений.
Ен — нормативная освещённость поверхностей, в зависимости от типа помещения. Она соответствует параметрам, установленным СНиП и приведенным выше в таблице.то есть отталкиваемся именно от нормативного значения.
Sп — площадь освещаемой поверхности. Обычно здесь фигурирует площадь комнаты, если рассчитывается общее освещение. Но если целью ставится расчет освещенности локального участка (например, рабочей зоны), то подставляется именно площадь этой зоны.
k — корректирующий коэффициент, который часто называют коэффициентом запаса. Его введением учитывается сразу несколько обстоятельств, влияющих на световую отдачу ламп. Во-первых, многие лампы со временем начинают растрачивать свой излучающий потенциал, попросту говоря – тускнеть. Во-вторых, на излучающую способность могут влиять и некоторые внешнее факторы – это запыленность помещения или, скажем, высокая концентрация пара, препятствующая свободному распространению световых лучей.
Коль речь у нас идет о жилых помещениях, где плотный пар стоять не должен, а пыль удаляется регулярными уборками, то вторую группу факторов можно сбросить со счетов. А по постепенной потере излучающей способности коэффициент для разных типов ламп можно принять следующим:
— лампы люминесцентные (газоразрядные): 1.2;
— обычные лампы накаливания и «галогенки»: 1.1;
— лампы светодиодные: 1.0.
q — коэффициент, учитывающий неравномерность свечения некоторых типов ламп. Он принимается равным:
— для ламп накаливания и газоразрядных ртутных ламп: 1.2;
— для компактных люминесцентных ламп накаливания и светодиодных источников света: 1.1.
Переходим к знаменателю дроби.
Nc — количество осветительных приборов, планируемых к установке в помещении или в отдельной зоне, для которой проводится расчет.
n — количество рожков в планируемом к установке светильнике.
Наверное, понятно, что произведение последних двух величин показывает, какое же количество ламп планируется к установке. Например, устанавливается одна пятирожковая люстра. Тогда Nc =1, а n =5. Или планируется осветить помещение двумя приборами, каждый по три лампочки: Nc =2, а n =3, Но если освещение будет осуществляться одним прибором с одной лампой, что обе эти величины будут равны единице.
η — коэффициент использования светового потока. Эта поправочная величина учитывает множество факторов, касающихся как особенностей помещения, так и специфики планируемых к установке осветительных приборов.
Так как именно этот коэффициент пока что остается неизвестной величиной, с него и следует начать проведение расчётов.
Находим коэффициент использования светового потока
Эту величину можно назвать табличной эмпирической. Она зависит и от площади помещения, и от расположения светильника, и от основного направления светового потока, и от отделки поверхностей потока, стен и пола.
Прежде всего для входа в таблицу придется определить так называемый индекс помещений. Он учитывает размеры помещения, причём, именно в соотношении длины и ширины, так как в квадратной комнате и в вытянутой прямоугольной световой поток все же будет распространяться по-разному. И второе – он учитывает высоту расположения светильника над освещаемой поверхностью. Как мы помним – по требования СНиП оценка освещенности ведется по горизонтальной плоскости на уровне пола.
Важно – иногда путают высоту потолка в комнате с высотой установки светильника. А это все же не одно и то же! Например, осветительный прибор может быть закреплён на стене (бра), установлен на стойке или размещен на столе или тумбочке (торшер или настольная лампа), подвешен к потоку на определенном расстоянии от потолочной поверхности (люстра).
Формула, наверное, ни о чем не скажет. Лучше предложим воспользоваться для определения этого индекса помещения онлайн-калькулятором.
Калькулятор для определения индекса помещения.
Перейти к расчётам
Итогом расчетов станет какая-то дробная величина. Ее приводят в ближайшую сторону к следующим значениям: 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1, 1,25; 1,5; 1,75; 2,0; 2,25; 2,5; 3,0; 3,5; 4,0; 5,0. Почему именно к ним? Да, четно говоря, просто потому, что именно такая градация принята в таблицах, расположенных ниже.
Таблицы для определения коэффициента использования светового потока
Для входа в таблицу необходимо будет еще оценить отражающую способность поверхностей в помещении (помните, говорилось о некотором альбедо, способствующим освещенности или, наоборот, приглушающим ее).
Отражающую способность поверхностей, в зависимости от цвета их отделки, можно принять следующую:
Оттенки интерьерной отделки | Коэффициент отражающей способности |
---|---|
Белый цвет | 70% |
Светлые тона | 50% |
Средние тона | 30% |
Темные тона | 10% |
Черный цвет | 0% |
Для пользования таблицей следует сразу оценить отделку комнаты в порядке: потолок – стена – пол в процентах отражающей способности. Понятно, что здесь придётся проявить определённую сообразительность – с белым и черным цветов ясность есть, а вот с остальным необходимо подумать, отнести их больше к светлым, средним или темным тонам. Но для человека с нормальным восприятием цвета это не должно стать проблемой.
Следующим шагом следует определить тип светильника, планируемого к установке – предложено пять различных вариантов. Именно этот критерий поможет выбрать нужную таблицу. (все таблицы размещены в правом столбце. Изображения «кликабельны», то есть увеличатся до нормального размера при клике мышкой).
Ну и уже по этой выбранной таблице, на основании всех собранных данных, находится коэффициент.
Просто для примера. Планируется к установке на потолочный поверхности подвесной светильник с плафоном, дающим преимущественное распространение света вниз. Находим устраивающую нас таблицу. Вот она:
Пример определения коэффициента использования светового потока по таблицеПроведённым ранее расчётом определили индекс помещения. Допустим, он равен 1.0.
По оценке отделки получаем следующее соотношение – 70% (белый потолок), 30% (темно-бежевые стены, которые можно отнести к средним тонам), 10% (темный, близкий к черному пол).
По этим значениям находим пересечение столбцов и строки (пример показан на иллюстрации), и получаем искомое значение коэффициента использования светового потока, равное 0,30.
Всё, теперь у нас есть уже все данные для проведения окончательного расчета. И для него можно, опять же, воспользоваться встроенным онлайн-калькулятором.
Калькулятор расчёта необходимого светового потока источников света
Перейти к расчётам
Полученное значение показывает, какой должен быть световой поток у ламп, которые обеспечат необходимую норму освещенности в помещении.
* * * * * * *
Что можно добавить напоследок?
- Если расчет ведётся для какой-то ограниченной зоны, например, для подсветки рабочей области в мастерской или гараже, то и значения площади берутся только для нее. И расположение и тип светильников также – только те, которые будут освещать именно этот участок. То есть исходим из принципа автономности – рабочая зона должна быть нормально освещена даже при полностью выключенном общем освещении. Это же касается и других локальных участков – письменного стола, выделенного места для рукоделия в кресле под торшером и т.п.
- Нормальная освещенность довольно часто в повседневной жизни выглядит избыточной. Например, человеку просто хочется побыть одному в полумраке, или просто для просмотра телепередач яркий свет не требуется. Значит, можно и нужно предусмотреть зональную дополнительную подсветку (на которую уже не будут распространяться санитарные нормы), или установить диммер, с помощью которого можно изменять излучаемый световой поток осветительных приборов.
- В публикации уже не раз подчеркивалось, и проведение расчета – тому лишнее подтверждение, что определяющим критерием при выборе ламп для обеспечения требуемой освещенности должен являться именно световой поток. Но про потребляемую мощность тоже забывать не следует.
Дело в том, что многие светильники имеют ограничения по этому параметру. Например, в паспорте изделия указано, что максимальная суммарная мощность не должна превышать 60 ватт. Это может быть вызвано ограниченной термостойкостью пластиковых деталей светильника или малым сечением проводов, проложенных в нем. То есть и потребляемую мощность ламп также следует учитывать. Если же она получается выше допустимого значения, значит, придется подыскивать другой светильник.
Может случиться и так, что расчетный световой поток получился столь высоким, что таких ламп в ассортименте магазинов попросту нет. Значит, планируемое количество источников света — недостаточное. Придется рассматривать варианты с увеличением количества светильников, или же со светильниками с большим количеством рожков.
stroyday.ru
Светотехника: световой поток, освещенность, яркость
Свет, падающий на поверхность нашей планеты Земля от Солнца, является источником жизни для всех ее живых организмов. Солнечные лучи, распространяясь со скоростью 300000 км/ч., оказывают следующие воздействия на окружающую среду:
- участие в фотосинтезе;
- видимый свет;
- тепло ;
- обеззараживание;
- облучение.
Исходя из этого естественный свет — это лучистая энергия в виде электромагнитных волн, обладающих разными свойствами в зависимости от их общего показателя, которым является длина. Длина излучений измеряется в нанометрах (0,000000001 м) и варьируется для инфракрасных волн от 700 до 10000 нм., видимых человеческому глазу 400-750 нм., ультрафиолетовых — 10-370 нм. и рентгеновских 0,00001-10 нм.
Для человеческого глаза наиболее оптимальной считается длина видимых электромагнитных колебаний от 500 до 600 нм., хуже воспринимаются красные и фиолетовые лучи, а инфракрасные и ультрафиолетовые ощущаются только по нагреву и загару кожного покрова.
С развитием науки и техники человечество научилось создавать искусственные источники всех разновидностей электромагнитных волн, используемых в разных отраслях промышленности и сельского хозяйства и других сферах деятельности. Рассмотрим основные светотехнические понятия, раскрывающие все характеристики источников света.
Что такое световой поток?
Световой поток — это мощность видимого излучения источника электромагнитных волн, которое ощущает человеческий глаз. Обозначается буквой Ф и измеряется в люменах (лм).
Поток лучей света, отдаляясь от источника, в пространстве распространяется неравномерно, теряя свою плотность. Эту пространственную лучистую плотность светового потока характеризует такое понятие как сила света I (измеряется в канделах – кд.), которое определяется из отношения светового потока Ф к телесному углу ω.
I=Ф/ω.
Чтобы разобраться, как эти величины взаимосвязаны друг с другом обратимся к рисунку.
Если взять точечный источник света 0, который будет светить в пространстве, то будет находиться внутри освещенного шара. Теперь представим, что световой поток Ф будет распространяться на выбранный участок сферы площадью S, в результате образуется конус, стороной которого будет являться радиус шара. Этот пространственный угол, являющийся вершиной конуса, и является телесным и определяется, как отношение площади S к квадрату радиуса сферы.
ω=S/R2.
Единицей телесного угла является стерадиан (ср), который образует на поверхности светящегося шара площадь, равную по значению квадрату его радиуса.
Освещенность
Освещенность характеризует то, как количественно изменяется плотность светового потока источника света в пространстве, лучи которого падают на любые поверхности, удаленные на разные расстояния от места излучения. Определяется отношением светового потока Ф к освещаемой поверхности S:
Е=Ф/S.
Снова обратимся к рисунку!
Итак, возьмем также точечный источник света А, сила света Iα светового потока которого направлена на участок площадью S какой-либо поверхности. Расстояние между источником света А и площадью равно l. В итоге образуется конус с наклоном, с углом α между направлением силы света Iα и стороной конуса и пространственным углом ω. Тогда:
ω=S*cosα/l2 и вычисляем Ф= Iα *S*cosα/l2 .
Определяем освещенность элемента по следующему выражению:
Е= Iα*cosα/l2 .
Таким образом, освещенность определяется силой света расстоянием до освещаемой поверхности, т.е. чем дальше находится предмет от источника видимого излучения, тем меньше на него попадает света!
Единица освещенности называется люксом и обозначается как (лк).
Яркость
При попадании светового потока на поверхность какого-либо предмета, то он частично поглощается, а другая его часть отражается, создавая зрительное восприятие этого предмета на расстоянии. Если два освещенных объекта темного и светлого цвета разместить на одном и том же расстоянии от человеческого глаза, то лучше будет виден светлый объект, то есть он лучше отражает световой поток источника света. Для сравнения, где будет светлее, в комнате со светло-зелеными или темно-коричневыми обоями при одинаковой освещенности? Конечно же, в комнате со светло-зеленым покрытием стен.
Таким образом, под яркостью освещаемой поверхности понимают то количество отраженной силы света относительно глаза наблюдателя, которое будет зависеть от окраски и отражающих свойств этой поверхности.
Яркость обозначается буквой L и равна отношению силы света к площади проекции освещаемой поверхности:
L=I/S.
Как видно из формулы, яркость измеряется в кандела на один квадратный метр (кд/м2).
Данная формула справедлива в том случае, если глаз наблюдателя находится под углом 90 градусов к отражающей поверхности, так как тогда угол между падающим и отражающим углом составит 0 градусов, а cos0=1!
Если освещаемая поверхность будет рассматриваться человеческим глазом под некоторым углом а, то он увидит площадь проекции этой поверхности на плоскость, находящуюся под углом 90° по направлению к наблюдающему, тогда яркость будет равна:
L=Ia/(S*cosa).
Также термин яркость используется и для источников света, имеющих излучающие поверхности различных форм. Так, например, если взять лампу накаливания с колбой в форме шара, то проекция излучения в пространстве будет в виде круга с площадью πD2/4. Для цилиндрических ламп (газоразрядные) проекция представляет собой множество прямоугольников, которые вычисляются как произведение длины и ширины, а в данном случае умножения диаметра колбы на ее длину.
на Ваш сайт.
pro100electrik.ru
Световые величины и единицы
Световой поток — мощность светового излучения, т. е. видимого излучения, оцениваемого по световому ощущению, которое оно производит на глаз человека. Световой поток измеряется в люменах.
Например лампа накаливания (100 Вт) излучает световой поток, равный 1350 лм, а люминесцентная лампа ЛБ40 — 3200.
Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света равной одной канделе, в телесный угол, величиной в один стерадиан (1 лм = 1 кд·ср).
Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4π люменам.
Существует и другое определение: единицей светового потока является люмен (лм), равный потоку, излучаемому абсолютно черным телом с площади 0,5305 мм2 при температуре затвердевания платины (1773° С), или 1 свеча·1 стерадиан.
Сила света — пространственная плотность светового потока, равная отношению светового потока к величине телесного угла, в котором равномерно распределено излучение. Единицей силы света является кандела.
Освещенность — поверхностная плотность светового потока, падающего на поверхность, равная отношению светового потока к величине освещаемой поверхности, по которой он равномерно распределен.
Единицей освещенности является люкс (лк), равный освещенности, создаваемой световым потоком в 1 лм, равномерно распределенным на площади в 1 м2, т. е. равный 1 лм/1 м2.
Яркость — поверхностная плотность силы света в заданном направлении, равная отношению силы света к площади проекции светящейся поверхности на плоскость, перпендикулярную тому же направлению.
Единица яркости — кандела на квадратный метр (кд/м2).
Светимость (светность) — поверхностная плотность светового потока, испускаемого поверхностью, равная отношению светового потока к площади светящейся поверхности.
Единицей светимости является 1 лм/м2.
Единицы световых величин в международной системе единиц СИ (SI)
Наименование величины | Наименование единицы | Выражение через единицы СИ (SI) |
Обозначение единицы | |||
---|---|---|---|---|---|---|
русское | между- народное | |||||
Сила света | кандела | кд | кд | cd | ||
Световой поток | люмен | кд·ср | лм | lm | ||
Световая энергия | люмен-секунда | кд·ср·с | лм·с | lm·s | ||
Освещенность | люкс | кд·ср/м2 | лк | lx | ||
Светимость | люмен на квадратный метр | кд·ср/м2 | лм·м2 | lm/m2 | ||
Яркость | кандела на квадратный метр | кд/м2 | кд/м2 | cd/m2 | ||
Световая экспозиция | люкс-секунда | кд·ср·с/м2 | лк·с | lx·s | ||
Энергия излучения | джоуль | кг·м2/с2 | Дж | J | ||
Поток излучения, мощность излучения | ватт | кг·м2/с3 | Вт | W | ||
Световой эквивалент потока излучения | люмен на ватт |
|
лм/Вт | lm/W | ||
Поверхностная плотность потока излучения | ватт на квадратный метр | кг/с3 | Вт/м2 | W/m2 | ||
Энергетическая сила света (сила излучения) | ватт на стерадиан | кг·м2/(с3·ср) | Вт/ср | W/sr | ||
Энергетическая яркость | ватт на стерадиан-квадратный метр | кг/(с3·ср) | Вт/(ср·м2) | W/(sr·m2) | ||
Энергетическая освещенность (облученность) | ватт на квадратный метр | кг/с3 | Вт/м2 | W/m2 | ||
Энергетическая светимость (излучаемость) | ватт на квадратный метр | кг/с3 | Вт/м2 | W/m2 |
Примеры:
Тип лампы | Мощность, Вт | Световой поток, лм |
Примерная сила света, кд |
---|---|---|---|
Свеча | 1 | ||
Лампа накаливания Б235-245-100 | 100 | 1380 | 100 |
Лампа люминесцентная ЛБ 40 | 40 | 2800 | |
Ртутная лампа высокого давления ДРЛ 250 | 250 | 13000 | |
Обычный светодиод | 0,015 | 0,001 | |
Сверхяркий светодиод | 5 | 3 |
ЭЛЕКТРОТЕХНИЧЕСКИЙ СПРАВОЧНИК»
Под общей ред. профессоров МЭИ В.Г. Герасимова и др.
М.: Издательство МЭИ, 1998
www.neolight.ru
Лекция 3 2012 ОСНОВЫ ФОТОМЕТРИИ И СВЕТОТЕХНИКИ. ИСТОЧНИКИ СВЕТА
Лекция 3
ОСНОВЫ ФОТОМЕТРИИ И СВЕТОТЕХНИКИ. ИСТОЧНИКИ СВЕТА
Для художника или ремесленника свет одновременно и благословление и проклятие – он не отделим от красоты искусства и вместе с тем, способен физическим или химическим путем принести ему вред.
Томас Брилл
Влияние освещения на восприятие окружающего мира настолько важно, что дизайнерам, проектирующим окружающую среду и изделия, необходимо знание основ фотометрии и светотехники. Фотометрия – совокупность методов измерения энергетических характеристик электромагнитного излучения и световых величин: светового потока, силы света, освещенности, яркости и др. Основоположником экспериментальной фотометрии следует считать П. Бугера, который опубликовал в 1729 г. описание визуального метода количественного сравнения источников света: установления (путём изменения расстояний до источников) равенства освещённостей соседних поверхностей с использованием в качестве прибора глаза.
Основным энергетическим понятием является поток излучения Ф, имеющий физический смысл средней мощности, переносимой электромагнитным излучением. Воспринимаемая глазом энергия оценивается световыми единицами, которые связаны с энергетическими единицами. Пространственное распределение Ф описывают энергетические фотометрические величины, производные от потока излучения по площади и (или) телесному углу. Соответствующие энергетические фотометрические величины – энергетическая освещённость, энергетическая сила света, энергетическая яркость и т.д. Световые величины – это фотометрические величины, редуцированные в соответствии со спектральной чувствительностью так называемого среднего светлоадаптированного человеческого глаза (важнейшего для деятельности человека приёмника света).
С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условно принятых стандартов. В 1931г. Международная комиссия по освещению (МКО) ввела понятие среднего «стандартного наблюдателя» для людей с нормальным восприятием. Этот эталон МКО – не что иное, как таблица значений относительной световой эффективности излучения с длинами волн в диапазоне от 360 до 780 нм.
Световой поток Ф и поток излучения Ф* связаны следующей зависимостью: , (3.1)
где — коэффициент перехода от энергетических единиц к единицам световым, а — относительная спектральная световая эффективность излучения, которая описывает относительную чувствительность среднего человеческого глаза к видимому излучению при нормальных условиях освещенности для разных длин волн. Она измеряется в люменах на ватт в минус первой степени ().
Фундаментальная взаимосвязь между световыми и энергетическими величинами содержится в определении люмена, который определяется как световой поток монохроматического излучения желто-зеленого цвета с длиной волны приблизительно 555 нм, энергетический поток которого равен 1/683 Вт.
Таблица 3.1
Энергетические и световые характеристики и единицы
Энергетический термин | Единица | Световой термин | Единица |
Поток излучения Сила излучения Энергетическая яркость Энергетическая освещенность Энергетическая экспозиция | Вт Вт/ср Вт/(ср´м2) Вт/м2 Дж/м2 | Световой поток Сила света Яркость Освещенность Световая экспозиция | люмен (лм) кандела (кд) кд/м2 люкс (лк) лк·с |
Световой поток Ф – часть электромагнитной энергии, которая излучается источником в видимом диапазоне. Его величина равна световой энергии (оцениваемой по зрительному ощущению), проходящей через заданную поверхность за единицу времени: Ф = W/t (3.2) , где W – количество световой энергии, проходящей через заданную поверхность за время t. Единицей светового потока в СИ является люмен (лм). Он определяется как поток, который посылается источником света в одну канделу в телесный угол w , равный одному стерадиану.
Силой света источника I называется величина, измеряемая световым потоком, приходящимся на единицу телесного угла по заданному направлению. Представляет собой отношение величины светового потока Ф, распространяющегося от источника света в некотором телесном угле, к величине этого телесного угла: I = Ф/ (3.3). Полный световой поток от точечного источника света равен Ф = 4 I (3.4). Основной единицей в СИ принимается сила света в одну канделу (кд). Кандела (лат. сandela – свеча) равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·1012 герц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср. Выбранная частота соответствует зелёному цвету. Человеческий глаз обладает наибольшей чувствительностью в этой области спектра. Если излучение имеет другую частоту, то для достижения той же силы света требуется бо́льшая энергетическая интенсивность.
Ранее кандела определялась как сила света, излучаемого чёрным телом перпендикулярно поверхности площадью 1/60 см² при температуре плавления платины (2042,5 К). В современном определении коэффициент 1/683 выбран таким образом, чтобы новое определение соответствовало старому.
Таблица 3.2
Сила света типовых источников
Источник | Мощность, Вт | Примерная сила света, кд |
Свеча | 1 | |
Лампа накаливания | 100 | 100 |
Обычный светодиод | 0,015 | 0,001 |
Сверхъяркий светодиод | 0,06 | 3 |
Люминесцентная лампа | 20 | 100 |
Солнце | 3,9 · 1026 | 3 · 1027 |
Для характеристики интенсивности потока, падающего на поверхность от источника света, введена величина, получившая название освещенности Е. Освещенностью поверхности называется величина, равная световому потоку, падающему на единицу площади равномерно освещаемой поверхности. В общем случае освещенность Е определяется как отношение светового потока Ф к величине освещаемой поверхности, независимо от того, как расположена эта поверхность. В СИ освещенность измеряется в люксах (лк). 1 люкс — это освещенность поверхности площадью 1м, на которую падает световой поток в 1 люмен.
Фундаментальный для фотометрии закон освещенности был сформулирован И. Кеплером в 1604 г. Он формулируется следующим образом: освещенность, создаваемая точечным источником света на некоторой площадке, прямо пропорциональна произведению силы света источника I на косинус угла падения лучей и обратно пропорциональна квадрату расстояния до площадки от источника R:
(3.5),
где: Е – освещенность; І – сила света; R – расстояние от источника до освещаемой площадки; α – угол между лучом и нормалью к поверхности.
В таблице 3.3 представлены некоторые типичные уровни освещенности источников света.
Таблица 3.3
Типичные уровни освещенности (приблизительные)
Условия Освещенность, лк
Яркий солнечный свет летом 44000
Средний дневной свет неба, покрытого облаками 5500
Верхний свет северного неба (открытые шторы) 4400
Рабочее место, например, на часовом заводе 3300
Текстильная фабрика – сравнение черных и темных цветов 3300
Окна магазина 100-2200
Футбольное поле (освещенное прожекторами) 1100
Текстильная фабрика – сравнение цвета ярких или бледных цветов 770
Библиотека 550
Экран для показа слайдов (в затемненной комнате) 11-110
Нормальное освещение в музеях 50
Жилая комната, общее освещение лампой накаливания 55-165
Освещение темной улицы 11
Протяженный источник света или освещенный предмет характеризуется определенной яркостью (фотометрической яркостью) L. Яркость равна отношению силы света, излучаемого поверхностью, к площади ее проекции на плоскость, перпендикулярную выбранному направлению. Как известно, площадь проекции какой-либо плоской поверхности на другую плоскость равна площади этой поверхности, умноженной на косинус угла между плоскостями. Таким образом, (3.6), где a — угол между направлениями силы света и вертикалью.
За единицу измерения яркости сейчас во всех странах принята яркость плоской поверхности, излучающей силу света в 1 кд с одного квадратного метра в направлении, перпендикулярном светящей поверхности, то есть, 1 кд/м2. Яркость большинства тел и источников света в разных направлениях неодинакова. Если сила света, испускаемого 1 м2 такой поверхности в данном направлении, равна 1 кд, то ее яркость в этом направлении равна 1 кд/м2.
От чего же зависит яркость предметов? Прежде всего – от количества попадающего на них света. Но она зависит и от свойств самих предметов, а именно – от их способности отражать падающий свет. Если предмет белый – он отражает почти весь падающий на него световой поток и его яркость высока, если он черный, то его поверхность поглощает почти все попадающее на него излучение и яркость его мала. То есть, при постоянстве освещенности яркость предмета тем больше, чем больше его отражательная способность, светлота. Для диффузно отражающих поверхностей (3.7). Здесь r — коэффициент отражения, определяемый отношением отраженного от плоскости светового потока к падающему на эту плоскость световому потоку (3.8).
Источники света обладают различной яркостью. В каждом отдельном случае различие источников света по яркости четко определяется человеческим глазом. Яркость света L источника света или яркость освещаемой площади объектов связана с уровнем зрительного ощущения, а распределение яркости в поле зрения, например, в интерьере, характеризует качество или степень комфортности освещения.
Форма и цвет предмета воспринимаются только при яркости зрительного стимула не менее или равного 10 кд/м2. При яркостях менее 0,003 кд/м2 функционируют только палочки (сумеречное зрение). Следовательно, различение цветов возможно лишь при достаточно высоких значениях яркости зрительного стимула. Надежное и более тонкое различие цветовых оттенков возможно при яркости 175 кд/м2. Колбочки чувствительны к длине световых волн. При равенстве энергии воздействующих волн различия их длин ощущаются как различия в цвете зрительных стимулов. Глаз различает семь основных цветов и более сотни их оттенков. С изменением длины волны изменяется и качество ощущений. Лучшими условиями для работы считаются такие, когда уровень яркости адаптации находится в пределах от нескольких десятков до тысячи кандел на квадратный метр.
Нижний абсолютный порог чувствительности – это та минимальная (пороговая) величина яркости светового пятна, обнаруживаемого глазом на черном фоне. Она составляет 10-6 кд/м2.
Верхний абсолютный порог чувствительности характеризуется болевыми ощущениями и составляет 106 кд/м2. Диапазон яркостей между верхним и нижним порогами чувствительности находится в пределах от 10-6 до 106 кд/м2.При изменении освещенности сетчатки световая чувствительность не остается постоянной, а адаптируется. Средняя интегральная яркость информационного поля и других источников света (первичных и вторичных), находящихся в поле зрения, создает яркость адаптации Lυa. Лучшими условиями для работы считаются такие, когда уровень яркости адаптации находится в пределах от нескольких десятков до тысячи кандел на квадратный метр. Отметим, что для площади рабочей поверхности 0,1 м2 и более наибольшая допустимая яркость должна составлять 500 кд /м2, а для площади 0,0001 м2 и менее — 2 000 кд /м2. Нормы яркости для улиц, площадей составляют 0,2-1,6 кд /м2, яркость архитектурного освещения фасадов зданий, сооружений — от 3 до 8 кд /м2, а максимальная яркость рекламных объектов с учетом их площади — 400-2 600 кд /м2.
При прямом попадании мощного светового потока на орган зрения предельная величина переносимого уровня яркости составляет 7 500 кд /м2.
Таблица 3.4
Яркость некоторых источников освещения
|
Важно также понятие светимости M, которая выражает полный световой поток Ф, излучаемый единицей плоской светящейся поверхности по всем направлениям в одну сторону.
ИСТОЧНИКИ СВЕТА
Влияние освещения на восприятие окружающего мира настолько важно, что дизайнерам, проектирующим окружающую среду и изделия, необходимо знание основ светотехники. Существует два вида источников света – это Солнце (естественное освещение) и искусственные источники, созданные человеком.
Психологическое и физиологическое воздействие на человека цветности излучения источников света в значительной степени связано с теми световыми условиями, к которым человечество приспособилось за время своего существования. Световой режим, к которому приспособились люди – это голубое небо, создающее в течение большей части светового дня высокие освещенности, а вечерами и ночами – желто-красный костер, а затем, пришедшие ему на смену, создающие низкие освещенности лампы, аналогичные по цветности. У человека наблюдается более работоспособное состояние днем при свете преимущественно холодных оттенков, а вечером, при теплом красноватом свете низкой освещенности, ему лучше отдыхать. Лампы накаливания дают теплый красновато-желтый цвет и способствуют успокоению и отдыху, люминесцентные лампы, наоборот, создают холодный белый свет, который возбуждает и настраивает на работу.
Рис. Освещение, к которому привык человеческий глаз в процессе эволюции
Таким образом, цветность является важной характеристикой светового излучения. Цветность света того или другого источника зависит от спектрального состава излучаемого им светового потока.
Примеры спектрального распределения интенсивности излучения различных источников света показаны на рис. .
(а) (б)
Рис. Примеры спектрального распределения интенсивности излучения различных источников света: (а) свет от ясного голубого неба, среднедневной усредненный солнечный свет, свет лампы накаливания, (б) излучение люминесцентной лампы
Излучение большинства самосветящихся источников подчиняется одним и тем же законам, однако для разных тел, в зависимости от их химического состава и физических свойств, нагревание до заданной температуры дает несколько различающиеся спектры излучения. В связи с этим, в качестве эталона цветовой температуры используется гипотетическое абсолютно черное тело или излучатель Планка. Это источник, излучение которого зависит только от его температуры, а не от каких-либо других его свойств. Для характеристики цвета излучений было введено понятие цветовой температуры. В зависимости от температуры нагревания, спектр излучения абсолютно черного тела имеет разную цветность. Цветовая температура – это та температура черного тела, при которой его излучение имеет ту же цветность, что и рассматриваемое излучение.
Рис. 3.2 Спектральное распределение излучения черного тела в видимом диапазоне в зависимости от температуры
Действительно, при нагревании черного тела его цвет изменяется от теплых оранжево-красных до холодных белых тонов. Цветовая температура измеряется в градусах Кельвина (К). Связь между градусами по шкале Цельсия и по шкале Кельвина следующая: К = С + 273 .
Цветовая температура для реальных источников света составляет от 2000 до 10000 градусов. Чем ниже цветовая температура, тем цветность источника света находится ближе к красной области спектра, чем выше – к синей.
Несмотря на существующие различия, все другие тела ведут себя при нагревании подобно идеальному черному телу. Именно поэтому использование цветовой температуры в качестве характеристики цветности излучения самосветящихся источников, как природных, так и искусственных, оправдано для большого числа источников. Поскольку спектральное распределение излучения, и, соответственно, цветность, реального тела в редких случаях точно совпадает со спектральным распределением и цветностью идеально черного тела при данной цветовой температуре, при характеристике излучения реально существующих тел используют понятие коррелированной цветовой температуры (рис. 3.3).
Рис. 3.3 Линия черного тела на графике цветностей xy МКО 1931 г. и семейство изотемпературных линий, используемых для определения коррелированной цветовой температуры источника по координатам цветности
Она соответствует цветовой температуре, полученной путем определения на равноконтрастном цветовом графике точки на линии черного тела, ближайшей к точке, представляющей собой цветность рассматриваемого источника света.
Цветопередача характеризует влияние спектрального состава источника света на зрительное восприятие цветных объектов, сознательно или бессознательно сравниваемое с восприятием тех же объектов, освещенных стандартным источником. Цвет красного автобуса при освещении светом уличной натриевой лампы накаливания воспринимается как тускловато коричневый. Цвет лица при освещении светом ртутной лампы приобретает болезненный зеленоватый оттенок. Обе эти лампы легко узнать по их плохой цветопередаче. Искусственный свет должен обеспечивать возможность наиболее лучшего восприятия цвета.
Метод оценки цветопередающих свойств источников света, рекомендованный МКО, предназначен для оценки способности источника придавать предметам их истинный цвет. Веден показатель – индекс цветопередачи, который отражает уровень соответствия естественного цвета тела с видимым цветом этого тела при освещении его эталонным источником света. Методика определения индекса цветопередачи заключается в вычислении цветовых координат u, v анализируемого цветового образца при его освещении данным источником света, вычислении цветовых координат u, v образца при его освещении принятым в качестве стандартного источника света и определении ΔE – различия между ними в цветовом пространстве W*U*V*. По полученным данным определяется частный индекс цветопередачи Ri:
(3.9).
Чем меньше отклонение цвета излучаемого тестируемой лампой света от эталонных цветов, тем лучше характеристики цветопередачи этой лампы. Источник света с показателем цветопередачи Ra = 100 излучает свет, оптимально отражающий все цвета, как свет эталонного источника света. Чем ниже значение Ra, тем хуже передаются цвета освещаемого объекта. Методика МКО 1974 г. рекомендует использовать для вычисления индекса цветопередачи среднее арифметическое из частных индексов цветопередачи, определенных для 14 образцов цвета атласа Манселла по показателю ΔE, рассчитанному по координатам цвета образца, освещенного исследуемым источником, и координатам цвета того же образца при выбранном контрольном освещении. Полученная характеристика именуется общим индексом цветопередачи RA:
(3.10).
Для источников с высокой цветовой температурой истинным считается цвет предмета при дневном освещении. В случае источников с низкой цветовой температурой истинным считается цвет предмета при освещении лампой накаливания. В методе МКО действует условие, что цветность стандартного излучения должна быть одинакова или почти одинакова цветности исследуемого излучения. Допускается очень небольшое различие.
Для критической оценки окрашенных объектов потребитель должен выбрать тот источник, который дает достаточно хорошее приближение к истине. Обычно это означает, что источник должен иметь довольно высокий общий индекс цветопередачи МКО (95 и более). Из формул следует, что величина ΔE должна быть порядка одного порога. В некоторых особых случаях для контроля может потребоваться источник с более высоким индексом цветопередачи и более жесткие допуска на фактическое относительное спектральное распределение энергии излучения. Такие особые случаи возникают при необходимости проведения критического сравнения метамерных цветовых стимулов предметов.
Искусственные источники света. Для искусственного освещения применяют электрические лампы двух типов — лампы накаливания (ЛН) и газоразрядные лампы (ГЛ).
Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение (свет) в них получается в результате нагрева электрическим током вольфрамовой нити.
В газоразрядных лампах видимое излучение возникает в результате электрического разряда в атмосфере инертных газов или паров металлов, которыми заполняется колба лампы. Газоразрядные лампы называют люминесцентными, так как изнутри колбы (цилиндры) покрыты люминофором, который под действием ультрафиолетового излучения, излучаемого электрическим разрядом, светится, преобразуя тем самым невидимое ультрафиолетовое излучение в свет.
Люминесцентные лампы (ЛЛ) – разрядные лампы низкого давления – представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Под действием электрического разряда пары ртути излучают ультрафиолетовые лучи, которые, в свою очередь, заставляют нанесенный на стенки трубки люминофор излучать видимый свет. Два различных типа ЛЛ являются классическим примером компромисса в технике. Лампы с трехполосным люминофором более экономичны (световая отдача до 104 Лм/Вт), но обладают худшей цветопередачей (Ra=80), с пятиполосным люминофором имеют отличную цветопередачу (Ra=9098) при меньшей световой отдаче (до 88 Лм/Вт). Одно из главных преимуществ ЛЛ – долговечность (срок службы до 20 000 часов). Благодаря экономичности и долговечности ЛЛ стали самыми распространенными источниками света в офисах предприятий. В странах с мягким климатом ЛЛ широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах.
studfile.net
Измерение коэффициента использования светового потока и единицы светопотока
Мощность светового излучения, отдаваемая источником, – это поток света, который в состоянии воспринимать и оценивать человеческий глаз. Сила излучения разных источников света зависит от скорости электромагнитных волн. При выборе осветительных устройств часто возникает путаница в основных понятиях и обозначениях физических величин, характеризующих качество полученного освещения.
Оптический поток
Что такое световой поток
Определить свойства и качественные характеристики света от излучателя поможет такое понятие, как световой поток. При помощи этой величины вычисляют значение силы света, попадающего на единицу площади. Выполняя расчёты систем освещения, используют эту меру. Существуют требования к освещённости различных помещений. Проще говоря, поток света – это мощность, с которой излучение действует на какую-либо поверхность. Система единиц (СИ) обозначает поток буквой Ф, единицу измерения – 1 люмен (лм; lm).
Формула светового потока
Отличие освещенности от светового потока
Когда поток света в 1 лм падает на освещаемый участок площадью в 1 м², получается освещённость в 1 лк. Освещённость обозначают буквой Е, измеряют в люксах (лк). Её можно рассчитать по формуле:
Е = Ф/S, где:
- Ф – светопоток, лм;
- S – площадь поверхности, мм2.
Разницу между этими двумя физическими величинами понимают так: 1 люкс = 1 лм/м² освещаемой поверхности.
Световой поток и яркость – не одно и то же
Обращаясь к определению яркости L, измеряемой в канделах на квадратный метр (Кн/м²), видно, что это количество отражённого поверхностью света.
Яркость источника – это соотношение силы его свечения и величины этой силы, приходящейся на единицу площади поверхности источника, которую видит глаз. Сила света измеряется в канделах, потому яркость обозначается буквой L и измеряется в Кн/м².
Если наблюдать издалека два источника света, имеющих разную площадь поверхности, но с одинаковой силой света, то меньшая поверхность будет выглядеть ярче. Увеличение угла, под которым смотрят на световой источник, уменьшает воспринимаемую глазом яркость. Яркость максимальна, когда плоскость, в которой лежит излучатель, перпендикулярна глазу.
Величина яркости изменяется от вида поверхности:
- светоотражающая поверхность увеличивает яркость;
- светопоглощающая или рассеивающая поверхность уменьшают значение L.
Важно! Световые потоки – это вся энергия излучения источника, яркость – только та доля, которая поступает в глаз или на предмет. В частности, оптический проектор в своих технических характеристиках имеет обозначение не яркости, а величины СП.
Оптический проектор
Как и в чем измеряется
С появлением ламп, у которых используемая мощность в ваттах стала отличаться от яркости, возник вопрос, как измерить потоки света.
Единицы измерений светового потока 1 люмен – это свет, отдаваемый излучателем с силой в 1 кд в рамках телесного угла в 1 стерадиан. Обозначается буквой Ф.
Для информации. Лампа с нитью накаливания в 100 Вт выдаст поток света, равный 1000 лм. Чем ярче светильник, тем он больше люмен выдаст.
Небольшой перечень приборов, которые применяются для измерения:
- портативный люксметр;
- сферический фотометр;
- люксметр-пульсметр.
Самостоятельно проверить соответствие параметров приобретённого осветительного прибора можно люксметром CEM DT-1300. При помощи этого прибора определяют уровень освещения поверхности или помещения. В комплекте – выносной сенсор, который регистрирует интенсивность потока. Дисплей отображает показания в единицах – Lux или FC. На выполнение измерения необходимо 1,5 секунды.
Что касается точности измерения световых параметров, то сложность заключается в том, что световое излучение – это поток, движущийся во всех направлениях. В лабораторных условиях используют сферические фотометры. Источник помещают в сферу, имеющую высокое оптическое использование измерения.
Интересно. Любая лампочка при излучении имеет пульсацию. Завышенный коэффициент пульсации при тусклом освещении вызывает усталость глаз и со временем снижает зрение. Измерить пульсацию осветительных приборов можно с помощью люксметра – пульсметра.
Типовое значение светового потока для источников света
При приобретении осветительных устройств стоит обращать внимание на СП, который будет излучаться. На самих приборах и на упаковке не всегда проставлены значения этой величины. Всё зависит от фирмы изготовителя и достоверности информации. Лампочки накаливания продаются в картонном поясе и с численным обозначением напряжения и мощности на колбе. Сколько люмен выдаёт лампа, не написано. Однако присутствует связь между Р (Вт) и Ф (Лм).
Стандартные значения Ф для осветительных элементов
Лампа накаливания, мощность, Вт | Светодиодная лампа, мощность, Вт | Люминесцентная лампа, мощность, Вт | Световой поток, Лм |
---|---|---|---|
20 | 2-3 | 5-7 | ≈ 250 |
40 | 4-5 | 10-13 | ≈ 400 |
60 | 8-10 | 15-16 | ≈ 700 |
76 | 10-12 | 18-20 | ≈ 900 |
100 | 12-15 | 20-30 | ≈ 1200 |
Распространённые источники света
К сведению. Получившие популярность светодиодные лампы, как показывает таблица, устанавливать выгодно. При низком, по сравнению с другими источниками, энергопотреблении они отдают света больше.
Освещенность и световой поток
Освещённость – это показатель силы светового потока, ложащегося на объект заранее известной площади. Связь между этими физическими величинами прослеживается при рассмотрении формулы:
Е=Ф/S, где:
- Е – освещённость, Лк;
- Ф – поток света, Лм;
- S – площадь поверхности, м².
Из формулы видно, что освещённость зависит от силы светового потока.
Приступая к проектированию освещения в служебном помещении или квартире, сначала определяется необходимое значение освещённости рассматриваемой площади поверхности, потом выполняется расчёт необходимого светового потока:
Ф=Е*S.
Освещенность и требования стандартов
Там, где в дневное время недостаточно солнечного света, а также в вечерние и ночные часы, пользуются искусственными источниками. На предприятиях каждое рабочее место проходит аттестацию на соответствие допустимым санитарным нормам. В эти нормы укладывают и уровень освещённости. Неправильное освещение или его недостаток влияет на здоровье работников.
Основным нормативным документом, регламентирующим стандарты этого параметра, выступает СНИП 23-05-95 – это нормы, принятые к исполнению в 1995 году. Откорректированный его вариант в виде СП 52.13330.2011 от 20.05.2011 г. действует и поныне.
В перечне отражены границы степени освещённости для помещений:
- производственных и складских;
- рабочих площадок вне зданий;
- жилых и общественных помещений;
- уличного освещения населённых пунктов;
- архитектурных подсветок;
- витринной и рекламной иллюминации;
- специального освещения.
Важно! Вреден как недостаток, так и избыток света. Яркие пятна люминесцентных реклам и витринных окон, выполненных с превышением требований, загрязняют световой фон улиц.
Освещённость
Ограничения на расчеты освещенности
При первичных расчётах учитываются следующие значения:
- световой поток источников в светильнике;
- нормируемая освещённость;
- коэффициент запаса, зависящий от загрязнённости объекта и типа ламп;
- поправочный коэффициент – отношение средней освещённости к освещённости нормируемой;
- количество ламп;
- коэффициент использования светового потока;
- S помещения.
Теоретические расчёты содержат погрешность до 30%, значит, необходимы дополнительные измерения люксметром. При этом необходимо учитывать время суток и длительность пребывания человека в расчётном месте. Учитывается и конструктивное исполнение осветительного устройства: плафоны, крышки, стёкла. Защитные покрытия вносят искажения в характеристики ламп.
Особенности использования светодиодных ламп
Лидирующее место занимают LED-лампы, применяемые в современном освещении. В конструкцию входят от одного до нескольких светодиодов сразу. На первый взгляд это обычная лампа, но наличие электрической схемы и светоизлучающих элементов в сочетании с оптической системой обеспечивает иное качества излучения света. Изменяя количество светодиодов, можно менять мощность, применение разных оптических решений линзы позволяет фокусировать или рассеивать поток.
LED-лампы обладают рядом достоинств:
- отсутствие ультрафиолетовой части спектра;
- пульсация некоторых моделей менее 1%;
- экономичность;
- низкая теплоотдача;
- срок службы 100 000 ч.;
- минимальные размеры;
- мгновенное включение в полноценный режим.
К недостаткам можно отнести следующие пункты:
- стоимость;
- спектр излучения требует тщательного подбора;
- деградация кристалла;
- нейтральный и холодный оттенки в некоторых случаях влияют на регуляцию сна.
Параметры дешёвых китайских изделий нарушают все допустимые нормы качества освещения. При выборе ЛЭД-ламп следует тщательно изучить характеристики и приобретать изделия проверенных производителей.
Светодиодные лампы
Нормы освещения помещений по использованию (СНиП)
Подробные нормы для различных зданий и объектов можно посмотреть в СП 52.13330.2011 от 20.05.2011 года. Для комфортного и безопасного освещения желательно знать, какие параметры должны иметь бытовые помещения. Некоторые из них отражены в таблице.
Таблица параметров
Грамотно подобранное искусственное освещение по своему спектру приближается к дневному солнечному свету. Знание физических характеристик светового потока позволяет правильно выбрать и разместить источники этого вида излучения для обеспечения комфортной среды обитания.
Видео
amperof.ru
Основные понятия фотометрии. Яркость и светимость
4. Яркость и светимость
Для источников света, размерами которых пренебречь нельзя (то есть которые нельзя рассматривать как точечные), используют ещё две фотометрические величины: светимость и яркость.
Отношение светового потока , исходящего от элемента поверхности, к площади этой поверхности называется светимостью M:
где — площадь элемента источника света.
Яркость L определяют как отношение силы света I в заданном направлении, к площади проекции светящейся площадки на плоскость, перпендикулярную этому направлению. Таким образом, яркость, как и сила света — величина, зависящая от направления. На рисунке показаны геометрические построения, пояснящие данное определение.
Здесь N — нормаль к светящейся поверхности, dS — её площадь, — угол между нормалью и направлением в котором определяется яркость, -площадь проекции светящейся площадки.
Таким образом, яркость можно выразить формулой
.В пределе с учётом определения силы света можно записать [3, стр. 110]:
.
Единицей измерения яркости является канделла на метр квадратный. Именно яркость светящегося объекта является фотометрической величиной на которую непосредственно реагирует орган зрительного восприятия — глаз [1, стр. 86].
Рассмотрим следующий рисунок, здесь dS — площадь малой площадки светящегося тела, а dS’ — площадь её изображения на сетчатке глаза.Используя геометрические построения можно показать, что
.
Зрительные ощущения, как известно, определяются освещённостью, формируеой непосредственно на сетчатке глаза. Подсчитаем чему равна освещённость малого участка dS’. Световой поток dФ, поступающий в глаз от площадки dS равен:,где Q — площадь зрачка глаза, а после прохождения хрусталика световой поток с учётом коэффициента поглощения в тканях глаза :
.
После несложных преобразований и сокращений освещённость на сетчатке:
.В правой части этого выражения числовой коэффициент в виде дроби содержит величины, зависящие только от свойств самого глаза, таким образом единственной величиной, определяющей силу зрительных ощущений является яркость светящейся поверхности.
avkost1955.livejournal.com
Световой поток, освещенность, сила света
Любой кто начинает изучать характеристики светильников и отдельных видов ламп, обязательно сталкивается с такими понятиями как освещенность, световой поток и сила света. Что они означают и чем отличаются друг от друга?
Давайте попробуем простыми, понятными для всех словами, разобраться в этих величинах. Как они связаны между собой, их единицы измерения и каким образом все это дело можно замерить без специальных приборов.
Что такое световой поток
В старые добрые времена, основным параметром по которому выбирали лампочку в прихожую, на кухню, в зал, была ее мощность. Никто никогда и не задумывался спрашивать в магазине про какие-то люмены или канделы.
Сегодня с бурным развитием светодиодов и других видов ламп, поход в магазин за новыми экземплярами сопровождается кучей вопросов не только по цене, но и по их характеристикам. Одним из наиболее важных параметров является световой поток.
Говоря простыми словами, световой поток – это количество света, которое дает светильник.
Однако не путайте световой поток светодиодов по отдельности, со световым потоком светильников в сборе. Они могут существенно отличаться.
Надо понимать, что световой поток это всего лишь одна из множества характеристик источника света. Причем его величина зависит:
- от мощности источника
Вот таблица этой зависимости для светодиодных светильников:
А это таблицы их сравнения с другими видами ламп накаливания, люминесцентных, ДРЛ, ДНаТ:
Лампочка накаливанияЛюминесцентная лампаГалогеннаяДНаТДРЛ
Однако есть здесь и нюансы. Светодиодные технологии до сих пор еще развиваются и вполне возможен вариант, когда светодиодные лампочки одинаковой мощности, но разных производителей, будут иметь абсолютно разные световые потоки.
Просто некоторые из них ушли более вперед, и научились снимать с одного ватта больше люмен, чем другие.
Кто-то спросит, для чего нужны все эти таблицы? Для того, чтобы вас тупо не обманывали продавцы и производители.
На коробочке красиво напишут:
- светопоток 1000Лм
- аналог лампы накаливания 100Вт
Но с такой мощностью вам и близко не будет хватать прежнего света. Начнете ругаться на светодиоды и технологии их несовершенства. А дело то оказывается в недобросовестном производителе и его товаре.
- от эффективности
То есть, насколько эффективно тот или иной источник преобразует электрическую энергию в световую. Например, обычная лампа накаливания имеет отдачу 15 Лм/Вт, а натриевая лампа высокого давления уже 150 Лм/Вт.
Получается, что это в 10 раз более эффективный источник, чем простая лампочка. При одной и той же мощности, вы имеете в 10 раз больше света!
Измеряется световой поток в Люменах – Лм.
Что такое 1 Люмен? Днем при нормальном свете, наши глаза больше всего чувствительны к зеленному цвету. К примеру, если взять два светильника с одинаковой мощностью синего и зеленого цвета, то для всех нас более ярким покажется именно зеленый.
Длина волны зеленого цвета равна 555 Нм. Такое излучение называется монохроматическим, потому что содержит в себе очень узкий диапазон.
Конечно, в реалии зеленый дополняется и другими цветами, чтобы в итоге можно было получить белый.
Но так как чувствительность человеческого глаза максимальна именно к зелени, то и люмены привязали к нему.
Так вот, световой поток в один люмен, как раз таки и соответствует источнику, который излучает свет с длиной волны 555 Нм. При этом мощность такого источника равняется 1/683 Вт.
Почему именно 1/683, а не 1 Вт для ровного счета? Величина 1/683 Вт возникла исторически. Изначально, основным источником света была обычная свечка, и излучение всех новых ламп и светильников как раз таки и сравнивались со светом от свечи.
В настоящее время эта величина 1/683 узаконена многими международными соглашениями и принята повсеместно.
Это напрямую влияет на зрение человека.
Отличие освещенности от светового потока
При этом многие путают единицы измерения Люмены с Люксами. Запомните, в люксах измеряется именно освещенность.
Как наглядно объяснить их разницу? Представьте себе давление и силу. С помощью всего лишь маленькой иголки и небольшой силы, можно создать высокое удельное давление в отдельно взятой точке.
Также и с помощью слабого светового потока, можно создать высокую освещенность в отдельно взятом участке поверхности.
1 Люкс – это когда 1 Люмен попадает на 1м2 освещаемой площади.
Допустим, у вас есть некая лампа со световым потоком в 1000 Лм. Внизу этой лампы стоит стол.На поверхности этого стола должна быть определенная норма освещенности, чтобы вы могли комфортно работать. Первоисточником для норм освещенности служат требования сводов правил СП 52.13330
Для обычного рабочего места это 350 Люкс. Для места, где производятся точные мелкие работы – 500 Лк.
Данная освещенность будет зависеть от множества параметров. К примеру, от расстояния до источника света.
От посторонних предметов рядом. Если стол находится около белой стены, то и люксов соответственно будет больше, чем от темной. Отражение обязательно скажется на общем итоге.
Любую освещенность можно замерить. Если у вас нет специальных люксометров, воспользуйтесь программами в современных смартфонах.
Правда заранее приготовьтесь к погрешностям. Но для того, чтобы сделать навскидку первоначальный анализ, телефон вполне сгодится.
Расчет светового потока
А как узнать примерный светопоток в люменах, вообще без измерительных приборов? Здесь можно воспользоваться значениями светоотдачи и их пропорциональной зависимости к потоку.
- для светодиодных ламп с матовой колбой — мощность лампы умножьте примерно на 80лм/Вт и узнаете сколько в ней люмен
- для филаментных – умножайте мощность лампы на 100
- энергосберегайки КЛЛ – на 60лм/Вт
- ДРЛ = мощность * 58лм/вт
Безусловно, свет от разных источников распространяется не равномерно. Один светильник бьет очень узким пучком света, а другой наоборот максимально широким.
Но если сравнить их паспортные данные, оба они могут иметь одновременно одинаковое количество люмен.
Именно поэтому ориентироваться только на люмены, в корне не правильно.
Например, при покупке светильника через интернет, можно получить вовсе не то освещение, на которое изначально рассчитывали.
Еще раз запомните, световой поток показывает только КОЛИЧЕСТВО света, без учета направления его распространения.
Поэтому здесь еще нужно учитывать и другую характеристику – силу света. Что это такое?
Это величина светового потока разделенного на телесный угол, внутри которого он распространяется.
Проще говоря, если световой поток это количество света, то сила света – это его ”плотность”.
Измеряется сила света в канделах – Кд.
1 кандела – это 1 люмен распространяющийся в пределах конуса с углом в 65 градусов.
Чтобы визуально представить себе силу в 1 канделу, посмотрите опять же на обыкновенную свечу. Именно поэтому определение кандела произошло от латинского слова ”candela” – что в переводе означает свеча.
Кстати, теоретически человеческий глаз может увидеть свет от такого источника на расстоянии почти 50км!
Однако из-за кривизны поверхности земли, данное расстояние фактически сокращается до 5км.
svetosmotr.ru