+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Закон Ома для участка цепи

Скажу сразу, что закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи.

Рассмотрим электрическую цепь, приведенную на рисунке 1.

Рисунок 1. Простейшая цепь, поясняющея закон Ома.

Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами. Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А). Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор.

С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.

Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:

I=U/R

Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Следует знать что:

I – величина тока, протекающего через участок цепи;

U – величина приложенного напряжения к участку цепи;

R – величина сопротивления рассматриваемого участка цепи.

При помощи

закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи (рисунок 1), либо напряжение на входных зажимах цепи (рисунок 2).

Рисунок 2. Последовательная цепь, поясняющая расчет напряжения на зажимах цепи.

В этом случае формула (1) примет следующий вид:

U = I *R

Но при этом необходимо знать ток и сопротивление участка цепи.

Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:

R =U/I

Как запомнить закон Ома: маленькая хитрость!

Для того, что бы быстро переводить соотношение, которое называется закон Ома, не путаться, когда необходимо делить, а когда умножать входящие в формулу закона Ома величины, поступайте следующим образом.

Напишите на листе бумаги величины, которые входят в закон Ома, так как показано на рисунке 3.

Рисунок 3. Как запомнить закон Ома.

Теперь закройте пальцем, ту величину, которую необходимо найти. Тогда относительное расположение оставшихся незакрытыми величин подскажет, какое действие необходимо совершить для вычисления неизвестной величины.

Подробнее можно узнать в мультимедийном учебнике по основам электротехники и электроники.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

чему равно при параллельном и последовательном соединении, закон Ома

Что такое электрическое сопротивление участка цепи

Электрическое сопротивление для участка цепи определяется при помощи закона Ома. Для того, чтобы понять процессы, происходящие в элементах электрической цепи постоянного тока, необходимо дать общее определение закона Ома.

Определение

Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

I — сила тока (единица измерения — ампер).

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

\( I=\frac{U}{R}I=RU\)

U — напряжение (измеряется в вольтах). Падение напряжения на участке проводника равняется произведению силы тока и сопротивления на участке.

\(U=IRU=IR\)

R — электрическое сопротивление (измеряется в омах). Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока.

\(R=\frac{U}{I}R=IU\)​

Как запомнить формулы закона

Для запоминания закона, действующего на участке цепи, применяют треугольник Ома. С помощью него можно изобразить отношение величин друг к другу.

 

Если закрыть один из компонентов, оставшиеся покажут способ ее нахождения. Например, закрыв U, увидим I и R, произведение которых показывает величину напряжения. Так же можно поступить и с другими элементами треугольника.

Сопротивление при параллельном и последовательном соединении

При параллельном и последовательном соединении резисторов величина сопротивления будет различаться.

Последовательное соединение представляет собой цепь, состоящую из подключенных одного за другим проводников. Количество звеньев не ограничено. На каждом участке цепи можно определить внутреннее сопротивление. Сопротивление всей цепи будет равняться их сумме и рассчитываться по данной формуле:

\(R_{AB}=R_A+R_B\)

Параллельное соединение означает, что все участки цепи подключены к одному узлу. Напряжение на всех элементах одинаково, а ток разветвляется и равен сумме токов на всех участках. Поэтому общее сопротивление можно вычислить по формуле: 

\(R_ {AB}=\frac{R_1\times R_2}{R_1+R_2}. \)

Закон Ома для участка цепи

Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Необходимо отчетливо понимать его сущность и уметь правильно пользоваться им при решении практических задач. Часто в электротехнике допускаются ошибки из-за неумения правильно применить закон Ома. 

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. 

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды. 

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой: 

I = U/R. 


Магический треугольник  

Любой участок или элемент электрической цепи можно охарактеризовать при помощи трёх характеристик: тока, напряжения и сопротивления. 

Как использовать треугольник Ома: закрываем искомую величину — два других символа дадут формулу для её вычисления. Кстати, законом Ома называется только одна формула из треугольника – та, которая отражает зависимость тока от напряжения и сопротивления. Две другие формулы, хотя и являются её следствием, физического смысла не имеют.  

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т.

д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

ампер = вольт/ом

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно. 

Законы Ома для участка цепи и для полной цепи

Автор Alexey На чтение 4 мин. Просмотров 8.8k. Опубликовано

Обновлено

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

I = U/ R

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

U = I*R

R = U / I

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

I = E/ Rвн+r

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

I = U/ Z

  где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют специальные средства защиты.

Закон Ома для электрической цепи

Электрический ток, как и любой процесс, подчиняется законам физики. Знаменитый немецкий физик Георг Симон Ом, именем которого названа единица измерения сопротивления, в 1826 году эмпирически вывел формулы, связывающие между собой ток, напряжение и сопротивление. Поначалу закон вызвал недоверие и критику в научных кругах. Затем правильность его рассуждений была подтверждена французом Клодом Пулье и труды Ома получили заслуженное признание.

Закон Ома для электрической цепи (полной)

Частный случай – закон Ома для участка цепи:

Обозначение

Единица измерения

Физический смысл

IАмперСила тока в цепи
ԑВольтЭлектродвижущая сила (э.д.с.) источника питания
rОмВнутреннее сопротивление источника питания
RОмСопротивление нагрузки, подключенной и источнику
UВольтПадение напряжения на сопротивлении нагрузки
Поясняющая схема к закону Ома

Добавим к этим формулам еще и электрическую мощность, выделяемую при прохождении тока:

В результате получается ряд формул, которые выводятся математически. Они связывают между собой все перечисленные физические величины.

Электродвижущая сила и внутреннее сопротивление

Электродвижущая сила источника напряжения характеризует его способность обеспечивать постоянную разность потенциалов на выводах. Эта сила имеет неэлектрическую природу: химическую у батареек, механическую – у генераторов.

Какова роль внутреннего сопротивления источника питания и что это такое? Допустим, вы замкнули накоротко выводы автомобильного аккумулятора медным проводником небольшого сечения. В физическом смысле вы подключили к источнику постоянного тока сопротивление, близкое к нулю. Если воспользоваться формулой для участка цепи, то через аккумулятор и проволоку должен пойти ток бесконечно большой величины. На деле этого не происходит, но проволока сгорит.

Теперь замкнем этой же проволокой батарейку. Ток через нее пойдет меньший. Это объясняется большим, чем у аккумулятора, значением внутреннего сопротивления. При малом сопротивлении нагрузки формула закона для полной цепи превращается в

В итоге ток через замкнутую накоротко батарейку будет иметь конечное значение, а мощность приведет к нагреву батарейки. Если бы мы замкнули аккумулятор более толстым проводом, выдержавшим ток короткого замыкания, то он ощутимо нагрел бы источник изнутри.

Э.Д.С. источника можно с некоторой точностью измерить вольтметром с высоким входным сопротивлением. Внутреннее же сопротивление источника нельзя измерить напрямую, а только рассчитать.

Закон Ома для переменного тока

На переменном токе в формуле закона Ома используется не активное, а полное сопротивление (Z).

Эта величина учитывает и активное, и реактивное сопротивление нагрузки, которое в свою очередь имеет индуктивную

и емкостную

составляющие.

Общее реактивное сопротивление цепи:

Знак (-) означает, что индуктивный и емкостной токи находятся в противофазе и друг друга компенсируют.

Оцените качество статьи:

Как пишется закон ома для участка цепи. Закон ома для полной цепи

Закон Ома для полной цепи – эмпирический (полученный из эксперимента) закон, который устанавливает связь между силой тока, электродвижущей силой (ЭДС) и внешним и внутренним сопротивлением в цепи.

При проведении реальных исследований электрических характеристик цепей с постоянным током необходимо учитывать сопротивление самого источника тока. Таким образом в физике осуществляется переход от идеального источника тока к реальному источнику тока, у которого есть свое сопротивление (см. рис. 1).

Рис. 1. Изображение идеального и реального источников тока

Рассмотрение источника тока с собственным сопротивлением обязывает использовать закон Ома для полной цепи.

Сформулируем закона Ома для полной цепи так (см. рис. 2): сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, где под полным сопротивлением понимается сумма внешних и внутренних сопротивлений.

Рис. 2. Схема закона Ома для полной цепи.


  • R – внешнее сопротивление [Ом];
  • r – сопротивление источника ЭДС (внутреннее) [Ом];
  • I – сила тока [А];
  • ε– ЭДС источника тока [В].

Рассмотрим некоторые задачи на данную тему. Задачи на закон Ома для полной цепи, как правило, дают ученикам 10 класса, чтобы они могли лучше усвоить указанную тему.

I. Определите силу тока в цепи с лампочкой, сопротивлением 2,4 Ом и источником тока, ЭДС которого равно 10 В, а внутреннее сопротивление 0,1 Ом.

По определению закона Ома для полной цепи, сила тока равна:

II. Определить внутреннее сопротивление источника тока с ЭДС 52 В. Если известно, что при подключении этого источника тока к цепи с сопротивлением 10 Ом амперметр показывает значение 5 А.

Запишем закон Ома для полной цепи и выразим из него внутреннее сопротивление:

III. Однажды школьник спросил у учителя по физике: «Почему батарейка садится?» Как грамотно ответить на данный вопрос?

Мы уже знаем, что реальный источник обладает собственным сопротивлением, которое обусловлено либо сопротивлением растворов электролитов для гальванических элементов и аккумуляторов, либо сопротивлением проводников для генераторов. Согласно закону Ома для полной цепи:

следовательно, ток в цепи может уменьшаться либо из-за уменьшения ЭДС, либо из-за повышения внутреннего сопротивления. Значение ЭДС у аккумулятора почти постоянный. Следовательно, ток в цепи понижается за счет повышения внутреннего сопротивления. Итак, «батарейка» садится, так как её внутреннее сопротивление увеличивается.

Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

Формула закона: I =. Отсюда запишем формулыU = IR и R = .

Рис.1. Участок цепи Рис.2. Полная цепь

Закон Ома для полной цепи: сила тока I полной электрической цепи равнаЭДС (электродвижущей силе) источника тока Е , деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I =
. На рис. 1 и 2 приведены схемы электрических цепей.

3. Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.

Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I

Рис. 1.Последовательное соединение двух проводников.

2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U 1 + U 2 + U 3

Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2

Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR

где R ЭКВ эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Омаследует: при равенстве сил тока при последовательном соединении:

I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :

U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Электрический ток и опасное напряжение невозможно услышать (за исключением гудящих высоковольтных линий и электроустановок). Токоведущие части, находящиеся под напряжением, ничем не отличаются по внешнему виду.

Невозможно узнать их и по запаху, и повышенной температурой в штатных режимах работы они не отличаются. Но включаем в безмолвную и тихую розетку пылесос, щелкаем выключателем — и энергия словно берется из ниоткуда, сама по себе, материализуясь в виде шума и компрессии внутри бытового прибора.

Опять же, если мы воткнем в разъемы розетки два гвоздя и возьмемся за них, то буквально всем своим телом ощутим реальность и объективность существования электрического тока. Делать это, конечно, настоятельно не рекомендуется. Но примеры с пылесосом и гвоздями наглядно демонстрируют нам, что изучение и понимание основных законов электротехники способствует безопасности при обращении с бытовым электричеством, а также устранению суеверных предубеждений, связанных с электрическим током и напряжением.

Итак, рассмотрим один, самый ценный закон электротехники, который полезно знать. И попытаемся сделать это в как можно более популярной форме.

Закон Ома

1. Дифференциальная форма записи закона Ома

Самый главный закон электротехники — это, конечно, закон Ома . О его существовании знают даже люди, не имеющие отношения к электротехнике. Но между тем вопрос «А знаешь ли ты закон Ома?» в технических ВУЗах является ловушкой для зарвавшихся и самонадеянных школяров. Товарищ, разумеется, отвечает, что закон Ома знает отлично, и тогда к нему обращаются с просьбой привести этот закон в дифференциальной форме. Тут-то и выясняется, что школяру или первокурснику еще учиться и учиться.

Однако дифференциальная форма записи закона Ома на практике почти неприменима. Она отражает зависимость между плотностью тока и напряженностью поля:

где G — это проводимость цепи; Е — напряженность электрического тока.

Все это — попытки выразить электрический ток, принимая во внимание только физические свойства материала проводника, без учета его геометрических параметров (длина, диаметр и тому подобное). Дифференциальная форма записи закона Ома — это чистая теория, знание ее в быту совершенно не требуется.

2. Интегральная форма записи закона Ома для участка цепи

Иное дело — интегральная форма записи. Она тоже имеет несколько разновидностей. Самой популярной из них является закон Ома для участка цепи: I=U/R

Говоря по-другому, ток в участке цепи всегда тем выше, чем больше приложенное к этому участку напряжение и чем меньше сопротивление этого участка.

Вот этот «вид» закона Ома просто обязателен к запоминанию для всех, кому хоть иногда приходится иметь дело с электричеством. Благо, и зависимость-то совсем простая. Ведь напряжение в сети можно считать неизменным. Для розетки оно равно 220 вольт. Поэтому получается, что ток в цепи зависит только от сопротивления цепи, подключаемой к розетке. Отсюда простая мораль: за этим сопротивлением надо следить.

Короткие замыкания, которые у всех на слуху, случаются именно по причине низкого сопротивления внешней цепи. Предположим, что из-за неправильного соединения проводов в ответвительной коробке фазный и нулевой провода оказались напрямую соединены между собой. Тогда сопротивление участка цепи резко снизится практически до нуля, а ток так же резко возрастет до очень большой величины. Если электропроводка выполнена правильно, то сработает автоматический выключатель, а если его нет, или он неисправен или подобран неправильно, то провод не справится с возросшим током, нагреется, расплавится и, возможно, вызовет пожар.

Но бывает, что приборы, включенные в розетку и отработавшие уже далеко не один час, становятся причиной короткого замыкания. Типичный случай — вентилятор, обмотки двигателя которого подверглись перегреву из-за заклинивания лопастей. Изоляция обмоток двигателя не рассчитана на серьезный нагрев, она быстро приходит в негодность. В результате появляются межвитковые короткие замыкания, которые снижают сопротивление и, в соответствии с законом Ома, также ведут к увеличению тока.

Повышенный ток, в свою очередь, приводит изоляцию обмоток в полную негодность, и наступает уже не межвитковое, а самое настоящее, полноценное короткое замыкание. Ток идет помимо обмоток, сразу из фазного в нулевой провод. Правда, все сказанное может случиться только с совсем простым и дешевым вентилятором, не оборудованным тепловой защитой.

Закон Ома для переменного тока

Надо отметить, что приведенная запись закона Ома описывает участок цепи с постоянным напряжением. В сетях переменного напряжения существует дополнительное реактивное сопротивление, а полное сопротивление приобретает значение квадратного корня из суммы квадратов активного и реактивного сопротивления.

Закон Ома для участка цепи переменного тока принимает вид: I=U/Z ,

где Z — полное сопротивление цепи.

Но большое реактивное сопротивление свойственно, прежде всего, мощным электрическим машинам и силовой преобразовательной технике. Внутреннее электрическое сопротивление бытовых приборов и светильников практически полностью является активным. Поэтому в быту для расчетов можно пользоваться самой простой формой записи закона Ома: I=U/R.

3. Интегральная форма записи для полной цепи

Раз есть форма записи закона для участка цепи, то существует и закон Ома для полной цепи: I=E/(r+R) .

Здесь r — внутреннее сопротивление источника ЭДС сети, а R — полное сопротивление самой цепи.

За физической моделью для иллюстрации этого подвида закона Ома далеко ходить не надо — это бортовая электрическая сеть автомобиля, аккумулятор в которой является источником ЭДС. Нельзя считать, что сопротивление аккумулятора равно абсолютному нулю, поэтому даже при прямом замыкании между его клеммами (отсутствии сопротивления R) ток вырастет не до бесконечности, а просто до высокого значения. Однако этого высокого значения, конечно, хватит для того, чтобы вызвать расплавление проводов и возгорание обшивки авто. Поэтому электрические цепи автомобилей защищают от короткого замыкания при помощи предохранителей.

Такой защиты может оказаться недостаточно, если замыкание произойдет до блока предохранителей относительно аккумулятора, или если вовсе один из предохранителей заменен на кусок медной проволоки. Тогда спасение только в одном — необходимо как можно быстрее разорвать цепь полностью, откинув «массу», то есть минусовую клемму.

4. Интегральная форма записи закона Ома для участка цепи, содержащего источник ЭДС

Следует упомянуть и о том, что есть и еще одна разновидность закона Ома — для участка цепи, содержащего источник ЭДС:

Здесь U — это разность потенциалов в начале и в окончании рассматриваемого участка цепи. Знак перед величиной ЭДС зависит от направленности ее относительно напряжения. Воспользоваться законом Ома для участка цепи нередко приходится при определении параметров цепи, когда часть схемы недоступна для детального изучения и не интересует нас. Допустим, она скрыта неразъемными деталями корпуса. В оставшейся схеме имеется источник ЭДС и элементы с известным сопротивлением. Тогда, замерив напряжение на входе неизвестной части схемы, можно вычислить ток, а после этого — и сопротивление неизвестного элемента.

Выводы

Таким образом, мы можем увидеть, что «простой» закон Ома далеко не так прост, как кому-то, возможно, казалось. Зная все формы интегральной записи законов Ома, можно понять и легко запомнить многие требования электробезопасности, а также приобрести уверенность в обращении с электричеством.

Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .

Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}
  • U = U 0 e i ωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Re i δ — комплексное сопротивление (электрический импеданс),
  • R = √ R a 2 + R r 2 — полное сопротивление,
  • R r = ωL − 1/(ωC ) — реактивное сопротивление (разность индуктивного и емкостного),
  • R а — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (R r /R a ) — сдвиг фаз между напряжением и силой тока.{i(\omega t+\varphi)},} что Im ⁡ U = U . {\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F = Im ⁡ F {\displaystyle F=\operatorname {Im} \mathbb {F} }

    Здравствуйте, уважаемые читатели сайта «Заметки электрика»..

    Сегодня открываю новый раздел на сайте под названием .

    В этом разделе я постараюсь в наглядной и простой форме объяснить Вам вопросы электротехники. Скажу сразу, что далеко углубляться в теоретические знания мы не будем, но вот с основами познакомимся в достаточном порядке.

    Первое, с чем я хочу Вас познакомить, это с законом Ома для участка цепи. Это самый основной закон, который должен знать каждый .

    Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

    Кто такой Ом? Немного истории

    Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году. Вот так он выглядел.

    Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

    Скажу только самое главное.

    Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

    Закон Ома для однородного участка цепи выглядит следующим образом:

    I – значение тока, идущего через участок цепи (измеряется в амперах)

    U – значение напряжения на участке цепи (измеряется в вольтах)

    R – значение сопротивления участка цепи (измеряется в Омах)

    Если формулу объяснить словами, то получится, что сила тока пропорциональная напряжению и обратно пропорциональна сопротивлению участка цепи.

    Проведем эксперимент

    Чтобы понять формулу не на словах, а на деле, необходимо собрать следующую схему:

    Цель этой статьи — это показать наглядно, как использовать закон Ома для участка цепи. Поэтому я на своем рабочем стенде собрал эту схему. Смотрите ниже как она выглядит.

    С помощью ключа управления (избирания) можно выбрать, либо постоянное напряжение, либо переменное напряжение на выходе. В нашем случае используется постоянное напряжения. Уровень напряжения я меняю с помощью лабораторного автотрансформатора (ЛАТР).

    В нашем эксперименте я буду использовать напряжение на участке цепи, равное 220 (В). Контроль напряжения на выходе смотрим по вольтметру.

    Теперь мы полностью готовы провести самостоятельно эксперимент и проверить закон Ома в действительности.

    Ниже я приведу 3 примера. В каждом примере мы будем определять искомую величину 2 методами: с помощью формулы и практическим путем.

    Пример № 1

    В первом примере нам нужно найти ток (I) в цепи, зная величину источника постоянного напряжения и величину сопротивления светодиодной лампочки.

    Напряжение источника постоянного напряжения составляет U = 220 (В) . Сопротивление светодиодной лампочки равно R = 40740 (Ом) .

    С помощью формулы найдем ток в цепи:

    I = U/R = 220 / 40740 = 0,0054 (А)

    Подключаем последовательно светодиодной лампочке , включенный в режиме амперметр, и замеряем ток в цепи.

    На дисплее мультиметра показан ток цепи. Его значение равно 5,4 (мА) или 0,0054 (А), что соответствует току, найденному по формуле.

    Пример № 2

    Во втором примере нам нужно найти напряжение (U) участка цепи, зная величину тока в цепи и величину сопротивления светодиодной лампочки.

    I = 0,0054 (А)

    R = 40740 (Ом)

    С помощью формулы найдем напряжение участка цепи:

    U = I*R = 0,0054 *40740 = 219,9 (В) = 220 (В)

    А теперь проверим полученный результат практическим путем.

    Подключаем параллельно светодиодной лампочке мультиметр, включенный в режиме вольтметр, и замеряем напряжение.

    На дисплее мультиметра показана величина измеренного напряжения. Его значение равно 220 (В), что соответствует напряжению, найденному по формуле закона Ома для участка цепи.

    Пример № 3

    В третьем примере нам нужно найти сопротивление (R) участка цепи, зная величину тока в цепи и величину напряжения участка цепи.

    I = 0,0054 (А)

    U = 220 (В)

    Опять таки, воспользуемся формулой и найдем сопротивление участка цепи:

    R = U/ I = 220/0,0054 = 40740,7 (Ом)

    А теперь проверим полученный результат практическим путем.

    Сопротивление светодиодной лампочки мы измеряем с помощью или мультиметра.

    Полученное значение составило R = 40740 (Ом) , что соответствует сопротивлению, найденному по формуле.

    Как легко запомнить Закон Ома для участка цепи!!!

    Чтобы не путаться и легко запомнить формулу, можно воспользоваться небольшой подсказкой, которую Вы можете сделать самостоятельно.

    Нарисуйте треугольник и впишите в него параметры электрической цепи, согласно рисунка ниже. У Вас должно получится вот так.

    Как этим пользоваться?

    Пользоваться треугольником-подсказкой очень легко и просто. Закрываете своим пальцем, тот параметр цепи, который необходимо найти.

    Если оставшиеся на треугольнике параметры расположены на одном уровне, то значит их необходимо перемножить.

    Если же оставшиеся на треугольнике параметры расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

    С помощью треугольника-подсказки Вы не будете путаться в формуле. Но лучше все таки ее выучить, как таблицу умножения.

    Выводы

    В завершении статьи сделаю вывод.

    Электрический ток — это направленный поток электронов от точки В с потенциалом минус к точке А с потенциалом плюс. И чем выше разность потенциалов между этими точками, тем больше электронов переместится из точки В в точку А, т.е. ток в цепи увеличится, при условии, что сопротивление цепи останется неизменным.

    Но сопротивление лампочки противодействует протеканию электрического тока. И чем больше сопротивление в цепи (последовательное соединение нескольких лампочек), тем меньше будет ток в цепи, при неизменном напряжении сети.

    P.S. Тут в интернете нашел смешную, но поясняющую карикатуру на тему закона Ома для участка цепи.

    Закон Ома для «чайников»: понятие, формула, объяснение

    Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

    Формула закона: I =. Отсюда запишем формулыU = IR и R = .

    Рис.1. Участок цепи Рис.2. Полная цепь

    Закон Ома для полной цепи: сила тока I полной электрической цепи равнаЭДС (электродвижущей силе) источника тока Е , деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I =
    . На рис. 1 и 2 приведены схемы электрических цепей.

    3. Последовательное и параллельное соединение проводников

    Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.

    Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

    Последовательное соединение

    Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

    Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

    1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I

    Рис. 1.Последовательное соединение двух проводников.

    2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .

    Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

    U = U 1 + U 2 + U 3

    Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:

    U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2

    Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR

    где R ЭКВ эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3

    При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…

    Этот результат справедлив для любого числа последовательно соединенных проводников.

    Из закона Омаследует: при равенстве сил тока при последовательном соединении:

    I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

    При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :

    U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1

    При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

    Вся прикладная электротехника базируется на одном догмате – это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

    Классическая формулировка

    Этот простой вариант трактовки, известный нам со школы.


    Формула в интегральной форме будет иметь следующий вид:


    То есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

    В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

    Принятые единицы измерения

    Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

    • напряжение – в вольтах;
    • ток в амперах
    • сопротивление в омах.

    Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

    Формулировка для полной цепи

    Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.


    Учитывая «r» ЭДС, формула предстанет в следующем виде:


    Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

    Напряжение будет меньше ЭДС, определить его можно по формуле:


    Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

    Неоднородный участок цепи постоянного тока

    Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.


    Формула для такого участка (обобщенный закон) будет иметь следующий вид:


    Переменный ток

    Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

    Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

    Практическое использование

    Видео: Закон Ома для участка цепи – практика расчета цепей.

    Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.


    Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
    Находим силу тока
    Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

    • Напряжение – 220 В;
    • R нити накала – 500 Ом.

    Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

    Рассмотрим еще одну задачу со следующими условиями:

    В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
    Вычисление напряжения
    Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

    Преобразуем исходные данные:

    • 20 кОм = 20000 Ом;
    • 10 мА=0,01 А.

    Решение: 20000 Ом х 0,01 А = 200 В.

    Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

    Сопротивление.

    Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

    Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

    Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

    Рассмотрим несколько примеров.

    Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

    Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

    Изображение вольт-амперной характеристики, где R=1 Ом


    Изображение вольт-амперной характеристики

    Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

    Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

    Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется – линейным. Этот же термин используется для обозначения и других параметров.

    Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

    Вывод

    Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

    Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

    Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

    Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

    Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

    Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

    Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

    Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

    ампер = вольт/ом

    Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.

    Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

    Рис 1. Применение закона Ома для участка цепи

    Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.

    Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

    Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

    Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны.

    Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

    Умножив I = 0,005 А на R -10000 Ом, получим напряжение,равное 50 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

    В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

    По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

    Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

    Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница. Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

    Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление. А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

    Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

    Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

    Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

    Историческая справка

    Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

    Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

    Закон Ома для участка цепи

    Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

    Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

    Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

    Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

    Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

    f(x) = ky или f(u) = IR или f(u)=(1/R)*I

    Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

    I=12 В/6 Ом=2 А

    Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

    Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

    Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

    R провод =ρ(L/S)

    Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

    Закон Ома для параллельной и последовательной цепи

    В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

    Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

    U эл =I*R элемента

    Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

    1/R=1/R1+1/R2

    Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

    Закон Ома для полной цепи

    Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

    • напряжение, если это источник ЭДС;
    • силу тока, если это источник тока;

    Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

    Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

    I=ε/(R+r)

    Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

    На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

    Закон Ома в дифференциальной и интегральной форме

    Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

    Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

    В интегральной форме:

    Закон Ома для переменного тока

    При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

    1. Ток в цепи с индуктивностью не может измениться мгновенно.
    2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

    Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

    X L и X C – это реактивные составляющие нагрузки.

    В связи с этим вводится величина cosФ:

    Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

    Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

    При этом сопротивление представляют в комплексной форме:

    Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

    Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

    Как запомнить закон Ома

    Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

    Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

    Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

    Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

    Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

    Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

    Нравится(0 ) Не нравится(0 )

    Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

    Итак, давайте начнем с понятия напряжения .

    Напряжение.

    По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

    В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

    В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

    И в итоге получаем формулу, связывающую напряжение и напряженность:

    В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

    Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉

    А на очереди у нас еще одно понятие, а именно ток .

    Ток, сила тока в цепи.

    Что же такое электрический ток ?

    Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :

    Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title=»Rendered by QuickLaTeX.com»> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

    Где e – это заряд электрона.

    И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

    Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

    Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

    Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

    Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .

    Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .

    Сопротивление проводника/цепи.

    Термин “сопротивление ” уже говорит сам за себя 😉

    Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.

    Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :

    Сопротивление проводника зависит от нескольких факторов:

    Удельное сопротивление – это табличная величина.

    Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

    Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:

    Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉

    С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .

    И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

    Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

    Рассмотрим простейшую электрическую цепь:

    Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

    Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

    Как видите, все несложно 🙂

    Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂

    Сопротивление

    — Элементы схемы — Содержание MCAT

    Согласно закону Ома, падение напряжения , В на резисторе, когда через него протекает ток, рассчитывается по формуле V = IR, где I — ток в амперах (А), а R — сопротивление в Ом (Ом).

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В. . Немецкий физик Георг Симон Ом (1787–1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению.Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

    Резисторы последовательно

    Резисторы

    включены последовательно всякий раз, когда поток заряда или ток должен проходить через компоненты последовательно.

    Общее сопротивление в цепи равно сумме отдельных сопротивлений.

    Параллельные резисторы

    Резисторы

    включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника.

    На каждый резистор в цепи подается полное напряжение. По закону Ома токи, протекающие через отдельные резисторы, равны I1 = VR1

    .

    Общее сопротивление в параллельной цепи равно сумме обратных величин каждого отдельного сопротивления.

    Удельное сопротивление — это свойство материала, которое количественно определяет, насколько сильно он сопротивляется или проводит электрический ток. Низкое удельное сопротивление указывает на материал, который легко пропускает электрический ток, и наоборот. Рассчитывается как:

    ρ = R • A / L

    R — электрическое сопротивление однородного образца материала

    л — длина экземпляра

    А — площадь поперечного сечения образца


    Практические вопросы

    Ханская академия

    Анализ сигналов напряжения электрокардиограммы


    Официальная подготовка MCAT (AAMC)

    Физика — карточки онлайн Вопрос 1

    Physics Question Pack Отрывок 9 Вопрос 54

    Physics Question Pack Отрывок 9, вопрос 56

    Пакет вопросов по физике, вопрос 117

    Секция банка C / P Вопрос 15 секции

    Секция банка C / P Вопрос 17 секции

    Образец теста C / P Раздел Отрывок 7 Вопрос 35

    Практический экзамен 1 Секция C / P Отрывок 10 Вопрос 52

    Практический экзамен 2 Раздел C / P, вопрос 59

    Практический экзамен 3 Раздел C / P Отрывок 7 Вопрос 39


    Ключевые точки

    • Падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR

    • Общее сопротивление в цепи равно сумме отдельных сопротивлений.

    • Общее сопротивление в параллельной цепи равно сумме обратных величин каждого отдельного сопротивления.

    • Удельное сопротивление измеряет, насколько сильно материал сопротивляется или проводит электрический ток.


    Ключевые термины

    ток : количество заряда, перемещающегося через поперечное сечение за период времени.

    напряжение : Разность электрических потенциалов, выраженная в вольтах

    сопротивление : Сопротивление — это мера сопротивления току, протекающему в электрической цепи.

    удельное сопротивление: свойство материала, которое количественно определяет, насколько сильно он сопротивляется или проводит электрический ток

    Расчет общего сопротивления — Физика средней школы

    Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

    Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

    Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

    Чтобы отправить уведомление, выполните следующие действия:

    Вы должны включить следующее:

    Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

    Отправьте жалобу нашему уполномоченному агенту по адресу:

    Чарльз Кон Varsity Tutors LLC
    101 S. Hanley Rd, Suite 300
    St. Louis, MO 63105

    Или заполните форму ниже:

    Объяснитель урока: Анализ комбинированных цепей

    В этом объяснении мы узнаем, как определять токи через и напряжения в частях цепей, которые содержат резисторы как последовательно, так и параллельно.

    Напомним, что последовательно включенные резисторы образуют один токопроводящий путь. В На принципиальной схеме ниже показаны три последовательно включенных резистора.

    В примере, показанном выше, полное сопротивление цепи, 𝑅, это 𝑅 = 𝑅 + 𝑅 + 𝑅.

    Это распространяется на любое количество последовательно включенных резисторов: 𝑅 = 𝑅 + 𝑅 + ⋯ + 𝑅.

    С другой стороны, резисторы, включенные параллельно, токопроводящие дорожки. На схеме ниже показаны три резистора, подключенные в параллельно.

    В примере, показанном выше, полное сопротивление цепи, 𝑅, это 𝑅 = 1𝑅 + 1𝑅 + 1𝑅.

    Это распространяется на любое количество резисторов, включенных параллельно: 𝑅 = 1𝑅 + 1𝑅 + ⋯ + 1𝑅.

    Комбинированная схема содержит секции резисторов, включенных последовательно и параллельно. На принципиальной схеме ниже показаны два резистора, подключенные последовательно к двум. резисторы параллельно.

    В примере, показанном выше, часть схемы, содержащая 𝑅 и 𝑅 включены последовательно, а участок цепи, содержащий 𝑅 и 𝑅 параллельно.

    Для анализа этой схемы каждый набор резисторов можно преобразовать в свои эквивалентный резистор. На схеме ниже показано, как два последовательно включенных резистора и два параллельных резистора могут быть преобразованы в один эквивалент резисторы, которые затем могут быть преобразованы в окончательный эквивалентный резистор для всю схему.

    Раздел серии, содержащий 𝑅 и 𝑅 может быть преобразован в эквивалентный ему резистор 𝑅: 𝑅 = 𝑅 + 𝑅.

    Параллельный участок, содержащий и 𝑅 может быть преобразован в эквивалентный ему резистор, 𝑅: 𝑅 = 1𝑅 + 1𝑅.

    Тогда, наконец, эквивалентное сопротивление всей цепи, 𝑅, это 𝑅 = 𝑅 + 𝑅.

    Давайте рассмотрим примерный вопрос этого.

    Пример 1: Определение эквивалентного сопротивления комбинированной цепи

    Показанная схема содержит как последовательные, так и параллельные комбинации. резисторов.

    1. Каков полный ток в показанной цепи? Дай свой ответ один десятичный знак.
    2. Какая общая мощность рассеивается схемой? Дайте свой ответ до одного десятичного знака.

    Ответ

    Часть 1

    В первой части этого вопроса мы должны вычислить общий ток в схема. Для этого мы должны найти эквивалентное сопротивление схема.

    Начнем с маркировки компонентов на принципиальной схеме.

    Первым шагом в вычислении эквивалентного сопротивления цепи является найти эквивалентное сопротивление параллельного участка, состоящего из 𝑅 и 𝑅.Обозначим эквивалентное сопротивление этого параллельного участка на: 𝑅 = 1𝑅 + 1𝑅.

    Подставляя известные значения для 𝑅 = 2,5 Ом и 𝑅 = 3,2Ω дает 𝑅 = 12,5 + 13,2𝑅 = 1,40.ΩΩΩ

    Теперь мы можем рассчитать эквивалентное сопротивление всей цепи, 𝑅: 𝑅 = 𝑅 + 𝑅 + 𝑅.

    Подставляя известные значения для 𝑅 = 1,6Ω и 𝑅 = 1,5 Ом и значение 𝑅, которое мы вычислили как 1.40 Ом дает нам = 1,6 + 1,5 + 1,4 = 4,5 Ом Ом

    Тогда мы можем использовать закон Ома для расчета полного тока в цепи, при = 5,5 В: 𝐼 = 𝑉𝑅𝐼 = 5,54,5 Ом

    Полный ток в цепи с точностью до одного десятичного знака равен 𝐼 = 1,2.A

    Часть 2

    Общая мощность, рассеиваемая в цепи, может быть рассчитана путем умножения ток в цепи на полное падение потенциала на схема: 𝑃 = 𝐼𝑉𝑃 = 1.2 × 5.5.AV

    Полная мощность, рассеиваемая в цепи, с точностью до одного десятичного знака, равна 𝑃 = 6.7.W

    Эти методы анализа комбинированных схем также могут быть использованы для анализировать схемы, содержащие компоненты, отличные от резисторов. Мы будем сейчас проработайте примерный вопрос по этому поводу.

    Пример 2: Анализ схем, содержащих компоненты, отличные от Резисторы

    Ток измеряется амперметром в цепи, показанной на схеме. Амперметр имеет сопротивление 2.5 мкОм.

    1. Какое будет показание амперметра? Дайте свой ответ до одного десятичного знака.
    2. Каким было бы показание амперметра, если бы он был подключен к параллельно с Резистор 3,5 Ом? Отдай свое ответ с точностью до одного десятичного знака.

    Ответ

    Часть 1

    Первая часть вопроса просит нас вычислить величину тока через цепь. Для этого можно заменить амперметр на резистор эквивалентного сопротивления.

    Мы можем резюмировать это на диаграмме, на которой обозначен каждый резистор. 𝑅 — эквивалентный резистор для амперметра.

    Суммарное сопротивление цепи равно 𝑅 = 𝑅 + 𝑅 + 𝑅𝑅 = 2,5 + 3,5 + 2,5 × 10𝑅 = 6,0000025. ΩΩΩΩ

    Ток, протекающий в цепи, можно рассчитать по закону Ома: 𝐼 = 126,0000025 = 1,9999991.VΩA

    С точностью до одного десятичного знака амперметр будет показывать 2,0 А. Давайте сравните это с идеальным амперметром с нулевым внутренним сопротивлением.

    Полное сопротивление цепи будет в точности равно сумме из двух резисторов: = 2,5 + 3,5 = 6,0 Ом Ом

    Это означает, что ток в цепи 𝐼 = 126.0𝐼 = 2.0.VΩA

    Таким образом, амперметр даст показание точно 2,0 А. Это подчеркивает, насколько важно иметь амперметр с очень низким внутреннее сопротивление. Если внутреннее сопротивление достаточно низкое, так как оно в данном примере, при расчетах им можно пренебречь.

    Часть 2

    Вторая часть вопроса просит нас подумать, что бы произойдет, если амперметр был подключен параллельно к Резистор 3,5 Ом.

    Заменив амперметр на эквивалентный ему резистор, мы можем нарисовать схему.

    Теперь мы должны рассчитать эквивалентное сопротивление, 𝑅, параллельного участка цепи: 𝑅 = 13,5 + 12,5 × 10𝑅 = (0,28 + 400000) 𝑅 = 400000.28𝑅 = 2,499998 × 10.ΩΩΩ

    Здесь мы видим, что сопротивление амперметра настолько низкое по сравнению с до 3,5 Ом резистор, что он полностью доминирует над эквивалентным сопротивлением два.

    Тогда полное сопротивление цепи равно 𝑅 = 2,5 + 2,499998 × 10𝑅 = 2,5000025.Ω

    Ток, протекающий в цепи, может быть вычислен по закону Ома: 𝐼 = 122,5000025𝐼 = 4,799995.VΩA

    Итак, с точностью до одного десятичного знака амперметр показывает 4.8 A.

    Рассчитаем текущее значение, если эквивалентное сопротивление параллельное сечение при расчете не учитывается: = 122,5𝐼 = 4,8 Ом · А

    Как видно, внутреннее сопротивление амперметра настолько низкое, что эквивалентным сопротивлением параллельного участка можно пренебречь.

    Хотя эквивалентное сопротивление позволяет нам анализировать многие комбинированные схемы, есть некоторые, которые нельзя решить, используя только эквивалентное сопротивление.

    Цепь, показанная на следующей принципиальной схеме, не может быть проанализирована с использованием только эквивалентное сопротивление.

    Поскольку есть две батареи, мы не можем рассчитать эквивалентное сопротивление из 𝑅 и 𝑅.

    Для анализа подобных схем мы можем использовать законы Кирхгофа.

    Первый закон Кирхгофа гласит, что ток в соединении или узле в Схема должна быть такой же, как ток вне соединения или узла.

    Определение: Первый закон Кирхгофа

    Первый закон Кирхгофа гласит, что сумма токов в соединение / узел в цепи, 𝐼 + 𝐼 + ⋯  ()  () inin, должно быть таким же, как сумма токов на стыке / узле, 𝐼 + 𝐼 + ⋯  ()  () выход: 𝐼 + 𝐼 + ⋯ = 𝐼 + 𝐼 + ⋯. ()  ()  ()  () ininoutout

    Например, предположим, что следующий переход в цепи имеет токи 𝐼 и 𝐼 в стык и 𝐼 из перекрестка.

    Первый закон Кирхгофа гласит, что сумма токов в переходе, 𝐼 + 𝐼, должно равняться сумме токов из соединение, 𝐼: 𝐼 + 𝐼 = 𝐼.

    Второй закон Кирхгофа позволяет нам анализировать разность потенциалов на различные точки в комбинированной схеме.

    Второй закон Кирхгофа гласит, что сумма всех потенциальных разностей по компонентам в цикле должен быть равен нулю.

    На следующей принципиальной схеме показаны три резистора, соединенные последовательно с батареей.

    Определение: Второй закон Кирхгофа

    Сумма разности потенциалов на каждом компоненте в контуре равна нуль: 𝑉 + 𝑉 + ⋯ + 𝑉 = 0.

    В схеме примера разность потенциалов на ячейке равна 𝑉, а у трех резисторов разность потенциалов между ними составляет 𝑉, 𝑉 и 𝑉 соответственно.

    Закон Кирхгофа гласит, что сумма потенциальных разностей по всем компонентов в петле равно нулю. То есть, 𝑉 + 𝑉 + 𝑉 + 𝑉 = 0.

    В этом случае разность потенциалов на ячейке положительна и равна равной по величине полной разности потенциалов на трех резисторы.

    Законы Кирхгофа можно использовать для сравнения схем. Мы проработаем пример вопроса об этом сейчас.

    Пример 3: Анализ нескольких похожих схем

    Схемы (a) и (b) кажутся очень похожими, но немного отличаются друг от друга. Другие.Какая разница в общем токе между схемами, показанными на схема (а) и схема, показанная на схеме (б)? Ответьте с точностью до одного десятичного знака.

    Ответ

    Начнем с анализа схемы (б).

    Мы можем использовать второй закон Кирхгофа о петле, образованной схемой. Отзывать что второй закон Кирхгофа гласит, что сумма потенциальных разностей для каждого компонента в цикле должен равняться нулю.

    Обозначим разность потенциалов на 800 мОм резистор как 𝑉 и разность потенциалов на Резистор 960 мОм в качестве 𝑉.

    Два резистора можно преобразовать в один эквивалентный резистор, который мы вызовет 𝑅 со следующим сопротивлением: = 880 + 960𝑅 = 1840.mΩmΩmΩ

    Разность потенциалов на этом эквивалентном резисторе равна 𝑉 и равно 𝑉 = 𝑉 + 𝑉.

    Сумма разности потенциалов на каждом компоненте в цепи (b) можно записать как 2,5 + 1,4 − 𝑉 − 𝑉 = 0, VVV или, учитывая эквивалентный резистор,, его можно записать как 2.5 + 1.4 − 𝑉 = 0𝑉 = 3.9.VVVV

    Итак, разность потенциалов на этом эквивалентном резисторе равна 3,9 В.

    Ток в цепи (b),, можно затем рассчитать с помощью Закон Ома, преобразуя сопротивление сначала из миллиом в Ом: 𝐼 = 𝑉𝑅𝐼 = 3.91.84𝐼 = 2.12.VΩA

    Теперь проанализируем схему (а).

    Цепь (а) почти идентична цепи (б), за исключением того, что Батарея 1,4 В перевернулся.Когда мы применяем на этот раз второй закон Кирхгофа, эта батарея вносит в уравнение отрицательную разность потенциалов.

    Объединение резисторов в эквивалентный резистор, как мы делали ранее, мы можем написать 2.5−1.4 − 𝑉 = 0𝑉 = 1.1.VVVV

    Таким образом, разность потенциалов на этом эквивалентном резисторе равна 1,1 В.

    Ток в цепи (a),, можно затем рассчитать с помощью Закон Ома, преобразуя сопротивление сначала из миллиом в Ом: 𝐼 = 𝑉𝑅𝐼 = 1.11,84 = 0,60 VΩA

    Тогда разница в токе между двумя цепями равна − 𝐼 = 2,12−0,06𝐼 − 𝐼 = 1,52. AAA

    Разница в суммарном токе между цепями, показанными на схеме (a) и поэтому схема, показанная на диаграмме (b), является 1,5 А до одного десятичного знака.

    Законы Кирхгофа можно также использовать для анализа комбинированных схем. Когда мы учитывая комбинированную схему, мы должны идентифицировать петли и соединения / узлы.

    Например, следующая принципиальная схема содержит несколько резисторов и батареи в разных шлейфах цепи.

    Мы можем идентифицировать два узла в этой цепи и три петли. Эти показано на следующей диаграмме.

    Теперь мы рассмотрим пример вопроса, в котором мы должны использовать ответ Кирхгофа. законы для анализа комбинированной схемы.

    Пример 4: Использование законов Кирхгофа для анализа комбинационных схем

    На схеме показана схема, содержащая несколько ячеек.

    1. Какой ток через Резистор 20 Ом?
    2. Какой ток на отрицательной клемме 5.Аккумулятор 0 В?
    3. Какой ток на отрицательной клемме Аккумулятор 10,0 В?

    Ответ

    Часть 1

    Давайте начнем с обозначения принципиальной схемы.

    Токи в каждой ветви цепи маркируются в соответствии с узел внизу схемы. Ток от Ячейка 10,0 В к узлу обозначается 𝐼 и считается током в узел. Ток от узла к 20 Ом обозначено 𝐼 и считается вне узла.Электрический ток от узла к Ячейка 5,0 В обозначена 𝐼 и считается вне узла.

    Мы можем применить второй закон Кирхгофа к каждому контуру в схеме, чтобы найти разность потенциалов на каждом резисторе.

    Начиная с цикла, содержащего и 𝑅, мы имеем 𝑉 − 𝑉 = 0, V поэтому разность потенциалов на равна 𝑉 = 10.0.V

    Используя закон Ома, мы можем вычислить ток через 𝑅: 𝐼 = 𝑉𝑅𝐼 = 10.020𝐼 = 0,5 VΩA

    Это равно. Ток через Резистор 20 Ом 𝐼 и поэтому равно 0,5 А.

    Часть 2

    Затем мы можем посмотреть на цикл, содержащий 𝑉, 𝑉 и 𝑅: 𝑉 + 𝑉 − 𝑉 = 05.0 + 10.0 − 𝑉 = 0. VVVV

    Итак, разность потенциалов на 𝑅 равна 𝑉 = 15.0.V

    Из закона Ома мы можем вычислить ток через 𝑅: 𝐼 = 𝑉𝑅𝐼 = 15.015𝐼 = 1.0.VΩA

    Это равно 𝐼.Ток на отрицательном терминал 5.0 А аккумулятор есть 𝐼 и поэтому равно 1.0 A.

    Part 3

    Используя первый закон Кирхгофа, мы можем вычислить 𝐼 из узел внизу схемы: 𝐼 = 𝐼 + 𝐼𝐼 = 1,0 + 0,5 = 1,5. A

    Ток на отрицательной клемме Батарея 10,0 В 𝐼 и поэтому равно 1.5 A.

    Пример 5: Использование законов Кирхгофа для анализа комбинационных схем с Неизвестные компоненты

    В показанной схеме сопротивление одного из резисторов неизвестно.Общая ток в цепи 0,25 А.

    1. Найдите текущий 𝐼. Отдай свое ответ с двумя десятичными знаками.
    2. Найдите текущий 𝐼. Дай свой ответ двум десятичные разряды.
    3. Найдите разность потенциалов на неизвестном резисторе. Дай свой ответ Ближайший вольт.

    Ответ

    Часть 1

    Начнем с маркировки компонентов схемы.

    Первая часть вопроса просит нас найти 𝐼, ток через 𝑅. Для этого нам нужно найти разность потенциалов на параллельном участке цепи.

    Мы можем преобразовать параллельный участок цепи в эквивалентный резистор по следующей формуле: 𝑅 = 1𝑅 + 1𝑅.

    Вставка значений 𝑅 = 2,5 Ом и 𝑅 = 3,2Ω дает = 12,5 + 13,2𝑅 = 1,40.ΩΩΩ

    Зная, что ток в цепи 0.25 А, потенциал разницу на эквивалентном резисторе можно рассчитать, используя закон: 𝑉 = 𝐼𝑅𝑉 = 0,25 × 1,40 = 0,35. AΩV

    Эта разность потенциалов одинакова на обеих ветвях параллельного участок схемы. Тогда ток 𝐼 может быть рассчитывается по закону Ома: 𝐼 = 𝑉𝑅𝐼 = 0,352,5𝐼 = 0,14. VΩA

    Часть 2

    Во второй части вопроса нам предлагается рассчитать ток 𝐼.

    Мы уже рассчитали разность потенциалов на параллельном части схемы, поэтому мы можем применить закон Ома к 𝑅: 𝐼 = 𝑉𝑅𝐼 = 0,353,2𝐼 = 0,11. VΩA

    Часть 3

    Третья часть этого вопроса просит нас вычислить потенциал разница через неизвестный резистор.

    Для решения этой проблемы можно использовать второй закон Кирхгофа. Кирхгофа Второй закон гласит, что сумма потенциальных различий по каждому отдельный компонент в петле равен нулю.Для этой схемы мы запишет разность потенциалов на 𝑅 как 𝑉, поперек параллельного сечения как 𝑉, и поперек 𝑅 как 𝑉: 12 − 𝑉 − 𝑉 − 𝑉 = 0.V

    Мы уже рассчитали 𝑉 = 0,35 мкВ. 𝑉 можно рассчитать по закону Ома: 𝑉 = 𝐼𝑅𝑉 = 0,25 × 2,2 = 0,55.AΩV

    Мы можем подставить их в уравнение для второго закона Кирхгофа, помня, что это снижение потенциала, поэтому они отрицательны: 12 − 𝑉 − 0.55−0,35 = 0.VVV

    Затем мы можем изменить это, чтобы получить значение для разности потенциалов напротив 𝑅 неизвестный резистор: 𝑉 = 11,1.V

    Итак, разность потенциалов на неизвестном резисторе с точностью до ближайшего вольт равно 11 В.

    Давайте подведем итог тому, что мы узнали в этом объяснении, следующим образом. ключевые моменты.

    Ключевые моменты

    • В комбинированных цепях мы можем идентифицировать участки цепей параллельно и цепи последовательно.Мы можем вычислить эквивалентное сопротивление этих разделы для анализа комбинированной схемы.
    • Первый закон Кирхгофа гласит, что сумма токов в соединение / узел в цепи, 𝐼 + 𝐼 + ⋯  ()  () inin, должно быть таким же, как сумма токов на выходе из соединения / узла, 𝐼 + 𝐼 + ⋯  ()  () outout: 𝐼 + 𝐼 + ⋯ = 𝐼 + 𝐼 + ⋯ . ()  ()  ()  () ininout
    • Второй закон Кирхгофа утверждает, что сумма разности потенциалов по каждому компоненту, 𝑉, 𝑉,… 𝑉, в цикле равно нулю: 𝑉 + 𝑉 + ⋯ + 𝑉 = 0.
    • В комбинированных схемах мы можем идентифицировать петли и узлы, которые позволяют нам применить законы Кирхгофа для анализа схемы.
    Закон

    Ом — обзор

    8.2.2 Паразитная емкость

    Закон Ома, как указано в уравнении. (8.1) не выполняется, когда модель устройства включает реактивные (емкостные или индуктивные) компоненты и учитываются изменяющиеся во времени напряжения / токи. В таких случаях обобщенная форма закона Ома, показанная в формуле.(8.4) описывает взаимосвязь между напряжением и током через понятие электрического импеданса Z .

    (8.4) V = ZIwithZ = R + jX

    Электрический импеданс Z представлен комплексным числом, действительной частью которого является сопротивление R , как определено ранее, а мнимая часть X , называемое реактивным сопротивлением, учитывает реактивные эффекты.

    Некоторые датчики несут информацию, относящуюся к измеряемым величинам, как в резистивных, так и в реактивных компонентах импеданса, поэтому интерфейсные схемы должны иметь возможность выполнять одновременную оценку R и X .С другой стороны, если полезная информация содержится только в резистивном компоненте, как это обычно бывает с резистивными датчиками, реактивный компонент считается паразитным элементом, влияние которого следует минимизировать.

    При работе с резистивными датчиками обычно основной паразитный вклад носит емкостной характер. В отличие от неидеальности большинства компонентов схемы, эти емкостные эффекты не могут быть компенсированы правильной калибровкой схемы, поскольку они зависят от конкретного датчика и условий эксплуатации.Если не принять во внимание должным образом, такие эффекты могут вызвать ошибки в оценке сопротивления, как будет разъяснено в следующих разделах.

    Одна из наиболее распространенных причин возникновения паразитных емкостных эффектов связана с производством датчиков. Если эффект восприятия достигается за счет определенных явлений, происходящих на поверхности датчика (например, с фотодетекторами и датчиками газа), обычным способом повышения чувствительности датчика является максимальное увеличение поверхностных эффектов путем реализации метода, основанного на встречно-штыревых электродах, как показано на Инжир.8.3. К сожалению, эта структура вводит повышенную паразитную емкость C ee между электродами, как показано на рис. 8.3, которая становится еще более заметной по мере повторения встречно-штыревой структуры (Polese et al., 2017).

    Рисунок 8.3. Паразитно-емкостный эффект в датчиках с встречно-штыревыми электродами.

    Другая ситуация, в которой появляются паразитные емкостные эффекты, характерна для газовых датчиков. Некоторым устройствам для измерения газа требуется работать при гораздо более высокой температуре, чем температура окружающей среды, и по этой причине они обычно снабжены встроенной нитью накала R h , которая действует как нагреватель (Samà et al., 2017). Нить накала нагревателя представляет собой проводник, выполненный на той же подложке чувствительного компонента R s и разделенный диэлектрическим материалом, который электрически изолирует два компонента датчика. Однако небольшой размер реализованных устройств заставляет эти два компонента взаимодействовать друг с другом из-за емкостных эффектов, как показано на рис. 8.4.

    Рисунок 8.4. Паразитно-емкостный эффект в газовых сенсорах со встроенной нитью нагревателя.

    Помимо этих возможных внутренних источников, емкостные эффекты могут возникать из-за внешних причин, таких как соединение между датчиком и измерительной системой, как показано на рис.8.5. Фактически, разъемы и провода, используемые для соединения датчика с электронной схемой, демонстрируют распределенную емкостную характеристику C c , которая, с точки зрения приборов, наблюдается параллельно с датчиком.

    Рисунок 8.5. Паразитно-емкостный эффект из-за связи датчика с измерительной системой.

    Расчет общего емкостного паразитного эффекта далеко не прост и часто требует полного понимания характеристик датчика, в том числе на микроскопическом уровне.По этой причине, когда необходимо учитывать паразитную емкость, обычно рассматривается упрощенная модель датчика, где паразитный конденсатор C с представлен параллельно с сопротивлением датчика R с , с учетом всех возможных емкостных паразитных эффектов. Упрощенная модель датчика, используемая в следующих разделах, показана на рис. 8.6.

    Рисунок 8.6. Упрощенная модель резистивного датчика с учетом паразитно-емкостных эффектов.

    Следует отметить, что, когда R с очень велико (похоже на поведение, связанное с разомкнутой цепью) C с может преобладать, что приводит к значительным ошибкам в оценке сопротивления . В этих случаях (например, при работе с датчиками MOX) схемы интерфейса должны быть спроектированы так, чтобы ограничить это явление.

    19,4 Электроэнергия | Texas Gateway

    Задачи обучения

    К концу этого раздела вы сможете делать следующее:

    • Определить электрическую мощность и описать уравнение электрической мощности
    • Расчет электрической мощности в цепях резисторов в последовательном, параллельном и сложном расположении
    Раздел Основные термины
    электроэнергия

    Власть ассоциируется у многих с электричеством.Каждый день мы используем электроэнергию для работы наших современных приборов. Линии электропередачи — наглядные примеры электроэнергии, обеспечивающей мощность. Мы также используем электроэнергию для запуска автомобилей, работы компьютеров или освещения дома. Мощность — это скорость передачи энергии любого типа; электрическая мощность — это скорость, с которой электрическая энергия передается в цепи. В этом разделе мы узнаем не только, что это означает, но и какие факторы определяют электрическую мощность.

    Для начала представим себе лампочки, которые часто характеризуются номинальной мощностью в ваттах.Давайте сравним лампочку мощностью 25 Вт с лампой мощностью 60 Вт (см. Рисунок 19.23). Хотя обе работают при одинаковом напряжении, лампа мощностью 60 Вт излучает больше света, чем лампа мощностью 25 Вт. Это говорит нам о том, что выходную мощность электрической цепи определяет нечто иное, чем напряжение.

    Лампы накаливания, такие как две, показанные на рисунке 19.23, по сути являются резисторами, которые нагреваются, когда через них протекает ток, и становятся настолько горячими, что излучают видимый и невидимый свет. Таким образом, две лампочки на фото можно рассматривать как два разных резистора.В простой цепи, такой как электрическая лампочка с приложенным к ней напряжением, сопротивление определяет ток по закону Ома, поэтому мы можем видеть, что ток, а также напряжение должны определять мощность.

    Рисунок 19.23 Слева лампочка мощностью 25 Вт, а справа лампочка мощностью 60 Вт. Почему их выходная мощность различается, несмотря на то, что они работают при одинаковом напряжении?

    Формулу мощности можно найти путем анализа размеров. Рассмотрим единицы мощности. В системе СИ мощность указывается в ваттах (Вт), которые представляют собой энергию в единицу времени или Дж / с.

    Напомним, что напряжение — это потенциальная энергия на единицу заряда, что означает, что напряжение имеет единицы Дж / Кл.

    Мы можем переписать это уравнение как J = V × CJ = V × C и подставить его в уравнение для ватт, чтобы получить

    W = Js = V × Cs = V × Cs.W = Js = V × Cs = V × Cs.

    Но кулон в секунду (Кл / с) — это электрический ток, который мы можем видеть из определения электрического тока, I = ΔQΔtI = ΔQΔt, где ΔΔ Q — заряд в кулонах, а ΔΔ t — время в секундах. Таким образом, приведенное выше уравнение говорит нам, что электрическая мощность равна напряжению, умноженному на ток, или

    . Это уравнение дает электрическую мощность, потребляемую цепью с падением напряжения В и током I .

    Например, рассмотрим схему на рисунке 19.24. Согласно закону Ома, ток, протекающий по цепи, равен

    19,49I = VR = 12 В 100 Ом = 0,12 AI = VR = 12 В 100 Ом = 0,12 А.

    Таким образом, мощность, потребляемая цепью, составляет

    19,50P = VI. = (12 В) (0,12 А) = 1,4 WP = VI = (12 В) (0,12 А) = 1,4 Вт.

    Куда уходит эта мощность? В этой схеме мощность в основном идет на нагрев резистора в этой цепи.

    Рисунок 19.24 Простая схема, потребляющая электроэнергию.

    При вычислении мощности в цепи, показанной на рисунке 19.24, мы использовали сопротивление и закон Ома, чтобы найти ток.Закон Ома дает ток: I = V / RI = V / R, который мы можем вставить в уравнение для электроэнергии, чтобы получить

    P = IV = (VR) V = V2R.P = IV = (VR) V = V2R.

    Это дает мощность с точки зрения только напряжения и сопротивления.

    Мы также можем использовать закон Ома, чтобы исключить напряжение из уравнения для электроэнергии и получить выражение для мощности, выраженное только через ток и сопротивление. Если мы запишем закон Ома как V = IRV = IR и используем это, чтобы исключить V в уравнении P = IVP = IV, мы получим

    P = IV = I (IR) = I2R.P = IV = I (IR) = I2R.

    Это дает мощность с точки зрения только тока и сопротивления.

    Таким образом, комбинируя закон Ома с уравнением P = IVP = IV для электроэнергии, мы получаем еще два выражения для мощности: одно через напряжение и сопротивление, а другое через ток и сопротивление. Обратите внимание, что в выражения для электрической мощности входят только сопротивление (не емкость или что-либо еще), ток и напряжение. Это означает, что физической характеристикой цепи, определяющей, сколько мощности она рассеивает, является ее сопротивление.Любые конденсаторы в цепи не рассеивают электроэнергию — напротив, конденсаторы либо накапливают электрическую энергию, либо отдают ее обратно в цепь.

    Чтобы прояснить, как связаны напряжение, сопротивление, ток и мощность, рассмотрим рисунок 19.25, на котором показано колесо формулы . Количества в центральной четверти круга равны количествам в соответствующей внешней четверти круга. Например, чтобы выразить потенциал V через мощность и ток, мы видим из колеса формул, что V = P / IV = P / I.

    Рисунок 19.25 Колесо формул показывает, как связаны между собой вольт, сопротивление, ток и мощность. Количества во внутренней четверти окружности равны количеству в соответствующей внешней четверти окружности.

    Рабочий пример

    Найдите сопротивление лампочки

    Типичная старая лампа накаливания имела мощность 60 Вт. Если предположить, что к лампочке приложено 120 В, каков ток через лампочку?

    СТРАТЕГИЯ

    Нам даны напряжение и выходная мощность простой цепи, содержащей лампочку, поэтому мы можем использовать уравнение P = IVP = IV, чтобы найти ток I , который течет через лампочку.

    Решение

    Решение P = IVP = IV для тока и вставка данных значений для напряжения и мощности дает

    19,51 P = IVI = PV = 60 Вт 120 V = 0,50 А. P = IVI = PV = 60 Вт 120 В = 0,50 А.

    Таким образом, при подаче 120 В. через лампочку проходит половина ампера.

    Обсуждение

    Это значительное течение. Напомним, что в быту используется переменный, а не постоянный ток, поэтому 120 В, подаваемое от бытовых розеток, — это переменная, а не постоянная мощность. Фактически, 120 В — это усредненная по времени мощность, обеспечиваемая такими розетками.Таким образом, средний ток, протекающий через лампочку за период времени, превышающий несколько секунд, составляет 0,50 А.

    Рабочий пример

    Подогреватели ботинок

    Чтобы согреть ботинки в холодные дни, вы решили вшить цепь с некоторыми резисторами в стельку ботинок. Вам нужно 10 Вт тепла от резисторов в каждой стельке, и вы хотите, чтобы они работали от двух 9-вольтовых батарей (соединенных последовательно). Какое общее сопротивление вы должны приложить к каждой стельке?

    СТРАТЕГИЯ

    Нам известны требуемая мощность и напряжение (18 В, потому что у нас есть две батареи 9 В, соединенные последовательно), поэтому мы можем использовать уравнение P = V2 / RP = V2 / R, чтобы найти необходимое сопротивление.

    Решение

    Решая P = V2 / RP = V2 / R для сопротивления и вставляя данные напряжение и мощность, получаем

    19,52P = V2RR = V2P = (18 В) 210 Вт = 32 Ом. P = V2RR = V2P = (18 В) 210 Вт = 32 Ом.

    Таким образом, общее сопротивление в каждой стельке должно быть 32 Ом.

    Обсуждение

    Давайте посмотрим, сколько тока пройдет через эту цепь. У нас есть 18 В, приложенное к сопротивлению 32 Ом, поэтому закон Ома дает

    19,53 I = VR = 18 В 32 Ом = 0,56 А. I = VR = 18 В 32 Ом = 0,56 А.

    На всех батареях есть этикетки, на которых указано, сколько заряда они могут обеспечить (в единицах силы тока, умноженного на время).Типичная щелочная батарея 9 В может обеспечить заряд 565 мА · ч · мА · ч. (так что две батареи 9 В обеспечивают 1130 мА⋅ч мА⋅ч), поэтому эта система обогрева проработает в течение

    часов. 19,54t = 1130 × 10−3 A⋅h0,56 A = 2,0 h.t = 1130 × 10−3 A⋅h0,56 A = 2,0 час.

    Рабочий пример

    Питание через ответвление цепи

    Каждый резистор в приведенной ниже схеме имеет сопротивление 30 Ом. Какая мощность рассеивается средней ветвью схемы?

    СТРАТЕГИЯ

    Средняя ветвь схемы содержит последовательно включенные резисторы R3 и R5R3 и R5.Напряжение на этой ветви составляет 12 В. Сначала мы найдем эквивалентное сопротивление в этой ветви, а затем используем P = V2 / RP = V2 / R, чтобы найти мощность, рассеиваемую в ветви.

    Решение

    Эквивалентное сопротивление: R среднее = R3 + R5 = 30 Ом + 30 Ом = 60 Ом R среднее = R3 + R5 = 30 Ом + 30 Ом = 60 Ом. Мощность, рассеиваемая средней ветвью схемы, составляет

    . 19,55P средний = V2R средний = (12 В) 260 Ом = 2,4 Вт. Средний = V2R средний = (12 В) 260 Ом = 2,4 Вт.

    Обсуждение

    Давайте посмотрим, сохраняется ли энергия в этой цепи, сравнив мощность, рассеиваемую в цепи, с мощностью, обеспечиваемой батареей.Во-первых, эквивалентное сопротивление левой ветви равно

    . 19,56 Влево = 11 / R1 + 1 / R2 + R4 = 11/30 Ом + 1/30 Ом + 30 Ом = 45 Ом. Влево = 11 / R1 + 1 / R2 + R4 = 11/30 Ом + 1/30 Ом +30 Ом = 45 Ом.

    Мощность через левую ветвь

    19,57, слева = V2R, слева = (12 В) 245 Ом = 3,2 Вт, слева = V2R, слева = (12 В) 245 Ом = 3,2 Вт.

    Правая ветвь содержит только R6R6, поэтому эквивалентное сопротивление Rright = R6 = 30 ΩRright = R6 = 30 Ω. Мощность через правую ветку

    19,58 Правый = V2 Правый = (12 В) 230 Ом = 4,8 Вт. Правый = V2 Правый = (12 В) 230 Ом = 4,8 Вт.

    Общая мощность, рассеиваемая схемой, представляет собой сумму мощностей, рассеиваемых в каждой ветви.

    19,59P = складка + середина + прямая = 2,4 Вт + 3,2 Вт + 4,8 Вт = 10,4 WP = складка + середина + прямая = 2,4 Вт + 3,2 Вт + 4,8 Вт = 10,4 Вт

    Мощность, обеспечиваемая аккумулятором, составляет

    , где I — полный ток, протекающий через батарею. Поэтому мы должны сложить токи, проходящие через каждую ветвь, чтобы получить I . Ветви дают токи

    19,61 слева = VR слева = 12 В 45 Ом = 0.2667 AIсредний = VR средний = 12 В 60 Ом = 0.20 AIright = VRright = 12 В 30 Ом = 0,40 A. Левый = VR Левый = 12 В 45 Ом = 0,2667 AI Средний = VR средний = 12 В 60 Ом = 0,20 AIright = VRright = 12 В 30 Ом = 0,40 А.

    Суммарный ток

    19,62 I = слева + Imiddle + I right = 0,2667 A + 0,20 A + 0,40 A = 0,87 A. I = I слева + Imiddle + I right = 0,2667 A + 0,20 A + 0,40 A = 0,87 A.

    , а мощность, обеспечиваемая аккумулятором, составляет

    19,63P = IV = (0,87 A) (12 В) = 10,4 Вт. P = IV = (0,87 A) (12 В) = 10,4 Вт.

    Это та же мощность, которая рассеивается на резисторах цепи, что показывает, что в этой цепи сохраняется энергия.

    ТОПОЛОГИЯ ЦЕПЕЙ И ЗАКОНЫ — Прикладное промышленное электричество

    На этой странице мы изложим три принципа, которые вы должны понимать в отношении последовательных цепей:

    Ток : величина тока одинакова для любого компонента в последовательной цепи.

    Сопротивление : Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

    Напряжение : Напряжение питания в последовательной цепи равно сумме индивидуальных падений напряжения.

    Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы. Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:

    Рисунок 3.1

    Первый принцип, который нужно понять о последовательных цепях, заключается в следующем:

    Величина тока в последовательной цепи одинакова для любого компонента в цепи.

    Общий ток серии

    [латекс] \ tag {3.1} I_ {Total} = I_1 = I_2 = … = I_n [/ latex]

    Это связано с тем, что в последовательной цепи существует только один путь прохождения тока.Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость мрамора) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.

    По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке, от точки 1 к 2 до 3 к 4 и обратно к 1. Однако у нас есть один источник напряжения. и три сопротивления. Как мы можем использовать здесь закон Ома?

    Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу в терминах одних и тех же двух точек в цепи.Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.

    Использование закона Ома в простой цепи с одним резистором

    В схеме с одной батареей и одним резистором мы можем легко вычислить любое количество, потому что все они относятся к одним и тем же двум точкам в цепи:

    [латекс] I \: = \ frac {E} {R} [/ латекс]

    [латекс] I \: = \ frac {9V} {3k \ Omega} [/ латекс]

    [латекс] \ pmb {I = 3 мА} [/ латекс]

    Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4.Поскольку мы знаем, что между точками 1 и 4 (непосредственно через батарею) имеется электродвижущая сила 9 В, и поскольку точка 2 является общей для точки 1, а точка 3 — общей для точки 4, мы также должны иметь 9 В между точками 2. и 3 (прямо через резистор).

    Следовательно, мы можем применить закон Ома ( I = E / R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все термины (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.

    Использование закона Ома в схемах с несколькими резисторами

    В схемах, содержащих более одного резистора, мы должны соблюдать осторожность при применении закона Ома. В приведенном ниже примере схемы с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию R 1 , R 2 и R . 3 . Однако мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, чтобы попытаться найти значение тока, потому что мы не знаем, сколько напряжения присутствует на любом из этих резисторов по отдельности.

    Значение 9 вольт — это всего величин для всей цепи, тогда как цифры 3 кОм, 10 кОм и 5 кОм представляют собой отдельных величин для отдельных резисторов. Если бы мы подставили цифру для общего напряжения в уравнение закона Ома с цифрой для отдельного сопротивления, результат не был бы точно связан с какой-либо величиной в реальной цепи.

    Для R 1 закон Ома будет связывать величину напряжения на R 1 с током через R 1 , учитывая сопротивление R 1 , 3 кОм:

    [латекс] I_ {R1} \: = \ frac {E_ {R1}} {R_1} [/ latex] или [латекс] E_ {R1} = I_ {R1} {(R_1)} [/ latex]

    Но, поскольку нам неизвестно напряжение на R 1 (только полное напряжение, подаваемое батареей на комбинацию из трех последовательных резисторов), и мы не знаем ток через R 1 , мы можем ‘ t делать какие-либо расчеты по любой из формул.То же самое касается R 2 и R 3 : мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие количества между одними и теми же двумя точками в цепи.

    Итак, что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации R 1 , R 2 и R 3 , и мы знаем сопротивление каждого резистора, но поскольку эти величины не входят в В том же контексте мы не можем использовать закон Ома для определения тока в цепи.Если бы мы только знали, что такое общее сопротивление для цепи: тогда мы могли бы вычислить общий ток с нашей цифрой для общего напряжения ( I = E / R ).

    Объединение нескольких резисторов в эквивалентный общий резистор

    Это подводит нас ко второму принципу последовательной схемы:

    Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

    [латекс] \ tag {3.2} R_ {total} = R_1 + R_2 + … + R_n [/ латекс]

    Это должно иметь интуитивный смысл: чем больше последовательно подключенных резисторов, через которые должен протекать ток, тем труднее будет протекать ток.

    В примере задачи у нас были последовательно подключены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:

    [латекс] R_ {total} = R_1 + R_2 + R_3 [/ латекс]

    [латекс] R_ {total} = 3 \ text {k} \ Omega + 10 \ text {k} \ Omega + 5 \ text {k} \ Omega [/ latex]

    [латекс] \ pmb {R_ {total} = 18 \ text {k} \ Omega} [/ latex]

    По сути, мы вычислили эквивалентное сопротивление R 1 , R 2 и R 3 вместе взятых.Зная это, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R 1 , R 2 и R 3 :

    Расчет тока цепи с использованием закона Ома

    Теперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):

    [латекс] I_ {total} \: = \ frac {E_ {total}} {R_ {total}} [/ латекс]

    [латекс] \: = \ frac {9V} {18k \ Omega} [/ латекс]

    [латекс] \ pmb {I_ {total} = 500 мкА} [/ латекс]

    Расчет напряжений компонентов по закону Ома

    Зная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:


    Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома для определения падения напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):

    [латекс] E_ {R1} = I_ {R1} {R_1} [/ латекс]

    [латекс] = (500 мкА) {(3кОм)} [/ латекс]

    [латекс] \ pmb {E_ {R1} = 1.5V} [/ латекс]

    [латекс] E_ {R2} = I_ {R2} {R_2} [/ латекс]

    [латекс] = (500 мкА) {(10 кОм)} [/ латекс]

    [латекс] \ pmb {E_ {R2} = 5V} [/ латекс]

    [латекс] E_ {R3} = I_ {R3} {R_3} [/ латекс]

    [латекс] = (500 мкА) {(5 кОм)} [/ латекс]

    [латекс] \ pmb {E_ {R3} = 2.5V} [/ латекс]

    Обратите внимание на падение напряжения на каждом резисторе, и как сумма падений напряжения (1,5 + 5 + 2,5) равна напряжению батареи (источника питания): 9 вольт.

    Это третий принцип последовательных цепей:

    Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

    Общее последовательное напряжение

    [латекс] E_ {total} = E_1 + E_2 + … E_n \ tag {3.3} [/ latex]

    Анализ простых последовательных цепей с помощью «табличного метода» и закона Ома

    Однако метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания.Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:

    Таблица 3.1


    Правило для такой таблицы — применять закон Ома только к значениям в каждом вертикальном столбце. Например, E R1 только с I R1 и R 1 ; E R2 только с I R2 и R 2 ; и т.д. Вы начинаете свой анализ с заполнения тех элементов таблицы, которые даны вам с самого начала:

    Таблица 3.2


    Как видно из расположения данных, мы не можем подать 9 вольт ET (полное напряжение) ни на одно из сопротивлений (R 1 , R 2 или R 3 ) в любая формула закона Ома, потому что они находятся в разных столбцах. Напряжение батареи 9 В составляет , а не , приложенное непосредственно к R 1 , R 2 или R 3 . Однако мы можем использовать наши «правила» для последовательных цепей, чтобы заполнить пустые места в горизонтальном ряду. В этом случае мы можем использовать правило ряда сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:

    Таблица 3.3


    Теперь, введя значение общего сопротивления в крайний правый столбец («Общее»), мы можем применить закон Ома I = E / R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА. :

    Таблица 3.4


    Затем, зная, что ток распределяется поровну между всеми компонентами последовательной цепи (еще одно «правило» последовательной схемы), мы можем заполнить токи для каждого резистора из только что рассчитанного значения тока:

    Таблица 3.5.

    Наконец, мы можем использовать закон Ома для определения падения напряжения на каждом резисторе, по столбцу за раз:

    Таблица 3.6

    Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: все компоненты имеют одинаковый ток; сопротивления складываются, чтобы равняться большему общему сопротивлению; а падение напряжения в сумме равняется большему общему напряжению. Все эти правила находят корень в определении последовательной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

    • Компоненты в последовательной цепи имеют одинаковый ток:

    [латекс] I_ {Всего} = I_1 = I_2 = I_3 =… = I_n [/ latex]

    • Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений:

    [латекс] R_ {Всего} = R_1 + R_2 + … + R_n [/ латекс]

    • Общее напряжение в последовательной цепи равно сумме отдельных падений напряжения:

    [латекс] E_ {Всего} = E_1 + E_2 + … + E_n [/ латекс]

    В этом разделе мы изложим три принципа, которые вы должны понимать в отношении параллельных цепей:

    Напряжение: Напряжение одинаково на всех компонентах параллельной цепи.

    Ток: Полный ток цепи равен сумме токов отдельных ветвей.

    Сопротивление: Отдельные сопротивления уменьшают , чтобы получить меньшее общее сопротивление, а не , прибавляя , чтобы получить общее.

    Давайте взглянем на несколько примеров параллельных цепей, демонстрирующих эти принципы.

    Начнем с параллельной схемы, состоящей из трех резисторов и одной батареи:

    Рисунок 3.5
    Напряжение в параллельных цепях

    Первый принцип для понимания параллельных цепей заключается в том, что напряжение одинаково на всех компонентах в цепи . Это связано с тем, что в параллельной цепи есть только два набора электрически общих точек, и напряжение, измеренное между наборами общих точек, всегда должно быть одинаковым в любой момент времени.

    [латекс] E_ {Total} = E_1 = E_2 = … = E_n \ tag {3.4} [/ latex]

    Следовательно, в приведенной выше схеме напряжение на R 1 равно напряжению на R 2 , которое равно напряжению на R 3 , которое равно напряжению на батарее.

    Это равенство напряжений можно представить в другой таблице для наших начальных значений:

    Таблица 3.7
    Применение закона Ома для простых параллельных схем

    Как и в случае с последовательными цепями, применимо то же предостережение для закона Ома: значения напряжения, тока и сопротивления должны быть в одном контексте, чтобы вычисления работали правильно.

    Однако в приведенном выше примере схемы мы можем немедленно применить закон Ома к каждому резистору, чтобы найти его ток, потому что мы знаем напряжение на каждом резисторе (9 вольт) и сопротивление каждого резистора:

    [латекс] I_ {R1} \: = \ frac {E_ {R1}} {R_1} [/ латекс]

    [латекс] \: = \ frac {(9V)} {(10kΩ)} [/ latex]

    [латекс] \ pmb {I_ {R1} \: = 0.9mA} [/ латекс]

    [латекс] I_ {R2} \: = \ frac {E_ {R2}} {R_2} [/ латекс]

    [латекс] \: = \ frac {(9V)} {(2kΩ)} [/ латекс]

    [латекс] \ pmb {I_ {R2} \: = 4,5 мА} [/ латекс]

    [латекс] I_ {R3} \: = \ frac {E_ {R3}} {R_3} [/ латекс]

    [латекс] \: = \ frac {(9V)} {(1kΩ)} [/ latex]

    [латекс] \ pmb {I_ {R3} = 9mA} [/ латекс]

    Таблица 3.8

    На данный момент мы еще не знаем, каков полный ток или полное сопротивление для этой параллельной цепи, поэтому мы не можем применить закон Ома к крайнему правому столбцу («Всего»). Однако, если мы внимательно подумаем о том, что происходит, должно стать очевидным, что общий ток должен равняться сумме всех токов отдельных резисторов («ответвлений»):

    Рис. 3.6

    По мере того, как полный ток выходит из положительного (+) вывода аккумуляторной батареи в точке 1 и проходит по цепи, часть потока разделяется в точке 2, чтобы пройти через R 1 , еще часть разделяется в точке 3, чтобы уйти. через 2 , а оставшаяся часть идет через 3 рандов.Подобно реке, разветвляющейся на несколько более мелких ручьев, общий расход всех потоков должен равняться расходу всей реки.

    То же самое происходит, когда токи через R 1 , R 2 и R 3 соединяются, чтобы течь обратно к отрицательной клемме батареи (-) в направлении точки 8: ток из точки 7 до точки 8 должно равняться сумме токов (ответвлений) через R 1 , R 2 и R 3 .

    Это второй принцип параллельных цепей: общий ток цепи равен сумме токов отдельных ветвей .

    Используя этот принцип, мы можем заполнить место ИТ на нашей таблице суммой I R1 , I R2 и I R3 :

    Таблица 3.9
    Как рассчитать полное сопротивление в параллельных цепях

    Наконец, применив закон Ома к крайнему правому столбцу («Всего»), мы можем вычислить полное сопротивление цепи:

    Таблица 3.10

    Уравнение сопротивления в параллельных цепях

    Обратите внимание на кое-что очень важное.Общее сопротивление цепи составляет всего 625 Ом: на меньше , чем у любого из отдельных резисторов. В последовательной цепи, где полное сопротивление было суммой отдельных сопротивлений, общее сопротивление должно было быть на больше , чем у любого из резисторов по отдельности.

    Здесь, в параллельной цепи, наоборот: мы говорим, что отдельных сопротивлений уменьшают , а не прибавляют , чтобы получить общее .

    Этот принцип завершает нашу триаду «правил» для параллельных цепей, точно так же, как было обнаружено, что у последовательных цепей есть три правила для напряжения, тока и сопротивления.

    Математически соотношение между общим сопротивлением и отдельными сопротивлениями в параллельной цепи выглядит следующим образом:

    Уравнение сопротивления в параллельных цепях

    [латекс] R_ {total} = \ frac {1} {\ frac {1} {R_1} + \ frac {1} {R_2} + … + \ frac {1} {R_n}} \ tag {3.5 } [/ latex]

    Три правила параллельных цепей

    Таким образом, параллельная цепь определяется как цепь, в которой все компоненты подключены между одним и тем же набором электрически общих точек.Другими словами, все компоненты подключены друг к другу через клеммы.

    Из этого определения следуют три правила параллельных цепей:

    Все компоненты имеют одинаковое напряжение.

    Сопротивления уменьшаются до меньшего общего сопротивления.

    Токи ответвления в сумме равняются большему общему току.

    Как и в случае с последовательными цепями, все эти правила находят корень в определении параллельной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

    • Компоненты в параллельной цепи имеют одинаковое напряжение:

    [латекс] E_ {Всего} = E_1 = E_2 = … = E_n [/ латекс]

    • Общее сопротивление в параллельной цепи на меньше , чем любое из отдельных сопротивлений:

    [латекс] R_ {Total} = \ frac {1} {\ frac {1} {R_1} + \ frac {1} {R_2} + … + \ frac {1} {R_n}} [/ латекс]

    • Полный ток в параллельной цепи равен сумме токов отдельных ответвлений:

    [латекс] I_ {Всего} = I_1 + I_2 +.2R} [/ латекс]

    Этим легко управлять, добавив еще одну строку в нашу знакомую таблицу напряжений, токов и сопротивлений:

    Таблица 3.11 Мощность

    для любого конкретного столбца таблицы может быть найдена с помощью соответствующего уравнения закона Ома ( соответствует на основе цифр, представленных для E, I и R в этом столбце).

    Интересное правило для общей мощности по сравнению с индивидуальной мощностью состоит в том, что она является аддитивной для любой конфигурации цепи : последовательной, параллельной, последовательной / параллельной или другой.Мощность — это мера скорости работы, и поскольку рассеиваемая мощность должна равняться полной мощности, приложенной источником (источниками) (согласно Закону сохранения энергии в физике), конфигурация схемы не влияет на математику.

    • Мощность суммируется в любой конфигурации резистивной цепи:

    [латекс] P_ {Всего} = P_1 + P_2 + … + P_n [/ латекс]

    Напоминания при использовании закона Ома

    Одна из самых распространенных ошибок, которые делают начинающие студенты-электронщики при применении законов Ома, — это смешивание контекстов напряжения, тока и сопротивления.Другими словами, ученик может ошибочно использовать значение I (ток) через один резистор и значение E (напряжение) через набор соединенных между собой резисторов, полагая, что они придут к сопротивлению этого резистора.

    Не так! Помните это важное правило: переменные, используемые в уравнениях закона Ома, должны соответствовать общим одним и тем же двум точкам рассматриваемой цепи. Я не могу переоценить это правило. Это особенно важно в последовательно-параллельных комбинированных схемах, где соседние компоненты могут иметь разные значения как для падения напряжения , так и для тока .

    При использовании закона Ома для вычисления переменной, относящейся к отдельному компоненту, убедитесь, что напряжение, на которое вы ссылаетесь, относится только к этому отдельному компоненту, а ток, который вы указываете, проходит исключительно через этот единственный компонент, а сопротивление, на которое вы ссылаетесь, равно исключительно для этого единственного компонента. Аналогичным образом, при вычислении переменной, относящейся к набору компонентов в цепи, убедитесь, что значения напряжения, тока и сопротивления относятся только к этому полному набору компонентов!

    Хороший способ запомнить это — обратить пристальное внимание на две точки , , завершающие анализируемый компонент или набор компонентов, убедившись, что напряжение, о котором идет речь, проходит через эти две точки, и что рассматриваемый ток является потоком электрический заряд от одной из этих точек до другой точки, что рассматриваемое сопротивление эквивалентно одному резистору между этими двумя точками, и что рассматриваемая мощность — это полная мощность, рассеиваемая всеми компонентами между этими двумя точками .

    Примечания к «табличному» методу анализа цепей

    «Табличный» метод, представленный как для последовательных, так и для параллельных цепей в этой главе, является хорошим способом сохранить контекст закона Ома правильным для любой конфигурации цепи. В таблице, подобной приведенной ниже, вам разрешено применять уравнение закона Ома только для значений одного вертикального столбца за раз:

    Таблица 3.12

    Получение значений по горизонтали по столбцам допустимо в соответствии с принципами последовательных и параллельных цепей:

    Таблица 3.13

    Таблица 3.14

    «Табличный» метод не только упрощает управление всеми соответствующими величинами, но также облегчает перекрестную проверку ответов, упрощая поиск исходных неизвестных переменных другими методами или работая в обратном направлении для определения исходных данные значения из ваших решений. Например, если вы только что решили для всех неизвестных напряжений, токов и сопротивлений в цепи, вы можете проверить свою работу, добавив строку внизу для расчета мощности на каждом резисторе, чтобы посмотреть, добавляются ли все отдельные значения мощности. до полной мощности.Если нет, значит, вы где-то ошиблись! Хотя в этой технике «перекрестной проверки» вашей работы нет ничего нового, использование таблицы для упорядочивания всех данных для перекрестной проверки (-ий) приводит к минимуму путаницы.

    • Примените закон Ома к вертикальным столбцам таблицы.
    • Примените правила последовательного / параллельного горизонтального ряда в таблице.
    • Проверьте свои расчеты, работая «в обратном направлении», чтобы попытаться прийти к первоначально заданным значениям (из ваших первых рассчитанных ответов), или путем решения для количества с использованием более чем одного метода (из разных заданных значений).

    Что такое закон напряжения Кирхгофа (KVL)?

    Принцип, известный как Закон напряжения Кирхгофа (открытый в 1847 году немецким физиком Густавом Р. Кирхгофом), можно сформулировать так:

    «Алгебраическая сумма всех напряжений в контуре должна равняться нулю»

    [латекс] E_ {T} = E_1 + E_2 + … + E_n = 0 [/ латекс]

    Под алгебраическим я подразумеваю учет знаков (полярностей), а также величин.Под петлей я подразумеваю любой путь, прослеживаемый от одной точки в цепи до других точек в этой цепи и, наконец, обратно в исходную точку.

    Демонстрация закона напряжения Кирхгофа в последовательной цепи

    Давайте еще раз посмотрим на нашу примерную последовательную схему, на этот раз пронумеровав точки в цепи для опорного напряжения:

    Рис. 3.7.

    . Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, измеритель зарегистрировал бы +45 вольт.Обычно знак «+» не отображается, а скорее подразумевается для положительных показаний на дисплеях цифровых счетчиков. Однако для этого урока очень важна полярность показаний напряжения, поэтому я покажу положительные числа явно: E 2-1 = + 45V

    Когда напряжение указано с двойным нижним индексом (символы «2-1» в обозначении «E 2-1 »), это означает напряжение в первой точке (2), измеренное относительно второй точки. (1). Напряжение, указанное как «E cd », будет означать напряжение, указанное цифровым измерителем с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно «D».

    Рис. 3.8.

    Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего измерителя на точке впереди и черным измерительным проводом на точке сзади, получим следующие показания:

    [латекс] E_ {3-2} = -10V [/ латекс]

    [латекс] E_ {4-3} = -20 В [/ латекс]

    [латекс] E_ {1-4} = -15 В [/ латекс]

    Рисунок 3.9

    Мы уже должны быть знакомы с общим принципом для последовательных цепей, согласно которому отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и внимание к полярности (математическому знаку) показаний показывает другое. аспект этого принципа: все измеренные напряжения в сумме равны нулю:

    В приведенном выше примере петля образована следующими точками в следующем порядке: 1-2-3-4-1.Не имеет значения, с какой точки мы начинаем или в каком направлении идем при отслеживании петли; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем подсчитать напряжения в контуре 3-2-1-4-3 той же цепи:

    Это может иметь больше смысла, если мы перерисуем наш пример последовательной схемы так, чтобы все компоненты были представлены в виде прямой линии:

    Рисунок 3.10

    Это все та же последовательная схема, только компоненты расположены в другой форме.Обратите внимание на полярность падения напряжения на резисторе по отношению к батарее: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторе ориентированы в другую сторону: положительное слева и отрицательное справа. Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей. Другими словами, «толчок», оказываемый резисторами против потока электрического заряда , должен быть в направлении, противоположном источнику электродвижущей силы.

    Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, черный провод слева и красный провод справа, как показано горизонтально:

    Рисунок 3.11

    Если бы мы взяли тот же вольтметр и считали напряжение по комбинациям компонентов, начиная с единственного R 1 слева и продвигаясь по всей цепочке компонентов, мы увидим, как напряжения складываются алгебраически (до нуля):

    Рисунок 3.12

    Тот факт, что последовательные напряжения складываются, не должен быть тайной, но мы заметили, что полярность этих напряжений сильно влияет на то, как складываются цифры. При считывании напряжения на R 1 —R 2 и R 1 —R 2 —R 3 (я использую символ «двойное тире» «-» для обозначения серии соединение между резисторами R 1 , R 2 и R 3 ), мы видим, как измеряемые напряжения последовательно увеличиваются (хотя и отрицательные) величины, потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (положительный левый , отрицательный справа).Сумма падений напряжения на R 1 , R 2 и R 3 равна 45 вольт, что соответствует выходу батареи, за исключением того, что полярность батареи противоположна падению напряжения на резисторе (отрицательный слева, положительный справа), поэтому мы получаем 0 вольт, измеренный на всей цепочке компонентов.

    То, что мы должны получить ровно 0 вольт на всей струне, тоже не должно быть тайной. Глядя на схему, мы видим, что крайний левый угол струны (левая сторона R 1 : точка номер 2) напрямую соединен с крайним правым уголком струны (правая сторона батареи: точка номер 2), так как необходимо для завершения схемы.Поскольку эти две точки соединены напрямую, они имеют электрически общих друг с другом. Таким образом, напряжение между этими двумя электрически общими точками должно быть равно нулю.

    Демонстрация закона напряжения Кирхгофа в параллельной цепи Закон напряжения Кирхгофа

    (иногда для краткости обозначаемый как KVL ) будет работать для любой конфигурации цепи , а не только для простой серии. Обратите внимание, как это работает для этой параллельной цепи:

    Рисунок 3.13

    В параллельной схеме напряжение на каждом резисторе такое же, как и напряжение питания: 6 вольт. Суммируя напряжения вокруг контура 2-3-4-5-6-7-2, получаем:

    Обратите внимание, как я обозначил конечное (суммарное) напряжение как E 2-2 ​​. Поскольку мы начали нашу пошаговую последовательность в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E 2-2 ​​), которое, конечно, должно быть равно нулю. .

    Действие закона Кирхгофа о напряжении независимо от топологии цепи

    Тот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего с правомерностью закона Кирхгофа о напряжении. В этом отношении схема может быть «черным ящиком» — конфигурация ее компонентов полностью скрыта от нашего взгляда, с набором открытых клемм для измерения напряжения между ними — и KVL все равно останется верным:

    Рис. 3.14.

    Попробуйте выполнить любой порядок шагов с любого терминала на приведенной выше диаграмме, возвращаясь к исходному терминалу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.

    Более того, «петля», которую мы отслеживаем для KVL, даже не обязательно должна быть реальным током в прямом смысле этого слова. Все, что нам нужно сделать, чтобы соответствовать KVL, — это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между следующей и последней точкой. Рассмотрим этот абсурдный пример, отслеживая «петлю» 2-3-6-3-2 в той же параллельной цепи резистора:

    Рисунок 3.15

    Использование закона напряжения Кирхгофа в сложной цепи

    KVL можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вокруг определенного «контура».В качестве примера возьмем следующую сложную схему (фактически две последовательные цепи, соединенные одним проводом внизу):

    Рисунок 3.16

    Чтобы упростить задачу, я опустил значения сопротивления и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют общий провод между собой (провод 7-8-9-10), что позволяет измерять напряжение между двумя цепями.

    Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение KVL с напряжением между этими точками как неизвестным:

    [латекс] E_ {4-3} + E_ {9-4} + E_ {8-9} + E_ {3-8} = 0 [/ латекс]

    [латекс] E_ {4-3} + 12 В + 0 В + 20 В = 0 В [/ латекс]

    [латекс] E_ {4-3} + 32V = 0 [/ латекс]

    [латекс] \ pmb {E_ {4-3} = -32V} [/ латекс]

    Рисунок 3.17 Рисунок 3.18 Рисунок 3.19 Рисунок 3.20

    Обходя контур 3-4-9-8-3, мы записываем значения падения напряжения так, как их регистрировал цифровой вольтметр, измеряя с помощью красного измерительного провода на острие впереди и черного измерительного провода на точка позади, когда мы продвигаемся по петле. Следовательно, напряжение от точки 9 до точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» — в точке 4. Напряжение от точки 3 до точки 8 является положительным (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» — в точке 8.Напряжение от точки 8 до точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

    Наш окончательный ответ для напряжения от точки 4 до точки 3 — отрицательное (-) 32 вольта, что говорит нам, что точка 3 на самом деле положительна по отношению к точке 4, именно то, что цифровой вольтметр показал бы красным проводом в точке 4. и черный отрыв в точке 3:

    Рис. 3.21.

    Другими словами, первоначальное размещение наших «выводов счетчика» в этой проблеме KVL было «задом наперед».«Если бы мы сгенерировали наше уравнение KVL, начиная с E 3-4 вместо E 4-3 , шагая по той же петле с противоположной ориентацией измерительных проводов, окончательный ответ был бы E 3-4 = + 32 вольта:

    Рис. 3.22

    Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.

    • Закон Кирхгофа о напряжении (KVL): «Алгебраическая сумма всех напряжений в контуре должна равняться нулю»

    Что такое действующий закон Кирхгофа ?

    Закон Кирхгофа о течениях, часто сокращаемый до KCL, гласит, что «алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю».

    Этот закон используется для описания того, как заряд входит и покидает точку соединения или узел на проводе.

    Вооружившись этой информацией, давайте теперь рассмотрим пример применения закона на практике, почему он важен и как он был разработан.

    Обзор параллельной цепи

    Давайте внимательнее рассмотрим эту последнюю параллельную схему примера:

    Рисунок 3.23 Таблица 3.15

    Решение для всех значений напряжения и тока в этой цепи:

    На данный момент мы знаем значение тока каждой ветви и общего тока в цепи. Мы знаем, что полный ток в параллельной цепи должен равняться сумме токов ответвления, но в этой цепи происходит нечто большее, чем просто это.Взглянув на токи в каждой точке соединения проводов (узле) в цепи, мы должны увидеть кое-что еще:

    Рисунок 3.24

    3.7. 3 тока на входе и выходе из узла

    В каждом узле положительной «шины» (провода 1-2-3-4) у нас есть разделение тока от основного потока к каждому последующему резистору ответвления. В каждом узле отрицательной «шины» (провод 8-7-6-5) у нас есть ток, сливающийся вместе, чтобы сформировать основной поток от каждого последовательного резистора ответвления.Этот факт должен быть довольно очевиден, если вы подумаете об аналогии контура водопровода с каждым ответвлением, действующим как тройник, разделением или слиянием потока воды с основным трубопроводом, когда он движется от выхода водяного насоса к обратному каналу. резервуар или отстойник.

    Если мы внимательно рассмотрим один конкретный узел «тройник», такой как узел 6, мы увидим, что ток, входящий в узел, равен по величине току, выходящему из узла:

    Рисунок 3.25

    Сверху и справа у нас есть два тока, входящие в соединение проводов, обозначенное как узел 6.Слева у нас есть единственный ток, выходящий из узла, равный по величине сумме двух входящих токов. Обратимся к аналогии с водопроводом: пока в трубопроводе нет утечек, поток, поступающий в фитинг, должен также выходить из фитинга. Это верно для любого узла («подгонки»), независимо от того, сколько потоков входит или выходит. Математически мы можем выразить это общее соотношение как таковое: [латекс] I_ {существующий} = I_ {ввод} [/ латекс]

    Действующий закон Кирхгофа

    г.Кирхгоф решил выразить его в несколько иной форме (хотя и математически эквивалентной), назвав его Текущий закон Кирхгофа (KCL):

    [латекс] I_ {ввод} = -I_ {существующий} = 0 [/ латекс]

    Текущий закон Кирхгофа, кратко изложенный в одной фразе, гласит:

    «Алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю»

    [латекс] I_ {T} = I_1 + I_2 + … + I_n = 0 [/ латекс]

    То есть, если мы присвоим каждому току математический знак (полярность), обозначающий, входят ли они (+) или выходят (-) из узла, мы можем сложить их вместе, чтобы получить гарантированно нулевое значение.

    Взяв наш пример узла (номер 6), мы можем определить величину тока, выходящего слева, задав уравнение KCL с этим током в качестве неизвестного значения:

    [латекс] I_2 + I_3 + I_ {2 + 3} = 0 [/ латекс]

    [латекс] 2 мА + 3 мА + I_ {2 + 3} = 0 [/ латекс]

    [латекс] \ text {… решение для I …} [/ латекс]

    [латекс] I = -2 мА-3 мА [/ латекс]

    [латекс] \ pmb {I = -5mA} [/ латекс]

    Отрицательный (-) знак на значении 5 миллиампер говорит нам, что ток на выходе из узла, в отличие от токов 2 миллиампер и 3 миллиампер, которые оба должны быть положительными (и, следовательно, входит в узел) .Независимо от того, обозначает ли отрицательное или положительное значение текущий вход или выход, совершенно произвольно, пока они являются противоположными знаками для противоположных направлений, и мы остаемся последовательными в наших обозначениях, KCL будет работать.

    Вместе законы напряжения и тока Кирхгофа представляют собой замечательную пару инструментов, полезных при анализе электрических цепей. Их полезность станет еще более очевидной в следующей главе («Сетевой анализ»), но достаточно сказать, что эти законы заслуживают того, чтобы их запомнил изучающий электронику не меньше, чем закон Ома.

    • Текущий закон Кирхгофа (KCL): «Алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю»
    Сопротивление серии

    | PVEducation

    Последовательное сопротивление в солнечном элементе имеет три причины: во-первых, движение тока через эмиттер и основание солнечного элемента; во-вторых, контактное сопротивление между металлическим контактом и кремнием; и, наконец, сопротивление верхних и задних металлических контактов.Основное влияние последовательного сопротивления заключается в уменьшении коэффициента заполнения, хотя слишком высокие значения могут также снизить ток короткого замыкания.

    Схема солнечного элемента с последовательным сопротивлением.

    I = IL-I0exp [q (V + IRS) nkT]

    где: I — выходной ток элемента, I L — ток, генерируемый светом, В — напряжение на выводах элемента, T — температура, q и k — константы, н — это коэффициент идеальности, а R S — последовательное сопротивление элементов.Формула является примером неявной функции из-за появления тока I в обеих частях уравнения, и для ее решения требуются численные методы.

    Влияние последовательного сопротивления на ВАХ показано ниже. Для построения графика изменяется напряжение на диоде, что позволяет избежать необходимости решать неявное уравнение.

    Влияние последовательного сопротивления на коэффициент заполнения. Площадь солнечного элемента составляет 1 см 2 , поэтому единицы сопротивления могут быть ом или ом см 2 .На ток короткого замыкания (I SC ) не влияет последовательное сопротивление, пока оно не станет очень большим.

    Последовательное сопротивление не влияет на солнечный элемент при напряжении холостого хода, поскольку общий ток, протекающий через солнечный элемент, и, следовательно, через последовательное сопротивление равен нулю. Однако вблизи напряжения холостого хода на ВАХ сильно влияет последовательное сопротивление. Простой метод оценки последовательного сопротивления солнечного элемента состоит в том, чтобы найти наклон ВАХ в точке напряжения холостого хода.

    Уравнение для FF как функции последовательного сопротивления можно определить, отметив, что для умеренных значений последовательного сопротивления максимальная мощность может быть аппроксимирована как мощность при отсутствии последовательного сопротивления минус мощность, потерянная при последовательном сопротивлении. Уравнение для максимальной мощности от солнечного элемента тогда принимает следующий вид:

    , определяя нормированное последовательное сопротивление как;

    дает следующее уравнение, которое аппроксимирует влияние последовательного сопротивления на выходную мощность солнечного элемента;

    Предполагая, что на напряжение холостого хода и ток короткого замыкания не влияет последовательное сопротивление, можно определить влияние последовательного сопротивления на FF;

    В приведенном выше уравнении коэффициент заполнения, на который не влияет последовательное сопротивление, обозначен FF 0 , а FF ‘называется FF S .Уравнение тогда становится;

    Эмпирическое уравнение, которое немного точнее для связи между FF 0 и FF S :

    , который действителен для r s <0,4 и v oc > 10.

    Следующий калькулятор определяет влияние R s на коэффициент заполнения солнечного элемента. Типичные значения последовательного сопротивления, нормированного по площади, находятся между 0.5 Ом · см 2 для солнечных батарей лабораторного типа и до 1,3 0,5 Ом · см 2 для коммерческих солнечных батарей. Уровни тока в солнечном элементе имеют большое влияние на потери из-за последовательного сопротивления, и в следующем калькуляторе изучите влияние повышения тока на FF.

    Калькулятор последовательного сопротивления
    Результаты

    Характеристическое сопротивление элемента, R CH X (Ом)
    Нормализованное V oc , v oc X (единицы)
    Нормированное последовательное сопротивление, r s X (единицы)
    Приблизительное заполнение коэффициент, FF, с R s FF приблизительно X
    Более точный FF действителен для r s <0.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *