+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Расчет ограничивающего ток резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Будем полагать что вы знаете что такое светодиод и какие они бывают.

Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL).

Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,8…2В;
  • зеленый и желтый — 2…2,4В;
  • белые и синие — 3…3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода

номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для

красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте.

В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:

ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.

Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

какие формулы помогут вычислить сопротивление

В наше время светодиоды используются если не во всех, то в очень многих сферах деятельности. И несмотря на это, многие потребители едва ли понимают принципы работы светодиодов. Как и почему вообще работают светодиоды? И какую роль в этом процессе играют резисторы? Как произвести расчет резистора для светодиода? Постараемся разобраться.

Что такое резистор и сопротивление светодиода?

Резистором называется компонент электрической цепи, который характеризуется пассивностью и в лучшем случае обладает сопротивлением электрическому току. Другими словами, для такого устройства в любое время должен действовать закон Ома.

 

Главная функция резистора – энергичное сопротивление электротоку. Именно это качество делает резисторы необходимыми при создании систем искусственного освещения, в том числе и с применением светодиодов.

В каких случаях возможно подключение светодиода с помощью резистора?

Подключать светодиод с помощью резистора можно при условии, что эффективность схемы не является первостепенной целью. Самый простой пример – применение светодиода для индикации подсветки выключателя в электроприборе.

В таком случае мощность потребления едва достигает 0.1 Вт, а яркость не ставится во главу угла. А вот при использовании светодиода с энергопотреблением более 1 Вт нужно обязательно убедиться, что блок питания обеспечивает стабилизированное напряжение. Если же напряжение схемы не стабилизировано, то все скачки и помехи будут негативно сказываться на работе светодиода.

Не менее актуальна схема питания через резистор в лабораторных условиях, когда есть задача тестирования новой модели светодиода.

Виды резисторов

Существует несколько классификаций резисторов, каждая из которых отличается признаков, по которому сравниваются разные виды устройств.

В зависимости от материала резистивного элемента выделяют следующие типы резисторов:

  • Металлофольговые;
  • Непроволочные;
  • Проволочные.

По способы защиты резисторы бывают:

  • Неизолированными;
  • Изолированными;
  • Вакуумными;
  • Герметизированными.

Назначение резисторов группирует устройства следующим образом:

  • Резисторы общего предназначения;
  • Высокочастотные;
  • Высокомегаомные;
  • Высоковольтные.

Расчет резистора для светодиода

Осуществить расчет резисторов по силам не только специалистам. Достаточно базовых знаний и понимания физики процесса. Чтобы определить необходимое сопротивление резисторов, нужно учитывать следующие важные факторы:

  • Маркировка на устройстве отображает так называемое напряжение падения, которое необходимо для расчета необходимого напряжения и для подбора резисторов.
  • Числовое значение напряжения определяется в виде разницы между напряжением агрегата и напряжением питания светодиода;
  • Чтобы рассчитать необходимое сопротивление, нужно разделить остаточное напряжение на величину тока, необходимую для бесперебойной работы системы.

Математический расчет сопротивления резистора

Согласно второму правилу Кирхгофа, можно составить равенство U = U

r + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.

Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.

Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.

Как рассчитать резистор графическим способом?

При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.

Особенности расчета

Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.

Последовательное соединение

При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления.

Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.

Параллельное соединение

 

Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.

Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.

Смешанное соединение

При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов. Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи.

Примеры расчетов сопротивления и мощности резистора

Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.

При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами ULED=3,3 В и ILED=0,02 А.

R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.

Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.

Расчет резисторов для светодиодов и его сопротивление

Светодиоды все чаще используются нами в различных сферах. Они представляют собой полупроводниковый прибор, превращающий электрический ток в световое излучение.

Для получения света с их помощью, не надо применять специальные дополнительные преобразователи. Достаточно подать на него электрический ток. В этом моменте часто проблемы. Они чувствительны к большим скачкам тока, которые наблюдаются при включении.

Для защиты от таких скачков, в цепь включают специально подобранные резисторы.

Резисторы по праву считаются самыми распространенными радиоэлементами. Главная их характеристика состоит в сопротивлении, в двух словах, они препятствуют протеканию электрического тока.

Резисторы считаются пассивными элементами электрической цепи. Они могут быть постоянными, т.е. такими сопротивлениями, у которых протекание тока остается неизменным. И переменными, где величину сопротивления можно регулировать от 0 до его максимального значения. Их используют как токоограничительные элементы, делители напряжения, шунты для измерительных приборов, и тому подобное.

Основной параметр резистора – это его сопротивление. Сопротивление – это его свойство препятствовать протеканию электрического тока. Измеряемой характеристикой величины сопротивления есть Ом.

Расчет сопротивления для светодиодов

Как произвести расчет:

Для провидения расчета понадобится знать точные параметры светодиода и источника напряжения. Их можно прочитать в паспортных данных, или найти в интернете. По источнику питания нам понадобятся данные выходного напряжения.

По светодиоду, его номинальное напряжение и рабочий ток.

Возьмем, к примеру, простейшую схему на рисунке выше. У нас источник питания Uи = 12В, напряжение на светодиоде Uvd= 2В, номинальный рабочий ток светодиода будет Ivd = 0,02А, в справочнике эта величина может быть показана как 2мА.

Найдем падения напряжения на резисторе.

Для этого, отнимем от напряжения источника питания, падения на светодиоде:

  • Ur= Uи – Uvd = 12 – 2 = 10В;

У нас выходит падение напряжения на резисторе 10 вольт.

Используя формулу закона Ома, найдем величину необходимого сопротивления цепи:

  • R=U/I = 10/0.02 = 500 Ом.

Подставив в формулу значение напряжения и тока, мы получили величину сопротивления. После этого, находим по справочным таблицам, ближайшее стандартное значение. Если нет точного значения, лучше взять с небольшим запасом в большую сторону.

Расчет онлайн

Для расчета на онлайн-калькуляторе понадобятся все те же данные, что и для расчетов в ручном режиме. Это: напряжение источника питания, номинальный прямой ток и напряжение, количество светодиодов, и их схема подключения.

Ниже приведены ссылки на несколько источников с онлайн-калькуляторами:

  1. http://forum220.ru/calc-res-led.php. На странице этого калькулятора вам подскажут, как можно найти номинальное прямое напряжение светодиода по цвету его света, если данные об этом отсутствуют.
  2. http://cxem.net/calc/ledcalc.php. Этот калькулятор не только рассчитает вам значения сопротивления, но и предложит схему подключения. Это будет удобно в случае большого количества светодиодов.
  3. http://h-t-f.ru/calk/online-calculator-for-resistor-leds. Калькулятор учитывает особенности соединения.

Принцип работы и область применения

Резисторы разной мощности

Принцип работы резистора построен на рассеивании мощности. Номинальной мощностью рассеивания является та мощность, которую резистор может рассеять не повреждаясь. Единица мощности – ватты.

Рассматривая роль резистора с точки зрения электротехники, мощность можно определить по формуле: Р=I ² * R, где P – мощность, I – значение силы тока, R – сопротивление резистора.

Резисторы являются важными элементами электрической цепи, главная их функция – это сопротивление протеканию электрического тока. Этим он способствует стабилизации и ограничении силы тока протекающей по цепи. Его часто используют в качестве балластного резистора, чтобы иметь возможность регулировать напряжение в цепи.

Резисторы, в том числе балластные, используются для поглощения некоторой части напряжения, выравнивают силы тока в различных участках цепи. Тем самым, они поддерживают стабильность напряжения.

Этот принцип используют в резисторах для светодиодов. Светодиоды чувствительны к большим скачкам тока, которые могут возникнуть при их включении, они могут привести их негодность. Включенный последовательно с ним токоограничивающий резистор, уменьшит ток до приемлемой величины.

Подключение и пайка

Светодиоды – это полупроводниковые приборы, при их подключении необходимо соблюдать полярность. При неправильном подключении они работать не будут, и довольно часто выходят со строя.

Анод имеет полярность +, катод соответственно -. Обычно, ножка катода немного меньше по длине. Часто, катод можно опознать по более толстой ножке внутри прибора. В любом случае, данные по контактам можно найти в справочной литературе.

Диоды также боятся перегрева во время пайки. Для пайки нельзя использовать мощные паяльники, лучше использовать приборы мощностью до 100 Вт.

Также, можно в качестве вспомогательных средств для охлаждения использовать пинцет. Он отведет часть тепла. Вместо пинцета, можно использовать и другие металлические инструменты.

Паяльник перед пайкой надо разогреть до его максимальной температуры. Было бы хорошо, чтобы его температура была в пределах 250-280 градусов Цельсия.

Сам процесс пайки одной ножки не должен превышать 4-5 секунд. При этом времени, прибор не успеет перегреться.

При монтаже светодиода на месте установки, старайтесь, чтобы контакты ближе к корпусу, оставались параллельны, как при выходе из производства. Изгибайте контакты небольшими радиусами, уступив подальше от корпуса. Собирайте их на твердом плоском материале. Предварительно, подготовьте отверстия для ножек светодиодов с помощью дрели.

Подбирая источник питания, следует помнить: чем больше разница рабочего напряжения светодиода и источника питания, тем меньше они будут подвержены влиянию скачков напряжения блока питания. Не забывайте устанавливать предохранители.

Если у вас безвыходные SMD светодиоды, у них вместо ножек для пайки контактные площадки. Эти площадки расположены на нижней части их корпуса. Паяют их маломощными паяльниками не более 15 ВТ.

Часто, для этой работы применяют специальное жало. Оно имеет разветвление на рабочем конце. Народные умельцы вместо специального жала наматывают тонкий медный провод на стандартное жало. Оптимальный диаметр такого провода 1 мм.

Легче всего проверить светодиоды с помощью тестера. Проверяется он как обычный диод. Его надо включить в прямом положении, чтобы между анодом и катодом пошло положительное напряжение. Многие современные цифровые приборы имеют встроенную возможность проверки диодов. Главное при проверке – соблюдать полярность.

Статья была полезна?

0,00 (оценок: 0)

Правильный расчет резистора для светодиода (онлайн калькулятор)


Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Исходя из закона Ома, рассчитываем по такой формуле:

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Обратите внимание, что резистор подведен на плюсовой контакт диода. Определить полярность диода достаточно просто: плюсовой контакт в колбе по размеру больше минусового.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Светодиоды. Виды, типы светодиодов. Подключение и расчёты..

Вот так светодиод выглядит в жизни : А так обозначается на схеме :
Для чего служит светодиод? Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

Подключение и пайка Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности — катод имеет электрод большего размера (но это не официальные метод).

Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

Проверка светодиодов Никогда не подключайте светодиодов непосредственно батарее или источнику питания! Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

Цвета светодиодов Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета. Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Многоцветные светодиоды Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Расчет светодиодного резистора Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно… Резистор R определяется по формуле : R = (V S — V L) / I

V S = напряжение питания V L= прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт) I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно. Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A, R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

Вычисление светодиодного резистора с использованием Закон Ома Закон Ома гласит, что сопротивление резистора R = V / I, где : V = напряжение через резистор (V = S — V L в данном случае) I = ток через резистор Итак R = (V S — V L) / I

Последовательное подключение светодиодов. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Пример расчета : Красный, желтый и зеленый диоды — при последовательном соединении необходимо напряжение питания — не менее 8V, так 9-вольтовая батарея будет практически идеальным источником. V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются). Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S — V L) / I = (9 — 6) /0,015 = 200 Ом Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели! Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…

Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый.., что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Мигающие светодиоды Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

Цифробуквенные светодиодные индикаторы Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны

Параллельное соединение

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Мигающие светодиоды


Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.

Будет интересно➡ Что такое делитель напряжения и как он используется на резисторах?

При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.

При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.

Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.

Входные данные

Напряжение источника питания

VsВ

Напряжение источника питания должно быть выше прямого напряжения светодиода и менее 250 В.

Прямой ток светодиода

IfмА

Для питания мощных светодиодов необходимо использовать стабилизаторы тока, а не ограничительные резисторы.

Выберите тип светодиода

Выберите тип светодиодаинфракрасныйкрасныйзелёныйжёлтыйоранжевый/янтарныйсинийбелыйдругой

или Прямое напряжение светодиода

VfВ

Количество светодиодов в массиве

Nt

Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.

Ns

Число светодиодов в цепи последовательно включенных светодиодов не должно быть больше {0} для заданных напряжения источника питания и прямого напряжения светодиода.

Выходные данные

Такая схема имеет слишком низкий КПД из-за большой мощности, рассеиваемой на одном или нескольких ограничительных резисторах.

Массив {0} x {1}, всего светодиодов {2}

Число светодиодов в одной цепи {0}

Принципиальная схема

Монтажная схема

Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:

Общая мощность, рассеиваимая на всех ограничительных резисторах:

Общая мощность, рассеиваемая всеми светодиодами:

Общая мощность, потребляемая массивом светодиодов:

Ток, потребляемый от источника питания:

Количество светодиодов в матрице:

Количество последовательных ветвей, соединенных параллельно:

Количество светодиодов в последовательной ветви с макс. количеством светодиодов:

Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:

Определения и формулы для расчета

Одиночный светодиод

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряжения
ЦветМатериал полупроводникаДлина волныПадение напряжения
ИнфракрасныйАрсенид галлия (GaAs)850-940 нм
КрасныйАрсенид-фосфид галлия (GaAsP)620-700 нм1.6—2.0 В
ОранжевыйАрсенид-фосфид галлия (GaAsP)590-610 нм2.0—2.1 В
ЖелтыйАрсенид-фосфид галлия (GaAsP)580-590 нм2.1—2.2 В
ЗеленыйФосфид алюминия-галлия (AlGaP)500-570 нм1.9—3.5 В
СинийНитрид индия-галлия (InGaN)440-505 нм2.48—3.6 В
БелыйДиоды с люминофором или трехцветные RGBШирокий спектр2. 8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Формулы для расчетов

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:

Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Тогда общее потребление будет равно

КПД схемы включения светодиода с ограничительным резистором:

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Общая мощность PLED, рассеиваемая всеми светодиодами:

Мощность, потребляемая всеми резисторами:

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

Рассчитаем общую мощность, потребляемую всеми резисторами:

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Рассчитаем ток, который должен обеспечить источник питания:

И наконец, рассчитаем КПД нашего массива:

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Расчет резистора для светодиода | Практическая электроника


Так как для светоизлучающего диода (СИД, LED, светодиода) весьма желательно питание стабильным током, то не стоит его подключать непосредственно к источнику напряжения. Нужно обязательно стабилизировать или хотя бы ограничить ток протекающий через светодиод. Сложные импульсные стабилизаторы тока, с высоким КПД оставим напоследок, для начала пойдем по самому простому пути: используем единственный токоограничивающий резистор и сделаем расчет сопротивления резистора для светодиода.

На рабочем участке вольт-амперной характеристики светодиода, при небольшом изменении напряжения ток может меняться в несколько раз, то есть светодиод ведет себя как стабилизатор напряжения. Будем пренебрегать небольшим изменением падения напряжения на светодиоде и считать его постоянным.

Калькулятор расчета сопротивления резистора для светодиода

Сразу приведу калькулятор для тех кто не хочет углубляться в теорию.
Для расчета сопротивления резистора для светодиода нам потребуются следующие данные:

Введите все данные и получите сопротивление резистора в Омах.(Если нужно ввести дробные величины, то нужно использовать десятичную точку, а не запятую. )

Для питания светодиодов обычно приспосабливают источники питания на 5В или 12В. В принципе это может быть любой источник питания, главное чтобы его выходное напряжение было больше чем напряжение которое должно быть на светодиоде минимум на 10-15%, чем больше разница между напряжением БП и светодиода, тем будет лучше стабильность тока, но будет хуже КПД схемы.
Максимальный ток блока питания тоже должен быть равен или больше чем ток необходимый для светодиода. Если ток окажется меньше то светодиод не будет гореть в полную силу.
Падение тока на светодиоде — справочная величина, чем короче длинная волны испускаемого света тем выше напряжение падения. Так для светодиодов красного и зеленого свечения, величина падения 1,5 — 2,5В, для синих, ультрафиолетовых и белых 3 — 3,5В.
Ток светодиода также справочный параметр, но вместо него может указываться мощность светодиода в Ваттах. И чтобы получить ток нужно будет поделить мощность на напряжение. Например светодиод на мощность 1Вт и напряжение 3,3В должен потреблять 0,3А или 300мА тока.

Когда все данные получены расчет резистора для светодиода не составит труда: сначала определяем падение напряжение на резисторе, для этого из напряжения питания вычитаем падение на светодиоде. А теперь по закону Ома делим это напряжение на ток, в результате и имеем сопротивление.
Если напряжения указаны в Вольтах, а токи в Амперах, то сопротивление получиться в Омах. Если использовать миллиАмперы, то сопротивление будет в килоОмах.

Пример расчета сопротивления резистора для светодиода.

Для примера возьмем уже рассматриваемый нами светодиод и подключим его к источнику питания 5В: (5В-3,3В)/0,3А=5,67Ом. Так как самый близкий из выпускаемых номиналов резисторов 5,6 Ом, то используем его.
Теперь, когда известно сопротивление резистора для светодиода, рассчитаем его мощность, для этого проще всего возвести в квадрат протекающий через резистор ток и умножить на сопротивление.

Пример расчета мощности резистора для светодиода.

Продолжаем пример: 0,3А*0,3А*5,6 Ом=0,5 Вт.
В принципе, резистор на такую мощность можно купить, также можно поставить резистор на большую мощность, но часто мощности получаются большими тогда нам поможет групповое соединение резисторов, но это тема для другой статьи.

Включение нескольких светодиодов

Часто в разных лампах или системах подсветки, требуется использовать несколько одинаковых светодиодов, так вот можно сильно сэкономить на резисторах включив последовательно несколько светодиодов и один резистор. Конечно стоимость резистора невелика, но вот то что места один резистор потребует меньше будет большим плюсом.
Для такой схемы включения сопротивление резистора рассчитывается аналогично, только вместо падения напряжения на одном светодиоде нужно подставить сумму падений напряжений на всех последовательно включенных светодиодах.

Например используя источник питания на 12В можно включить последовательно три светодиода по 3,3В ещё 2В нужно будет погасить на резисторе. Если используются светодиоды на 1Вт, то мы получим сопротивление 2В/0,3А=6,67 Ом. Самый близкий номинал 6,8 Ом.

Как рассчитать номинал резистора для светодиодного освещения

Следуя этим шагам, мы получим значение резистора для светодиодов с питанием от 12 В постоянного тока:

  1. Определите напряжение и ток, необходимые для вашего светодиода.
  2. Мы будем использовать следующую формулу для определения номинала резистора: Резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода.
  3. Для типичного белого светодиода, который требует 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом.
  4. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения.Из приведенного выше примера, если мы используем 5 белых светодиодов, потребляемый ток составляет 10 мА x 5 = 50 мА. Итак (12-3,4) /. 050 = 172 Ом.

Светодиоды становятся все более популярными для различных проектов и нужд освещения. Это связано с превосходной энергоэффективностью и увеличенным сроком службы светодиодов по сравнению с лампами накаливания. Кроме того, по мере совершенствования технологии и увеличения производства стоимость продолжает снижаться.

LED — это аббревиатура от Light Emitting Diode. Это означает, что светодиод имеет определенную полярность, которая должна быть применена, чтобы он излучал свет.Несоблюдение этого требования полярности приведет к тому, что светодиод не загорится и может вызвать катастрофическое повреждение светодиода. Это связано с тем, что светодиод имеет относительно низкое допустимое значение напряжения обратной полярности (обычно около 5 вольт). Поскольку светодиод по сути является диодом, он имеет максимальное значение тока, которое нельзя превышать в течение любого периода времени.

Имея это в виду, мы рассмотрим требования к ограничивающему резистору, который должен использоваться в цепи светодиода. Поскольку светодиоды доступны в различных цветах, необходимое значение сопротивления будет варьироваться в зависимости от цвета светодиода.Это связано с тем, что цвет светодиода определяется материалами, из которых он изготовлен, и эти различные материалы имеют разные характеристики напряжения. Значение прямого напряжения — это напряжение, необходимое для включения светодиода. Обычные красные, зеленые, оранжевые и желтые светодиоды имеют прямое напряжение приблизительно 2,0 вольт; но белый и синий светодиоды имеют значение прямого напряжения 3,4 В. Из-за этого изменения значение сопротивления резистора будет варьироваться в зависимости от цвета светодиода. Процедура состоит в том, чтобы выбрать номинал резистора, который будет обеспечивать правильное количество тока, протекающего через светодиод, на основе этого значения прямого напряжения и значения источника питания, который питает цепь.

Поскольку автомобильные приложения — одно из самых популярных применений светодиодов, я приведу пример проекта светодиодного освещения, в котором в качестве источника питания используется 12 вольт. Требуемая формула — это закон Ома, согласно которому сопротивление равно напряжению, деленному на ток. Здесь важно отметить, что значение напряжения, используемое в расчетах, представляет собой разницу между напряжением источника питания (батареи) и значением прямого напряжения светодиода. Это потому, что мы хотим, чтобы резистор «понижал» напряжение от источника питания до значения прямого напряжения светодиода.Таким образом, формула становится

Резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода. Предположим, источник питания 12 В и белый светодиод с желаемым током 10 мА; Формула принимает вид Резистор = (12–3,4) /. 010, что составляет 860 Ом. Поскольку это нестандартное значение, я бы использовал резистор на 820 Ом. Нам также необходимо определить номинальную мощность (ватт) необходимого резистора. Это вычисляется путем умножения значения напряжения, падающего на резистор, на значение тока, протекающего в нем.Для нашего примера, приведенного выше, (12–3,4) X 0,010 = 0,086, поэтому мы можем безопасно использовать в этом приложении резистор Вт, поскольку мы должны использовать следующий по величине стандартный номинальный ток.

Если требуется более одного светодиода, несколько светодиодов (одного цвета) могут быть подключены параллельно. Это сохранит то же требование напряжения, но значение тока будет увеличиваться прямо пропорционально количеству светодиодов. Также может увеличиться номинальная мощность резистора. В качестве примера мы возьмем тот же белый светодиод, но мы подключим 5 светодиодов параллельно.Следовательно, требуемое значение тока будет 10 мА, умноженным на 5 (0,010 X 5 = 0,050). Используя это в нашей формуле; (12-3,4) /. 050 = 172 Ом. Используйте стандартное значение 180 Ом. Номинальная мощность теперь будет выше (12-3,4) X 0,050 = 0,43, поэтому в этом случае нам нужно использовать резистор не менее ½ Вт.

Эти два примера будут повторяться для красных светодиодов. Для одного красного светодиода: (12-2,0) /. 010 = 1000 Ом, что составляет 1 кОм, а номинальная мощность составляет (12-2,0) X (0,010) = 0,100, поэтому so ватта достаточно. Для 5 параллельно включенных красных светодиодов: (12-2.0) /. 05 = 200 Ом, что является стандартным значением, а номинальная мощность составляет (12-2,0) X 0,050 = 0,5, поэтому я бы использовал резистор 1 Вт, чтобы дать нам некоторый допуск для компенсации колебаний напряжения источника питания и т. Д.

Как мы видим, определение номинала резистора для освещения светодиодов простое и понятное, но мы должны учитывать цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи.

Резистор для светодиода | Применение резистора

Резисторы в схемах светоизлучающих диодов (LED)

Светодиод (светоизлучающий диод) излучает свет, когда через него проходит электрический ток.Самая простая схема для питания светодиода — это источник напряжения с последовательно соединенными резистором и светодиодом. Такой резистор часто называют балластным резистором. Балластный резистор используется для ограничения тока через светодиод и предотвращения его возгорания. Если источник напряжения равен падению напряжения светодиода, резистор не требуется. Сопротивление балластного резистора легко рассчитать по закону Ома и по законам Кирхгофа. Номинальное напряжение светодиода вычитается из источника напряжения и затем делится на желаемый рабочий ток светодиода:

Где V — источник напряжения, V LED — напряжение светодиода, а I — ток светодиода. Таким образом, вы сможете подобрать подходящий резистор для светодиода.

светодиода также доступны в интегрированном корпусе с резистором, подходящим для работы светодиода. Эту простую схему можно использовать в качестве индикатора включения DVD-плеера или монитора компьютера. Хотя эта простая схема широко используется в бытовой электронике, она не очень эффективна, так как избыток энергии источника напряжения рассеивается балластным резистором. Поэтому иногда применяются более сложные схемы с большей энергоэффективностью.

Пример простой схемы светодиода

В следующем примере светодиод с напряжением 2 В и силой тока 20 мил-ампер должен быть подключен к источнику питания 12 В. Балластный резистор можно рассчитать по формуле:

Резистор должен иметь сопротивление 333 Ом. Если точное значение недоступно, выберите следующее значение, которое выше.

Светодиод в последовательной цепи

Часто несколько светодиодов подключаются к одному источнику напряжения последовательным соединением. Таким образом, несколько резисторов могут использовать один и тот же ток. Поскольку ток через все последовательно соединенные светодиоды одинаков, они должны быть одного типа. Обратите внимание, что для освещения одного светодиода в этой цепи требуется столько же энергии, сколько для нескольких последовательно соединенных светодиодов. Источник напряжения должен обеспечивать достаточно большое напряжение для суммы падений напряжения светодиодов и резистора. Обычно напряжение источника на 50 процентов выше суммы напряжений светодиодов. Напротив, иногда выбирается источник более низкого напряжения.В этой стратегии более низкая яркость компенсируется большим количеством светодиодов. Кроме того, снижаются тепловые потери, а светодиоды имеют более длительный срок службы из-за меньшей нагрузки.

Пример серии светодиодов

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2 В и синий светодиод с напряжением 4,5 В. Оба имеют номинальную силу тока 30 мА. Согласно законам Кирхгофа, сумма падений напряжения в цепи равна нулю. Следовательно, напряжение резистора должно быть равно источнику напряжения за вычетом суммы падений напряжения светодиодов.По закону Ома рассчитываем значение сопротивления балластного резистора:

Сопротивление резистора должно быть не менее 183,3 Ом. Учтите, что падение напряжения составляет 5,5 вольт. Можно было бы подключить в схему дополнительные светодиоды.

Светодиод в параллельной цепи

Можно подключить светодиоды параллельно, но это создает больше проблем, чем последовательные цепи. Прямые напряжения светодиодов должны точно совпадать, в противном случае загорится только светодиод с самым низким напряжением и, возможно, сгорит от большего тока.Даже если светодиоды имеют одинаковые характеристики, они могут иметь плохие согласованные ВАХ из-за изменений в производственном процессе. Это заставляет светодиоды пропускать другой ток. Чтобы минимизировать разницу в токе, параллельно включенные светодиоды обычно имеют балластный резистор для каждой ветви.

Как работает светодиод?

Светодиод (Light Emitting Diode) — полупроводниковый прибор; По сути, это соединение P-N с выводами, прикрепленными к каждой стороне. Идеальный диод имеет нулевое сопротивление при прямом смещении и бесконечное сопротивление при обратном смещении.Однако в реальных диодах на диоде должно быть небольшое напряжение, чтобы он проводил. Это напряжение наряду с другими характеристиками определяется материалами и конструкцией диода. Когда напряжение прямого смещения становится достаточно большим, избыточные электроны с одной стороны перехода начинают объединяться с дырками с другой стороны. Когда это происходит, электроны переходят в менее энергичное состояние и выделяют энергию. В светодиодах эта энергия выделяется в виде фотонов. Материалы, из которых изготовлен светодиод, определяют длину волны и, следовательно, цвет излучаемого света.Первые светодиоды были сделаны из арсенида галлия и излучали красный свет. Сегодня светодиоды могут быть изготовлены из самых разных материалов и могут излучать разные цвета. Напряжение варьируется от 1,6 В для красных светодиодов до 4,4 В для ультрафиолетовых. Знание правильного напряжения важно, потому что приложение слишком большого напряжения на диоде может вызвать больший ток, чем светодиод может безопасно выдержать.


светодиодов сегодня выпускаются малой и большой мощности. Светодиоды обычно выделяют меньше тепла и потребляют меньше энергии, чем лампы накаливания такой же яркости.Они служат дольше, чем аналогичные лампочки. Светодиоды используются в широком спектре осветительных и светочувствительных приложений.

Использование светодиодов в качестве фотодиодов

В качестве фотодиодов можно использовать

светодиода. Фотодиоды — это полупроводники, которые ведут себя противоположно светодиодам. В то время как светодиод будет излучать свет по мере его проведения, фотодиод будет генерировать ток при воздействии света с правильной длиной волны. Светодиод будет проявлять эту характеристику при воздействии света с длиной волны ниже его нормальной рабочей длины волны. Это позволяет использовать светодиоды в таких схемах, как датчики света и оптоволоконные цепи связи.

Светодиодный символ

Основы

: Подбор резисторов для светодиодов

Итак … вы просто хотите зажечь светодиод. Какой резистор использовать?

Может быть, вы знаете ответ, или, может быть, все уже считают, что вы должны знать, как добраться до ответа. В любом случае, это вопрос, который вызывает больше вопросов, прежде чем вы действительно сможете получить ответ: какой тип светодиода вы используете? Какой блок питания? Батарея? Плагин? Часть более крупной схемы? Серии? Параллельно?

Игра со светодиодами должна быть забавой, и выяснение ответов на эти вопросы на самом деле является частью забавы.Есть простая формула, которую вы используете для выяснения этого — закон Ома. Эта формула: В = I × R , где В, — напряжение, I — ток, а R — сопротивление. Но как узнать, какие числа использовать в этой формуле, чтобы получить правильное значение резистора?

Чтобы получить В в нашей формуле, нам нужно знать две вещи: напряжение нашего источника питания и напряжение наших светодиодов.

Начнем с конкретного примера.Предположим, что мы используем держатель батареек 2 × AA (например, этот из нашего магазина), который обеспечит нас питанием 3 В (с двумя последовательно соединенными элементами AA 1,5 В; мы складываем напряжения), и мы планирую подключить желтый светодиод (как один из этих).

Светодиоды

имеют характеристику, называемую «прямое напряжение», которая часто обозначается в технических данных как Vf. Это прямое напряжение представляет собой величину напряжения, «потерянного» в светодиоде при работе с определенным опорным током, обычно определяемым как около 20 миллиампер (мА), т.е.е., 0,020 ампер (А). Vf зависит, прежде всего, от цвета светодиода, но на самом деле немного отличается от светодиода к светодиоду, иногда даже в пределах одного пакета светодиодов. Стандартные красные, оранжевые, желтые и желто-зеленые светодиоды имеют Vf около 1,8 В, в то время как чисто зеленые, синие, белые и УФ светодиоды имеют Vf около 3,3 В. Таким образом, падение напряжения на нашем желтом светодиодах будет около 1,8 В.

В в нашей формуле находится путем вычитания прямого напряжения светодиода из напряжения источника питания.

3 В (источник питания) — 1.8 В (падение напряжения светодиода) = 1,2 В

В этом случае у нас осталось 1,2 В, которые мы подключим к нашей формуле V = I × R .

Следующее, что нам нужно знать, это I , ток, на котором мы хотим управлять светодиодом. Светодиоды имеют максимальный номинальный непрерывный ток (часто обозначается как If или Imax в таблицах данных). Часто это около 25 или 30 мА. На самом деле это означает, что типичное значение тока, к которому стремятся стандартные светодиоды, составляет от 20 мА до 25 мА, что немного ниже максимального тока.

Вдобавок: Всегда можно дать светодиоду меньше тока . Работа светодиода, близкая к номинальному максимальному току, дает вам максимальную яркость за счет рассеивания мощности (тепла) и срока службы батареи (если, конечно, у вас разряжаются батареи). Если вы хотите, чтобы ваши батареи прослужили в десять раз дольше, обычно вы можете просто выбрать ток, который составляет лишь одну десятую номинального максимального тока.

Итак, 25 мА — это «желаемый» ток — то, что мы надеемся получить, когда выбираем резистор, а также I , который мы подключим к нашей формуле V = I × R .

1,2 В = 25 мА × R

или перефразируя:

1,2 В / 25 мА = R

и когда мы решаем это, получаем:

1,2 В / 25 мА = 1,2 В / 0,025 А = 48 Ом

Где «48 Ом» — 48 Ом. (Единицы измерения таковы, что 1 В / 1 А = 1 Ом; один вольт, разделенный на один ампер, равен одному ому. Если вы имеете дело с током в мА, преобразуйте его в А, разделив на 1000.)

Наша версия формулы теперь выглядит так:

(напряжение источника питания — напряжение светодиода) / ток (в амперах) = требуемое значение резистора (в омах)

Получаем сопротивление резистора 48 Ом. И это прекрасное значение пускового резистора для использования с желтым светодиодом и источником 3 В.

Давайте на мгновение посмотрим на номиналы резисторов. Резисторы обычно доступны с такими значениями, как 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 51 Ом, 56 Ом, 68 Ом, 75 Ом и 82 Ом. (и их кратные 510 Ом, 5,1 кОм, 51 кОм и т. д.), и (если вы не укажете более высокую точность при покупках) имеют значение допуска около ± 5%.

Если вы занимаетесь большим количеством проектов в области электроники, у вас, скорее всего, будет валяться куча резисторов.Если вы только начинаете, возможно, вам захочется приобрести ассортимент, чтобы было что-то под рукой. Резисторы также рассчитаны на работу с разной мощностью — резисторы, рассчитанные на большую мощность (больше ватт), могут безопасно рассеивать больше тепла, выделяемого внутри резистора. Резисторы на 1/4 ватта, вероятно, являются наиболее распространенными и обычно подходят для простых светодиодных схем, подобных тем, которые мы здесь рассматриваем. (Мы обсуждали рассеяние мощности ранее — обратите внимание на это, когда вы начнете выходить за рамки этих основ.)

Итак, значение резистора, которое мы рассчитали выше, было 48 Ом, что не является одним из наших обычных значений. Но это нормально, потому что мы будем использовать резистор с допуском ± 5%, так что в любом случае это значение не обязательно будет точно таким. На всякий случай мы обычно выбираем следующее более высокое значение, которое у нас есть; 51 Ом в этом примере.

Давайте подключим:
батарейный блок на 3 В, резистор 51 Ом и желтый светодиод.

Это небольшая симпатичная светодиодная схема, но как мы можем сделать это с помощью большего количества светодиодов? Можем ли мы просто добавить еще один резистор и еще один светодиод? Ну да, в точку.Каждому светодиоду потребуется 25 мА, поэтому нам нужно выяснить, какой ток могут отдавать наши батареи.

Помимо : Немного покопавшись, можно найти полезный технический справочник (pdf) по щелочным батареям от Energizer. Оказывается, чем сильнее вы их водите, тем быстрее вы их истощаете. Часть этого очевидна: если вы постоянно потребляете 1000 мА из батареи, вы ожидаете, что батарея прослужит 1/10 того времени, как если бы вы потребляли 100 мА. Но на самом деле есть второй эффект, заключающийся в том, что общая выходная энергия батареи (измеряемая в ватт-часах) уменьшается, когда вы приближаетесь к пределу того, какой ток может выдавать батарея.На практике, с щелочными батареями AA, если вы разрядите их при токе 1000 мА, они прослужат только около 1/20 того времени, как если бы вы разрядили их при 100 мА.

Для нашего единственного светодиода 25 мА элементы AA прослужат чертовски долго. Если мы запустим четыре светодиода параллельно, потребляя 100 мА, у нас все равно будет довольно приличное время автономной работы. Если ток превышает 500 мА, стоит подумать о подключении к розетке. Итак, мы можем добавить несколько наших желтых светодиодов, каждый с собственным резистором 51 Ом, и успешно управлять ими с помощью держателя батареи 2xAA.

Хорошо, а как насчет батареи на 9 В? Давайте придерживаться желтых светодиодов. Если мы хотим отключить один светодиод от батареи 9 В, это означает, что мы должны потреблять колоссальные 7,2 В с нашим резистором, который должен быть 288 Ом (или ближайшее удобное значение: 330 Ом, в моей мастерской). .

9 В (питание) — 1,8 В (желтый светодиод) = 7,2 В

7,2 В / 25 мА = 288 Ом (округлить до 330 Ом)

Использование резистора для падения напряжения любого размера рассеивает эту энергию в виде тепла.Это означает, что мы просто тратим эту энергию на тепло вместо того, чтобы получать больше света из нашей светодиодной схемы. Итак, можем ли мы использовать несколько светодиодов, соединенных вместе? Да! Давайте соединим четыре светодиода 1,8 В последовательно, в сумме получим 7,2 В. Когда мы вычтем это из напряжения питания 9 В, у нас останется 1,8 В, для чего потребуется только резистор 72 Ом (или ближайшее значение. : 75 Ом).

9 В — (1,8 В × 4) = 9 В — 7,2 В = 1,8 В

1,8 В / 25 мА = 72 Ом (затем округляем до 75 Ом)

Наша обобщенная версия формулы с несколькими последовательно включенными светодиодами:

[Напряжение источника питания — (напряжение светодиода × количество светодиодов)] / ток = номинал резистора

Мы даже можем подключить пару цепочек из четырех светодиодов плюс резистор параллельно, чтобы получить больше света, но чем больше мы добавляем, тем больше мы сокращаем срок службы батареи.

Но можно ли сделать пять последовательно с батареей 9 В? Ну, может быть. Значение 1,8 В, которое мы использовали, является лишь «типичным практическим правилом». Если вы уверены, что прямое напряжение равно 1,8 В, он будет работать. Но что, если это не совсем так? Если прямое напряжение ниже, вы можете перегрузить их до более высокого тока, что может сократить их срок службы (или полностью убить). Если прямое напряжение выше, светодиоды могут быть тусклыми или даже не гореть. В некоторых случаях вы можете подключить светодиоды последовательно без резистора, как в нашей схеме светодиодного обеденного стола, но в большинстве случаев предпочтительнее и безопаснее использовать резистор.

Давайте сделаем еще один пример, на этот раз с белым светодиодом (вы можете найти его здесь) и батарейным отсеком 3xAA (например, этот). Напряжение источника питания составляет 4,5 В, а напряжение светодиода — 3,3 В. Мы по-прежнему стремимся к току 25 мА.

4,5 В — 3,3 В = 1,2 В

1,2 В / 25 мА = 48 Ом (округлить до 51 Ом)

Итак, вот примеры, которые мы рассмотрели, и еще несколько примеров с некоторыми другими распространенными типами источников питания:

Напряжение источника питания Цвет светодиода Светодиод Vf светодиодов в серии Желаемый ток Резистор (расчетный) Резистор (округлый)
3 В Красный, желтый или желто-зеленый 1. 8 1 25 мА 48 Ом 51 Ом
4,5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 36 Ом 39 Ом
4,5 В Синий, Зеленый, Белый или УФ 3,3 1 25 мА 48 Ом 51 Ом
5 В Синий, Зеленый, Белый или УФ 3,3 1 25 мА 68 Ом 68 Ом
5 В Красный, желтый или желто-зеленый 1.8 1 25 мА 128 Ом 150 Ом
5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 56 Ом 56 Ом
9 В Красный, желтый или желто-зеленый 1,8 4 25 мА 72 Ом 75 Ом
9 В Синий, Зеленый, Белый или УФ 3,3 2 25 мА 96 Ом100 Ом

Все эти значения основаны на тех же предположениях о прямом напряжении и желаемом токе, которые мы использовали в первых примерах. Вы можете проработать их и проверить математические расчеты или просто использовать ее как удобную таблицу, если считаете, что наши предположения разумны. 😉

Так вот, в какой-то момент кто-то мог сказать вам: «Просто используйте онлайн-калькулятор светодиодных резисторов». И действительно, такие вещи есть — даже у нас есть одна (ну, версия для печати из бумаги) — так зачем вообще работать над всем этим? Во-первых, гораздо лучше понять, что и почему этот калькулятор делает то, что он делает. Но также почти невозможно использовать эти калькуляторы, если вы не знаете, какие переменные вам нужно будет ввести.Надеюсь, теперь вы сможете вычислить значения, которые вам понадобятся (напряжение источника питания, напряжение светодиода и ток) для использования светодиодного калькулятора. Но что еще более важно (1) он вам на самом деле не нужен: вы можете сделать это самостоятельно и (2) если вы его используете, вы можете подвергнуть сомнению основные предположения, которые он может сделать от вашего имени.

Надеюсь, вы также заметили, что есть гораздо больше, чем просто один способ зажечь светодиод. И мы даже не дошли до таких вещей, как объединение светодиодов разного номинала в схемы! Теперь, можете ли вы вернуться к наклеиванию светодиодов на батареи CR2032, чтобы сделать светодиодные броски? Да, определенно можно.Но вы можете вернуться и прочитать о том, когда вам следует добавить резистор даже в эту маленькую схему!

Наконец, отметим, что в этой статье мы говорили о вашем основном сквозном маломощном (хотя, возможно, очень ярком) светодиодах. Специализированные типы, такие как светодиоды высокой мощности, могут иметь несколько другие характеристики и требования.

Обновление : исправлен список общих значений резисторов, чтобы включить более общие значения.

Калькулятор светодиодного резистора

Используйте этот калькулятор светодиодного резистора, чтобы определить подходящее сопротивление для вашей светодиодной цепи, состоящей из одного или нескольких светодиодов.


Расчет рабочего светодиодного резистора

Каждый светодиод имеет определенный диапазон рабочего тока, превышающий номинальный уровень тока, который он повредит. Для защиты или ограничения тока мы просто используем резистор последовательно с ним.

Этот калькулятор светодиодных резисторов поможет вам подобрать правильное значение резистора для светодиода в вашей светодиодной цепи, вам просто нужно ввести значения Напряжение источника s ), Прямой ток светодиода (I f ) и Светодиод прямого напряжения (V f ).

Прямое напряжение или падение напряжения на светодиодах предопределено (показано в таблице ниже), поскольку оно зависит от цвета, излучаемого светодиодом, типичное значение падения напряжения составляет 2 В.

Цвет

Падение напряжения (Vf)

Красный

2

Зеленый

2. 1

Синий

3,6

Белый

3,6

Желтый

2,1

Оранжевый

2,2

Янтарь

2.1

Инфракрасный

1,7

Уравнение

Для математического определения значения вы можете использовать следующее уравнение:

Где,

В с = Напряжение источника измеряется в вольтах.

В f = прямое напряжение светодиода или падение напряжения, если вы не знаете падение напряжения светодиода, вы можете использовать 2 В, поскольку это типичное значение для падения напряжения светодиода.

I f = прямой ток светодиода, если вы не знаете прямой ток светодиода вашего светодиода, вы можете использовать 20 мА, поскольку это типичное значение для прямого тока светодиода.

N = количество светодиодов, подключаемых последовательно.

Калькулятор резисторов серии

LED

Калькулятор резисторов серии

LED

Для всех светодиодов требуется некоторая форма ограничения тока . Подключение светодиода напрямую к источнику питания сожжет его в мгновение ока.Даже кратковременная перегрузка значительно сократит срок службы и светоотдачу.

К счастью, управление одним или цепочкой светодиодов с низким током (20-30 мА) является простой задачей — добавление небольшого резистора в серию — самый простой и дешевый способ ограничить ток. Однако имейте в виду, что светодиоды с большим током (выше нескольких сотен мА) сложнее управлять, и, хотя они могут работать с последовательным резистором, для минимизации потерь мощности и обеспечения надежности рекомендуется использовать более дорогие переключатели регулятор тока .

Наш калькулятор светодиодов поможет вам определить номинал токоограничивающего последовательного резистора при включении одного или нескольких слаботочных светодиодов. Для начала введите необходимые значения и нажмите кнопку «Рассчитать».

Программа нарисует небольшую схему, отобразит рассчитанное сопротивление и сообщит вам значение и цветовой код ближайшего стандартного резистора более низкого и высокого уровня. Он рассчитает мощность, рассеиваемую резистором и светодиодами, рекомендуемую мощность резистора, общую мощность, потребляемую схемой, и КПД конструкции (мощность, потребляемая светодиодами / общая потребляемая мощность схемы) x 100. ).

Поля ввода

Напряжение питания : Введите напряжение, превышающее падение напряжения светодиода для одной цепи светодиода и параллельного подключения, или сумму всех падений напряжения при последовательном подключении нескольких светодиодов.

Ток светодиода : Введите ток одного светодиода в миллиамперах. Обычные светодиоды 3 мм и 5 мм обычно работают в диапазоне 10-30 мА, но силовые светодиоды, используемые в осветительных и автомобильных приложениях, могут иметь ток, превышающий 200 мА. Ток 20 мА обычно является безопасным значением, если у вас нет доступа к техническому описанию компонента.

Цвет светодиода и Падение напряжения : Выберите цвет светодиода. Падение напряжения Поле автоматически заполнится типичным значением для выбранного цвета (например, 2 В для стандартного красного светодиода; 3,6 В для белого светодиода, используемого для освещения, стробоскопа и т.д .; 1,7 В для инфракрасного светодиода, используемого в пульты дистанционного управления и т. д.). Однако падение напряжения сильно различается между разными типами светодиодов, а также незначительно меняется в зависимости от тока, поэтому, пожалуйста, измените его, если вы знаете правильное значение для вашего компонента.

Количество светодиодов : Выберите количество светодиодов, которое вы хотите использовать в своей цепи. Для нескольких светодиодов появится второе раскрывающееся меню, в котором вы можете выбрать соединение серии или параллельное соединение .

Примечание. Не следует подключать светодиоды параллельно с одним общим резистором. Идентичные светодиоды могут быть успешно подключены параллельно, но у каждого светодиода может быть немного разное падение напряжения, и яркость светодиодов будет отличаться.Если вы хотите подключить светодиоды параллельно, у каждого из них должен быть свой резистор. Рассчитайте значение для одного светодиода и подключите все пары светодиод-резистор параллельно.

Точность резистора : выберите желаемую стандартную точность резистора: 10% (E12), 5% (E24), 2% (E48) или 1% (E96). Воспользуйтесь нашим калькулятором цветового кода резистора, чтобы узнать цветовые полосы для различных (20%, 0,5% …) прецизионных резисторов.

Как интерпретировать результаты

Простая схема генерируется при каждой загрузке страницы.На схеме показано только ближайшее значение стандартного резистора, и показаны только два подключения светодиодов, независимо от того, сколько светодиодов в цепи (но я уверен, что вы можете легко заполнить недостающие биты).

Справа показаны два резистора . Это ближайшие (верхние и нижние) стандартные значения, наиболее близкие к исходному рассчитанному сопротивлению. Вы должны использовать только один в своей схеме — лучше выбрать тот, который ближе (тот, который отмечен * после значения).

Рекомендуемая мощность резистора . Мощность рассчитана с небольшим запасом прочности, поэтому рассеиваемая мощность остается в пределах 60% от номинального значения.

Эффективность [%] покажет вам, какая часть общей мощности, потребляемой схемой, фактически используется светодиодами.

Как определить выводы светодиода

Светодиод имеет два вывода: положительный (анод) и отрицательный (катод). На схематических диаграммах его символ похож на простой диод с двумя стрелками, направленными наружу.Анод (+) отмечен треугольником, а катод (-) — линией. Иногда можно встретить дополнительные метки: A или + для анода и K или для катода.

Есть несколько способов идентифицировать выводы светодиода:

  1. Катод (отрицательный) обычно маркируется плоской кромкой внизу корпуса светодиода.
  2. Большинство светодиодов изготавливаются с одной длинной ножкой, указывающей на плюс (анод).
  3. Загляните внутрь самого светодиода — меньшая металлическая деталь внутри светодиода подключается к положительному электроду, а большая — к отрицательному.

Поиск подходящего резистора для вашей схемы | Родриго Соуза Коутиньо | Arduino Playground

Если вы подключите светодиод непосредственно к источнику питания 5 В на вашей Arduino, светодиод загорится… Это очень хорошо проиллюстрировано в этой модели с использованием EveryCircuit.

Несколько неудачная схема…

Чтобы светодиод не перегорел, нам нужно добавить резистор. Но какой резистор?

Первое, что нам нужно узнать, это характеристики светодиода. Стандартный красный светодиод имеет падение напряжения около 2 вольт и номинальный ток 20 миллиампер. Почему это важно? Из-за закона Ома !

 В = RxI 

Напряжение (В) равно сопротивлению (R), умноженному на ток (I). Ну и что? Итак, у нас есть напряжение 5 В (это источник питания Arduino) и нам нужно 2 В (согласно спецификации светодиодов).Итак, нам нужно сбросить 5V-2V = 3V.

Кроме того, из-за технических характеристик светодиода мы знаем, что нам нужно 20 мА. Следуя закону Ома, мы получаем 3 В = R x 20 мА, поэтому R = 3 В / 20 мА = 150 Ом . Если мы вставим этот резистор, мы получим исправную схему:

Ярко-красный свет!

Посмотрите, все значения напряжения и тока там, где они должны быть! Вы можете немного увеличить сопротивление, это нормально. Свет станет тусклее, вот и все.

Если вам нужно получить подробную информацию о вашем светодиоде, проверьте эту таблицу.Если вам нужна помощь в вычислениях, воспользуйтесь этим светодиодным калькулятором.

Светодиоды последовательно

Чтобы иметь более одного светодиода в вашей цепи, вы можете подключить их двумя способами: последовательно или параллельно.

Компоненты, соединенные последовательно, соединяются по одному пути, например:

Простая последовательная схема

Чтобы рассчитать резистор, который вам нужен, просто добавьте напряжение: нам нужно 4 В (2 В + 2 В), а у нас 5 В. Значит, нам нужно сбросить 1 В.

Для тока просто используйте 20 мА. В последовательной цепи сила тока одинакова для всей цепи.

Посчитав, мы получаем 1 В / 20 мА = 50 Ом . Посмотрите, какие хорошие значения на схеме!

Готовимся к Рождеству!

Светодиодов параллельно

Другой способ подключения светодиодов — использование параллельных цепей. Примерно так:

светодиодов параллельно

Здесь математика немного другая. Напряжение одинаково для разных цепей, поэтому нам нужно будет сбросить 3 В с нашего источника питания 5 В. А ток разделен, поэтому нам понадобится 40 мА. Опять же, используя закон Ома: R = 3 В / 40 мА = 75 Ом.

Параллельное чудо!

Смешиваем все вместе

Теперь все в порядке, если у вас одинаковое количество светодиодов и, следовательно, вы можете использовать одинаковое напряжение и ток с обеих сторон . .. Но что, если у вас 3 светодиода?

Для этого нужно рассматривать каждый путь как отдельную цепь. Используя те же значения резисторов, которые мы рассчитали ранее, вы можете построить эту схему:

Не все схемы созданы равными

Теперь вы можете весело провести время, добавив больше светодиодов в вашу схему. Просто обязательно проверьте спецификации светодиодов и не превышайте 500 мА для одной цепи — это столько, сколько может выдержать ваш Arduino.

Калькулятор светодиодных резисторов

Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.

Если вам интересно, «Какой резистор мне использовать с моим светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.

На схеме выше вы можете увидеть распиновку светодиода. Катод — отрицательная клемма. Это на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг. Вы только посмотрите на него, надеюсь, он утонет …


Калькулятор токоограничивающего резистора — Серия

прямое напряжение

Прямое падение напряжения , обычно называемое просто прямое напряжение — это конкретное значение для каждого светодиода.Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого стандартного светодиода по цвету.

Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.

Как измерить прямое напряжение Vf

Если у вас есть цифровой мультиметр, то вы также можете измерить прямое падение напряжения. У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!

Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом. Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.

Диаграмма по цвету

Цвет светодиода Прямое напряжение Vf Прямой ток, если
Белый 3.От 2 В до 3,8 В от 20 мА до 30 мА
Теплый белый от 3,2 В до 3,8 В от 20 мА до 30 мА
Синий от 3,2 В до 3,8 В 20 мА до 30 мА
Красный от 1,8 В до 2,2 В от 20 мА до 30 мА
Зеленый от 3,2 В до 3,8 В от 20 мА до 30 мА
Желтый от 1,8 В до 2,2 V от 20 мА до 30 мА
Оранжевый 1. От 8 В до 2,2 В от 20 мА до 30 мА
Розовый от 3,2 В до 3,8 В от 20 мА до 30 мА
UV от 3,2 В до 3,8 В от 20 мА до 30 мА

Вот диаграмма, показывающая прямое напряжение по цвету для обычно доступных светодиодов на eBay. Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а анод — 19 мм.

Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.

Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2,2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.

Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.

Выбор резистора для использования со светодиодами

Напряжение питания Vs Vf = 1,8 В Vf = 3,2 В
3,3 В 7525 9023 9023 9023 9023 9023 9023 9023 9023 9023 9023 160 Ом 90 Ом
9 В 360 Ом 290 Ом
12 В 510 Ом 440 Ом

Как видно из диаграммы выше обычно используются два прямых напряжения.Красный, желтый и оранжевый светодиоды относятся к категории 1,8 В, а белый, синий, зеленый, розовый, УФ — к категории 3,2 В.

Таким образом, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями для своих проектов. Просто воспользуйтесь таблицей стандартных значений резисторов, чтобы найти ближайшее из возможных значений.

Пример 1: Синий светодиод имеет типичное прямое падение напряжения 3,2 В, поэтому при использовании напряжения питания 3,3 В требуется резистор 5 Ом. Однако если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.

Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, номиналы резисторов 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться при напряжении питания 3. .3 В, 5 В, 9 В и 12 В соответственно.

Формула для расчета номиналов резисторов

Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.

При прямом напряжении на диоде Vf напряжение на резисторе равно Vs –Vf.

Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.

Схема с несколькими светодиодами — серия

Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которое вы можете установить. Как видите, полное прямое напряжение — это сумма всех прямых напряжений, представленных каждым светодиодом. Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.


Схема с несколькими светодиодами — параллельная

Вот такой правильный способ подключения нескольких светодиодов параллельно.Каждый светодиод имеет собственный резистор ограничения тока.

В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток — это сумма всех индивидуальных прямых токов каждого светодиода.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *