+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Потери напряжения | Онлайн расчет в линии, в сети, в кабеле

Калькулятор расчета потери напряжения в кабеле. Расчет потери напряжения в линии для постоянного и переменного тока по заданным параметрам электросети.

Проблема с потерями напряжения в линии, сети или кабеле возникают обычно в следующих ситуациях:

  • при значительной длине прокладываемой линии;
  • в случае большой рассеиваемой мощности;
  • при высоких токовых нагрузках.

Если при покупке кабельной продукции допущены ошибки в выборе сечения входящих в его состав проводных жил – они при протекании больших токов начинают перегреваться. А это приводит к повышению их внутреннего сопротивления и увеличению потерь напряжения на распределенных элементах цепи.

Дополнительная информация: Для того чтобы понять, за счет чего в линейных проводах происходят потери, следует вспомнить о том, что они также обладают внутренним погонным сопротивлением.

За счет этого каждый участок кабеля определенной длины может быть представлен как резистор с некоторой удельной проводимостью (величиной, обратной сопротивлению). Так что на данном участке по закону Ома будет падать определенная часть приложенного ко всему кабелю напряжения. Это значение вычисляется по следующей формуле:

U=I*R провода

При обследовании цепей постоянного тока учитывается только активное распределенное сопротивление, обозначаемое просто R. В линиях с действующим переменным напряжением к активной составляющей добавляется реактивная часть, так что обе они составляют полный импеданс Z. Величина этих потерь обязательно учитывается при расчетах цепей переменного тока, поскольку они нередко достигают 20 процентов от всей расходуемой мощности.

Как при ручном, так и при онлайн расчете для определения распределенного сопротивления проводника используется следующая формула:

R=p*L/S

где:
p – удельное сопротивление, приходящееся на единицу длины;
L – общая длина измеряемого участка;
S – площадь сечения.

Из формулы видно, что сопротивление, а, следовательно, и падение напряжения определяется длинной данного участка и площадью его поперечного сечения. Длинный и тонкий проводник обладает большим сопротивлением R. Чтобы его снизить – нужны толстые жилы со значительным поперечным сечением.

Производим расчет потери напряжения линии в случае с активной нагрузкой с помощью следующего выражения:

dU=I*R пров

Для того чтобы учесть комплексные потери на импедансе цепей переменного тока вводится поправка в виде коэффициента реактивности.

Обратите внимание: Все эти выкладки справедливы лишь для одной жилы.

В реальной ситуации кабель содержит несколько проводников, каждый из которых должен учитываться при калькуляции. При пользовании онлайн калькулятором потерь напряжения в предложенные формы потребуется ввести следующие параметры:

  1. Общую длину провода.
  2. Площадь сечения каждой из жил;
  3. Значение потребляемой мощности;
  4. Общее количество проводников;
  5. Средний показатель температуры.

Также следует указать значение комплексного коэффициента COS Ф (он, как правило, выбирается из диапазона 0,94-0,98).

Длина линии (м) / Материал кабеля:

МедьАлюминий

Сечение кабеля (мм²):

0,5 мм²0,75 мм²1,0 мм²1,5 мм²2,5 мм²4,0 мм²6,0 мм²10,0 мм²16,0 мм²25,0 мм²35,0 мм²50,0 мм²70,0 мм²95,0 мм²120 мм²

 

Мощность нагрузки (Вт) или ток (А):
Напряжение сети (В):

Мощность

1 фаза

Коэффициент мощности (cosφ):

Ток

3 фазы

Температура кабеля (°C): 
Потери напряжения (В / %)
Сопротивление провода (ом) 
Реактивная мощность (ВАр) 
Напряжение на нагрузке (В) 

 

В результате вычислений онлайн калькулятор потерь напряжения выдаст следующие рабочие показатели:

  • Величину потерь напряжения и мощности.
  • Сопротивление участка кабеля.
  • Реактивные потери в нем.

Также в итоговой форме должно появиться значение остаточного напряжения на комплексной нагрузке.

Как сказывается падение напряжения в кабельной линии системы видеонаблюдения?

Система видеонаблюдения достаточно сложный комплекс оборудования, качественная работа которого зависит от очень многих факторов.

Сегодня речь пойдет о кабельной линии, от которой зависит качество видеоизображения, выводимого на мониторы.

Главная проблема состоит в том, что чем длиннее кабель, идущий от камеры к видеорегистратору – тем больше происходят потеря напряжения. В результате не только снижается качество видео, но и оборудование исчерпывает свой ресурс раньше заложенного в него производителем срока.

Чаще всего падение напряжения происходит при включении инфракрасной подсветки. В этом случае меняется сопротивление камеры, а значит потребляемое напряжение возрастает.  При понижении же напряжения увеличивается потребление тока, что соответствует закону Ома для участка цепи и определения мощности P= UI.

Вот только к видеокамерам данный закон неприменим, так как он не учитывает наличие реактивных сопротивлений, сопротивление кабеля и микросхем.

Подключение инфракрасной подсветки (ИП) камеры приводит к потери сопротивления в сети, которое можно высчитать по формуле: UИП=2Uкаб+Uкам

При снижении напряжения ниже определенного уровня, причем для каждой модели камеры он свой,
происходит увеличение потребления тока камерой, что в свою очередь ведет к снижению напряжения в кабеле. По сути получается замкнутый круг. И снижение напряжения будет продолжаться до предела, определенного минимальным напряжением на схему камеры.

Сама степень падения напряжения в кабеле прямо зависит от его сопротивления: Uкаб=IкамRкаб, где Rкаб=ρ*l/S. То есть, чем длиннее и тоньше кабель, тем его сопротивление больше.

Поэтому при монтаже систем видеонаблюдения очень важно правильно подобрать кабель. Для того чтобы просчитать сопротивление кабеля, нужно использовать справочные характеристики, которые даны производителем кабеля.

Далее нужно просчитать необходимое напряжение от источника питания для нормальной и бесперебойной работы системы. Именно от этого показателя зависит будет ли камера без потерь переключаться из инфракрасного режима в дневной, сохраняя номинальное напряжение в районе 11-13В.

Для максимального снижения падения напряжения в кабеле питания необходимо максимально уменьшить его сопротивление, что осуществляется за счет подбора оптимального сечения кабеля.

Для расчета удельного сопротивления кабеля необходимо воспользоваться формулой: R=(0.0175*L/S )*2, где 0,0175 – сопротивление медного проводника, L – длина кабеля питания, S – поперечное сечение центрального проводника.

Для примера рассчитаем удельное сопротивление кабеля сечением 0,75 мм2 и длиной 50 м: R=(0.0175*50/0,75 )*2 = 2,3 Ом.

Теперь посчитаем, какое падение напряжения будет в кабеле питания. Сделать это можно по формуле: U = I*R. Чтобы вычислить I делим мощность, потребляемую камерой на напряжение питания.

К примеру, мощность потребления 3,5 Вт, а напряжение питания 12В. Делим 3,5/12, и получаем 0,29А. Считаем формулу: U = 0,29*2,3 = 0,67. Получаем, что на кабеле сечением 0,75 мм2, и длиной 50 метров падение напряжения составит 0,67В, что находится в допустимых пределах.

Общая формула расчета падения падения напряжения в линии питания системы видеонаблюдения производится по формуле: ΔU(в)=I·R·L, где:

R — удельное сопротивление кабельной линии, Ом/м
I — ток, потребляемый видеокамерой, мА
L — длина кабельной линии, м

Максимально допустимое падение может быть не более 2В, дальше начнутся проблемы с питанием камеры, и если при расчетах у вас получаются большие цифры, то необходимо использовать кабель с большим сечением, и провести расчеты заново, либо подобрать более мощный блок питания для камеры видеонаблюдения в зависимости от полученных значений падения напряжения в кабеле.

Очень важно следить за тем, чтобы напряжение в месте подключения кабеля к камере не превышало допустимых значений и не опускалось ниже 10В, поэтому перед тем, как подключить кабель к устройству видеонаблюдения, лучше проверить напряжение тестером, а после чего при необходимости отрегулировать его на блоке питания.

Таким образом, чтобы минимизировать падение напряжения в кабеле можно предпринять несколько действий:

  • Использовать БП большей мощности и кабеля с большим сечением;
  • Установить БП рядом с камерой;
  • Использовать камеры с номинальным напряжением 24В.

Также помните, что для большинства видеокамер систем наблюдения допустимое падение напряжения в линии питания составляет 10%, но лучше данный параметр уточнить в инструкции к камере.

Наша компания «Запишем всё» с 2010 года занимается монтажом, модернизацией и обслуживанием любых систем видеонаблюдения в Москве и Подмосковье. Мы работаем быстро, качественно и по доступным ценам. Перечень услуг и цены на их вы можете посмотреть здесь.

Звоните 

+7 (499) 390-28-45 с 8-00 до 22-00 в любой день недели, в том числе и в выходные. Мы будем рады Вам помочь!

в кабеле при питании нагрузок шлейфом

Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.

При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.

Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:

  • В групповых сетях — это сети освещения, розеточные сети.
  • В жилых домах этажные щиты запитаны по магистральным схемам.
  • В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
  • Шинопровод является примером питания потребителей по магистральной схеме.
  • Питание опор наружного освещения дорог.

Рассмотрим расчет падения напряжения на примере наружного освещения.

Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.

Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.

Столбы запитаны шлейфом, соответственно:

  • I4=Ilamp
  • I3=I4+Ilamp
  • I2=I3+Ilamp
  • I1=I2+Ilamp

Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).

Ток определяем по формуле:

Формула расчета полного фазного тока

Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)

Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:

При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.

Расчет падения напряжения выполняется по формулам:

Формула расчета падения напряжения в трехфазной цепи


Формула расчета падения напряжения в однофазной цепи

Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности

Сопротивление участка рассчитывается по формуле

ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии

Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников


При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:

Формула расчета падения напряжения в трехфазной цепи


Формула расчета падения напряжения в однофазной цепи

Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.

Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:


U — номинальное напряжение сети.

Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:

Формула расчета относительного падения напряжения в трехфазной сети


Формула расчета относительного падения напряжения в однофазной сети

С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.

Примем следующие исходные данные:

  • Мощность лампы 250Вт, cosφ=0,85.
  • Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
  • Питание столбов осуществляется медным кабелем 3×10.
  • Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.

Для каждого столба в программе DDECAD создаём расчетную таблицу.

Заполняем данные для лампы в каждой расчетной таблице:

Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:

Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:

Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:

  1. В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
  2. Нажимают «=».
  3. Переключаются на расчетную таблицу ЩНО.
  4. Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
  5. Нажимают «Enter».

Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.

Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет автоматически пересчитано.


Подпишитесь и получайте уведомления о новых статьях на e-mail

Читайте также:

Калькулятор онлайн расчета необходимого сечения кабеля и учёт потерь

Как правильно и точно сделать расчет сечения кабеля по потере напряжения? Очень часто при проектировании сетей электроснабжения требуется грамотный расчет потерь в кабеле. Точный результат важен для выбора материала с необходимой площадью сечения жилы. Если кабель выбран неправильно, это повлечет за собой множественные материальные затраты, ведь система быстро выйдет из строя и перестанет функционировать. Благодаря сайтам помощникам, где имеется уже готовая программа для расчета сечения кабеля и потери на нем, сделать это можно легко и оперативно.

Как воспользоваться калькулятором онлайн?

В готовую таблицу нужно ввести данные согласно выбранному материалу кабеля, мощность нагрузки системы, напряжение сети, температуру кабеля и способ его прокладки. После нажать кнопку «вычислить» и получить готовый результат.
Такой расчет потерь напряжения в линии можно смело применять в работе, если не учитывать сопротивление кабельной линии при определенных условиях:

  1. Указывая коэффициент мощности косинус фи равен единице.
  2. Линии сети постоянного тока.
  3. Сеть переменного тока с частотой 50 Гц выполненная проводниками с сечениями до 25.0–95.0.

Полученные результаты необходимо использовать согласно каждому индивидуальному случаю, учитывая все погрешности кабельно-проводниковой продукции.

Обязательно заполняйте все значения!

 Расчет потери мощности в кабеле по школьной формуле

Получить нужные данные можно следующим образом, используя для подсчетов такую комбинацию показателей: ΔU=I·RL (потери напряжения в линии = ток потребления*сопротивление кабеля).

Зачем нужно делать расчет потерь напряжения в кабеле?

Излишне рассеивание энергии в кабеле может повлечь за собой существенные потери электроэнергии, сильному нагреву кабеля и повреждению изоляции. Это опасно для жизни людей и животных. При существенной длине линии это скажется на расходах за свет, что также неблагоприятно отразиться на материальном состоянии владельца помещения.

 

Помимо этого неконтролируемые потери напряжения в кабеле могут стать причиной выхода из строя многих электроприборов, а также полного их уничтожения. Очень часто жильцы используют сечения кабелей меньше чем нужно (с целью экономии),  что вскоре вызывает короткое замыкание. А будущие затраты на замену или ремонт электропроводки не окупают кошельки «экономных» пользователей. Вот почему так важно правильно подобрать нужное сечение кабелей прокладываемых проводов. Любой электромонтаж в жилом доместоит начинать только после тщательного расчета потерь в кабеле. Важно помнить, электричество — не дает второго шанса, а потому все нужно делать изначально правильно и качественно.

Пути снижения потерь мощности в кабеле

Потери можно снизить несколькими способами:

  • увеличением площади сечения кабеля;
  • уменьшением длины материала;
  • снижением нагрузки.

Часто с последними двумя пунктами сложнее, а потому приходится это делать за счет увеличения площади сечения жилы электро–кабеля. Это поможет снизить сопротивление. Такой вариант имеет несколько затратных моментов. Во–первых, стоимость использования такого материала для многокилометровых систем очень ощутима, а потому необходимо выбирать кабель правильного сечения, дабы снизить порог потери мощности в кабеле.

Онлайн–расчет потерь напряжения позволяет сделать это за несколько секунд, с учетом всех дополнительных характеристик. Для тех, кто желает перепроверить результат вручную, существует физико–математическая формула расчета потерь напряжения в кабеле. Безусловно, это прекрасные помощники для каждого проектировщика электросетями.

Таблица по расчету сечения провода по мощности

Сечение кабеля, мм2

Открытая проводка

Прокладка в каналах

Медная

Алюминиевая

Медная

Алюминиевая

Ток

Мощность, кВт

Ток

Мощность, кВт

Ток

Мощность, кВт

Ток

Мощность, кВт

А

220В

380В

А

220В

380В

А

220В

380В

А

220В

380В

0,5

11

2,4

0,75

15

3,3

1,0

17

3,7

6,4

14

3,0

5,3

1,5

23

5,0

8,7

15

3,3

5,7

2,0

26

5,7

9,8

21

4,6

7,9

19

4,1

7,2

14,0

3,0

5,3

2,5

30

6,6

11,0

24

5,2

9,1

21

4,6

7,9

16,0

3,5

6,0

4,0

41

9,0

15,0

32

7,0

12,0

27

5,9

10,0

21,0

4,6

7,9

6,0

50

11,0

19,0

39

8,5

14,0

34

7,4

12,0

26,0

5,7

9,8

10,0

80

17,0

30,0

60

13,0

22,0

50

11,0

19,0

38,0

8,3

14,0

16,0

100

22,0

38,0

75

16,0

28,0

80

17,0

30,0

55,0

12,0

20,0

25,0

140

30,0

53,0

105

23,0

39,0

100

22,0

38,0

65,0

14,0

24,0

35,0

170

37,0

64,0

130

28,0

49,0

135

29,0

51,0

75,0

16,0

28,0

 

Видео по правильному выбору сечения провода и типичные ошибки



при нагрузке, порядок расчета и способы определения

Падение напряжения

Понятия и формулы

На каждом сопротивлении r при прохождении тока I возникает напряжение U=I∙r, которое называется обычно падением напряжения на этом сопротивлении.

Если в электрической цепи только одно сопротивление r, все напряжение источника Uист падает на этом сопротивлении.

Если в цепи имеются два сопротивления r1 и r2, соединенные последовательно, то сумма напряжений на сопротивлениях U1=I∙r1 и U2=I∙r2 т. е. падений напряжения, равна напряжению источника: Uист=U1+U2.

Напряжение источника питания равно сумме падений напряжения в цепи (2-й закон Кирхгофа).

1. Какое падение напряжения возникает на нити лампы сопротивлением r=15 Ом при прохождении тока I=0,3 А (рис. 1)?

Падение напряжения подсчитывается по закону Ома: U=I∙r=0,3∙15=4,5 В.

Напряжение между точками 1 и 2 лампочки (см. схему) составляет 4,5 В. Лампочка светит нормально, если через нее проходит номинальный ток или если между точками 1 и 2 номинальное напряжение (номинальные ток и напряжение указываются на лампочке).

2. Две одинаковые лампочки на напряжение 2,5 В и ток 0,3 А соединены последовательно и подключены к карманной батарее с напряжением 4,5 В. Какое падение напряжения создается на зажимах отдельных лампочек (рис. 2)?

Одинаковые лампочки имеют равные сопротивления r. При последовательном включении через них проходит один и тот же ток I. Из этого следует, что на них будут одинаковые падения напряжения, сумма этих напряжений должна быть равна напряжению источника U=4,5 В. На каждую лампочку приходится напряжение 4,5:2=2,25 В.

Можно решить эту задачу и последовательным расчетом. Сопротивление лампочки рассчитываем по данным: rл=2,5/0,3=8,33 Ом.

Ток в цепи I = U/(2rл )=4,5/16,66=0,27 А.

Падение напряжения на лампочке U=Irл=0,27∙8,33=2,25 В.

3. Напряжение между рельсом и контактным проводом трамвайной линии равно 500 В. Для освещения используются четыре одинаковые лампы, соединенные последовательно. На какое напряжение должна быть выбрана каждая лампа (рис. 3)?

Одинаковые лампы имеют равные сопротивления, через которые проходит один и тот же ток. Падения напряжения на лампах будут тоже одинаковыми. Значит, на каждую лампу будет приходиться 500_4=125 В.

4. Две лампы мощностью 40 и 60 Вт с номинальным напряжением 220 В соединены последовательно и включены в сеть с напряжением 220 В. Какое падение напряжения возникает на каждой из них (рис. 4)?

Первая лампа имеет сопротивление r1=1210 Ом, а вторая r2=806,6 Ом (в нагретом состоянии). Ток, проходящий через лампы, I=U/(r1+r2 )=220/2016,6=0,109 А.

Падение напряжения на первой лампе U1=I∙r1=0,109∙1210=132 В.

Падение напряжения на второй лампе U2=I∙r2=0,109∙806,6=88 В.

На лампе с большим сопротивлением большее падение напряжения, и наоборот. Накал нитей обеих ламп очень слаб, однако у лампы 40 Вт он несколько сильнее, чем у лампы 60 Вт.

5. Чтобы напряжение на электродвигателе Д (рис. 5) было равно 220 В, напряжение в начале длинной линии (на электростанции) должно быть больше 220 В на величину падения (потери) напряжения на линии. Чем больше сопротивление линии и ток в ней, тем больше падение напряжения на линии.

В нашем примере падение напряжения в каждом проводе линии равно 5 В. Тогда напряжение на шинах электростанции должно быть равно 230 В.

6. От аккумулятора напряжением 80 В потребитель питается током 30 А. Для нормальной работы потребителя допустимо 3% падения напряжения в проводах из алюминия с сечением 16 мм2. Каким может быть максимальное расстояние от аккумулятора до потребителя?

Допустимое падение напряжения в линии U=3/100∙80=2,4 В.

Сопротивление проводов ограничивается допустимым падением напряжения rпр=U/I=2,4/30=0,08 Ом.

По формуле для определения сопротивления подсчитаем длину проводов: r=ρ∙l/S, откуда l=(r∙S)/ρ=(0,08∙16)/0,029=44,1 м.

Если потребитель будет отдален от аккумулятора на 22 м, то напряжение на нем будет меньше 80 В на 3%, т.е. равным 77,6 В.

7. Телеграфная линия длиной 20 км выполнена из стального провода диаметром 3,5 мм. Обратная линия заменена заземлением через металлические шины. Переходное сопротивление между шиной и землей rз=50 Ом. Каким должно быть напряжение батареи в начале линии, если сопротивление реле на конце линии rр=300 Ом, а ток реле I=5 мА?

Схема включения показана на рис. 6. При нажатии телеграфного ключа в месте посылки сигнала реле в месте приема на конце линии притягивает якорь К, который в свою очередь включает своим контактом катушку записывающего аппарата. Напряжение источника должно компенсировать падение напряжения в линии, принимающем реле и переходных сопротивлениях заземляющих шин: U=I∙rл+I∙rр+I∙2∙rз; U=I∙(rл+rр+2∙rз).

Напряжение источника равно произведению тока на общее сопротивление цепи. 2)/4=9,6 мм2.

Сопротивление линии rл=ρ∙l/S=0,11∙20000/9,6=229,2 Ом.

Результирующее сопротивление r=229,2+300+2∙50=629,2 Ом.

Напряжение источника U=I∙r=0,005∙629,2=3,146 В; U≈3,2 В.

Падение напряжения в линии при прохождении тока I=0,005 А будет: Uл=I∙rл=0,005∙229,2=1,146 В.

Сравнительно малое падение напряжения в линии достигается благодаря малой величине тока (5 мА). Поэтому в месте приема должно быть чувствительное реле (усилитель), которое включается от слабого импульса 5 мА и своим контактом включает другое, более мощное реле.

8. Как велико напряжение на лампах в схеме на рис. 28, когда: а) двигатель не включен; б) двигатель запускается; в) двигатель в работе.

Двигатель и 20 ламп включены в сеть с напряжением 110 В. Лампы рассчитаны на напряжение 110 В и мощность 40 Вт. Пусковой ток двигателя Iп=50 А, а его номинальный ток Iн=30 А.

Подводящий медный провод имеет сечение 16 мм2 и длину 40 м.

Из рис. 7 и условия задачи видно, что ток двигателя и ламп вызывает в линии падение напряжения, поэтому напряжение на нагрузке будет меньше 110 В.

Отсюда напряжение на лампах Uламп=U-2∙Uл.

Надо определить падение напряжения в линии при различных токах: Uл=I∙rл.

Сопротивление всей линии

Ток, проходящий через все лампы,

Падение напряжения в линии, когда включены только лампы (без двигателя),

Напряжение на лампах в этом случае равно:

При пуске двигателя лампы будут светить слабее, так как падение напряжения в линии больше:

2∙Uл=(Iламп+Iдв )∙2∙rл=(7,27+50)∙0,089=57,27∙0,089=5,1 В.

Минимальное напряжение на лампах при пуске двигателя будет:

Когда двигатель работает, падение напряжения в линии меньше, чем при пуске двигателя, но больше, чем при выключенном двигателе:

2∙Uл=(Iламп+Iном )∙2∙rл=(7,27+30)∙0,089=37,27∙0,089=3,32 В.

Напряжение на лампах при нормальной работе двигателя равно:

Даже небольшое снижение напряжения на лампах относительно номинального сильно влияет на яркость освещения.

Определение падения напряжения

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7. 5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.


Расчет падения напряжения при питании потребителей шлейфом

Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.

При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.

Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:

  • В групповых сетях — это сети освещения, розеточные сети.
  • В жилых домах этажные щиты запитаны по магистральным схемам.
  • В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
  • Шинопровод является примером питания потребителей по магистральной схеме.
  • Питание опор наружного освещения дорог.

Рассмотрим расчет падения напряжения на примере наружного освещения.

Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.

Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.

Столбы запитаны шлейфом, соответственно:

Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).

Ток определяем по формуле:

Формула расчета полного фазного тока

Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)

Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:

При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.

Расчет падения напряжения выполняется по формулам:

Формула расчета падения напряжения в трехфазной цепи

Формула расчета падения напряжения в однофазной цепи

Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности

Сопротивление участка рассчитывается по формуле

ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии

Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников

При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:

Формула расчета падения напряжения в трехфазной цепи

Формула расчета падения напряжения в однофазной цепи

Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.

Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:

U — номинальное напряжение сети.

Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:

Формула расчета относительного падения напряжения в трехфазной сети

Формула расчета относительного падения напряжения в однофазной сети

С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.

Примем следующие исходные данные:

  • Мощность лампы 250Вт, cosφ=0,85.
  • Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
  • Питание столбов осуществляется медным кабелем 3×10.
  • Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.

Для каждого столба в программе DDECAD создаём расчетную таблицу.

Заполняем данные для лампы в каждой расчетной таблице:

Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:

Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:

Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:

  1. В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
  2. Нажимают «=».
  3. Переключаются на расчетную таблицу ЩНО.
  4. Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
  5. Нажимают «Enter».

Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.

Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет автоматически пересчитано.

Расчет падения напряжения в кабеле

Для работы электроприборов необходимы определённые параметры сети. Провода обладают сопротивлением электрическому току, поэтому при выборе сечения кабелей необходимо учитывать падение напряжения в проводах.

Что такое падение напряжения

При измерении в разных частях провода, по которому течёт электрический ток, по мере движения от источника к нагрузке наблюдается изменение потенциала. Причина этого – сопротивление проводов.

Как замеряется падение напряжения

Измерить падение можно тремя способами:

  • Двумя вольтметрами. Замеры производятся в начале и конце кабеля;
  • Поочерёдно в разных местах. Недостаток метода в том, что при переходах может измениться нагрузка или параметры сети, что повлияет на показания;
  • Одним прибором, подключённым параллельно кабелю. Падение напряжения в кабеле мало, а соединительные провода большой длины, что приводит к погрешностям.

Важно! Падение напряжения может составлять от 0,1В, поэтому приборы используются класса точности не ниже 0,2.

Сопротивление металлов

Электрический ток – это направленное движение заряженных частиц. В металлах это движение свободных электронов сквозь кристаллическую решётку, которая оказывает сопротивление этому движению.

В расчетах удельное сопротивление обозначается буквой “p” и соответствует сопротивлению одного метра провода сечением 1мм².

Для самых распространённых металлов, используемых для изготовления проводов, меди и алюминия, этот параметр равен 0,017 и 0,026 Ом*м/мм², соответственно. Сопротивление отрезка провода вычисляется по формуле:

Например, 100 метров медного провода сечением 4мм² имеет сопротивление 0,425 Ом.

Если сечение S неизвестно, то, зная диаметр проводника, оно рассчитывается как:

Как рассчитать потери напряжения

По закону Ома, при протекании тока через сопротивление на нём появляется разность потенциалов. В этом отрезке кабеля при токе 53А, допустимом при открытой прокладке, падение составит U=I*R=53А*0,425Ом=22,5В.

Для нормальной работы электрооборудования величина напряжения сети не должна выходить за пределы ±5%. Для бытовой сети 220В – это 209-231В, а для трёхфазной сети 380В допустимые пределы колебаний – 361-399В.

При изменении потребляемой мощности и тока в электрокабелях падение напряжения в токопроводящих жилах и его значение возле потребителя меняется. Эти колебания необходимо учитывать при проектировании электроснабжения.

Выбор по допустимым потерям

При расчёте потерь необходимо учитывать, что в однофазной сети используется два провода, соответственно, формула расчёта падения напряжения меняется:

В трёхфазной сети ситуация сложнее. При равномерной нагрузке, например, в электродвигателе, мощности, подключенные к фазным проводам, компенсируют друг друга, ток по нулевому проводу не идёт, и его длина в расчётах не учитывается.

Если нагрузка неравномерная, как в электроплитах, в которых может быть включен только один ТЭН, то расчёт ведётся по правилам однофазной сети.

В линиях большой протяжённости, кроме активного, учитывается также индуктивное и ёмкостное сопротивление.

Расчёт можно выполнить по таблицам или при помощи онлайн-калькулятора. В ранее приведённом примере в однофазной сети и при расстоянии 100 метров необходимое сечение составит не менее 16мм², а в трёхфазной – 10 мм².

Выбор сечения кабелей по нагреву

Ток, текущий через сопротивление, выделяет энергию Р, величина которой рассчитывается по формуле:

В кабеле из предыдущего примера Р=40А²*0,425Ом=680Вт. Несмотря на длину, этого достаточно для того, чтобы нагреть проводник.

При нагреве провода свыше допустимой температуры изоляция выходит из строя, что приводит к короткому замыканию. Величина допустимого тока зависит от материала токопроводящей жилы, изоляции и условий прокладки. Для выбора необходимо пользоваться специальными таблицами или онлайн-калькулятором.

Как уменьшить падение напряжения в кабеле

При прокладке электропроводки на большие расстояния сечение кабеля, выбранное по допустимому падению напряжения, многократно превосходит выбор, сделанный по нагреву, что приводит к увеличению стоимости электроснабжения. Но есть способы уменьшить эти расходы:

  • Повысить потенциал в начале питающего кабеля. Возможно только это при подключении к отдельному трансформатору, например, в дачном посёлке или микрорайоне. При отключении части потребителей потенциал в розетках остальных окажется завышенным;
  • Установка возле нагрузки стабилизатора. Это требует расходов, но гарантирует постоянные параметры сети;
  • При подключении нагрузки 12-36В через понижающий трансформатор или блок питания располагать их рядом с потребителем.

Справка. При понижении напряжения растёт ток в сети, падение напряжения и необходимое сечение проводов.

Способы снижения потерь в кабеле

Кроме нарушения нормальной работы электроприборов, падение напряжения в проводах приводит к дополнительным расходам на электроэнергию. Уменьшить эти затраты можно разными способами:

  • Увеличение сечения питающих проводов. Этот метод требует значительных расходов на замену кабелей и тщательной проверки экономической целесообразности;
  • Уменьшение длины линии. Прямая, соединяющая две точки, всегда короче кривой или ломаной линии. Поэтому при проектировании сетей электроснабжения линии следует прокладывать максимально коротким прямым путём;
  • Снижение окружающей температуры. При нагреве сопротивление металлов растёт, и увеличиваются потери электроэнергии в кабеле;
  • Уменьшение нагрузки. Этот вариант возможен при наличии большого числа потребителей и источников питания;
  • Приведение cosφ к 1 возле нагрузки. Это уменьшает потребляемый ток и потери.

Важно! Все изменения необходимо отображать на схемах.

К сведению. Улучшение вентиляции в кабельных лотках и других конструкциях приводит к снижению температуры, сопротивления и потерь в линии.

Для достижения максимального эффекта необходимо комбинировать эти способы между собой и с другими методами энергосбережения.

Расчёт падения напряжения и потерь электроэнергии в кабеле важен при проектировании систем электроснабжения и кабельных линий.

Видео

Определение напряжения на нагрузке

Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов. Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.

Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.

Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.

Как рассчитать напряжение по формуле

Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:

U1 – напряжение источника;

ΔU – падение напряжения в линии;

R – сопротивление линии.

В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.

Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:

В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.

Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:

Напряжение на нагрузке вычисляется по формуле, приведенной выше:

Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.

Падение напряжения при подключении нагрузки потребителя

Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?

Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.

Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.

Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.

Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Дело в том, что каждый некачественный контакт на линии снижает конечное напряжение в сети. Чтобы этого избежать, рекомендуется использовать заводские зажимы, которые гораздо более надежны, чем другие способы соединения электрических кабелей, а также абсолютно безопасны.

В случаях с применением низковольтных аккумуляторных батарей тоже могут наблюдаться «провалы». Если при включении потребителей падает напряжение зарядки источника питания, наиболее вероятная причина этого – некачественные контакты.

При падении напряжения в сети принципиально важно выяснить и устранить причину этого. В противном случае бездействие может обернуться печальными последствиями, особенно если дело касается электрической бытовой проводки. Современные кабели с подходящим сечением и качественно выполненные соединения проводов – залог длительной и эффективной работы всех электроприборов.

Последствия при падении напряжения по длине кабеля и расчет потерь

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2Линия с одной фазойЛиния с тремя фазами
ПитаниеОсвещениеПитаниеОсвещение
РежимПускРежимПуск
МедьАлюминийКосинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1Косинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1
1,524,010,630,020,09,425,0
2,514,46,418,012,05,715,0
4,09,14,111,28,03,69,5
6,010,06,12,97,55,32,56,2
10,016,03,71,74,53,21,53,6
16,025,02,361,152,82,051,02,4
25,035,01,50,751,81,30,651,5
35,050,01,150,61,291,00,521,1
50,070,00,860,470,950,750,410,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Определение падения напряжения | Руководство по устройству электроустановок | Оборудование

Страница 38 из 77

Сопротивление проводов цепей низкое, но им нельзя пренебрегать. При передаче тока нагрузки происходит падение напряжения между началом цепи и местом подключения нагрузки. Правильная работа нагрузки (двигатель, цепь освещения и т.д.) зависит от того, что напряжение на его зажимах поддерживается на уровне, близкому к номинальному значению. Таким образом, необходимо рассчитать провода цепи так, чтобы при токе полной нагрузки напряжение на зажимах нагрузки оставалось в пределах, которые необходимо соблюдать для правильной работы оборудования.
В данном разделе рассматриваются методы определения падений напряжения, с целью обеспечения:
Соответствия действующим стандартам и правилам;
Требований со стороны нагрузки;
Существенных требований к работе оборудования.
3.1 Максимальное падение напряжения
Максимально допустимые пределы падения напряжения различны в разных странах. Типовые значения для электроустановок низкого напряжении даны ниже на Рис. G26.


Тип установки

Цепи
освещения

Другие пользователи (обогрев и питание силовых потребителей)

Подключение к распределительной сети низкого напряжения

3%

5%

Потребители понижающей подстанции питаются от распределительной сети высокого напряжения

6%

8%

Рис. G26: Максимальное падение напряжения между точкой подключения к сети и точкой потребления мощности
Данные пределы падения напряжения относятся к нормальному установившемуся рабочему режиму и не применяются к моментам запуска двигателей; одновременного включения (случайно) нескольких нагрузок, и т.д., как это было описано в главе В, раздел 4.3 (коэффициент одновременности и т.д.). Если падение напряжения превышает значения, данные на Рис. G26, используйте провода с большим сечением, чтобы исправить эту ситуацию. Если разрешить падение напряжения 8%, это может привести к проблемам в работе двигателей, например: Обычно, для удовлетворительной работы двигателя необходимо, чтобы напряжение было в пределах +5% от номинального значения в установившемся режиме работы.
Пусковой ток двигателя может в 5 — 7 раз превышать значение тока полной нагрузки (или даже более).
Если позволить 8% падения напряжения при полной нагрузке, то во время запуска двигателя может произойти снижение напряжения до 40%. При таких условиях двигатель либо:
Не запустится (то есть, останется неподвижным из-за недостаточного вращающего момента, неспособного преодолеть момент нагрузки), что приведет к перегреву двигателя и к его отключению;
Или будет ускоряться очень медленно, так что высокое потребление тока нагрузкой (с возможными нежелательными воздействиями пониженного напряжения на другое оборудование) будет продолжаться дольше, чем нормальный период разгона двигателя.
И наконец, 8%-ое падение напряжения представляет собой постоянную потерю мощности, что при продолжительной нагрузке приведет к значительным потерям (учитываемой) энергии. По этим причинам рекомендуется, чтобы максимальное значение падения напряжения 8% в установившемся рабочем режиме не достигалось в цепях, чувствительных к проблемам пониженного напряжения (См. Рис. G27).

Рис. G2: Максимальное падение напряжения
3.2 Расчет падения напряжения при постоянной нагрузке Формулы
На Рис. G28 ниже даны формулы, обычно используемые для расчета падения напряжения в цепи
на километр длины.
Если:
Ib: Ток полной нагрузки, в амперах
L: Длина кабеля — в километрах
R: Сопротивление кабеля — в Ом/км, то:
для меди, S (c.s.a) — площадь поперечного сечения проводника (жилы кабеля) в мм2, Q — Ом
для алюминия
Примечание: R можно пренебречь, если сечение проводника свыше 500 мм2
X: индуктивное реактивное сопротивление кабеля в Ом/км.
Примечание: Х можно пренебречь для проводов сечением меньше 50мм2. При отсутствии любой другой информации, примите Х = 0,08 Ом/км.
ф: фазовый угол между напряжением и током рассчитываемой цепи, обычно:
Цепь освещения лампами накаливания: cos ф = 1
Питание двигателя:
при запуске: cos ф = 0.35
в режиме нормальной работы: cos ф = 0.8
Un: напряжение между фазами
Vn: напряжение фаза — нейтраль
Для кабелепроводов и шинопроводов завдского изготовления, значения активного и реактивного сопротивлений даются производителем. 29 на следующей странице, которая дает, с адекватным приближением, значение падения межфазного напряжения на 1 км кабеля на 1 ампер, в зависимости от:
Типа цепи: цепь питания двигателя, где значение cos ф близко к 0.8, или цепь освещения, где cos ф близок к единице.
Типа кабеля: одножильный и трехжильный. Падение напряжения в кабеле можно вычислить, как: К x Ib x L
К — дано в таблице,
Ib — ток полной нагрузки в амперах,
L — длина кабеля в км.
Колонку «Питание двигателя», «cos ф = 0.35» на Рис. G29 можно использовать для вычисления падения напряжения во время запуска двигателя (см. пример 1 после Рис. G29).
Примеры
Пример 1 (см. Рис. G30)
Трехжильный медный кабель сечением 35 мм2 длиной 50 м подает питание 400 В к двигателю, потребляющему:
I 100 A при cos ф = 0.8 при нормальной постоянной нагрузке I 500 A (5 In) при cos ф = 0.35 во время запуска
Падение напряжения в начале кабеля, подсоединяющего двигатель в нормальных обстоятельствах
(то есть, на распределительном щите (Рис G30), который распределяет ток в 1000А), составляет
10 В линейного напряжения.
Каково падение напряжения на зажимах двигателя:
I В режиме нормальной работы
I Во время запуска?
Решение:
I Падение напряжения в режиме нормальной работы будет равно:

В таблице G29 дано соотношение 1 В/А/км, и согласно этому: AU для кабеля = 1 x 100 x 0.05 = 5 В AU общее = 10 + 5 = 15 В , то есть.

Это значение меньше, чем разрешенное (8%) и является приемлемым. I Падение напряжения во время запуска двигателя: Аикабеля = 0.52 x 500 x 0.05 = 13 В
Из-за дополнительного тока, потребляемого во время запуска двигателя, падение напряжения на распределительном щите превысит 10 вольт.
Предположим, что ток, подаваемый на распределительный щит во время запуска двигателя, равен 900+500=1 400 А, тогда падение напряжения на распределительном щите пропорционально увеличится, то есть:

AU для распределительного щита = 14 В AU для кабеля двигателя = 13 В AU общее = 13+ 14 = 27 В, то есть:


Рис. в3{: Пример 1


Cечение в мм2

Однофазная цепь

Сблансированная трехфазная цепь

 

 

Питание двигателя

 

Освещение

Питание двигателя

Освещение

 

 

Обычный раб. режим

Запуск

 

Обычный раб. режим

Запуск

 

Cu

Al

cos ф = 0. 8

cos ф = 0.35

cos ф = 1

cos ф = 0.8

cos ф = 0.35

cos ф = 1

1.5

24

10.6

30

20

9.4

25

2.5

14.4

6.4

18

12

5.7

15

4

9.1

4.1

11.2

8

3. 6

9.5

6

10

6.1

2.9

7.5

5.3

2.5

6.2

10

16

3.7

1.7

4.5

3.2

1.5

3.6

16

25

2.36

1.15

2.8

2.05

1

2.4

25

35

1. 5

0.75

1.8

1.3

0.65

1.5

35

50

1.15

0.6

1.29

1

0.52

1.1

50

70

0.86

0.47

0.95

0.75

0.41

0.77

70

120

0.64

0. 37

0.64

0.56

0.32

0.55

95

150

0.48

0.30

0.47

0.42

0.26

0.4

120

185

0.39

0.26

0.37

0.34

0.23

0.31

150

240

0.33

0.24

0. 30

0.29

0.21

0.27

185

300

0.29

0.22

0.24

0.25

0.19

0.2

240

400

0.24

0.2

0.19

0.21

0.17

0.16

300

500

0.21

0.19

0.15

0. 18

0.16

0.13

Рис. G2S: Падение напряжения между фазами Ди для цепи, в вольтах на 1 ампер, на 1 км.
— значение, приемлемое во время запуска двигателя.
3 Определение падения напряжения
Пример 2 (см. Рис. G31)
3-х фазная 4-х проводная линия с медными проводниками сечением 70 мм2 и длиной 50 м проводит ток 150 A. Линия питает, кроме прочих нагрузок, 3 однофазных цепи освещения, каждая из которых состоит из медного провода сечением 2.5 мм2, длиной 20 м, и проводит ток 20 A.
Предполагается, что токи в кабельной линии сечением 70 мм2 являются сбалансированными и три цепи освещения подсоединены к линии в одной и той же точке. Каково падение напряжения в конечных точках цепей освещения? Решение:
Падение напряжения в 4-жильной линии:

На Рис. G29 показано значение 0.55 В/А/км AU линии = 0.55 x 150 x 0.05 = 4.125 В между фазами
Где:= 2. 38 В между фазой и нейтралью.
Падение напряжения в каждой из однофазных цепей освещения: AU для однофазной цепи = 18 x 20 x 0.02 = 7.2 В
Таким образом, общее падение напряжения будет равно: 7.2 + 2.38 = 9.6 В

G — Защита цепей

Рис. G3 : Пример 2, Си — медь
Это значение является удовлетворительным, так как оно меньше, чем максимальное допустимое падение напряжения величиной 6%.

Расчет падения напряжения в кабеле 12в, потери в кабельных линиях

Расчёт потерь напряжения в кабеле

  • ГЛАВНАЯ
  • О НАС
    • Лицензии и сертификаты
    • Наши заказчики
    • Фото с наших объектов
    • Наши партнёры
    • Реквизиты и дислокация
    • Вакансии
    • Видео Онлайн
  • ДЕЯТЕЛЬНОСТЬ
    • Видеонаблюдение
    • Охранная сигнализация
    • Контроль и управление доступом
    • Пожарная сигнализация
    • Пожаротушение
    • Огнезащитные преграды
    • Огнезащитная обработка
    • Расчёт категории пожарной опасности
    • Автоматизация
    • Частотный привод
    • Учёт энергоносителей
    • Грозозащита и заземление
    • Электромонтажные работы
    • Локальные сети и СКС
    • Спутниковая связь
    • Аудио и видеосистемы
  • ТИПОВЫЕ РЕШЕНИЯ
    • Типовые решения: Видеонаблюдение
    • Типовые решения: Локально-вычисл. сети
    • Типовые решения: АТС Panasonic
    • Типовые решения: Сигнализация
  • ОБОРУДОВАНИЕ
    • Видеонаблюдение
    • Сигнализация
    • Пожаротушение
    • Огнезащитные материалы
    • Контроль доступа
    • Программное обеспечение
    • Сетевое оборудование
    • Охрана периметра
    • ATC Panasonic
    • Источники питания
    • Кабельная продукция
    • Заземление, грозозащита
    • Промавтоматика
    • Металлодетекторы
    • Спутниковые системы
    • Спецпредложения товаров и услуг
  • НОВОСТИ
    • Камера с использованием наноструктур
    • Рекорды радиорелейной связи
    • Сервер на процессорах Эльбрус
    • Видеорегистратор «Линия XVR»
    • Компьютеры на базе Эльбрус 8С
    • Миллионы пинхолов
    • Электричество без нагревания
    • Тепловой транзистор
    • Спутник квантовой связи
    • Будущее за скирмионами
    • Интеллектуальная камера IRIS
    • Система хранения Archival Disc
    • Плащ-невидимка для микросхем
    • Графеновые шары
    • Органическая электроника
    • «Междугородняя» квантовая связь
    • Нанотехнологии в электронике
    • Песок, охлаждающий электронику
    • Пластиковая электроника
    • Рекордный воздушный канал
    • IP-камеры с объективом i-CS
    • Видеосервер «Линия MicroNVR»
    • Тактовая частота от 10 ГГц
    • Оптоволокно нового поколения
    • Видеокамера BD4680DV
    • Линза в 9 атомных слоев
    • Hikvision DS-2CC12D9T-E
  • СТАТЬИ
    • Защита частного дома от пожара
    • Типичные ошибки электромонтажа
    • Расчёт системы звукового оповещения
    • Как правильно проложить кабель в деревянном доме?
    • Типовые решения на базе IP видеокамер
    • Расчёт линии питания систем оповещения
    • Облачная видеоаналитика для веб-клиентов
    • H. 265 — маркетинговый трюк или что-то большее?
    • Как обеспечить надежность РЭС
    • Защита коаксиальных линий
    • Применение SCADA TRACE MODE 6
    • Цилиндрические спиральные антенны СВЧ
    • Сварка электрических проводов
    • Корректоры коэффициента мощности
    • Системы защитного заземления
    • Защита информационных линий
    • Сетевые фильтры и грозозащита
    • Обзор конструкций видеокамер
    • Интеллектуальное здание
    • Cеть охранного телевидения
    • Передача видеосигналов по кабелю витой пары
    • Заземление в системах промышленной автоматики
    • Продукты Mandriva Linux получили сертификат ФСТЭК
    • RS-485 для чайников
    • Что такое SCADA
    • Правильная разводка сетей RS-485
    • Преобразователи частоты для любых задач
  • РАСЧЁТЫ
    • Расчёт участка цепи
    • Расчёт фильтра нижних частот
    • Расчёт потерь напряжения в кабеле
    • Расчёт сечения кабеля
    • Расчёт комплексного сопротивления провода
    • Расчёт комплексного сопротивления шины
    • Расчёт затухания в коаксиальном кабеле
    • Расчёт реактивного сопротивления
    • Расчёт резонансной частоты
    • Расчёт системы заземления
    • Расчет одиночного стержневого молниеотвода
    • Расчет двойного стержневого молниеотвода
    • Расчёт одиночного тросового молниеотвода
    • Расчёт двойного тросового молниеотвода
    • Расчёт питания системы видеонаблюдения
    • Расчёт угла обзора видеокамеры
    • Расчёт зоны обзора видеокамеры
    • Расчёт пластинчатого теплоотвода
    • Расчёт освещения
    • Расчёт падения давления в трубопроводе
    • Расчёт стоимости проекта
    • Расчёт стоимости обслуживания
    • Расчёт стоимости электромонтажных работ
  • ПРОГРАММЫ
  • СПРАВКА
    • Категории и классы защиты объектов
    • Глоссарий по охранному телевидению
    • Глоссарий по охранно-пожарной сигнализации
    • Глоссарий по установкам пожаротушения
    • Таблица токов плавления для проволоки
    • Кабели для видеонаблюдения
    • Сетка частот телевизионных каналов
    • Справочник по кабельной продукции
    • Основные интерфейсные разъёмы
    • Выбор сечения проводников
    • Физические свойства материалов
    • Радиочастотные кабели
    • Поверхностный (скин) эффект
    • Перевод U1/U2 и P1/P2 в децибелы и неперы
    • Допустимые и недопустимые контакты
    • Углы обзора видеокамер
    • Периодическая система Менделеева
  • КАРТА САЙТА

Пример расчета

Допустим у нас стоит задача запитать камеру видеонаблюдения от блока питания 12 вольт. Расстояние от камеры видеонаблюдения до источника питания 100 метров.Планируемый кабель для подачи питания имеет сечение 0.75 мм². Далее мы узнаем ток потребления видеокамеры, в нашем случае это 0.3 А или 300 мА. Вбиваем количество камер на линии и выбираем величину напряжения источника питания. Жмем расчет и получаем точные данные.

Из результата ниже мы узнаем, что в нашем случае до камеры дойдет всего лишь 10.6 вольт, что не совсем корректно для работы камеры видеонаблюдения, следовательно нам нужно либо сократить дистанцию между камерой и блоком питания либо использовать более толстое сечение кабеля.

Наш калькулятор позволяет произвести расчет падения напряжения в сечении кабеля 12, 24, 36, 48, 60 вольт в однофазной двухпроводной линии постоянного или переменного тока.

Внимание!

Все расчеты считаются верными при использовании медного кабеля, если Ваш кабель омедненный результаты будут расходиться.

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

U = 0,0175*40*2/1,5*16

U = 14,93 В

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2Линия с одной фазойЛиния с тремя фазами
ПитаниеОсвещениеПитаниеОсвещение
РежимПускРежимПуск
МедьАлюминийКосинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1Косинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1
1,524,010,630,020,09,425,0
2,514,46,418,012,05,715,0
4,09,14,111,28,03,69,5
6,010,06,12,97,55,32,56,2
10,016,03,71,74,53,21,53,6
16,025,02,361,152,82,051,02,4
25,035,01,50,751,81,30,651,5
35,050,01,150,61,291,00,521,1
50,070,00,860,470,950,750,410,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Расчет падения напряжения Майк Холт

Часть ПЕРВАЯ

Целью Национального электротехнического кодекса является практическая защита людей и имущества от опасностей, связанных с использованием электричества. NEC обычно не считает падение напряжения проблемой безопасности. В результате NEC содержит шесть рекомендаций (мелкий шрифт), которые проводники схемы должны иметь достаточно большие размеры, чтобы может быть обеспечена эффективность работы оборудования.Кроме того, NEC имеет пять правил, по которым проводники должны иметь размер, соответствующий напряжению. падение проводов цепи.

Примечания мелким шрифтом в NEC предназначены только для информационных целей и не подлежит исполнению инспекционным органом [90-5 (c)]. Однако раздел 110-3 (b) требует, чтобы оборудование было установлено в соответствии с оборудованием инструкции. Поэтому электрооборудование необходимо устанавливать так, чтобы он работает в пределах своего номинального напряжения, указанного производителем.Рисунок 1.

Комментарий автора: Рисунки не размещаются в Интернете.

Из-за падения напряжения в проводниках цепи рабочее напряжение у электрооборудования будет меньше выходного напряжения силового поставлять. Индуктивные нагрузки (например, двигатели, балласты и т. Д.), Работающие при напряжение ниже номинального может привести к перегреву, что приведет к сокращению времени работы оборудования срок службы и повышенная стоимость, а также неудобства для заказчика.Пониженное напряжение для чувствительного электронного оборудования, такого как компьютеры, лазерные принтеры, копировальные машины и т. д. могут вызвать блокировку оборудования или внезапное отключение питания. вниз, что приведет к потере данных, увеличению затрат и возможному отказу оборудования. Резистивные нагрузки (обогреватели, лампы накаливания), работающие при пониженном напряжении. просто не обеспечит ожидаемую номинальную выходную мощность, рис. 1.

Комментарий автора: Падение напряжения на проводниках может вызвать накаливание. мигание освещения, когда другие приборы, оргтехника или отопление и системы охлаждения работают.Хотя некоторых это может раздражать, это не опасно и не нарушает NEC.

РЕКОМЕНДАЦИИ NEC

Национальный электротехнический кодекс содержит шесть примечаний, напечатанных мелким шрифтом, для предупреждения Сообщите пользователю, что оборудование может повысить эффективность работы, если учитывается падение напряжения на проводнике.

1. Ответвительные цепи. Настоящая FPN рекомендует, чтобы проводники ответвлений иметь размер, предотвращающий максимальное падение напряжения до 3%.Максимальное общее напряжение падение для комбинации ответвления и фидера не должно превышать 5%. [210-19 (а) ФПН № 4], рис. 2.

2. Фидеры. В данной FPN рекомендуется выбирать размеры фидеров. для предотвращения максимального падения напряжения на 3%. Максимальное полное падение напряжения для комбинации ответвления и фидера не должно превышать 5%. [215-2 (d) ФПН № 2], рис. 2.

Пример: Какое минимальное рабочее напряжение, рекомендованное NEC для Нагрузка 120 В, подключенная к источнику 120/240 В, рисунок 3 (8-11).

(а) 120 вольт (b) 115 вольт (c) 114 вольт (г) 116 вольт

Ответ: (c) 114 В Максимальное рекомендуемое падение напряжения на проводе как для фидера, так и для ответвленной цепи составляет 5 процентов от источника напряжения; 120 вольт x 5% = 6 вольт. Рабочее напряжение на нагрузке определяется путем вычитания падения напряжения на проводнике из источника напряжения, 120 вольт — падение 6 вольт = 114 вольт.

3. Услуги — Интересно, что нет рекомендуемого падения напряжения. для сервисных проводников, но эта FPN напоминает пользователю Кодекса о необходимости учитывать падение напряжения на обслуживающих проводах [230-31 (c) FPN].

Комментарий автора: Падение напряжения на длинных проводах может вызвать лампы накаливания в здании мигают при включении бытовой техники, отопления или включаются системы охлаждения. Для получения информации о том, как решить или уменьшить мерцание ламп накаливания, перейдите по адресу: www.mikeholt.com/Newsletters.

4. Максимально допустимая нагрузка проводника — Эта FPN определяет тот факт, что перечисленные в таблице 310-16, не учитывают падение напряжения [310-15 ФПН №1].

5. Фазовые преобразователи — Фазовые преобразователи имеют свои собственные рекомендации. падение напряжения от источника питания к фазовому преобразователю должно не превышает 3% [455-6 (a) FPN].

6. Парковки для транспортных средств для отдыха — для транспортных средств для отдыха есть рекомендации. чтобы максимальное падение напряжения на проводниках параллельной цепи не превышало 3% и комбинация ответвления и фидера не более 5% [210-19 (а) ФПН №4 и 551-73 (d) FPN].

ТРЕБОВАНИЯ NEC

Национальный электротехнический кодекс также содержит пять правил, требующих проводники должны быть увеличены в размере, чтобы компенсировать падение напряжения.

Заземляющие проводники — это правило гласит, что проводники цепи увеличены в размерах для компенсации падения напряжения, заземление оборудования проводники также должны быть увеличены в размерах [250-122 (b)].

Комментарий автора: Если, однако, провода цепи не увеличивать по размеру, чтобы учесть падение напряжения, то заземляющий провод оборудования не требуется, чтобы он был больше, чем указано в Таблице 250-122.

Кино / Телестудия — Проводник ответвления для Системы 60/120 вольт, используемые для снижения шума при производстве аудио / видео или другая подобная чувствительная электроника для киностудий и телестудий не должно превышать 1,5%, а общее падение напряжения фидера и проводники параллельной цепи не должны превышать 2,5% [530-71 (d)]. Кроме того, FPN № 1 в соответствии с разделом 530-72 (b) напоминает пользователю Кодекса об увеличении размера заземляющего проводника в соответствии с Разделом 250-122 (b).

Пожарные насосы — Рабочее напряжение на выводах пожарного насоса. контроллер не должен быть менее 15% от номинального напряжения контроллера. во время запуска двигателя (ток заторможенного ротора). Кроме того, действующие напряжение на выводах электродвигателя пожарного насоса должно быть не менее 5% от номинального напряжения двигателя, когда двигатель работает на 115 процентов от номинального тока полной нагрузки [695-7].

Комментарий автора: в следующем месяце в этой статье я приведу примеры и графики, демонстрирующие применение правил NEC по падению напряжения.

ОПРЕДЕЛЕНИЕ ПЕРЕПАДА НАПРЯЖЕНИЯ В ЦЕПИ

Когда проводники цепи уже установлены, напряжение падение на проводниках можно определить одним из двух методов: Ом закон или формула ВД.

Метод закона Ома — только однофазный

Падение напряжения на проводниках цепи можно определить умножением ток цепи по общему сопротивлению проводов цепи: VD = I x R.«I» соответствует нагрузке в амперах, а «R» равно сопротивлению проводника, как указано в главе 9, таблица 8 для цепи постоянного тока или в главе 9, таблице 9 для переменного токовые цепи. Метод закона Ома нельзя использовать для трехфазного схемы.

120 вольт Пример: каково падение напряжения на двух проводниках № 12, которые подайте нагрузку 16 ампер, 120 вольт, которая находится в 100 футах от источника питания питания (200 футов провода), рисунок 4.

(а) 3,2 вольт (б) 6,4 вольт (c) 9,6 вольт (г) 12,8 В

Ответ: (б) 6,4 вольт

Падение напряжения = I x R

«I» равно 16 ампер

«R» равно 0,4 Ом (Глава 9, Таблица 9: (2 Ом / 1000 футов) x 200 футов

Падение напряжения = 16 ампер x 0,4 Ом

Падение напряжения = 6,4 В (6,4 В / 120 В = 5.Падение напряжения 3%)

Рабочее напряжение = 120 В — 6,4 В

Рабочее напряжение = 113,6 В

Комментарий автора: Падение напряжения на 5,3% для указанной выше параллельной цепи. превышает рекомендации NEC на 3%, но не нарушает NEC, за исключением случаев, когда нагрузка 16 ампер рассчитана ниже 113,6 вольт [110-3 (b)].

Однофазное напряжение 240 В Пример: Каково рабочее напряжение 44 ампер, 240 В, однофазная нагрузка, расположенная в 160 футах от щитка, если он подключен к No.6 проводников, рисунок 5?

(а) 233,1 вольт (б) 230,8 вольт (c) 228,4 вольт (г) 233,4 В

Ответ: (а) 233,1 вольт

Падение напряжения = I x R

«I» равно 44 амперам

«R» равно 0,157 Ом (Глава 9, Таблица 9: (0,49 Ом / 1000 футов) x 320 футов

Падение напряжения = 44 ампера x 0,157 Ом

Падение напряжения = 6.9 вольт (6,9 вольт / 240 вольт = падение на 2,9%)

Рабочее напряжение = 240 В — 6,9 В

Рабочее напряжение = 233,1 В

Падение напряжения по методу формул

Когда проводники цепи уже установлены, напряжение падение проводов можно определить с помощью одного из следующих формулы:

VD = 2 x K x Q x I x D / CM — однофазный

ВД = 1.732 x K x Q x I x D / CM — трехфазный

«VD» = падение напряжения: падение напряжения на проводниках цепи. выражается в вольтах.

“K” = Постоянная постоянного тока: это постоянная, которая представляет сопротивление постоянному току для проводника в тысячу круглых мил длиной в тысячу футов при рабочей температуре 75º C. Постоянное значение постоянного тока, используемое для меди, составляет 12,9 Ом. и 21.2 Ом используется для алюминиевых проводников. Константа «К» подходит для цепей переменного тока, где жилы не превышает № 1/0.

«Q» = Коэффициент регулировки переменного тока: Переменный ток цепи № 2/0 и выше должны быть отрегулированы с учетом эффектов самоиндукции. (скин-эффект). Поправочный коэффициент «Q» определяется делением сопротивление переменному току, как указано в таблице 9 главы 9 NEC, на сопротивление постоянному току, как указано в главе 9, таблица 8.

«I» = Амперы: нагрузка в амперах при 100 процентах, а не 125 процентов для двигателей или постоянных нагрузок.

«D» = Расстояние: расстояние, на котором нагрузка находится от источника питания. питания, а не общую длину проводников цепи.

«CM» = Circular-Mils: Круговые милы проводника цепи. как указано в главе 9, таблица 8.

Однофазный пример: какое падение напряжения для провода № 6 который обеспечивает однофазную нагрузку 44 А, 240 В, расположенную на расстоянии 160 футов с щитка, рисунок 6?

(а) 4.25 вольт (b) 6,9 вольт (c) 3 процента (г) 5 процентов

Ответ: (б) 6,9 вольт

VD = 2 x K x I x D / CM

K = 12,9 Ом, медь

I = 44 ампера

D = 160 футов

CM = No. 6, 26 240 круговых милов, Глава 9, Таблица 8

VD = 2 провода x 12,9 Ом x 44 А x 160 футов / 26240 круглых мил

VD = 6.9 вольт (6,9 вольт / 240 вольт = падение на 2,9%)

Рабочее напряжение = 240 В — 6,9 В

Рабочее напряжение = 233,1 В

Трехфазный Пример: Трехфазная нагрузка 208 В, 36 кВА расположена 80 футов от щитка и соединен алюминиевыми проводниками №1. Какое падение напряжения в проводниках до отключения оборудования, Рисунок 7?

(а) 3,5 вольт (б) 7 вольт (c) 3 процента (г) 5 процентов

Ответ: (а) 3.5 вольт

VD = 1,732 x K x I x D / CM

K = 21,2 Ом, алюминий

I = 100 ампер

D = 80 футов

CM = № 1, 83690 круговых милов, глава 9, таблица 8

VD = 1,732 x 21,2 Ом x 100 ампер x 80 футов / 83690 круглых мил

VD = 3,5 В (3,5 В / 208 В = 1,7%)

Рабочее напряжение = 208 В — 3,5 В

Рабочее напряжение = 204,5 В

Надеюсь, это краткое изложение было полезным.Если вы хотите узнать больше о по этой теме, посетите наш семинар или закажите видео для домашнего обучения программа сегодня.

Основы расчета падения напряжения

Как узнать, обеспечивает ли ваша проводка разумную эффективность работы? Национальный электротехнический кодекс 210-19 (a) (FPN 4) и 215-2 (b) (FPN 3) рекомендует падение напряжения 5% для фидерных цепей и 3% для ответвленных цепей. Давайте поработаем несколько примеров, используя уравнения на боковой панели (справа).В наших примерах используется медный провод без покрытия в стальном канале для ответвлений на 480 В; мы воспользуемся столбцом коэффициента мощности таблицы 9 NEC.

Пример 1: Определение падения напряжения Проложите многожильный провод № 10 на 200 футов при 20 А. Согласно Таблице 9, наше «сопротивление нейтрали на 1000 футов» составляет 1,1 Ом. Чтобы заполнить числитель, умножьте его следующим образом: (2 x 0,866) x 200 футов x 1,1 Ом x 20A = 7620,8 Деление 7621 на 1000 футов дает падение напряжения 7,7 В. Это падение приемлемо для нашей цепи 480 В. № 12 упадет 11,8 В.Увеличьте длину до 500 футов, и этот № 10 упадет 18 В; № 12 падает 29V.

Пример 2: Определение сечения провода Проложите многожильный медный провод на 200 футов при 20 А. Вы можете найти размер провода, алгебраически изменив первое уравнение, или вы можете использовать следующий метод. Чтобы заполнить числитель, умножьте его следующим образом: 1,73 x 212,9 Ом x 200 футов x 20A = 89371,2. Разделив 89371,2 на допустимое падение напряжения 14,4 В, вы получите 6207 круговых милов. Таблица 8 NEC показывает, что провод № 12 удовлетворяет рекомендациям по падению напряжения.

Пример 3: Определение длины провода Проложите многожильный медный провод № 10 для цепи 20 А. Чтобы заполнить числитель, умножьте его следующим образом: 1000 x 14,4 В = 14400 Чтобы заполнить знаменатель, умножьте его следующим образом: (2 x 0,866) x 1,1 Ом x 20 A = 38,104 Наконец, разделите числитель на знаменатель следующим образом: 14400 / 38,1044377 футов. Если вы проложили провод № 12 для той же цепи, вы могли бы проложить его на 244 фута.

Пример 4: Определение максимальной нагрузки Проложите многожильный медный провод № 10 для цепи длиной 200 футов.Чтобы заполнить числитель, умножьте следующим образом: 1000 x 14,4 В = 14400 Чтобы заполнить знаменатель, умножьте следующим образом: (2 x 0,866) x 1,1 Ом x 200 футов = 381,04 Наконец, разделите числитель на знаменатель следующим образом: 14400 / 381.04437A Эта схема может выдерживать ток 37 А на каждом фазном проводе. 200-футовый № 2 может выдержать 24А.

* Число «0,866» предназначено только для 3-фазной схемы. Он преобразует число «2» в «1,732» (квадратный корень из 3). Для однофазных цепей не используйте в расчетах «0,866».* «CM» обозначает размер провода в круглых милах, как показано в таблице 8. * Чтобы рассчитать размер провода, используйте 12,9 в качестве K для меди и 21,2 в качестве K для алюминия. * «L» — длина одностороннего провода в футах. * «R» — сопротивление на 1000 футов. Используйте таблицу 9 NEC для проводки переменного тока. Если у вас нелинейные нагрузки, используйте столбец, который помогает учесть коэффициент мощности.

Уравнение 1: Расчет фактического падения напряжения в вольт Падение вольт = (2 x 0,866) x L x R x Амперы / 1000

Уравнение 2: Расчет сечения провода в круглых миллиметрах CM = 2 x K x L x А / допустимое падение напряжения В качестве альтернативы вы можете алгебраически манипулировать уравнением 1: R410002 Допустимое падение напряжения / 1.732 x L x А, а затем найдите размер провода в соответствии с его сопротивлением переменному току.

Уравнение 3: Расчет длины в футах Длина = 1000 x допустимое падение напряжения / (2 x 0,866) x R x амперы

Уравнение 4: Расчет нагрузки в амперах = 1000 x допустимое падение напряжения / (2 x 0,866) x R x L

Расчет падения напряжения — инструкции

Как рассчитать падение напряжения в медном проводе

Для расчета падения напряжения в медном проводе используйте следующую формулу:

Вольт = Длина x Ток x 0.017
Площадь

Вольт = Падение напряжения.
Длина = Общая длина провода в метрах (включая любой провод заземления).
Ток = Ток (в амперах) через провод.
Площадь = Площадь поперечного сечения меди в квадратных миллиметрах.

Банкноты


• Эта формула применима только к меди при 25 ° C, падение напряжения увеличивается с увеличением температуры провода, примерно при 0.4% на ° C.
• 0,017- Эта цифра применима только к меди.
• Площадь указана в квадратных миллиметрах меди, может возникнуть путаница в отношении номинального размера кабеля, поскольку некоторые производители указывают диаметр провода, а не площадь, некоторые даже включают изоляцию. Объяснение этого можно увидеть на , здесь .

Пример


В прицепе 50 м проводов сечением 4 квадратных мм. Сколько же падения напряжения при 20 А?

50 х 20 х 0.017 = 17 . Разделите это на 4 (площадь поперечного сечения провода): 17/4 = 4,25 В .

В этом примере падение составляет 4,25 В. Это означало бы, что если бы в передней части прицепа было 12 В, то сзади было бы только 7,75 В — свет был бы очень тусклым.

Это когда температура провода составляет 25ºC, если температура провода составляет 35ºC, то будет падение 4,42 В, то есть только 7,37 В в задней части прицепа.

Не забывайте, что ток, протекающий через провод, нагревает его, поэтому даже при температуре всего 25ºC провод будет более горячим, что приведет к увеличению падения напряжения.

Это значение будет увеличиваться до тех пор, пока охлаждающее воздействие окружающего воздуха на провод не уравновесит нагревательное воздействие тока.

Это демонстрирует, почему важно не экономить на размере провода при подключении прицепа.

электрические — Расчет падения напряжения (перем. Ток)

Я думаю, что 1000 в вашей формуле указано неверно и, вероятно, используется, когда длина указывается в километрах. Таким образом, в основном для однофазной нагрузки формула:

$$ V_d = 2I \ bigl (R \ cos (\ theta) + X \ sin (\ theta) \ bigr) L $$ Примечание: первые 2 предназначены для получения результата от источника к нагрузке и возврата, поскольку обратный кабель также влияет на падение напряжения.

Для трехфазной системы формула: $$ V_d = \ sqrt {3} I \ bigl (R \ cos (\ theta) + X \ sin (\ theta) \ bigr) L $$

Где:

\ $ \ begin {align} V_d & = \ text {падение напряжения в вольтах} \\ I & = \ text {ток в амперах} \\ R & = \ text {сопротивление проводимости в Ом / м} \\ X & = \ text {Индуктивное сопротивление проводника в Ом / м} \\ L & = \ text {длина цепи в один конец в метрах (или км / 1000 в вашей формуле)} \\ \ theta & = \ text {фазовый угол нагрузки} \\ PF & = \ cos (\ theta) \\ \ end {align} \\ \ $

Ответ

\ $ \ begin {align} ПФ & = 1 \\ \ theta & = \ arccos (PF) = 0 \\ \\ V_d & = 2I \ bigl (R \ cos (\ theta) + X \ sin (\ theta) \ bigr) L \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0.0001 \ cdot \ cos (0) + 0,0000704 \ cdot \ sin (0) \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0,0001 \ cdot1 + 0,0000704 \ cdot0 \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0,0001 \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot4.2 \\ V_d & = 8.4 \\ \\ \ end {align} \\ \ $

Таким образом, это дает падение напряжения для одного цикла 4,2 В и для двойного цикла 8,4 В.

Ответ с другим PF

Поскольку коэффициент мощности 1 в цепи переменного тока не является реальным примером, я покажу влияние коэффициента мощности 0.8 по падению напряжения:

\ $ \ begin {align} ПФ & = 0,8 \\ \ theta & = \ arccos (PF) = 36,8699 ° \\ \\ V_d & = 2I \ bigl (R \ cos (\ theta) + X \ sin (\ theta) \ bigr) L \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0,0001 \ cdot \ cos (36,8699 °) + 0,0000704 \ cdot \ sin (36,8699 °) \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0,0001 \ cdot0.8 + 0.0000704 \ cdot0.6 \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0,00008 + 0,00004224 \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot140 \ cdot \ bigl (0,00012224 \ bigr) \ cdot 300 \\ V_d & = 2 \ cdot5.13408 \\ V_d & = 10.26816 \\ \\ \ end {align} \\ \ $

Из-за реактивной мощности падение напряжения увеличится.

Что такое падение напряжения? Расширенный калькулятор падения напряжения

Расширенный калькулятор падения напряжения с решенными примерами и формулами

Что такое допустимое падение напряжения?

Согласно NEC (Национальный электротехнический кодекс) [ 210,19 A (1) ] FPN номер 4 и [ 215,2 A (3) ] FPN номер 2, допустимое падение напряжения для фидеров составляет 3% и приемлемое падение напряжения для конечной подсхемы и ответвленной цепи составляет 5% для правильной и эффективной работы.

Например, если напряжение питания 110В , то значение допустимого падения напряжения должно быть;

Допустимое падение напряжения = 110 x (3/100) = 3,3 В .

Мы уже обсуждали выбор кабеля подходящего размера для монтажа электропроводки в системе SI и британской системе с примерами. В приведенной выше статье мы также объяснили расчет падения напряжения и формулу падения напряжения, а также размер кабеля онлайн. калькулятор.

Сегодня мы собираемся поделиться подробным онлайн-калькулятором падения напряжения и формулами падения напряжения с решенными примерами.

Полезно знать : Прочтите полное описание под калькулятором падения напряжения для лучшего объяснения, так как есть много формул для расчета падения напряжения с примерами. кроме того, существует также очень простой метод для расчета падения напряжения .

Также проверьте

Калькулятор падения напряжения (расширенный)

Введите значение и нажмите «Рассчитать».Результат будет отображаться.

Примечание. Этот калькулятор также доступен в нашем бесплатном приложении для Android для электрических технологий

Формулы и расчет падения напряжения
Базовая формула падения напряжения .

Основная формула падения электрического напряжения:

V D = IR ……. (Закон Ома).

Где;

  • В D = Падение напряжения в вольтах.
  • I = Ток в амперах.
  • R = Сопротивление в Ом (Ом).

Но это не всегда так, и мы не можем запустить колесо системы с помощью этой базовой формулы (почему? См. Также примеры ниже).

Формула падения напряжения для стального кабелепровода.

Это приблизительная формула падения напряжения при единичном коэффициенте мощности, температуре кабеля 75 ° C и проводниках кабеля в стальном трубопроводе.

V D = (2 x k x Q x I x D) / см для однофазный .

V D = (1,732 x k x Q x I x D) / см для трехфазного .

Где;

  • Cm = площадь поперечного сечения проводника в круглых милах.
  • D = расстояние в одну сторону в футах.
  • I = ток цепи в амперах.
  • Q = соотношение сопротивления переменному току и сопротивления постоянному току (R AC / R / DC ) для проводника больше 2/0 для скин-эффекта.
  • k = удельное сопротивление = 21.2 для алюминия и 12,9 для меди.

Формула падения напряжения для однофазных цепей и цепей постоянного тока
Если длина провода указана в футах.

V D = I × R

V D = I × (2 × L × R / 1000)

Где;

  • В D = Падение напряжения в вольтах.
  • I = Ток провода в амперах.
  • R = Сопротивление провода в Ом (Ом) [Ом / кфут].
  • L = длина провода в футах.

А;

Когда длина провода указывается в метрах.

V D = I × (2 × L × R / 1000)

Где;

  • В D = Падение напряжения в вольтах.
  • I = Ток провода в амперах.
  • R = Сопротивление провода в Ом (Ом) [Ом / км].
  • L = длина провода в метрах.

Расчет падения напряжения и формулы для трехфазной системы.

V D = 0.866 × I × R

V D = 0,866 × I × 2 × L × R / 1000

V D = 0,5 × I × R

V D = 0,5 × I × 2 × L × R /1000

Где;

  • В D = Падение напряжения в вольтах.
  • I = Ток провода в амперах.
  • R = Сопротивление провода в Ом (Ом) [Ом / км или] или (Ом / кфут).
  • L = длина провода в метрах или футах.

Расчет площади поперечного сечения провода
Площадь поперечного сечения провода в килограммах круглых милов

A n = 1000 × d n 7 9030 = 0,025 × 92 (36- n ) / 19,5

Где;

  • An = площадь поперечного сечения провода калибра «n» в тысячах мил.
  • kcmil = килограмм круговых милов.
  • n = номер калибра.
  • d = диаметр квадрата проволоки в дюймах 2 .
Площадь поперечного сечения провода квадратных дюймов ( 2 ).

A n = (π / 4) × d n 2 = 0,000019635 × 92 ( — 906 п) /19,5

Где;

  • An = площадь поперечного сечения провода калибра «n» в квадратных дюймах ( 2 ).
  • n = номер калибра.
  • d = диаметр квадрата проволоки в дюймах 2 .
Площадь поперечного сечения провода в килограммах (килограммах круглых мил)

A n = (π / 4) × d n 2 = 0,012668 × 92 (36 -n) /19,5

Где;

  • An = площадь поперечного сечения провода калибра «n» в квадратных миллиметрах (мм 2 )
  • n = номер калибра.
  • d = диаметр квадрата проволоки в мм 2 .

Вы также можете прочитать: Как найти неисправности в кабелях? Неисправности кабеля, типы и причины

Расчет диаметра проволоки
  • Диаметр проволоки в дюймах

d n = 0,005 × 92 (36- ) 39 …. В дюймах

Где «n» — это номер калибра, а «d» — диаметр проволоки в дюймах.

  • Формула диаметра проволоки в мм (миллиметрах)

d n = 0,127 × 92 (36- n ) / 39 …. В миллиметрах (мм).

Где «n» — это номер калибра, а «d» — диаметр проволоки в мм.

Формула для расчета сопротивления провода

(1). R n = 0,3048 × 10 9 × ρ / (25.4 2 × A n )

Где;

  • R = Сопротивление проводов проводов (в Ом / кфут).
  • n = # размер датчика.
  • ρ = rho = удельное сопротивление в (Ом · м).
  • An = площадь поперечного сечения n # калибра в квадратных дюймах (в 2 ).

Или;

(2) . R n = 10 9 × ρ / A n

Где;

  • R = Сопротивление проводов проводов (в Ом / км).
  • n = # размер датчика.
  • ρ = rho = удельное сопротивление в (Ом · м).
  • An = площадь поперечного сечения n # калибра в квадратных миллиметрах ( 2 мм).

Падение напряжения в конце формулы и расчета кабеля.

V Конец = V — V D

Где;

  • В Конец = Напряжение питания на конце кабеля.
  • В = Напряжение питания.
  • В D = Падение напряжения в проводниках кабеля.

Формула расчета падения напряжения для круговых милов

В D = ρ P L I / A

Где;

  • В D = Падение напряжения в вольтах .
  • ρ = rho = удельное сопротивление в ( Ом — круговые милы / фут ).
  • P = Фазная постоянная = 2 (для однофазной системы и системы постоянного тока) и = √3 = 1,732 (для трехфазной системы)
  • L = длина провода в футах.
  • A = сечение провода в круглых милах.

Как рассчитать падение напряжения в медном проводнике (1 и 3 фазы)?

Падение напряжения в медных проводниках можно рассчитать с помощью приведенной ниже простой и простой формулы с помощью следующей таблицы.

V D = f x I… L = 100 футов

Где;

  • f = коэффициент из таблицы ниже.
  • I = ток в амперах.
  • L = длина проводника в футах (100 футов).

(См. Решенный пример под таблицей для ясного понимания)

Таблица: Как рассчитать падение напряжения по простой формуле падения напряжения

Решенный пример расчета падения напряжения

Пример : Предположим, однофазное напряжение 220 В , ток 5 А, длина проводника 100 футов, калибр провода (AWG) — № 8.Рассчитать падение напряжения?

Решение:

Падение напряжения можно найти по следующей формуле:
В D = f x I… L = 100 футов

Так как коэффициент для проводника # 8 AWG равен 0,125 (из вышеприведенной таблицы). Теперь поместим значения в приведенную выше формулу.

В D = 0,125 x 5A x (для 100 футов)

В D = Падение напряжения = 0,625 В.

PS: Вышеупомянутый калькулятор падения напряжения предоставляет приблизительные значения, и мы не гарантируем 100% точные результаты, поскольку результаты могут измениться в зависимости от реальных кабелей, проводов, проводов и различного удельного сопротивления материала, количества жил в проводе, температурные и погодные условия, трубы и ПВХ и т. д.

Похожие сообщения:

Калькулятор падения напряжения

Калькулятор падения напряжения на проводе / кабеле и способ его расчета.

Калькулятор падения напряжения

* при 68 ° F или 20 ° C

** Результаты могут отличаться для реальных проволок: различное удельное сопротивление материала и количество жил в проволоке.

*** Для провода длиной 2×10 футов длина провода должна составлять 10 футов.

Калькулятор калибра провода ►

Расчет падения напряжения

Расчет постоянного тока / однофазный

Падение напряжения V в вольтах (В) равно току провода I в амперах (А), умноженному на 2 умноженной на длину одностороннего провода L в футах (футах), умноженного на сопротивление провода на 1000 футов R в омах (Ом / kft), деленное на 1000:

В падение (В) = I провод (A) × R провод (Ом)

= I провод (A) × (2 × L (фут) × R провод (Ω / kft) /1000 (ft / kft) )

Падение напряжения V в вольтах (В) равно току провода I в амперах (А), умноженному на 2. длина одностороннего провода L в метрах (м), умноженная на сопротивление провода на 1000 метров R в омах (Ом / км), деленное на 1000:

В падение (В) = I провод (A) × R провод (Ом)

= I провод (A) × (2 × L (м) × R провод (Ом / км) /1000 (м / км) )

3-фазный расчет

Падение линейного напряжения V в вольтах (В) равно квадратному корню из 3-кратного значения тока провода I в амперах (A), умноженного на односторонняя длина провода L в футах (футах), умноженная на сопротивление провода на 1000 футов R в омах (Ω / kft), деленное на 1000:

В падение (В) = √3 × I провод (A) × R провод (Ом)

= 1.732 × I провод (A) × ( L (фут) × R провод (Ом / кВт) /1000 (фут / кВт) )

Падение линейного напряжения V в вольтах (В) равно квадратному корню из 3-кратного значения тока провода I в амперах (A), умноженного на длина одностороннего провода L в метрах (м), умноженная на сопротивление провода на 1000 метры R в омах (Ом / км) разделить на 1000:

В падение (В) = √3 × I провод (A) × R провод (Ом)

= 1.732 × I провод (A) × ( L (м) × R провод (Ом / км) /1000 (м / км) )

Расчет диаметра проволоки

Диаметр проволоки калибра n d n дюймов (дюймов) равен 0,005 дюйма, умноженному на 92 в степени 36 минус калибр n, деленное на 39:

d n (дюйм) = 0,005 дюйма × 92 (36- n ) / 39

Диаметр проволоки n калибра d n в миллиметрах (мм) равен 0.127 мм умножить на 92 в степени 36 минус число n, разделенное на 39:

d n (мм) = 0,127 мм × 92 (36- n ) / 39

Расчет площади поперечного сечения провода

Площадь поперечного сечения провода калибра n A n в килокруглых милах (kcmil) равна 1000 диаметрам квадратного провода d в ​​дюймах (дюймах):

A n (kcmil) = 1000 × d n 2 = 0.025 дюйм 2 × 92 (36- n ) / 19,5

Площадь поперечного сечения провода калибра n A n в квадратных дюймах (в дюймах 2 ) равно пи, деленному на 4 диаметра квадратной проволоки d в дюймах (дюймах):

A n (дюйм 2 ) = (π / 4) × d n 2 = 0,000019635 дюйм 2 × 92 (36- n ) / 19,5

Площадь поперечного сечения провода калибра n A n в квадратных миллиметрах ( мм 2 ) равно pi, деленному на 4, умноженное на диаметр квадратной проволоки d в миллиметрах (мм):

A n (мм 2 ) = (π / 4) × d n 2 = 0.012668 мм 2 × 92 (36- n ) /19,5

Расчет сопротивления проводов

Сопротивление провода калибра n R в омах на килофит (Ом / кфут) равно 0,3048 × 1000000000 удельному сопротивлению провода ρ дюймов. Ом-метр (Ом · м), разделенное на 25,4 2 , умноженное на площадь поперечного сечения A n в квадратных дюймах (в 2 ):

R n (Ом / kft) = 0,3048 × 10 9 × ρ (Ом · м) / (25.4 2 × A n 2 ) )

Сопротивление провода N калибра R в Ом на километр (Ом / км) равно 1000000000 удельному сопротивлению провода ρ дюймов ом-метры (Ом · м), разделенные на площадь поперечного сечения A n в квадратных миллиметрах (мм 2 ):

R n (Ом / км) = 10 9 × ρ (Ом · м) / A n (мм 2 )

AWG диаграмма

AWG # Диаметр
(дюйм)
Диаметр
(мм)
Площадь
(тыс. Км)
Площадь
(мм 2 )
0000 (4/0) 0.4600 11,6840 211.6000 107.2193
000 (3/0) 0,4096 10,4049 167.8064 85.0288
00 (2/0) 0,3648 9,2658 133.0765 67,4309
0 (1/0) 0,3249 8,2515 105,5345 53,4751
1 0,2893 7.3481 83,6927 42,4077
2 0,2576 6.5437 66,3713 33,6308
3 0,2294 5,8273 52,6348 26,6705
4 0,2043 5,1894 41,7413 21,1506
5 0,1819 4,6213 33.1024 16.7732
6 0,1620 4,1154 26,2514 13.3018
7 0,1443 3,6649 20,8183 10,5488
8 0,1285 3,2636 16,5097 8,3656
9 0,1144 2,9064 13.0927 6,6342
10 0.1019 2,5882 10,3830 5,2612
11 0,0907 2.3048 8,2341 4,1723
12 0,0808 2,0525 6.5299 3,3088
13 0,0720 1,8278 5,1785 2,6240
14 0,0641 1,6277 4.1067 2,0809
15 0,0571 1.4495 3,2568 1,6502
16 0,0508 1,2908 2,5827 1,3087
17 0,0453 1,1495 2,0482 1,0378
18 0,0403 1.0237 1,6243 0,8230
19 0.0359 0,9116 1,2881 0,6527
20 0,0320 0,8118 1.0215 0,5176
21 0,0285 0,7229 0,8101 0,4105
22 0,0253 0,6438 0,6424 0,3255
23 0,0226 0,5733 0.5095 0,2582
24 0,0201 0,5106 0,4040 0,2047
25 0,0179 0,4547 0,3204 0,1624
26 0,0159 0,4049 0,2541 0,128
27 0,0142 0,3606 0.2015 0,1021
28 0.0126 0,3211 0,1598 0,0810
29 0,0113 0,2859 0,1267 0,0642
30 0,0100 0,2546 0,1005 0,0509
31 0,0089 0,2268 0,0797 0,0404
32 0,0080 0,2019 0.0632 0,0320
33 0,0071 0,1798 0,0501 0,0254
34 0,0063 0,1601 0,0398 0,0201
35 0,0056 0,1426 0,0315 0,0160
36 0,0050 0,1270 0,0250 0,0127
37 0.0045 0,1131 0,0198 0,0100
38 0,0040 0,1007 0,0157 0,0080
39 0,0035 0,0897 0,0125 0,0063
40 0,0031 0,0799 0,0099 0,0050


См. Также

Формулы падения напряжения

— журнал IAEI

Время чтения: 4 минуты

Падение напряжения упоминается только в некоторых разделах NEC в качестве информационных примечаний, и его необходимо рассчитать в других разделах кода .Это разделы 210.19 (A) Информационная записка 4, 215.2 (A) (1) Информационная записка 2 и 3, 310.15 (A) (1) Информационная записка 1, 647.4 (D), 310.60 (B) Информационная записка 2, 455.6 ( A) Информационная записка и 695.7. Допустимая или требуемая величина падения напряжения может составлять от 1,5 до 15 процентов напряжения фидера или параллельной цепи. Максимум пять процентов обычно рекомендуется для схемы. Информационные примечания не являются обязательными требованиями Code , но являются пояснительным материалом, предназначенным только для информационных целей [см. 90.5 (С)].

Тем не менее, инструкции производителя по установке, которые должны соблюдаться в пункте 110.3 (B), часто требуют поддержания минимального номинального напряжения для того, чтобы конкретный тип используемого оборудования функционировал должным образом в соответствии с намерениями производителя, и быть внесенным в список признанной испытательной лабораторией электрооборудования. Для выполнения расчетов падения напряжения важно иметь следующую информацию: 1) коэффициент k, 2) длину фидера или ответвления цепи до нагрузки, 3) силу тока нагрузки в цепи и, конечно же, 4) напряжение цепи.Коэффициент k — это множитель, представляющий сопротивление постоянному току для проводника данного размера длиной 1000 футов и работающего при 75 ° C. Из этой информации пользователь кода может найти проводник минимального размера, необходимый для выдерживания нагрузки (измеряется в круглых милах или килограммах), и / или процент падения напряжения.

Приведенные здесь формулы основаны на значениях сопротивления проводников постоянному току, приведенных в таблице 8 главы 9 документа NEC , и считаются обычно приемлемыми для расчета падения напряжения.Таблица 8 основана на 75C / 167F и обеспечивает постоянную k-фактора 12,9 для меди и 21,2 для алюминиевых проводников. — См. Примечание ниже.

Например, чтобы найти коэффициент k, , вы умножаете сопротивление проводника на фут на круговой мил проводника. Помните, что в таблице 8 указано сопротивление в омах на 1000 футов. Для расчета падения напряжения при использовании медного провода обязательно выберите значение из столбца «Медь без покрытия», так как большинство медных проводников не имеют покрытия.«Покрытие» означает, что на медном проводнике есть олово или другой тип покрытия, которое изменяет значение его сопротивления. Если проводник «с покрытием», используйте значение сопротивления столбца «с покрытием». Помните, что «с покрытием» не относится к установке проводника. Обратите внимание на следующие примеры.

Для медного провода используйте сопротивление постоянному току, измеренное в омах, из главы 9, таблица 8:

Сопротивление постоянному току медного проводника 1000 тыс. См составляет 0.0129 Ом на 1000 футов.

(0,0129 Ом на 1000 футов, деленное на 1000
= 0,0000129 Ом на фут)

0,0000129 Ом на фут x 1000000 круглых милов = 12,9 k-фактор — для медного провода

Для алюминиевого провода сопротивление постоянному току, измеренное в омах на 1000 футов проводника из главы 9, таблица 8:

(0,0212 Ом на 1000 футов, деленное на 1000
= 0,0000212 Ом на фут)

0,0000212 Ом на фут x 1000000 круговых милов
= 21.2 k-фактор — для алюминиевой проволоки

Примечание. Важно отметить, что для нахождения коэффициента k вы умножаете сопротивление проводника на фут на круглые милы проводника. Для любого медного или алюминиевого проводника, указанного в таблице 8 главы 9, коэффициент k будет примерно равен 12,9 или очень близко к нему для меди и 21,2 или очень близко к нему для алюминия. Поэтому эти две величины выбраны в качестве постоянных значений k-фактора для медных или алюминиевых проводников без покрытия, работающих при температуре окружающей среды 75 ° C / 167F и номинальной силе тока.

Диапазон температур

75 ° C / 167 ° F часто используется в современных электрических цепях, поскольку большинство новых наконечников в электрораспределительном оборудовании и вспомогательном оборудовании рассчитаны на 75 ° C / 167 ° F; и проводники с номиналом 90C / 194F используются при допустимой нагрузке 75C из-за требований к заделке, установленных в 110.14 (C).

Используемая формула также обычно подходит для проводников
60C / 140F.

Падение напряжения рассчитывается для однофазных установок с учетом того, что ток будет возвращаться от нагрузки либо от нагрузки между фазой, либо между фазой и нейтралью; поэтому множитель 2 добавляется в формулу сопротивления проводника нагрузке и обратно.Это необходимо для замыкания цепи и устранения неисправности с учетом 250.122 (B), который будет обсуждаться позже.
В формуле для трехфазных установок в качестве множителя используется 1,732 вместо 2. Ток течет к нагрузке и обратно по фазным проводам.

После того, как было определено падение напряжения вольт , используйте приведенную ниже формулу, чтобы определить процент падения напряжения для цепи или системы.

Пример 1: падение напряжения 7,2 В ÷ 240 В (1 фаза) = падение напряжения 3%

Пример 2: падение напряжения 24 В ÷ 480 В L-L = падение напряжения 5%

Выберите формулу в зависимости от размера используемого проводника или максимального падения напряжения, приемлемого для AHJ.(3%, 5% и т. Д.)

ФОРМУЛ ПАДЕНИЯ НАПРЯЖЕНИЯ

Вольт упало

= 2 x длина проводников для нагрузки x коэффициент k (медь или алюминий) x I (сила тока) ÷ круглые милы или kcmils используемого проводника

Формулы падения напряжения для трехфазных сетей:

Вольт упало =

1,732 x Длина проводников для нагрузки x коэффициент k (медь или алюминий) x I (сила тока) ÷ Используемые круглые милы или киломилы проводника

Для определения размера в круглых миллиметрах требуется (однофазный) = 2 x L x K x I ÷ % падения напряжения

Для определения размера в круглых миллиметрах требуется (трехфазный) = 1.732 x L x K x I ÷ % падение напряжения

Эти формулы могут использоваться для определения максимальной длины проводника, необходимого для него диаметра в миле или падения напряжения в системе или цепи.

Формулы падения напряжения

Где
VD = фактическое падение напряжения (, а не процентов)
K = предполагаемое удельное сопротивление
L = длина пробега до нагрузки
I = нагрузка в амперах
CM = площадь провода, круглые милы

Примечание: Для трехфазных формул замените множитель 2 на 1.732.

2 x K x I x L ÷ CM = VD

2 x K x I x L ÷ VD = CM

(CM x VD) ÷ (2 x K x I) = максимальная длина

(CM x VD) ÷ (2 x K x L) = максимальный I (амперы)

Примечание: Чтобы найти коэффициент k, умножьте сопротивление на фут проводника на круговые милы.

  1. Перейти к главе 9, таблице 8
  2. Найдите 1 AWG
  3. В столбце Circular Mils для 1 AWG найдите 83690
  4. Перейти к сопротивлению постоянному току при 75 ° C (167 ° F), таблица 8
  5. Перейти к столбцу Ом / кФт.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *