+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

рассчитываем потери и уменьшаем затраты

Для работы электроприборов необходимы определённые параметры сети. Провода обладают сопротивлением электрическому току, поэтому при выборе сечения кабелей необходимо учитывать падение напряжения в проводах.

Изменение напряжения вдоль линии

Изменение напряжения вдоль линии

Что такое падение напряжения

При измерении в разных частях провода, по которому течёт электрический ток, по мере движения от источника к нагрузке наблюдается изменение потенциала. Причина этого – сопротивление проводов.

Закон Ома

Закон Ома

Как замеряется падение напряжения

Измерить падение можно тремя способами:

  • Двумя вольтметрами. Замеры производятся в начале и конце кабеля;
  • Поочерёдно в разных местах. Недостаток метода в том, что при переходах может измениться нагрузка или параметры сети, что повлияет на показания;
  • Одним прибором, подключённым параллельно кабелю. Падение напряжения в кабеле мало, а соединительные провода большой длины, что приводит к погрешностям.

Важно! Падение напряжения может составлять от 0,1В, поэтому приборы используются класса точности не ниже 0,2.

Принцип замера потерь напряжения в кабеле

Принцип замера потерь напряжения в кабеле

Сопротивление металлов

Электрический ток – это направленное движение заряженных частиц. В металлах это движение свободных электронов сквозь кристаллическую решётку, которая оказывает сопротивление этому движению.

В расчетах удельное сопротивление обозначается буквой “p” и соответствует сопротивлению одного метра провода сечением 1мм².

Для самых распространённых металлов, используемых для изготовления проводов, меди и алюминия, этот параметр равен 0,017 и 0,026 Ом*м/мм², соответственно.

Сопротивление отрезка провода вычисляется по формуле:

R=(p*l)/S, где:

  • l – длина,
  • S – сечение кабеля.

Например, 100 метров медного провода сечением 4мм² имеет сопротивление 0,425 Ом.

Если сечение S неизвестно, то, зная диаметр проводника, оно рассчитывается как:

S=(π*d²)/4, где:

  • π – число “пи” (3,14),
  • d – диаметр.

Как рассчитать потери напряжения

По закону Ома, при протекании тока через сопротивление на нём появляется разность потенциалов. В этом отрезке кабеля при токе 53А, допустимом при открытой прокладке, падение составит U=I*R=53А*0,425Ом=22,5В.

Для нормальной работы электрооборудования величина напряжения сети не должна выходить за пределы ±5%. Для бытовой сети 220В – это 209-231В, а для трёхфазной сети 380В допустимые пределы колебаний – 361-399В.

При изменении потребляемой мощности и тока в электрокабелях падение напряжения в токопроводящих жилах и его значение возле потребителя меняется. Эти колебания необходимо учитывать при проектировании электроснабжения.

Выбор по допустимым потерям

При расчёте потерь необходимо учитывать, что в однофазной сети используется два провода, соответственно, формула расчёта падения напряжения меняется:

U=I*R=(p*2l)/S.

В трёхфазной сети ситуация сложнее. При равномерной нагрузке, например, в электродвигателе, мощности, подключенные к фазным проводам, компенсируют друг друга, ток по нулевому проводу не идёт, и его длина в расчётах не учитывается.

Если нагрузка неравномерная, как в электроплитах, в которых может быть включен только один ТЭН, то расчёт ведётся по правилам однофазной сети.

В линиях большой протяжённости, кроме активного, учитывается также индуктивное и ёмкостное сопротивление.

Принцип образования потерь напряжения

Принцип образования потерь напряжения

Расчёт можно выполнить по таблицам или при помощи онлайн-калькулятора. В ранее приведённом примере в однофазной сети и при расстоянии 100 метров необходимое сечение составит не менее 16мм², а в трёхфазной – 10 мм².

Выбор сечения кабелей по нагреву

Ток, текущий через сопротивление, выделяет энергию Р, величина которой рассчитывается по формуле:

Р=I²*R.

В кабеле из предыдущего примера Р=40А²*0,425Ом=680Вт. Несмотря на длину, этого достаточно для того, чтобы нагреть проводник.

При нагреве провода свыше допустимой температуры изоляция выходит из строя, что приводит к короткому замыканию. Величина допустимого тока зависит от материала токопроводящей жилы, изоляции и условий прокладки. Для выбора необходимо пользоваться специальными таблицами или онлайн-калькулятором.

Как уменьшить падение напряжения в кабеле

При прокладке электропроводки на большие расстояния сечение кабеля, выбранное по допустимому падению напряжения, многократно превосходит выбор, сделанный по нагреву, что приводит к увеличению стоимости электроснабжения. Но есть способы уменьшить эти расходы:

  • Повысить потенциал в начале питающего кабеля. Возможно только это при подключении к отдельному трансформатору, например, в дачном посёлке или микрорайоне. При отключении части потребителей потенциал в розетках остальных окажется завышенным;
  • Установка возле нагрузки стабилизатора. Это требует расходов, но гарантирует постоянные параметры сети;
  • При подключении нагрузки 12-36В через понижающий трансформатор или блок питания располагать их рядом с потребителем.

Справка. При понижении напряжения растёт ток в сети, падение напряжения и необходимое сечение проводов.

Способы снижения потерь в кабеле

Кроме нарушения нормальной работы электроприборов, падение напряжения в проводах приводит к дополнительным расходам на электроэнергию. Уменьшить эти затраты можно разными способами:

  • Увеличение сечения питающих проводов. Этот метод требует значительных расходов на замену кабелей и тщательной проверки экономической целесообразности;
  • Уменьшение длины линии. Прямая, соединяющая две точки, всегда короче кривой или ломаной линии. Поэтому при проектировании сетей электроснабжения линии следует прокладывать максимально коротким прямым путём;
  • Снижение окружающей температуры. При нагреве сопротивление металлов растёт, и увеличиваются потери электроэнергии в кабеле;
  • Уменьшение нагрузки. Этот вариант возможен при наличии большого числа потребителей и источников питания;
  • Приведение cosφ к 1 возле нагрузки. Это уменьшает потребляемый ток и потери.

Важно! Все изменения необходимо отображать на схемах.

К сведению. Улучшение вентиляции в кабельных лотках и других конструкциях приводит к снижению температуры, сопротивления и потерь в линии.

Для достижения максимального эффекта необходимо комбинировать эти способы между собой и с другими методами энергосбережения.

Расчёт падения напряжения и потерь электроэнергии в кабеле важен при проектировании систем электроснабжения и кабельных линий.

Видео

amperof.ru

Расчет падения напряжения в кабеле: калькулятор онлайн, формула расчета

Производя расчет потерь электроэнергии в кабеле, важно учитывать его длину, сечения жил, удельное индуктивное сопротивление, подключение проводов. Благодаря этой справочной информации вы сможете самостоятельно произвести расчет падения напряжения.

Виды и структура потерь

Даже самые эффективные системы электроснабжения имеют те или иные фактические потери электроэнергии. Под потерями понимается разница между данной пользователям электрической энергией и по факту пришедшей к ним. Это связано с несовершенством систем и с физическими свойствами материалов, из которых они изготовлены.

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Самый распространенный вид потерь электроэнергии в электрических сетях связан с потерями напряжения от длины кабеля. Для нормирования финансовых трат и подсчета их действительной величины была разработана такая классификация:

  1. Технический фактор. Он связан с особенностями физических процессов и может изменяться под влиянием нагрузок, условных постоянных затрат и климатических обстоятельств.
  2. Затраты на использование дополнительного снабжения и обеспечение нужных условий для деятельности технического персонала.
  3. Коммерческий фактор. В эту группу входят отклонения из-за несовершенства контрольно-измерительных приборов и прочие моменты, провоцирующие недоучет электрической энергии.

Основные причины появления потери напряжения

Основная причина потери мощности в кабеле – это потери в линиях электропередач. На расстоянии от электростанции до потребителей не только рассеивается мощность электроэнергии, но и падает напряжение (что при достижении значения меньше минимально допустимого может спровоцировать не только неэффективную работу приборов, но и полную их неработоспособность.

Также потери в электрических сетях могут быть вызваны реактивной составляющей участка электрической цепи, то есть наличием на этих участках любых индуктивных элементов (это могут быть катушки связи и контуров, трансформаторы, дроссели низкой и высокой частот, электродвигатели).

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый – с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при последовательном подключении, наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Как рассчитать падение напряжения по длине кабеля в электрических сетях

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор – к асинхронному мотору, еще один – к газоразрядной лампе, еще один – к сварочному, еще один – для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Калькулятор расчета потерь напряжения в кабеле

Для любого кабеля расчет потерь напряжения можно произвести онлайн. Ниже приведен онлайн-калькулятор потерь в кабеле напряжения.

Калькулятор находится в разработке, в ближайшее время он станет доступным.

Расчет с применением формулы

Если вы желаете самостоятельно посчитать, каково падение напряжение в проводе, учитывая его длину и прочие факторы, влияющие на потери, можно использовать формулу расчета падения напряжения в кабеле:

ΔU, % = (Uн – U) * 100/ Uн,

где Uн – номинальное напряжение на входе в сеть;

U – напряжение на отдельном элементе сети (считают потери в процентах от номинала, имеющегося на входе напряжения).

Из этого можно вывести формулу расчета потерь электроэнергии:

ΔP, % = (Uн – U) * I * 100/ Uн,

где Uн – номинальное напряжение на входе в сеть;

I – фактический ток сети;

U – напряжение на отдельном элементе сети (считают потери в процентах от номинала, имеющегося на входе напряжения).

Таблица потерь напряжения по длине кабеля

Ниже приведены приблизительные падения напряжения по длине кабеля (таблица Кнорринга). Определяем необходимое сечение и смотрим значение в соответствующем столбце.


Жилы проводов при течении тока излучают тепло. Размер тока вместе с сопротивлением жил определяет степень потерь. Если иметь данные о сопротивлении кабеля и величине проходящего через них тока, получится узнать сумму потерь в контуре.

Таблицы не принимают во внимание индуктивное сопротивление, т.к. при использовании проводов оно чрезмерно мало и не может равняться активному.

Кто платит за потери электричества

Потери электроэнергии при передаче (если передавать ее на большие расстояния) могут быть существенными. Это влияет на финансовую сторону вопроса. Реактивную составляющую учитывают при определении общего тарифа использования номинального тока для населения.

Для однофазных линий она уже включена в стоимость, учитывая параметры сети. Для юридических лиц эта составляющая рассчитывается независимо от активных нагрузок и в предоставляемом счете указывается отдельно, по особому тарифу (дешевле, чем активная). Делается это ввиду наличия на предприятиях большого количество индукционных механизмов (например, электродвигателей).

Органы энергонадзора устанавливают допустимое падение напряжения, или норматив потерь в электрических сетях. За потери при передаче электроэнергии платит пользователь. Поэтому, с точки зрения потребителя, экономически выгодно подумать о том, чтобы снизить их, изменив характеристики электрической цепи.

odinelectric.ru

Расчет сетей по потерям напряжения / Публикации / Energoboard.ru

Разместить публикацию Мои публикации Написать
27 февраля 2013 в 10:00

Расчет сетей по потерям напряжения

Потребители электрической энергии работают нормально, когда на их зажимы подается то напряжение, на которое рассчитаны данный электродвигатель или устройство. При передаче электроэнергии по проводам часть напряжения теряется на сопротивление проводов и в результате в конце линии, т. е. у потребителя, напряжение получается меньшим, чем в начале линии.

Понижение напряжения у потребителя по сравнению с нормальным сказывается на работе токоприемника, будь то силовая или осветительная нагрузка. Поэтому при расчете любой линии электропередачи отклонения напряжений не должны превышать допустимых норм, сети, выбранные по току нагрузки и рассчитанные на нагрев, как правило, проверяют по потере напряжения.

Потерей напряжения ΔU называют разность напряжений в начале и конце линии (участка линии). ΔU принято определять в относительных единицах — по отношению к номинальному напряжению. Аналитически потеря напряжения определена формулой:

Расчет сетей по потерям напряжения

где P — активная мощность, кВт, Q — реактивная мощность, квар, ro — активное сопротивление линии, Ом/км, xo — индуктивное сопротивление линии, Ом/км, l — длина линии, км, Uном — номинальное напряжение, кВ.

Значения активного и индуктивного сопротивлений (Ом/км) для воздушных линий, выполненных проводом марки А-16 А-120 даны в справочных таблицах. Активное сопротивление 1 км алюминиевых (марки А) и сталеалюминевых (марки АС) проводников можно определить также по формуле:

Расчет сетей по потерям напряжения

где F — поперечное сечение алюминиевого провода или сечение алюминиевой части провода АС, мм2 (проводимость стальной части провода АС не учитывают).

Согласно ПУЭ («Правилам устройства электроустановок»), для силовых сетей отклонение напряжения от нормального должно составлять не более ± 5 %, для сетей электрического освещения промышленных предприятий и общественных зданий — от +5 до — 2,5%, для сетей электрического освещения жилых зданий и наружного освещения ±5%. При расчете сетей исходят из допустимой потери напряжений.

Учитывая опыт проектирования и эксплуатации электрических сетей, принимают следующие допустимые величины потери напряжений: для низкого напряжения — от шин трансформаторного помещения до наиболее удаленного потребителя — 6%, причем эта потеря распределяется примерно следующим образом: от станции или понизительной трансформаторной подстанции и до ввода в помещение в зависимости от плотности нагрузки — от 3,5 до 5 %, от ввода до наиболее удаленного потребителя — от 1 до 2,5%, для сетей высокого напряжения при нормальном режиме работы в кабельных сетях — 6%, в воздушных— 8%, при аварийном режиме сети в кабельных сетях – 10 % и в воздушных— 12 %.

Считают, что трехфазные трехпроводные линии напряжением 6—10 кВ работают с равномерной нагрузкой, т. е что каждая из фаз такой линии нагружена равномерно. В сетях низкого напряжения из-за осветительной нагрузки добиться равномерного ее распределения между фазами бывает трудно, поэтому там чаще всего применяют 4-проводную систему трехфазного тока 380/220 В. При данной системе электродвигатели присоединяют к линейным проводам, а освещение распределяется между линейными и нулевым проводами. Таким путем уравнивают нагрузку на все три фазы.

При расчете можно пользоваться как заданными мощностями, так и величинами токов, которые соответствуют этим мощностям. В линиях, которые имеют протяженность в несколько километров, что, в частности, относится к линиям напряжением 6—10 кВ, приходится учитывать влияние индуктивного сопротивления провода на потерю напряжения в линии.

Для подсчетов индуктивное сопротивление медных и алюминиевых проводов можно принять равным 0,32—0,44 Ом/км, причем меньшее значение следует брать при малых расстояниях между проводами (500—600 мм) и сечениях провода выше 95 мм2, а большее — при расстояниях 1000 мм и выше и сечениях 10—25 мм2.

Потеря напряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Расчет сетей по потерям напряжения

где первый член в правой части представляет собой активную, а второй — реактивную составляющую потери напряжения.

Порядок расчета линии электропередачи на потерю напряжения с проводами из цветных металлов с учетом индуктивного сопротивления проводов следующий:

  1. Задаемся средним значением индуктивного сопротивления для алюминиевого или сталеалюминевого провода в 0,35 Ом/км.
  2. Рассчитываем активную и реактивную нагрузки P, Q.
  3. Подсчитываем реактивную (индуктивную) потерю напряжения
    Расчет сетей по потерям напряжения
  4. Допустимая активная потеря напряжения определяется как разность между заданной потерей линейного напряжения и реактивной:
    Расчет сетей по потерям напряжения
  5. Определяем сечение провода s, мм2
    Расчет сетей по потерям напряжения
    где γ — величина, обратная удельному сопротивлению ( γ = 1/ro — удельная проводимость).
  6. Подбираем ближайшее стандартное значение s и находим для него по справочной таблице активное и индуктивное сопротивления на 1 км линии ( ro, хо).
  7. Подсчитываем уточненную величину потери напряжения по формуле
    Расчет сетей по потерям напряжения

Полученная величина не должна быть больше допустимой потери напряжения. Если же она оказалась больше допустимой, то придется взять провод большего (следующего) сечения и произвести расчет повторно.

Для линий постоянного тока индуктивное сопротивление отсутствует и общие формулы, приведенные выше, упрощаются.

Расчет сетей постоянного тока по потерям напряжения.

Пусть мощность P, Вт, надо передать по линии длиной l, мм, этой мощности соответствует ток
Расчет сетей по потерям напряжения

где U — номинальное напряжение, В.

Сопротивление провода линии в оба конца
Расчет сетей по потерям напряжения

где р — удельное сопротивление провода, s — сечение провода, мм2.

Потеря напряжения на линии
Расчет сетей по потерям напряжения

Последнее выражение дает возможность произвести проверочный расчет потери напряжения в уже существующей линии, когда известна ее нагрузка, или выбрать сечение провода по заданной нагрузке
Расчет сетей по потерям напряжения

Расчет сетей однофазного переменного тока по потерям напряжения.

Если нагрузка чисто активная (освещение, нагревательные приборы и т. п.), то расчет ничем не отличается от приведенного расчета линии постоянного тока. Если же нагрузка смешанная, т. е. коэффициент мощности отличается от единицы, то расчетные формулы принимают вид:
Расчет сетей по потерям напряжения

потери напряжения в линии
Расчет сетей по потерям напряжения

а необходимое сечение провода линии
Расчет сетей по потерям напряжения

Для распределительной сети 0,4 кВ, питающей технологические линии и другие электроприемники лесопромышленных или деревообрабатывающих предприятий, составляют ее расчетную схему и расчет потери напряжения ведут по отдельным участкам. Для удобства расчетов в таких случаях пользуются специальными таблицами. Приведем пример такой таблицы, где приведены потери напряжения в трехфазной ВЛ с алюминиевыми проводами напряжением 0,4 кВ.
Расчет сетей по потерям напряжения

Потери напряжения определены следующей формулой:
Расчет сетей по потерям напряжения

где ΔU—потеря напряжения, В, ΔUтабл — значение относительных потерь, % на 1 кВт км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт км.

Сегодня, в 00:54 15

7 декабря в 00:45 7

6 декабря в 22:52 11

5 декабря в 21:48 20

5 декабря в 20:35 18

4 декабря в 22:33 21

3 декабря в 15:03 20

2 декабря в 22:16 37

30 ноября в 14:25 33

4 июня 2012 в 11:00 74749

12 июля 2011 в 08:56 17933

14 ноября 2012 в 10:00 10043

25 декабря 2012 в 10:00 9792

28 ноября 2011 в 10:00 8665

21 июля 2011 в 10:00 8317

29 февраля 2012 в 10:00 7359

24 мая 2017 в 10:00 7303

16 августа 2012 в 16:00 6720

31 января 2012 в 10:00 4273

energoboard.ru

в кабеле при питании нагрузок шлейфом

Расчет падения напряжения при питании шлейфом
Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.

При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.

Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:

  • В групповых сетях — это сети освещения, розеточные сети.
  • В жилых домах этажные щиты запитаны по магистральным схемам.
  • В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
  • Шинопровод является примером питания потребителей по магистральной схеме.
  • Питание опор наружного освещения дорог.

Рассмотрим расчет падения напряжения на примере наружного освещения.

Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.

Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.

Столбы запитаны шлейфом, соответственно:

  • I4=Ilamp
  • I3=I4+Ilamp
  • I2=I3+Ilamp
  • I1=I2+Ilamp

Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).

Ток определяем по формуле:

Расчет падения напряжения при питании шлейфом. Формула расчета полного фазного тока

Формула расчета полного фазного тока

Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)

Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:
Соотношение линейного (междуфазного) и фазного напряжения

При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.

Расчет падения напряжения выполняется по формулам:

Расчет падения напряжения при питании шлейфом. Формула для расчета в трехфазной цепи

Формула расчета падения напряжения в трехфазной цепи


Расчет падения напряжения при питании шлейфом. Формула расчета падения напряжения в однофазной цепи

Формула расчета падения напряжения в однофазной цепи

Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности

Сопротивление участка рассчитывается по формуле
Формула для расчета сопротивления
ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии

Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников
Формула расчета удельного сопротивления
При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:

Расчет падения напряжения при питании шлейфом. Формула для расчета в трехфазной цепи

Формула расчета падения напряжения в трехфазной цепи


Формула расчета падения напряжения в однофазной цепи

Формула расчета падения напряжения в однофазной цепи

Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.

Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:
Формула расчета относительного падения напряжения
U — номинальное напряжение сети.

Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:

Формула расчета относительного падения напряжения в трехфазной сети

Формула расчета относительного падения напряжения в трехфазной сети


Формула расчета относительного падения напряжения в однофазной сети

Формула расчета относительного падения напряжения в однофазной сети

С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.

Примем следующие исходные данные:

  • Мощность лампы 250Вт, cosφ=0,85.
  • Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
  • Питание столбов осуществляется медным кабелем 3×10.
  • Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.

Для каждого столба в программе DDECAD создаём расчетную таблицу.

Заполняем данные для лампы в каждой расчетной таблице:
Расчет падения напряжения при питании шлейфом в программе DDECAD
Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:
Расчет падения напряжения при питании шлейфом в программе DDECAD
Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:
Расчет падения напряжения при питании шлейфом
Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:

  1. В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
  2. Нажимают «=».
  3. Переключаются на расчетную таблицу ЩНО.
  4. Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
  5. Нажимают «Enter».

Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.
Расчет падения напряжения при питании шлейфом в программе DDECAD

Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет автоматически пересчитано.


Подпишитесь и получайте уведомления о новых статьях на e-mail

email

Читайте также:

ddecad.ru

Расчет потери напряжения при постоянной нагрузке

Формулы

На рис. G27 ниже даны формулы, обычно используемые для расчета потери напряжения в цепи на километр длины. Если:

  • Ib: ток полной нагрузки, в амперах
  • L: длина кабеля, в километрах
  • R: сопротивление кабеля, в Ом/км, то:

  для меди, где S – площадь поперечного сечения проводника (жилы кабеля) в мм2

  для алюминия

Примечание: R можно пренебречь, если сечение проводника свыше 500 мм2.

  • X: индуктивное реактивное сопротивление кабеля в Ом/км.

Примечание: Х можно пренебречь для проводов сечением меньше 50 мм2.
При отсутствии любой другой информации, примите Х = 0,08 Ом/км.

  • φ: фазовый угол между напряжением и током рассчитываемой цепи, обычно имеет следующие значения:

  —  цепь освещения лампами накаливания: cos φ = 1;
  —  питание двигателя:
     •  при запуске: cos φ = 0,35;
     •  в режиме нормальной работы: cos φ = 0,8;

  • Un: напряжение между фазами;
  • Vn: напряжение фаза — нейтраль.

Для кабелепроводов и шинопроводов заводского изготовления, значения активного и реактивного сопротивлений даются производителем.


Рис. G27: Формулы расчета падения напряжения

Упрощенная таблица

Вычислений можно избежать, используя таблицу на рис.G28, которая дает, с достаточной точностью, значение потери межфазного напряжения на 1 км кабеля на 1 А, в зависимости от:

  • типа цепи: цепь питания двигателя, где значение cos φ близко к 0,8, или цепь освещения, где cos φ близок к единице;
  • типа кабеля: одножильный и трехжильный.

Потерю напряжения в кабеле можно вычислить, как:
К x Ib x L, где:
К – дано в таблице;
Ib – ток полной нагрузки в амперах;
L – длина кабеля в км.

Колонку «Питание двигателя», «cos φ = 0,35» на рис. G28 можно использовать для вычисления потери напряжения во время запуска двигателя (см. пример 1, рис. G28).

Cечение мм2 Однофазная цепь Симметричная трехфазная цепь
Питание двигателя Освещение  Питание двигателя Освещение 
Рабочий режим Запуск Рабочий режим Запуск
Cu AI cos φ = 0,8 cos φ = 0,35 cos φ = 1 cos φ = 0,8 cos φ = 0,35 cos φ = 1
1,5   24 10,6 30 20 9,4 25
2,5   14,4 6,4 18 12 5,7 15
4   9,1 4,1 11,2 8 3,6 9,5
6 10 6,1 2,9 7,5 5,3 2,5 6,2
10 16 3,7 1,7 4,5 3,2 1,5 3,6
16 25 2,36 1,15 2,8 2,05 1 2,4
25 35 1,5 0,75 1,8 1,3 0,65 1,5
35 50 1,15 0,6 1,29 1 0,52 1,1
50 70 0,86 0,47 0,95 0,75 0,41 0,77
70 120 0,64 0,37 0,64 0,56 0,32 0,55
95 150 0,48 0,30 0,47 0,42 0,26 0,4
120 185 0,39 0,26 0,37 0,34 0,23 0,31
150 240 0,33 0,24 0,30 0,29 0,21 0,27
185 300 0,29 0,22 0,24 0,25 0,19 0,2
240 400 0,24 0,2 0,19 0,21 0,17 0,16
300 500 0,21 0,19 0,15 0,18 0,16 0,13


Рис. G28: Потеря напряжения между фазами ∆U для цепи, в вольтах на 1 ампер на 1 км

Примеры

Пример 1 (см. рис. G29)

Трехжильный медный кабель сечением 35 мм2 длиной 50 м подает питание к двигателю Uн = 400 В, потребляющему:

  • 100 A при cos φ = 0,8 при нормальной постоянной нагрузке;
  • 500 A (5 In) при cos φ = 0,35 во время запуска.

Отклонение напряжения в начале кабеля, подсоединяющего двигатель (то есть на распределительном щите (рис. G30), который распределяет ток в 1000 А), составляет — 10 В линейного напряжения.

Каково отклонение напряжения на зажимах двигателя:

  • в рабочем режиме;
  • во время запуска.

Решение:

  • Отклонение напряжения на двигателе в рабочем режиме будет равно:

В таблице G28 дано соотношение 1 В/A/км, и согласно этому:
∆U для кабеля = 1 x 100 x 0,05 = 5 В
∆U общее = 10 + 5 = 15 В , то есть:

Это значение меньше, чем разрешенное (8%), и является приемлемым.

  • Потеря напряжения в кабеле во время запуска двигателя:

∆Uкабеля = 0,52 x 500 x 0,05 = 13 В

Из-за дополнительного тока, потребляемого во время запуска двигателя, падение напряжения на распределительном щите превысит 10 Вт.

Предположим, что ток, подаваемый на распределительный щит во время запуска двигателя, равен 900 + 500 = 1400 А, тогда отклонение напряжения на распределительном щите пропорционально увеличится:

∆U для распределительного щита = 14 В
∆U для кабеля двигателя = 13 В
∆U общее = 13+ 14 = 27 В, то есть:


Отклонение = 6,75% (напряжение на зажимах = 400 — 27 = 373 В) приемлемо во время запуска двигателя.

Рис. G29: Пример 1

Пример 2

(см. рис. G30):

Трехфазная четырехпроводная линия с медными проводниками сечением 70 мм2 и длиной 50 м проводит ток 150 A. Линия питает, кроме прочих нагрузок, 3 однофазных цепи освещения, каждая из которых состоит из медного провода сечением 2,5 мм2, длиной 20 м,и проводит ток 20 A.

Предполагается, что токи в кабельной линии сечением 70 мм2 являются симметричными, и три цепи освещения подсоединены к линии в одной и той же точке.

Какова потеря напряжения от ТП до конечных точек цепей освещения?

Решение:

  • Потеря напряжения в четырехпроводной линии:

На рис. G28 показано значение 0,55 В/A/км

∆U линии = 0,55 x 150 x 0,05 = 4,125 В (линейное)

Фазная потеря напряжения:

   В между фазой и нейтралью.

  • Потеря напряжения в каждой из однофазных цепей освещения:

∆U для однофазной цепи = 18 x 20 x 0,02 = 7,2 В

Таким образом, общая потеря напряжения будет равна:

7,2 + 2,38 = 9,6 В

Это значение является удовлетворительным, так как оно меньше, чем максимальная допустимая потеря напряжения, составляющая 6%.

Рис. G30: Пример 2

ru.electrical-installation.org

Удобно ли рассчитывать потери напряжения через моменты?

Практически в каждом проекте приходится рассчитывать потери напряжения. Существуют разные способы расчета, но все они, в принципе, основаны на одних и тех же формулах, поэтому и результаты должны быть одинаковые. Так ли это? Сейчас мы проверим.

Многие считают потери напряжения через моменты нагрузок и периодически мне задают вопросы о правильности расчетов в моих программах. Сейчас вы сами увидите, насколько эффективна моя программа по расчету потери напряжения и насколько она выдает достоверные результаты.

Что такое момент нагрузки?

М=P*L, где

М – момент нагрузки, кВт*м;

Р – мощность, кВт;

L – длина участка, м.

Чтобы рассчитать потери напряжения через момент нагрузки нам необходимо знать передаваемую мощность, длину участка и иметь вспомогательные таблицы для расчета.

Моменты для медных и алюминиевых кабелей в однофазной сети (220В):

Моменты для медных и алюминиевых кабелей в однофазной сети (220В)

Моменты для медных и алюминиевых кабелей в трехфазной сети (380В):

Моменты для медных и алюминиевых кабелей в трехфазной сети (380В)

Суть расчета заключается в том, чтобы посчитать момент и по таблице определить потери напряжения для нужного сечения кабеля.

А что если полученный момент нагрузки отличается от табличного значения? Придется округлять либо применять дополнительно интерполяцию.

А что если в таблице нет нужного сечения? Придется искать расширенные таблицы (возможно где-то есть).

Лично я никогда не считал потери напряжения через моменты, т.к. этот способ не удобен и не отвечает последним требованиям нормативных документов.

Сейчас мы проверим, правильно ли считает потери напряжения моя программа.

Я выбрал по 2 значения в каждой таблице с моментами. Думаю нет смысла проверять каждое значение.

Результаты проверки программы по расчету потери напряжения в однофазной сети:

Результаты проверки программы по расчету потери напряжения в однофазной сети

Наверняка вы заметили, что в моей программе результаты примерно на 10% выше. В чем же дело? Разность результатов обусловлена разными значениями удельного сопротивления меди и алюминия. Если взять другие значения, то получим практически точно такие же значения:

Удельное сопротивление 1Р 0,02/0,033 Ом*мм2/м

Я же использую значения, которые указаны в ГОСТ Р 50571.5.52-2011.

Результаты проверки программы по расчету потери напряжения в трехфазной сети:

Результаты проверки программы по расчету потери напряжения в трехфазной сети

Результаты с учетом уменьшенного значения удельного сопротивления:

Удельное сопротивление 3Р 0,02/0,033 Ом*мм2/м

Я думаю, теперь у вас не возникнут вопросы по поводу правильности расчета потери напряжения при помощи моих программ.

А вам удобно считать потери напряжения через моменты?

P.S. Ваша помощь позволяет вам получить не только мои программы, но и способствует написанию новых полезный статей, записи полезных видеороликов.

Советую почитать:

Вы можете пролистать до конца и оставить комментарий. Уведомления сейчас отключены.

220blog.ru

4.1. Определения

Падение напряжения – это геометрическая разность напряжений в начале и конце ЛЭП. Падение напряжения – это векторная величина.

Потеря напряжения – это алгебраическая разность тех же напряжений в начале и конце ЛЭП. Потеря напряжения – это скалярная величина.

Отклонение напряжения (отклонение от номинального значения) – это алгебраическая разность между фактическим напряжением в данный точке сети и номинальным этой же точке сети, при медленном его изменении:

Колебания напряжения – при быстром изменении (>1% в сек.).

В общем случае потеря в ЛЭП складывается из потерь в прямом и обратном проводах. Но в 3-х фазной ЛЭП с симметричной нагрузкой потеря напряжения в обратном проводе отсутствует, т.к. ток в нем (в нейтральном проводе) равен нулю.

4.2. Падение и потеря напряжения в 3-х фазной лэп с симметричной нагрузкой

На схеме замещения одной фазы электропередачи, приведенной на рис. 4.1:

r – активное сопротивление провода ЛЭП.

х – реактивное сопротивление провода.

zн – комплексное сопротивление нагрузки (характеризуется углом φ).

Рис. 4.1. Схема замещения одной фазы электропередачи.

Считаем — известно. Построим векторную диаграмму и найдем вектор(рис. 4.2).

Рис. 4.2. Векторная диаграмма электропередачи.

ас – падение напряжения.

аb – потеря напряжения.

На практике отрезок ad считают потерей напряжения, пренебрегая отрезком db.

— продольная слагающая падения напряжения (потеря).

,

.

— фазная потеря напряжения.

— линейная потеря. Умножим и разделим на :

.

Поперечная слагающая падения напряжения изображается отрезком cd:

— поперечная слагающая падения напряжения.

Модуль вектора напряжения в начале ЛЭП определяется по теореме Пифагора:

В расчетах распределительных сетей (сетей среднего 6-35 кВ и низкого напряжений) обычно учитывают только продольную составляющую напряжения.

4.3. Расчет потери напряжения в ответвлениях от 3-х фазной лэп

В трехфазном ответвлении с симметричной нагрузкой , поэтому потеря напряжения в контуре одной фазы (например В):

а). Двухфазное ответвление:

Рис. 4.3. Двухфазное ответвление от трехфазной ЛЭП.

Нагрузки фаз активны и равны между собой:иIB=IC..

Сечение проводов невелико, , поэтому— не учитывается.

— сечения и длины фазных и нейтрального проводников одинаковы.

Рис. 4.4. Построение вектора тока в нейтральном проводе и определение потери ΔUB.

Фазное напряжение UВ в начале ответвления по второму закону Кирхгофа:

,

.

Модули токов Ib и IN равны: Ib = IN, сопротивления rB = rNтакже равны.

Потеря напряжения в контуре фазы В (рис.4.4):

Однофазное ответвление (рис. 4.5).

Рис. 4.5. Однофазное ответвление.

Потеря напряжения: .

При прочих равных условиях потеря напряжения зависит от числа фаз ответвления:

— 3-х фазное ответвление – коэффициент 1 – самая малая потеря;

— 2-х фазное ответвление – коэффициент потери = 1,5;

— однофазное ответвление – коэффициент 2 – максимальная потеря.

4.4. Формулы потерь напряжения в 3-х фазной ЛЭП.

, Вольт;

С учетом размерностей величин, входящих в формулу: ,,:

.

Имеется ЛЭП постоянного сечения с несколькими нагрузками по длине (рис.4.6):

Рис. 4.6. ЛЭП С несколькими нагрузками по длине (магистральная ЛЭП).

Потеря напряжения в линии может быть определена исходя из мощностей отдельных участков Pi, Qiи длин этих участков Li, или мощностей нагрузок pi, qi и расстояний до источника питания li.

.

Если нагрузка равномерно распределена вдоль линии (рис.4.7), то для расчета потери напряжения ее считают сосредоточенной в середине нагруженного участка.

Рис.4.7. ЛЭП с нагрузкой, равномерно распределенной по длине.

Тогда ,где Рр = ∑ рi, Qp = ∑ qi.

В маломощных сетях напряжением ниже 1000 В часто и/или. В этом случае произведениемQ·x можно пренебречь и формула потери напряжения приобретает следующий вид:

, где

— удельное активное сопротивление проводников.

— длина ЛЭП.

На практике часто используется формула потери напряжения через момент мощности:

, где

— момент нагрузки (момент мощности),

— сечение.

;

— коэффициент зависящий от количества фаз, материала проводов и напря­же­ния сети. Например, для 3-х фазной сети, провода из алюминия, напряже­ние 380/220 В: .

Для однофазной сети 220 В , т.е в 6 раз меньше, чем для трехфазной:

мощность в 3 раза меньше, а потеря напряжения – в 2 раза больше из-за

дополнительной потери и в нейтральном проводе. Итого 3·2 = 6.

studfile.net

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *