как вычислить мощность тока формулой, как рассчитать ампераж
Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.
Как узнать силу тока, зная мощность и напряжения
Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.
Расчет мощностного показателя по амперам и ваттамУзнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом.
Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.
Расчет электроэнергии через электромощность и электронапряжениеФормулы для расчета тока в трехфазной сети
Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.
Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).
Формула подсчета электротока в трехфазной сетиКак рассчитать ампераж
Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.
Подсчет амперажаРасчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.
Подсчет потребляемой мощностиОнлайн калькулятор — закон Ома (ток, напряжение, сопротивление) + Мощность :: АвтоМотоГараж
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
Расчёт мощности по току и напряжению онлайн
Калькулятор расчёта мощности по току и напряжению
Данный калькулятор позволяет выполнить расчёт мощности по току и напряжению. Параметры необходимо вводить в базовых величинах, ток в амперах (А), напряжение в вольтах (В).
Формула расчёта мощности по току и напряжению
P = I*U ,
- P— мощность потребителя, Вт;
- I— cила тока, А;
- U— напряжение в сети, В;
Обращаем Ваше внимание, что приведённый выше онлайн калькулятор расчёта мощности, производит упрощённый расчёт мощности по току и напряжению, по упрощённой формуле. Онлайн расчёт данным способом позволяет, получить значения близкие к реальным.
Рекомендуем!
Формула расчёта мощности по току и напряжению для однофазной сети:
Однако, существуют формулы и для более точного расчёта. Если Вы обладаете, всеми необходимыми техническими характеристиками сети и устройства, то более точный расчёт мощности для однофазной сети, Вы можете произвести по формуле:
P = I*U*cosφ ,
- P— мощность потребителя, Вт;
- I— cила тока, А;
- U— напряжение в сети, В;
- cosφ -безразмерная величина, которая равна отношению активной мощности к полной (коэффициент мощности). По умолчанию значение cosφ равно 0,95 для бытовых электросетей и от 0,95 до 0,65 для промышленных.
Формула расчёта мощности по току и напряжению для трёхфазной сети:
P = 1,73*I*U*cosφ ,
- P— мощность потребителя, Вт;
- I— cила тока, А;
- U— напряжение в сети, В;
- cosφ -безразмерная величина, которая равна отношению активной мощности к полной (коэффициент мощности).
По умолчанию значение cosφ равно 0,95 для бытовых электросетей и от 0,95 до 0,65 для промышленных.
Примерные значения cosφ для некоторых типов оборудования:
- лампы накаливания — 1;
- обогреватели, электропечи, электроплиты и т.п. — 0,95;
- электродвигатели — 0,85 ..0,87;
- дрели, отрезные машинки и т.п. — 0,85 ..0,9;
- электродвигатели компрессоров, холодильников, стиральных машин и т.п. — 0,7…0,85
- компьютеры, телевизоры, СВЧ печи, кондиционеры, вентиляторы, энергосберегающие лампы — 0,5 ..0,8
Более точные значения cosφ зачастую можно найти в паспорте прибора или на бирке.
Наши ресурсы в социальных сетях, присоединяйтесь:
[ratings]
Понравилась статья? Поделиться с друзьями:
Формула расчета мощности электрического тока
При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.
Полная мощность и ее составляющие
В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).
Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).
Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.
Рис. 1. Треугольник мощностей (А) и напряжений (В)
В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:
- S = √ P 2 +Q 2 , – для полной мощности;
- и Q = U*I*cos φ , и P = U*I*sin φ – для реактивной и активной составляющих.
Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √ 3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).
Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.
Активная нагрузка
Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).
Емкостная нагрузка
Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.
Индуктивная нагрузка
Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.
Негативное воздействие реактивной нагрузки
В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.
Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.
Реактивная мощность воздействует на цепь следующим образом:
- не производит ни какой полезной работы;
- вызывает серьезные потери и нештатные нагрузки на электроприборы;
- может спровоцировать возникновение серьезной аварии.
Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.
Расчет потребляемой мощности
В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т. д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.
В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:
- обратившись к технической документации устройства;
- посмотрев это значение на наклейке задней панели; Потребляемая мощность прибора часто указывается на тыльной стороне
- воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.
Таблица значений средней потребляемой мощности
При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).
Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.
Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.
Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв потоку. Другие потребители при уборке отключены.
Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.
На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.
Что такое мощность в электричестве: просто о сложном
Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.
Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.
Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.
Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:
- включенными в сеть приборами;
- конструкцией проводов и кабелей;
- настройкой защитных устройств.
Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.
Как рассчитать электрическую мощность в быту
Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.
Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.
Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.
Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.
При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:
Как измерить электрическую мощность дома
Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.
Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.
В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.
Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.
Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.
Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:
- действующее напряжение;
- силу тока;
- угол сдвига фаз между векторами тока и напряжения.
Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.
Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.
Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.
Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.
Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.
Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.
Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго. Отвлекся. Не судите за это строго.
Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?
Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.
Формулы расчета мощности для однофазной и трехфазной схемы питания
В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.
Поэтому рассматриваем вначале наиболее простой вопрос.
Графики и формулы под однофазное напряжение
Как работает резистор
На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.
Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.
Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.
Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.
Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.
Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.
На резисторе не создается реактивных потерь.
Как работает индуктивность
Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.
Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.
Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:
- активной, обозначаемой индексом PL;
- реактивной QL.
Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.
Как работает конденсатор
Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.
График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.
Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.
Как работает реальная схема со всеми видами сопротивлений
В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.
Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.
На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.
В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.
Как работает схема трехфазного электроснабжения
На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.
Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.
В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.
Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.
В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.
А поскольку они все идентичные, то их просто утраивают.
Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:
Если пометить фазное выражение буквой ф. например Pф, томожно записать:
Аналогично будет вычисляться реактивная составляющая
Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.
Как учитывается трехфазная полная мощность
В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.
С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.
Старые аналоговые приборы показаны на этой картинке.
Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:
- ВА — (русское), VA (международное) вольтампер для полной величины мощности;
- Вт —(русское), var (международное) ватт —активной;
- вар (русское), var (международное) — реактивной.
Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.
Многие современные цифровые приборы способны осуществлять эту функцию автоматически.
Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.
Калькулятор мощности для своих
Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.
А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.
Иногда можно услышать такой простой вопрос: «какая мощность в розетке?». Ответ, как ни странно, чаще всего такой: 10 ампер. Или – 220 вольт. Понятно, что вопрос – дурацкий. Но и объяснение не лучше – «А на розетке так написано».
Мощность и ток
Если правильно отвечать на поставленный вопрос, то для читателей, прогуливающих в детстве уроки физики, можно сказать, что мощность электричества зависит от двух величин:
- величины напряжения;
- силы тока.
В общем, эти две величины определяют величину мощности как переменного, так и постоянного тока. Память может подсказать что-то типа: для участка цепи, для полной цепи. Это отголоски того же школьного учебника физики, где говорится о законе Ома.
Да, этот знаменитый закон и позволяет рассчитать мощность электрического тока. Конечно, школьная программа представляла этот закон для цепей постоянного тока, но суть от этого не меняется. Формула вечная и неизменная: P = U х I.
Перефразируя закон ома в простой язык, получаем простой ответ на вопрос о мощности в розетке: сила тока зависит от нагрузки.
Сила тока и приложенная нагрузка
Тривиальное понятие этого тезиса позволит не производить элементарных действий, постоянно совершаемых нами, или окружающими нас людьми:
- включать один электрический удлинитель в другой, втыкая в оба все доступные вилки от разных, иногда достаточно мощных, потребителей электроэнергии;
- подключать к севшему аккумулятору автомобиля другой, соединяя их проводами от старой электропроводки;
- наращивать провода от электрического чайника кабелем с витой парой;
- устанавливать в гараже нагреватель, мощностью 5 квт, подключая его к обыкновенной розетке.
Аналогичные примеры неграмотных действий можно приводить до бесконечности. Человеческая беспечность не знает границ. Чтобы больше не допускать подобных ошибок, давайте разберем как правильно производить расчет электрической мощности.
Чайник и электрическая мощность
Не забивая головы простейшими формулами (есть дела и поважнее этого), запомним простое соотношение, достаточное для применения его в быту. Точность его не соответствует формуле расчета, но позволяет помнить, что: 1 квт электроэнергии – это приблизительно 5 ампер тока в сети 220 вольт.
Таким образом, становится понятно, что электрический чайник, включенный в кухонную розетку, потребляет около 5 ампер тока. А лампа накаливания, мощностью 100 Вт – в десять раз меньше: 0,5 ампера. Конечно, такие примитивные знания нужны для домохозяек, расчет мощности электрического тока производится по формулам.
Необходимость расчетов мощности
Человек мало сталкивается с необходимостью проведения расчетов (мощностей постоянного электрического тока) в быту. Чаще всего такая необходимость возникает при ремонте автомобиля, где источником тока служит аккумулятор. Или какой-то продвинутый пользователь начинает подбирать новый кулер для своего процессора в компьютере.
Чаще возникает необходимость провести элементарные расчеты при ремонтных работах в квартире, при подборе сгоревшего блока питания и пр.
Расчет мощности электрического тока по формулам
Существует формула расчета электрического тока для однофазной и трехфазной сети. Вряд ли кто-то захочет и сможет ими воспользоваться – разбираться что такое cosφ при замене электрической проводки в доме или квартире нецелесообразно.
Реально можно произвести все необходимые расчеты в режиме онлайн. Интернет набит разными таблицами, соответствующими графиками и калькуляторами. Для очень нуждающихся читателей можно добавить, что сечение кабеля для осветительной сети — 1,5 кв. мм. А для электропитания розеток применяется кабель сечением 2,5 кв. мм.
Остальные расчеты, требующиеся при производстве электромонтажных работ в различных областях деятельности – лучше доверить специалистам, которые в своей работе используют различные приборы: амперметры, вольтметры, индикаторы фазы, измерители сопротивления изоляции, измерители сопротивления заземления и пр.
Ремонт и строительство домов и квартир, особенности расчетов
Чтобы произвести расчет электропроводки в квартире недостаточно произвести подбор сечения электрических проводов. В электрическом щите устанавливаются и электрические автоматы, и защитные устройства и электрический счетчик. Эти установочные изделия также подбираются и рассчитываются при разработке проекта электропитания, в котором производится также расчет количества и параметров устройств защитного заземления.
Для расчетов и подбора видов электропроводки, использующейся при изготовлении удлинителей, организации временных схем электропитания, необходимо понимать, что силовые кабели для однофазной и трехфазной цепи различны по количеству жил, условиям прокладки, токовым нагрузкам и прочим параметрам.
При использовании кабелей и проводов необходимо учитывать и материал изготовления токопроводящих жил.
Наличие в загородном доме, даче трехфазных потребителей электроэнергии, таких как скважинный насос, электродвигатели, сварочное оборудование, требует при подборе кабелей электропроводки учитывать их пусковые токи. А при выборе электрического счетчика электроэнергии – активную и реактивную составляющую в потребляемой мощности, если предполагается постоянная работа трехфазного оборудования.
“>
Формула мощности по току и напряжению схемы
Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.
Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.
Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв по току. Другие потребители при уборке отключены.
Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.
На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.
Содержание статьи
Что такое мощность в электричестве: просто о сложном
Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.
Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.
Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.
Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:
- включенными в сеть приборами;
- конструкцией проводов и кабелей;
- настройкой защитных устройств.
Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.
Как рассчитать электрическую мощность в быту
Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.
Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.
Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.
Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.
При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:
- силу тока I;
- приложенное напряжение U;
- сопротивление участка цепи R.
Как измерить электрическую мощность дома
Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.
Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.
В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.
Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.
Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.
Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:
- действующее напряжение;
- силу тока;
- угол сдвига фаз между векторами тока и напряжения.
Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.
Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.
Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.
Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.
Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.
Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.
Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.
Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?
Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.
Формулы расчета мощности для однофазной и трехфазной схемы питания
В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.
Поэтому рассматриваем вначале наиболее простой вопрос.
Графики и формулы под однофазное напряжение
Как работает резистор
На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.
Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.
Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.
Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.
Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.
Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.
График мгновенных значений активной мощности переменного тока на резистивном сопротивлении имеет вид повторяющихся положительных волн. Но за один период им совершается такая же работа, как и в цепях постоянного тока и напряжения.
На резисторе не создается реактивных потерь.
Как работает индуктивность
Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.
Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.
Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:
- активной, обозначаемой индексом PL;
- реактивной QL.
Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.
Как работает конденсатор
Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.
График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.
Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.
Как работает реальная схема со всеми видами сопротивлений
В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.
Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.
На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.
В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.
Косинус фи (cosφ) используется при анализе треугольника мощностей и сопротивлений, характеризует потери энергии.
Как работает схема трехфазного электроснабжения
На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.
Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.
В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.
Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.
В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.
А поскольку они все идентичные, то их просто утраивают.
Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:
Р = Рa+Рв+Рc
Если пометить фазное выражение буквой ф. например Pф, томожно записать:
P = 3Pф = 3Uф×Iф×cosφ
Аналогично будет вычисляться реактивная составляющая
Q = Qa+Qв+Qc
Или
Q = 3Qф = 3Uф×Iф×sinφ
Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.
S = √(P2+Q2)
Как учитывается трехфазная полная мощность
В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.
С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.
Старые аналоговые приборы показаны на этой картинке.
Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:
- ВА — (русское), VA (международное) вольтампер для полной величины мощности;
- Вт —(русское), var (международное) ватт —активной;
- вар (русское), var (международное) — реактивной.
Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.
Многие современные цифровые приборы способны осуществлять эту функцию автоматически.
Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.
Калькулятор мощности для своих
Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.
А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.
формула, расчёт силы тока, напряжения и сопротивления
Напряжение, сопротивление, ток и мощность.
Электричество само по себе невидимо, хотя от этого его опасность ничуть не меньше. Даже наоборот: как раз потому и опаснее. Ведь если бы мы его видели, как видим, например, воду, льющуюся из крана, то наверняка бы избежали множества неприятностей.
Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает. Но мы точно знаем: внутри вода. И если система исправно работает, то вода эта там находится под давлением. 2, 3 атмосферы, или сколько там? Неважно. Но давление там есть, иначе система бы не работала. Где-то гудят насосы, гонят воду в систему, создают это самое давление.
А вот наш провод электрический. Где-то далеко, на другом конце тоже гудят генераторы, вырабатывают электричество. И в проводе от этого тоже давление. Нет-нет, не давление, конечно, тут в этом проводе напряжение. Оно тоже измеряется, но в своих единицах: в вольтах.
Давит в трубах на стенки вода, никуда не двигаясь, ждет, когда найдется выход, чтобы ринуться туда мощным потоком. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение.
И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны. Что это за движение? Это ток. Электроны текут. И это движение, этот ток тоже имеет свою единицу измерения: ампер.
И еще есть сопротивление. Для воды это, образно говоря, размер отверстия в выпускном кране. Чем больше отверстие, тем меньше сопротивление движению воды. В проводах почти также: чем больше сопротивление провода, тем меньше ток.
Вот, как-то так, если образно представлять себе основные характеристики электричества. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R.
I – сила тока. Измеряется в амперах.
U – напряжение. Измеряется в вольтах.
R – сопротивление. Измеряется в омах.
Есть еще одно понятие – мощность, W. С ним тоже просто: W = U*I. Измеряется в ваттах.
Собственно, это вся необходимая и достаточная для нас теория. Из этих четырех единиц измерения в соответствии с вышеприведенными двумя формулами можно вывести некоторое множество других:
№ | Задача | Формула | Пример |
1 | Узнать силу тока, если известны напряжение и сопротивление. | I = U/R | I = 220 в / 500 ом = 0.44 а. |
2 | Узнать мощность, если известны ток и напряжение. | W = U*I | W = 220 в * 0.44 а = 96.8 вт. |
3 | Узнать сопротивление, если известны напряжение и ток. | R = U/I | R = 220 в / 0.44 а = 500 ом. |
4 | Узнать напряжение, если известны ток и сопротивление. | U = I*R | U = 0.44 а * 500 ом = 220 в. |
5 | Узнать мощность, если известны ток и сопротивление. | W = I 2 *R | W = 0.44 а * 0.44 а * 500 ом = 96.8 вт. |
6 | Узнать мощность, если известны напряжение и сопротивление. | W = U 2 /R | W = 220 в * 220 в / 500 ом = 96.8 вт. |
7 | Узнать силу тока, если известны мощность и напряжение. | I = W/U | I = 96.8 вт / 220 в = 0,44 а. |
8 | Узнать напряжение, если известны мощность и ток. | U = W/I | U = 96.8 вт / 0.44 а = 220 в. |
9 | Узнать сопротивление, если известны мощность и напряжение. | R = U 2 /W | R = 220 в * 220 в / 96. 8 вт = 500 ом. |
10 | Узнать сопротивление, если известны мощность и ток. | R = W/I 2 | R = 96.8 вт / (0,44 а * 0,44 а) = 500 ом. |
Ты скажешь: – Зачем мне это все надо? Формулы, цифры. Я ж не собираюсь заниматься расчетами.
А я так отвечу: – Перечитай предыдущую статью Электроснабжение. Основы.. Как можно быть уверенным, не зная простейших истин и расчетов? Хотя, собственно, в бытовом практическом плане наиболее интересна только формула 7, где определяется сила тока при известных напряжении и мощности. Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты.
Есть еще одно обстоятельство, о котором следует упомянуть в контексте этой статьи. В электроэнергетике используется так называемый “переменный” ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад. И эта смена направления движения – 100 раз в секунду.
Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.
Не будем вдаваться в подробности более глубоко, но все же: почему именно переменный, а не постоянный ток?
Вся проблема в передаче электроэнергии на большие расстояния. Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения.
Выход здесь только один: поднять напряжение. Седьмая формула говорит: I = W/U. Совершенно очевидно, что если мы будем подавать напряжение не 220 вольт, а 220 тысяч вольт, то сила тока уменьшится в тысячу раз. А это значит, что сечение проводов можно взять намного меньше.
В этой статье уже не раз я обмолвился о зависимости сечения проводника от силы протекаемого тока. О том, как определить допустимое значение, узнаем в следующей статье Допустимый длительный ток..
Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая – мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая – метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
Как рассчитать мощность электрического тока?
Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.
Понятие электрической мощности и способы ее расчета
С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.
В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.
Через напряжение и ток
Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I
- P – активная мощность;
- U – напряжение приложенное к участку цепи;
- I — сила тока, протекающего через соответствующий участок.
Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.
Через напряжение и сопротивление
Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:
I = U/R
Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:
P = U*(U/R)=U 2 /R
- P – величина нагрузки;
- U – приложенная разность потенциалов;
- R – сопротивление нагрузки.
Через ток и сопротивление
Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.
Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:
U=I*R
после того как выражение подставить в формулу мощности, получим:
P = (I*R)*I =I 2 *R
Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.
Полная мощность в цепи переменного тока
Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:
- S – полная мощность
- P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
- Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Также составляющие вычисляются через тригонометрические функции, так:
P = U*I*cosφ
Q = U*I*sinφ
что активно используется в расчете электрических машин.
Рис. 1. Треугольник мощностей
Пример расчета полной мощности для электродвигателя
Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.
Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:
В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:
Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.
Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.
Рис. 2. Шильд электродвигателя
Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:
- полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
- коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
- тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
- напряжение, при соединении обмоток треугольником составит 220 В;
- сила тока при том же способе соединения – 13,3 А.
С таким перечнем характеристик можно воспользоваться несколькими способами:
S = 1,732*220*13,3 = 5067 Вт
Чтобы найти искомую величину, сначала определяем активную составляющую:
P = Pполезная / КПД = 3000/0.8 = 3750 Вт
Далее полную по способу деления активной на коэффициент cos φ:
S = P/cos φ = 3750/0.74 = 5067 Вт
Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Рис. 3. Последовательная расчетная цепь
Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U 2 /R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Рис. 4. Параллельная схема подключения
Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
Формула напряжения тока
Электротехника как область науки, занимающаяся использованием электроэнергии, в том числе ее получением, распределением и учетом, оперирует значениями тока, напряжения, мощности и сопротивления. Это основные величины. Кроме этого, имеется множество других характеристик и понятий, но в рамках данной статьи будут рассматриваться именно эти основополагающие понятия.
Электрический ток
Согласно определению, ток представляет собой упорядоченное движение заряженных частиц в среде. Такими частицами могут быть свободные электроны или ионы, частицы вещества, в которых число протонов в ядре не равно количеству электронов, то есть имеющие определенный заряд, положительный или отрицательный. Электроток может быть постоянный или переменный.
Электрическое напряжение
Электрическое напряжение – это разность потенциалов на противоположных участках цепи. Точное определение понятия подразумевает работу по переносу электрического заряда между участками цепи.
Сопротивление
Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.
Мощность
Скорость преобразования, передачи и потребления электрической энергии определяется мощностью.
Взаимосвязь параметров электрической цепи
Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.
К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.
Формула напряжения тока закона Ома выглядит следующим образом:
Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.
Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:
- I – сила тока;
- U – напряжение;
- R – сопротивление.
Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.
Кроме закона Ома, используется формула расчета мощности:
Символом P здесь обозначена мощность тока.
Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.
Единицы измерения в формуле
Невозможно выполнять расчеты или измерения, не зная, какими величинами оперировать. Общепринятые обозначения, согласно международной системе измерения СИ:
- Напряжение – Вольт. Обозначается символом В или V в англоязычной литературе;
- Сила тока – Ампер. Обозначается символом А;
- Электрическое сопротивление – Ом. Используется обозначение Ом или Ohm;
- Электрическая мощность – Ватт. Обозначается как Вт или W.
Как работает закон в реальной жизни
Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.
Сила тока формула через мощность:
Сопротивление:
Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:
Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.
Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:
Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.
Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.
Облегчить расчеты можно, используя онлайн калькулятор.
Пример с обычной водой
Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.
Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.
По какой формуле определяется напряжение
Использование той или иной формулы напряжения электрического тока для вычисления зависит от того, какие величины известны:
- Ток и сопротивление – U=I∙R;
- Ток и мощность – U=P/I;
- Мощность и сопротивление – U=√P∙R
Различные используемые величины
Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:
- Кило – 1000;
- Мега – 1000000;
- Гига – 1000000000;
- Милли – 0.001.
Таким образом, получается:
- Киловольт (кВ) – тысяча вольт;
- Мегаватт (Мвт) – миллион ватт;
- Миллиом (мОм) – одна тысячная Ом;
- Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.
Как найти напряжение
Формула нахождения напряжения как разности потенциалов в электрическом поле:
U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.
Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:
U=A/q, где q – величина заряда.
Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.
Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.
Гидравлическая аналогия
Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:
- Источник питания – насос;
- Проводники – трубы;
- Электроток – движение воды.
Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.
Измерительные приборы
Для измерения параметров электрических цепей служат измерительные приборы:
Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.
Типичные напряжения
Для стандартизации и возможности использования различного оборудования в быту и технике применяются электрические сети со стандартными значениями:
- Бытовая сеть –220В;
- Бортовая сеть автомобиля – 12 или 24В;
- Батареи и аккумуляторы – 1.5, 3 или 9В.
Потенциал Гальвани
В электрохимии используется понятие потенциала Гальвани, который означает разность потенциала между различными фазами вещества, например, между электродом и электролитом, между электродами из разнородных металлов.
Видео
Особенности расчета мощности по току и напряжению
Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.
Как узнать силу тока, зная мощность и напряжения
Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.
Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.
Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.
Формулы для расчета тока в трехфазной сети
Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.
Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).
Как рассчитать ампераж
Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.
Расчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.
Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.
Как найти мощность тока — формулы с примерами расчетов
Определение
Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:
P=dA/dt
Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.
Электрическая мощность равна произведению тока на напряжение или:
P=UI
Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.
Формулы для расчётов цепи постоянного тока
Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:
P=UI
Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:
P=U 2 /R
Также можно выполнить расчет, зная ток и сопротивление:
P=I 2 *R
Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.
Для переменного тока
Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:
S=UI
Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.
P=UIcosФ
Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.
Q=UIsinФ
Или выразить из этого выражения:
И отсюда вычислить искомую величину.
Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:
А зная Uлинейное:
1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.
Тогда по аналогии чтобы найти P активную:
Определить реактивную мощность можно:
На этом теоретические сведения заканчиваются и мы перейдём к практике.
Пример расчёта полной мощности для электродвигателя
Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.
Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:
Тогда найти активную электрическую мощность можно по формуле:
P=Pна валу/n=160000/0,94=170213 Вт
Теперь можно найти S:
Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.
Расчет для параллельного и последовательного подключения
При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.
Здесь Iобщий равен:
На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:
И выделяется по:
Pна резисторе=UI=6*0,6=3,6 Ватта
Тогда при параллельном подключении в такой схеме:
Сначала ищем I в каждой ветви:
И выделяется на каждом по:
Или через общее сопротивление, тогда:
Все расчёты совпали, значит найденные значения верны.
Заключение
Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Также читают:
инструкция с формулой, таблицей и онлайн формой
Иногда можно услышать такой простой вопрос: «какая мощность в розетке?». Ответ, как ни странно, чаще всего такой: 10 ампер. Или – 220 вольт. Понятно, что вопрос – дурацкий. Но и объяснение не лучше – «А на розетке так написано».
Оглавление статьи:
Мощность и ток
Если правильно отвечать на поставленный вопрос, то для читателей, прогуливающих в детстве уроки физики, можно сказать, что мощность электричества зависит от двух величин:
- величины напряжения;
- силы тока.
В общем, эти две величины определяют величину мощности как переменного, так и постоянного тока. Память может подсказать что-то типа: для участка цепи, для полной цепи. Это отголоски того же школьного учебника физики, где говорится о законе Ома.
Рекомендуем портал опытных и начинающих электриков: https://electrikexpert.ru
Да, этот знаменитый закон и позволяет рассчитать мощность электрического тока. Конечно, школьная программа представляла этот закон для цепей постоянного тока, но суть от этого не меняется. Формула вечная и неизменная: P = U х I.
Перефразируя закон ома в простой язык, получаем простой ответ на вопрос о мощности в розетке: сила тока зависит от нагрузки.
Сила тока и приложенная нагрузка
Тривиальное понятие этого тезиса позволит не производить элементарных действий, постоянно совершаемых нами, или окружающими нас людьми:
- включать один электрический удлинитель в другой, втыкая в оба все доступные вилки от разных, иногда достаточно мощных, потребителей электроэнергии;
- подключать к севшему аккумулятору автомобиля другой, соединяя их проводами от старой электропроводки;
- наращивать провода от электрического чайника кабелем с витой парой;
- устанавливать в гараже нагреватель, мощностью 5 квт, подключая его к обыкновенной розетке.
Аналогичные примеры неграмотных действий можно приводить до бесконечности. Человеческая беспечность не знает границ. Чтобы больше не допускать подобных ошибок, давайте разберем как правильно производить расчет электрической мощности.
Чайник и электрическая мощность
Не забивая головы простейшими формулами (есть дела и поважнее этого), запомним простое соотношение, достаточное для применения его в быту. Точность его не соответствует формуле расчета, но позволяет помнить, что: 1 квт электроэнергии – это приблизительно 5 ампер тока в сети 220 вольт.
Таким образом, становится понятно, что электрический чайник, включенный в кухонную розетку, потребляет около 5 ампер тока. А лампа накаливания, мощностью 100 Вт – в десять раз меньше: 0,5 ампера. Конечно, такие примитивные знания нужны для домохозяек, расчет мощности электрического тока производится по формулам.
Необходимость расчетов мощности
Человек мало сталкивается с необходимостью проведения расчетов (мощностей постоянного электрического тока) в быту. Чаще всего такая необходимость возникает при ремонте автомобиля, где источником тока служит аккумулятор. Или какой-то продвинутый пользователь начинает подбирать новый кулер для своего процессора в компьютере.
Чаще возникает необходимость провести элементарные расчеты при ремонтных работах в квартире, при подборе сгоревшего блока питания и пр.
Расчет мощности электрического тока по формулам
Существует формула расчета электрического тока для однофазной и трехфазной сети. Вряд ли кто-то захочет и сможет ими воспользоваться – разбираться что такое cosφ при замене электрической проводки в доме или квартире нецелесообразно.
Реально можно произвести все необходимые расчеты в режиме онлайн. Интернет набит разными таблицами, соответствующими графиками и калькуляторами. Для очень нуждающихся читателей можно добавить, что сечение кабеля для осветительной сети — 1,5 кв. мм. А для электропитания розеток применяется кабель сечением 2,5 кв. мм.
Остальные расчеты, требующиеся при производстве электромонтажных работ в различных областях деятельности – лучше доверить специалистам, которые в своей работе используют различные приборы: амперметры, вольтметры, индикаторы фазы, измерители сопротивления изоляции, измерители сопротивления заземления и пр.
Ремонт и строительство домов и квартир, особенности расчетов
Чтобы произвести расчет электропроводки в квартире недостаточно произвести подбор сечения электрических проводов. В электрическом щите устанавливаются и электрические автоматы, и защитные устройства и электрический счетчик. Эти установочные изделия также подбираются и рассчитываются при разработке проекта электропитания, в котором производится также расчет количества и параметров устройств защитного заземления.
Для расчетов и подбора видов электропроводки, использующейся при изготовлении удлинителей, организации временных схем электропитания, необходимо понимать, что силовые кабели для однофазной и трехфазной цепи различны по количеству жил, условиям прокладки, токовым нагрузкам и прочим параметрам.
При использовании кабелей и проводов необходимо учитывать и материал изготовления токопроводящих жил.
Наличие в загородном доме, даче трехфазных потребителей электроэнергии, таких как скважинный насос, электродвигатели, сварочное оборудование, требует при подборе кабелей электропроводки учитывать их пусковые токи. А при выборе электрического счетчика электроэнергии – активную и реактивную составляющую в потребляемой мощности, если предполагается постоянная работа трехфазного оборудования.
Удачи!
Фото
голос
Рейтинг статьи
Расчет одно- и трехфазных параметров
Вы можете спросить: «Что такое константа?» Пример постоянной, с которой вы хорошо знакомы, — это число пи (π), которое получается делением длины окружности на ее диаметр. Независимо от длины окружности и диаметра соответствующего круга, их соотношение всегда равно пи. Вы можете использовать константы, относящиеся к определенным одно- и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Посмотрим, как это сделать.
Однофазные расчеты
Базовая электрическая теория говорит нам, что для однофазной системы
кВт = (В × I × PF) ÷ 1000.
Для простоты предположим, что коэффициент мощности (PF) равен единице. Таким образом, приведенное выше уравнение становится
.кВт = (В × I) ÷ 1000.
Решая относительно I, уравнение принимает вид
I = 1000 кВт ÷ В (Уравнение 1)
Теперь, если мы посмотрим на часть этого уравнения «1000 ÷ V», вы увидите, что, вставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или постоянная), которую можно использовать для умножения «кВт», чтобы получить потребляемый ток этой нагрузки при соответствующем напряжении.
Например, константа для расчета 120 В составляет 8,33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится
I = 8,33 кВт .
Итак, если у вас нагрузка 10 кВт, вы можете рассчитать потребляемый ток как 83,3 А (10 × 8,33). Если у вас есть оборудование, потребляющее 80 А, вы можете рассчитать относительный размер необходимого источника питания, который составляет 10 кВт (80 ÷ 8,33).
Таблица 1. Константы, используемые в однофазных системах
Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .
Трехфазные расчеты
Для трехфазных систем мы используем следующее уравнение:
кВт = (В × I × PF × 1,732) ÷ 1000.
Опять же, принимая единицу PF и решая это уравнение для «I», вы получаете:
I = 1000 кВт ÷ 1,732 В.
Таблица 2. Константы, используемые в трехфазных системах
Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите это, вставив соответствующее трехфазное напряжение для «V» и умножив его на 1.732, вы можете затем разделить это количество на «1000», чтобы получить конкретное число (или константу), которое вы можете использовать для умножения «кВт», чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из вышеуказанного расчета.
Мощность
Количественная работа связана с силой, вызывающей смещение. Работа не имеет ничего общего с количеством времени, в течение которого эта сила вызывает смещение.Иногда работа выполняется очень быстро, а иногда — довольно медленно. Например, скалолазу требуется ненормально много времени, чтобы поднять свое тело на несколько метров вдоль скалы. С другой стороны, турист (который выберет более легкий путь в гору) может поднять свое тело на несколько метров за короткий промежуток времени. Эти два человека могут выполнять одинаковый объем работы, но путешественник выполняет ее значительно быстрее, чем скалолаз. Величина, связанная со скоростью выполнения определенного объема работы, называется мощностью.У туриста номинальная мощность на выше, чем у скалолаза.Мощность — это скорость выполнения работы. Это соотношение работы / времени. Математически это вычисляется с использованием следующего уравнения.
Мощность = Работа / времяили
P = Вт / т
Стандартная метрическая единица измерения мощности — Вт . Как следует из уравнения мощности, единица мощности эквивалентна единице работы, деленной на единицу времени.Таким образом, ватт эквивалентен джоулям в секунду. По историческим причинам термин лошадиных сил иногда используется для описания мощности, выдаваемой машиной. Одна лошадиная сила эквивалентна примерно 750 Вт.
Большинство машин спроектировано и построено для работы с объектами. Все машины обычно характеризуются номинальной мощностью. Номинальная мощность указывает скорость, с которой эта машина может работать с другими объектами. Таким образом, мощность машины — это соотношение работы / времени для этой конкретной машины.Автомобильный двигатель — это пример машины, которой задана номинальная мощность. Номинальная мощность относится к тому, насколько быстро автомобиль может разгонять автомобиль. Предположим, что двигатель мощностью 40 лошадиных сил может разогнать автомобиль от 0 миль / час до 60 миль / час за 16 секунд. Если бы это было так, то автомобиль с четырехкратной мощностью в лошадиных силах мог бы выполнять такой же объем работы за четверть времени. То есть 160-сильный двигатель мог разогнать тот же автомобиль с 0 миль / час до 60 миль / час за 4 секунды. Дело в том, что при одинаковом объеме работы мощность и время обратно пропорциональны.Уравнение мощности предполагает, что более мощный двигатель может выполнять такой же объем работы за меньшее время.
Человек — это также машина с номинальной мощностью . Некоторые люди более властны, чем другие. То есть некоторые люди способны выполнять тот же объем работы за меньшее время или больше за то же время. Обычная физическая лаборатория включает в себя быстрый подъем по лестнице и использование информации о массе, росте и времени для определения личных способностей ученика.Несмотря на диагональное движение по лестнице, часто предполагается, что горизонтальное движение является постоянным, и вся сила от ступенек используется для подъема ученика вверх с постоянной скоростью. Таким образом, вес ученика равен силе, которая действует на ученика, а высота лестницы — это смещение вверх. Предположим, что Бен Пумпинирон поднимает свое 80-килограммовое тело по 2,0-метровой лестнице за 1,8 секунды. Если бы это было так, то мы могли бы вычислить номинальную мощность Бена .Можно предположить, что Бен должен приложить к лестнице нисходящую силу 800 Ньютон, чтобы поднять свое тело. Поступая таким образом, лестница толкала тело Бена вверх с достаточной силой, чтобы поднять его тело вверх по лестнице. Также можно предположить, что угол между силой лестницы на Бена и смещением Бена равен 0 градусов. Используя эти два приближения, можно определить номинальную мощность Бена, как показано ниже.
Номинальная мощность Бена — 871 Вт. Он вполне себе лошадей .
Другая формула мощностиВыражение для мощности — работа / время. А поскольку выражение для работы — это сила * смещение, выражение для мощности можно переписать как (сила * смещение) / время. Поскольку выражение для скорости — это смещение / время, выражение для мощности можно еще раз переписать как «сила * скорость». Это показано ниже.
Это новое уравнение мощности показывает, что мощная машина одновременно сильна (большая сила) и быстра (большая скорость).Мощный автомобильный двигатель — сильный и быстрый. Мощная сельскохозяйственная техника — прочная и быстрая. Сильный тяжелоатлет силен и быстр. Сильный лайнсмен футбольной команды силен и быстр. Машина , которая достаточно сильна, чтобы приложить большую силу, чтобы вызвать смещение за небольшой промежуток времени (то есть большую скорость), является мощной машиной.
Проверьте свое понимание
Используйте свое понимание работы и силы, чтобы ответить на следующие вопросы.По завершении нажмите кнопку, чтобы просмотреть ответы.
1. Два студента-физика, Уилл Н. Эндейбл и Бен Пумпинирон, в зале для тяжелой атлетики. Уилл поднимает 100-фунтовую штангу над головой 10 раз за одну минуту; Бен поднимает 100-фунтовую штангу над головой 10 раз за 10 секунд. Какой студент больше всего работает? ______________ Какой ученик дает больше всего энергии? ______________ Объясните свои ответы.
2.Во время физической лаборатории Джек и Джилл взбежали на холм. Джек вдвое массивнее Джилл; тем не менее, Джилл преодолевает то же расстояние за половину времени. Кто работал больше всего? ______________ Кто доставил больше всего энергии? ______________ Объясните свои ответы.
3. Уставшая белка (масса около 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см, чтобы выполнить работу всего на 0,50 Дж.Если уставшая белка проделает всю эту работу за 2 секунды, то определите ее мощность.
4. Выполняя подтягивание , студентка-физик поднимает свое тело весом 42,0 кг на расстояние 0,25 метра за 2 секунды. Какую силу развивают бицепсы ученика?
5.Ежемесячный счет за электроэнергию в вашей семье часто выражается в киловатт-часах. Один киловатт-час — это количество энергии, доставленное потоком 1 киловатт электроэнергии за один час. Используйте коэффициенты преобразования, чтобы показать, сколько джоулей энергии вы получаете, покупая 1 киловатт-час электроэнергии.
6. Эскалатор используется для перемещения 20 пассажиров каждую минуту с первого этажа универмага на второй.Второй этаж находится на высоте 5,20 метра от первого этажа. Средняя масса пассажира — 54,9 кг. Определите требуемую мощность эскалатора, чтобы переместить это количество пассажиров за это время.
Как рассчитать по уравнению Ватт
Обновлено 22 декабря 2020 г.
Крис Дезил
Ватты — это единицы измерения мощности в системе СИ (метрические), и вычислить мощность обычно не сложно.Однако есть два способа сделать это, в зависимости от того, говорите ли вы о механической или электрической энергии.
Уравнение Ватта для электрической цепи учитывает напряжение в цепи В , измеренное в вольтах, и ток I , измеренный в амперах, проходящий через нее. В механике определение мощности — это скорость выполнения работы Вт . Он определяется как W / t , где t — время, необходимое для завершения работы.Чтобы получить результат в ваттах, работу необходимо выражать в джоулях, а время — в секундах.
Что такое ватт?
Понятие мощности было введено Джеймсом Ваттом, шотландским изобретателем, более известным своими работами над паровыми двигателями. Он задумал мощность как произведение силы F и скорости v , и это определение мощности до сих пор остается в силе. Другими словами, если вы продолжаете прикладывать силу F к телу, пока оно движется со скоростью v , затраченная мощность составит
P = F × v
Ватт провел все свои измерения. используя английские единицы измерения, и изобрел мощность, которую он определил как мощность, необходимую для подъема груза весом 33000 фунтов на один фут каждую минуту.
Когда международное научное сообщество приняло метрическую систему, ватт, будучи единицей работы или энергии с течением времени, стал равен джоуля в секунду. Поскольку работа W равна силе F , умноженной на расстояние d , джоуль равен ньютон-метру, потому что ньютоны — это единицы силы. Таким образом, 1 ватт равен 1 ньютон-метру в секунду.
Уравнение Ватт в механике
Вы можете использовать любое из следующих уравнений для расчета мощности в ваттах, при условии, что все величины выражены в метрических единицах MKS (метры, килограммы, секунды).
P = F × v \\ P = \ frac {W} {t}
Если вы проводите измерения в системе CGS (сантиметры, граммы, секунды), сила выражается в динах, а работа — в эргах. Вы должны преобразовать их в ньютоны и джоули, чтобы получить результат в ваттах. Вот коэффициенты пересчета:
Результат можно также выразить в киловаттах (кВт). Формула киловатта: 1 кВт = 1000 Вт.
Вт как единицы электрической мощности
Формула мощности для цепи с напряжением В и током I составляет
P = V × I
Вы можете использовать закон Ома, чтобы выразить либо напряжение, либо ток через сопротивление R в цепи: В = I × R .2} {R}
После проведения измерений вам не нужно делать расчеты самостоятельно. Вы можете воспользоваться онлайн-калькулятором. В Ресурсах есть один такой калькулятор.
Чтобы получить результат в ваттах, вы должны выразить напряжение в вольтах, ток в амперах и сопротивление в омах. Таким образом, ватт можно выразить в следующих единицах:
1 ватт = 1 вольт-ампер = 1 ампер 2 -ohm = 1 вольт 2 / ohm.
Мощность | Физика
Цели обучения
К концу этого раздела вы сможете:
- Рассчитайте мощность, рассчитав изменения энергии во времени.
- Изучите энергопотребление и расчеты стоимости потребляемой энергии.
Что такое сила?
Рис. 1. Эта мощная ракета космического корабля «Индевор» действительно работала и потребляла энергию с очень высокой скоростью. (кредит: НАСА)
Power — это слово вызывает в воображении множество образов: профессиональный футболист, отталкивающий своего противника, драгстер, ревущий от стартовой линии, вулкан, выбрасывающий лаву в атмосферу, или взлетающая ракета, как на рисунке 1.
Эти образы силы объединяет быстрое выполнение работы, что соответствует научному определению мощности ( P ) как скорости выполнения работы.
Мощность
Мощность — это скорость выполнения работы.
[латекс] \ displaystyle {P} = \ frac {W} {t} \\ [/ latex]
Единица измерения мощности в системе СИ — Вт (Вт), где 1 ватт равен 1 джоуль в секунду (1 Вт = 1 Дж / с).
Поскольку работа — это передача энергии, мощность — это также скорость, с которой энергия расходуется.Например, лампочка мощностью 60 Вт потребляет 60 Дж энергии в секунду. Большая мощность означает большой объем работы или энергии, выработанный за короткое время. Например, когда мощный автомобиль быстро разгоняется, он выполняет большой объем работы и потребляет большое количество топлива за короткое время.
Расчет мощности по энергии
Пример 1. Расчет мощности для подъема по лестнице
Какова выходная мощность для женщины весом 60,0 кг, которая преодолевает лестничный пролет высотой 3,00 м за 3,50 с, начиная с состояния покоя, но имея конечную скорость 2?00 м / с? (См. Рисунок 2.)
Рис. 2. Когда эта женщина бежит наверх, начиная с отдыха, она превращает химическую энергию, исходную из пищи, в кинетическую энергию и гравитационную потенциальную энергию. Ее выходная мощность зависит от того, как быстро она это сделает.
Стратегия и концепция
Работа, переходящая в механическую энергию, составляет Вт = KE + PE. Внизу лестницы мы берем как KE, так и PE g как исходный ноль; таким образом, [латекс] W = \ text {KE} _ {\ text {f}} + \ text {PE} _ {\ text {g}} = \ frac {1} {2} mv _ {\ text {f} } ^ 2 + mgh \\ [/ latex], где h — высота лестницы по вертикали.2 \ right) \ left (3.00 \ text {m} \ right)} {3.50 \ text {s}} \\\ text {} & = & \ frac {120 \ text {J} +1764 \ text {J} } {3.50 \ text {s}} \\\ text {} & = & 538 \ text {W} \ end {array} \\ [/ latex]
Обсуждение
Женщина выполняет 1764 Дж работы, чтобы подняться по лестнице, по сравнению со всего лишь 120 Дж, чтобы увеличить свою кинетическую энергию; таким образом, большая часть ее мощности требуется для подъема, а не для ускорения.
Впечатляет, что полезная выходная мощность этой женщины чуть меньше 1 лошадиных сил (1 л.с. = 746 Вт)! Люди могут генерировать более лошадиные силы с помощью мышц ног в течение коротких периодов времени, быстро превращая доступный в крови сахар и кислород в объем работы.(Лошадь может выдавать 1 л.с. в течение нескольких часов подряд.) Как только кислород истощается, выходная мощность снижается, и человек начинает быстро дышать, чтобы получить кислород для метаболизма большего количества пищи — это известно как стадия аэробных упражнений . Если бы женщина поднималась по лестнице медленно, то ее выходная мощность была бы намного меньше, хотя объем выполняемой работы был бы таким же.
Установление соединений: расследование на вынос — измерение номинальной мощности
Определите собственную номинальную мощность, измерив время, необходимое вам, чтобы подняться по лестнице.Мы проигнорируем выигрыш в кинетической энергии, так как приведенный выше пример показал, что это была небольшая часть выигрыша в энергии. Не ожидайте, что ваша мощность будет больше 0,5 л.с.
Примеры силы
Рис. 3. Огромное количество электроэнергии вырабатывается угольными электростанциями, такими как эта в Китае, но еще большее количество энергии идет на передачу тепла в окружающую среду. Здесь большие градирни необходимы для быстрой передачи тепла по мере его производства.Передача тепла характерна не только для угольных электростанций, но является неизбежным следствием выработки электроэнергии из любого топлива — ядерного, угля, нефти, природного газа и т.п. (Источник: Kleinolive, Wikimedia Commons)
Примеры силы ограничены только воображением, потому что видов столько же, сколько форм работы и энергии. (См. Некоторые примеры в Таблице 1.) Солнечный свет, достигающий поверхности Земли, несет максимальную мощность около 1,3 киловатт на квадратный метр (кВт / м 2 ).Крошечная часть этого остается на Земле в течение длительного времени. Наш уровень потребления ископаемого топлива намного превышает скорость его хранения, поэтому они неизбежно будут исчерпаны. Сила подразумевает, что энергия передается, возможно, меняя форму. Невозможно полностью преобразовать одну форму в другую, не потеряв часть ее в виде тепловой энергии. Например, лампа накаливания мощностью 60 Вт преобразует в свет всего 5 Вт электроэнергии, а 55 Вт рассеивается в тепловую энергию.
Кроме того, обычная электростанция преобразует только 35-40% топлива в электричество. Оставшаяся часть превращается в огромное количество тепловой энергии, которая должна рассеиваться в виде теплопередачи так же быстро, как и создается. Электростанция, работающая на угле, может производить 1000 мегаватт; 1 мегаватт (МВт) — это 10 6 Вт электроэнергии. Но электростанция потребляет химическую энергию в размере около 2500 МВт, создавая передачу тепла в окружающую среду в размере 1500 МВт. (См. Рисунок 3.)
Таблица 1. Выходная или потребляемая мощность | |
---|---|
Объект или явление | Мощность в ваттах |
Сверхновая (в пике) | 5 × 10 37 |
Галактика Млечный Путь | 10 37 |
Пульсар Крабовидной туманности | 10 28 |
Солнце | 4 × 10 26 |
Извержение вулкана (максимальное) | 4 × 10 15 |
Молния | 2 × 10 12 |
Атомная электростанция (полная передача электроэнергии и тепла) | 3 × 10 9 |
Авианосец (полезная и теплопроводная) | 10 8 |
Драгстер (общий полезный и теплопередающий) | 2 × 10 6 |
Автомобиль (общая полезная и теплоотдача) | 8 × 10 4 |
Футболист (общий полезный и теплопередающий) | 5 × 10 3 |
Сушилка для белья | 4 × 10 3 |
Человек в состоянии покоя (вся теплопередача) | 100 |
Типичная лампа накаливания (общая полезная и теплопередающая) | 60 |
Сердце, человек в состоянии покоя (общая полезная и теплоотдача) | 8 |
Часы электрические | 3 |
Карманный калькулятор | 10 −3 |
Мощность и энергопотребление
Обычно нам приходится платить за энергию, которую мы используем.Стоимость энергии для электроприбора интересно и легко оценить, если известны его потребляемая мощность и затраченное время. Чем выше уровень энергопотребления и чем дольше прибор используется, тем выше его стоимость. Норма потребляемой мощности [латекс] P = \ frac {W} {t} = \ frac {E} {t} \\ [/ latex], где E — энергия, поставляемая электроэнергетической компанией. Таким образом, энергия, потребляемая за время т , составляет
E = Pt.
В счетах за электроэнергию указывается использованная энергия в единицах киловатт-часов (кВт⋅ч) , , которая является произведением мощности в киловаттах и времени в часах. Этот блок удобен тем, что потребление электроэнергии на уровне киловатт в течение нескольких часов является типичным.
Пример 2. Расчет затрат на электроэнергию
Какова стоимость эксплуатации компьютера мощностью 0,200 кВт, 6 часов в день в течение 30 дней, если стоимость электроэнергии составляет 0,120 доллара США за кВт⋅ч?
Стратегия
Стоимость основана на потребленной энергии; таким образом, мы должны найти E из E = Pt и затем рассчитать стоимость.Поскольку электрическая энергия выражается в кВт⋅ч, в начале такой задачи удобно преобразовать единицы в кВт и часы.
Решение
Энергия, потребляемая в кВт⋅ч, составляет
[латекс] \ begin {array} {lll} E & = & Pt = (0.200 \ text {kW}) (6.00 \ text {h / d}) (30.0 \ text {d}) \\\ text {} & = & 36.0 \ text {кВт} \ cdot \ text {h} \ end {array} \\ [/ latex]
, а стоимость просто равна
. Стоимость= (36,0 кВт⋅ч) (0,120 доллара США за кВт⋅ч) = 4,32 доллара США в месяц.
Обсуждение
Стоимость использования компьютера в этом примере не является ни чрезмерной, ни незначительной. Понятно, что стоимость — это сочетание силы и времени. Когда и то и другое высокое, например, кондиционер летом, стоимость высока.
Мотивация к экономии энергии стала более убедительной из-за ее постоянно растущей цены. Вооружившись знанием того, что потребляемая энергия является продуктом мощности и времени, вы можете оценить затраты для себя и сделать необходимые оценочные суждения о том, где экономить энергию.Нужно уменьшить либо мощность, либо время. Наиболее рентабельно ограничить использование мощных устройств, которые обычно работают в течение длительного времени, например водонагревателей и кондиционеров. Сюда не входят устройства с относительно высокой мощностью, такие как тостеры, потому что они работают всего несколько минут в день. Он также не будет включать электрические часы, несмотря на то, что они используются круглосуточно, потому что они являются устройствами с очень низким энергопотреблением. Иногда для выполнения той же задачи можно использовать устройства с большей эффективностью, то есть устройства, потребляющие меньше энергии.Одним из примеров является компактная люминесцентная лампа, которая дает в четыре раза больше света на ватт потребляемой мощности, чем ее собрат с лампами накаливания.
Современная цивилизация зависит от энергии, но нынешние уровни потребления и производства энергии не являются устойчивыми. Вероятность связи между глобальным потеплением и использованием ископаемого топлива (с сопутствующим образованием углекислого газа) привела к сокращению использования энергии, а также к переходу на неископаемые виды топлива. Несмотря на то, что энергия в изолированной системе является сохраняемой величиной, конечным результатом большинства преобразований энергии является перенос тепла в окружающую среду, которое больше не используется для выполнения работы.Как мы обсудим более подробно в Термодинамике, способность энергии производить полезную работу «деградировала» при преобразовании энергии.
Сводка раздела
- Мощность — это скорость выполнения работы или в форме уравнения для средней мощности. P для работы Вт , выполненной за время т , [латекс] P = \ frac {W} {t} \\ [/ латекс]
- Единица измерения мощности в системе СИ — ватт (Вт), где [латекс] 1 \ text {W} = 1 \ frac {\ text {J}} {\ text {s}} \\ [/ latex].
- Мощность многих устройств, например электродвигателей, также часто выражается в лошадиных силах (л.с.), где 1 л.с. = 746 Вт.
Концептуальные вопросы
- Большинство электроприборов имеют мощность в ваттах. Зависит ли этот рейтинг от того, как долго прибор включен? (В выключенном состоянии это устройство с нулевой мощностью.) Объясните определение мощности.
- Объясните в терминах определения мощности, почему потребление энергии иногда указывается в киловатт-часах, а не в джоулях.Какая связь между этими двумя энергетическими единицами?
- Искра статического электричества, которую вы можете получить от дверной ручки в холодный и сухой день, может нести несколько сотен ватт мощности. Объясните, почему вы не пострадали от такой искры.
Задачи и упражнения
- Пульсар в Крабовидной туманности (см. Рис. 4) — это остаток сверхновой, которая произошла в 1054 г. н.э. Используя данные из таблицы 1, вычислите приблизительный коэффициент, на который мощность этого астрономического объекта снизилась после его взрыва.
Рис. 4. Крабовидная туманность (предоставлено ESO, через Wikimedia Commons)
- Предположим, что звезда в 1000 раз ярче нашего Солнца (то есть излучающая в 1000 раз большую мощность) внезапно становится сверхновой. Используя данные из Таблицы 1: (a) Во сколько раз увеличивается его выходная мощность? (б) Во сколько раз ярче, чем вся наша галактика Млечный Путь, сверхновая? (c) Основываясь на ваших ответах, обсудите, возможно ли наблюдать сверхновые в далеких галактиках. Обратите внимание, что существует порядка 10 11 наблюдаемых галактик, средняя яркость которых несколько меньше нашей собственной галактики.
- Человек в хорошей физической форме может выдавать 100 Вт полезной мощности в течение нескольких часов подряд, возможно, задействуя механизм, приводящий в действие электрогенератор. Пренебрегая любыми проблемами эффективности генератора и практическими соображениями, такими как время отдыха: (а) Сколько человек потребуется, чтобы запустить электрическую сушилку для белья мощностью 4,00 кВт? (б) Сколько людей потребуется, чтобы заменить большую электростанцию, вырабатывающую 800 МВт?
- Сколько стоит эксплуатация 3.Электрические часы 00-Вт на год при стоимости электроэнергии 0,0900 $ за кВт · ч?
- Большой бытовой кондиционер может потреблять 15,0 кВт электроэнергии. Какова стоимость эксплуатации этого кондиционера 3,00 часа в день в течение 30,0 дней, если стоимость электроэнергии составляет 0,110 доллара США за кВт · ч?
- (a) Какова средняя потребляемая мощность в ваттах прибора, потребляющего 5,00 кВт · ч энергии в день? (б) Сколько джоулей энергии устройство потребляет в год?
- (а) Какова средняя полезная выходная мощность человека, который делает 6.00 × 10 6 Дж полезной работы за 8.00 ч? (b) Работая с такой скоростью, сколько времени потребуется этому человеку, чтобы поднять 2000 кг кирпичей 1,50 м на платформу? (Работу по поднятию тела можно не выполнять, потому что здесь она не считается полезным результатом.)
- Драгстер весом 500 кг разгоняется до конечной скорости 110 м / с за 400 м (около четверти мили) и сталкивается со средней силой трения 1200 Н. Какова его средняя выходная мощность в ваттах и лошадиных силах, если это занимает 7,30 с?
- (а) Сколько времени займет автомобиль весом 850 кг с полезной мощностью 40?0 л.с. (1 л.с. = 746 Вт) для достижения скорости 15,0 м / с без учета трения? (b) Сколько времени займет это ускорение, если машина также поднимется на холм высотой 3,00 м?
- (a) Найдите полезную выходную мощность двигателя лифта, который поднимает груз массой 2500 кг на высоту 35,0 м за 12,0 с, если он также увеличивает скорость в состоянии покоя до 4,00 м / с. Обратите внимание, что общая масса уравновешенной системы составляет 10 000 кг, так что только 2500 кг поднимается в высоту, но все 10 000 кг ускоряются. (б) Сколько это стоит, если электричество стоит 0 долларов.0900 за кВт · ч?
- (а) Каково доступное энергосодержание в джоулях батареи, которая обеспечивает работу электрических часов мощностью 2,00 Вт в течение 18 месяцев? (b) Как долго батарея, способная обеспечивать 8,00 × 10 4 Дж, может работать с карманным калькулятором, потребляющим энергию со скоростью 1,00 × 10 −3 Вт?
- (a) Сколько времени потребуется самолету массой 1,50 × 10 5 кг с двигателями мощностью 100 МВт, чтобы достичь скорости 250 м / с и высоты 12,0 км, если сопротивление воздуха будет незначительным? (б) Если это действительно занимает 900 с, какова мощность? (c) Учитывая эту мощность, какова средняя сила сопротивления воздуха, если самолет занимает 1200 с? (Подсказка: вы должны найти расстояние, которое самолет преодолеет за 1200 с при постоянном ускорении.)
- Рассчитайте выходную мощность, необходимую для 950-килограммового автомобиля, чтобы преодолеть уклон 2,00 ° с постоянной скоростью 30,0 м / с, столкнувшись с сопротивлением ветра и трением в сумме 600 Н. Ясно покажите, как вы следуете шагам, изложенным в Стратегиях решения проблем в области энергетики .
- (a) Рассчитайте мощность на квадратный метр, приходящуюся от Солнца в верхние слои атмосферы Земли. (Возьмем выходную мощность Солнца равной 4,00 × 10 26 Вт.) [/ Latex] (b) Часть этой мощности поглощается и отражается атмосферой, так что максимум 1.30 кВт / м 2 достигает поверхности Земли. Вычислите площадь коллекторов солнечной энергии в км 2 , необходимую для замены электростанции, вырабатывающей 750 МВт, если коллекторы преобразуют в электричество в среднем 2,00% максимальной мощности. (Такая малая эффективность преобразования связана с самими устройствами и тем фактом, что солнце находится прямо над головой лишь на короткое время.) При тех же предположениях, какая площадь потребуется для удовлетворения энергетических потребностей Соединенных Штатов (1,05 × 10 20 J)? Энергетические потребности Австралии (5.4 × 10 18 Дж)? Энергетические потребности Китая (6,3 × 10 19 Дж)? (Эти значения энергопотребления взяты с 2006 г.)
Глоссарий
мощность: скорость выполнения работы
ватт: (Вт) единица мощности СИ, с [латексом] 1 \ text {W} = \ frac {\ text {J}} {\ text {s}} \\ [/ latex]
лошадиных сил: более старая несистемная единица мощности, с 1 л.с. = 746 Вт
киловатт-час: установка кВт · час, используемая в основном для выработки электроэнергии, предоставляемой электроэнергетическими компаниями
Избранные решения проблем и упражнения
1.2 × 10 −10
3. (а) 40; (б) 8 миллионов
5. 149 долларов США
7. (а) 208 Вт; (б) 141 с
9. (а) 3,20 с; (б) 4,04 с
11. (а) 9,46 × 10 7 Дж; (б) 2,54 л
13. Определить известные: m = 950 кг, угол наклона θ = 2,00º, v = 3,00 м / с, f = 600 N
Выявить неизвестные: мощность P автомобиля, сила F , что автомобиль применяется к дороге
Решение для неизвестного: [латекс] P = \ frac {W} {t} = \ frac {Fd} {t} = F \ left (\ frac {d} {t} \ right) = Fv \\ [/ latex ], Где F параллельно уклону и должно противодействовать силам сопротивления и силе тяжести: [латекс] F = f + w = 600 \ text {N} + mg \ sin \ theta \\ [/ latex] .4 \ text {W} \ end {array} \\ [/ latex]
Около 28 кВт (или около 37 л.с.) — это разумно для автомобиля, чтобы преодолевать небольшой уклон.
Введение в оценку мощности и размера выборки
ЗАДАЧИ
Понимание оценки мощности и размера выборки.
Понять, почему мощность является важной частью как дизайна исследования, так и анализа.
Поймите разницу между расчетами размера выборки в сравнительных и диагностических исследованиях.
Узнайте, как выполнить расчет размера выборки.
— (a) Для непрерывных данных
— (b) Для прерывистых данных
— (c) Для диагностических тестов
МОЩНОСТЬ И ОЦЕНКА РАЗМЕРА ОБРАЗЦА
Оценка мощности и размера выборки является мерой того, сколько пациентов необходимо для исследования.Почти все клинические исследования предполагают изучение выборки пациентов с определенной характеристикой, а не всей популяции. Затем мы используем эту выборку, чтобы сделать выводы обо всей совокупности.
В предыдущих статьях серии по статистике, опубликованной в этом журнале, статистический вывод использовался для определения того, верны ли найденные результаты или, возможно, только случайно. Очевидно, что мы можем уменьшить вероятность того, что наши результаты будут получены случайно, устранив предвзятость в дизайне исследования, используя такие методы, как рандомизация, ослепление и т. Д.Однако на возможность того, что наши результаты могут быть неверными, влияет еще один фактор — количество обследованных пациентов. Интуитивно мы предполагаем, что чем больше доля исследуемой популяции, тем ближе мы подойдем к истинному ответу для этой популяции. Но скольких нам нужно изучить, чтобы как можно ближе подойти к правильному ответу?
ЧТО ТАКОЕ СИЛА И ПОЧЕМУ ЭТО ВАЖНО?
Оценка мощности и размера выборки используется исследователями для определения количества субъектов, необходимых для ответа на исследовательский вопрос (или нулевую гипотезу).
Примером может служить тромболизис при остром инфаркте миокарда (ОИМ). В течение многих лет врачи считали, что это лечение принесет пользу, учитывая предполагаемую этиологию ОИМ, однако последовательные исследования не смогли доказать этот факт. Только после завершения «мега-испытаний» с достаточной мощностью было доказано небольшое, но важное преимущество тромболизиса.
Как правило, в этих испытаниях сравнивали тромболизис с плацебо, и часто в качестве основного критерия оценки исхода использовалась смертность через определенное количество дней.Основная гипотеза исследований могла заключаться в сравнении, например, смертности от тромболизиса на 21 день по сравнению с плацебо. Тогда есть две гипотезы, которые нам необходимо рассмотреть:
Нулевая гипотеза состоит в том, что нет разницы между видами лечения с точки зрения смертности.
Альтернативная гипотеза состоит в том, что существует разница между методами лечения с точки зрения смертности.
Пытаясь определить, являются ли две группы одинаковыми (принимая нулевую гипотезу) или они разные (принимая альтернативную гипотезу), мы потенциально можем допустить два вида ошибок.Они называются ошибкой типа I и ошибкой типа II.
Считается, что ошибка типа I возникла, когда мы неверно отклонили нулевую гипотезу (то есть она верна и между двумя группами нет разницы) и сообщаем о различии между двумя изучаемыми группами.
Считается, что ошибка типа II возникает, когда мы принимаем нулевую гипотезу неправильно (то есть она ложна и существует разница между двумя группами, которая является альтернативной гипотезой), и сообщаем, что между двумя группами нет никакой разницы.
Их можно представить в виде таблицы два на два (таблица 1).
Расчеты мощности говорят нам, сколько пациентов необходимо, чтобы избежать ошибок типа I или типа II.
Термин «мощность» обычно используется в отношении всех оценок размера выборки в исследованиях. Строго говоря, «мощность» означает количество пациентов, необходимое для того, чтобы избежать ошибки типа II в сравнительном исследовании. Оценка размера выборки — это более всеобъемлющий термин, который рассматривает больше, чем просто ошибку типа II, и применим ко всем типам исследований.В просторечии эти термины используются как синонимы.
ЧТО ВЛИЯЕТ НА МОЩНОСТЬ ИССЛЕДОВАНИЯ?
Есть несколько факторов, которые могут повлиять на силу исследования. Это следует учитывать на ранней стадии разработки исследования. Некоторые факторы мы контролируем, другие — нет.
Точность и дисперсия измерений в пределах любого образца
Почему исследование может не найти разницы, если она действительно есть? Для любого данного результата от выборки пациентов мы можем определить только распределение вероятностей вокруг этого значения, которое подскажет, где находится истинное значение для популяции.Самый известный пример этого — 95% доверительный интервал. Размер доверительного интервала обратно пропорционален количеству изучаемых предметов. Таким образом, чем больше людей мы изучаем, тем точнее мы можем определить истинную ценность населения.
Рисунок 1 показывает, что для одного измерения, чем больше предметов изучается, тем уже становится распределение вероятностей. В группе 1 среднее значение равно 5 с широкими доверительными интервалами (3–7). За счет увеличения вдвое количества исследуемых пациентов (но в нашем примере с неизменными значениями) доверительные интервалы сузились (3.5–6.5), что дает более точную оценку истинного среднего значения по совокупности.
Рисунок 1Изменение ширины доверительного интервала с увеличением числа испытуемых.
Распределение вероятности того, где находится истинное значение, является неотъемлемой частью большинства статистических тестов для сравнения между группами (например, тесты t ). Исследование с небольшим размером выборки будет иметь большие доверительные интервалы и будет отображаться как статистически ненормальное, только если между двумя группами существует большая разница.На рисунке 2 показано, как увеличение числа испытуемых может дать более точную оценку различий.
Рисунок 2Эффект уменьшения доверительного интервала для демонстрации истинной разницы в средних. Этот пример показывает, что первоначальное сравнение между группами 1 и 3 не показало статистической разницы, поскольку доверительные интервалы перекрывались. В 3-й и 4-й группах количество пациентов увеличилось вдвое (хотя среднее значение осталось прежним). Мы видим, что доверительные интервалы больше не перекрываются, указывая на то, что разница в средних вряд ли произошла случайно.
Величина клинически значимой разницы
Если мы пытаемся обнаружить очень небольшие различия между видами лечения, требуются очень точные оценки истинной численности населения. Это связано с тем, что нам необходимо очень точно определить истинное значение населения для каждой группы лечения. И наоборот, если мы обнаруживаем или ищем большую разницу, может быть приемлемо довольно широкое распределение вероятностей.
Другими словами, если мы ищем большую разницу между методами лечения, мы можем принять широкое распределение вероятностей, если мы хотим обнаружить небольшую разницу, нам потребуются большая точность и малые распределения вероятностей.Поскольку ширина вероятностных распределений в значительной степени определяется тем, сколько предметов мы изучаем, очевидно, что искомая разница влияет на расчеты размера выборки.
Факторы, влияющие на расчет мощностиТочность и дисперсия измерений в пределах любого образца
Величина клинически значимой разницы
Насколько мы уверены, чтобы избежать ошибки типа 1
Тип статистического теста, который мы проводим
При сравнении двух или более образцов мы обычно мало контролируем размер эффекта.Однако нам нужно убедиться, что разницу стоит обнаружить. Например, можно разработать исследование, которое продемонстрирует сокращение времени начала местной анестезии с 60 до 59 секунд, но такая небольшая разница не будет иметь клинического значения. И наоборот, исследование, демонстрирующее разницу от 60 секунд до 10 минут, однозначно будет. Определение «клинически важного различия» является ключевым компонентом расчета размера выборки.
Насколько важна ошибка типа I или типа II для рассматриваемого исследования?
Мы можем указать, насколько мы должны быть обеспокоены, чтобы избежать ошибки типа I или типа II.Считается, что ошибка типа I возникла, когда мы неверно отклонили нулевую гипотезу. Обычно мы выбираем вероятность ошибки I типа <0,05. Это означает, что если мы найдем положительный результат, шансы найти это (или большую разницу) будут менее чем в 5% случаев. Этот показатель, или уровень значимости, обозначается как pα и обычно устанавливается нами заранее на ранних этапах планирования исследования при выполнении расчета размера выборки. По соглашению, а не по замыслу, мы чаще выбираем 0.05. Чем ниже уровень значимости, тем ниже мощность, поэтому использование 0,01 соответственно уменьшит нашу мощность.
(Чтобы избежать ошибки типа I — то есть, если мы найдем положительный результат, шансы найти это или большую разницу будут иметь место менее чем в α% случаев)
Считается, что ошибка типа II возникает, когда мы неправильно принимаем нулевую гипотезу и сообщаем об отсутствии разницы между двумя группами. Если действительно существует разница между вмешательствами, мы выражаем вероятность получения ошибки типа II и то, насколько вероятно, что мы ее обнаружим.Этот рисунок обозначается как pβ. Меньше условностей относительно принятого уровня pβ, но цифры 0,8–0,9 являются общими (то есть, если разница действительно существует между вмешательствами, то мы обнаружим ее в 80–90% случаев).
Предотвращение ошибки типа II — суть расчетов мощности. Мощность исследования pβ — это вероятность того, что исследование обнаружит заранее определенную разницу в измерениях между двумя группами, если она действительно существует, при заданном значении pα и размере выборки N.
Тип статистического теста, который мы проводим
Расчеты размера выборки показывают, как вероятнее всего будут работать статистические тесты, использованные в исследовании. Поэтому неудивительно, что тип используемого теста влияет на то, как рассчитывается размер выборки. Например, параметрические тесты лучше при обнаружении различий между группами, чем непараметрические тесты (вот почему мы часто пытаемся преобразовать базовые данные в нормальные распределения). Следовательно, для анализа, основанного на непараметрическом тесте (например, Mann-Whitney U), потребуется больше пациентов, чем один на основе параметрического теста (например, тест Стьюдента t ).
СЛЕДУЕТ ВЫПОЛНЯТЬ РАСЧЕТ РАЗМЕРА ОБРАЗЦА ДО ИЛИ ПОСЛЕ ИССЛЕДОВАНИЯ?
Ответ определенно до, иногда во время, а иногда и после.
При разработке исследования мы хотим удостовериться, что проделанная нами работа стоит того, чтобы получить правильный ответ и получить его наиболее эффективным способом. Это делается для того, чтобы мы могли набрать достаточно пациентов, чтобы наши результаты были адекватными, но не слишком много, чтобы мы тратили время на получение большего количества данных, чем нам нужно.К сожалению, при разработке исследования нам, возможно, придется сделать предположения о желаемой величине эффекта и дисперсии данных.
Промежуточные расчеты мощности иногда используются, когда известно, что данные, использованные в исходных расчетах, сомнительны. Их следует использовать с осторожностью, поскольку повторный анализ может привести к тому, что исследователь остановит исследование, как только будет получена статистическая значимость (что может произойти случайно несколько раз во время набора субъектов). Как только исследование начнется, можно будет использовать анализ промежуточных результатов для выполнения дальнейших расчетов мощности и внесения соответствующих корректировок в размер выборки.Это может быть сделано, чтобы избежать преждевременного завершения исследования, или в случае спасения жизни или опасных методов лечения, чтобы избежать продления исследования. Расчет промежуточного размера выборки следует использовать только в том случае, если это указано в методе априорного исследования.
Когда мы оцениваем результаты испытаний с отрицательными результатами, особенно важно поставить под сомнение размер выборки исследования. Вполне возможно, что исследование было недостаточно мощным и что мы неверно приняли нулевую гипотезу, что является ошибкой типа II.Если бы в исследовании было больше испытуемых, то разница вполне могла бы быть обнаружена. В идеальном мире этого никогда не должно происходить, потому что расчет размера выборки должен появляться в разделе методов всех документов, реальность показывает нам, что это не так. Как потребитель исследований мы должны иметь возможность оценивать эффективность исследования по предоставленным результатам.
Ретроспективный расчет размера выборки в этой статье не рассматривается. Несколько калькуляторов ретроспективного размера выборки доступны в Интернете (калькуляторы мощности UCLA (http: // калькуляторы.stat.ucla.edu/powercalc/), Интерактивные статистические страницы (http://www.statistics.com/content/javastat.html).
КАКОЙ ТИП ИССЛЕДОВАНИЯ ДОЛЖЕН ВЫПОЛНИТЬ РАСЧЕТ МОЩНОСТИ?
Почти все количественные исследования могут быть подвергнуты расчету размера выборки. Однако они могут иметь небольшую ценность в ранних поисковых исследованиях, где доступны скудные данные, на которых можно основывать расчеты (хотя это можно решить, предварительно выполнив пилотное исследование и используя полученные данные).
Очевидно, что расчет размера выборки является ключевым компонентом клинических испытаний, поскольку в большинстве этих исследований упор делается на выявление величины различий между терапиями. Все клинические испытания должны иметь оценку размера выборки.
В других типах исследований оценка размера выборки должна выполняться для повышения точности наших окончательных результатов. Например, основными показателями результатов для многих диагностических исследований будут чувствительность и специфичность для конкретного теста, обычно указываемые с доверительными интервалами для этих значений.Как и в случае сравнительных исследований, чем больше изучается количество пациентов, тем больше вероятность того, что результаты выборки будут отражать истинную ценность населения. Выполняя расчет размера выборки для диагностического исследования, мы можем указать точность, с которой мы хотели бы сообщить доверительные интервалы для чувствительности и специфичности.
Поскольку клинические испытания и диагностические исследования, вероятно, составят основу исследовательской работы в области экстренной медицины, в этой статье мы сосредоточили на них внимание.
МОЩНОСТЬ В СРАВНИТЕЛЬНЫХ ИССЛЕДОВАНИЯХ
Исследования, содержащие непрерывные нормально распределенные данные
Предположим, что Эгберт Эверард участвовал в клиническом исследовании с участием пациентов с гипертонией. Новый антигипертензивный препарат, сок Джабба, сравнивался с бендрофлуазидом в качестве нового препарата первой линии для лечения гипертонии (таблица 2).
Стол 2Эгберт записывает некоторые вещи, которые, по его мнению, важны для расчетов
Как видите, цифры для pα и pβ несколько типичны.Обычно они устанавливаются по соглашению, а не меняются от одного исследования к другому, хотя, как мы увидим ниже, они могут меняться.
Ключевым требованием является «клинически важное различие», которое мы хотим выявить между группами лечения. Как обсуждалось выше, это должна быть разница, которая имеет клиническое значение, поскольку, если она очень мала, о ней, возможно, не стоит знать.
Еще одна цифра, которую нам необходимо знать, — это стандартное отклонение переменной в исследуемой популяции.Измерения артериального давления представляют собой форму нормально распределенных непрерывных данных и, как таковые, будут иметь стандартное отклонение, которое Эгберт обнаружил в других исследованиях, посвященных аналогичным группам людей.
Когда мы узнаем эти последние две цифры, мы сможем вычислить стандартизированную разницу, а затем использовать таблицу, чтобы дать нам представление о необходимом количестве пациентов.
Разница между средними значениями является клинически важной разницей, то есть она представляет собой разницу между средним артериальным давлением в группе бендрофлуазида и средним артериальным давлением в новой группе лечения.
Из каракулей Эгберта:
Используя таблицу 3, мы можем видеть, что при стандартизованной разнице 0,5 и уровне мощности (pβ) 0,8 необходимое количество пациентов составляет 64. Эта таблица предназначена для односторонней гипотезы (?) Нулевая гипотеза требует, чтобы исследование быть достаточно мощным, чтобы определить, какое лечение лучше или хуже другого, поэтому нам потребуется минимум 64 × 2 = 128 пациентов. Это сделано для того, чтобы мы были уверены, что у нас есть пациенты, которые попадают в обе стороны от установленной нами средней разницы.
Стол 3Как мощность изменяется со стандартизованной разницей
Другой метод установки размера выборки — использование номограммы, разработанной Гором и Альтманом 2 , как показано на рисунке 3.
Рисунок 3Номограмма для расчета объема выборки.
Из этого мы можем использовать линейку, чтобы присоединить стандартизованную разницу к мощности, необходимой для исследования.Если край пересекает среднюю переменную, это указывает на требуемое число N.
Номограмма также может использоваться для расчета мощности для двустороннего сравнения гипотез непрерывного измерения с одинаковым количеством пациентов в каждой группе.
Если данные не распределяются нормально, номограмма ненадежна, и следует искать официальную статистическую помощь.
Исследования с категориальными данными
Предположим, что Эгберт Эверард, в своем постоянном стремлении улучшить уход за своими пациентами, страдающими инфарктом миокарда, был убежден фармацевтическим представителем помочь в проведении исследования нового препарата для посттромболизиса, Jedi Flow.Из предыдущих исследований он знал, что потребуются большие числа, поэтому выполнил расчет размера выборки, чтобы определить, насколько сложной будет задача (таблица 4).
Стол 4Расчет размера выборки
И снова значения pα и pβ стандартные, и мы установили уровень для клинически важной разницы.
В отличие от непрерывных данных, расчет размера выборки для категориальных данных основан на пропорциях.Однако, как и в случае с непрерывными данными, нам все равно необходимо рассчитать стандартизированную разницу. Это позволяет нам использовать номограмму, чтобы определить, сколько пациентов необходимо.
p 1 = пропорциональная смертность в группе тромболизиса = 12% или 0,12
p 2 = пропорциональная смертность в группе Jedi Flow = 9% или 0,09 (это 3% клинически важная разница в смертности, которую мы хотим показать).
P = (p 1+ p 2 ) / 2 =
Стандартизированная разница составляет 0,1. Если мы воспользуемся номограммой и проведем линию от 0,1 до оси мощности на 0,8, мы сможем увидеть от точки пересечения с центральной осью на уровне 0,05 pα, нам нужно 3000 пациентов для исследования. Это означает, что нам нужно 1500 пациентов в группе Jedi Flow и 1500 в группе тромболизиса.
СИЛА В ДИАГНОСТИЧЕСКИХ ИСПЫТАНИЯХ
Расчеты мощности редко используются в диагностических исследованиях, и, по нашему опыту, мало кто о них знает. Они имеют особое значение для практики неотложной медицины в связи с характером нашей работы. Описанные здесь методы взяты из работы Buderer. 3
Доктор Эгберт Эверард решает, что диагностику переломов лодыжки можно улучшить с помощью нового портативного ультразвукового устройства в отделении неотложной помощи в «Звезде Смерти».Устройство DefRay используется для исследования голеностопного сустава и позволяет определить, сломана ли лодыжка. Доктор Эверард считает, что это новое устройство может снизить потребность пациентов в часах ожидания в радиологическом отделении, тем самым избавляя пациентов от боли в ушах, когда они возвращаются. Он считает, что DefRay можно использовать в качестве инструмента скрининга, только пациенты с положительным результатом теста DefRay будут отправлены в отделение радиологии, чтобы продемонстрировать точный характер травмы.
Он разрабатывает диагностическое исследование, в котором все пациенты с подозрением на перелом лодыжки обследуются в отделении неотложной помощи с помощью DefRay.Этот результат записывается, а затем пациенты отправляются на рентгенограмму независимо от результата теста DefRay. Затем доктор Эверард и его коллеги сравнят результаты DefRay со стандартной рентгенограммой.
Пропущенные переломы голеностопного сустава в прошлом году стоили отделению доктора Эверарда больших денег, поэтому очень важно, чтобы DefRay работал хорошо, если он будет принят в качестве скринингового теста. Эгберту интересно, сколько пациентов ему понадобится. Делает заметки (таблица 5).
Стол 5Расчеты Эверарда
Для диагностического исследования мы рассчитываем мощность, необходимую для достижения либо адекватной чувствительности, либо адекватной специфичности. При расчетах используется стандартный способ представления диагностических данных «два на два», как показано в таблице 6.
Стол 6Таблица отчетов два на два для диагностических тестов
Для расчета потребности в адекватной чувствительности
Для расчета потребности в адекватной специфичности
Если бы Эгберт был в равной степени заинтересован в тесте со специфичностью и чувствительностью, мы бы выбрали больший из двух, но он этого не делает.Он больше всего заинтересован в том, чтобы тест имел высокую чувствительность, чтобы исключить переломы лодыжки. Поэтому он принимает цифру за чувствительность — 243 пациента.
ЗАКЛЮЧЕНИЕ
Оценка размера выборки является ключом к проведению эффективных сравнительных исследований. Понимание концепций мощности, размера выборки и ошибок типа I и II поможет исследователю и критическому читателю медицинской литературы.
ВИКТОРИНА
Какие факторы влияют на расчет мощности для пробной терапии?
Доктор Эгберт Эверард хочет сделать новый анализ крови (ситтастический) для диагностики гена темной стороны. Он хочет, чтобы тест имел чувствительность не менее 70% и специфичность 90% с уровнем достоверности 5%. Распространенность заболевания в этой популяции составляет 10%.
Если д-ру Эверарду предстояло испытать новое средство от ожогов легкой саблей, надеялись, что смертность снизится с 55% до 45%.Он устанавливает pα на 0,05 и pβ на 0,99, но обнаруживает, что ему нужно много пациентов, поэтому, чтобы облегчить себе жизнь, он меняет мощность на 0,80.
Сколько пациентов в каждой группе ему понадобилось с pα равным 0,05 и pβ до 0,80?
Сколько пациентов ему нужно с большей (исходной) мощностью?
Ответы на викторину
См. Рамку.
(i) 2881 пациент; (ii) 81 пациент
(i) около 400 пациентов в каждой группе; (ii) около 900 пациентов в каждой группе
Благодарности
Мы хотели бы поблагодарить Фиону Леки, почетного старшего преподавателя по неотложной медицине, Госпиталь Хоуп, Салфорд, за ее помощь в подготовке этой статьи.
ССЫЛКИ
Driscoll P , Wardrope J.Введение в статистику. Дж. Accid Emerg Med2000; 17: 205.
- ↵
Гор СМ , Альтман Д.Г. Насколько велика выборка. В: Статистика на практике . Лондон: Издательство BMJ, 2001: 6–8.
- ↵
Будерер Н.М. . Статистическая методология: I. Включение распространенности заболевания в расчет размера выборки для определения чувствительности и специфичности. Acad Emerg Med 1996; 3: 895–900.
Статистический расчет мощности — Статистический анализ данных. Внештатный консультант
Расчет статистической мощности — это расчет вероятности того, что мы отклоним ложную нулевую гипотезу . Итак, этот расчет возвращает числовую вероятность. Статистическая мощность также известна под термином ‘ Power of Test ’ .
Если мы проверим H0 для µ ≥ 60 в мире, где истинное среднее значение равно 53, а наш статистический расчет мощности = 0.70, мы можем сказать, что существует приблизительно 70% вероятности того, что мы отклоним H0, если истинное среднее значение равно 53.
Порядок
Статистический расчет мощности, или расчет мощности теста, можно выполнить, выполнив следующие три шага:
Пример статистического расчета мощности
Давайте рассмотрим пример , где у нас есть одна выборка и односторонний z-тест вокруг среднего.То же самое и для других тестов.
Допустим, мы собираемся проверить следующие гипотезы:
H0: µ ≥ 60
га: µ <60
Уровень значимости (α) = 0,10
Мы собираемся запустить простую случайную выборку 38 и предположить, что наша популяция обычно распределена с известным стандартным отклонением (σ) = 24 и с неизвестным средним значением (µ).
Шаг 1: Критическое значение для z
Критическое z для альфа-уровня 0.10 — -1,28 . Это можно найти в таблице нормального распределения, а также встроить в статистическое программное обеспечение.
Шаг 2: Критическое значение для выборочного среднего (x):
Мы применяем формулу z-статистики, подставляя наши существующие значения, чтобы вычислить критическое значение:
Итак, наше критическое значение для x — 55,01, что означает, что мы отклоним любое выборочное среднее значение, равное или меньшее 55,01.
Шаг 3: Статистический расчет мощности
Какова статистическая мощность, если истинное значение H0 равно 53? Мы можем вычислить это с помощью формулы z, сначала найдя ошибку типа II:
.Вероятность z> 0.52 ищется в таблице нормального распределения и возвращает значение 0,30 . Это наша ошибка типа II ( β ) . Расчет мощности равен 1-β, поэтому мы получаем Мощность теста или статистическую мощность 0,70 в случае, если истинное среднее значение должно быть 53.
Как также описано в разделе Статистическая мощность, мы можем увидеть соотношение между альфа, бета и мощностью на кривой мощности и на кривых колокола:
Статистический расчет мощности в Excel
Статистический расчет мощности в Excel можно рассчитать с помощью = NORM.Функции S.INV и = НОРМ.РАСП :
Примеры с левым и правым хвостом:
Статистика обучения
Некоторые из моих предпочтительных материалов для изучения статистического расчета мощности:
Electric Power — learn.sparkfun.com
Добавлено в избранное Любимый 49Расчетная мощность
Электроэнергия — это скорость передачи энергии.Он измеряется в джоулях в секунду (Дж / с) — ватт (Вт). Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи? Итак, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), — которые определяются в джоулях на единицу заряда (кулон) (Дж / Кл). Ток, еще один из наших любимых терминов, связанных с электричеством, измеряет поток заряда во времени в амперах (А) — кулонах в секунду (Кл / с). Соедините их вместе и что мы получим ?! Мощность!
Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.
Например,
Ниже представлена простая (хотя и не полностью функциональная) схема: батарея на 9 В, подключенная через 10 Ом; резистор.
Как рассчитать мощность на резисторе? Сначала мы должны найти ток, проходящий через него. Достаточно просто … Закон Ома!
Хорошо, 900 мА (0,9 А) проходит через резистор и 9 В. Какая же тогда мощность подается на резистор?
Резистор преобразует электрическую энергию в тепло.Таким образом, эта схема каждую секунду преобразует 8,1 джоулей электрической энергии в тепло.
Расчет мощности в резистивных цепях
Когда дело доходит до расчета мощности в чисто резистивной цепи, знать два из трех значений (напряжение, ток и / или сопротивление) — это все, что вам действительно нужно.
Подставляя закон Ома (V = IR или I = V / R) в наше традиционное уравнение мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:
Итак, в нашем предыдущем примере 9V 2 /10 & ohm; (V 2 / R) равно 8.1 Вт, и нам никогда не придется рассчитывать ток, протекающий через резистор.
Второе уравнение мощности можно составить исключительно с точки зрения тока и сопротивления:
Зачем нам нужна мощность, упавшая на резистор? Или любой другой компонент в этом отношении.