+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Конденсатор. Энергия электрического поля — материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется

уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где — заряд шара, — его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

мкФ.

Как видите, Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2):

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Ф.

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим

воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора.

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

или

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями.

На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем

ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.

Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком:

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным.

Данный заряд притягивается к первой обкладке с силой

где — напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

где

Это можно переписать следующим образом:

где

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора.

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14).

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными. Ёмкость конденсатора в них теперь будет выражаться по формуле (10).

Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но — объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Энергия поля конденсатора — Основы электроники

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить следующим обра­зом. Представим себе, что мы заряжаем конденсатор не сра­зу, а постепенно, перенося электрические заряды с одной его пластины на другую.

При перенесении первого заряда работа, произведенная нами, будет небольшой. На перенесение второго заряда мы затратим больше энергии, так как в результате перенесения первого заряда между пластинами конденсатора будет уже существовать разность потенциалов, которую нам придется преодолевать, третий, четвертый и вообще каждый последую­щий заряд будет переносить все труднее и труднее, т. е. на перенесение их придется затрачивать все больше и больше энергии. Пусть мы перенесем таким образом некоторое коли­чество электричества, которое мы обозначим буквой Q.

Вся энергия, затраченная нами при заряде конденсатора, сосредоточится в электрическом поле между его пластинами. Напряжение между пластинами конденсатора в конце заряда мы обозначим буквой U.

Как мы уже заметили, разность потенциалов в процессе за­ряда не остается постоянной, а постепенно увеличивается от нуля — в начале заряда — до своего конечного значения U.

Для упрощения вычисления энергии допустим, что мы пе­ренесли весь электрический заряд Q с одной пластины кон­денсатора на другую не маленькими порциями, а сразу. Но при этом мы должны считать, что напряжение между пласти­нами конденсатора было не ноль, как в начале заряда, и не U, как в конце заряда, а равнялось среднему значению между нулем и U, т. е. половине U. Таким образом, энергия, запа­сенная в электрическом поле конденсатора, будет равна поло­вине напряжения U, умноженной на общее количество пере­несенного электричества Q.

Полученный результат мы можем записать в виде сле­дующей математической формулы:

W = UQ/2                                                                  (1)

Если напряжение в этой формуле будет выражено в воль­тах, а количество электричества — в кулонах, то энергия W получится в джоулях. Если мы вспомним, что заряд, накоп­ленный на конденсаторе, равен Q = CU, то формулу (1) можно будет записать окончательно в следующем виде:

W = CU2/2                                                                  (2)

Выражение (2) говорит нам о том, что энергия, со­средоточенная в поле конденсатора, равна по­ловине произведения емкости конденсатора на квадрат напряжения между его пласти­нами.

Этот вывод имеет очень важное значение при изучении раздела радиотехники о колебательных контурах.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Формула для вычисления энергии электрических полей конденсаторов

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

  • Как любой проводник, несущий заряд, конденсатор имеет энергию, которую находят по формуле:
  •    
  • где q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Связь энергии конденсатора и силы взаимодействия его пластин

Механическую (пондемоторную) силу, с которой пластины плоского конденсатора взаимодействуют между собой можно найти, если использовать формулу (1). Допустим, что расстояние между пластинами конденсатора изменяют от x до . В таком случае, сила изменяющая расстояние между пластинами выполняет работу, равную:

  1.    
  2. При этом потенциальная энергия взаимодействия пластин уменьшается на:
  3.    
  4. Тогда силу, которая выполняет работу можно представить как:
  5.    
  6. Емкость плоского конденсатора равна:
  7.    
  8. Значит, формулу энергии плоского конденсатора запишем как:
  9.    
  10. Подставим в (4) выражение для энергии (6), получим:
  11. В выражении (7) минус показывает, что пластины конденсатора притягиваются друг к другу.

Энергия электростатического поля плоского конденсатора

  • Если вспомнить, что разность потенциалов между обкладками плоского конденсатора равна:
  • где расстояние меду пластинами конденсатора мы обозначили d, и приняв во внимание, что для плоского конденсатора емкость определена выражением (5) тогда имеем:

где – объем конденсатора; E – напряженность поля конденсатора. Формула (9) связывает энергию конденсатора с зарядом на его обкладках и напряженностью поля.

Примеры решения задач по теме «Энергия конденсатора»

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/formuly-po-fizike/formula-energii-kondensatora/

Энергия конденсатора

Господа, всем приветище! Сегодня речь пойдет про энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться!

В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия.

И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически.

Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно.

Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s.

Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу:

  • Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить:
  • То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F, которую можно рассчитать по этой формуле.

Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля.  Это позволяет использовать формулу работы без векторов:

Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные.

Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия.

Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил.

Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать

Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз.

Рисунок 1 – Плоский конденсатор

Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина. Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно.

Давайте смотреть на красную пластину, как на некоторый заряд +q, расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро.

Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq.

Тогда уже можно без проблем применять все вышеописанное. И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q.

Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики.

Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле.

Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности.

Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина – и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать

Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем

Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля, а синюю – как некоторый заряд –q в этом поле.

Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть энергия конденсатора.

Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора:

Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить.

Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра.

  1. Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение:
  2. Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем

Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи:

Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем

Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле.

Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить.

Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости.

Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии

Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула – это средняя.

  • Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор
  • Рисунок 2 – Конденсатор

И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии:

Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций.

Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда.

Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров.

И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором.

Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется!

Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч!

Источник: http://myelectronix.ru/postoyannyy-tok/51-energiya-kondensatora

Чему равна энергия заряженного конденсатора

  • Пусть потенциал обкладки конденсатора, на которой находится заряд равен а потенциал обкладки, на которой находится заряд , равен Тогда каждый из элементарных зарядов на которые можно разделить заряд находится в точке с потенциалом а каждый из зарядов, на которые можно разделить заряд , в точке с потенциалом .
  • Согласно формуле (28.1) энергия такой системы зарядов равна
  • Воспользовавшись соотношением (27.2), можно написать три выражения для энергии заряженного конденсатора:

Формулы (29.2) отличаются от формул (28.3) только заменой на

С помощью выражения для потенциальной энергии можно найти силу, с которой пластины плоского конденсатора притягивают друг друга. Допустим, что расстояние между пластинами может меняться. Свяжем начало оси х с левой пластиной (рис. 29.1). Тогда координата х второй пластины будет определять зазор d между обкладками. Согласно формулам (27.3) и (29.2)

Продифференцируем это выражение по х, полагая заряд на обкладках неизменным (конденсатор отключен от источника напряжения). В результате получим проекцию на ось х силы, действующей на правую пластину:

Модуль этого выражения дает величину силы, с которой обкладки притягивают друг друга:

Теперь попытаемся вычислить силу притяжения между обкладками плоского конденсатора как произведение напряженности поля, создаваемого одной из обкладок, на заряд, сосредоточенный на другой. Согласно формуле (14.3) напряженность поля, создаваемого одной обкладкой, равна

Диэлектрик ослабляет поле в зазоре в раз, но это имеет место только внутри диэлектрика (см. формулу (20.2) и связанный с нею текст). Заряды на обкладках располагаются вне диэлектрика и поэтому находятся под действием поля напряженности (29.4).

Умножив заряд обкладки q на эту напряженность, получим для силы выражение

Формулы (29. 3) и (29.5) не совпадают. С опытом согласуется значение силы (29.3), получающееся из выражения для энергии. Это объясняется тем, что, кроме «электрической» силы (29.5), на обкладки действуют со стороны диэлектрика механические силы, стремящиеся их раздвинуть (см. § 22; отметим, что мы имеем в виду жидкий или газообразный диэлектрик).

У края обкладок имеется рассеянное поле, убывающее по величине при удалении от краев (рис. 29.2). Молекулы диэлектрика, обладая дипольным моментом, испытывают дйствие силы, втягивающей их в область более сильного поля (см. формулу (9.16)). В результате давление между обкладками повышается и появляется сила, ослабляющая действие силы (29.5) в раз.

Если заряженный конденсатор с воздушным зазором частично погрузить в жидкий диэлектрик, наблюдается втягивание диэлектрика в пространство между пластинами (рис. 29.3). Это явление объясняется следующим образом. -Диэлектрическая проницаемость воздуха практически равна единице.

Поэтому до погружения пластин в диэлектрик емкость конденсатора можно считать равной а энергию равной При частичном заполнении зазора диэлектриком конденсатор можно рассматривать как два параллельно включенных конденсатора, один из которых имеет площадь обкладки, равную — относительная часть зазора, заполненная жидкостью), и заполнен диэлектриком с второй с воздушным зазором имеет площадь обкладки, равную При параллельном включении конденсаторов емкости складываются:

Поскольку энергия будет меньше, чем (заряд q предполагается неизменным — перед погружением в жидкость конденсатор был отключен от источника напряжения). Следовательно, заполнение зазора диэлектриком оказывается энергетически выгодным. Поэтому диэлектрик втягивается в конденсатор и уровень его в зазоре поднимается.

Это в свою очередь приводит к возрастанию потенциальной энергии диэлектрика в поле сил тяжести. В конечном итоге уровень диэлектрика в зазоре установится на некоторой высоте, соответствующей минимуму суммарной энергии (электрической и гравитационной).

Рассмотренное явление сходно с капиллярным поднятием жидкости в узком зазоре между пластинками (см. § 119 1-го тома).

Втягивание диэлектрика в зазор между обкладками можно яснить также и с микроскопической точки зрения. У краев пластин конденсатора имеется неоднородное поле.

Молекулы диэлектрика обладают собственным дипольным моментом либо приобретают его под действием поля; поэтому на них действуют силы, стремящиеся переместить их в область сильного поля, т. е. внутрь конденсатора.

Под действием этих сил жидкость втягивается в зазор до тех пор, пока электрические силы, действующие на жидкость у края пластин, не будут уравновешены весом столба жидкости.

В заряженном конденсаторе обкладки име-ют разноименные заряды и взаимодейст-вуют между собой благодаря электричес-кому полю, которое сосредоточено в прост-ранстве между обкладками. О телах, между которыми существует взаимодействие, гово-рят, что они имеют потенциальную энер-гию. Следовательно, можно говорить и об энергии заряженного конденсатора
.

Обкладки заряженного конден-сатора взаимодействуют между собой.

Наличие энергии
у заряженного конден-сатора можно подтвердить опытами.

Возьмем конденсатор достаточно боль-шой емкости, источник тока, лампочку на-кала и составим электрическую цепь, схема которой изображена на рис. 4.82. Переведем переключатель S
в положение 1 и зарядим конденсатор до определенной разности по-тенциалов от источника GB.

Если после этого перевести переключатель в положение 2, то можно наблюдать кратковременную вспышку света вследствие накала нити лам-почки.

Наблюдаемое явление можно объяс-нить тем, что заряженный конденсатор имел энергию
, за счет которой была выполнена работа по накалу спирали лампочки.

В соответствии с законом сохранения энер-гии
работа, выполненная при разрядке кон-денсатора, равняется работе, выполненной при его зарядке. Расчет этой работы и, соответственно, потенциальной энергии кон-денсатора осложнен особенностями процес-са зарядки конденсатора.

Пластины его за-ряжаются и разряжаются постепенно. Зави-симость заряда Q
конденсатора от времени при зарядке показана на графике (рис. 4.83). Заряд не только увеличивается постепенно, но и скорость его изменения не остается постоянной.

Итак, вести расчеты на осно-вании формулы A =
qEd
нельзя, поскольку напряженность электрического поля не остается постоянной. Разность потенциалов также изменяется от нуля до максимально-го значения. На рис. 4.84 показано, что разность потенциалов изменяется про-порционально заряду конденсатора.

Такая зависимость характерна для силы упругос-ти, которая зависит от удлинения пружины (рис. 4. 85).

Воспользовавшись таким подобием, мож-но сделать вывод, что энергия заряженного конденсатора
будет равна

W =
Q
Δφ / 2.
Материал с сайта

Эта энергия
равна работе по зарядке конденсатора, которая численно равна пло-щади заштрихованного треугольника на гра-фике рис. 4.84.

  1. Учитывая, что Q =
    C
    Δφ
    , получим
  2. W =
    C(Δφ)
    2 / 2.
  3. А если учесть связь разности потенциалов с зарядом Δφ =
    Q /
    C
    , то потенциальная энер-гия конденсатора может быть вычислена по формуле

W = (Q / 2) . (Q /
C) =
Q 2 / 2
C.

  • На этой странице материал по темам:
  • Вопросы по этому материалу:
  • Электроемкостью
    (емкостью) C уединенного изолированного
    проводника называется физическая
    величина, равная отношению изменения
    заряда проводника q к изменению
    его потенциала f:
    C = Dq/Df.

Электроемкость
уединенного проводника зависит только
от его формы и размеров, а также
от окружающей его диэлектрической
среды (e).
Единица
измерения емкости в системе
СИ называется Фарадой. Фарада (Ф) —
это емкость такого уединенного проводника,
потенциал которого повышается на 1 Вольт
при сообщении ему заряда в 1 Кулон.
1 Ф =
1 Кл/1 В.

Конденсатором
называют систему двух разноименно
заряженных проводников, разделенных
диэлектриком (например, воздухом).

Свойство
конденсаторов накапливать и сохранять
электрические заряды и связанное
с ними электрическое поле характеризуется
величиной, называемой электроемкостью
конденсатора.

Электроемкость конденсатора
равна отношению заряда одной из пластин
Q к напряжению между ними U:
C =
Q/U.

В
зависимости от формы обкладок,
конденсаторы бывают плоскими, сферическими
и цилиндрическими. Формулы для расчета
емкостей этих конденсаторов приведены
в таблице.

Соединение
конденсаторов в батареи.
На практике
конденсаторы часто соединяют в батареи —
последовательно или параллельно.

  1. При
    параллельном соединении напряжение
    на всех обкладках одинаковое
    U1 =
    U2 = U3 = U = e, а емкость батареи
    равняется сумме емкостей отдельных
    конденсаторов C = C1 + C2 + C3.
  2. При
    последовательном соединении заряд
    на обкладках всех конденсаторов
    одинаков Q1 = Q2 = Q3, а напряжение
    батареи равняется сумме напряжений
    отдельных конденсаторов U = U1 + U2 +
    U3.
  3. Емкость
    всей системы последовательно соединенных
    конденсаторов рассчитывается
    из соотношения:
    1/C = U/Q = 1/C1 + 1/C2 +
    1/C3.

Емкость
батареи последовательно соединенных
конденсаторов всегда меньше, чем емкость
каждого из этих конденсаторов
в отдельности.
Энергия электростатического
поля.
Энергия заряженного плоского
конденсатора Eк равна работе A, которая
была затрачена при его зарядке, или
совершается при его разрядке.
A =
CU2/2 = Q2/2С = QU/2 = Eк.

Поскольку
напряжение на конденсаторе может
быть рассчитано из соотношения:
U =
E*d,
где E — напряженность поля между
обкладками конденсатора,
d —
расстояние между пластинами
конденсатора,
то энергия заряженного
конденсатора равна:
Eк = CU2/2 =
ee0S/2d*E2*d2 = ee0S*d*E2/2 = ee0V*E2/2,
где V —
объем пространства между обкладками
конденсатора.

Энергия заряженного
конденсатора сосредоточена в его
электрическом поле.

Тип конденсатора Формула для расчета емкости Примечания Схематическое изображение
Плоский конденсатор S — площадь пластины;
d — расстояние между пластинами.
Сферический конденсатор C = 4pee0R1R2/(R2 — R1) R2 и R1 — радиусы внешней и внутренней обкладок.
Цилиндрический конденсатор C = 2pee0h/ln(R2/R1) h — высота цилиндров.

Как
и любая система заряженных
тел, конденсатор
обладает
энергией. Вычислить энергию заряженного
плоского конденсатора с однородным
полем внутри него несложно. Энергия
заряженного конденсатора.
Для
того чтобы зарядить конденсатор, нужно
совершить работу по разделению
положительных и отрицательных зарядов.

Согласно закону сохранения энергии эта
работа равна энергии конденсатора. В
том, что заряженный конденсатор обладает
энергией, можно убедиться, если разрядить
его через цепь, содержащую лампу
накаливания, рассчитанную на напряжение
в несколько вольт (рис.14.37
).
При разрядке конденсатора лампа
вспыхивает.

Энергия конденсатора
превращается в тепло и энергию света.

Выведем
формулу для энергии плоского
конденсатора.
Напряженность поля, созданного зарядом
одной из пластин, равна Е/2
,
где Е
-напряженность
поля в конденсаторе. 2. Применение
конденсаторов
.
Зависимость электроемкости конденсатора
от расстояния между его пластинами
используется при создании одного из
типов клавиатур компьютера.

На тыльной
стороне каждой клавиши располагается
одна пластина конденсатора, а на плате,
расположенной под клавишами, — другая.
Нажатие клавиши изменяет емкость
конденсатора. Электронная схема,
подключенная к этому конденсатору,
преобразует сигнал в соответствующий
код, передаваемый в компьютер.

Энергия конденсатора обычно не очень
велика — не более сотен джоулей. К тому
же она не сохраняется долго из-за
неизбежной утечки заряда. Поэтому
заряженные конденсаторы не могут
заменить, например, аккумуляторы в
качестве источников электрической
энергии.

Но это совсем не означает, что конденсаторы
как накопители энергии не получили
практического применения. Они имеют
одно важное свойство: конденсаторы
могут накапливать энергию более или
менее длительное время, а при разрядке
через цепь с малым сопротивлением они
отдают энергию почти мгновенно. Именно
это свойство широко используют на
практике.

Лампа-вспышка, применяемая в фотографии
,
питается электрическим током разряда
конденсатора, заряжаемого предварительно
специальной батареей. Возбуждение
квантовых источников света — лазеров
осуществляется с помощью газоразрядной
трубки, вспышка которой происходит при
разрядке батареи конденсаторов большой
электроемкости.

Однако основное применение конденсаторы
находят в радиотехнике.
Энергия конденсатора пропорциональна
его электроемкости и квадрату напряжения
между пластинами. Вся эта энергия
сосредоточена в электрическом поле.
Энергия поля пропорциональна квадрату
напряженности поля.

Источник: https://les74.ru/what-is-the-energy-of-a-charged-capacitor.html

[Физика зачет 31] Электрическая емкость проводника. Конденсатор. Емкость плоского конденсатора. Соединение конденсаторов. Энергия, накопленная в конденсаторе. Энергия электрического поля.

Плотность энергии электрического поля. Потенциальная энергия заряженной сферы

Электрическая емкость проводника. 

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника.

Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В Международной системе единиц (СИ) ёмкость измеряется в фарадах. 
 где  — заряд,  — потенциал проводника.
 где  — заряд,  — потенциал проводника.

Конденсатор. Емкость плоского конденсатора. 

Соединение конденсаторов. 

Параллельное соединение конденсаторов
Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора
  • Вывод: При параллельном соединении конденсаторов
  • а) заряды складываются,
  • б) напряжения одинаковые,
  • в) емкости складываются.

Т.о., общая емкость больше емкости любого из параллельно соединенных конденсаторов

Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С1 другая от конденсатора С2 — играют роль обкладок нового конденсатора.

  1. Вывод: При последовательном соединении конденсаторов
  2. а) напряжения складываются,
  3. б) заряды одинаковы,
  4. в) складываются величины, обратные емкости.

   Т.о., общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Энергия, накопленная в конденсаторе. 

 При заряде конденсатора внешний источник расходует энергию на разделение зарядов на положительные и отрицательные. Которые будут находиться на обкладках конденсатора. Следовательно, исходя из закона сохранения энергии, она никуда не пропадает, а остается в конденсаторе.

Энергия в конденсаторе запасается в виде силы взаимодействия положительных и отрицательных зарядов находящихся на его обкладках. То есть в виде электрического поля. Которое сосредоточено между пластинами.

Это взаимодействие стремится притянуть одну обкладку к другой, поскольку, как известно разноименные заряды притягиваются.

  •  Как известно из механики F=mg, аналогично в электрике F=qE, роль массы играет заряд, а роль сили притяжения напряжённость поля.
  •  Работа по перемещению заряда в электрическом поле выглядит так:A=qEd1-qEd2=qEd
  •  C другой же стороны работа также равна разнице потенциальных энергий A=W1-W2=W.
  •  Таким образом используя эти два выражения можно сделать вывод что потенциальная энергия накопленная в конденсаторе равна:
  • W=qEd
  • Формула 1 — Энергия заряженного конденсатора
  • Не трудно заметить, что формула очень похожа на потенциальную энергию из механики W=mgh.

Если провести аналогию с механикой: Представим камень, находящийся на крыше здания. Здесь взаимодействует масса земли с массой камня посредством силы тяжести, а здание высотой hпротиводействует силе гравитации. Если здание убрать камень упадет, следовательно, потенциальная энергия перейдет в кинетическую.

В электростатике же есть два разноименных заряда стремящихся притянутся друг к другу им противодействует диэлектрик толщиной находящийся между обкладками . Если обкладки замкнуть между собой то потенциальная энергия заряда перейдет в кинетическую то есть в тепло.

 В электротехнике формула для энергии в таком виде не применяется. Ее удобно выразить через емкость конденсатора и напряжение, до которого он заряжен.

Так как заряд конденсатора определяется зарядом одной из его пластин то напряжённость поля, создаваемая ею, будет равна E/2. Поскольку общее поле складывается из полей создаваемых обеими обкладками заряжении одинаково, но с противоположным знаком.

  1. Следовательно, энергия конденсатора будет иметь вид: W=q(E/2)d
  2. Поскольку напряжение можно выразить через напряжённость и расстояние(U=Ed) подставим его в нашу формулу получим: W=qU/2
  3. А теперь используя выражение для емкости, C=q/U получим окончательный результат.
  4. Энергия заряженного конденсатора имеет вид:

Энергия электрического поля. 

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно, 

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии dмного меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна 

C учетом соотношения можно записать 

В изотропном диэлектрике направления векторов D и E совпадают и Подставим выражение , получим 

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов qi на величину dri, составляет 

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, .Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика

.
Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:

Плотность энергии электрического поля.  Объемная плотность энергии электрического поля называют физическую
величину равную отношению потенциальной энергии поля, заключенной в элементе
объема, к этому объему

объемная плотность энергии электрического поля равна 

Источник: http://fizmatinf. blogspot.com/2013/05/31.html

Энергия поля конденсатора — Основы электроники

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить следующим обра­зом. Представим себе, что мы заряжаем конденсатор не сра­зу, а постепенно, перенося электрические заряды с одной его пластины на другую.

При перенесении первого заряда работа, произведенная нами, будет небольшой.

На перенесение второго заряда мы затратим больше энергии, так как в результате перенесения первого заряда между пластинами конденсатора будет уже существовать разность потенциалов, которую нам придется преодолевать, третий, четвертый и вообще каждый последую­щий заряд будет переносить все труднее и труднее, т. е. на перенесение их придется затрачивать все больше и больше энергии. Пусть мы перенесем таким образом некоторое коли­чество электричества, которое мы обозначим буквой Q.

Вся энергия, затраченная нами при заряде конденсатора, сосредоточится в электрическом поле между его пластинами. Напряжение между пластинами конденсатора в конце заряда мы обозначим буквой U.

Как мы уже заметили, разность потенциалов в процессе за­ряда не остается постоянной, а постепенно увеличивается от нуля — в начале заряда — до своего конечного значения U.

Для упрощения вычисления энергии допустим, что мы пе­ренесли весь электрический заряд Q с одной пластины кон­денсатора на другую не маленькими порциями, а сразу.

Но при этом мы должны считать, что напряжение между пласти­нами конденсатора было не ноль, как в начале заряда, и не U, как в конце заряда, а равнялось среднему значению между нулем и U, т. е. половине U.

Таким образом, энергия, запа­сенная в электрическом поле конденсатора, будет равна поло­вине напряжения U, умноженной на общее количество пере­несенного электричества Q.

  • Полученный результат мы можем записать в виде сле­дующей математической формулы:
  • W = UQ/2                                                                  (1)
  • Если напряжение в этой формуле будет выражено в воль­тах, а количество электричества — в кулонах, то энергия W получится в джоулях. Если мы вспомним, что заряд, накоп­ленный на конденсаторе, равен Q = CU, то формулу (1) можно будет записать окончательно в следующем виде:
  • W = CU2/2                                                                  (2)
  • Выражение (2) говорит нам о том, что энергия, со­средоточенная в поле конденсатора, равна по­ловине произведения емкости конденсатора на квадрат напряжения между его пласти­нами.
  • Этот вывод имеет очень важное значение при изучении раздела радиотехники о колебательных контурах.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/energiya-polya-kondensatora.html

Электрическая емкость. Конденсаторы

    • Проводники и диэлектрики в электростатическом поле
    • Вещества в природе можно разделить на проводники и диэлектрики.
    • Основная особенность — наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.
    • Типичные проводники — металлы.
  • Диэлектрическая проницаемость вещества

    В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки.

    В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды.

    Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды — индукционными зарядами.

    В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

  • Физическая величина, равная отношению модуля напряженности (vec{E}_0) внешнего электрического поля в вакууме к модулю напряженности (vec{E}) полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества (varepsilon).

    [varepsilon=dfrac{vec{E}_0}{vec{E}}]
    1. Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда (q) одного из проводников к разности потенциалов (Delta varphi) между ними:
    2. [fbox{$C=dfrac{q}{Delta varphi}$}]
    3. Единицы измерения: (displaystyle [ ext{Ф}]) (фарад).
    4. Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.
  • Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, — обкладками.

  • Плоский конденсатор — система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

    • Электроемкость плоского конденсатора
    • Разность потенциалов (Delta varphi) между пластинами в однородном электрическом поле равна (Ed), где (d) — расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:
    • [C=dfrac{q}{Delta varphi}=dfrac{sigma S}{Ed}=dfrac{varepsilon_0S}{d}]
    • Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в (varepsilon) раз:
    • [fbox{$C=dfrac{varepsilon_0varepsilon S}{d}$}]
  • Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

  • Последовательное и параллельное соединение конденсаторов

    Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

    • Последовательное соединение конденсаторов
      При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.
      1. Напряжение на данном участке цепи соотносятся следующим образом:
      2. [fbox{$U=U_1+U_2$}]
      3. Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:
      4. [dfrac{q}{C}=dfrac{q}{C_1}+dfrac{q}{C_2}]
      5. Сократив выражение на (Q), получим формулу:
      6. [fbox{$dfrac{1}{C}=dfrac{1}{C_1}+dfrac{1}{C_2}$}]
      7. Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:
      8. [fbox{$C=dfrac{C_1C_2}{C_1+C_2}$}]
      • Параллельное соединение конденсаторов
      • При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.
      • Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:
      • [fbox{$q=q_1+q_2$}]
      • Так как заряд конденсатора
      • [q=CU]
      • А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов
      • [CU=C_1U+C_2U]
      • [fbox{$C=C_1+C_2$}]
    • По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.

  • Энергия заряженного конденсатора

    Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии того, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится. Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке.

    Вычислим эту энергию: начнём с плоского воздушного конденсатора.

    Ответим на такой вопрос: какова силу притяжения его обкладок друг к другу. Величины используем следующие: заряд конденсатора (q), площадь обкладок (S). Возьмём на второй обкладке настолько маленькую площадку, что заряд (q_0) этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

    1. [F_0 = q_0E_1,]
    2. где (E_1) — напряжённость поля первой обкладки:
    3. [E_1=dfrac{sigma}{2varepsilon_0}=dfrac{q}{2varepsilon_0S}]
    4. Значит
    5. [F_0=dfrac{qq_0}{2varepsilon_0S}]

    Направлена эта сила параллельно линиям поля (т.е. перпендикулярно пластинам).

    Результирующая сила (F) притяжения второй обкладки к первой складывается из всех этих сил (F_0), с которыми притягиваются к первой обкладке всевозможные маленькие заряды (q_0) второй обкладки.

    При этом суммировании постоянный множитель (displaystyledfrac{q}{2varepsilon_0S}) вынесется за скобку, а в скобке просуммируются все (q_0) и дадут (q).2}{2}$}, (3)]

  • Формулы (1)—(3) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.
  • Источник: https://physics.shkolkovo.net/theory/elektricheskaya_emkost_kondensatory

    Энергия конденсатора

    Господа, всем приветище! Сегодня речь пойдет про энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться!

    В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия. И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически. Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно.

    Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s.

    Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу:

    Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить:

    То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F, которую можно рассчитать по этой формуле.

    Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля.  Это позволяет использовать формулу работы без векторов:

    Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные. Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия. Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил.

    Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать

    Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз.

    Рисунок 1 – Плоский конденсатор

    Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина. Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно. Давайте смотреть на красную пластину, как на некоторый заряд +q, расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро. Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq. Тогда уже можно без проблем применять все вышеописанное. И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q. Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики.

    Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле. Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности. Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина – и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать

    Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем

    Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля, а синюю – как некоторый заряд –q в этом поле. Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть энергия конденсатора. Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора:

    Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить. Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра.

    Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение:

    Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем

    Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи:

    Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем

    Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле. Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить. Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости.

    Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии

    Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула – это средняя.

    Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор

    Рисунок 2 – Конденсатор

    И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии:

    Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций.

    Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда. Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров. И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором. Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется!

    Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч!

    Вступайте в нашу группу Вконтакте

    Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


    Максимальная энергия конденсатора формула. Что такое энергия конденсатора

    Темы кодификатора ЕГЭ : электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

    Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах .

    Но прежде введём понятие электрической ёмкости .

    Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым .

    Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду . Коэффициент пропорциональности принято обозначать , так что

    Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

    (1)

    Например, потенциал уединённого шара в вакууме равен:

    где — заряд шара, — его радиус. Отсюда ёмкость шара:

    (2)

    Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

    Соответственно, ёмкость шара в раз увеличивается:

    (3)

    Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

    Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

    В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В . Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

    Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

    Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

    МкФ.

    Как видите, Ф — это очень большая ёмкость.

    Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2) :

    Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

    Ф.

    Так легче запомнить, не правда ли?

    Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

    Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

    Наиболее простым и важным примером такой системы является плоский конденсатор . Он состоит из двух параллельных металлических пластин (называемых обкладками ), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

    Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

    Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора .

    Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

    Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

    Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

    На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.


    Рис. 1. Электрическое поле плоского конденсатора

    Согласно принципу суперпозиции, для результирующего поля имеем:

    Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

    Внутри конденсатора поле удваивается:

    (4)

    Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

    Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4) . Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

    Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты : поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

    Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

    (5)

    Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

    (6)

    Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6) , таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

    Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора :

    (7)

    Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
    Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

    Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

    (8)

    Соответственно, напряжение на конденсаторе:

    (9)

    Отсюда ёмкость плоского конденсатора с диэлектриком :

    (10)

    Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

    Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость .

    Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

    Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

    Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

    Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

    Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

    где — напряжённость поля первой обкладки:

    Следовательно,

    Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

    Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

    (11)

    Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

    Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины > , то работа силы притяжения получается отрицательной, как и должно быть.

    С учётом формул (11) и (7) имеем:

    Это можно переписать следующим образом:

    (12)

    Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора .

    Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

    (13)

    (14)

    Особенно полезными являются формулы (12) и (14) .

    Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

    При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными . Ёмкость конденсатора в них теперь будет выражаться по формуле (10) .

    Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

    Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

    Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

    Но — объём конденсатора. Получаем:

    (15)

    Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

    Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

    Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

    Величина — энергия единицы объёма поля — называется объёмной плотностью энергии . Из формулы (15) получим:

    (16)

    В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

    Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

    (17)

    (18)

    Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
    Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

    Для того, чтобы правильно представлять работу конденсатора, необходимо точно знать о поведении в . Именно их свойства являются основой работы этих специальных устройств. Одним из показателей работы служит энергия заряженного конденсатора, формула которой достаточно точно описывает этот процесс. Кроме того, нужно знать, что вообще представляет собой обычный стандартный конденсатор.

    Устройство и принцип работы конденсатора

    Название конденсатора имеет латинские корни, означающие сгущение или уплотнение. Он имеет два полюса и обладает емкостью с переменным или постоянным значением. Отличительной чертой конденсатора является его незначительная проводимость. Это устройство выполняет основную функцию, связанную с накоплением определенного заряда и электрической энергии.

    Конденсатор относится к категории пассивных электронных компонентов. Типовая конструкция включает в себя два электрода в виде пластин, разделяемых с помощью диэлектрика. Его толщина значительно меньше, чем у пластин, которые называются обкладками. В конденсаторах, применяемых на практике, пластины и электроды состоят из множества слоев. Как правило, происходит их чередование в виде лент, сворачиваемых в форму параллелепипеда или цилиндра.

    При постоянном токе, зарядка и перезарядка производится при включении конденсатора в цепь. После отключения, ток через него уже не проходит. В цепях переменным током, колебания проводятся при циклической перезарядке, а замыкание осуществляется с помощью тока смещения.

    Значение энергии конденсатора

    Прежде всего, необходимо рассмотреть такое понятие, как электрическая емкость. В обычном проводнике этот параметр почти не используется. Более всего он подходит к заряженному конденсатору, который, по своей сути, также является проводником или даже системой проводников. В зависимости от емкости, определяется и энергия заряженного конденсатора, формула которой отражает ее величину.

    Практически каждый конденсатор после его заряда, начинает обладать энергией. Достаточно подключить лампочку, чтобы увидеть, как она загорится на короткое время. Это показывает наличие определенных запасов энергии, выделение которой происходит во время разрядки. Она возникает, как потенциальная энергия, с которой взаимодействуют между собой обкладки конденсатора. Эти обкладки имеют разноименные заряды, способные притягиваться между собой.

    Значение энергии зависит от величины заряда, напряжения в сети и других факторов. Чем больше , тем более высокой энергией он обладает.

    Имеется уединенный проводник. Ему сообщен заряд Q. Вычислим электрический потенциал в точке М.

    Если на проводник поместить заряд Q·b, то


    Потенциал в каждой точке поля возрастает прямо пропорционально заряду проводника, т.е. φ ~ Q.


    , (2)

    где с – электрическая ёмкость (ёмкость)

    Или можно показать: ΔQ=cΔφ


    (3)

    Физический смысл емкости.

    Отметим, что все предыдущее справедливо, если при этом не меняются формы и размеры проводника, а также внешние условия (среда, расположение окружающих предметов).

    СИ :

    IV.Конденсаторы.Вычисление емкости конденсаторов.

    Конденсатором называется система двух (или более) проводников, имеющих такую форму и расположение относительно друг друга, что поле, создаваемое такой системой, локализовано в ограниченной области пространства.

    Примеры конденсаторов :

    Проводники, образующие конденсатор, называются обкладками .

    Чтобы зарядить конденсатор, нужно присоединить его обкладки к источнику напряжения или одну обкладку соединить с Землей, а другую («+») с клеммой источника.

    Емкостью конденсатора С называется величина, измеряемая отношением зарядаQна одной пластине к разности потенциалов между пластинами:


    (4)

    Примеры вычисления емкости конденсаторов .

    1. Плоский конденсатор.




    (5)

    2. Сферический конденсатор.



    (6)

    Положим: r 1 –r 2 =d;d

    Следствие:

    если зазор мал, то С пл = С сф

    если r 1 >>r 2 , то С сф = 4πεε 0 r→C сф = С шара

    3. Цилиндрический конденсатор.


    (7)

    Если напряжение U на конденсаторе сделать слишком большим, то происходит разряд через слой диэлектрика – пробой. Поэтому каждый конденсатор характеризуется не только своей емкостью С, но и максимальным рабочим напряжениемU max =U пр.

    Располагая разными по ёмкости конденсаторами, можно получить желаемую емкость, путем соединения конденсаторов:

    а) последовательное:

    б) параллельное:

    в) смешенное




    Q = Q 1 + Q 2 + … + Q n

    CU = C 1 U + C 2 U + … +C n U

    C = C 1 + C 2 + … +C n


    V.Энергия заряженного конденсатора.Энергия электрического поля.

    Для многих вопросов теории и практики необходимо определять электрическую энергию заряженного проводника. (Определяем через работу разряда проводника).

    Пусть имеется проводник с зарядом Qи начальным потенциалом φ 0 . Тогда элементарная работа при переходе элементарного зарядаdQс проводника на землю равна:

    dA=φ·dQ, где

     – мгновенное значение потенциала, но

    dQ= –Cdφ(“–“ – означает уменьшение потенциала).

    dA = –Cφ·dφ


    Найденная работа совершилась за счет убыли потенциальной энергии и численно равна энергии заряженного проводника W:


    Энергия заряженного конденсатора:

    Формула для энергии заряженного тела по существу определяет и энергию электрического поля созданного заряженным телом:


    (8)

    Объемная плотность энергии электростатического поля – физическая величина, численно равная отношению потенциальной энергии поля в единице объема.



    (9)


    Электрическая емкость проводника.

    Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд . В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.


    Конденсатор. Емкость плоского конденсатора.

    Соединение конденсаторов.

    Параллельное соединение конденсаторов

    Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора

    Вывод: При параллельном соединении конденсаторов

    а) заряды складываются,

    б) напряжения одинаковые,

    в) емкости складываются.

    Т.о., общая емкость больше емкости любого из параллельно соединенных конденсаторов

    Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С 1 другая от конденсатора С 2 — играют роль обкладок нового конденсатора.

    Вывод: При последовательном соединении конденсаторов

    а) напряжения складываются,

    б) заряды одинаковы,

    в) складываются величины, обратные емкости.

    Т.о., общая емкость меньше емкости любого из последовательно соединенных конденсаторов.


    Энергия, накопленная в конденсаторе.

    При заряде конденсатора внешний источник расходует энергию на разделение зарядов на положительные и отрицательные. Которые будут находиться на обкладках конденсатора. Следовательно, исходя из закона сохранения энергии, она никуда не пропадает, а остается в конденсаторе. Энергия в конденсаторе запасается в виде силы взаимодействия положительных и отрицательных зарядов находящихся на его обкладках. То есть в виде электрического поля. Которое сосредоточено между пластинами. Это взаимодействие стремится притянуть одну обкладку к другой, поскольку, как известно разноименные заряды притягиваются.

    Как известно из механики F=mg , аналогично в электрике F=qE , роль массы играет заряд, а роль сили притяжения напряжённость поля.

    Работа по перемещению заряда в электрическом поле выглядит так:A=qEd1-qEd2=qEd

    C другой же стороны работа также равна разнице потенциальных энергий A=W1-W2=W.

    Таким образом используя эти два выражения можно сделать вывод что потенциальная энергия накопленная в конденсаторе равна:

    Формула 1 — Энергия заряженного конденсатора

    Не трудно заметить, что формула очень похожа на потенциальную энергию из механики W=mgh .

    Если провести аналогию с механикой: Представим камень, находящийся на крыше здания. Здесь взаимодействует масса земли с массой камня посредством силы тяжести, а здание высотой h противодействует силе гравитации. Если здание убрать камень упадет, следовательно, потенциальная энергия перейдет в кинетическую.

    В электростатике же есть два разноименных заряда стремящихся притянутся друг к другу им противодействует диэлектрик толщиной d находящийся между обкладками. Если обкладки замкнуть между собой то потенциальная энергия заряда перейдет в кинетическую то есть в тепло.

    В электротехнике формула для энергии в таком виде не применяется. Ее удобно выразить через емкость конденсатора и напряжение, до которого он заряжен.

    Так как заряд конденсатора определяется зарядом одной из его пластин то напряжённость поля, создаваемая ею, будет равна E/2 . Поскольку общее поле складывается из полей создаваемых обеими обкладками заряжении одинаково, но с противоположным знаком.

    Электроемкостью (емкостью) C уединенного изолированного проводника называется физическая величина, равная отношению изменения заряда проводника q к изменению его потенциала f: C = Dq/Df.

    Электроемкость уединенного проводника зависит только от его формы и размеров, а также от окружающей его диэлектрической среды (e). Единица измерения емкости в системе СИ называется Фарадой. Фарада (Ф) — это емкость такого уединенного проводника, потенциал которого повышается на 1 Вольт при сообщении ему заряда в 1 Кулон. 1 Ф = 1 Кл/1 В.

    Конденсатором называют систему двух разноименно заряженных проводников, разделенных диэлектриком (например, воздухом). Свойство конденсаторов накапливать и сохранять электрические заряды и связанное с ними электрическое поле характеризуется величиной, называемой электроемкостью конденсатора. Электроемкость конденсатора равна отношению заряда одной из пластин Q к напряжению между ними U: C = Q/U.

    В зависимости от формы обкладок, конденсаторы бывают плоскими, сферическими и цилиндрическими. Формулы для расчета емкостей этих конденсаторов приведены в таблице.

    Соединение конденсаторов в батареи. На практике конденсаторы часто соединяют в батареи — последовательно или параллельно.

    При параллельном соединении напряжение на всех обкладках одинаковое U1 = U2 = U3 = U = e, а емкость батареи равняется сумме емкостей отдельных конденсаторов C = C1 + C2 + C3.

    При последовательном соединении заряд на обкладках всех конденсаторов одинаков Q1 = Q2 = Q3, а напряжение батареи равняется сумме напряжений отдельных конденсаторов U = U1 + U2 + U3.

    Емкость всей системы последовательно соединенных конденсаторов рассчитывается из соотношения: 1/C = U/Q = 1/C1 + 1/C2 + 1/C3.

    Емкость батареи последовательно соединенных конденсаторов всегда меньше, чем емкость каждого из этих конденсаторов в отдельности. Энергия электростатического поля. Энергия заряженного плоского конденсатора Eк равна работе A, которая была затрачена при его зарядке, или совершается при его разрядке. A = CU2/2 = Q2/2С = QU/2 = Eк. Поскольку напряжение на конденсаторе может быть рассчитано из соотношения: U = E*d, где E — напряженность поля между обкладками конденсатора, d — расстояние между пластинами конденсатора, то энергия заряженного конденсатора равна: Eк = CU2/2 = ee0S/2d*E2*d2 = ee0S*d*E2/2 = ee0V*E2/2, где V — объем пространства между обкладками конденсатора. Энергия заряженного конденсатора сосредоточена в его электрическом поле.

    Тип конденсатора

    Формула для расчета емкости

    Примечания

    Схематическое изображение

    Плоский конденсатор

    S — площадь пластины; d — расстояние между пластинами.

    Сферический конденсатор

    C = 4pee0R1R2/(R2 — R1)

    R2 и R1 — радиусы внешней и внутренней обкладок.

    Цилиндрический конденсатор

    C = 2pee0h/ln(R2/R1)

    h — высота цилиндров.

    Как и любая система заряженных тел, конденсатор обладает энергией. Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно. Энергия заряженного конденсатора. Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии конденсатора. В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37 ). При разрядке конденсатора лампа вспыхивает. Энергия конденсатора превращается в тепло и энергию света.

    Выведем формулу для энергии плоского конденсатора. Напряженность поля, созданного зарядом одной из пластин, равна Е/2 , где Е -напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q , распределенный по поверхности другой пластины (рис.2. Применение конденсаторов . Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера. На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, — другая. Нажатие клавиши изменяет емкость конденсатора. Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер. Энергия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии. Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения. Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно. Именно это свойство широко используют на практике. Лампа-вспышка, применяемая в фотографии , питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей. Возбуждение квантовых источников света — лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости. Однако основное применение конденсаторы находят в радиотехнике. Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.

    Электроемкость конденсатора — формула и определение

    Электроемкость проводников

    Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.

    Электроемкость

    C = q/φ

    С — электроемкость [Ф]

    q — электрический заряд [Кл]

    φ — потенциал [В]

    Особенность этой величины в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости. Самая популярная — формула электроемкости шара.

    Электроемкость шара

    C = 4πεε0r

    С — электроемкость [Ф]

    ε — относительная диэлектрическая проницаемость среды [-]

    ε0 — электрическая постоянная

    ε0 = 8,85 × 10-12 Ф/м

    r — радиус шара [м]

    Конденсаторы

    Способность накапливать заряд — полезная штука, поэтому люди придумали конденсаторы. Это такие устройства, которые помогают применять электрическую емкость проводников в практических целях.

    Конденсатор состоит из двух проводящих пластин (обкладок), разделенных диэлектриком. Между проводящими пластинами образуется электрическое поле, все силовые линии которого идут от одной обкладки к другой.

    Когда заряд накапливается на обкладках, происходит процесс под названием зарядка конденсатора. Заряды на разных обкладках равны по величине и противоположны по знаку.

    Электроемкость конденсатора измеряется отношением заряда на одной из обкладок к разности потенциалов между обкладками:

    Электроемкость конденсатора

    C = q/U

    С — электроемкость [Ф]

    q — электрический заряд [Кл]

    U — напряжение (разность потенциалов) [В]

    По закону сохранения заряда, если обкладки заряженного конденсатора соединить проводником, то заряды нейтрализуются, переходя с одной обкладки на другую. Так происходит разрядка конденсатора.

    Любой конденсатор имеет предел напряжения. Если оно окажется слишком большим, то случится пробой диэлектрика, то есть разрядка произойдет прямо через диэлектрик. Такой конденсатор больше работать не будет.

    Виды конденсаторов



    Энергия конденсатора

    У конденсатора, как и у любой системы заряженных тел, есть энергия. Чтобы зарядить конденсатор, необходимо совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии эта работа будет как раз равна энергии конденсатора.

    Доказать, что заряженный конденсатор обладает энергией, несложно. Для этого понадобится электрическая цепь, содержащая в себе лампу накаливания и конденсатор. При разрядке конденсатора вспыхнет лампа — это будет означать, что энергия конденсатора превратилась в тепло и энергию света.


    Чтобы вывести формулу энергии плоского конденсатора, нам понадобится формула энергии электростатического поля.

    Энергия электростатического поля

    Wp = qEd

    Wp — энергия электростатического поля [Дж]

    q — электрический заряд [Кл]

    E — напряженность электрического поля [В/м]

    d — расстояние от заряда [м]

    В случае с конденсатором d будет представлять собой расстояние между пластинами.


    Заряд на пластинах конденсатора равен по модулю, поэтому можно рассматривать напряженность поля, создаваемую только одной из пластин.

    Напряженность поля одной пластины равна Е/2, где Е — напряженность поля в конденсаторе.

    В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины.

    Тогда энергия конденсатора равна:

    Wp = qEd/2

    Разность потенциалов между обкладками конденсатора можно представить, как произведение напряженности на расстояние:

    U = Ed

    Поэтому:

    Wp = qU/2

    Эта энергия равна работе, которую совершит электрическое поле при сближении пластин.

    Заменив в формуле разность потенциалов или заряд с помощью выражения для электроемкости конденсатора C = q/U, получим три различных формулы энергии конденсатора:

    Энергия конденсатора

    Wp = qU/2

    Wp — энергия электростатического поля [Дж]

    q — электрический заряд [Кл]

    U — напряжение на конденсаторе [В]

    Энергия конденсатора

    Wp = q2/2C

    Wp — энергия электростатического поля [Дж]

    q — электрический заряд [Кл]

    C — электроемкость конденсатора [Ф]

    Энергия конденсатора

    Wp = CU2/2

    Wp — энергия электростатического поля [Дж]

    C — электроемкость конденсатора [Ф]

    U — напряжение на конденсаторе [В]

    Эти формулы справедливы для любого конденсатора.

    Применение конденсаторов

    Конденсатор есть в каждом современном устройстве. Без него не будет работать ни один прибор. Разберем два самых наглядных примера.

    Пример раз — вспышка

    Без конденсатора вспышка в фотоаппарате работала бы не так, как мы привыкли, а с большими задержками, и к тому же быстро разряжала бы аккумулятор. Конденсатор в этом случае работает как батарейка. Он накапливает заряд от аккумулятора и хранит его до востребования. Когда нам нужна вспышка, конденсатор разряжается, чтобы она сработала и вылетела птичка.

    Пример два — тачскрин

    Тачскрин на телефоне работает по принципу, схожему с конденсатором. В самом смартфоне, конечно, тоже есть множество конденсаторов, но этот принцип куда интереснее.

    Дело в том, что тело человека тоже умеет проводить электричество — у него даже есть сопротивление и электроемкость. Так что можно считать человеческий палец пластиной конденсатора — тело же проводник, почему бы и нет. Но если поднести палец к металлической пластине, получится плохой конденсатор.

    В экран телефона встроена матрица из микроскопических пластинок. Когда мы подносим палец к одной из них, получается своего рода конденсатор. Когда перемещаем палец ближе к другой пластинке — еще один конденсатор. Телефон постоянно проверяет пластинки, и если обнаруживает, что у какой-то из них внезапно изменилась электроемкость, значит, рядом есть палец. Координаты пластинки с изменившейся электроемкостью передаются операционной системе телефона, а она уже решает, что с этими координатами делать.

    Кстати, то же самое можно проделать, если взять обычную сосиску и поводить ей по экрану смартфона. Тачскрин будет реагировать на все контакты, как реагирует на человеческий палец.

    Это не единственный вариант реализации тачскрина, но один из лучших на сегодняшний день. В айфоне используется именно он.

    Накопление электрической энергии

    Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

    В заряженном конденсаторе накоплена (аккумулирована) электрическая энергия. Эта энергия конденсатора равна работе, необходимой для зарядки конденсатора.
    Процесс зарядки конденсатора состоит, по сути, в том, что заряд с одной пластины переносится на другую. Именно это совершает источник напряжения, когда его подключают к конденсатору. Сначала, когда конденсатор не заряжен, для переноса первой порции заряда не требуется работы.
    Но когда на каждой из пластин уже имеется заряд, для пополнения его приходится совершать работу против сил электрического отталкивания. Чем больше накопленный пластинами заряд, тем большую работу, необходимо совершить для его увеличения. Если на пластинах существует разность потенциалов V, работа по переносу элемента заряда dq равна dW = Vdq. Поскольку V= q/C , где С — емкость конденсатора, тогда работа по его заряду составит:

    Итак, мы можем сказать, что энергия, запасенная, или аккумулированная, конденсатором, равна

    если заряды обкладок конденсатора емкостью С равны соответственно +Q и -Q. А так как Q = СV, где V — разность потенциалов между обкладками, мы можем написать

    Пример 25.5. Конденсатор емкостью 20 мкФ подключен к батарее напряжением 12 В. Какую энергию может запасти конденсатор?

    Решение. Согласно (25.5),

    Энергия не является «вещественной субстанцией», поэтому она вовсе не должна быть где-то сосредоточена. Тем не менее принято считать, что она запасена электрическим полем между пластинами.
    Для примера выразим энергию плоского конденсатора через напряженность электрического поля. Мы показали [см. (24.3)], что между параллельными пластинами существует приблизительно однородное электрическое поле Е и его напряженность связана с разностью потенциалов соотношением V = Ed, где d — расстояние между пластинами.
    Кроме того, согласно (25.2), емкость плоского конденсатора равна С = s0 A/d. Тогда

    Произведение Ad характеризует объем, занимаемый электрическим полем Е. Разделив обе части формулы на объем, получим выражение для энергии, запасенной в единице объема, или плотности энергии u:

    Плотность электростатической энергии, запасенной в любой части пространства, пропорциональна квадрату напряженности электрического поля в этой области.

    Выражение (25.6) получено для частного случая плоского конденсатора. Можно показать, однако, что оно справедливо для любой области пространства, в которой существует электрическое поле.

    Продолжение следует. Коротко о следующей публикации:

    Диэлектрики.
    В конденсаторах между пластинами проложен изолирующий материал (диэлектрик), например слюда или пластмассовая пленка. Этим достигается сразу несколько целей. Во-первых, диэлектрики лучше противостоят электрическому пробою, чем воздух, и к конденсатору можно приложить более высокое напряжение. Во-вторых, при наличии диэлектрика пластины можно расположить ближе друг к другу без опасения, что они могут соприкасаться. В третьих, ёмкость конденсатора увеличится в несколько раз благодаря электрической поляризации диэлектрика.

    Альтернативные статьи: Переменный ток, Закон Ома.


    Замечания и предложения принимаются и приветствуются!

    энергии, хранящейся в конденсаторе — University Physics Volume 2

    Цели обучения

    К концу этого раздела вы сможете:

    • Объясните, как энергия хранится в конденсаторе
    • Использование соотношений энергии для определения энергии, запасенной в конденсаторной сети

    Большинство из нас видели, как медицинский персонал использует дефибриллятор, чтобы пропустить электрический ток через сердце пациента, чтобы заставить его нормально биться.Часто реалистично в деталях, человек, применяющий электрошок, просит другого человека «сделать на этот раз 400 джоулей». Энергия, подаваемая дефибриллятором, накапливается в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ — джоули. Менее драматично использование конденсаторов в микроэлектронике для подачи энергии при зарядке аккумуляторов ((рисунок)). Конденсаторы также используются для питания импульсных ламп на камерах.

    Конденсаторы на печатной плате электронного устройства следуют соглашению о маркировке, при котором каждый из них обозначается кодом, начинающимся с буквы «C.”(Источник: Винделл Оскей)

    Энергия, запасенная в конденсаторе, является электростатической потенциальной энергией и, таким образом, связана с зарядом Q и напряжением В между пластинами конденсатора. Заряженный конденсатор накапливает энергию в электрическом поле между пластинами. По мере зарядки конденсатора нарастает электрическое поле. Когда заряженный конденсатор отсоединяется от батареи, его энергия остается в поле в пространстве между пластинами.

    Чтобы понять, как можно выразить эту энергию (в терминах Q и В ), рассмотрим заряженный пустой конденсатор с параллельными пластинами; то есть конденсатор без диэлектрика, но с вакуумом между пластинами.Пространство между его пластинами имеет объем Ad , и оно заполнено однородным электростатическим полем E . Полная энергия конденсатора содержится в этом пространстве. Плотность энергии в этом пространстве просто делится на объем Ad . Если мы знаем плотность энергии, ее можно найти как. В разделе «Электромагнитные волны» (после завершения изучения уравнений Максвелла) мы узнаем, что плотность энергии в области свободного пространства, занятой электрическим полем E , зависит только от величины поля и составляет

    Если мы умножим плотность энергии на объем между пластинами, мы получим количество энергии, хранящейся между пластинами конденсатора с параллельными пластинами :.

    В этом выводе мы использовали тот факт, что электрическое поле между пластинами однородно, так что и Поскольку, мы можем выразить этот результат в других эквивалентных формах:

    Выражение на (рисунок) для энергии, запасенной в конденсаторе с параллельными пластинами, в общем, справедливо для всех типов конденсаторов. Чтобы убедиться в этом, рассмотрим любой незаряженный конденсатор (не обязательно с параллельными пластинами). В какой-то момент мы подключаем его к батарее, давая ему разность потенциалов между пластинами.Первоначально заряд на пластинах равен По мере того, как конденсатор заряжается, заряд постепенно накапливается на его пластинах и через некоторое время достигает значения Q . Чтобы переместить бесконечно малый заряд dq с отрицательной пластины на положительную (от более низкого к более высокому потенциалу), объем работы dW , который должен быть выполнен на dq , составляет.

    Эта работа становится энергией, запасенной в электрическом поле конденсатора. Чтобы зарядить конденсатор до заряда Q , требуется общая работа

    .

    Поскольку геометрия конденсатора не указана, это уравнение справедливо для любого типа конденсатора.Общая работа Вт, , необходимая для зарядки конденсатора, представляет собой запасенную в нем электрическую потенциальную энергию, или. Когда заряд выражается в кулонах, потенциал выражается в вольтах, а емкость выражается в фарадах, это соотношение дает энергию в джоулях.

    Зная, что энергия, запасенная в конденсаторе, равна, теперь мы можем найти плотность энергии, запасенную в вакууме между пластинами заряженного конденсатора с параллельными пластинами. Нам просто нужно разделить на объем Ad пространства между его пластинами и учесть, что для конденсатора с параллельными пластинами имеем и.Следовательно, получаем

    Мы видим, что это выражение для плотности энергии, запасенной в конденсаторе с параллельными пластинами, соответствует общему соотношению, показанному на (Рисунок). Мы могли бы повторить этот расчет либо для сферического конденсатора, либо для цилиндрического конденсатора — или для других конденсаторов — и во всех случаях мы бы получили общее соотношение, представленное (рисунок).

    Проверьте свое понимание Разность потенциалов на конденсаторе 5,0 пФ составляет 0,40 В.а) Какая энергия хранится в этом конденсаторе? (b) Теперь разность потенциалов увеличена до 1,20 В. На какой коэффициент увеличена запасенная энергия?

    а .; б. 9 раз

    При неотложной сердечной недостаточности портативное электронное устройство, известное как автоматический внешний дефибриллятор (AED), может быть спасением. Дефибриллятор ((Рисунок)) подает большой заряд коротким импульсом или разрядом в сердце человека, чтобы исправить нарушение сердечного ритма (аритмию). Сердечный приступ может возникнуть в результате быстрого, нерегулярного сердцебиения, называемого фибрилляцией сердца или желудочков.Применение большого разряда электрической энергии может прекратить аритмию и позволить естественному кардиостимулятору организма вернуться к своему нормальному ритму. Сегодня машины скорой помощи носят с собой AED. AED также можно найти во многих общественных местах. Они предназначены для использования непрофессионалами. Устройство автоматически диагностирует сердечный ритм пациента, а затем применяет разряд с соответствующей энергией и формой волны. Во многих случаях перед использованием дефибриллятора рекомендуется сердечно-легочная реанимация.

    Автоматические внешние дефибрилляторы можно найти во многих общественных местах. Эти портативные устройства предоставляют устные инструкции по использованию в первые несколько важных минут для человека, страдающего сердечным приступом. (кредит: Оуайн Дэвис)

    Емкость дефибриллятора сердца Дефибриллятор сердца доставляет энергию путем первоначального разряда конденсатора. Какова его емкость?

    Стратегия Нам дается В и , и нас просят найти емкость C .Решаем (рисунок) для C и подставляем.

    Решение Решение этого выражения для C и ввод данных значений дает

    Сводка

    • Конденсаторы используются для подачи энергии к различным устройствам, включая дефибрилляторы, микроэлектронику, такую ​​как калькуляторы, и лампы-вспышки.
    • Энергия, запасенная в конденсаторе, — это работа, необходимая для зарядки конденсатора, начиная с нулевого заряда на его пластинах. Энергия накапливается в электрическом поле в пространстве между пластинами конденсатора.Это зависит от количества электрического заряда на пластинах и от разности потенциалов между пластинами.
    • Энергия, запасенная в конденсаторной сети, представляет собой сумму энергий, сохраненных на отдельных конденсаторах в сети. Его можно вычислить как энергию, запасенную в эквивалентном конденсаторе сети.

    Концептуальные вопросы

    Если вы хотите хранить большое количество энергии в конденсаторной батарее, подключите ли вы конденсаторы последовательно или параллельно? Объяснять.

    Глоссарий

    плотность энергии
    энергия, запасенная в конденсаторе, деленная на объем между пластинами

    Калькулятор энергии конденсатора

    Это калькулятор энергии конденсатора, простой инструмент, который поможет вам оценить количество энергии, хранящейся в конденсаторе. Вы также можете узнать, сколько заряда накопилось в конденсаторе. Читайте дальше, чтобы узнать, какая энергия хранится в конденсаторе и каково уравнение энергии конденсатора.

    Какая энергия хранится в конденсаторе?

    Конденсатор — это электронный компонент, обычно используемый в схемах. Его функция — накапливать электрический заряд . В стандартных конденсаторах с параллельными пластинами на соседних пластинах присутствуют заряды равной, но противоположной величины (для сферических конденсаторов вместо пластин используются концентрические сферы). Эти заряды создают между собой электрическое поле, состоящее из определенного количества энергии контура. Поскольку мы говорим о накопленных зарядах, это пример потенциальной энергии.

    Формула энергии конденсатора

    Как вы оцениваете энергию E , хранящуюся в конденсаторе с емкостью C и приложенным напряжением В ? Это эквивалентно работе, выполняемой батареей по перемещению заряда Q на конденсатор. В результате получается уравнение:

    E = 1/2 * C * V² .

    Используя общую формулу для емкости, C = Q / V , мы можем переписать уравнение энергии емкости в двух других аналогичных формах:

    E = 1/2 * Q² / C или E = 1/2 * Q * V .

    Электрическая энергия в конденсаторе — пример

    Сколько энергии может храниться в конденсаторе емкостью C = 300 мкФ , когда мы подключаем его к источнику напряжения В = 20 В ? Давайте вместе разберемся!

    • Чтобы облегчить нашу жизнь, используйте научное обозначение емкости: C = 3 · 10⁻⁴ F
    • В соответствии с формулой мощности емкости результат оценивается как: E = 1/2 * 3 · 10⁻⁴ F * (20 В) ² = 6 · 10⁻² Дж
    • Энергия, запасенная в конденсаторе, также может быть записана как 0.06 Дж или 60 мДж
    • Кроме того, мы можем оценить общий заряд, накопленный в конденсаторе: Q = C * V = 3 · 10⁻⁴F * 20 V = 6 · 10⁻³ C = 6 мКл
    • … или вы можете просто сэкономить свое время, используя этот калькулятор энергии конденсатора, который автоматически выполняет все вычисления за вас!

    Кстати, если у вас есть система с более чем одним конденсатором, вам лучше проверить наши конденсаторы последовательно или конденсаторы в параллельных калькуляторах, чтобы быстро найти общую емкость, потому что это значение, которое вы должны использовать в формуле для энергия конденсатора.

    Преобразования энергии в LC-контуре

    LC-цепь — это система, состоящая из катушки индуктивности и конденсатора. На практике это можно обобщить как цепь RLC из-за некоторого сопротивления в системе. Как только схема обрабатывает сигнал резонансной частоты, потенциальная энергия конденсатора непрерывно преобразуется в магнитную энергию, создаваемую током, протекающим через катушку. Эти виды схем широко используются при обработке сигналов или при отправке и приеме радиоволн.

    4.3 Энергия, запасенная в конденсаторе — Введение в электричество, магнетизм и схемы

    ЦЕЛИ ОБУЧЕНИЯ

    К концу этого раздела вы сможете:
    • Объясните, как энергия хранится в конденсаторе
    • Использование соотношений энергии для определения энергии, запасенной в конденсаторной сети

    Большинство из нас видели, как медицинский персонал использует дефибриллятор, чтобы пропустить электрический ток через сердце пациента, чтобы заставить его нормально биться.Часто реалистичный в деталях, человек, применяющий электрошок, направляет другого человека «сделать на этот раз джоули». Энергия, подаваемая дефибриллятором, накапливается в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ — джоули. Менее драматично использование конденсаторов в микроэлектронике для подачи энергии при зарядке аккумуляторов (рисунок 4.3.1). Конденсаторы также используются для питания импульсных ламп на камерах.

    (рисунок 4.3.1)

    Рисунок 4.3.1 Конденсаторы на печатной плате электронного устройства следуют соглашению о маркировке, при котором каждый из них обозначается кодом, начинающимся с буквы «C».

    Энергия, запасенная в конденсаторе, является электростатической потенциальной энергией и, таким образом, связана с зарядом и напряжением между пластинами конденсатора. Заряженный конденсатор накапливает энергию в электрическом поле между пластинами. По мере зарядки конденсатора нарастает электрическое поле. Когда заряженный конденсатор отсоединяется от батареи, его энергия остается в поле в пространстве между пластинами.

    Чтобы понять, как можно выразить эту энергию (через и), рассмотрим заряженный пустой конденсатор с параллельными пластинами; то есть конденсатор без диэлектрика, но с вакуумом между пластинами. Пространство между его пластинами имеет объем и заполнено однородным электростатическим полем. Полная энергия конденсатора содержится в этом пространстве. Плотность энергии в этом пространстве просто делится на объем. Если мы знаем плотность энергии, ее можно найти как.В «Электромагнитных волнах» (после завершения изучения уравнений Максвелла) мы узнаем, что плотность энергии в области свободного пространства, занятой электрическим полем, зависит только от величины поля и составляет

    (4.3.1)

    Если мы умножим плотность энергии на объем между пластинами, мы получим количество энергии, хранящейся между пластинами конденсатора с параллельными пластинами:.

    В этом выводе мы использовали тот факт, что электрическое поле между пластинами однородно, так что и.Потому что мы можем выразить этот результат в других эквивалентных формах:

    (4.3.2)

    Выражение в уравнении 4.3.1 для энергии, запасенной в конденсаторе с параллельными пластинами, обычно справедливо для всех типов конденсаторов. Чтобы убедиться в этом, рассмотрим любой незаряженный конденсатор (не обязательно с параллельными пластинами). В какой-то момент мы подключаем его к батарее, давая ему разность потенциалов между пластинами. Изначально заряд на пластинах есть. По мере зарядки конденсатора заряд постепенно накапливается на его пластинах и через некоторое время достигает значения.Чтобы переместить бесконечно малый заряд с отрицательной пластины на положительную (от более низкого к более высокому потенциалу), объем работы, который необходимо выполнить, равен.

    Эта работа становится энергией, запасенной в электрическом поле конденсатора. Чтобы зарядить конденсатор до заряда, требуется общая работа

    Поскольку геометрия конденсатора не указана, это уравнение справедливо для любого типа конденсатора. Общая работа, необходимая для зарядки конденсатора, представляет собой запасенную в нем электрическую потенциальную энергию, или.Когда заряд выражается в кулонах, потенциал выражается в вольтах, а емкость выражается в фарадах, это соотношение дает энергию в джоулях.

    Зная, что энергия, запасенная в конденсаторе, равна, теперь мы можем найти плотность энергии, запасенную в вакууме между пластинами заряженного конденсатора с параллельными пластинами. Нам просто нужно разделить на объем пространства между его пластинами и учесть, что для конденсатора с параллельными пластинами мы имеем и. Следовательно, получаем

    Мы видим, что это выражение для плотности энергии, запасенной в конденсаторе с параллельными пластинами, соответствует общему соотношению, выраженному в уравнении 4.3.1. Мы могли бы повторить этот расчет либо для сферического конденсатора, либо для цилиндрического конденсатора — или для других конденсаторов — и во всех случаях мы бы получили общее соотношение, заданное уравнением 4.3.1.

    ПРИМЕР 4.3.1


    Энергия, запасенная в конденсаторе

    Рассчитайте энергию, запасенную в конденсаторной сети на Рисунке 4.2.4 (a), когда конденсаторы полностью заряжены и когда емкости равны, и соответственно.

    Стратегия

    Мы используем уравнение 4.3.2, чтобы найти энергию, и, запасенную в конденсаторах, и, соответственно. Полная энергия — это сумма всех этих энергий.

    Решение

    Мы идентифицируем и, и, и. В этих конденсаторах хранится энергия

    Общее количество энергии, хранящейся в этой сети, составляет

    .

    Значение

    Мы можем проверить этот результат, вычислив энергию, запасенную в одном конденсаторе, который эквивалентен всей сети.Напряжение в сети. Полная энергия, полученная таким образом, согласуется с нашим ранее полученным результатом.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 4.6


    Разность потенциалов на конденсаторе составляет. а) Какая энергия хранится в этом конденсаторе? (b) Теперь разность потенциалов увеличена до. Во сколько раз увеличивается запасенная энергия?

    При неотложной сердечной недостаточности портативное электронное устройство, известное как автоматический внешний дефибриллятор (AED), может быть спасением.Дефибриллятор (рис. 4.3.2) подает большой заряд в виде короткого импульса или разряда в сердце человека, чтобы исправить нарушение сердечного ритма (аритмию). Сердечный приступ может возникнуть в результате быстрого, нерегулярного сердцебиения, называемого фибрилляцией сердца или желудочков. Применение большого разряда электрической энергии может прекратить аритмию и позволить естественному кардиостимулятору организма вернуться к своему нормальному ритму. Сегодня машины скорой помощи носят с собой AED. AED также можно найти во многих общественных местах.Они предназначены для использования непрофессионалами. Устройство автоматически диагностирует сердечный ритм пациента, а затем применяет разряд с соответствующей энергией и формой волны. Во многих случаях перед использованием дефибриллятора рекомендуется сердечно-легочная реанимация.

    (рисунок 4.3.2)

    Рисунок 4.3.2 Автоматические внешние дефибрилляторы можно найти во многих общественных местах. Эти портативные устройства предоставляют устные инструкции по использованию в первые несколько важных минут для человека, страдающего сердечным приступом.

    Candela Citations

    Лицензионный контент CC, особая атрибуция

    • Загрузите бесплатно по адресу http://cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

    Постоянная времени и энергия, накопленная в конденсаторах

    Конденсаторы разряжаются экспоненциально. Это означает, что их заряд спадает аналогично распаду радиоактивного материала. В радиоактивности у вас есть период полураспада, в емкости — «постоянная времени» .

    Скорость снятия заряда пропорциональна оставшейся сумме заряда.

    По мере того, как время идет вперед через равные промежутки времени, T (так называемая постоянная времени ), заряд падает каждый раз в той же пропорции . Оказывается, что для каждого интервала Т заряд или ток падает примерно до 0.37 (37%) от начального значения. ( Примечание: Для математиков среди вас это число может быть вычислено с использованием 1 / e, где e — экспоненциальная константа со значением 2,718.)

    Постоянную времени T можно рассчитать по формуле:

    Т = RC

    Где:

    T = постоянная времени

    R = сопротивление в цепи (Ом)

    C = емкость цепи (F)

    Таким образом, фактор, определяющий, насколько быстро падает заряд, — это комбинация емкости конденсатора и сопротивления, через которое он разряжается.

    На практике требуется 0,69 x RC (ln2 x RC), чтобы заряд был вдвое меньше его первоначального значения. За это время ток разряда также упадет до половины своего первоначального значения.

    Для расчета заряда Q, оставшегося на конденсаторе после времени t, необходимо использовать уравнение:

    Где:

    Q 0 = начальный заряд конденсатора

    Q = заряд конденсатора в любое время

    t = время

    RC = постоянная времени

    Аналогичным образом ток или напряжение в любое время можно найти с помощью:

    Поскольку все эти отношения являются экспоненциальными, для получения значений постоянной времени можно построить графики натурального логарифма. Например:

    (Запомните для y = mx + c

    м дает уклон графика

    c — точка пересечения по оси y при x = 0)

    Разность потенциалов на пластинах конденсатора прямо пропорциональна заряду, накопленному на пластинах. Это дает прямую линию через начало координат на графике напряжение-заряд. Площадь под этим графиком показывает энергию, запасенную в конденсаторе.

    Поскольку область под графиком представляет собой треугольник,

    площадь = ½ основания x высота.

    Примечание: энергия, используемая элементом для зарядки конденсатора, W = QV, но энергия, запасенная на конденсаторе, = 1/2 QV. Таким образом, половина энергии теряется в цепи в виде тепловой энергии при замене конденсатора.

    Поскольку конденсаторы могут накапливать энергию, их можно использовать в резервных системах в электрических устройствах, таких как компьютеры.

    энергии в конденсаторах

    энергии в конденсаторах
    Далее: Рабочие примеры Up: Емкость Предыдущий: Конденсаторы последовательно и Рассмотрим зарядку изначально незаряженной параллельной пластины. конденсатор путем передачи заряда от одного пластину к другой, оставив прежнюю пластину заряженной, а более позднюю с зарядом.Конечно, как только мы передали некоторый заряд, между пластины, которые препятствуют дальнейшей передаче заряда. Чтобы полностью зарядить конденсатор, мы должны сделать работать против этого поля, и эта работа становится энергия, запасенная в конденсаторе. Подсчитаем это энергия.

    Предположим, что обкладки конденсатора несут заряд и что разность потенциалов между пластинами составляет. Работа, которую мы делаем по передаче бесконечно малая величина заряда от отрицательного к отрицательному положительная пластина — это просто

    (117)

    Чтобы оценить общую работу, проделанную при переводе полный заряд от одной пластины к другой, мы можем разделить этот заряд на множество мелких приращения, найдите дополнительную работу сделано при переводе этого дополнительного заряда, используя приведенную выше формулу, и затем просуммируйте все эти работы.Единственная сложность заключается в том, что потенциал разница между пластинами является функцией от общего количества переданных заряжать. Фактически, так
    (118)

    Интеграция дает
    (119)

    Обратите внимание, что работа, выполняемая при зарядке конденсатора, то же, что и энергия, запасенная в конденсаторе. Поскольку мы можем запишите эту накопленную энергию в одной из трех эквивалентных форм:
    (120)

    Эти формулы верны для любого типа конденсатора, поскольку использованные нами аргументы их получение не зависит от каких-либо особых свойств параллельной пластины конденсаторы.

    Где энергия в параллельной пластине конденсатор реально хранится? Хорошо, если мы подумаем о его, единственное место, где он может храниться, — это электрическое поле, генерируемое между пластинами. Это понимание позволяет нам вычислить энергию (или, скорее, плотность энергии) электрического поля.

    Рассмотрим заполненный вакуумом конденсатор с параллельными пластинами, пластины которого имеют поперечное сечение и расположены на некотором расстоянии друг от друга. Электрическое поле между пластинами является приблизительно равномерный и по величине , где, — заряд, накопленный на пластинах.В остальном электрическое поле примерно равно нулю. Разница потенциалов между пластинами есть. Таким образом, энергия, запасенная в конденсаторе можно написать

    (121)

    где использовалась формула. (108). Теперь — объем заполненной полем области между пластинами, поэтому, если энергия хранится в электрическом поле, тогда энергия на единицу объема, или плотность энергии , поля должна быть
    (122)

    Оказывается, это довольно общий результат.Таким образом, мы можем вычислить энергию содержание любого электрического поля, разделив пространство на маленькие кубики, применяя формула выше, чтобы найти энергосодержание каждого куба, а затем суммируя полученные таким образом энергии для получения полной энергии.

    Легко показать, что плотность энергии в диэлектрике средний

    (123)

    куда — диэлектрическая проницаемость среды. Эта плотность энергии состоит из двух элементов: плотности энергии удерживается в электрическом поле, а плотность энергии удерживается в диэлектрической среде (это представляет собой работу, проделанную на составляющие молекулы диэлектрика чтобы поляризовать их).

    Далее: Рабочие примеры Up: Емкость Предыдущий: Конденсаторы последовательно и
    Ричард Фицпатрик 2007-07-14

    Энергия конденсатора — AP Physics 2

    Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее то информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

    Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

    Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

    Чтобы отправить уведомление, выполните следующие действия:

    Вы должны включить следующее:

    Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; и Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

    Отправьте жалобу нашему уполномоченному агенту по адресу:

    Чарльз Кон Varsity Tutors LLC
    101 S. Hanley Rd, Suite 300
    St. Louis, MO 63105

    Или заполните форму ниже:

    Конденсаторы Physics A-Level

    Изучив этот раздел, вы должны уметь:

    • описать действие конденсатора и рассчитать накопленный заряд
    • Свяжите энергию, запасенную в конденсаторе, с графиком зависимости заряда от напряжения
    • объясните значение постоянной времени цепи, содержащей конденсатор и резистор

    В этом разделе рассматриваются следующие темы

    Действие конденсатора

    Конденсаторы накапливают заряд и энергию.У них есть много применений, включая сглаживание переменных постоянных токов, электронные схемы синхронизации и питание памяти для хранения информации в калькуляторах, когда они выключены.

    Конденсатор состоит из двух параллельных проводящих пластин, разделенных изолятором.

    Когда он подключен к источнику напряжения, заряд течет на пластины конденсатора до тех пор, пока разность потенциалов на них не станет такой же, как у источника питания. Поток заряда и окончательный заряд на каждой пластине показаны на диаграмме.

    Когда конденсатор заряжается, заряд течет во всех частях цепи, кроме между пластинами.

    По мере заряда конденсатора:

    • заряд –Q течет на пластину, подключенную к отрицательной клемме источника питания
    • заряд –Q стекает с пластины, подключенной к положительному выводу источника питания, оставляя на ней заряд + Q
    • пластины конденсатора всегда имеют одинаковое количество заряда, но противоположного знака
    • между пластинами конденсатора не течет заряд.

    Емкость

    Конденсатор, показанный на диаграмме выше, хранит заряд Q, что означает, что это количество заряда на каждой пластине. Когда конденсатор заряжен, величина накопленного заряда зависит от:

    • напряжение на конденсаторе
    • его емкость: то есть чем больше емкость, тем больше заряда сохраняется при заданном напряжении.

    КЛЮЧЕВЫЙ МОМЕНТ — Емкость конденсатора C определяется как: Где Q — это заряд, накопленный, когда напряжение на конденсаторе равно V.Емкость измеряется в фарадах (Ф). 1 фарад — это емкость конденсатора, который накапливает 1 Кл заряда, когда p.d. поперёк — 1 В.

    Поскольку обкладки конденсатора имеют одинаковое количество заряда противоположного знака, общий заряд фактически равен нулю. Однако, поскольку заряды разделены, они обладают энергией и могут работать, когда собраны вместе.

    Один фарад — очень большое значение емкости. Общие значения емкости обычно измеряются в пикофарадах (1 пФ = 1.0 × 10 –12 F) и микрофарад (1 мкФ = 1,0 × 10 –6 F).

    Конденсаторы комбинированные

    Как и резисторы, конденсаторы могут быть подключены последовательно или параллельно для достижения различных значений емкости.

    При последовательном подключении конденсаторов к источнику напряжения:

    • независимо от того, каково значение его емкости, каждый конденсатор в комбинации хранит одно и то же количество заряда, поскольку любая пластина может только терять или получать заряд, полученный или потерянный пластиной, к которой она подключена
    • общий заряд, накопленный последовательной комбинацией, является зарядом на каждой из двух внешних пластин и равен заряду, накопленному на каждом отдельном конденсаторе
    • поскольку приложенная разность потенциалов распределяется между конденсаторами, общий накопленный заряд меньше, чем заряд, который мог бы накапливать любой из конденсаторов, индивидуально подключенных к источнику напряжения.

    Последовательное добавление конденсаторов приводит к уменьшению емкости. При добавлении дополнительного конденсатора p.d. меньше. по каждому из них сохраняется меньше заряда.

    На схеме показан заряд пластин трех последовательно соединенных конденсаторов.

    Это приводит к тому, что эффективное значение последовательной комбинации конденсаторов меньше, чем конденсатор наименьшего номинала в комбинации.

    КЛЮЧЕВЫЙ МОМЕНТ — Емкость C ряда конденсаторов, соединенных последовательно, определяется выражением:

    Распространенной ошибкой при использовании этого отношения является то, что забывают выполнить окончательный ответ, давая ответ, равный 1 / C вместо C.

    В отличие от этого, эффект параллельного соединения конденсаторов заключается в увеличении емкости, так что эффективное значение количества конденсаторов, подключенных параллельно, всегда больше, чем наибольшее значение комбинации.

    При параллельном подключении конденсаторов:

    • все конденсаторы заряжены до одинаковой разности потенциалов
    • каждый конденсатор сохраняет такое же количество заряда, как если бы он был подключен сам по себе к тому же напряжению
    • добавление дополнительного конденсатора увеличивает общий накопленный заряд.

    КЛЮЧЕВЫЙ МОМЕНТ — Емкость C нескольких конденсаторов, подключенных параллельно, определяется выражением: C = C 1 + C 2 + C 3

    Выражения для конденсаторов, соединенных последовательно и параллельно, аналогичны выражениям для резисторов, но наоборот.

    Энергия, запасенная в конденсаторе

    Для зарядки конденсатора необходима энергия от источника питания или другого источника.Заряженный конденсатор может поставлять энергию, необходимую для поддержания памяти в калькуляторе или тока в цепи, когда напряжение питания слишком низкое.

    Количество энергии, хранящейся в конденсаторе, зависит от:

    • количество заряда на обкладках конденсатора
    • напряжение, необходимое для размещения этого заряда на пластинах конденсатора, то есть емкость конденсатора.

    График ниже показывает, как напряжение на пластинах конденсатора зависит от накопленного заряда.

    Когда к конденсатору добавляется заряд ΔQ при разности потенциалов V, выполняемая работа равна ΔQV. Общая работа, выполняемая при зарядке конденсатора, составляет ΣΔQV.

    Заштрихованная область между линией графика и осью заряда представляет энергию, запасенную в конденсаторе.

    КЛЮЧЕВЫЙ МОМЕНТ — Энергия E, запасенная в конденсаторе, определяется выражением E = ½ QV = ½ CV 2 где Q — заряд накапливается на конденсаторе емкости C, когда напряжение на нем равно V.

    Зарядка и разрядка конденсатора

    Когда конденсатор заряжается путем прямого подключения к источнику питания, в цепи очень мало сопротивления, и кажется, что конденсатор заряжается мгновенно. Это потому, что процесс происходит за очень короткий промежуток времени.

    Установка резистора в цепь зарядки замедляет процесс. Чем больше значения сопротивления и емкости, тем больше времени требуется для зарядки конденсатора.

    На приведенной ниже диаграмме показано, как ток изменяется со временем при зарядке конденсатора.

    Наличие резистора в цепи означает, что необходимо проделать дополнительную работу для зарядки конденсатора, поскольку всегда происходит передача энергии в тепло, когда заряд проходит через резистор.

    Этот график показывает, что:

    • зарядный ток падает по мере того, как заряд конденсатора, и напряжение на конденсаторе увеличивается
    • зарядный ток уменьшается в той же пропорции через равные промежутки времени.

    Второй пункт списка показывает, что изменение тока происходит по той же схеме, что и активность радиоактивного изотопа. Это пример экспоненциального изменения , зарядный ток уменьшается экспоненциально.

    Приведенный выше график можно использовать для определения количества заряда, протекающего на конденсатор, путем оценки площади между линией графика и осью времени. Поскольку ток = расход заряда , отсюда следует, что:

    КЛЮЧ. На графике зависимости тока от времени область между линией графика и осью времени представляет поток заряда.

    Для расчета расхода заряда:

    • оцените количество целых квадратов между линией графика и осью времени
    • умножьте это на «значение заряда» каждого квадрата, полученное путем вычисления ΔQ × Δt для одного квадрата.

    Постоянная времени

    Когда конденсатор заряжается или разряжается, количество заряда на конденсаторе изменяется экспоненциально. Графики на схеме показывают, как заряд конденсатора изменяется со временем, когда он заряжается и разряжается.

    Графики, показывающие изменение напряжения во времени, имеют такую ​​же форму. Поскольку V = Q / C , отсюда следует, что единственная разница между графиком заряда-времени и графиком напряжение-время — это метка и масштаб по оси ординат.

    Эти графики показывают, что заряд конденсатора приближается к окончательному значению, нулю в случае разрядки конденсатора, но никогда не достигает его.

    Скорость, с которой изменяется заряд конденсатора, зависит от постоянной времени цепи зарядки или разрядки.

    КЛЮЧ. Постоянная времени τ цепи заряда или разряда конденсатора является произведением сопротивления и емкости:
    τ = RC. τ измеряется в с.

    Чем больше значения R и C , тем дольше длится процесс зарядки или разрядки. Знание значений R и C позволяет рассчитать величину заряда конденсатора в любое время после того, как конденсатор начал заряжаться или разряжаться.Это полезно в схемах синхронизации, где переключатель срабатывает после того, как заряд и, следовательно, p.d. достигли определенного значения.

    Постоянная времени τ представляет:

    • время, необходимое для того, чтобы заряд конденсатора упал до 1 / e от его начального значения, когда конденсатор разряжается
    • время, необходимое для повышения заряда конденсатора до 1–1 / e от его окончательного значения, когда конденсатор заряжается

    Роль постоянной времени аналогична периоду полураспада при радиоактивном распаде.Когда конденсатор разряжается, 1 / e 2 начального заряда остается после времени и 1 / e 3 остается после .

    Экспоненциальная функция e используется для вычисления заряда, оставшегося на разряжающемся конденсаторе.

    КЛЮЧЕВЫЙ МОМЕНТ — Заряд Q на конденсаторе емкости C, оставшееся время t после начала разряда задается выражением Q = Q 0 e –t / τ , где Q 0 — это начальный заряд конденсатора.

    Здесь e — экспоненциальная функция, обратная натуральному логарифму, ln. Не путайте это с кнопкой EXP на калькуляторе, которая используется для ввода степеней 10.

    Это выражение показывает, что когда t равно τ , то есть после истечения одной постоянной времени, оставшийся заряд равен Q 0 e -1 , или Q 0 / e

    ПРОВЕРКА ПРОГРЕССА

    .
    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *