+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Работа и мощность тока | Физика

Какую работу совершает электрический ток, проходя по тому или иному участку цепи? Чтобы определить это, вспомним, что такое напряжение. Согласно формуле (11.1) U = A/q. Отсюда следует, что

A = qU,     (18.1)

где A — работа тока; q — электрический заряд, прошедший за данное время через рассматриваемый участок цепи. Подставляя в последнее равенство выражение q = It, получаем

A = IUt.     (18.2)

Итак, чтобы найти работу тока на участке цепи, надо напряжение на концах этого участка U умножить на силу тока I и на время t, в течение которого совершалась работа.

Действие тока характеризуют не только работой A, но и мощностью P. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время t была совершена работа A, то мощность тока P = A/t. Подставляя в это равенство выражение (18.2), получаем

P = IU.      (18.3)

Итак, чтобы найти мощность электрического тока P, надо силу тока I умножить на напряжение U.

В Международной системе единиц (СИ) работу выражают в джоулях (Дж), мощность — в ваттах (Вт), а время — в секундах (с). При этом

1 Вт = 1 Дж/с, 1 Дж = 1 Вт · с.

Мощности некоторых электроустройств, выраженные в киловаттах (1 кВт = 1000 Вт), приведены в таблице 5.

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать I = 10 А, то при напряжении U = 220 В соответствующая электрическая мощность оказывается равной:

P = 10 A · 220 В = 2200 Вт = 2,2 кВт.

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения оказывается пропорциональной силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах (кВт·ч).

1 кВт·ч — это работа, совершаемая электрическим током мощностью 1 кВт в течение 1 ч. Так как 1 кВт = 1000 Вт, а 1 ч = 3600 с, то

1 кВт·ч = 1000 Вт · 3600 с = 3 600 000 Дж.

??? 1. Как находится работа электрического тока? 2. По какой формуле находится мощность тока? 3. С помощью какого прибора измеряют работу тока? Какая единица работы при этом используется? 4. Сложите мощности всех имеющихся у вас дома электрических устройств. Допустимо ли их одновременное включение в сеть? Почему?

Экспериментальное задание. Рассмотрите у себя дома счетчик электроэнергии. Выясните, как снимаются с него показания. Измерьте с его помощью электроэнергию, израсходованную задень. В течение следующего дня старайтесь экономить энергию — не оставляйте включенным свет, если это не нужно; выключайте электроприборы, которыми в данный момент не пользуетесь; не смотрите все подряд по телевизору. После этого определите с помощью счетчика, сколько электроэнергии вам удалось сэкономить. Вычислите стоимость этой энергии. Сколько денег вам удастся сберечь при подобной экономии энергии за месяц?

Мощность электрического тока: особенности и измерения

Мощность электрического тока – скорость выполняемой цепью работы. Простое определение, морока с пониманием. Мощность подразделяется на активную, реактивную. И начинается…

Работа электрического тока, мощность

При движении заряда по проводнику поле выполняет над ним работу. Величина характеризуется напряжением, в отличие от напряженности в свободном пространстве. Заряды двигаются в сторону убывания потенциалов, для поддержания процесса требуется источник энергии.

Напряжение численно равно работе поля при перемещении на участке единичного заряда (1 Кл). В ходе взаимодействий электрическая энергия переходит в другие виды. Поэтому необходим ввод универсальной единицы, физической свободно конвертируемой валюты. В организме мерой выступает АТФ, электричестве — работа поля.

Электрическая дуга

На схеме момент превращения энергии отображается в виде источников ЭДС. Если у генераторов направлены в одну сторону, у потребителя – обязательно в другую. Наглядным фактом отражается процесс расхода мощности, отбора у источников энергии. ЭДС несет обратный знак, часто называется противо-ЭДС. Избегайте путать понятие с явлением, возникающим в индуктивностях при выключении питания. Противо-ЭДС означает переход электрической энергии в химическую, механическую, световую.

Потребитель хочет выполнить работу за некоторую единицу времени. Очевидно, газонокосильщик не намерен ждать зимы, надеется управиться к обеду. Мощность источника должна обеспечить заданную скорость выполнения. Работу осуществляет  электрический ток, следовательно, понятие также относится. Мощность бывает активной, реактивной, полезной и мощностью потерь. Участки, обозначаемые физическими схемами сопротивлениями, на практике вредны, являются издержками. На резисторах проводников выделяется тепло, эффект Джоуля-Ленца ведет к лишнему расходу мощности. Исключением назовем нагревательные приборы, где явление желательно.

Полезная работа на физических схемах обозначается противо-ЭДС (обычный источник с обратным генератору направлением). Для мощности имеется несколько аналитических выражений. Иногда удобно использовать одно, в других случаях – иное (см. рис.):

Выражения мощности тока

  1. Мощность – скорость выполнения работы.
  2. Мощность равна произведению напряжения на ток.
  3. Мощность, затрачиваемая на тепловое действие, равна произведению сопротивления на квадрат тока.
  4. Мощность, затрачиваемая на тепловое действие, равна отношению квадрата напряжения к сопротивлению.

Запасшемуся токовыми клещами проще использовать вторую формулу. Вне зависимости от характера нагрузки посчитаем мощность. Только активную. Мощность определена многими факторами, включая температуру. Под номинальным для прибора значением понимаем, развиваемое в установившемся режиме. Для нагревателей следует применять третью, четвертую формулу. Мощность зависит целиком и полностью от параметров питающей сети. Предназначенные для работы со 110 вольт переменного тока в европейских условиях быстро сгорят.

Трехфазные цепи

Новичкам трехфазные цепи представляются сложными, на деле это более элегантное техническое решение. Даже электричество домом поставляют тремя линиями. Внутри подъезда делят по квартирам. Больше смущает то, что некоторые приборы на три фазы лишены заземления, нулевого провода. Схемы с изолированной нейтралью. Нулевой провод не нужен, ток возвращается источнику по фазным линиям. Разумеется, нагрузка здесь на каждую жилу повышенная. Требования ПУЭ отдельно оговаривают род сети. Для трехфазных схем вводятся следующие понятия, о которых нужно иметь представление, чтобы правильно посчитать мощность:

Трехфазная цепь с изолированной нейтралью

  • Фазным напряжением, током называют, соответственно, разницу потенциалов и скорость передвижения заряда меж фазой и нейтралью. Понятно, в оговоренном выше случае с полной изоляцией формулы будут недействительны. Поскольку нейтрали нет.
  • Линейным напряжением, током называют, соответственно, разницу потенциалов или скорость перемещения заряда меж любыми двумя фазами. Номера понятны из контекста. Когда говорят о сетях 400 вольт, подразумевают три провода, разница потенциалов с нейтралью равна 230 вольт. Линейное напряжение выше фазного.

Меж напряжением и током существует сдвиг фаз. О чем умалчивает школьная физика. Фазы совпадают, если нагрузка 100% активная (простые резисторы). Иначе появляется сдвиг. В индуктивности ток отстает от напряжения на 90 градусов, в емкости – опережает. Простая истина легко запоминается следующим образом (плавно подходим к реактивной мощности). Мнимая часть сопротивления индуктивности составляет jωL, где ω – круговая частота, равная обычной (в Гц), помноженной на 2 числа Пи; j – оператор, обозначающий направление вектора. Теперь пишем закон Ома: U = I R = I  jωL.

Из равенства видно: напряжение нужно отложить вверх на 90 градусов при построении диаграммы, ток останется на оси абсцисс (горизонтальная ось Х). Вращение по правилам радиотехники происходит против часовой стрелки. Теперь очевиден факт: ток отстает на 90 градусов. По аналогии проведем сравнение для конденсатора. Сопротивление переменному току в мнимой форме выглядит так: -j/ωL, знак указывает: откладывать напряжение нужно будет вниз, перпендикулярно оси абсцисс. Следовательно, ток опережает по фазе на 90 градусов.

В реальности параллельно с мнимой частью присутствует действительная – называют активным сопротивлением. Проволока катушки представлена резистором, будучи свитой, приобретает индуктивные свойства. Поэтому реальный угол фаз будет не 90 градусов, немного меньше.

А теперь можно переходить к формулам мощности тока трехфазных цепей. Здесь линия формирует сдвиг фаз. Меж напряжением и током, и относительно другой линии. Согласитесь, без заботливо изложенных авторами знания факт нельзя осознать. Меж линиями промышленной трехфазной сети сдвиг 120 градусов (полный оборот – 360 градусов). Обеспечит равномерность вращения поля в двигателях, для рядовых потребителей безразличен. Так удобнее генераторам ГЭС – нагрузка сбалансированная. Сдвиг идет меж линиями, в каждой ток опережает напряжение или отстает:

  1. Если линия симметричная, сдвиги меж любыми фазами по току составляют 120 градусов, формула получается предельно простой. Но! Если нагрузка симметрична. Посмотрим изображение: фаза ф не 120 градусов, характеризует сдвиг меж напряжением и током каждой линии. Предполагается, включили двигатель с тремя равноценными обмотками, получается такой результат.
    Если нагрузка несимметрична, потрудитесь провести вычисления для каждой линии отдельно, затем сложить результаты воедино для получения общей мощности тока.
  2. Вторая группа формул приведена для трехфазных цепей с изолированной нейтралью. Предполагается, ток одной линии утекает по другой. Нейтраль отсутствует за ненадобностью. Поэтому напряжения берутся не фазные (не от чего отсчитывать), как предыдущей формулой, а линейные. Соответственно, цифры показывают, какой параметр следует взять. Повремените пугаться греческих букв – фазы меж двумя перемножаемыми параметрами. Цифры меняются местами (1,2 или 2,1), чтобы правильно учесть знак.
  3. В асимметричной цепи вновь появляются фазные напряжение, ток. Здесь расчет ведется отдельно для каждой линии. Никаких вариантов нет.

Формулы мощности тока

На практике измерить мощность тока

Намекнули, можно воспользоваться токовыми клещами. Прибор позволит определить крейсерские параметры дрели. Разгон можно засечь только при многократных опытах, процесс чрезвычайно быстрый, частота смены индикации не выше 3-х раз в секунду. Токовые клещи демонстрируют погрешность. Практика показывает: достичь погрешности, указанной в паспорте, сложно.

Чаще для оценки мощности используют счетчики (для выплат компаниям-поставщикам), ваттметры (для личных и рабочих целей). Стрелочный прибор содержит пару неподвижных катушек, по которым течет ток цепи, подвижную рамку, для заведения напряжения путем параллельного включения нагрузки. Конструкция рассчитана сразу реализовать формулу полной мощности (см. рис.). Ток умножается на напряжение и некий коэффициент, учитывающий градуировку шкалы, также на косинус сдвига фаз между параметрами. Как говорили выше, сдвиг умещается в пределах 90 – минус 90 градусов, следовательно, косинус положителен, крутящий момент стрелки направлен в одну сторону.

Отсутствует возможность сказать индуктивная ли нагрузка или емкостная. Зато при неправильном включении в цепь показания будут отрицательными (завал набок). Произойдет аналогичное событие, если потребитель вдруг станет отдавать мощность обратно нагрузке (бывает такое). В современных приборах происходит нечто подобное же, вычисления ведет электронный модуль, интегрирующий расход энергии, либо считывающий показания мощности. Вместо стрелки присутствует электронный индикатор и множество других полезных опций.

Особые проблемы вызывают измерения в асимметричных цепях с изолированной нейтралью, где нельзя прямо складывать мощности каждой линии. Ваттметры делятся принципом действия:

  1. Электродинамические. Описаны разделом. Состоят из одной подвижной, двух неподвижных катушек.
  2. Ферродинамические. Напоминает двигатель с расщепленным полюсом (shaded-pole motor).
  3. С квадратором. Используется амплитудно-частотная характеристика нелинейного элемента (например, диода), напоминающая параболу, для возведения электрической величины в квадрат (используется в вычислениях).
  4. С датчиком Холла. Если индукцию сделать при помощи катушки пропорциональной напряжению магнитного поля в сенсоре, подать ток, ЭДС будет результатом умножения двух величин. Искомая величина.
  5. Компараторы. Постепенно повышает опорный сигнал, пока не будет достигнуто равенство. Цифровые приборы достигают высокой точности.

В цепях с сильным сдвигом фаз для оценки потерь применяется синусный ваттметр. Конструкция схожа с рассмотренной, пространственное положение таково, что вычисляется реактивная мощность (см. рис.). В этом случае произведение тока и напряжения домножим на синус угла сдвига фаз. Реактивную мощность измерим обычным (активным) ваттметром. Имеется несколько методик. Например, в трехфазной симметричной цепи нужно последовательную обмотку включить в одну линию, параллельную – в две другие. Затем производятся вычисления: показания прибора умножаются на корень из трех (с учетом, что на индикаторе произведение тока, напряжения и синуса угла между ними).

Методика двух ваттметров

Для трехфазной цепи с простой асимметрией задача усложняется. На рисунке показана методика двух ваттметров (ферродинамических или электродинамических). Начала обмоток указаны звездочками. Ток проходит через последовательные, напряжение с двух фаз подается на параллельную (одно через резистор). Алгебраическая сумма показаний обоих ваттметров складывается, умножается на корень из трех для получения значения реактивной мощности.

Формула для нахождения мощности — Морской флот

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Что такое мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Мощность электрического тока через напряжение и ток

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Мощность является физической величиной, равной, как правило, скоростью изменения энергии целой системы. Если говорить более конкретно о том, чему равна мощность, то можно сказать, что она напрямую зависит от соотношения выполненной за определенный срок времени работы и размера этого самого промежутка времени. Существует понятие средней и мгновенной мощности. То есть, если речь идет о мощности системы в некотором промежутке времени, то это – средняя мощность. Если же рассматривается мощность на данный момент, то это – мгновенная мощность. Отсюда получаем следующую формулу:

N (мощность) = Е (энергия)/ t (время)

Следовательно, интеграл, полученный из показателей мгновенной мощности за отдельный срок времени равен полному объему использованной в течение данного периода времени энергии.

В качестве единицы измерения данной величины принято использовать ватт. Учитывая предыдущую формулу можно сказать, что 1 Ватт = 1 Дж / 1 с. Еще одной популярной единицей для измерения величины мощности считается лошадиная сила.

Что такое мощность в механике?

Сила, действующая на тело, находящееся в движении, выполняет работу. В таком случае, мощность определяется скалярным произведением вектора силы и вектора скорости, с которой система движется в пространстве. То есть:

В данной формуле F – это сила, v – это скорость, a – это угол связывающий вектор скорости и вектор силы.

Если речь идет о вращательном движении тела, то уместна следующая формула:

N = M * w = (2П * М * n) / 60

В данной формуле M – это момент силы, w – это угловая скорость, П – это число Пи, а n – это количество оборотов в установленную единицу времени (в минуту).

От чего зависит мощность электрической энергии?

Термин электрической мощности характеризует скорость изменения или передачи электрической энергии. Изучая сеть переменного тока, кроме понятия «мгновенная мощность», которое соответствует традиционно физическому определению, принято использовать и активную мощность. Активная мощность равна среднему показателю мгновенной мощности за период времени, показателю, которым определяется реактивная мощность, соответствующая энергии, перемещающейся между источником и потребителем без диссипации и полному значению мощности, которое определяется произведением активного значения тока и напряжения, не учитывая сдвиг фаз.

Мощность – физическая величина, равная отношению проделанной работы к определенному промежутку времени.

Существует понятие средней мощности за определенный промежуток времени Δt . Средняя мощность высчитывается по этой формуле: N = ΔA / Δt , мгновенная мощность по следующей формуле: N = dA / dt . Эти формулы имеют довольно обобщенный вид, так как понятие мощности присутствует в нескольких ветках физики – механике и электрофизике. Хотя основные принципы расчета мощности остаются приблизительно такими же, как и в общей формуле.

Измеряется мощность в ваттах. Ватт – единица измерения мощности, равная джоулю, деленному на секунду. Кроме ватта, существуют и другие единицы измерения мощности: лошадиная сила, эрг в секунду, масса-сила-метр в секунду.

  • Одна метрическая лошадиная сила равна 735 ваттам, английская – 745 ватт.
  • Эрг – очень малая единица измерения, один эрг равен десять в минус седьмой степени ватт.
  • Один масса-сила-метр в секунду равен 9,81 ваттам.

Измерительные приборы

В основном измерительные приборы для измерения мощности используются в электрофизике, так как в механике, зная определенный набор параметров (скорость и силу), можно самостоятельно высчитать мощность. Но таким же способом и в электрофизике можно высчитывать мощность по параметрам, а на самом деле, в повседневной жизни мы просто не используем измерительных приборов для фиксации механической мощности. Так как чаще всего эти параметры для определенных механизмов и так обозначают. Что касаемо электроники, основным прибором является ваттметр, используемый в быту в устройстве обычного электросчетчика.

Ваттметры можно разделить на несколько видов по частотам:

Ваттметры могут быть как аналоговыми, так и цифровыми. Низкочастотные (НЧ) имеют в своем составе две катушки индуктивности, бывают как цифровыми, так и аналоговыми, применяются в промышленности и быту в составе обычных электросчетчиков. Ваттметры радиочастотные делятся на две группы: поглощаемой мощности и проходящей. Разница состоит в способе подключения ваттметра в сеть, проходящие подключают параллельно сети, поглощаемые в конце сети, как дополнительную нагрузку. Оптические ваттметры служат для определения мощности световых потоков и лазерных лучей. Применяются в основном на каких-либо производствах и в лабораториях.

Мощность в механике

Мощность в механике напрямую зависит от силы и работы, которую эта сила выполняет. Работа же является величиной, характеризующей силу, приложенную к какому-либо телу, под действием которой тело проходит определенное расстояние. Мощность высчитывается по скалярному произведению вектора скорости на вектор силы: P = F * v = F * v * cos a (сила, умноженная на вектор скорости и на угол между вектором силы и скорости (косинус альфа)).

Так же можно посчитать мощность вращательного движения тела. P = M * w = π * M * n / 30 . 2 / R .

  • Мощность переменного тока не поддается исчислению по формуле постоянного тока. В переменном токе выделяют три вида мощности:
  • Активная мощность (Р), которая равна P = U * I * cos f. Где U и I действующие параметры тока, а f (фи) угол сдвига между фазами. Данная формула приведена как пример для однофазного синусоидального тока.
  • Реактивная мощность (Q) характеризует нагрузки, создаваемые в устройствах колебаниями электрического однофазного синусоидального переменного тока. Q = U * I * sin f. Единица измерения – вольт-ампер реактивный (вар).
  • Полная мощность (S) равна корню квадратов активной и реактивной мощности. Измеряется в вольт-амперах.
  • Неактивная мощность – характеристика пассивной мощности присутствующей в цепях с переменным синусоидальным током. Равна квадратному корню суммы квадратов реактивной мощности и мощности гармоник. При отсутствии мощности высших гармоник равна модулю реактивной мощности.

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время, или

где N – мощность,
A – работа,
t – время.

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность , чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α

Глава 21. Электрический ток. Законы Ома и Джоуля-Ленца

Для решения задач ЕГЭ на постоянный ток надо знать определения тока, напряжения, сопротивления, закон Ома для участка цепи и замкнутой цепи, закон Джоуля-Ленца, а также уметь находить эквивалентные сопротивления простейших электрически цепей. Рассмотрим эти вопросы.

Электрическим током называют упорядоченное движение заряженных частиц. Силой тока в некотором сечении проводника называется отношение заряда , протекшего через это сечение за интервал времени , к этому интервалу времени

(21.1)

Чтобы в проводнике тек электрический ток, в проводнике должно быть электрическое поле, или, другими словами, потенциалы различных точек проводника должны быть разными. Но при движении электрических зарядов по проводнику потенциалы различных точек проводника будут выравниваться (см. гл. 19). Поэтому для протекания тока в течение длительного времени на каких-то участках цепи необходимо обеспечить движение зарядов в направлении противоположном полю. Такое движение может быть обеспечено только силами неэлектрической природы, которые в этом контексте принято называть сторонними. В гальванических элементах («батарейках») сторонние силы возникают в результате электрохимических превращений на границах электродов и электролита. Эти превращения обеспечивают перемещение заряда противоположно направлению поля, поддерживая движение зарядов по замкнутому пути.

Сила тока в однородном участке проводника пропорциональна напряженности электрического поля внутри проводника. А поскольку напряженность поля внутри проводника связана с разностью потенциалов его концов (или электрическим напряжением на проводнике ), то

(21.2)

Коэффициент пропорциональности , который принято записывать в знаменатель формулы (21.2), является характеристикой проводника и называется его сопротивлением. В результате формула (21.2) принимает вид

(21.3)

Формула (21.3) называется законом Ома для однородного участка цепи, а сам участок цепи часто называют резистором (от английского слова resistance — сопротивление).

Если проводник является однородным и имеет цилиндрическую форму (провод), то его сопротивление пропорционально длине и обратно пропорционально площади сечения

(21.4)

где коэффициент пропорциональности зависит только от материала проводника и называется его удельным сопротивлением.

Если участок цепи представляет собой несколько последовательно соединенных однородных проводников с сопротивлениями (см. рисунок), то сила тока через каждый проводник будет одинаковой , электрическое напряжение на всем участке цепи равно сумме напряжений на каждом проводнике , а эквивалентное сопротивление всего участка равно сумме сопротивлений отдельных проводников

(21.4)

Если участок цепи представляет собой несколько однородных проводников с сопротивлениями , соединенных параллельно (см. рисунок), то электрическое напряжение на каждом проводнике будет одинаковым , ток через участок будет равен сумме токов, текущих через каждый проводник , а величина, обратная эквивалентному сопротивлению всего участка, равно сумме обратных сопротивлений отдельных проводников

(21.5)

Рассмотрим теперь закон Ома для замкнутой электрической цепи. Пусть имеется замкнутая электрическая цепь, состоящая из источника сторонних сил с внутренним сопротивлением и внешнего сопротивления . Пусть при прохождении заряда через источник сторонние силы совершают работу . Электродвижущей силой источника (часто используется аббревиатура ЭДС) называется отношение работы сторонних сил к заряду

(21.6)

В этом случае сила тока в цепи равна

(21.7)

Формула (21.7) называется законом Ома для замкнутой электрической цепи.

При прохождении электрического тока через участок цепи электрическое поле совершает работу (часто эту работу называют работой тока, хотя термин этот не очень точный). Очевидно, вся эта работа превращается в тепло. Поэтому если через участок цепи прошел заряд , где — сила тока в цепи, — время, то количество выделившейся теплоты равно

(21.8)

(для получения последнего и предпоследнего равенств использован закон Ома для участка цепи). Формулы (21.8) называются законом Джоуля-Ленца. Из формулы (21.8) следует, что количество выделившейся при протекании электрического тока теплоты линейно зависит от времени наблюдения. Поэтому отношение

(21.9)

которое называется мощностью тока, не зависит от времени наблюдения. Формулу (21.9) также называют законом Джоуля-Ленца.

Рассмотрим теперь задачи.

Структура металла кратко обсуждалась в гл. 16: положительно заряженные ионы расположены в узлах кристаллической решетки, образовавшиеся в результате диссоциации валентные электроны могут свободно перемещаться по проводнику (свободные электроны). Они и осуществляют проводимость металла (задача 21.1.1 — ответ 2).

Согласно определению (21.1) находим среднюю силу тока в канале молнии (задача 21.1.2)

(ответ 2).

Если за 1 мин через сечение проводника протекает заряд 60 Кл (задача 21.1.3), то сила тока в этом проводнике равна А. Применяя далее к этому проводнику закон Ома для участка цепи, получаем В (ответ 2).

По закону Ома для участка цепи имеем для силы тока через участок цепи после изменения его сопротивления и электрического напряжения на нем (задача 21.1.4)

Таким образом, сила тока уменьшилась в 4 раза (ответ 3).

Согласно закону Ома для участка цепи сопротивление — это коэффициент пропорциональности между напряжением на этом участке и силой тока в нем. Поэтому в задаче 21.1.5 имеем, например, используя крайнюю точку графика

(ответ 2). Из-за линейной зависимости тока от напряжения вычисления можно было выполнить и по другим точкам графика, ответ был бы таким же.

Согласно формуле (21.4) имеем для первой проволоки в задаче 21.1.6

где — удельное сопротивление меди, — длина проводника, — его радиус. Для медной проволоки с вдвое большей длиной и втрое бóльшим радиусом сечения имеем

(ответ 3).

Как следует из формулы (21.4) при двукратном уменьшении длины проводника вдвое уменьшается его сопротивление. Поэтому из закона Ома для участка цепи (21.3) заключаем, что при двукратном уменьшении напряжения на проводнике и двукратном уменьшении его длины (задача 21.1.7) сила тока в проводнике не изменится (ответ 4).

В задаче 21.1.8 следует использовать закон Ома для замкнутой электрической цепи (21.7). Имеем

где — ЭДС источника, — сопротивлении е внешней цепи, — сопротивление источника (ответ 1).

В задаче 21.1.9 следует применить закон Ома для замкнутой электрической цепи (21.7) к какому-нибудь значению внешнего сопротивления, по графику найти силу тока в цепи, а затем и ЭДС источника. Проще всего применить закон Ома к случаю . Из графика находим силу тока . Поэтому

где — внутреннее сопротивление источника (ответ 3).

Из формулы (21.9) следует, что при фиксированном сопротивлении участка цепи увеличение электрического напряжения в 2 раза (задача 21.1.10) приведет к увеличению мощности тока в 4 раза (ответ 2).

В задаче 21.2.1 удобно использовать вторую из формул (21.9) . Имеем Вт (ответ 3).

Часто школьники не могут ответить на такой вопрос: из формулы для мощности тока следует, что мощность линейно растет с ростом сопротивления, а из формулы — убывает с ростом сопротивления. А как же в действительности мощность зависит от сопротивления? Давайте разберемся в этом вопросе на примере задачи 21.2.2. Конечно, оба предложенных «решения» неправильны: в них молчаливо предполагалось, что сила тока, текущего через это сопротивление, или напряжение на этом сопротивлении не зависят от его величины. А на самом деле эти величины от сопротивления зависят, причем эти зависимости могут быть разными для разных источников тока. Внутреннее сопротивление бытовых электрических сетей очень мало. В этом случае из законов Ома для замкнутой цепи и участка цепи (21.7), (21.3) следует, что напряжение на любом элементе, включенном в такую сеть, не зависит от сопротивления этого элемента и равно номинальному напряжению сети . Поэтому из формулы заключаем, что мощность, которая выделяется на таком элементе обратно пропорциональна его сопротивлению (ответ 3). Отметим, что из проведенного рассуждения следует, что выделяемая мощность будет очень большой (опасная в быту ситуация!) для малого сопротивления внешнего участка цепи, т.е. в случае короткого замыкания, которого, таким образом, необходимо избегать.

Если бы внутреннее сопротивление источника было бы много больше внешнего сопротивления, ток в цепи определялся бы, главным образом, внутренним сопротивлением источника, а от внешнего сопротивления зависел бы слабо. В этом случае мощность тока была бы прямо пропорциональна сопротивлению участка цепи.

Как обсуждалось в решении предыдущей задачи, сопротивление элемента, работающего в бытовой электросети равно , где — номинальная мощность данного элемента, — напряжение в сети. Поэтому отношение сопротивлений ламп мощностью Вт и Вт, рассчитанных на работу в одной и той же бытовой электрической сети (задача 21.2.3) равно

(ответ 2).

Поскольку резисторы в задаче 21.2.4 соединены последовательно, то сила тока в них одинакова. Поэтому из закона Ома для участка цепи заключаем, что

(ответ 2).

При параллельном соединении ламп (задача 21.2.5) напряжение на них одинаково (см. введение к настоящей главе). Поэтому из закона Ома для участка цепи следует, что

(ответ 1).

Рассматриваемый в задаче 21.2.6 участок представляет собой два последовательных соединенных элемента, один из которых есть резистор 6 Ом, второй — два таких же резистора, соединенных параллельно. По правилам сложения сопротивлений находим эквивалентное сопротивление второго участка

а затем и эквивалентное сопротивление всей цепи

(ответ 3).

При разомкнутом ключе сопротивление участка цепи, данного в задаче 21.2.7, можно найти как в предыдущей задаче , где — сопротивление каждого резистора. Если ключ замкнут, то цепь сводится к одному резистору (т.к. параллельно двум резисторам включается проводник с пренебрежимо малым сопротивлением). Поэтому в этом случае сопротивление цепи равно . Таким образом, сопротивление второй цепи составляет две трети от сопротивления первой (ответ 1).

Как обсуждалось в решении задачи 21.2.2, сопротивление элемента номинальной мощности , работающего в бытовой электросети равна

где В — напряжение сети. Из этой формулы следует, что чем больше номинальная мощность элемента, тем меньше должно быть его сопротивление. Если две лампы накаливания включены последовательно (задача 21.2.8), то сила тока в них одинакова и отношение мощностей тока в этих лампах равно отношению их сопротивлений. Отсюда следует, что отношение реально выделяемых в лампах мощностей и обратно отношению номинальных мощностей этих ламп:

(ответ 2).

Работа, совершаемая электрическим полем в проводнике при протекании по нему электрического тока, превращается в энергию тока, которая затем превращается в тепловую энергию. Поэтому работу поля можно найти из закона Джоуля-Ленца. Для работы поля за время получаем . Из этой формулы находим сопротивление проводника в задаче 21.2.9

(ответ 1).

Поскольку при последовательном соединении резисторов ток через каждый из них одинаков, из закона Джоуля-Ленца (22.8) заключаем, что из двух сопротивлений и (задача 21.2.10; см. рисунок) наибольшей будет мощность тока на сопротивлении , из двух сопротивлений и — на сопротивлении . Сравним мощности тока на этих сопротивлениях. Учитывая, что при параллельном соединении элементов электрическое напряжение на каждом элементе одинаковое, а при последовательном — складываются значения сопротивлений, получим из законов Ома для верхнего и нижнего участков цепи и закона Джоуля-Ленца

где — электрическое напряжение, приложенное ко всей цепи. Поскольку то в представленной схеме наибольшая мощность будет выделяться на сопротивлении (ответ 2).

Основные расчетные электротехнические формулы

Электрическое сопротивление материала определяется по формулам:

Электрическое сопротивление, Ом, материала

R = U/I, где U — напряжение, В; I — сила тока, А.

Удельное электрическое сопротивление, Ом·м,

ρ=Rs/l. S – сечение проводника, м² ; l – длина проводника, м.

Под удельным электрическим сопротивлением материала понимают сопротивление проводника длиной 1 м и сечением 1 м² при 20°С.

Величина, обратная удельному сопротивлению, называется проводимостью:

v=1/ρ.

Если вместо сечения проводника S задан его диаметр D, то сечение, м², находят по формуле

S= πD²/4, где π =3,14.

Сопротивление материала зависит от температуры. Если материал нагрет до температуры t°С, то его сопротивление, Ом, при этой температуре равно:

Rt= R0[1 + α (t – t0)],

где R0 – сопротивление при начальной температуре t0°С, Ом; α – температурный коэффициент.

Далее приводятся значения α для различных материалов.

Медь,
алюминий,
вольфрам
0,004
Сталь 0,006
Латунь 0,002

Сопротивление нескольких проводников зависит от способа их соединения. Например, при параллельном соединении сопротивление трех проводников определяется по формуле:

Rоб=R1*R2*R3/(R1R2+R2R3+R3R1)

При последовательном соединении:

Rоб=R1+R2+R3.

Постоянный ток

Постоянный ток применяют для питания устройств связи, транзисторных приборов, стартеров автомобилей, электрокар, а также, для зарядки аккумуляторов.

В качестве источников постоянного тока используют гальванические элементы, солнечные батареи, термоэлектрогенераторы, генераторы постоянного тока.

При параллельном соединении нескольких проводников с током с равными напряжениями:

Iоб = I1+I2+…+In Uоб=U1=U2=…=Un

При последовательном соединении: Iоб = Imin; – где Imin, ток наименьшего по мощности источника тока (генератора, аккумуляторной батареи).

Uоб = U1+U2+…+Un

Основные параметры цепей однофазного переменного тока

Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Его применяют для питания небольших вентиляторов, электробытовых приборов, электроинструмента, при электросварке и для питания большинства осветительных приборов.

Частота переменного тока, Гц:

f= 1/T = np/60, где п — частота вращения генератора, мин -1; р – число пар полюсов генератора.

Мощность однофазного переменного тока:

активная, Вт, Ра = IUcosφ;

реактивная, вар, Q = IUsinφ;

кажущаяся, В А, S = IU =√ (P 2α+Q 2)

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по закону Ома:

I=U/R; Рa = IU = I²R=U²/R.

Коэффициент мощности в цепи с индуктивной нагрузкой

Cosφ= Рa/IU= Рa/S.

Основные параметры цепей трехфазного переменного тока

Трехфазный переменный ток используют для питания большинства промышленных электроприемников. Частота трехфазного переменного тока 50 Гц.

В трехфазных системах обмотки генератора и электроприемника соединяют по схемам «звезда» или «треугольник». При соединении в звезду концы всех трех обмоток генератора (или электроприемника) объединяют в общую точку, называемую нулевой или нейтралью (рис. 5а).

При соединении в треугольник начало первой обмотки соединяют с концом второй, начало второй обмотки — с концом третьей и начало третьей — с концом первой обмотки (рис. 5б).

Если от генератора отходят только три провода, то такая система называется трехфазной трехпроводной; если от него отходит еще и четвертый нулевой провод, то систему называют трехфазной четырехпроводной.

Трехфазные трехпроводные сети используют для питания трехфазных силовых потребителей, а четырехпроводные сети – для питания преимущественно осветительных и бытовых нагрузок.

В трехфазных системах различают фазные и линейные токи и напряжения. При соединении фаз звездой линейный I и фазный Iφ токи равны:

а напряжение U =√3Uφ

При соединении треугольником

I =√3Iφ

а напряжение U = Uφ.

Мощность переменного трехфазного тока:

генератора:

  • активная, Вт, Рг =√3IUcosφ ,
  • реактивная, вар, Q=√3IUsinφ
  • полная, ВА, S = √3IU.

где φ – угол сдвига фаз между фазным напряжением генератора и током в той же фазе приемника, который равен току в линии при соединении обмоток генератора звездой.

приемника:

  • активная, Вт, Рп =3UφIcosφп=√3 IUcosφп ,
  • реактивная, вар, Q=√3 UφIsinφп=√3 UIsinφ
  • полная, ВА, S = √3UI.

где φ – угол сдвига фаз между фазным напряжением приемника и током в той же фазе приемника, который равен току линейному только при соединении звездой.

Подсчет количества теплоты, выделяемой при протекании электрического тока по проводнику.

Количество теплоты, Дж, выделяемой электрическим током в проводнике,

Q=I²Rt где t — время, с.

При определении теплового действия электрического тока учитывают, что 1 кВт·ч выделяет 864 ккал (3617 кДж).

Если у Вас остались вопросы – обращайтесь к нам, в авторизованный сервисный центр “Эл Ко-сервис” Мы всегда рады помочь Вам в решении возникших у Вас проблем.

Инженерно-технический отдел авторизованного сервисного центра “Эл Ко-сервис”

Сила тока: формула и расчеты — Основы

Для того, чтобы уразуметь понятие «сила тока», нужно знать что из себя представляет электрический ток. Сила тока — это (соответственно физической формулировке) направленное движение заряженных частиц, которые называются электронами в проводнике. Для движения частиц нужна побуждающая сила — или электрическое поле. Именно оно приводит в движение частицы.

Возникновение тока

Все знают, что мир молекулярен, а молекулы состоят из атомов, в которых имеются электроны. Они движутся по своим орбитам, а при любой химической реакции атомы обмениваются электронами. Это происходит из-за того, что в атомах неравновесное количество заряженных частиц — электронов, те атомы, в которых их не хватает, захватывают из тех, в которых их избыток. Переход электронов из одних атомов в другие по сути и есть электрический ток.

Электрон в переводе с греческого означает янтарь, такое название обусловлено тем, что впервые свойства притягивать предметы были замечены у потёртого о шерсть янтаря, а потом люди убедились в подобной способности других материалов. Их стали считать наэлектризованными.

Электрическая сила, содержащаяся в веществах может быть разной. Её величина находится в зависимости от того, какой величины заряд проходит по электроцепи в единицу времени. Чем большее количество электронов перемещается от полюса к полюсу, или от «плюса» к «минусу», тем большее значение имеет заряд, перенесённый электроном. Весь общий заряд — это и есть количество электричества, которое проводится в проводнике.

Подытоживая сказанное нужно сделать вывод, что для возникновения электрического тока необходимы следующие условия:

  • чтобы в проводнике находились свободные заряженные частицы, если мы говорим о металлических проводниках, то речь идёт о свободных электронах:
  • чтобы в проводнике, который выбран, наличествовало электрическое поле, то есть оно создавалось источниками тока.

Формулы силы электрического тока

Впервые формула силы тока стала доступна человечеству благодаря физику Андре-Мари Амперу (1775-1836). Его определение стало основополагающим и доступной миру.

Сила тока формула

В данной формуле — I –   обозначение величины силы тока;

g- обозначение заряда, прошедшего через поперечное сечение проводника;                                                

t – величина временного промежутка, за которых проходил ток.

Формулы силы тока применяются для того, чтобы определить величину тока в «амперах» — единице измерения, которая используется в случае, если производится расчёт силы тока.

Величина сила тока формулы имеет и другие, например, чтобы характеризовать силу тока для определённого участка электроцепи используется другое отношение, а именно, отношение напряжения к силе сопротивления проводника:

По другому будет выглядеть формула расчёта силы тока не для конкретного участка, а для полной цепи:

Здесь e — означает источник ЭДС;

R – сопротивление внешнее;

r — сопротивление внутреннее. 

Это более  сложная формула применяется   тогда, когда производится расчёт силы тока по мощности. Значения здесь таковы:

  • — e — заряд электрона;
  • S —  поперечное сечение проводника, через который проходит ток;
  • n — максимальная концентрация заряженных частиц;
  •  — средняя скорость упорядоченного потока электронов.

Измерение силы тока осуществляется приборами, которые носят название амперметр, его подключают в определённому участку цепи и снимают показатели. Для учёта малых величин существуют микроапмерметры, гальванометры, миллиамперметры.

1 ампер — это сила  тока, проходящего  по двум прямолинейным параллельным друг другу проводникам, имеющим бесконечную длину и минимальный диаметр, они располагаются в вакууме на расстоянии 1 метра между собой, вызывающая  силу взаимодействия на длине проводника в один метр, равную показателю 0,0000002 H.

Формулы для расчета электрических величин.

Проводя диагностику и ремонт холодильников Стинол, мастер периодически сталкивается с необходимостью проводить измерения электрических величин. По результатам измерения делаются выводы о работоспособности той или иной детали электрооборудования холодильника.
На практике, рассматривая какую-либо электрическую нагрузку, полезно заранее знать, какое сопротивление соответствует какой мощности и ток какой величины потечет через эту нагрузку при подаче на нее питающего напряжения 220 Вольт. Если немного упростить теорию, все это не сложно вычислить, пользуясь формулами, приведенными ниже.

Обозначения:

  • I — Сила тока в цепи, единицы измерения - Амперы (А)
  • U — Напряжение, единицы измерения - Вольты (В или V)
  • R — Сопротивление нагрузки, единицы измерения — Омы (Ом или Ohm)
  • P — Электрическая мощность нагрузки, единицы измерения — Ватты (Вт или W)

Эти электрические величины связаны друг с другом следующими формулами:

Электрооборудование холодильников Стинол рассчитано на питание от сети переменного тока напряжением 220 Вольт. Соответственно, вместо U в формулы можем смело подставлять число 220. Путем нехитрых перестановок получаем следующий набор формул на любой случай:

  • I=220/R
  • I=P/220
  • R=220/I
  • R=48400/P
  • P=220·I
  • P=48400/R

Важно! В цепях переменного тока данные формулы справедливы только для активной нагрузки, сопротивление которой переменному току не зависит от его частоты. Для реактивных потребителей (емкости и индуктивности) эти равенства выполняться уже не будут. А это значит, что, по большому счету, при ремонтах холодильников Стинол всю эту математику мы можем применять только к нагревателям системы No Frost. А различные электродвигатели (мотор-компрессор, вентилятор, микродвигатель таймера и т.п.), являясь нагрузкой реактивной (индуктивной), автоматически из подобных рассчетов выпадают.

Во время работы удобно иметь под рукой табличку для быстрого взаимного пересчета электрической мощности, сопротивления и силы тока. Такая табличка представлена ниже. В свое время она была составлена мной для быстрого ориентирования в параметрах нагревателей оттайки различных импортных холодильников. Специалисту по ремонту холодильников Стинол она тоже может оказаться полезной.

Пользоваться таблицей достаточно просто:

  • Измерив мультиметром сопротивление нагревателя, и найдя соответствующую строчку в таблице, сразу становится ясно, какой мощностью он обладает и какой ток потечет через него при подаче питающего напряжения 220 Вольт.
  • Узнав при помощи токовых клещей, какой ток потребляет нагреватель, по таблице можно выяснить его сопротивление и мощность.
  • Узнав по маркировке нагревателя его мощность, легко выяснить его сопротивление и ток.
Для напряжения 220 V
(если ток переменный, то справедливо только для активной нагрузки)
Сила тока, А Мощность, W Сопротивление, Ом
0.01 2.2 22k
0.05 11 4.4k
0.1 22 2.2k
0.2 44 1.1k
0.3 66 733
0.4 88 550
0.5 110 440
0.6 132 366
0.7 154 314
0.8 176 275
0.9 198 244
1 220 220
1.1 242 200
1.2 264 183
1.3 286 169
1.4 308 157
1.5 330 146
1.6 352 138
1.7 374 129
1.8 396 122
1.9 418 116
2 440 110
2.1 462 105
2.2 484 100
2.3 506 96
2.4 528 92
2.5 550 88
2.6 572 85
2.7 594 81
2.8 616 79
2.9 638 76
3 660 73
3.1 682 71
3.2 704 69

Дополнительная информация по теме этой страницы есть в следующих статьях:


Запомнить эту страницу в:

Калькулятор

Вт | Амперы, Ом, Ватты в Ватты

С помощью нашего ватт-калькулятора вы лучше поймете, что такое закон Ватта и какова единица измерения мощности. Хотите узнать, как найти ватт? А что насчет того, что соединяет вольт, ампер, ватт и ом? Что ж, для этого нам нужно погрузиться в суть уравнения мощности!

Если вы хотите узнать, как тип тока влияет на расчет ватт в цепи, ознакомьтесь с нашим калькулятором ватт в ампер.

Как рассчитать ватт? — Уравнение Ватта

Наш калькулятор основан на двух законах, описывающих простые электрические цепи.Один из них — закон Ватта — гласит, что:

Мощность = Напряжение * Ток — в символах: P = В * I .

Это уравнение мощности, как и силовой агрегат, названо в честь Джеймса Ватта — шотландского инженера. Один ватт — это мощность, при которой работа, выполняемая за одну секунду, равна одному джоулю:

1Вт = 1Дж / 1с

В электрических цепях один ватт определяется как скорость работы, когда ток в один ампер протекает через проводник, имеющий разность электрических потенциалов (напряжение) в один вольт. :

1 Вт = 1 В * 1 А

Так что же такое сила? Мощность в электрической цепи — это скорость передачи электрической энергии в единицу времени.

Закон Ома: вольты, амперы и омы

В нашем калькуляторе ватт используется вторая формула — закон Ома. В нем говорится, что:

Напряжение = ток * сопротивление или В = I * R

Что означают эти имена?

Электрический ток — это мера количества заряда (электронов), проходящего через любую точку провода за единицу времени. Это единица СИ — ампер [А].

Сопротивление описывает силу данного провода противодействовать потоку электронов.Единица измерения сопротивления — Ом [Ом].

Напряжение — это разность электрических потенциалов между двумя точками провода. Единица измерения напряжения в системе СИ — вольт [В].

Мощность, напряжение, сопротивление, ток

С помощью уравнений Ома и Ватта вы можете вычислить четыре переменные — мощность, напряжение, сопротивление и ток. Если вам известны значения двух из этих переменных, вы можете преобразовать приведенные выше уравнения в соответствии с вашими потребностями. Ниже мы перечисляем все эти преобразования:

  1. Сопротивление:
  • R = V / I
  • R = V 2 / P
  • R = P / I 2
  1. Текущий:
  • I = V / R
  • I = P / V
  • I = √ (P / R)
  1. Напряжение:
  • В = I * R
  • В = P / I
  • В = √ (P * R)
  1. Мощность:
  • P = V * I
  • P = V 2 / R
  • P = I 2 * R

Продолжайте читать, чтобы увидеть пару примеров, где мы узнаем, как находить ватты и рассчитывать амперы из ватт и вольт!

Примеры преобразования между вольт, ампер, ватт и ом

Чтобы использовать наш калькулятор ватт, все, что вам нужно сделать, это ввести два числа, а все остальные поля будут заполнены самостоятельно.Но, если вы хотите научиться рассчитывать эти вещи самостоятельно, вот несколько примеров, которые могут оказаться вам полезными:

Рассмотрим лампочку мощностью 60 Вт с электрическим потенциалом 120 В. Как рассчитать ампер из ватт и вольт? Найдите правильную формулу и введите числа в правильные места:

I = P / V = ​​60 Вт / 120 В = 0,5 А

Вашей лампочке требуется ток 0,5 ампер.

Давайте посмотрим на другой пример. Резистор имеет напряжение 4 вольта и сопротивление 8 Ом.Как найти ватты? Вам нужно объединить закон Ома и закон Ватта. Тогда вы получите:

P = V 2 / R = (4V) 2 / 8Ω = 2 Вт

Хотите немного испытать себя? Воспользуйтесь калькулятором коэффициента мощности, чтобы узнать больше об уравнении мощности и мощности!

Калькулятор электрической мощности

Этот калькулятор электрической мощности помогает вычислить мощность, потребляемую электрическими устройствами. Хотите узнать, как рассчитать электрическую мощность? Вам интересно: какой коэффициент мощности? Просто прочтите текст ниже, чтобы узнать.

Как рассчитать электрическую мощность

Электрическая мощность, как и механическая мощность, — это количество работы, выполняемой за единицу времени. В электрических схемах работа выполняется электрическим током. Мощность зависит от «количества рабочих, доступных в единицу времени» — тока I и энергии «одного рабочего» — напряжения В, . В цепи постоянного тока мощность

P = I * V ,

где

  • I [A] — ток,
  • В [В] — напряжение,
  • P [Вт] — мощность.

В цепях переменного тока уравнение

P = I * V * PF ,

, где новый символ PF означает коэффициент мощности .

Какой коэффициент мощности

В переменном токе и ток, и напряжение периодически меняются во времени. Значения I или V соответствуют среднеквадратичному значению (RMS). RMS — это квадратный корень из среднего квадратов чисел. Обычно упоминаемое напряжение электрических розеток ( 230 В, в ЕС и Австралии, 110 В, в США и Канаде, 100 В, в Японии) является среднеквадратичным напряжением.В цепях переменного тока ток и напряжение могут не совпадать по фазе. Максимальное значение тока может опережать или отставать от максимального значения напряжения. Это делает передачу мощности менее эффективной. В худшем случае, когда ток и напряжение полностью не синхронизированы, передаваемая мощность равна нулю.

Коэффициент мощности показывает, насколько синхронизирован ток с напряжением. Если они синхронизированы, коэффициент мощности составляет 1 . В противном случае оно меньше единицы, достигая нуля в случае полной рассинхронизации.Коэффициент мощности зависит от устройства. Для чисто резистивного устройства, такого как электрический чайник или электронагреватель, коэффициент мощности составляет 1 . Устройство с индуктивными или емкостными элементами выводит ток и напряжение из фазы. Это делает его коэффициент мощности меньше 1. Проверьте калькулятор коэффициента мощности, чтобы узнать больше.

Калькулятор электрической мощности

Для вычисления электрической мощности необходимо указать ток, напряжение и коэффициент мощности. Для устройств, подключенных к электрическим розеткам, напряжение равно напряжению бытовой электросети.Ток, потребляемый устройством, обычно можно найти либо на вилке, либо где-нибудь на устройстве. Коэффициент мощности найти немного сложнее, если у вас под рукой нет анализатора качества электроэнергии. В этом списке указаны коэффициенты мощности нескольких типичных бытовых устройств:

  • лампы со стандартной колбой: PF = 1 ,
  • люминесцентные лампы: PF = 0,93 ,
  • Обычный асинхронный двигатель
  • при половинной нагрузке: PF = 0,73 , при полной нагрузке: PF = 0.85 ,
  • электрическая духовка (с резистивным нагревательным элементом): PF = 1.0 ,
  • индукционная печь: PF = 0,85 .

Точное значение коэффициента мощности зависит от деталей конструкции, поэтому относитесь к этим значениям с недоверием.

Закон Ома для начинающих и новичков

Закон Ома для начинающих и новичков
Основной закон Ома

HTML от: http://www.btinternet.com/~dtemicrosystems/beginner.htm

ЧТО ЭТО.КАК И ГДЕ ПОДАТЬ ЗАЯВКУ


Хотя закон Ома применим не только к резисторам — как мы увидим позже — кажется, логично включить его сейчас, так как он будет хорошей точкой отсчета для резистора подробности приведены выше.

ЧТО ТАКОЕ ЗАКОН ОМС? :
Используя диаграмму слева, закон Ома определяется как; «При условии, что температура остается постоянным, отношение разности потенциалов (p.d.) на концах проводника (R) к току (I), протекающему в этом проводнике, также будет постоянным «.Здесь заканчивается проповедь!

Из этого мы заключаем, что; Ток равен напряжению, разделенному на сопротивление (I = V / R), Сопротивление равно напряжению, разделенному на ток (R = V / I), а напряжение равно току, умноженному на Сопротивление (V = IR).
Важным фактором здесь является температура. Если расчеты по закону Ома должны давать точные результаты, это должно оставаться постоянным. В «реальном» мире это почти никогда делает, и с точки зрения новичка вам не нужно беспокоиться об этом. далее, поскольку схемы, с которыми вы, вероятно, столкнетесь в данный момент, — и около 95% все те, с которыми вы столкнетесь в будущем — будут работать нормально, даже если они горячие или холодно!

ЗАКОН ОМС ПРОСТОЙ:
На рисунке 1 слева показан наиболее распространенный треугольник закона Ома.Начиная с любого раздела треугольник, его можно читать в любом направлении — по часовой стрелке, против часовой стрелки, сверху вниз или снизу вверх — и он всегда предоставит вам расчет, который вы требовать.


Если рассматривать (слегка диагональные) горизонтальные линии как знаки разделения, а короткие вертикальная линия как знак умножения, и всегда начинайте расчет с любого количества вы ищете, т.е. «V =», «I =» или «R =» у вас будет все возможные формулы, основанные на этом конкретном законе Ома.Это; V = IxR, I = V / R, R = V / I. Это должно быть очевидно, что формула работает и в обратном направлении, то есть; IxR = V, RxI = V, V / I = R и V / R = I.

Эти объяснения могут показаться немного сложными, но их легко применить на практике. Как правило, для начинающих будет более понятен полезный пример, а не эти причудливые столы, так что поехали.

ПОЯСНЕНИЕ НА ПРИМЕРЕ:
Допустим, друг просит вас установить красную сигнальную лампу на приборную панель его / ее автомобиля.Будучи энтузиастом электроники, вы решили использовать красный светоизлучающий диод (LED), поскольку они излучают достаточно чистый красный свет, не выделяют чрезмерного тепла лампы накаливания, они также дешевы по сравнению с ними и выглядят высокотехнологичными!

С точки зрения принципиальной схемы расположение будет таким, как показано слева.
ОГРАНИЧИТЕЛЬ ТОКА РЕЗИСТОР:
Стандартные светодиоды не могут получать питание напрямую от 12 В без установки ограничения тока резистор включен последовательно с одним из выводов, но какое значение вы используете? Как общее правило на практике, вашему среднему светодиоду требуется около 15 мА тока для получения приемлемого света. выход.Учитывая это, теперь у нас есть две известные величины для использования в наших расчетах: напряжение и ток. Используя треугольник закона Ома, требуемое сопротивление равно рассчитывается по формуле «R = V / I», которая дает нам 12 / 0,015 = 800 Ом (см. ниже для ‘Vf’). Не забывайте, ток измеряется в амперах.

На первый взгляд может показаться, что это проблема, поскольку 800 Ом не является стандартным значением. доступен в диапазоне E12. Однако в этом типе цепи сопротивление не критический, и ближайшего предпочтительного значения будет вполне достаточно, а именно 820 Ом.

НЕ ЗАБЫВАЙТЕ ОБ «Vf»:
Все электронные компоненты демонстрируют — в большей или меньшей степени — то, что известно как ‘выбывать’. Он имеет различные сокращения в зависимости от типа компонента, к которому он ссылается, но обычно они означают одно и то же. На самом деле это количество напряжения, которое используется компонентом для работы. Для стандартного светодиода это значение составляет около 1,5 — 3 вольт, и для наших целей мы примем 2 В.

Это означает, что из ваших 12 вольт от аккумулятора 2 вольта будут израсходованы светодиодом. Сама по себе, поэтому ваш расчет закона Ома должен быть основан на 10 вольт.Истинная формула должно быть на самом деле; (12-Vf) /0.015=666.66 Ом (повторяется для математиков среди ты!). Ближайшее значение в диапазоне E12 составляет 680 Ом, поэтому в идеале это должно быть ценность для использования. В целях безопасности, когда ваши результаты заканчиваются непонятными значениями, такими как при этом всегда выбирайте ближайшее значение выше, а не следующее ниже.

РЕЗИСТОРЫ ПОСЛЕДОВАТЕЛЬНО И ПАРАЛЛЕЛЬНО

Возможно «изготовление» стандартных и нестандартных номиналов резисторов на соответствовать вашим потребностям, если требуемое значение отсутствует.Это достигается подключением два или более из них параллельно, последовательно или их комбинация. Однако вам нужно заранее знать, как они взаимодействуют друг с другом в этих конфигурациях.

РЕЗИСТОРЫ СЕРИИ:
На рисунке слева показаны три последовательно включенных резистора. Это самый простой способ получить «произведенные» значения. Формула прямой для расчет окончательного значения; «R» = R1 + R2 + R3. Другими словами, независимо от количества резисторов или их индивидуальных значений, окончательное значение «R» всегда будет их суммой.Расчет по ноге изображения работает для любого количества значений, соединенных последовательно, вы просто продолжаете добавлять их в список других.

ПАРАЛЛЕЛЬНЫЕ РЕЗИСТОРЫ:
При параллельном соединении резисторов расчеты сложнее. На рисунке слева показаны три параллельно включенных резистора. Мы будем не заботиться о трех отдельных ценностях, а сосредоточиться на том, что окончательное значение «R» будет с использованием примеров значений.Расчет у подножия изображение работает для любого количества значений, соединенных параллельно, вы просто продолжаете добавлять их в список других в скобках. Для наших целей предположим, что R1 составляет 47 КБ, R2 — это 150 КБ, а R3 — 820 КБ. Формула прямой линии для окончательного значения: «R» = 1 / ( (1 / R1) + (1 / R2) + (1 / R3)).
В этой формуле есть много ненужных скобок (скобок), и вот причина; почти для всех расчетов электроники вам нужно использовать калькулятор, который отдает приоритет функциям умножения и деления, а также наиболее научным калькуляторы работают именно так.К сожалению, многие «простые» калькуляторы этого не делают, поэтому дополнительные скобки были показаны, чтобы компенсировать те, которые вычисляют цифры в порядок их ввода. С научным калькулятором вы можете использовать упрощенный формула прямой линии; «R» = 1 / (1 / R1 + 1 / R2 + 1 / R3).

Важно определить значения в скобках перед применением окончательного Функция «1 /». В противном случае формула принимает вид 1 / R1 + 1 / R2 + 1 / R3 =? если ты попробуйте это на своем калькуляторе, используя наши примеры значений, вы, вероятно, подумаете, что у вас есть неправильный ответ (0.02916 …), но вы этого не сделали. На самом деле у вас точно есть право ответ, ему просто не хватает последней функции «1 /».

Если в вашем калькуляторе есть «1 / X» (единица, разделенная на все, что показано в display), затем нажмите эту кнопку сейчас. Если эта функция недоступна, поместите результат в памяти (убедившись, что раньше там ничего не было), очистите дисплей а затем введите «1 MR =» или другую подобную последовательность. Результат должен быть 34,29 кОм (34 290,29005 Ом), что правильно.Итак, итоговое значение всех трех параллельно включенные резисторы — 34,29К.

ДЛЯ ЧЕГО ДРУГОЙ ТРЕУГОЛЬНИК?

На рис. 2 слева показан второй по величине часто используемый треугольник закона Ома. К этому можно подойти точно так же, как и к выше, только на этот раз он используется для расчета мощности, напряжения и тока. В объяснения здесь таковы; Ток равен мощности, деленной на напряжение (I = P / V), мощность равна Ток, умноженный на напряжение (P = VxI), и напряжение равно мощности, деленной на ток (V = P / I).


ДЕМОНСТРАЦИЯ НА ПРИМЕРЕ:
Чтобы продемонстрировать использование этого треугольника, мы применим его к обычному электрическому / электронному компонент — трансформатор. Их характеристики обычно цитируются с точки зрения выходное напряжение их вторичной обмотки вместе с возможной мощностью (в ВА) это напряжение. Термин «VA» означает ватты и происходит от формулы «Вольт на Ампер» (отсюда — ВА). Это обозначается буквой «P» в треугольник закона Ома.

КАКОЙ ТРАНСФОРМАТОР ДЕЛАТЬ НУЖНО ?
Допустим, у вас есть цепь на 9 В, которая потребляет 1.5 ампер тока. Вы хотите знать, если трансформатор с номиналом 9 В при 25 ВА будет достаточным для питания вашей цепи. Ты уже есть две величины от трансформатора — напряжение (В) и мощность (P или VA), и по ним вы хотите узнать, какой будет доступный ток (I).


Используя формулу «I = P / V» из треугольника, результат: 25/9 = 2,77 усилители. Таким образом, этот трансформатор подойдет для ваших нужд на 1,5 А. В целях безопасности если цепь будет постоянно потреблять определенное количество тока, независимо от каким может быть этот ток, тогда всегда используйте трансформатор, доступный как минимум на 50% больше ток, чем требует ваша схема.Никогда не используйте тот, у которого «ровно достаточный» ток, потому что он станет слишком горячим, что приведет к изменению характеристик напряжения и текущий указан. Эти изменения сложны, и мы не будем их объяснять в этой статье. раздел для начинающих, но будьте осторожны при выборе трансформаторов.

Расчет мощности переменного тока — Видео и стенограмма урока

Power Equations

Но этот урок называется «Мощность переменного тока», так как же нам рассчитать мощность, используемую цепью переменного тока? Как обсуждалось в другом видеоуроке, мощность — это энергия, используемая в секунду, измеряемая в ваттах (или джоулях в секунду).А в схеме его можно вычислить, умножив ток на напряжение. Мы можем сделать то же самое для цепи переменного тока; мы просто используем среднеквадратичное значение тока и среднеквадратичное напряжение. Итак, ниже представлено наше основное уравнение для мощности в цепи переменного тока: действующее значение напряжения, измеренное в вольтах, умноженное на действующее значение тока, измеренное в амперах.

Основное уравнение мощности

Но что, если вы не знаете действующее значение напряжения или тока? Что, если вместо этого вы знаете пиковое напряжение V-ноль и пиковое значение тока I-ноль? Что ж, тогда нам нужно будет использовать предыдущие уравнения для среднеквадратичного напряжения и действующего тока.Но чтобы не использовать более одного уравнения, мы можем подставить эти уравнения в уравнение мощности, например:

Уравнение мощности

Затем это упрощает представление о том, что мощность, используемая в цепи переменного тока, равна пиковому току, умноженному на пиковое напряжение, деленному на два.

Пример расчета

Хорошо, давайте попробуем пример! Вы проводите испытания энергосберегающей лампочки.Вы обнаружите, что максимальное напряжение, которое он когда-либо использует, составляет 240 вольт, а максимальный ток, который проходит через него, составляет 0,12 ампер. Для обычной лампочки вы просматриваете некоторые значения и обнаруживаете, что среднеквадратичное напряжение составляет 120 вольт, а среднеквадратичный ток — 0,5 ампер. Какая разница в мощности, используемой двумя лампочками?

Хорошо, нам нужно выяснить, сколько энергии потребляет каждая лампочка, а затем сравнить их. Для первого нам даны максимальные значения, а для второго — среднеквадратичные значения.Итак, нам нужно использовать разные уравнения для каждого, а затем сравнить два значения мощности.

Что касается энергосберегающей лампочки, мы знаем, что V-ноль составляет 240 вольт, а I-ноль — 0,12 ампер. Итак, мы можем вычислить мощность, используя это уравнение: (240 * 0,12) / 2 = 14,4 Вт.

Для обычной лампочки известно, что среднеквадратичное напряжение составляет 120 вольт, а среднеквадратичное значение — 0,5 ампер. Итак, все, что нам нужно сделать здесь, это использовать это уравнение и умножить два вместе: 120 * 0,5 = 60 Вт.

Наконец, чтобы найти разницу между ними, вычтите меньшее число из большего: 60 — 14.4 = 45,6 Вт. Таким образом, разница в потребляемой мощности между двумя лампочками составляет 45,6 Вт. Вот и все — готово!

Краткое содержание урока

Практически каждое электрическое устройство, которое мы используем в повседневной жизни, работает от переменного тока. Переменный ток (или переменный ток) — это когда ток очень быстро переключает направление, а не течет только в одном направлении по цепи — в одну сторону, а затем в противоположную, снова и снова. Это создает ток, который изменяется синусоидально, что означает, что он изменяется в форме синусоидальной кривой, например, этой:

Синусоидальная кривая цепи переменного тока

Поскольку ток переключается, изменяется и напряжение, и потребляемая мощность.Все они следуют синусоиде. Из-за этого мы склонны выражать ток и напряжение как специальные средние значения, которые называются среднеквадратичным значением (или среднеквадратичным значением ). Цепь переменного тока будет иметь среднеквадратичный ток и среднеквадратичное напряжение, и эти значения определяются следующими уравнениями, где V-ноль — пиковое или максимальное напряжение, а I-ноль — пиковый или максимальный ток. Это вершина и основание синусоиды.

Уравнения

Как обсуждалось в другом уроке, мощность — это энергия, используемая в секунду, измеряемая в ваттах (или джоулях в секунду).В цепи переменного тока есть два основных уравнения, которые вы можете использовать для расчета мощности: верхнее уравнение, в котором вы умножаете среднеквадратичное напряжение на среднеквадратичное значение тока; или нижний, где вы умножаете пиковое напряжение на пиковый ток, а затем делите на два. Основываясь на том, что вам задают в вопросе, вы можете выяснить, какое из двух уравнений использовать.

Результаты обучения

По завершении этого урока вы должны уметь:

  • Определить переменный ток (AC), среднеквадратичное значение и мощность
  • Определите синусоидальную кривую переменного тока, напряжения и мощности
  • Объясните, как использовать два основных уравнения для расчета мощности в цепи переменного тока.

Согласно закону Ома, I V, но I 1 / V в уравнении мощности.Как?

In I = V / R, ток прямо пропорционален напряжению, но ток обратно пропорционален напряжению в P = VI?

Это еще один запутанный вопрос, который чаще всего задают на собеседованиях по электротехнике и электронике.

Согласно закону Ома, ток увеличивается при увеличении напряжения (I = V / R), но Ток уменьшается при увеличении напряжения согласно формуле (P = VI). Как объяснить?

т.е.

  • Согласно закону Ома: I ∝ V (ток прямо пропорционален напряжению. I = V / R)
  • Согласно формуле мощности: I ∝ 1 / V (ток обратно пропорционален напряжению. I = P / V)

Короче говоря, согласно закону Ома (V = IR или I = V / R), который показывает, что ток прямо пропорционален напряжению, но согласно P = VI или I = P / V, он показывает Этот ток обратно пропорционален напряжению.

Давайте проясним путаницу, связанную с утверждением.

P = V x I

Фактически, это зависит от того, как вы увеличиваете параметры, то есть увеличиваете ли вы напряжение, сохраняя мощность источника постоянной или она меняется.

  • Если мощность источника постоянна, ток будет уменьшаться при увеличении напряжения.
  • Если вы не заботитесь о мощности и просто замените батарею на новую с более высокой номинальной мощностью, это может увеличить ток при увеличении напряжения, поскольку мощность больше не постоянна i.е. мощность также была увеличена.

В случае трансформатора, когда напряжение увеличивается, ток уменьшается, потому что мощность остается постоянной, т.е. мощность на обеих сторонах равна P = VI (без учета коэффициента мощности: Cos θ).

В = I x R

По закону Ома ток (I) прямо пропорционален напряжению (В), если сопротивление (R) и температура остаются постоянными.

Согласно формуле мощности, в ней говорится, что ток обратно пропорционален напряжению, если мощность остается прежней.

Как мы уже знаем, в повышающем трансформаторе, если напряжение увеличивается, ток уменьшается там, где мощность такая же (поскольку трансформатор только повышает или понижает значение тока и напряжения и не меняет значение мощность). Точно так же напряжение уменьшается при увеличении тока в понижающем трансформаторе.

Та же история и с генерирующей станцией, где выработка электроэнергии постоянна. Если мощность на стороне генерации улучшится, увеличатся как ток, так и напряжение.

Вкратце:

  • Если мощность постоянна = Напряжение обратно пропорционально току , то есть В ∝ 1 / I в P = VxI .
  • Если сопротивление и температура постоянны: Напряжение прямо пропорционально току , т. Е. В ∝ I в В = IxR .

Это точная причина, по которой по закону Ома ток прямо пропорционален напряжению, но обратно пропорционален формуле напряжения в мощности.

Связанные вопросы / ответы:

Шпаргалка по закону Ома и закону Ватта

Закон

Ома устанавливает взаимосвязь между напряжением, током и сопротивлением. Закон Ватта устанавливает взаимосвязь между мощностью, напряжением и током.

Калькулятор закона Ома и закона Ватта


Быстрый старт

  1. Введите любые два известных значения и нажмите Вычислить , чтобы найти оставшиеся значения.
  2. Щелкните желаемое значение и выберите Ctrl + C, чтобы скопировать в буфер обмена
  3. Нажимайте Сброс после каждого расчета.

Важные электрические свойства, о которых следует помнить

  • Электродвижущий потенциал : измеряется в вольтах, обозначается как V (или E)
  • Ток : измеряется в амперах, обозначается буквой I
  • Сопротивление : измеряется в Ом, обозначается буквой R (или греческой буквой ω)
  • Мощность : измеряется в ваттах, обозначается буквой W

Рекомендуется: Основные электрические термины и определения

Закон Ома

Закон

Ома устанавливает взаимосвязь между напряжением, током и сопротивлением.Учитывая взаимосвязь между этими тремя элементами, если вы знаете любые два из них, можно вычислить третий.

В = ИК

I = В / R

R = В / I

  • Вольт = Ампер x Ом
  • Ампер = Вольт / Ом
  • Ом = Вольт / Ампер

Закон Ватта

Закон

Ватта также полезен для выяснения взаимосвязи между мощностью, напряжением и током.

Вт = VI

В = Вт / I

A = Вт / V

  • Ватт = Вольт x Ампер
  • Вольт = Ватт / Ампер
  • Ампер = Ватт / Вольт

Круговая диаграмма упрощенного закона Ома для использования в цепях переменного и постоянного тока. Фотография: Wikimedia

.

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

Электрика и электроника, Закон Ома, формулы и уравнения

Электрика и электроника, Закон Ома, формулы и уравнения

Электротехника и электроника, закон Ома, формулы и уравнения

Закон Ома

ЗАКОННЫЙ КАЛЬКУЛЯТОР ОМ

VOLTS = напряжение, AMPS = ток, OHMS = сопротивление, WATTS = мощность

Дайте мне любые ДВА числовых значения, и я дам вам все ЧЕТЫРЕ.После ввода данных нажмите кнопку закона Ома:

ключевые слова = Ом, Закон Ома, Вольт, Ампер, Ток, Ватты, Мощность, Калькулятор, Электричество, Электроника, Электрика, Уравнения, Формулы, Пи, Математика, Генри, Бэкон



Символическое: E = VOLTS ~ или ~ (V = VOLTS) P = WATTS ~ или ~ (W = WATTS) R = ОМ ~ или ~ (R = СОПРОТИВЛЕНИЕ) I = АМПЕР ~ или ~ (А = АМПЕР) HP = ЛОШАДЬ PF = КОЭФФИЦИЕНТ МОЩНОСТИ кВт = КИЛОВАТТ кВтч = КИЛОВАТ-ЧАС VA = ВОЛЬТ-АМПЕР кВА = КИЛОВОЛЬТ-АМПЕР C = ЕМКОСТЬ EFF = ЭФФЕКТИВНОСТЬ (выражается в десятичной дроби)
бордюр>
АМП = ВАТТ-ВОЛЬТ I = P E A = W V
WATTS = VOLTS x AMPS P = E x I W = V x A
VOLTS = WATTS AMPS E = P I V = W A
МОЩНОСТЬ = (V x A x EFF) 746
КПД = (746 x HP) (V x A)
border>
ОДНОФАЗА ПЕРЕМЕННОГО ТОКА ~ 1
КПД =
AMPS = ВАТТ (ВОЛЬТ x PF) I = P (E x PF) A = W (V x PF)
WATTS = VOLTS x AMPS x PF P = E x I x PF W = V x A x PF
VOLTS = WATTSAMPS E = PI V = WA
ВОЛЬТ-АМПЕР = ВОЛЬТ x АМПЕР ВА = E x I ВА = V x A
МОЩНОСТЬ = (V x A x EFF x PF) 746
МОЩНОСТЬ = ВХОДНАЯ ВАТТА (V x A)
(746 x HP) (V x A x PF)
border>
AMPS = Вт (1. Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *