+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как определить линейный ток

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой.

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное — которое определяют еще как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз. Показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт.

Так, токи, протекающие в каждой фазе, именуют фазными и условно обозначают IА, IB, IC либо условно Iф.

Токи в ветвях нагрузки именуют линейными. Их величина обуславливается величиной фазных напряжений, типом нагрузки. При сугубо активной нагрузке токи идентичны с напряжениями по фазе, а при индуктивной либо емкостной нагрузке, токи могут опережать или отставать от напряжения.

В традиционных электросетях имеет место 2 метода соединения:

При соединении ветвей схемы треугольником конец одной обмотки подключается к началу другой, т.е. получается замкнутый контур. Для каждого узла схемы выполняется баланс – сумма входящих токов равна сумме исходящих. При таком подключении и симметричной нагрузке выполняется соотношение:

При соединении ветвей элементов схемы звездой все окончания обмоток фаз подключают в один узел 0. Ввиду того, что фазы генератора соединяются последовательно с фазами электроприемников (нагрузки), то линейные токи по величине равны фазным:

Соединение потребителей трехфазного тока по схеме «звезда». Симметричный и несимметричный режимы.

При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.

Провода Aa, B

b и Cc, соединяющие начала фаз генератора и приемника, называются линейными, провод Nn, соединяющий точкуN генератора с точкой n приемника, – нейтральным.

Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10423 — | 7909 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Трехфазный генератор имеет на статоре три однофазные самостоятельные обмотки, начала и концы которых сдвинуты соответственно на 120 эл. град, или на 2/3 полюсного деления, т. е на 2/3 расстояния между серединами разноименных полюсов (рис. 1). В каждой из трех обмоток возникает однофазный переменный ток. Однофазные токи обмоток взаимно сдвинуты на 120 эл. град, т. е. на 2/3 периода. Таким образом, трехфазный ток представляет собой три однофазных тока, сдвинутых во времени на 2/3 периода (120°).

В любой момент времени алгебраическая сумма всех трех мгновенных: значений а. д. с. отдельных фаз равна нулю. Поэтому у генератора вместо шести выводов (для трех самостоятельных однофазных обмоток) делают только три вывода или четыре, когда выводится нулевая точка. В зависимости от того, как соединить отдельные фазы и как их подключить к сети, можно получить соединение в звезду или треугольник.

Начала обмоток обозначаются в дальнейшем буквами A, B, C, а концы их – буквами X, Y, Z.

Рис. 1. Трехфазный генератор

а) Соединение в звезду.

При соединении в звезду концы фаз X, Y, Z (рис. 2) соединяют и узел соединения называют нулевой точкой. Узел может иметь вывод – так называемый нулевой провод (рис. 272), показанный пунктиром, или быть без вывода.

При соединении в звезду с нулевым проводом можно получить два напряжения: линейное напряжение Uл между проводами отдельных фаз и фазное напряжение Uф между фазой и нулевым проводом (рис. 2). Соотношение между линейным и фазным напряжениями выражается следующим образом: Uл=Uф∙√3.

Рис. 2. Соединение в звезду

Ток, который проходит в проводе (сети), проходит и по обмотке фазы (рис. 2), т. е. Iл=Iф.

б) Соединение в треугольник.

Соединение фаз в треугольник получается при соединении концов и начал фаз согласно рис. 3, т. е. AY, BZ, CX. При таком соединении нет нулевого провода и напряжение на фазе равно линейному напряжению между двумя проводами линии Uл=Uф.

Однако ток в линии Iл (сети) больше, чем ток в фазе Iф, а именно: Iл=Iф∙√3.

Рис. 3. Соединение в треугольник

При трехфазной системе в каждое мгновение, если ток в одной обмотке идет от конца к началу, то в двух других он направлен от начала к концу. Например, на рис. 2 в средней обмотке AX проходит от A к X, а в крайних – от Y к B и от Z к C.

На схеме (рис. 4) показано, как три одинаковые обмотки соединяются с зажимами двигателя в звезду или треугольник.

Рис. 4. Соединение обмоток в звезду и треугольник

1. Генератор с обмоткой статора, соединенной по представленной на рис. 5 схеме, при линейном напряжении 220 В питает током три одинаковые лампы сопротивлением по 153 Ом. Какие напряжение и ток имеет каждая лампа (рис. 5)?

Согласно включению лампы имеют фазное напряжение Uф=U/√3=220/1,732=127 В.

Ток лампы Iф=Uф/r=127/153=0,8 А.

2. Определить схему включения трех ламп на рис. 6, напряжение и ток каждой лампы сопротивлением по 500 Ом, подключенных к питающей сети с линейным напряжением 220 В.

Ток в лампе I=Uл/500=220/500=0,45 А.

3. Сколько вольт должен показывать вольтметр 1, если вольтметр 2 показывает напряжение 220 В (рис. 7)?

Фазное напряжение Uф=Uл/√3=220/1,73=127 В.

4. Какой ток показывает амперметр 1, если амперметр 2 показывает ток 20 А при соединении в треугольник (рис. 8)?

При соединении в треугольник ток в фазе потребителя меньше, чем в линии.

5. Какие напряжение и ток будут показывать измерительные приборы 2 и 3, включенные в фазу, если вольтметр 1 показывает 380 В, а сопротивление фазы потребителя 22 Ом (рис. 9)?

Вольтметр 2 показывает фазное напряжение Uф=Uл/√3=380/1,73=220 В. а амперметр 3 – фазный ток Iф=Uф/r=220/22=10 А.

6. Сколько ампер показывает амперметр 1, если сопротивление одной фазы потребителя 19 Ом с падением напряжения на нем 380 В, которое показывает вольтметр 2, включенный согласно рис. 10.

Ток в фазе Iф=Uф/r=Uл/r=380/19=20 А.

Ток потребителя по показанию амперметра 1 Iл=Iф∙√3=20∙1,73=34,6 А. (Фаза, т. е. сторона треугольника, может представлять собой обмотку машины, трансформатора или другое сопротивление.)

7. Асинхронный двигатель на рис. 2 имеет обмотку, соединенную в звезду, и включается в трехфазную сеть с линейным напряжением Uл=380 В. Каким будет фазное напряжение?

Фазное напряжение будет между нулевой точкой (зажимы X, Y, Z) и любыми из зажимов A, B, C:

8. Обмотку асинхронного двигателя из предыдущего примера замкнем в треугольник, соединив зажимы на щитке двигателя согласно рис. 3 или 4. Амперметр, включенный в линейный провод, показал ток Iл=20 А. Какой ток проходит по обмотке (фазе) статора?

Линейный ток Iл=Iф∙√3; Iф=Iл/√3=20/1,73=11,56 А.

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока.

Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В. , могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

В чем главные отличия линейного и фазного напряжения?

Что такое фазное и линейное напряжение. Какое соотношение между фазным и линейным напряжением в трехфазной сети – формула. Использование этих видов напряжений.

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.

Трёхфазный ток

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции. Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы. Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Цепь представляет собой стандартные элементы — энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю. Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод — нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды. Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

При намотке на катушке множества оборотов провода номинальное напряжение увеличивается пропорционально числу витков. Явление привело к разработке генераторов, обеспечивающих потребителей электричеством. Для эффекта от применения магнитного поля иногда устанавливают несколько бобин. Статорное магнитное поле за поворот ротора пересекают одновременно 3 катушки, что ведет к увеличению мощности генератора. Это позволяет запитать сразу 3 пользователей.

Что такое фазное и линейное напряжение

Для некоторых людей, далёких от электротехники, определяющим словом здесь является «напряжение», однако на самом деле всё не так. Рассмотрим основные определения этих терминов.

Фазным называется напряжение между любым из трёх токоведущих проводников и нулём. Оно равно 220 В.

ФОТО: prezentacii.infoФазное прикосновение – замыкание на нулевой и фазный провод

Линейным называют напряжение между двумя фазными проводниками. Оно равно 380 В, т.е. в 1.73 раза выше фазного. Что касается обозначений, то линейное напряжение можно определить по двум литерам (по наименованию фазы) после U (напряжение). Например UAB, UBC, или UCA, либо просто Uл.

ФОТО: prezentacii.infoЛинейное замыкание между двумя фазными проводниками

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.

Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.

Принцип работы

Вольтодобавочные трансформаторы имеют одну обмотку, включенную последовательно с линией, в которой регулируется напряжение. Эта обмотка питается от регулировочного (питающего) трансформатора, а первичная обмотка последнего – от сети или постороннего источника тока. В зависимости от схемы соединения обмоток вольтодобавочные трансформаторы могут создавать добавочную ЭДС, сдвинутую по фазе относительно основного напряжения или совпадающую с ним. На рис. 2 изображена принципиальная схема включения вольтодобавочного трансформатора.

Рисунок 2 – Принципиальная схема включения вольтодобавочного трансформатора

  1. основной трансформатор
  2. последовательный трансформатор
  3. регулировочный трансформатор

Использование трёхфазных линий в многоквартирных домах

Не все знают, что в многоквартирные дома также подведено 380 В. Именно это позволяет работать магазинам и различным мастерским на первых или цокольных этажах. В подъездных щитах трёхфазная цепь распределяется поквартирно, в результате чего на каждую из них приходится одна фаза и ноль. Именно они и обеспечивают фазное напряжение 220 В.

ФОТО: prezentacii.infoТак трёхфазная сеть разбивается на три однофазных

При необходимости подключения в квартире оборудования, требующего напряжения 380 В, владелец может обратиться с заявлением в управляющую компанию. Специалист определит возможность подобного подключения, после чего можно будет провести в квартиру трёхфазную линию, предварительно заменив прибор учёта электроэнергии на соответствующий.

ФОТО: vseinstrumenti.ruТрёхфазный прибор учёта электроэнергии значительно крупнее однофазного

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220 В).

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт. В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники. Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети — это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод. Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе. Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток — нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 — коричневый;
  • провод L2 — черный;
  • кабель L3 — серый;
  • нулевая оплетка N — синий;
  • желтый или зеленый — предусмотрен для заземления.

Такие мощные линии проводятся к крупным потребителям — целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль. При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции. Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы
  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы
  • Ограниченная мощность потребителя
  • Невозможность работы асинхронных двигателей (без ПЧ и конденсаторов)

Трехфазная сеть 380 В, плюсы
  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы
  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Маркировка[править | править код]

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования — фазировка (чередование фаз, то есть очерёдность протекания токов по фазам) принципиальна, так как от неё зависит направление вращения трёхфазных двигателей, правильная работа управляемых трёхфазных выпрямителей и некоторых других устройств. В разных странах маркировка проводников имеет свои различия, однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Трёхфазная двухцепная линия электропередачи

Цвета фаз[править | править код]

Каждая фаза в трёхфазной системе имеет свой цвет. Он меняется в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

СтранаL1L2L3Нейтраль / нольЗемля

/ защитное заземление

Россия, Белоруссия, Украина, Казахстан (до 2009), КитайБелыйЧерныйКрасныйГолубойЖёлто/зелёный (в полоску)
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина, Россия с 2009КоричневыйЧёрныйСерыйГолубойЖёлто/зелёный (в полоску)[3]
Европейский союз до апреля 2004[4]КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Австралия и Новая ЗеландияКрасный (или коричневый)[5]Белый (или чёрный)

(ранее — жёлтый)

Тёмно синий (или серый)Чёрный (или голубой)Жёлто/зелёный (в полоску)

(зелёный в очень старых установках)

Канада (обязательный)[6]КрасныйЧёрныйГолубойБелый или серыйЗелёный или цвета меди
Канада (в изолированных трехфазных установках)[7]ОранжевыйКоричневыйЖёлтыйБелыйЗелёный
США (альтернативная практика)[8]КоричневыйОранжевый (в системе треугольник), или

фиолетовый (в системе звезда)

ЖёлтыйСерый или белыйЗелёный
США (распространённая практика)[9]ЧёрныйКрасныйГолубойБелый или серыйЗелёный, жёлто/зелёный (в полоску),[10] или провод цвета меди
НорвегияЧёрныйБелый/серыйКоричневыйГолубойЖёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди
В моделизме[править | править код]

В низковольтных высокочастотных электронных регуляторах хода, применяемых в транспортном моделизме, используются другие системы маркировки:

UVW
Красныйжёлтыйчёрный
Оранжевыйжёлтыйсиний

Нулевой и заземляющий проводники, как правило, отсутствуют по причине симметричности нагрузки и безопасности напряжения.

См. также[править | править код]

  • Метод симметричных составляющих
  • Фазоуказатель
  • Индикатор фазы
  • Коэффициент мощности
  • Фазометр
  • Реле контроля фаз
  • Двухфазная электрическая сеть
  • Трёхфазный двигатель
  • Трёхфазный выпрямитель

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Интерполяция и Экстраполяция онлайн (линейная интерполяция/экстраполяция)

Сервис интерполяции и экстраполяции онлайн (линейная интерполяция/экстраполяция) поможет вам вычислить значение линейной функции, имея в распоряжении f(x) в двух различных точках, а также рассчитает уравнение прямой. Данный сервис автоматически определит нужный способ расчета — вам лишь надо ввести значения в двух произвольных точках, и указать необходимую точку, в которой нужно рассчитать значение. Если установить «галку» внутри кнопки «Рассчитать», калькулятор будет рассчитывать значение автоматически при любом изменении входных данных. Пример расчета интерполяции
Интерполяция — (от латинского interpolatio изменение, переделка), в математике и статике это способ вычислить промежуточное значение функции по нескольким уже известным ее значениям. Например.: Имеется функция f(x), известны результаты значения f(x) в точке x0 и точке x2, интерполяця помогает найти значение f(x1) при условии что x1 принадлежит интервалу от x0 до x2. Если x1 лежит вне интервала (x0, x2), интерполяция не поможет, для этого нужно использовать «экстраполяцию». Этот метод часто называют «линейная интерполяция«, он дает 100% верный результат для уравнения прямой. Для вычесления резултата функций с двумя переменными существует «Билинейная интерполяция (Двойная интерполяция)». Также для рассчета интерполяции можно воспользоваться сервисом Интерполяция — полином Ньютона и Интерполяция — полином Лагранжа
Экстраполяция — в математике и статике это способ вычислить значение функции по нескольким уже известным ее значениям. Например.: Имеется функция f(x), известны результаты значения f(x) в точке x1 и точке x2, экстраполяция помогает найти значение f(x0) либо f(x3) при условии что x0 либо x3 меньше либо больше интервала x1 до x2. Если xn лежит в интервале (x1, x2), экстраполяция не поможет, для того вам нужно использовать «интерполяцию» — для функций с одной переменной, и «двойная интерполяция» — для функций с двумя переменными.

Этот метод часто называют «линейная экстраполяция«, он дает 100% верный результат для уравнения прямой.

Как для интерполяции так и для экстраполяции в основе их рассчета лежит пропорция (y1 — y0)/(y2 — y0) = (x1 — x0)/(x2 — x0), прирощение значения в первой точке к прирощению значения во второй точке относится также как прирощение переменной в первой точке к прирощению переменной во второй точке (все относительно нулевой точки отсчета), из этой пропорции легко получить формулу рассчета любого значения

Где применяют?

Наибольшая польза от использования регулировочных устройств получается на электростанциях, переводящих мощность одновременно с низкой и средней на высокую. Приборы без ферромагнитных стержней используются при необходимости обеспечения связи между несколькими повышенными мощностями.

Трансформаторы применяются, если на обычных автоматических механизмах не установлен РПН.

Такие устройства не используются только в небольших установках 380-220 В. Использование регулировочных изделий актуально при необходимости независимого изменения на участке низшего напряжения.

Трехфазный переменный ток соединение звездой и треугольником. Что такое линейное и фазное напряжение

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – . Возможен еще третий провод – заземление.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия

Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.


Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные , в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в . А при установке экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить , так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер , который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного , который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть , и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:

  1. Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  2. Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  3. Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  4. Необходим монтаж в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов
  1. Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  2. Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  3. Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение ввода.
  4. Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

Получение трехфазного тока. Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых э. д.с. источников энергии имеют одинаковую частоту, но сдвинуты между собой по фазе. Однофазную цепь в такой системе называют фазой. Каждая э.д.с. может действовать в своей самостоятельной цепи и не быть связана с другими э.д.с. В этом случае электрическую систему называют несвязанной. Широкое применение на практике получили связанные многофазные системы, у которых отдельные фазы электрически соединены между собой.

По сравнению с однофазным многофазный ток имеет ряд преимуществ. Для передачи одной и той же мощности требуется меньшее сечение проводов. В работе двигателей и приборов переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.

Рис. 1

Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток. Цолучание трехфазного тока можно пояснить следующим образом. Если в однородном магнитном поле (рис. 1) поместить три витка, расположенных под углом 120° один к другому, и вращать их с постоянной угловой скоростью, в витках будут индуктироваться э. д.с., которые также будут сдвинуты по фазе на 120° . В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, сдвинутые одна относительно другой на 120° . Такие обмотки называют фазами генератора.


Рис. 2

Соединения звездой. Соединив фазные обмотки генератора или потребителя таким образом, чтобы концы обмоток были замкнуты в одну общую точку, а начала обмоток подключив к линейным проводам, получим соединение, называемое звездой (рис. 2). Таким образом, мы видим, что при образовании из трех однофазных систем переменного тока трехфазной системы, соединенной в звезду, вместо шести проводов требуются только четыре. Условно соединение звездой обозначается знаком Y . Точки, в которых соединены концы фазных обмоток, называют нулевыми, а провод, соединяющий их, — нулевым или нейтральным. Три провода, соединяющих свободные концы фаз генератора с концами фаз потребителя, называют линейными.

При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей нельзя достигнуть равномерной загрузки фаз. Поэтому в таких случаях нулевой провод необходим, хотя сечение его равняется половине сечения линейного провода.


Рис. 3

При таком соединении конец первой фазы соединяется с началом второй, конец второй — с началом третьей, а конец третьей — с началом первой фазы, а к точкам соединения фаз подключаются линейные провода (рис. 3). Соединение треугольником условно обозначают знаком Δ .

При соединении треугольником фазы генератора образуют замкнутый контур с небольшим сопротивлением. При неправильном соединении обмоток э.д.с. может увеличиться вдвое. При малом сопротивлении контура может установиться режим, близкий к короткому замыканию.

При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в данном случае равно линейному. Соединение треугольником применяют для осветительной и силовой нагрузок.

В двигателях трехфазного тока обычно выводят все шесть концов трех обмоток, которые по желанию можно соединить звездой или треугольником.

Между двумя фазными проводами, иногда его упоминают как межфазное или междуфазное. Фазным считается напряжение между нулевым проводом и одним из фазных. В нормальных условиях эксплуатации линейные напряжения одинаковы и превосходят фазные в 1,73 раза.

Эксплуатационные напряжения трехфазной цепи

Трехфазные цепи обладают рядом преимуществ по сравнению с многофазными и однофазными, с их помощью можно легко получить вращательное круговое магнитное поле, которое обеспечивает работу асинхронных двигателей. Напряжение трехфазной цепи оценивают по ее линейному напряжению, для отходящих от подстанций линий его устанавливают 380 В, что соответствует фазному напряжению в 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используют обе величины — 380/220 В, подчеркивая этим, что к ней могут подключаться не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.

Фазой называют часть многофазной системы, имеющую одинаковую характеристику тока. Вне зависимости от способа соединения фаз существуют три одинаковых по действующему значению напряжения трехфазной цепи. Они сдвинуты относительно друг друга по фазе на угол, составляющий 2π/3. У четырехпроводной цепи, помимо трех линейных напряжений, есть также три фазные.

Номинальные напряжения

Самыми распространенными номинальными напряжениями приемников переменного тока являются 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В — для бытовых. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети. Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, которые рассчитаны на 220 и 127 В или 380 и 220 В.

Различия систем распределения электроэнергии

Наибольшее распространение получила трехфазная система 380/220 В с заземленной нейтралью, однако встречаются другие способы распределения электроэнергии. Например, в ряде населенных пунктов можно найти трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.

В данном случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет незаземленной нейтрали. Трехфазные приемники подключаются к трем фазным проводам, а однофазные — на линейное напряжение между любой парой фазных проводов.

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

В электротехнике часто применяют векторный метод изображения . Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Содержание:

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое , обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.


Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке — фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение — возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное — определяется как межфазное или между фазное — возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин — 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные — на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.


Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью . Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.


Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

Трехфазный ток — Технарь

Пример

В каждую фазу трехфазной четырехпроводной цепи нейтральным проводом включены сопротивления, как показано на рис. 61, а (соединение звездой). Сопротивления во всех фазах одинаковы и равны: активные 8,0 Ом, индуктивные 12 Ом, емкостные 6,0 Ом. Линейное напряжение сети 220 В. Для каждой фазы нагруз­ки определить: 1) полное сопротивление, коэффициент мощности, сдвиг фаз между током и напряжением, фазные токи; активную, ре­активную и полную мощности каждой фазы; 2) линейные токи, ток в нейтральном проводе; активную, реактивную и полную мощности потребителя. Построить векторную диаграмму.

Дано: r1=r2= r3==8,0 Ом — активные сопротивления фаз; XL1=XL2=XL3=XLф =12 Ом — индуктивные сопротивления фаз; XC1=XC2=XC3=XCф=6,0 Ом — емкостные сопротивления фаз; Uл=220 В — линейное напряжение.

Найти: 1) Zф— полное сопротивление каждой фазы; cos φф— коэффициент мощности; φф— сдвиг фаз между током и напряжени­ем; Iффазные токи; Рф, Qф, Sф  — соответственно активную, ре­активную, полную мощности; 2) Iл — линейные токи, I0— ток в нейтральном проводе; P,Q,S— активную, реактивную, полную мощности нагрузки.

Решение. 1) Так как в данной задаче соответствующие со­противления всех фаз одинаковы (симметричная нагрузка), доста­точно произвести вычисления для одной фазы. Полное сопротивле­ние фазы найдем по формуле:

Вычисляем полное сопротивление фазы:

Коэффициент мощности фазы определим по формуле:

затем найдем сдвиг фазы φф между током и напряжением. Для опре­деления направления сдвига фаз определим sin φф:

Если sin φф>0 (нагрузка преимущественно индуктивная), ток от­стает от напряжения на угол φф; если sin φф<0 (нагрузка преиму­щественно емкостная), ток опережает напряжение по фазе.

Находим коэффициент мощности фазы:

так как sin φф >0, то ток отстает по фазе от напряжения, и на век­торной диаграмме вектор тока сдвинут на 36°52′ в сторону отстава­ния (по часовой стрелке) от вектора напряжения. При симметрич­ной нагрузке коэффициент мощности всей нагрузки равен коэффи­циенту мощности фазы: cosφ=cos φф=0,80.

Фазные токи найдем по закону Ома:

При соединении звездой с нейтральным проводом напряжение на каждой фазе, независимо от вида и сопротивления фазы, всегда оди­наково и равно Uф =Uл /√(3), тогда Iф = Uл/√(3)Zф. При соедине­нии звездой линейные токи равны фазным:

Находим фазные и линейные токи:

Активную, реактивную и полную мощности фаз определяем из формул:

Подставляя числовые значения, находим активную, реактивную и полную мощности фазы:

2) Ток в нейтральном проводе определяется по векторной диаг­рамме:

При симметричной нагрузке ток в нейтральном проводе I0=0.

Активная мощность всей нагрузки равна сумме активных мощ­ностей фаз:

Для симметричной нагрузки Р = ЗРф =√(3), IлUл cos φф

Реактивная мощность нагрузки равна алгебраической сумме реактивных мощностей фаз:

(Знак «+» при преобладании индуктивной нагрузки, «—» — ем­костной.) В данной задаче:

Определим полную мощность нагрузки как:

В данной задаче S=3Sф

Находим активную, реактивную и полную мощности нагрузки:

Строим векторную диаграмму (см. рис. 61, б). Построение начинаем с фазных напряжений, располагая их под углом  120°  друг к другу. Под углами φА, φБ, φС (в данной задаче 36°52′) к соответ­ствующим векторам фазных напряжений строим векторы фазных токов; Iф=12,7 А, Uф=127 В.

Ответ. 1) Полное сопротивление фазы 10 Ом; коэффициент мощности 0,80; сдвиг фаз между током и напряжением 36°52′; фазные и линейные токи 12,7 А; мощности фазы: активная 1,29 кВт, реактивная 0,968 вар, полная 1,61 кВ*А; 2) ток в нейтральном про­воде равен нулю; мощность нагрузки: активная 3,87 кВт, реак­тивная 2,90 квар, полная 4,84 кВ*А.

Пример

Потребитель, представляющий собой симметричную нагрузку, фазы которой соединены треугольником, включен в сеть трехфазного тока с линейным напряжением 220 В (рис. 62). Соот­ветствующие сопротивления во всех фазах одинаковы и равны: ак­тивные 6,0 Ом, индуктивные 4,0 Ом, емкостные 12 Ом. Определить: полное сопротивление каждой фазы, коэффициент мощности фазы, фазные и линейные токи; активную, реактивную, полную фазные мощности; активную, реактивную и полную мощности нагрузки.

Дано: Uл220 В — линейное напряжение цепи; r1=r2=r3 =R=6,0 Ом — активные сопротивления фаз; XL1=XL2=XL3=XL= 4,0 Ом — индуктивные сопротивления XC1=XC2=XC3=XC = 12 Ом — емкостные сопро­тивления фаз.

Найти: Zф полное сопротивление каждой фазы, cos φф— коэффициент мощности фазы, Iф, Iл — фазные и линиейные токи; ; Рф, Qф , Sфактивную, реактивную, полную мощности фаз; Р,Q, S — активную, реактивную и пол­ную мощности нагрузки.

Решение. При симметричной на­грузке достаточно определить все необ­ходимые величины для одной фазы.

Полное сопротивление фазы найдём по формуле:

Коэффициент мощности фазы:

в данной задаче коэффициент мощности всей нагрузки:

Фазный ток находим по закону Ома для участка цепи:

При соединении треугольником фазное напряжение равно линейному, Uф =Uл, поэтому IФ=Uл/Zф.

Для нахождения линейного тока учитываем, что при симметрич­ной нагрузке:

Подставляя числовые значения, получаем:

Соответствующие мощности фаз определяем по формулам:

Активную мощность нагрузки определим по формуле:

Находим реактивную мощность нагрузки:

Определяем полную мощность нагрузки:

Ответ. Полное сопротивление фазы 10 Ом, коэффициент мощ­ности фазы 0,60, фазные токи 22 А, линейные токи 38,1 А; мощ­ности фаз: активная 2,9 кВт, реактивная 3,87 квар, полная 4,84 кВ*А; мощности нагрузки: активная 8,7 кВт, реактивная —11,6 квар; полная 14,5 кв*А.

что это, почему происходит и какие способы защиты есть

Что такое ноль, фазное и линейное напряжение?

Электроэнергия подаётся к потребителю по линейным кабелям. Нулевой проводник (нейтраль) используется в электросети для возврата тока от потребителя обратно к генерирующей станции. Нейтраль в нормальном состоянии выступает в роли защиты и не имеет напряжения.

От генераторной станции электроэнергия передаётся потребителю по трёхфазной сети. Она состоит из трёх проводников с рабочим напряжением, а также нулевого и заземляющего проводников. Пара рабочих проводников имеют между собой напряжение 380 В, которое называют линейным. Рабочий проводник и ноль в паре имеют напряжение 220 В – фазное.

При помощи ноля также происходит саморегулирование нагрузки в трёхфазной сети. При неравномерной нагрузке на фазах излишек тока сбрасывается на нейтраль и система автоматически уравновешивается.

К чему приводит обрыв нулевого провода, какие виды обрыва бывают?

Если нулевой проводник выступает в роли защиты, почему же его обрыв опасен? Для ответа на этот вопрос рассмотрим ситуацию обрыва в трёхфазной и однофазной сетях.

Обрыв нуля в трехфазной сети

Трёхфазная сеть построена таким образом, что электрический ток идёт по рабочему проводнику к потребителю и уходит в нейтраль. Напряжение в нормальной ситуации между ними 220 В. В случае, когда ноль отключен, потребители будут подключены по схеме «звезда без нулевой магистрали». Это значит, что каждый потребитель получит не фазное стабильное напряжение в 220 В, а «гуляющее» от 0 до 380 В линейное. Это происходит из-за перекоса фаз, т.е. неравномерной нагрузки на разных фазах.

Как пример, возьмём три квартиры, которые подключены к разным фазам. Жильцы первой квартиры находятся дома и используют стиральную машину, электрическую печь и другие электроприборы. Во второй квартире никто не живёт, поэтому все приборы отключены от сети. В третьей же все ушли на работу, оставив в режиме ожидания некоторую технику. В случае обрыва нуля, в квартире № 1 техника прекратит работу или будет работать со сбоями, т.к. напряжение просядет до 50…100 В, а в квартире № 3 подключенные приборы получат 300…350 В и выйдут из строя, возможен пожар. Квартира № 2 не пострадает, т.к. вся техника отключена.

Это случается потому, что при обрыве нейтрали (в ситуации с большим суммарным сопротивлением) получается большее напряжение, которое и провоцирует выход из строя техники.

Обрыв нуля в однофазной сети

В однофазной сети обрыв нейтрали опасен для человека. Это можно объяснить тем, что в розетке появляется опасный потенциал там, где был ноль. Особенно опасна эта ситуация в системах с заземлением TN-C, т.к. используется совмещенный нулевой и заземляющий проводник PEN. Поэтому при обрыве провода, на открытых неизолированных частях корпуса электроприборов появляется потенциал опасный для жизни человека.

Причины обрыва нулевого провода

Основными причинами обрыва нейтрали является изношенность электросетей и непрофессионализм некоторых горе-электриков, которые допускают монтаж проводки, не придерживаясь необходимых правил. Не доверяйте непрофессионалам!

Как найти обрыв нуля?

Для того чтобы найти обрыв нейтрали в квартире нужно осмотреть все подключения в щитке. Увидеть и устранить такую проблему не сложно. Другое дело если провод перегорел где-то в стене. Для поиска поврежденного участка под отделкой необходимо использовать специальные тестеры.

Если же нулевой провод перегорел на стояке в подъезде, то эту проблему должны решать электрики со специальной службы. Задача владельца квартиры – обеспечить электробезопасность собственного жилья.

Какая есть защита от обрыва нуля?

Для защиты людей и техники от последствий обрыва нуля необходимо использовать на входном щите специальные защитные приборы: реле напряжения, УЗО или дифавтомат. Реле напряжения поможет уберечь технику от перепадов напряжения. УЗО и дифатомат сработают при утечке тока, что защитит человека от опасного удара электричеством.

Компания DC Electronics является производителем реле напряжения RBUZ, которые помогут защититься от последствий не только обрыва нуля, но и других аварийных ситуаций в электросетях.

Широкий ассортимент выпускаемых реле позволяет выбрать прибор с рабочим током от 16 до 63 А, мощностью до 13900 ВА. Для удобства установки устройства выполнены в разных формфакторах: под DIN-рейку или для установки непосредственно в розетку.

В любой модели есть функция задержки на включение после срабатывания, что позволяет уберечь технику от повторных скачков напряжения. Использование алгоритма True RMS обеспечивает большую точность измерения.

Также следует отметить высокую пожаробезопасность реле RBUZ. Все устройства изготовлены из поликарбоната, который не поддерживает горение. Большинство приборов имеют дополнительную термозащиту, которая отключит питание в случае нагрева реле свыше установленных показателей температуры. После остывания прибор включится снова. Это убережет жилье от возможного возгорания.

При производстве реле RBUZ используются комплектующие таких производителей как EPCOS, Samsung, HTC и пр. Это обеспечивает высокую надёжность и долговечность устройств. Компания DC Electronics предоставляет 5 лет гарантии на реле RBUZ.

 

Заключение

Обрыв нуля это серьёзная аварийная ситуация, которая может повлечь за собой ряд негативных последствий, как для техники, так и для самого человека. Установка реле напряжения в автоматическом режиме отключит питание в случае аварии, что поможет сохранить технику и избежать возгорания при перенапряжении. В комплекте с другими защитными устройствами этот прибор поможет обеспечить максимальную защиту вашего дома от различных нештатных ситуаций в электрической сети.

Оцените новость:

Трех фазное. Линейное и фазное напряжение

Получение трехфазного тока. Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых э.д.с. источников энергии имеют одинаковую частоту, но сдвинуты между собой по фазе. Однофазную цепь в такой системе называют фазой. Каждая э.д.с. может действовать в своей самостоятельной цепи и не быть связана с другими э.д.с. В этом случае электрическую систему называют несвязанной. Широкое применение на практике получили связанные многофазные системы, у которых отдельные фазы электрически соединены между собой.

По сравнению с однофазным многофазный ток имеет ряд преимуществ. Для передачи одной и той же мощности требуется меньшее сечение проводов. В работе двигателей и приборов переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.

Рис. 1

Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток. Цолучание трехфазного тока можно пояснить следующим образом. Если в однородном магнитном поле (рис. 1) поместить три витка, расположенных под углом 120° один к другому, и вращать их с постоянной угловой скоростью, в витках будут индуктироваться э.д.с., которые также будут сдвинуты по фазе на 120° . В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, сдвинутые одна относительно другой на 120° . Такие обмотки называют фазами генератора.


Рис. 2

Соединения звездой. Соединив фазные обмотки генератора или потребителя таким образом, чтобы концы обмоток были замкнуты в одну общую точку, а начала обмоток подключив к линейным проводам, получим соединение, называемое звездой (рис. 2). Таким образом, мы видим, что при образовании из трех однофазных систем переменного тока трехфазной системы, соединенной в звезду, вместо шести проводов требуются только четыре. Условно соединение звездой обозначается знаком Y . Точки, в которых соединены концы фазных обмоток, называют нулевыми, а провод, соединяющий их, — нулевым или нейтральным. Три провода, соединяющих свободные концы фаз генератора с концами фаз потребителя, называют линейными.

При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей нельзя достигнуть равномерной загрузки фаз. Поэтому в таких случаях нулевой провод необходим, хотя сечение его равняется половине сечения линейного провода.


Рис. 3

При таком соединении конец первой фазы соединяется с началом второй, конец второй — с началом третьей, а конец третьей — с началом первой фазы, а к точкам соединения фаз подключаются линейные провода (рис. 3). Соединение треугольником условно обозначают знаком Δ .

При соединении треугольником фазы генератора образуют замкнутый контур с небольшим сопротивлением. При неправильном соединении обмоток э.д.с. может увеличиться вдвое. При малом сопротивлении контура может установиться режим, близкий к короткому замыканию.

При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в данном случае равно линейному. Соединение треугольником применяют для осветительной и силовой нагрузок.

В двигателях трехфазного тока обычно выводят все шесть концов трех обмоток, которые по желанию можно соединить звездой или треугольником.

Содержание:

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое , обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.


Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке — фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение — возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное — определяется как межфазное или между фазное — возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин — 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные — на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.


Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью . Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.


Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – . Возможен еще третий провод – заземление.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия

Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.


Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные , в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в . А при установке экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить , так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер , который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного , который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть , и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:

  1. Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  2. Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  3. Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  4. Необходим монтаж в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов
  1. Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  2. Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  3. Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение ввода.
  4. Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

В электротехнике часто применяют векторный метод изображения . Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Между двумя фазными проводами, иногда его упоминают как межфазное или междуфазное. Фазным считается напряжение между нулевым проводом и одним из фазных. В нормальных условиях эксплуатации линейные напряжения одинаковы и превосходят фазные в 1,73 раза.

Эксплуатационные напряжения трехфазной цепи

Трехфазные цепи обладают рядом преимуществ по сравнению с многофазными и однофазными, с их помощью можно легко получить вращательное круговое магнитное поле, которое обеспечивает работу асинхронных двигателей. Напряжение трехфазной цепи оценивают по ее линейному напряжению, для отходящих от подстанций линий его устанавливают 380 В, что соответствует фазному напряжению в 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используют обе величины — 380/220 В, подчеркивая этим, что к ней могут подключаться не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.

Фазой называют часть многофазной системы, имеющую одинаковую характеристику тока. Вне зависимости от способа соединения фаз существуют три одинаковых по действующему значению напряжения трехфазной цепи. Они сдвинуты относительно друг друга по фазе на угол, составляющий 2π/3. У четырехпроводной цепи, помимо трех линейных напряжений, есть также три фазные.

Номинальные напряжения

Самыми распространенными номинальными напряжениями приемников переменного тока являются 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В — для бытовых. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети. Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, которые рассчитаны на 220 и 127 В или 380 и 220 В.

Различия систем распределения электроэнергии

Наибольшее распространение получила трехфазная система 380/220 В с заземленной нейтралью, однако встречаются другие способы распределения электроэнергии. Например, в ряде населенных пунктов можно найти трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.

В данном случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет незаземленной нейтрали. Трехфазные приемники подключаются к трем фазным проводам, а однофазные — на линейное напряжение между любой парой фазных проводов.

Расчет фазных и линейных величин трехфазного тока

Трехфазный генератор
имеет на статоре три однофазные самостоятельные обмотки, начала и концы
которых сдвинуты соответственно на 120 эл. град, или на 2/3 полюсного
деления, т. е на 2/3 расстояния между серединами разноименных полюсов. В каждой из трех обмоток возникает однофазный переменный ток.
Однофазные токи обмоток взаимно сдвинуты на 120 эл. град, т. е. на 2/3
периода. Таким образом, трехфазный ток представляет собой три однофазных
тока, сдвинутых во времени на 2/3 периода (120°).

В любой момент времени алгебраическая сумма …

Трехфазный генератор имеет на статоре три однофазные самостоятельные обмотки, начала и концы которых сдвинуты соответственно на 120 эл. град, или на 2/3 полюсного деления, т. е на 2/3 расстояния между серединами разноименных полюсов (рис. 1). В каждой из трех обмоток возникает однофазный переменный ток. Однофазные токи обмоток взаимно сдвинуты на 120 эл. град, т. е. на 2/3 периода. Таким образом, трехфазный ток представляет собой три однофазных тока, сдвинутых во времени на 2/3 периода (120°).

В любой момент времени алгебраическая сумма всех трех мгновенных: значений а. д. с. отдельных фаз равна нулю. Поэтому у генератора вместо шести выводов (для трех самостоятельных однофазных обмоток) делают только три вывода или четыре, когда выводится нулевая точка. В зависимости от того, как соединить отдельные фазы и как их подключить к сети, можно получить соединение в звезду или треугольник.

Начала обмоток обозначаются в дальнейшем буквами A, B, C, а концы их – буквами X, Y, Z.

Рис. 1. Трехфазный генератор

а) Соединение в звезду.

При соединении в звезду концы фаз X, Y, Z (рис. 2) соединяют и узел соединения называют нулевой точкой. Узел может иметь вывод – так называемый нулевой провод (рис. 272), показанный пунктиром, или быть без вывода.

При соединении в звезду с нулевым проводом можно получить два напряжения: линейное напряжение Uл между проводами отдельных фаз и фазное напряжение Uф между фазой и нулевым проводом (рис. 2). Соотношение между линейным и фазным напряжениями выражается следующим образом: Uл=Uф3.

Рис. 2. Соединение в звезду

Ток, который проходит в проводе (сети), проходит и по обмотке фазы (рис. 2), т. е. Iл=Iф.

б) Соединение в треугольник.

Соединение фаз в треугольник получается при соединении концов и начал фаз согласно рис. 3, т. е. AY, BZ, CX. При таком соединении нет нулевого провода и напряжение на фазе равно линейному напряжению между двумя проводами линии Uл=Uф. Однако ток в линии Iл (сети) больше, чем ток в фазе Iф, а именно: Iл=Iф3.

Рис. 3. Соединение в треугольник

При трехфазной системе в каждое мгновение, если ток в одной обмотке идет от конца к началу, то в двух других он направлен от начала к концу. Например, на рис. 2 в средней обмотке AX проходит от A к X, а в крайних – от Y к B и от Z к C.

На схеме (рис. 4) показано, как три одинаковые обмотки соединяются с зажимами двигателя в звезду или треугольник.

Рис. 4. Соединение обмоток в звезду и треугольник

Примеры расчетов

1. Генератор с обмоткой статора, соединенной по представленной на рис. 5 схеме, при линейном напряжении 220 В питает током три одинаковые лампы сопротивлением по 153 Ом. Какие напряжение и ток имеет каждая лампа (рис. 5)?

Рис. 5.

Согласно включению лампы имеют фазное напряжение Uф=U/3=220/1,732=127 В.

Ток лампы Iф=Uф/r=127/153=0,8 А.

2. Определить схему включения трех ламп на рис. 6, напряжение и ток каждой лампы сопротивлением по 500 Ом, подключенных к питающей сети с линейным напряжением 220 В.

Ток в лампе I=Uл/500=220/500=0,45 А.

10.12.2016 Без рубрики

Разница между линейным и фазным напряжениями с решенными примерами

Линейное напряжение в трехфазной системе — это разность потенциалов между любыми двумя линиями или фазами, присутствующими в системе, обозначенная как V line или V L-L. Присутствующие здесь фазы являются проводниками или обмотками катушки. Если R, Y и B — три фазы (красная фаза, желтая фаза, синяя фаза), то разница напряжений между R и Y, Y и B или B и R образует линейное напряжение.С другой стороны, фазовое напряжение — это разность потенциалов между одной фазой (R, Y или B) и точкой соединения нейтрали, обозначенная как V фаза = VR (напряжение в красной фазе) = VY (напряжение в желтой фазе) = VB ( напряжение в синей фазе).

(изображение будет загружено в ближайшее время)

Точно так же линейный ток — это ток в одной фазе, а фазный ток — это ток внутри трехфазного соединения.

Чтобы понять соотношение линейного напряжения и фазного напряжения, первое, что нам нужно понять, — это различные типы трехфазных систем подключения.

Соотношение между линейным напряжением и фазным напряжением при соединении звездой

Рассмотрим три катушки провода или обмотки трансформатора, соединенные общей точкой соединения. Три провода, идущие от каждой катушки к нагрузке, называются линейными проводами, а сами проводники являются фазами. Эта система представляет собой типичную трехфазную трехпроводную систему соединения звездой. Если к общей средней точке подсоединяется нейтральный провод, то это называется трехфазной четырехпроводной системой соединения звездой.

Термины линейное напряжение и фазное напряжение уже объяснялись ранее, и они связаны следующим образом:

\ [V_ {line} = \ sqrt {3} V_ {phase} \];

Пока линейный ток = фазный ток.

(изображение будет загружено в ближайшее время)

(изображение будет загружено в ближайшее время)

Соотношение между линейным напряжением и фазным напряжением при соединении треугольником

При соединении треугольником все три конца фаз соединены в замкнутый треугольник шлейф, и у него нет общей нейтральной точки, как при соединении звездой.Здесь линейное и фазное напряжение связаны следующим образом:

\ [V_ {line} = V_ {phase} \];

Пока линейный ток = √3 × фазный ток.

(изображение будет загружено в ближайшее время)

Разница между фазным напряжением и линейным напряжением определяется следующим образом:

Разница между линейным напряжением и фазным напряжением

Sl No.

Напряжение сети

Фазное напряжение

1.

Напряжение сети выше, чем напряжение фазы при соединении звездой.

Фазное напряжение меньше линейного напряжения при соединении звездой.

2.

Линейное напряжение — это разность потенциалов между двумя фазами или линиями.

Фазное напряжение — это разность потенциалов между фазой и нейтралью.

3.

При соединении звездой линейное напряжение в √3 раз больше фазного напряжения.

При соединении звездой фазное напряжение в 1 / √3 раза больше линейного напряжения.

При соединении треугольником линейное и фазное напряжение равны.

(изображение будет загружено в ближайшее время)

Решенные примеры

1. Рассчитайте фазное напряжение, если линейное напряжение составляет 460 вольт, учитывая, что система представляет собой трехфазную сбалансированную систему, соединенную звездой.

Ответ: Мы знаем,

Vphase = Vline / √3 = 460 / √3 = 265.59 вольт.

2. В какой из следующих цепей линейное и фазное напряжение равны? А как насчет соотношения линейного напряжения и фазного напряжения в другой цепи?

(изображение скоро будет загружено)

Ответ: Как мы знаем, при соединении треугольником (второй рисунок) линейное и фазное напряжение равны. В то время как для соединения звездой линейное напряжение выше, чем фазное напряжение, которое определяется соотношением: Vline = √3 Vphase.

Интересные факты

  • В любой проблеме или вопросе обычно указывается напряжение сети.Об этом следует упомянуть в случае фазного напряжения. Если не указано иное, считайте это линейным напряжением.

  • Наш бытовой трехфазный источник питания или 440 вольт — это сетевое напряжение.

  • Однофазный источник переменного тока 230 В — это разность напряжений между фазой и нейтральным переходом или, скорее, фазное напряжение.

  • Многофазная система, в которой все линейные напряжения и линейные токи равны, известна как трехфазная сбалансированная система.В случае несимметричных нагрузок система, как правило, неуравновешенная.

Количество линий против количества фаз

Во время наших презентаций по программе CEU Флоридского инженерного общества этой осенью был один вопрос, за которым последовала оживленная дискуссия.

Вопрос: что означает количество линий по сравнению с количеством фаз ?

Величина относится к напряжению и току как на стороне питания, так и на стороне нагрузки для 2 соединений сбалансированной системы распределения энергии.Эти 2 типа соединений: Star и Delta .

Это кажется простым вопросом и различием, но вызывает путаницу. Как базовое понятие электротехники стоит продолжить обсуждение.

Для создания трехфазной системы распределения электроэнергии обмотки расположены под электрическим углом 120 градусов друг от друга. Формы волн в каждой из 3 обмоток (A, B и C) показаны на рис. .1.

Эти обмотки находятся в статоре с полюсами, показанными на роторе. Ротор вращается с синхронной скоростью N с (об / мин (оборотов в минуту)). Для получения частоты (f) применяется следующая формула:

f = (p x N s ) / 120

где f — частота, а

где p — количество полюсов (p = 2)

Трехфазная система распределения электроэнергии может быть подключена в конфигурациях Star или Delta . См. Рис.2

Три напряжения качаются вверх и вниз аналогично друг другу, но одно за другим в определенном ритме.

На принимающей стороне электрической нагрузки эти 3 линии могут быть соединены вместе двумя различными способами: (1) соединение Star (также называемое Y-соединением) или (2) соединение Delta . Когда соединение выполняется как Star , может быть установлена ​​центральная точка. Эта точка называется нейтральной, и сумма всех трех токов будет равна нулю для идеально сбалансированной системы распределения мощности.

Нейтральная точка является нейтральной в том смысле, что ее напряжение не колеблется, как Фаза Напряжение . Чтобы нейтральная точка была более устойчивой, мы можем безопасно подключить эту точку к земле. Как только у нас есть 3-линейный терминал и нейтральный терминал, у нас может быть 2 разных вида напряжения.

Более высокое напряжение между любыми двумя линиями называется Линейное напряжение или Линейное напряжение .Более низкое напряжение между любой 1 линией и нейтралью называется фазным напряжением или фаза-нейтраль Напряжение . См. Рисунок 3.

Так же, как есть линейное напряжение и фазное напряжение , есть также линейный ток и фаза ток . Линейный ток — это ток через любую 1 входящую линию и Фазный ток через любое из 3 плеч электрической нагрузки.

В случае соединения Delta , линейное напряжение и фазное напряжение одинаковы, но линейный ток в √ 3 раза больше, чем фазный ток .

В случае соединения звездой , линейное напряжение в √ 3 раза больше, чем фазное напряжение , но фазные токи линии и одинаковы.

Используется ли соединение звезда или треугольник , та же формула (ниже) применяется к трехфазной цепи:

P = √ 3 x линейное напряжение x линейный ток, умноженное на cos ø (коэффициент мощности).

, где P — мощность

В нашей следующей статье мы обсудим различные конфигурации электрических служб в Соединенных Штатах.

Что такое трехфазная система? Определение и типы

Определение: Система с тремя фазами, т.е. ток будет проходить по трем проводам, и будет один нейтральный провод для передачи тока короткого замыкания на землю, известна как трехфазная система. Другими словами, система, которая использует три провода для генерации, передачи и распределения, известна как трехфазная система.Трехфазная система также используется как однофазная, если от нее отсоединены одна из их фазы и нейтральный провод. Сумма линейных токов в 3-фазной системе равна нулю, а их фазы различаются под углом 120º

Трехфазная система состоит из четырех проводов, т. Е. Трех токоведущих проводов и одной нейтрали. Площадь поперечного сечения нейтрального проводника составляет половину живого провода. Ток в нейтральном проводе равен сумме линейного тока трех проводов и, следовательно, равен √3, умноженному на составляющие тока нулевой последовательности фаз.

Трехфазная система имеет несколько преимуществ, например, она требует меньше проводов по сравнению с однофазной системой. Он также обеспечивает непрерывное питание нагрузки. Трехфазная система имеет более высокий КПД и минимальные потери.

Трехфазная система индуцирует в генераторе трехфазное напряжение одинаковой величины и частоты. Он обеспечивает бесперебойное питание, т.е. если одна фаза системы нарушена, то оставшиеся две фазы системы продолжают подавать питание.Величина тока в одной фазе равна сумме тока в двух других фазах системы.

Разность фаз трех фаз 120º необходима для правильной работы системы. В противном случае система выйдет из строя

Типы соединений в трехфазной системе

Трехфазные системы подключаются двумя способами: звездой и треугольником. Их подробное объяснение показано ниже.

Звездное соединение

Для соединения звездой требуется четыре провода, в которых есть три фазных провода и один нейтральный провод. Такой тип подключения в основном используется для передачи на большие расстояния, поскольку он имеет нейтральную точку. Нейтральная точка передает несимметричный ток на землю и, следовательно, уравновешивает систему.

Трехфазные системы, соединенные звездой, выдают два разных напряжения, то есть 230 В и 440 В. Напряжение между одной фазой и нейтралью составляет 230 В, а напряжение между двумя фазами равно 440 В.

Соединение треугольником

Соединение в треугольник состоит из трех проводов, нейтральная точка отсутствует. Соединение треугольником показано на рисунке ниже. Линейное напряжение при соединении треугольником равно фазному напряжению.

Подключение нагрузок в трехфазной системе

Нагрузки в трехфазной системе также могут подключаться по схеме звезды или треугольника. Трехфазные нагрузки, подключенные по схеме треугольник и звезда, показаны на рисунке ниже.

Трехфазная нагрузка может быть сбалансированной или несбалансированной.Если три нагрузки (импедансы) Z 1 , Z 2 и Z 3 имеют одинаковую величину и фазовый угол, тогда трехфазная нагрузка называется сбалансированной. В состоянии баланса все фазы и линейные напряжения равны по величине.

Трехфазный источник

— обзор

7.2.3 Метод модуляции прямого матричного преобразователя

В этом разделе представлена ​​матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. будет описан преобразователь прямой матрицы, использующий матрицу рабочего цикла.Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле. (7.12).

(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.

В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.

(7.13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,

где cos ( o175 ϕ ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o — входная и выходная угловые частоты, соответственно.Опорный потенциал выходного фазного напряжения v, oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3 .

Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .

(7.14) VimIimcosϕi = VomIomcosϕo.

Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , Eq. (7.15) определяется как

(7.15) Vom = qVim, Iim = qIomcosϕocosϕi.

Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица заполнения T , которая удовлетворяет ограниченному условию продолжительности включения, как в уравнении. (7.11) рассчитывается с использованием уравнения. (7.16).

(7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1’d2’d3’d2’d3’d1’d3’d1’d2 ‘,

, где 905 905 905 9017 2 d 905 905 905 9017 5 9017 5 , d 1 ‘, d 2 ‘ и d 3 ‘выражены в уравнении. (7.17).

(7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qcosω2t + 2π3,

, где ω 1 и ω 2 ω o ω i и ω o + ω i 9017, соответственно p 1 и p 2 — это переменные управления коэффициентом мощности в положительном и отрицательном направлении, соответственно, которые выражены в формуле.(7.18).

(7.18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.

Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.

Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).

(7.19) djk = 131 + 2vojvskVim2j = ABCk = abc.

На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице заполнения уравнения. (7.16).

Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).

На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, потому что опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.

Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q макс. = 0.866) с использованием синфазного напряжения в модуляции.

Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как

(7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,

, где v cm — синфазное напряжение и выражается в уравнении . (7.21) как

(7.21) vcmt = −16cos3ωot + 36cos3ωit.

В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Дополнительно q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.

Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).

(7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.

В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления по напряжению q выбирается из уравнения. (7.23).

(7.23) 2qp⋅1 − signλ3 + sgnλ3≤1,

, где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24).

(7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.

На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p управляется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.

Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .

Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).

На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . Т преобразователя матриц.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольного форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):

Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).

(7.25) sAasAbsAc = 100,0≤vtri

, где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы.

Формула трехфазного напряжения

Используя вышеупомянутую формулу… V P = фазное напряжение V L = линейное напряжение I P = фазный ток I L = линейный ток R = R1 = R2 = R3 = сопротивление каждой ветви W = мощность, эквивалентная звездам и треугольнику W DELTA = 3 Вт, треугольник Введите коэффициент мощности нагрузки. Таким образом, если угол зажигания равен нулю (cos (0) = 1), управляемый выпрямитель работает аналогично предыдущему трехфазному неуправляемому диодному выпрямителю со средними выходными напряжениями, такими же. Из этого поста вы узнаете, как рассчитать ток нагрузки трехфазного двигателя.Падения напряжения бывают междуфазными, для трехфазных, трехпроводных или трехфазных, четырехпроводных цепей 60 Гц. Большинство предыдущих ответов не ошибочны в отношении формул, но в большинстве из них не указывается, для какой конфигурации элемента (звезда или дельта) они действительны, или к какому напряжению или току (фазе или линии) они относятся. к. Если напряжения слишком сильно не сбалансированы, компоненты (например, двигатели и компрессоры) начнут перегреваться. Этот пост о объяснении формулы расчета тока трехфазного двигателя.Эти три напряжения должны быть почти, если не точно, равными друг другу. 4% от заявленного напряжения питания. Формула для расчета мощности, тока и напряжения в трехфазной проводке (несимметричная нагрузка, разные нагрузки на каждой из трех фаз): Pt = P1 + P2 + P3 P1 = V * I1 * cosφ1 I1 = P1 / (V * cosφ1) То же значение для каждой фазы… V = P1 / (I * cosφ1) Pt = общая мощность цепи в ваттах (Вт) P1, P2, P3 = мощность фазы 1, фазы 2 и фазы 3 в ваттах (Вт) трехфазное питание 100 А / фаза TN-S в здание (Ze = 0.28 Ом), а новая распределительная цепь будет запитываться от новых хвостовиков счетчиков через выключатель-предохранитель TP + N с предохранителями BS88 63A на фазу. CM = Circular-Mils (калибр проводов) Примечания: • Национальный электротехнический кодекс рекомендует не более 3% падения напряжения для параллельных цепей. Однофазное напряжение обычно составляет 115 В или 120 В, а трехфазное напряжение обычно составляет 208 В, 230 В или 480 В. Код для добавления этой кальки на ваш сайт. Формула падения напряжения для трехфазных систем следующая: где: VD = падение напряжения в цепи в вольтах.Входное напряжение инвертора составляет 220 В постоянного тока, а частота основной составляющей выходного напряжения составляет 50 Гц. Используется, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок. Его рейтинг — 100 кВА. Если питание однофазное при обычном уровне 240 В, это означает максимальное падение напряжения 4% от 240 В, что составляет 9,6 В, что дает (простыми словами) напряжение нагрузки всего 230,4 В. Для 415 V трехфазная система, допустимое падение напряжения будет 16.6 В при линейном напряжении нагрузки… Для двигателей рекомендуется умножить значение FLA на паспортной табличке на 1,25 для определения сечения провода. Также прочтите: Значения трехфазного тока в трехфазной системе; Питание в звездообразном соединении. Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Основная формула для расчета полной мощности в одно- и трехфазных цепях EE. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. Ли-онг Ип Ли-онг Ип.Я = Ампер. Фаза A начинается с 0 при фазовом угле 0 градусов, повышается до 1 при 90 градусах, обратно до 0 при 180, до -1 при 270 градусах и обратно до 1 при 360 градусах. Среднее значение выходного напряжения может быть получено путем усреднения по одному. Калькулятор трехфазной мощности рассчитывает ток активной и реактивной мощности по следующим параметрам: Напряжение (В): введите межфазное напряжение (\ (V_ {LL} \)) напряжение для трехфазной сети переменного тока в вольтах. Таким образом, если нагрузка однофазная, то можно взять одну фазу из трехфазной цепи, а нейтраль можно использовать в качестве заземления для завершения цепи.Каждая фаза представляет собой синусоидальную волну. Напряжение во всех трех каналах одинаковое. Если у вас есть сбалансированная трехфазная мощность, где все три фазных напряжения равны по величине и разнесены по фазе на 120 °, то: $$ V_ {LL} = \ sqrt {3} \ times V_ {LN} $$ Чтобы понять, почему рассмотрим векторную диаграмму: Применение базового триггера: share | улучшить этот ответ | следовать | Создан 06 дек. Создан 06 дек. Чтобы лучше понять трехфазное питание, человеку следует сначала изучить и понять принципы, применимые к однофазному питанию.11.4 (б). Математически дано как- Простая формула для расчета номинальной мощности трехфазных трансформаторов: KVA = (√3. Здесь формула однофазной мощности состоит только из колеблющихся членов, а значение мощности для полного цикла равно нулю. Следовательно, чтобы передавать 3-фазный ток 100 А на фазу по длине маршрута 150 м с общей формулой сбалансированной трехфазной мощности. Если у вас 3-фазный автоматический выключатель на 50 А, это 50 на фазу — при расчете падения напряжения с использованием таблиц вы рассчитываете при использовании 50A или 150A? Пиковое выходное напряжение = пиковое линейное напряжение = 3 × Vm 2.Где: V — напряжение (вольты), а I — ток (амперы). Амперы — введите максимальный ток в амперах, который будет протекать через цепь. Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности. Это требует, чтобы анализ проводился во временной области. Ib — расчетный ток в амперах. Уравнение однофазной мощности для чисто емкостной цепи. Электропитание в трехфазной системе является непрерывным, поскольку все три фазы участвуют в выработке общей мощности.Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»). Таким образом, единственное отличие от формулы, использованной выше для средней выходной мощности Напряжение трехфазного мостового выпрямителя определяется косинусоидальным углом cos (α) запускающего или запускающего импульса. Формулы разомкнутой 3-фазной цепи: Вт с разомкнутой треугольником = 2/3 Вт с треугольником, Вт с разомкнутой звездой = 1/2 Вт по схеме «звезда», Вт с разомкнутой четырехпроводной схемой = 2/3 Вт по схеме «звезда». Однако различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме треугольник, путем выполнения соединений или «ответвлений» вдоль обмоток питающих трансформаторов.Например, сбалансированная двухфазная мощность может быть получена от трехфазной сети с помощью двух специально сконструированных трансформаторов с ответвлениями на 50% и 86,6% первичного напряжения. R = сопротивление проводника. Формула для тока трехфазной нагрузки поясняется данными паспортной таблички асинхронного двигателя с напряжением трехфазной нагрузки. Формула для расчета однофазных и трехфазных коротких замыканий трансформаторов (кА): ВА = Вольт-ампер или активная мощность. Напряжение — введите напряжение на источнике цепи.Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите, что, вставив соответствующее трехфазное напряжение для «В» и умножив его на 1,732, вы можете затем разделить это количество на «1000. », Чтобы получить конкретное число (или константу), которое можно использовать для умножения« кВт », чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Опять же, предполагая равные номинальные мощности трех источников однофазного переменного тока, общая мощность, доступная для подключенной нагрузки трехфазного переменного тока, является произведением линейного напряжения трехфазного переменного тока, умноженного на 3-фазный линейный ток, умноженного на √ 3.Коэффициент мощности (cosΦ). В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю. По формуле: вольт-амперы (ВА) = √3 × В ЛИНИЯ × ЛИНИЯ Трехфазное напряжение или соединение звездой обычно состоит из напряжения, протекающего по трем различным каналам, для простоты мы называем это Напряжение в красной линии (VR), Напряжение Желтая линия (VY), напряжение в синей линии (VB).28 мая 2018 г. Основные формулы. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. L = длина цепи от источника питания до нагрузки. Когда переменный ток проходит через конденсатор, он сначала заряжается до максимального значения, а затем разряжается. Предполагается, что распределительный кабель будет представлять собой 4-жильный кабель BS 6723 LSZH SWA сечением 16 мм2, использующий SWA в качестве CPC, и имеет длину 36 м, с четырьмя жилами TP + N. Трехфазное соединение звездой (Y). Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.V x I) / 1000. Для однофазного подключения напряжение может быть математически получено из приведенной ниже формулы. Для трехфазного подключения напряжение может быть математически получено из приведенной ниже формулы. Калькулятор тока также используется в электротехнике для измерения неизвестного тока двумя известными величинами, кВА и напряжением, приложенным к приведенные ниже формулы. При соединении треугольником стороны фаз соединяются циклически, чтобы образовать замкнутый контур, как показано на рисунке 1. Пример 11.3. В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности.Формула; Простой электрический калькулятор для расчета трех (3) фазной электрической мощности в цепи на основе напряжения и тока. % Импеданс = Импеданс трансформатора. В конце концов, трехфазная цепь — это, по сути, комбинация трех отдельных однофазных цепей, у которых есть пики и спады, разделенные периодом времени. Система трехфазного напряжения Системы трехфазного напряжения состоят из трех синусоидальных напряжений равной величины, одинаковой частоты, разделенных на 120 градусов.Двухфазные цепи могут быть соединены двумя парами проводов, или два провода могут быть объединены, что требует только трех проводов для цепи. т.е. 10-миллиметровый кабель, пропускающий 3 фазы 50A на 30 м VD = 3,8x50x30 / 1000 = 5,7V или VD = 3,8x150x30 / 1000 = 17,1V Я думаю, это должен быть первый, но я немного запутался, нужно освежить некоторые 3 фазы теория я думаю. Падение напряжения на отрезке кабеля (ов) рассчитывается по следующей формуле: где: мВ / А / м — табличное значение мВ / А / м, полученное из Приложения 4 к BS 7671.Форма волны выходного напряжения однофазного инвертора с синусоидальной широтно-импульсной модуляцией такая же, как на рисунке. Пример: на следующем рисунке представлена ​​паспортная табличка трехфазного трансформатора. Линейный и фазный токи связаны друг с другом следующим образом: I_line = square_root (3) * I_phase Это означает, что какой бы ток питания мы ни имели, нам нужно сечение провода, умноженное только на 1 / square_root (3) линейный ток. Формула: Трехфазная электрическая мощность = V * I * 1,732 * PF, где V = напряжение I = ток PF = коэффициент мощности (0.8) Расчет трехфазной электрической мощности упрощен с помощью этого онлайн-калькулятора. Спроектируйте выходной фильтр так, чтобы коэффициент нелинейных искажений не превышал 5%. L — длина кабеля в метрах. Последовательность трехфазного вектора напряжения Последовательность {1-2-3} и последовательность {3-2-1} Обозначение нижнего индекса: после определения последовательности фаз и идентификации соответствующих индексов, вычисления с использованием этих индексов вместе с соглашениями, принятыми для Версия закона Ома для переменного тока предотвратит угловые ошибки.Синусоидальные волны для трехфазной системы показаны ниже. Каждая из трех фаз может использоваться как однофазная. Это соединение Scott T создает настоящую двухфазную систему с разницей во времени между фазами 90 °. Фаза B начинается с 0 при 120 градусах, а фаза C начинается с 0 при 240 градусах. Двухфазная электроэнергия Использует два напряжения переменного тока с фазовым сдвигом между ними на 90 электрических градусов. На рисунке 1 показаны функции косинуса в реальном времени и соответствующие векторные обозначения для трехфазной системы линейного напряжения с линейным напряжением V12 в качестве эталона.Анализ трехфазного выпрямителя с резистивной нагрузкой: Обозначение: Пусть V m = Пиковое напряжение между фазой и нейтралью. Полезная формула интегрирования: 4 3 6 6 cos () 6 ∫ 2 = + — π ω ω π π td t 1. Или сумма мощность всех трех фаз — это полная активная или истинная мощность. Трехфазное питание состоит из 3 «горячих» проводов, каждый из которых имеет полное линейное напряжение относительно двух других. Вольт = Вольт трансформатора. Если Z Y = Z∠θ, фазные токи отстают от соответствующих фазных напряжений на θ. 3-фазная звезда (сбалансированная нагрузка) 3-фазная открытая звезда (без нейтрали) IP = ILVP = VL… Для нагрузки, подключенной по схеме Y, фазные напряжения равны (1), где коэффициент √2 необходим, потому что V p было определено как действующее значение фазного напряжения.Ссылка на таблицы падения напряжения указывает на то, что сечение кабеля с падением напряжения 0,7 / 1000 В / А / м (0,7 мВ / А / м) ИЛИ МЕНЬШЕ является медным проводником диаметром 70 мм. Нет необходимости в сложной формуле. Ток (I): введите ток в амперах (A).

Статистика распределения

Kde, Объективный идеализм Гегеля, Что означают маленькие часы в сообщении Facebook, Рецепт Эпплджек с Everclear, Emerson Prima Snugger 42, Домашние аудиосистемы, Уровни услуг в области психического здоровья, Детали горелки Whirlpool Gas Range 5, Непрерывное улучшение качества в сфере здравоохранения.

9.3: Трехфазные соединения — Engineering LibreTexts

Можно сконфигурировать системы, использующие источники, подключенные треугольником или Y, с нагрузками, подключенными треугольником или Y. Следует отметить, что системы с треугольным соединением всегда представляют собой трехпроводные системы, в то время как системы с соединением по схеме Y могут использовать четвертый нейтральный провод (общая точка, к которой подключаются все три источника).

9.3.1: Однородные системы

Самые простые системы — это дельта-дельта и Y-Y. Мы будем называть их однородными системами, поскольку конструкции генератора и нагрузки схожи.Примеры показаны на рисунках \ (\ PageIndex {1} \) и \ (\ PageIndex {2} \) соответственно.

Рисунок \ (\ PageIndex {1} \): генератор, подключенный по схеме треугольник, с нагрузкой, подключенной по схеме треугольник (треугольник-треугольник).

Рисунок \ (\ PageIndex {2} \): Генератор, подключенный по схеме Y, и нагрузка, подключенная по схеме Y (Y-Y). Показан дополнительный четвертый нейтральный провод от центра к центру.

В этих конфигурациях каждая ветвь нагрузки соответствует соответствующей ветви генератора. В конфигурации дельта-треугольник на рисунке \ (\ PageIndex {1} \) должно быть очевидно, что напряжение на любом плече нагрузки должно равняться напряжению соответствующего плеча генератора.Например, импеданс нагрузки, подключенной между \ (A ‘\) и \ (B’ \), должен соответствовать напряжению, подаваемому генератором, расположенным между \ (A \) и \ (B \), потому что \ (A \) непосредственно соединен с \ (A ‘\) так же, как \ (B \) с \ (B’ \). Точно так же для конфигурации YY на рисунке \ (\ PageIndex {2} \) ток через любую ветвь нагрузки должен равняться току, протекающему через связанную ветвь генератора, поскольку нет других путей для тока между \ (A \) и \ (A ‘\), \ (B \) и \ (B’ \), а также \ (C \) и \ (C ‘\).

Поскольку нагрузка уравновешена и ветви генератора идентичны, за исключением их фазы, напряжение и ток (и, следовательно, мощности) для каждой ветви нагрузки должны быть одинаковыми, за исключением фаза.Это верно как для конфигурации Y-Y, так и для конфигурации дельта-дельта. Сложность здесь заключается в разнице между током или напряжением источника (или нагрузки) и линейным током или напряжением.

\ [\ text {Напряжение линии — это величина напряжения между любыми двумя проводниками, соединяющими источник с нагрузкой, за исключением земли или общего провода.} \ Nonumber \]

\ [\ text {Линейный ток — это величина тока, протекающего в любом проводнике, соединяющем источник с нагрузкой, за исключением земли или общего провода.} \ nonumber \]

Рассмотрим систему дельта-дельта на рисунке \ (\ PageIndex {1} \). Мы уже установили, что напряжение, развиваемое генератором \ (A, B \), должно быть таким же, как напряжение на нагрузке \ (A ‘, B’ \). Таким образом, напряжение, измеренное от проводника A, A ‘к проводнику B, B’, должно быть таким же, как напряжения источника и нагрузки. Другими словами, в конфигурации треугольник-треугольник все напряжения источника, нагрузки и линии одинаковы.

Мы также обнаружили, что токи источника и нагрузки должны быть одинаковыми для конфигурации треугольник-треугольник, однако это не означает, что ток, протекающий через провод, соединяющий \ (A \) с \ (A ‘\), должен быть такой же, как ток, протекающий через генератор или нагрузку.В конце концов, к \ (A ‘\) подключаются два провода нагрузки, а не только один. По определению, ток, протекающий через этот провод, является линейным током, и поэтому в конфигурации треугольник-треугольник линейный ток не совпадает с токами источника или нагрузки. Чтобы избежать путаницы, напряжение или ток, связанные с одной ветвью, называют фазным напряжением или током в зависимости от линейного напряжения или тока.

Обращаясь к конфигурации Y-Y на рисунке \ (\ PageIndex {2} \), мы видим противоположную ситуацию.Источник, нагрузка и линейный ток будут одинаковыми. С другой стороны, линейное напряжение состоит из двух генераторов, а не одного (например, от \ (A \) до \ (B \) или от \ (B \) до \ (C \)). Таким образом, для конфигурации Y-Y напряжения источника и нагрузки одинаковы, но они не равны линейному напряжению (и не в два раза, благодаря фазовому сдвигу).

9.3.2: Определение линейного напряжения и тока

Чтобы определить линейное напряжение для генератора, подключенного по схеме Y (и аналогично, линейный ток для генератора, подключенного по схеме треугольника), полезно изучить векторную диаграмму напряжений отдельных генераторов.Это показано на рисунке \ (\ PageIndex {3} \). У нас есть три напряжения одинаковой амплитуды, единственная разница между ними — их фаза. Каждый вектор отделен от других на 120 градусов. Далее, каждый отдельный генератор соединен из общей точки с одной из внешних точек \ (A \), \ (B \) и \ (C \). Линейное напряжение определяется как потенциал, существующий между любыми двумя этими тремя точками. Хотя можно просто вычесть напряжение одного генератора из другого, чтобы получить разницу, есть хорошее графическое решение, из которого мы можем вывести точную формулу для линейного напряжения с учетом напряжения генератора.

Рисунок \ (\ PageIndex {3} \): Диаграмма Y-соединенного генератора

Мы начинаем с сосредоточения внимания на втором и третьем квадрантах векторной диаграммы. Этот раздел перерисован на рисунке \ (\ PageIndex {4} \). В действительности для следующего доказательства можно использовать любые два вектора, но эта пара оказывается особенно удобной по ориентации.

Рисунок \ (\ PageIndex {4} \): Решение для линейного напряжения генератора с Y-соединением.

Для удобства использования приведем величину напряжения генератора к единице.Мы видим, что векторы \ (B \) и \ (C \) идеально разделяются горизонтальной осью; то, что находится над осью, идеально отражается под ней. В верхней части мы находим прямоугольный треугольник с гипотенузой единицы (темно-красный). Угол, который он образует с горизонталью, должен составлять половину угла между ним и вектором \ (C \). Это половина 120 градусов или 60 градусов. Поскольку сумма внутренних углов треугольника должна составлять 180 градусов, это означает, что третий угол должен составлять 30 градусов. Горизонтальный отрезок треугольника (темно-желтый или, может быть, «острая горчица») можно определить, потому что мы знаем и гипотенузу, и противоположный угол.2} \ nonumber \]

\ [\ text {vertical} = \ sqrt {\ frac {3} {4}} \ nonumber \]

\ [\ text {vertical} = \ frac {1} {2} \ sqrt {3} \ nonumber \]

Вертикальная ножка идеально отражается под горизонтальной осью. Следовательно, интервал от \ (B \) до \ (C \) должен быть в два раза больше этого значения, или \ (\ sqrt {3} \). Поскольку напряжение, развиваемое на каждой ножке генератора, называется фазным напряжением генератора, мы можем сказать:

\ [\ text {Линейное напряжение для генератора, подключенного по схеме Y, в} \ sqrt {3} \ text {умножено на его фазное напряжение.} \ label {9.1} \]

Например, если фазное напряжение генератора, подключенного по схеме Y, составляет 120 вольт, линейное напряжение будет в \ (\ sqrt {3} \) раз больше, или примерно 208 вольт.

Для генератора, соединенного треугольником, то же самое верно для фазных и линейных токов, с доказательством, оставленным в качестве упражнения. То есть

\ [\ text {Линейный ток для генератора, соединенного треугольником, равен} \ sqrt {3} \ text {умноженному на его фазный ток.} \ Label {9.2} \]

Те же самые отношения справедливы как для нагрузок, так и для источников, e.g., ток в ветви нагрузки, подключенной по схеме Y, будет таким же, как и линейный ток, а его фазовое напряжение будет в \ (\ sqrt {3} \) раз меньше, чем линейное напряжение.

\ [\ text {В итоге: для конфигураций треугольником (генератор или нагрузка) фазное напряжение равно линейному напряжению, а линейный ток больше фазного тока на} \ sqrt {3} \ text {. Для конфигураций Y фазный ток равен линейному току, а линейное напряжение} \ sqrt {3} \ text {больше, чем фазное напряжение.} \ nonumber \]

Для однородных систем, поскольку генератор и нагрузка используют одну и ту же конфигурацию, фазные напряжения и токи нагрузки должны быть идентичны таковым у генератора. Полезное средство запоминания состоит в том, что мощность, рассеиваемая в системе, должна равняться генерируемой мощности.

Пример \ (\ PageIndex {1} \)

Генератор с трехфазным соединением треугольником питает нагрузку с трехфазным соединением треугольником, как в системе, показанной на рисунке \ (\ PageIndex {1} \). Предположим, что фазное напряжение генератора составляет 120 В переменного тока (среднеквадратичное значение).Груз состоит из трех одинаковых ножек по 50 \ (\ Omega \) каждая. Определите линейное напряжение, напряжение фазы нагрузки, ток фазы генератора, линейный ток, ток фазы нагрузки и общую мощность, подаваемую на нагрузку.

Поскольку это однородная система (треугольник-треугольник), напряжение и ток фазы нагрузки такие же, как у генератора. Следовательно, напряжение фазы нагрузки также должно быть 120 вольт. Во-вторых, в конфигурации треугольником линейное напряжение равно фазному напряжению, снова 120 вольт.Ток фазы нагрузки определяется по закону Ома и будет среднеквадратичным значением, так как напряжение равно среднеквадратичному значению:

.

\ [i_ {phase} = \ frac {v_ {phase}} {Z_ {load}} \ nonumber \]

\ [i_ {phase} = \ frac {120 V} {50 \ Omega} \ nonumber \]

\ [i_ {phase} = 2,4 A \ nonumber \]

Фазный ток генератора должен быть одинаковым, поскольку генератор и нагрузка имеют одинаковую конфигурацию. Для дельта-конфигураций линейный ток в \ (\ sqrt {3} \) раз больше, чем фазный ток, таким образом,

\ [i_ {line} = \ sqrt {3} \ times i_ {phase} \ nonumber \]

\ [i_ {line} = \ sqrt {3} \ times 2.2 \ раз 50 \ Омега \ nonumber \]

\ [P_ {total} = 864 Вт \ nonumber \]

Это эквивалентно примерно 1,2 л.с. Мы также могли бы вычислить фазную мощность нагрузки, используя квадрат фазного напряжения, деленный на сопротивление нагрузки, или умножая фазное напряжение на фазный ток. Поскольку это чисто резистивная нагрузка, здесь нет фазового угла и, следовательно, нет коэффициента мощности, о котором нужно было бы беспокоиться.

Пример \ (\ PageIndex {2} \)

Трехфазный генератор с Y-подключением питает трехфазную нагрузку с Y-подключением, аналогично системе, показанной на рисунке \ (\ PageIndex {2} \).Предположим, что фазное напряжение генератора составляет 220 В переменного тока (среднеквадратичное значение). Груз состоит из трех одинаковых ножек по 100 \ (\ Omega \) каждая. Определите линейное напряжение, напряжение фазы нагрузки, ток фазы генератора, линейный ток, ток фазы нагрузки и общую мощность, подаваемую на нагрузку.

Это однородная (Y-Y) система, поэтому напряжение и ток фазы нагрузки такие же, как у генератора. Следовательно, напряжение фазы нагрузки должно быть 220 вольт. В конфигурации Y линейное напряжение равно фазному напряжению, умноженному на \ (\ sqrt {3} \).

\ [v_ {строка} = \ sqrt {3} \ times v_ {фаза} \ nonumber \]

\ [v_ {line} = \ sqrt {3} \ times 220V \ nonumber \]

\ [v_ {line} \ приблизительно 381 V \ nonumber \]

Ток фазы нагрузки определяется по закону Ома и будет среднеквадратичным значением, поскольку напряжение является среднеквадратичным. Это то же самое, что и фазный ток генератора, и линейный ток.

\ [i_ {phase} = \ frac {v_ {phase}} {Z_ {load}} \ nonumber \]

\ [i_ {phase} = \ frac {220 V} {100 \ Omega} \ nonumber \]

\ [i_ {phase} = 2.2A \ nonumber \]

Полная мощность может быть найдена с использованием основного закона мощности, поскольку нагрузка является чисто резистивной, и у нас есть среднеквадратичные значения. В этом случае мы будем использовать текущее умножение на напряжение для изменения темпа.

\ [P_ {total} = 3 \ times i_ {фаза} \ times v_ {фаза} \ nonumber \]

\ [P_ {total} = 3 \ times 2.2 A \ times 220 V \ nonumber \]

\ [P_ {total} = 1452 Вт \ nonumber \]

Это всего-навсего 2 ХП. Опять же, это чисто резистивная нагрузка и фазовый угол отсутствует.Таким образом, коэффициент мощности равен единице, причем действительная и кажущаяся мощности одинаковы.

Пример \ (\ PageIndex {3} \)

Для системы, показанной на рисунке \ (\ PageIndex {5} \), определите общую полную и активную мощность, подаваемую на нагрузку. Также найдите напряжение в сети. Фазное напряжение источника составляет 240 вольт (среднеквадратичное значение) при 60 Гц.

Рисунок \ (\ PageIndex {5} \): Схема для примера \ (\ PageIndex {3} \).

Учитывая тот факт, что все три опоры груза находятся вместе в одной общей точке (земле), это должна быть система Y-Y.Следовательно, мы знаем, что линейное напряжение должно быть в \ (\ sqrt {3} \) раз больше фазного напряжения генератора.

\ [v_ {строка} = \ sqrt {3} \ times v_ {фаза} \ nonumber \]

\ [v_ {line} = \ sqrt {3} \ times 240 В \ nonumber \]

\ [v_ {line} \ приблизительно 416 В RMS \ nonumber \]

Это однородная система (Y-Y), поэтому мы также знаем, что напряжение нагрузки равно напряжению генератора или 240 вольт RMS. Отсюда мы можем найти ток нагрузки (линейный ток должен быть того же значения, потому что это нагрузка, подключенная по схеме Y).2 \ times R_ {load} \ nonumber \]

\ [P = 3 \ times 4.8A 2 \ times 40 \ Omega \ nonumber \]

\ [P = 2765W \ nonumber \]

Компьютерное моделирование

Схема примера \ (\ PageIndex {3} \) достойна моделирования. Первое, что нужно сделать, это определить подходящее значение индуктивности для достижения реактивного сопротивления \ (j40 \ Omega \). Учитывая частоту источника 60 Гц, получается примерно 80 мГн. Схема построена, как показано на рисунке \ (\ PageIndex {6} \).Среднеквадратичное фазовое напряжение источника 240 вольт эквивалентно пиковому напряжению приблизительно 340 вольт. Положения катушки индуктивности и резистора в каждой ножке поменялись местами по причине, которая вскоре станет очевидной.

Рисунок \ (\ PageIndex {6} \): Эквивалентная система рисунка \ (\ PageIndex {5} \) в симуляторе.

Непосредственный интерес представляет проверка временных сдвигов и амплитуд фазных напряжений. Они соответствуют узлам 1, 2 и 3. В этой конфигурации напряжение фазы нагрузки равно напряжению фазы генератора, поэтому они должны быть пиковыми 340 вольт и разделены на 120 градусов или 1/3 цикла.

Выполняется анализ переходных процессов, вычерчивая интересующие узловые напряжения. Результат показан на рисунке \ (\ PageIndex {7} \). Напряжения в точности такие, как ожидалось, и график отлично согласуется с теоретическим графиком на рис. 9.2.4.

Рисунок \ (\ PageIndex {7} \): три напряжения нагрузки, смоделированные из рисунка \ (\ PageIndex {6} \).

Теперь проверяем сетевое напряжение. Было рассчитано, что это среднеквадратичное значение 416 вольт, или примерно 588 вольт пикового значения. Постпроцессор используется для отображения результата: напряжение узла 1 минус напряжение узла 2.Это показано на рисунке \ (\ PageIndex {8} \). Опять же, результаты такие, как ожидалось, с пиком чуть ниже 600 вольт.

Наконец, мы исследуем истинную мощность нагрузки. Возможно, самый простой способ сделать это — определить напряжение на резистивной части нагрузки. Из предыдущих работ мы знаем, что истинная мощность связана только с сопротивлением, а не с реактивным сопротивлением. Таким образом, все, что нам нужно сделать, это измерить пиковое напряжение на резисторе. Отсюда мы находим его эквивалент RMS, возводим его в квадрат и делим на номинал резистора.Это дает нам истинную мощность нагрузки на одну ногу. Для общей мощности просто утроим результат. Получить напряжение на резисторе легко, если резистор заземлен. В этом случае это просто напряжение на узле, к которому подключен резистор. Вот почему позиции индуктора и резистора были поменяны местами при моделировании. Поскольку они включены последовательно, это не имеет никакого значения для общего импеданса нагрузки, однако новая схема позволяет нам получать напряжение резистора напрямую, вместо того, чтобы полагаться на дифференциальное напряжение, полученное через постпроцессор.

Выполняется еще один анализ переходных процессов, на этот раз строится график напряжения на одном из нагрузочных резисторов; а именно узел 4. Результат показан на рисунке \ (\ PageIndex {9} \). Пик этой формы волны составляет 271,5 вольт, или около 192 вольт (среднеквадратичное значение). Если возвести это в квадрат и разделить на 40 \ (\ Omega \), получим чуть более 921 Вт на каждую ногу, в общей сложности около 2765 Вт, как и ожидалось.

Рисунок \ (\ PageIndex {8} \): одно из линейных напряжений, смоделированное из рисунка \ (\ PageIndex {6} \).

Рисунок \ (\ PageIndex {9} \): Смоделированное напряжение на одном из нагрузочных резисторов на рисунке \ (\ PageIndex {6} \).

Гетерогенные системы

Системы, настроенные как дельта-Y и Y-дельта, кажутся немного более сложными, чем однородные системы. Мы будем называть их гетерогенными системами, так как структуры генератора и нагрузки противоположного типа. Примеры показаны на рисунках \ (\ PageIndex {10} \) и \ (\ PageIndex {11} \) соответственно.

Рисунок \ (\ PageIndex {10} \): генератор, подключенный по схеме треугольник, с нагрузкой, подключенной по схеме Y (треугольник-Y).

Рисунок \ (\ PageIndex {11} \): Генератор с соединением по схеме Y и нагрузкой, соединенной треугольником (Ydelta).

Эти системы вовсе не так сложны, как думают некоторые; все, что вам нужно сделать, это запомнить операторы \ ref {9.1} и \ ref {9.2}. Действительно, здесь стоит повторить суммирование:

\ text {Для конфигураций треугольника (генератор или нагрузка) фазное напряжение равно линейному напряжению, а линейный ток больше фазного тока на} \ sqrt {3} \ text {.Для конфигураций Y фазный ток равен линейному току, а линейное напряжение} \ sqrt {3} \ text {больше, чем фазное напряжение.} \ Nonumber \]

Вы можете рассматривать эти системы как двухэтапный процесс. Сначала определите линейное напряжение и ток от генератора или нагрузки; и во-вторых, переход от линии к другой стороне (нагрузке или генератору). Если возникнет путаница, помните, что генерируемая мощность должна равняться мощности рассеиваемой или доставленной.

На рисунке \ (\ PageIndex {10} \) линейное напряжение равно фазному напряжению генератора.Нагрузка подключена по схеме Y, поэтому на каждой ветви напряжение линии делится на \ (\ sqrt {3} \). Исходя из этого, можно вычислить каждое плечо тока нагрузки. Обратите внимание, что линейный ток равен току нагрузки. Фазный ток генератора равен линейному току, деленному на \ (\ sqrt {3} \).

На рисунке \ (\ PageIndex {11} \) линейное напряжение равно \ (\ sqrt {3} \), умноженному на фазное напряжение генератора. Нагрузка подключена по схеме треугольника, поэтому на каждой ножке отображается линейное напряжение. Зная это, можно вычислить каждое плечо тока нагрузки.{\ circ} \) \ (\ Omega \), определите ток фазы генератора, линейное напряжение, напряжение фазы нагрузки, ток фазы нагрузки и общую мощность, подаваемую на нагрузку.

Генератор подключен по схеме треугольника, поэтому линейное напряжение равно фазному напряжению генератора, или 230 вольт. Нагрузка, подключенная по схеме Y, будет видеть фазное напряжение, уменьшенное в \ (\ sqrt {3} \) раз.

\ [v_ {load} = \ frac {v_ {line}} {\ sqrt {3}} \ nonumber \]

\ [v_ {load} = \ frac {230 В} {\ sqrt {3}} \ nonumber \]

\ [v_ {load} \ около 132.{\ circ} \ Omega} \ nonumber \]

\ [i_ {load} \ приблизительно 0,664 A RMS \ nonumber \]

При Y-соединении линейный ток должен быть таким же, как ток фазы нагрузки, или 0,664 ампера. Для соединений треугольником линейный ток в \ (\ sqrt {3} \) раз больше, чем фазный ток, поэтому фазный ток генератора должен быть в \ (\ sqrt {3} \) раз меньше.

\ [i_ {gen} = \ frac {i_ {line}} {\ sqrt {3}} \ nonumber \]

\ [i_ {gen} = \ frac {0.664A} {\ sqrt {3}} \ nonumber \]

\ [i_ {gen} \ около 0.2 \ times 200 \ Omega \ nonumber \]

\ [P_ {total} = 264 Вт \ nonumber \]

В качестве перекрестной проверки вырабатываемая мощность составляет:

\ [P_ {total} = 3 \ times i_ {gen} \ times v_ {gen} \ nonumber \]

\ [P_ {total} = 3 \ times 0,383A \ times 230 V \ nonumber \]

\ [P_ {total} = 264 Вт \ nonumber \]

Выработанная мощность равна рассеиваемой мощности.

Пример \ (\ PageIndex {5} \)

Система Y-треугольник, подобная показанной на рисунке \ (\ PageIndex {11} \), имеет фазное напряжение генератора 100 В (среднеквадратичное значение) при 60 Гц.Если нагрузка имеет величину 50 \ (\ Omega \) с запаздывающим коэффициентом мощности 0,8, определите ток фазы генератора, линейное напряжение, напряжение фазы нагрузки, ток фазы нагрузки и общую истинную мощность, подаваемую на нагрузку. .

Генератор, соединенный по схеме Y, создает линейное напряжение, равное фазному напряжению генератора, умноженному на \ (\ sqrt {3} \). Это также напряжение фазы нагрузки, поскольку оно соединено треугольником.

\ [v_ {строка} = \ sqrt {3} \ times v_ {фаза} \ nonumber \]

\ [v_ {line} = \ sqrt {3} \ times 100 V \ nonumber \]

\ [v_ {line} \ около 173.2В RMS \ nonumber \]

Нагрузка, подключенная по схеме треугольника, будет видеть фазное напряжение, такое же, как линейное напряжение, или 173,2 вольт. Отсюда мы можем определить ток нагрузки.

\ [i_ {load} = \ frac {v_ {phase}} {Z_ {load}} \ nonumber \]

\ [i_ {load} = \ frac {173.2V} {50 \ Omega} \ nonumber \]

\ [i_ {load} \ приблизительно 3,464A RMS \ nonumber \]

Поскольку нагрузка подключена по схеме треугольника, линейный ток равен времени тока нагрузки \ (\ sqrt {3} \). Фазный ток генератора будет таким же, как и линейный ток.2 \ times 40 \ Omega \ nonumber \]

\ [P_ {total} = 1440 Вт \ nonumber \]

Мы также можем найти полную мощность и использовать коэффициент мощности.

\ [P_ {total} = 3 \ times v_ {load} \ times i_ {load} PF \ nonumber \]

\ [P_ {total} = 3 \ умножить на 173,2 В \ умножить на 3,464 А \ умножить на 0,8 \ nonumber \]

\ [P_ {total} = 1440 Вт \ nonumber \]

Для перекрестной проверки сравните рассеиваемую мощность с генерируемой.

\ [P_ {total} = 3 \ times v_ {gen} \ times i_ {gen} \ times PF \ nonumber \]

\ [P_ {total} = 3 \ умножить на 100В \ умножить на 6А \ умножить на 0.8 \ nonumber \]

\ [P_ {total} = 1440 Вт \ nonumber \]

Понимание основ расчетов дельта-трансформаторов

Благодарим вас за посещение одной из наших самых популярных классических статей. Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей
Transformer Calculations .

Такие названия конфигураций трансформатора, как «треугольник» и «звезда», происходят от способа соединения обмоток внутри трансформатора.Эти соединения определяют поведение трансформатора, а также определяют методы расчета, необходимые для правильного применения данного трансформатора.

Трансформаторы, соединенные треугольником, имеют обмотки трех однофазных трансформаторов, соединенных последовательно друг с другом, чтобы сформировать замкнутую цепь. Линейные провода подключаются к блоку, где встречаются два однофазных трансформатора. Эта конфигурация получила свое название, потому что на электрическом чертеже она выглядит как треугольник (греческий символ Δ для буквы «дельта»).Многие называют это системой с высокой ветвью, потому что напряжение между линией 2 и землей выше, чем на других ветвях. Например, трансформатор дельта 120 В будет иметь ножку 208 В.

Рис. 1. Важно отметить, что линейный ток от дельта-трансформатора не равен фазному току. В этом примере линейный ток составляет 87 А, а фазный ток — 50 А.

Токовый трансформатор треугольника. В трансформаторе «треугольник» линейный ток не равен фазному току (как в трансформаторе «звезда»).Поскольку каждая линия трансформатора с конфигурацией треугольником подключена к двум фазам трансформатора, линейный ток от трехфазной нагрузки будет больше, чем фазный ток, на квадратный корень из 3. Обратите внимание на следующие формулы:

I Строка = I Фаза × √3

I Строка = VA Строка ÷ (E Строка × √3)

I Фаза = I Линия ÷ √3

I Фаза = VA Фаза ÷ E Фаза

Инжир.2. Вы можете использовать ту же формулу, чтобы найти как первичный, так и вторичный линейный ток.

Если вы вставите несколько цифр, вы сможете более четко увидеть влияние конфигурации треугольника на токи. Давайте попробуем это с трехфазной нагрузкой 240 В, 36 кВА ( Рис. 1 выше).

Сначала давайте решим линейный ток (общая мощность сети = 36 кВА).

I Строка = VA Строка ÷ (E Строка × √3)

I Строка = 36000 ВА ÷ (240 В × √3)

I Строка = 87A

Теперь давайте решим фазный ток (фазная мощность = 12 кВА на обмотку).

I Фаза = VA Фаза ÷ E Фаза

I Фаза = 12000 ВА ÷ 240 В = 50 А

Вы также можете найти линейный и фазный токи, используя две другие формулы, показанные выше.

I Строка = I Фаза × √3

I Линия = 50A × 1,732 = 87A

I Фаза = I Линия ÷ √3

I Фаза = 87A ÷ 1,732 = 50A

Мы также можем использовать формулу: I Строка = VA Строка ÷ (E Строка × √3).Например, каков ток вторичной обмотки для трехфазного дельта-трансформатора от 480 В до 240/120 В, 150 кВА (, рис. 2 )? Ответ найден следующим образом:

I Строка = VA Строка ÷ (E Строка × √3)

I Строка = 150,000 ВА ÷ (240 В × 1,732) = 360 A

Рис. 3. При вычислении фазного тока не забудьте разделить общую мощность трансформатора в кВА на 3.

Вы можете рассчитать фазный ток обмотки трансформатора, соединенного треугольником, разделив фазу VA на фазное напряжение: I Phase = VA Phase ÷ E Phase .Фазная нагрузка в ВА трехфазной нагрузки 240 В — это линейная нагрузка, деленная на три (одна треть нагрузки на каждую обмотку). Фазная нагрузка в ВА однофазной нагрузки 240 В — это линейная нагрузка (все на одной обмотке). Фазная нагрузка в ВА однофазной нагрузки 120 В — это линейная нагрузка (все на одной обмотке).

Давайте посмотрим на другой пример проблемы. Каков ток вторичной фазы для трехфазного дельта-трансформатора от 480 В до 240/120 В, 150 кВА ( Рис. 3 выше)?

Фазная мощность = 150,000 ВА ÷ 3 на фазу

Фазная мощность = 50 000 ВА на фазу

I Фаза = 50,000 ВА ÷ 240 В

I Фаза = 208A

Чтобы лучше понять, что происходит в дельта-системе, попробуйте запустить эти числа с нагрузкой 10 А, а затем с нагрузкой 75 А.

Рис. 4. На этой схеме показана балансировка трансформатора. Для простоты максимальная токовая защита для этих цепей не показана.

Балансировка трансформатора треугольником. Для правильного выбора трансформатора треугольник / треугольник фазы (обмотки) трансформатора должны быть сбалансированы. Вы можете сделать это в два этапа:

Шаг 1 . Определите номинальную мощность в ВА всех нагрузок.

Шаг 2 . Разбалансируйте нагрузки на обмотках трансформатора следующим образом:

  • Трехфазные нагрузки: одна треть нагрузки на каждой из фаз.

  • Однофазная нагрузка 240 В: 100% нагрузки на фазе A или B. Вы можете поместить часть однофазной нагрузки 240 В на фазу C, когда это необходимо для баланса.

  • Нагрузки 120 В: 100% нагрузки на C1 или C2.

Для определения размеров щитка и его проводов необходимо уравновесить нагрузки в амперах. Зачем балансировать панель в амперах? Почему бы не взять ВА по фазе и не разделить на фазное напряжение? Поскольку линейный ток трехфазной нагрузки рассчитывается по следующей формуле:

I Строка = VA ÷ (E Строка × √3)

I Строка = 150,000 ВА ÷ (240 В × 1.732) = 208 А на строку.

Если вы возьмете мощность линии 50 000 ВА и разделите ее на одно линейное напряжение 120 В, вы получите неверный линейный ток 50 000 ВА ÷ 120 В = 417 А.

Расчет трансформатора треугольником. Рассмотрите этот метод в следующий раз, когда вы будете определять параметры трансформаторов, подключенных по схеме треугольника, где большинство нагрузок являются линейными. После того, как вы сбалансируете трансформатор, подберите его к нагрузке каждой фазы. Измерьте трансформатор «C», используя в два раза большее значение из «C1» или «C2».Трансформатор «C» на самом деле представляет собой единый блок. Если одна сторона имеет большую нагрузку, эта сторона определяет размер трансформатора.

Обратитесь к этой разбивке нагрузки по фазам для решения практической задачи ниже.

Давайте попробуем еще одну практическую задачу, чтобы закрепить эти концепции. Какой типоразмер трансформатора от 480 В до 240/120 В требуется для следующих нагрузок: одна трехфазная тепловая пластина 240 В, 36 кВА; две трехфазные нагрузки 240 В, 10 кВА; три нагрузки 120 В, 3 кВА, однофазные ( Рис. 4 )?

(а) три однофазных трансформатора по 25 кВА

(b) один трехфазный трансформатор 75 кВА

(c) a или b

(d) ничего из вышеперечисленного

Фазная обмотка A = 22кВА

Фазная обмотка B = 22кВА

Фазная обмотка C = (12 кВА C1 × 2) = 24 кВА

Ответ: (c), a или b.Для этой нагрузки можно использовать один однофазный трансформатор 75 кВА или три трансформатора по 25 кВА.

Теперь, когда вы понимаете некоторые основы расчета трансформатора и особенности расчетов дельта-трансформатора, вы сможете правильно рассчитать дельта-трансформаторы, когда большинство нагрузок являются линейными. Трансформаторы дельта-дельта чаще всего встречаются в специальных приложениях. Наиболее распространенная конфигурация — треугольник-звезда. В случае трансформатора, соединенного треугольником, теперь вы знаете, как выбрать размер первичной обмотки.После выхода статьи в следующем месяце, в которой будут рассмотрены расчеты трансформатора со звездой, вы сможете определить размер любой комбинации трансформаторов с треугольником и звездой.

Боковая панель: знайте свои термины

Чтобы избежать путаницы с расчетами трансформатора, важно иметь твердое представление о некоторых основных концепциях ( Рис. 5 ниже). Как только вы освоите эти термины, вы должны быть готовы взяться за все типы расчетов трансформатора.

Рис. 5. Знание параметров трансформатора является ключом к правильным расчетам.

Линия — Незаземленный (токоведущий) провод (и).

Линейный ток — Ток на незаземленных проводниках (B1 и B2 в рис. 6 ). В системе треугольника линейный ток больше фазного тока на квадратный корень из 3, что составляет примерно 1,732). В звездообразной системе линейный ток равен фазному току.

Линейное напряжение — Напряжение между любыми двумя линейными (незаземленными) проводниками (A1 и A2 в рис. 6 ).В схеме треугольника линейное напряжение равно фазному напряжению. Но у дельта-системы есть и высокая ножка.

Рис. 6. Основные показания напряжения и тока в системе треугольник / треугольник.

Фазный ток — Ток, протекающий через обмотку трансформатора (D1 и D2 в рис. 6 ). В треугольной системе фазный ток меньше линейного тока на квадратный корень из 3. В звездообразной системе фазный ток равен линейному току.

Фазная нагрузка — Нагрузка на обмотке трансформатора.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *