+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Фаза I

Основной вид исследований — фармакологические исследования у человека

В первой фазе исследуемое вещество впервые применяется у людей, при этом проводят оценку:

Обычно исследования I фазы проводятся с участием небольшого числа (до 100 человек в течение всей I фазы) здоровых добровольцев, однако при испытании противоопухолевых препаратов, обладающих значительной потенциальной токсичностью, исследования проводятся с участием пациентов со злокачественными опухолями в специализированных учреждениях.

Чаще всего исследования I фазы одноцентровые, они могут быть открытыми, контролируемыми по исходным точкам, или могут иметь рандомизацию и ослепление с целью улучшения точности наблюдения. Длительность проведения исследований в фазе I в среднем составляет от 6 месяцев до одного года.

Регулярно проводится мониторинг состояния здорвья испытуемых, обычно они находятся под круглосуточным наблюдением. От тщательности выполнения исследований I фазы будет зависеть дальнейшая судьба препарата и результативность клинических исследований.

Основная цель исследований I фазы — оценить потенциал исследуемого вещества, так как в связи с плохой переносимостью и абсорбцией почти 1/3 кандидатов отсеивается на этом этапе. Далее надо установить дозы, которые будут использоваться у пациентов во время II фазы клинических исследований.

Оценка безопасности и переносимости препарата

В соответствии с гармонизированными международными требованиями при оценке безопасности и переносимости нового препарата рассчитывают верхний предел начальной дозы — максимальную рекомендованную начальную дозы (МРНД). Для этого используют несколько подходов:

  • По дозам, полученным в ходе доклинических токсикологических исследований, высчитывают эквивалентную дозу человека. Этот способ используют для пересчета доз цитостатиков и других цитотоксических агентов.
  • По дозам соединений с аналогичным механизмом действия или того же химического класса, что и исследуемый препарат, для которых уже имеются клинические данные.
  • По дозам, полученным в результате фармакокинетических исследований, в которых учитывается системное воздействие препарата.
  • По дозам, рассчитанным путем критического сравнения результатов двух или более методов оценки начальной дозы.
Анализ фармакокинетического профиля препарата

Предварительный анализ фармакокинетических показателей нового препарата, таких как всасывание, биодоступность, биоэквивалентность (для дженериков), распределение, метаболизм и выведение — важная цель фазы I.

Фармакокинетические испытания могут проводиться как в виде самостоятельных исследований, так и в рамках исследований эффективности, безопасности и переносимости. Фармакокинетические исследования могут подолжаться в течение всех фаз клинических исследований, но, как правило, независимо от того, на каком этапе их проводят, они относятся к исследованиям фазы I. Например, лекарственное взаимодействие обычно изучают в поздних фазах. Для выполнения фармакокинетических исследований на поздних фазах необходимо включать в клинические исследования субпопуляции пациентов с замедленной элиминацией (почечная или печеночная недостаточность), а также пожилых, детей и этнические группы.

Фармакокинетические исследования особенно важны для оценки очищенности лекарственного вещества и возможного накопления исходного лекарственного средства и/или метаболитов, а также при оценке потенциальных межлекарственных взаимодействий. Для многих перорально применяемых лекарств важно оценить влияние пищи на биодоступность.

Анализ фармакодинамических эффектов

В зависимости от лекарственного средства и конечных точек исследования, фармакодинамические исследования и исследования связи уровня концентрации лекарственных средств в крови с эффектом (ФК/ФД исследования) могут проводиться на здоровых добровольцах или пациентах с определенным заболеванием. На пациентах, если это является измеряемым, фармакодинамические данные могут обеспечивать раннюю оценку активности и потенциальной эффективности, а также способствовать планированию дозировок и режимов дозирования в поздних исследованиях.

Предварительная оценка активности препарата

Предварительные исследования активности или потенциальной терапевтической пользы могут проводиться в фазе I и рассматриваться как вторичная цель. Такие исследования обычно характерны для поздних фаз, но могут быть выполнены в фазе I для лекарственных средств с короткой продолжительностью действия и, когда их активность может быть измерена.

Последние новости

Ближайшие мероприятия

IV Национальный конгресс по регенеративной медицине

20-23 но­яб­ря 2019 го­да в Москве прой­дет IV На­цио­наль­ный Кон­гресс по Ре­ге­не­ра­тив­ной Ме­ди­цине. Ос­нов­ные те­мы: фун­да­мен­таль­ные ос­но­вы ре­ге­не­ра­тив­ной ме­ди­ци­ны; ген­ная и кле­точ­ная те­ра­пия; тка­не­вая ин­же­не­рия и ис­кус­ствен­ные ор­га­ны; транс­ля­ци­он­ные ис­сле­до­ва­ния в ре­ге­не­ра­тив­ной…

Все мероприятия


www.bionco.ru

G1-фаза — Википедия

G1-фа́за (от англ. Gap 1 phase) — первая из четырёх фаз клеточного цикла эукариотических клеток. На этом этапе интерфазы клетка увеличивается в размерах и синтезирует мРНК и белки, готовясь к последующему после интерфазы митозу. G1-фаза завершается с началом S-фазы интерфазы.

Общая характеристика

G1-фаза вместе с S-фазой и G

2-фазой составляет длинный период роста клетки — интерфазу, которая предшествует клеточному делению — митозу (М-фаза)[1].

В течение G1-фазы клетка увеличивается в размерах и синтезирует мРНК и белки, необходимые для синтеза ДНК. Когда клетка достигает необходимых размеров, а необходимые белки уже синтезированы, клетка вступает в следующую фазу клеточного цикла — S-фазу. Продолжительность каждой фазы, в том числе и G1-фазы, отличается в разных типах клеток. В соматических клетках человека клеточный цикл длится около 18 часов, и на G1-фазу приходится около трети этого времени[2]. Однако у зародышей шпорцевой лягушки (Xenopus), морских ежей (Echinoidea) и дрозофилы (Drosophila) G1-фаза слабо выражена и представляет промежуток, если и он есть, между окончанием митоза и S-фазой[2].

G

1-фаза и другие фазы клеточного цикла могут зависеть от факторов роста, таких как питательные вещества, температура и пространства для роста. Для синтеза мРНК и белков должно присутствовать достаточное количество аминокислот. Для роста клеток оптимальны физиологические температуры. У человека нормальная физиологическая температура составляет около 36,5 °C (под мышкой)[1].

G1-фаза особенно важна для клеточного цикла, потому что в этот период клетка определяет, будет ли она делиться или покинет клеточный цикл[2]. Если клетка остаётся неделящейся вместо перехода в S-фазу, она покидает G1-фазу и переходит в состояние покоя, называемое G0-фазой. Вновь вернуться в G1-фазу из G0-фазы сложно, но возможно[1].

На протяжении G1-фазы клетка остаётся диплоидной (2n). Это означает, что клетка содержит двойной набор хромосом, специфических для данного вида, а ДНК ещё не была реплицирована перед клеточным делением. Генетический материал находится в виде хроматина или слабо спирализованных цепей ДНК. Гаплоидные эукариотические организмы, например, некоторые дрожжи, имеют только один набор хромосом (

1n). В течение G1-фазы клетка ещё только готовится к репликации ДНК, и её генетический материал ещё не копирован (это происходит в S-фазе)[1].

Видео по теме

Регуляция G1-фазы

В клеточном цикле существует чёткий набор инструкций, известный как контрольная система клеточного цикла, которая контролирует продолжительность и координацию фаз клеточного цикла, чтобы обеспечить правильный порядок их протекания. Биохимические пусковые устройства, известные как циклин-зависимые киназы, запускают этапы клеточного типа в нужное время и обеспечивают правильный порядок, чтобы предотвратить ошибки

[2].

В клеточном цикле есть три контрольные точки: G1/S-контрольная точка (переход из G1-фазы в S-фазу) или стартовая точка у дрожжей, G2/M-контрольная точка и точка веретена[1].

Биохимические регуляторы G1-фазы

В течение G1-фазы активность G1/S-циклинов значительно повышается к концу G1-фазы. Эти циклины инициируют некоторые ранние процессы, связанные с клеточным делением, как, например, удвоение центросом у позвоночных, формирование веретена у дрожжей, однако по большей части они ответственны за активацию комплексов S-циклинов[2].

Комплексы циклинов, активных в другие фазы клеточного цикла, находятся в эту фазу в неактивном состоянии, чтобы соответствующие клеточные процессы не проходили в неправильном порядке. В G

1-фазе существует три способа подавления активности циклинзависимых киназ: гены-ингибиторы при помощи регуляторных белков подавляют трансляцию главных циклиновых генов; активируется комплекс стимуляции анафазы, который направленно подавляет S- и M-циклины (но не G1/S-циклинов) и, наконец, высокая концентрация ингибиторов циклинзависимых киназ[2].

Точка рестрикции

В G1-фазе точка рестрикции (R) отличается от остальных контрольных точек, поскольку она не определяет специальное состояние клетки, идеальное для перехода в следующую фазу, а меняет дальнейшее направление жизни клетки. У позвоночных после того, как клетка пробыла в G1-фазе около трёх часов, она вступает в точку рестрикции, где клетка решает, пойдёт ли она дальше по клеточному циклу или же перейдёт в стадию покоя — G

0-фазу[3].

Эта точка также разделяет G1-фазу на две половины: премитотическую и постмитотическую. Между началом G1-фазы (которая начинается в новой клетке после митоза) и R клетка находится в G1-постмитотической подфазе или постмитотической фазе. После R и перед S-фазой клетку называют находящейся в G1-пресинтетической подфазе или пресинтетической фазе G1-фазы[4].

Чтобы клетка прошла через G1-постмитотическую фазу, необходимо высокое содержание факторов роста и стабильный уровень синтеза белков, иначе клетка перейдёт в G0-фазу[4].

Некоторые авторы утверждают, что точка рестрикции и G1/S-точка есть одно и то же[1][2], но в более новых работах выяснилось, что это — две различные точки G

1-фазы, в которых отмечается прогресс клетки. Первая, точка рестрикции, зависит от факторов роста и определяет, уходить ли клетке в G0-фазу, в то время как вторая контрольная точка зависит от питательных веществ и определяет, уходить ли клетке в S-фазу[3][4]. Некоторые разногласия между исследователями приписывают тому, что одни из них изучали клетки млекопитающих, а другие — дрожжей[3].

G1/S-контрольная точка

G1/S-контрольная точка находится между началом G1-фазы и S-фазы, в которой определяется переход клетки в S-фазу. Факторами, из-за которых клетка может не вступить в S-фазу, могут быть недостаток факторов роста, повреждения ДНК и другие особые обстоятельства.

В этой точке образование комплексом G1/S-циклинов и циклинзависимых киназ (ЦЗК) подводит клетку к вступлению в новый цикл деления. Потом эти комплексы активируют S-ЦЗК комплексы, которые подводят клетку к репликации ДНК в S-фазе. Одновременно с этим активность комплекса стимуляции анафазы значительно уменьшается, что позволяет активироваться S- и М-циклинам.

Если клетка не может перейти в S-фазу, она вступает в покоящуюся G0-фазу, где нет ни клеточного роста, ни деления[1].

G1-фаза и рак

Во многих источниках подтверждается, что нарушения в G1-фазе и G1/S-контрольной точке приводят к неконтролируемому росту опухолей. В случаях, когда нарушения затрагивают G1-фазу, это происходит главным образом потому, что гены, кодирующие регуляторные белки, семейства E2F приобретают неограниченную активность и увеличивают экспрессию генов G1/S-циклинов, в результате чего клетка неконтролируемо вновь и вновь вступает в клеточный цикл[2].

Однако лекарства против некоторых форм рака также действуют на G1-фазу клеточного цикла. При многих видах рака, в том числе рака молочной железы[5] и рака кожи[6], можно предотвратить разрастание опухоли, не давая опухолевым клеткам вступать в G1-фазу, предотвращая деление и распространение клеток.

Примечания

  1. 1 2 3 4 5 6 7 Lodish, Harvey, et al. Molecular Cell Biology. 6th. New York City: W.H. Freeman and Company, 2008. Print.
  2. 1 2 3 4 5 6 7 8 Morgan, David. The Cell Cycle: Principals of Control. London: New Science Press LTD, 2007. Print.
  3. 1 2 3 Foster, David A., Paige Yellen, et al. «Genes Cancer.»Genes Cancer. 1.11 (2010): 1124—1131. Web. 19 Nov. 2012. doi=10.1177/1947601910392989.
  4. 1 2 3 Zetterberg, A., O. Larrsen, and K.G. Wilman. «Current Opinion in Cellular Biology.» Current Opinion in Cellular Biology. 7.6 (1995): 835-42. Print.
  5. Wali, Vikram B.; Bachawal, Sunitha V., Sylvester, Paul W. (June 2009). «Combined Treatment of γ-Tocotrienol with Statins Induce Mammary Tumor Cell Cycle Arrest in G1». Experimental Biology and Medicine 234 (6): 639–650. DOI:10.3181/0810-RM-300.
  6. Ye, Yan; et alia (June 2011). «Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells». Journal of Ethnopharmacology 136 (1): 279–282. DOI:10.1016/j.jep.2011.04.020.

wiki2.red

G1-фаза — Википедия

G1-фа́за (от англ. Gap 1 phase) — первая из четырёх фаз клеточного цикла эукариотических клеток. На этом этапе интерфазы клетка увеличивается в размерах и синтезирует мРНК и белки, готовясь к последующему после интерфазы митозу. G1-фаза завершается с началом S-фазы интерфазы.

Общая характеристика

G1-фаза вместе с S-фазой и G2-фазой составляет длинный период роста клетки — интерфазу, которая предшествует клеточному делению — митозу (М-фаза)[1].

В течение G1-фазы клетка увеличивается в размерах и синтезирует мРНК и белки, необходимые для синтеза ДНК. Когда клетка достигает необходимых размеров, а необходимые белки уже синтезированы, клетка вступает в следующую фазу клеточного цикла — S-фазу. Продолжительность каждой фазы, в том числе и G1-фазы, отличается в разных типах клеток. В соматических клетках человека клеточный цикл длится около 18 часов, и на G1-фазу приходится около трети этого времени[2]. Однако у зародышей шпорцевой лягушки (Xenopus), морских ежей (Echinoidea) и дрозофилы (Drosophila) G1-фаза слабо выражена и представляет промежуток, если и он есть, между окончанием митоза и S-фазой[2].

G1-фаза и другие фазы клеточного цикла могут зависеть от факторов роста, таких как питательные вещества, температура и пространства для роста. Для синтеза мРНК и белков должно присутствовать достаточное количество аминокислот. Для роста клеток оптимальны физиологические температуры. У человека нормальная физиологическая температура составляет около 36,5 °C (под мышкой)[1].

G1-фаза особенно важна для клеточного цикла, потому что в этот период клетка определяет, будет ли она делиться или покинет клеточный цикл[2]. Если клетка остаётся неделящейся вместо перехода в S-фазу, она покидает G1-фазу и переходит в состояние покоя, называемое G0-фазой. Вновь вернуться в G1-фазу из G0-фазы сложно, но возможно[1].

На протяжении G1-фазы клетка остаётся диплоидной (2n). Это означает, что клетка содержит двойной набор хромосом, специфических для данного вида, а ДНК ещё не была реплицирована перед клеточным делением. Генетический материал находится в виде хроматина или слабо спирализованных цепей ДНК. Гаплоидные эукариотические организмы, например, некоторые дрожжи, имеют только один набор хромосом (1n). В течение G1-фазы клетка ещё только готовится к репликации ДНК, и её генетический материал ещё не копирован (это происходит в S-фазе)[1].

Регуляция G1-фазы

В клеточном цикле существует чёткий набор инструкций, известный как контрольная система клеточного цикла, которая контролирует продолжительность и координацию фаз клеточного цикла, чтобы обеспечить правильный порядок их протекания. Биохимические пусковые устройства, известные как циклин-зависимые киназы, запускают этапы клеточного типа в нужное время и обеспечивают правильный порядок, чтобы предотвратить ошибки[2].

В клеточном цикле есть три контрольные точки: G1/S-контрольная точка (переход из G1-фазы в S-фазу) или стартовая точка у дрожжей, G2/M-контрольная точка и точка веретена[1].

Биохимические регуляторы G1-фазы

В течение G1-фазы активность G1/S-циклинов значительно повышается к концу G1-фазы. Эти циклины инициируют некоторые ранние процессы, связанные с клеточным делением, как, например, удвоение центросом у позвоночных, формирование веретена у дрожжей, однако по большей части они ответственны за активацию комплексов S-циклинов[2].

Комплексы циклинов, активных в другие фазы клеточного цикла, находятся в эту фазу в неактивном состоянии, чтобы соответствующие клеточные процессы не проходили в неправильном порядке. В G1-фазе существует три способа подавления активности циклинзависимых киназ: гены-ингибиторы при помощи регуляторных белков подавляют трансляцию главных циклиновых генов; активируется комплекс стимуляции анафазы, который направленно подавляет S- и M-циклины (но не G1/S-циклинов) и, наконец, высокая концентрация ингибиторов циклинзависимых киназ[2].

Точка рестрикции

В G1-фазе точка рестрикции (R) отличается от остальных контрольных точек, поскольку она не определяет специальное состояние клетки, идеальное для перехода в следующую фазу, а меняет дальнейшее направление жизни клетки. У позвоночных после того, как клетка пробыла в G1-фазе около трёх часов, она вступает в точку рестрикции, где клетка решает, пойдёт ли она дальше по клеточному циклу или же перейдёт в стадию покоя — G0-фазу[3].

Эта точка также разделяет G1-фазу на две половины: премитотическую и постмитотическую. Между началом G1-фазы (которая начинается в новой клетке после митоза) и R клетка находится в G1-постмитотической подфазе или постмитотической фазе. После R и перед S-фазой клетку называют находящейся в G1-пресинтетической подфазе или пресинтетической фазе G1-фазы[4].

Чтобы клетка прошла через G1-постмитотическую фазу, необходимо высокое содержание факторов роста и стабильный уровень синтеза белков, иначе клетка перейдёт в G0-фазу[4].

Некоторые авторы утверждают, что точка рестрикции и G1/S-точка есть одно и то же[1][2], но в более новых работах выяснилось, что это — две различные точки G1-фазы, в которых отмечается прогресс клетки. Первая, точка рестрикции, зависит от факторов роста и определяет, уходить ли клетке в G0-фазу, в то время как вторая контрольная точка зависит от питательных веществ и определяет, уходить ли клетке в S-фазу[3][4]. Некоторые разногласия между исследователями приписывают тому, что одни из них изучали клетки млекопитающих, а другие — дрожжей[3].

G1/S-контрольная точка

G1/S-контрольная точка находится между началом G1-фазы и S-фазы, в которой определяется переход клетки в S-фазу. Факторами, из-за которых клетка может не вступить в S-фазу, могут быть недостаток факторов роста, повреждения ДНК и другие особые обстоятельства.

В этой точке образование комплексом G1/S-циклинов и циклинзависимых киназ (ЦЗК) подводит клетку к вступлению в новый цикл деления. Потом эти комплексы активируют S-ЦЗК комплексы, которые подводят клетку к репликации ДНК в S-фазе. Одновременно с этим активность комплекса стимуляции анафазы значительно уменьшается, что позволяет активироваться S- и М-циклинам.

Если клетка не может перейти в S-фазу, она вступает в покоящуюся G0-фазу, где нет ни клеточного роста, ни деления[1].

G1-фаза и рак

Во многих источниках подтверждается, что нарушения в G1-фазе и G1/S-контрольной точке приводят к неконтролируемому росту опухолей. В случаях, когда нарушения затрагивают G1-фазу, это происходит главным образом потому, что гены, кодирующие регуляторные белки, семейства E2F приобретают неограниченную активность и увеличивают экспрессию генов G1/S-циклинов, в результате чего клетка неконтролируемо вновь и вновь вступает в клеточный цикл[2].

Однако лекарства против некоторых форм рака также действуют на G1-фазу клеточного цикла. При многих видах рака, в том числе рака молочной железы[5] и рака кожи[6], можно предотвратить разрастание опухоли, не давая опухолевым клеткам вступать в G1-фазу, предотвращая деление и распространение клеток.

Примечания

  1. 1 2 3 4 5 6 7 Lodish, Harvey, et al. Molecular Cell Biology. 6th. New York City: W.H. Freeman and Company, 2008. Print.
  2. 1 2 3 4 5 6 7 8 Morgan, David. The Cell Cycle: Principals of Control. London: New Science Press LTD, 2007. Print.
  3. 1 2 3 Foster, David A., Paige Yellen, et al. «Genes Cancer.»Genes Cancer. 1.11 (2010): 1124—1131. Web. 19 Nov. 2012. doi=10.1177/1947601910392989.
  4. 1 2 3 Zetterberg, A., O. Larrsen, and K.G. Wilman. «Current Opinion in Cellular Biology.» Current Opinion in Cellular Biology. 7.6 (1995): 835-42. Print.
  5. Wali, Vikram B.; Bachawal, Sunitha V., Sylvester, Paul W. (June 2009). «Combined Treatment of γ-Tocotrienol with Statins Induce Mammary Tumor Cell Cycle Arrest in G1». Experimental Biology and Medicine 234 (6): 639–650. DOI:10.3181/0810-RM-300.
  6. Ye, Yan; et alia (June 2011). «Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells». Journal of Ethnopharmacology 136 (1): 279–282. DOI:10.1016/j.jep.2011.04.020.

wikipedia.green

Фаза и ноль в электрике: определения понятным, простым языком

Владельцы домов или квартир, так или иначе, столкнутся с моментами, когда перестает функционировать какой-либо прибор, электрическая розетка или гореть лампа в люстре. Звать на помощь в таких ситуациях электрика не особо хочется — имеется большое желание исправить неполадки самостоятельно. Или может быть, например, есть какие-то познания в электросистемах, а потому работа по прокладке новых кабелей не кажется чем-то немыслимым. Как бы то ни было, в любом случае, предварительно стоит все же ознакомиться с основами электрики, с видами проводников, выяснить, как все это взаимосвязано и работает. Ведь очень важно понять, где располагается тот или иной провод — от этого будет зависеть правильность соединений и безопасность людей.

Если есть какой-то опыт работы в данной сфере, вопрос не поставит в тупик, однако для новичка может стать большой проблемой. Ниже пойдет речь о таких проводниках любой электрической сети питания как: «заземление», «фаза», «нуль», а также о том, как верно найти и отличить данные виды кабелей.

Разбираемся в основных терминах

С такими терминами, как «фаза» и «ноль» каждый сталкивается в своей жизни ежедневно. Все они тесно связаны, ведь относятся к электричеству, а это то, без чего жизнь современного человека не мыслима. Чтобы понять их природу и более или менее научиться разбираться в электрике, следует уяснить для начала ряд фундаментальных понятий.

Начинаем с основ

Электрический заряд — характеристика, определяющая способность различных тел быть источником электромагнитного поля. Носителем подобных волн является электрон. Он может быть как отрицательными, так и положительным. Создав электромагнитное поле можно «заставить» электроны перемещаться. Так образуется ток.

Ток — это четко направленное движение электронов по металлическому проводнику под действием существующего поля.

Виды тока

Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.

Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.

Основная характеристика переменного тока

Переменный ток – как правило это синусоида, или синусоидальный ток. Его можно охарактеризовать следующим образом: сначала он увеличивается в одном направлении, достигая максимального своего значения (амплитуды), затем начинается спад. В некоторый момент времени он становится равен «0» и потом вновь начинает нарастать, но уже в совершенно противоположном направлении.

«Фаза», «ноль» и «земля»

Самый простой случай электроцепи, по которой перемещается синусоидальный ток — однофазная цепь. Она состоит, как правило, из трех электрокабелей: по одному из них электричество подходит к приборам и элементам освещения, а по второму – оно «уходит» в противоположном направлении — от потребителя. Третьим проводником является «земля».

Провод, по которому электричество подходит к электропотребителям, называется фазой, а кабель, используемый для возвратного движения — нулем.

Самая эффективная сеть для передачи электротока — трехфазная система. Она включает в себя три фазовых кабеля и один обратный — ноль. Такой тип тока подходит ко всем жилым кварталам. Непосредственно перед попаданием в квартиры, электроток делится на фазы. Каждым фазам «присваивается» один ноль. Преимущества такой системы в том, что при сбалансированной нагрузке ток через ноль (а он в такой системе один — общий) равен нулю.

Чтобы не перепутать провода и не допустить короткого замыкания,  каждый провод окрашивают в разные цвета. Однако цвет провода не гарантирует его назначения!

«Земля» не несет никакой электрической нагрузки, а служит своего рода предохранительным элементом. В тот момент, когда что-либо в системе электропитания выходит из-под контроля, провод «земля» предотвратит поражение электротоком — по ней все избыточное напряжение будет «стекать», то есть, отводиться на землю.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Случаи обрывов в токопроводящей цепи

Если внутри отдельно взятой квартиры произошел разрыв нуля/фазы, то подключаемый прибор, как следствие, функционировать не будет.

Аналогичная ситуация возникнет и при обрыве контактов проводов любой из фаз питающих подъездный щиток. При этом все квартиры, получающие питание от данной электролинии, не будут получать электричество. Вместе с тем, в двух оставшихся цепях приборы будут функционировать, как и прежде.

Из этих схем видно, что полное отключение питания в квартирах связано с обрывом одного их проводов. Это не приводят к повреждению и выходу из строя приборов.

Самой же серьезной ситуацией является обрыв между заземляющим контуром и центральной точкой подключения всех потребителей.

В данном случае весь электроток перестает течь по рабочему нулю к «земле» (АО, ВО, СО) и начинает двигаться по пути АВ/ВС/СА к которым подведено 380 В.

Возникает «перекос фаз». В фазах с большей нагрузкой напряжение будет меньше, а с меньшей нагрузкой — больше и может достигнуть значительных величин, близким к 380 В. Это вызовет повреждение изоляционных материалов, нагрев и выход из строя оборудования. Предотвратить подобные случаи и защитить дорогое оборудование позволяет система защиты от перегрузок и высоких напряжений, монтируемая в квартирных щитках.

Варианты определения проводников «фаза»/«ноль»

Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.

Цветовая окраска проводов, как основной ориентир

Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.

Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:

  • защитным нулем стал обозначаться провод желто-зеленого цвета;
  • рабочим нулем стали называть синий/сине-белый провод;
  • фазу — провода других цветов (например, черного, красного, коричневого и прочие).

Такое обозначение актуально в настоящее время.

Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.

Отвертка-индикатор — незаменимое приспособление

Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.

Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.

Элементы отвертки:

  • корпус, выполненный из диэлектрического материала;
  • наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
  • неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
  • ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
  • контактная металлическая площадка, создающая замкнутую цепь через человека на землю.

Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.

Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.

При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.

На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.

Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.

Мультиметр — надежный помощник

Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.

Способы определения проводов:

Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.

Использование лампы накаливания

Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.

Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.

Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.

Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.

Определение сопротивления петли «ноль/фаза»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

В заключении

Данный материал позволяет понять, что вообще такое фаза и ноль, какова их роль в современной электрике, каким образом можно установить, где располагается в проводке фазная и нулевая жилы. Ведь вопрос определения нуля, фазы и заземления весьма важен. Подключение некоторых видов приборов по результатам неправильной проверки может повлечь за собой негативные последствия — сгорание электроприборов, или, что еще опаснее, поражение током.

Видео по теме

profazu.ru

g1-фаза Википедия

G1-фа́за (от англ. Gap 1 phase) — первая из четырёх фаз клеточного цикла эукариотических клеток. На этом этапе интерфазы клетка увеличивается в размерах и синтезирует мРНК и белки, готовясь к последующему после интерфазы митозу. G1-фаза завершается с началом S-фазы интерфазы.

Общая характеристика[ | ]

G1-фаза вместе с S-фазой и G2-фазой составляет длинный период роста клетки — интерфазу, которая предшествует клеточному делению — митозу (М-фаза)[1].

В течение G1-фазы клетка увеличивается в размерах и синтезирует мРНК и белки, необходимые для синтеза ДНК. Когда клетка достигает необходимых размеров, а необходимые белки уже синтезированы, клетка вступает в следующую фазу клеточного цикла — S-фазу. Продолжительность каждой фазы, в том числе и G1-фазы, отличается в разных типах клеток. В соматических клетках человека клеточный цикл длится около 18 часов, и на G1-фазу приходится около трети этого времени[2]. Однако у зародышей шпорцевой лягушки (Xenopus), морских ежей (Echinoidea) и дрозофилы (Drosophila) G1-фаза слабо выражена и представляет промежуток, если и он есть, между окончанием митоза и S-фазой[2].

G1-фаза и другие фазы клеточного цикла могут зависеть от факторов роста, таких как питательные вещества, температура и пространства для роста. Для синтеза мРНК и белков должно присутствовать достаточное количество аминокислот. Для роста клеток оптимальны физиологические температуры. У человека нормальная физиологическая температура составляет около 36,5 °C (под мышкой)[1].

G1-фаза особенно важна для клеточного цикла, потому что в этот период клетка определяет, будет ли она делиться или покинет клеточный цикл[2]. Если клетка остаётся неделящейся вместо перехода в S-фазу, она покидает G1-фазу и переходит в состояние покоя, называемое G0-фазой. Вновь вернуться в G1-фазу из G0-фазы сложно, но возможно[1].

На протяжении G1-фазы клетка остаётся диплоидной (2n). Это означает, что клетка содержит двойной набор хромосом, специфических для данного вида, а ДНК ещё не была реплицирована перед клеточным делением.

ru-wiki.ru

Фаза 1 — Что такой фаза, что такой ноль?! почему их (фазы)1 или 3 бывает, а двух фаз нету — 2 ответа



1 фаза

Автор Николай задал вопрос в разделе Техника

Что такой фаза, что такой ноль?! почему их (фазы)1 или 3 бывает, а двух фаз нету и получил лучший ответ

Ответ от Ёева[гуру]
Фазы всегда три, со станции идет три, и ноль.
используется по-разному, в зависимости от назначения.
двухфазные приборы есть, например пускатели бывают.
В трехфазном двигателе 4 клеммы, для каждой из фаз и для ноля.
Но можно подключить без одной или даже без 2 фаз,
но с потерей мощности.
между двумя любыми фазами образуется потенциал в 380 вольт.
между фазой и нолем только 220.
потенциал с трех фаз одновременно никто не меряет.
ноль это неактивный проводник, по нему электричество «утекает обратно».
по фазам соответственно приходит переменное напряжение,
с частотой 50 колебаний в секунду.
Колебания фаз меж собой не совпадают.

Обрати внимание на уличные столбы.
на элетрических опорах идет 3 или 4 провода.
3 это значит три фазы, а ноль это условная средняя точка между ними,
иногда заземленная.
4 провода это 3 фазы и ноль.

Ответ от 2 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Что такой фаза, что такой ноль?! почему их (фазы)1 или 3 бывает, а двух фаз нету

Ответ от Алексей Удовенко[гуру]
Как это нет? Потерял что ль? Есть оборудование, напр. пускатели и контакторы, катушки которых работают не линейном напряжении, это и есть разность потенциалов между 2 фазами.

Ответ от 1[гуру]
Фаза-это то, что бьёт тебя током когда за неё берёшься, ноль — ничего не делает. Двух фаз не бывает по-тому, что произошло бы замыкание, при стыковки обеих фаз

Ответ от Николай[гуру]
это как плюс и минус и две фазы бывает. например электросварка некотырые работают от 2 фаз

Ответ от Александр Катков[гуру]
здесь про фазы

Ответ от Алексей кузнецов[гуру]
Если есть три фазы -значит и есть две, трёх без первых двух быть не может. Ноль ето средняя точка- если построишь график синусоидальной функции в трёх экземплярах и разнесёшь их по временной оси ( пусть будет абцисс) на 120 градусов по отставанию ( 360 делить на 3) , проведя вертикальную линию обнаружишь что абсолютная сумма трёх величин на графике всегда будет равна нулю.

Ответ от Releboy[гуру]
ФАЗА (греч. phasis — появление) — в технике используется понятие фаза колебаний — состояние колебательного процесса в определенный момент времени (фаза переменного тока и т. д.) . В электричестве фазой обзывают проводник находящийся под потенциалом напряжения, отличным от нулевого потенциала. Количество фаз определяет угол, на который сдвинуты между собой величины этих проводников (фаз) и он равен 360/n, где n — число фаз:
НОЛЬ — проводник, имеющий нулевой потенциал (обычно связанный с землей) относительно нейтрали трансформатора, генератора и т. д.
Две фазы бывают, но на практике не применяются по простой причине — подавляющее число потребителей (причем мощных) — это двигатели (АД и СД) , а для их запуска необходимо вращающееся магнитное поле (его обеспечивает сдвиг фаз отличный от ПИ/2, либо специальная конструкция магнитной системы) . А двухфазная схема позволяет создать только пульсирующее магнитное поле, т. е. за промежуток времени вал двигателя не успеет стронуться с места, а направление поля с пускового изменится на тормозное. Двухфазная система широкого практического применения не нашла.


Ответ от 2 ответа[гуру]

Привет! Вот еще темы с похожими вопросами:

G1-фаза на Википедии
Посмотрите статью на википедии про G1-фаза

Фаза на Википедии
Посмотрите статью на википедии про Фаза

2oa.ru

g1-фаза Википедия

G1-фа́за (от англ. Gap 1 phase) — первая из четырёх фаз клеточного цикла эукариотических клеток. На этом этапе интерфазы клетка увеличивается в размерах и синтезирует мРНК и белки, готовясь к последующему после интерфазы митозу. G1-фаза завершается с началом S-фазы интерфазы.

Общая характеристика

G1-фаза вместе с S-фазой и G2-фазой составляет длинный период роста клетки — интерфазу, которая предшествует клеточному делению — митозу (М-фаза)[1].

В течение G1-фазы клетка увеличивается в размерах и синтезирует мРНК и белки, необходимые для синтеза ДНК. Когда клетка достигает необходимых размеров, а необходимые белки уже синтезированы, клетка вступает в следующую фазу клеточного цикла — S-фазу. Продолжительность каждой фазы, в том числе и G1-фазы, отличается в разных типах клеток. В соматических клетках человека клеточный цикл длится около 18 часов, и на G1-фазу приходится около трети этого времени[2]. Однако у зародышей шпорцевой лягушки (Xenopus), морских ежей (Echinoidea) и дрозофилы (Drosophila) G1-фаза слабо выражена и представляет промежуток, если и он есть, между окончанием митоза и S-фазой[2].

G1-фаза и другие фазы клеточного цикла могут зависеть от факторов роста, таких как питательные вещества, температура и пространства для роста. Для синтеза мРНК и белков должно присутствовать достаточное количество аминокислот. Для роста клеток оптимальны физиологические температуры. У человека нормальная физиологическая температура составляет около 36,5 °C (под мышкой)[1].

G1-фаза особенно важна для клеточного цикла, потому что в этот период клетка определяет, будет ли она делиться или покинет клеточный цикл[2]. Если клетка остаётся неделящейся вместо перехода в S-фазу, она покидает G1-фазу и переходит в состояние покоя, называемое G0-фазой. Вновь вернуться в G1-фазу из G0-фазы сложно, но возможно[1].

На протяжении G1-фазы клетка остаётся диплоидной (2n). Это означает, что клетка содержит двойной набор хромосом, специфических для данного вида, а ДНК ещё не была реплицирована перед клеточным делением. Генетический материал находится в виде хроматина или слабо спирализованных цепей ДНК. Гаплоидные эукариотические организмы, например, некоторые дрожжи, имеют только один набор хромосом (1n). В течение G1-фазы клетка ещё только готовится к репликации ДНК, и её генетический материал ещё не копирован (это происходит в S-фазе)[1].

Регуляция G1-фазы

В клеточном цикле существует чёткий набор инструкций, известный как контрольная система клеточного цикла, которая контролирует продолжительность и координацию фаз клеточного цикла, чтобы обеспечить правильный порядок их протекания. Биохимические пусковые устройства, известные как циклин-зависимые киназы, запускают этапы клеточного типа в нужное время и обеспечивают правильный порядок, чтобы предотвратить ошибки[2].

В клеточном цикле есть три контрольные точки: G1/S-контрольная точка (переход из G1-фазы в S-фазу) или стартовая точка у дрожжей, G2/M-контрольная точка и точка веретена[1].

Биохимические регуляторы G1-фазы

В течение G1-фазы активность G1/S-циклинов значительно повышается к концу G1-фазы. Эти циклины инициируют некоторые ранние процессы, связанные с клеточным делением, как, например, удвоение центросом у позвоночных, формирование веретена у дрожжей, однако по большей части они ответственны за активацию комплексов S-циклинов[2].

Комплексы циклинов, активных в другие фазы клеточного цикла, находятся в эту фазу в неактивном состоянии, чтобы соответствующие клеточные процессы не проходили в неправильном порядке. В G1-фазе существует три способа подавления активности циклинзависимых киназ: гены-ингибиторы при помощи регуляторных белков подавляют трансляцию главных циклиновых генов; активируется комплекс стимуляции анафазы, который направленно подавляет S- и M-циклины (но не G1/S-циклинов) и, наконец, высокая концентрация ингибиторов циклинзависимых киназ[2].

Точка рестрикции

В G1-фазе точка рестрикции (R) отличается от остальных контрольных точек, поскольку она не определяет специальное состояние клетки, идеальное для перехода в следующую фазу, а меняет дальнейшее направление жизни клетки. У позвоночных после того, как клетка пробыла в G1-фазе около трёх часов, она вступает в точку рестрикции, где клетка решает, пойдёт ли она дальше по клеточному циклу или же перейдёт в стадию покоя — G0-фазу[3].

Эта точка также разделяет G1-фазу на две половины: премитотическую и постмитотическую. Между началом G1-фазы (которая начинается в новой клетке после митоза) и R клетка находится в G1-постмитотической подфазе или постмитотической фазе. После R и перед S-фазой клетку называют находящейся в G1-пресинтетической подфазе или пресинтетической фазе G1-фазы[4].

Чтобы клетка прошла через G1-постмитотическую фазу, необходимо высокое содержание факторов роста и стабильный уровень синтеза белков, иначе клетка перейдёт в G0-фазу[4].

Некоторые авторы утверждают, что точка рестрикции и G1/S-точка есть одно и то же[1][2], но в более новых работах выяснилось, что это — две различные точки G1-фазы, в которых отмечается прогресс клетки. Первая, точка рестрикции, зависит от факторов роста и определяет, уходить ли клетке в G0-фазу, в то время как вторая контрольная точка зависит от питательных веществ и определяет, уходить ли клетке в S-фазу[3][4]. Некоторые разногласия между исследователями приписывают тому, что одни из них изучали клетки млекопитающих, а другие — дрожжей[3].

G1/S-контрольная точка

G1/S-контрольная точка находится между началом G1-фазы и S-фазы, в которой определяется переход клетки в S-фазу. Факторами, из-за которых клетка может не вступить в S-фазу, могут быть недостаток факторов роста, повреждения ДНК и другие особые обстоятельства.

В этой точке образование комплексом G1/S-циклинов и циклинзависимых киназ (ЦЗК) подводит клетку к вступлению в новый цикл деления. Потом эти комплексы активируют S-ЦЗК комплексы, которые подводят клетку к репликации ДНК в S-фазе. Одновременно с этим активность комплекса стимуляции анафазы значительно уменьшается, что позволяет активироваться S- и М-циклинам.

Если клетка не может перейти в S-фазу, она вступает в покоящуюся G0-фазу, где нет ни клеточного роста, ни деления[1].

G1-фаза и рак

Во многих источниках подтверждается, что нарушения в G1-фазе и G1/S-контрольной точке приводят к неконтролируемому росту опухолей. В случаях, когда нарушения затрагивают G1-фазу, это происходит главным образом потому, что гены, кодирующие регуляторные белки, семейства E2F приобретают неограниченную активность и увеличивают экспрессию генов G1/S-циклинов, в результате чего клетка неконтролируемо вновь и вновь вступает в клеточный цикл[2].

Однако лекарства против некоторых форм рака также действуют на G1-фазу клеточного цикла. При многих видах рака, в том числе рака молочной железы[5] и рака кожи[6], можно предотвратить разрастание опухоли, не давая опухолевым клеткам вступать в G1-фазу, предотвращая деление и распространение клеток.

Примечания

  1. 1 2 3 4 5 6 7 Lodish, Harvey, et al. Molecular Cell Biology. 6th. New York City: W.H. Freeman and Company, 2008. Print.
  2. 1 2 3 4 5 6 7 8 Morgan, David. The Cell Cycle: Principals of Control. London: New Science Press LTD, 2007. Print.
  3. 1 2 3 Foster, David A., Paige Yellen, et al. «Genes Cancer.»Genes Cancer. 1.11 (2010): 1124—1131. Web. 19 Nov. 2012. doi=10.1177/1947601910392989.
  4. 1 2 3 Zetterberg, A., O. Larrsen, and K.G. Wilman. «Current Opinion in Cellular Biology.» Current Opinion in Cellular Biology. 7.6 (1995): 835-42. Print.
  5. Wali, Vikram B.; Bachawal, Sunitha V., Sylvester, Paul W. Combined Treatment of γ-Tocotrienol with Statins Induce Mammary Tumor Cell Cycle Arrest in G1 (англ.) // Experimental Biology and Medicine : journal. — 2009. — June (vol. 234, no. 6). — P. 639—650. — DOI:10.3181/0810-RM-300.
  6. Ye, Yan; et alia. Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells (англ.) // Journal of Ethnopharmacology (англ.)русск. : journal. — 2011. — June (vol. 136, no. 1). — P. 279—282. — DOI:10.1016/j.jep.2011.04.020.

wikiredia.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о