+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

В чем измеряются единицы емкости конденсаторов

Конденсатор представляет собой электрическое устройство, которое обладает возможностью накапливать заряд, состоит из обкладок и слоя диэлектрика между ними. Одной из важнейших характеристик прибора является ёмкость.

Конденсатор

Единица измерения емкости

В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:

[C] = Ф, где С – обозначение ёмкости устройства.

Международное обозначение – F. Названа в честь английского физика М.Фарадея и используется в Международной системе СИ с 1960г.

Формула для расчёта электроёмкости записывается следующим образом:

С = Dq / U (1), где:

  • Dq – заряд (измеряется в кулонах, или Кл),
  • U – разность потенциалов между обкладками (измеряется в вольтах или В).

Следовательно, 1Ф = 1Кл / 1В.

То есть конденсатор ёмкостью в 1 фарад накапливает на обкладках заряд, равный 1 кулон, создавая напряжение между ними, равное 1 вольт.

В фарадах измеряются электроёмкости проводников и конденсаторов.

Согласно правилам написания, принятых в СИ, если название происходит от фамилии учёного, то полное её название «фарад» пишется с маленькой (строчной) буквы, а её сокращённое название «Ф» – с прописной.

Единица измерения электроёмкости в других системах

Помимо СИ, есть ещё устаревшая система СГС, которой пользовались ранее. Первые три символа в названии обозначают:

  • С – сантиметр,
  • Г – грамм,
  • С – секунда.

Существует две разновидности системы: СГСЭ и СГСМ. Символ Э в СГСЭ обозначает электростатическую систему, а символ М – магнитную. В системе СГСЭ емкость конденсатора измеряется в сантиметрах, или см. Для пересчёта используют соотношение:

  • 1см » 1,1126 · 10-12Ф,
  • 1Ф » 8,99 · 1011 статФ.

Сантиметр по-другому может называться статфарад, или статФ.

В системе СГСМ единицей измерения является абфарад, или абФ. Абфарад связан с фарадом следующим образом:

1абф = 1·109 Ф = 1ГФ.

Для перевода из СГСЭ и СГСМ в СИ в сети Интернет имеются специальные сервисы, которые позволяют автоматизировать эти действия.

Онлайн переводчик из СГС в СИ

Фарады через основные единицы системы СИ

Для выражения фарады через основные единицы СИ воспользуемся следующими формулами.

Единица измерения заряда вычисляется как:

Dq = I · Dt (2), где:

  • I – сила тока (измеряется в амперах или А),
  • Dt – время прохождения заряда (измеряется в секундах или с).

В свою очередь, напряжение определяется как работа, которую нужно выполнить для перемещения заряда в электростатическом поле:

U = А / Dq (3), где А – работа по перемещению заряда, определяется в джоулях, или Дж.

Из механики известно, что:

А = F · s = m · a · s (4), где:

  • m – масса, измеряется в килограммах, или кг,
  • s – перемещение, рассчитывается в метрах, или м,
  • a – ускорение, определяется в м/с2.

Из формул 1-4 имеем:

Таким образом, 1 фарад через единицы СИ определяется как:

Кратные единицы ёмкости

При покупке радиодеталей невозможно купить конденсатор с электроёмкостью даже в несколько единиц фарад. Они выпускаются с гораздо меньшими параметрами. Это объясняется тем, что ёмкость в 1 фарад является очень большой величиной. Например, такую электроёмкость может иметь изолированный проводник в форме шара с радиусом в 13 раз больше радиуса Солнца.

Именно по этой причине для характеристики емкостных устройств применяют дольные единицы, которые рассчитываются как доля от определённого числа фарад. Для обозначения используют приставки, которые применяются для сокращения длины записываемого числа.

Таблица перевода дольных единиц

ПриставкаОбозначениеМножитель
децидФdF10^-1
сантисФsF10^-2
миллимФmF10^-3
микромкФF или uF10^-6
нанонФnF10^-9
пикопФpF, mmF, uuF10^-12
фемтофФfF10^-15
аттоаФaF10^-18
зептозФzF10^-21
йоктоиФyF10^-24

Таким образом, если параметр указывается равным 5 uF, то для перевода в фарады необходимо умножить цифру 5 на соответствующий множитель. Получаем 5 uF = 5 · 10-6 F.

В радиотехнике наиболее популярны модели, ёмкость которых измеряется в микрофарадах, нанофарадах (микромикрофарадах) или пикофарадах.

Также промышленность выпускает устройства ионисторы, которые представляют собой конденсаторы, имеющие двойной электрический слой. У некоторых ионисторов ёмкость может измеряться в килофарадах.

Ионистор с характеристикой в 1F

Маркировка конденсаторов в зависимости от ёмкости

Кодировка маленьких по размерам устройств

Существует специальная цифровая кодировка. Её используют для маркировки маленьких по размерам приборов. Кодировка электроёмкости выполняется согласно стандарту EIA.

Внимание! Ёмкость небольших конденсаторов, например, керамических или танталовых, обычно измеряется в пикофарадах, а больших, например, алюминиевых электролитических, в микрофарадах.

Существует специальная таблица таких обозначений, с помощью которой можно быстро подобрать такую же или аналогичную радиодеталь по соответствующему коду. Её можно свободно найти в Интернете.

В старых маркировках использовалась следующая кодировка. Если нанесено целое двузначное число, значит, значение ёмкость измеряется в пикофарадах, а если нанесена десятичная дробь, значит, параметр определяется в микрофарадах.

Например, радиодеталь с параметром 1000 nF =1 uF будет иметь маркировку 105, с параметрами 820 nF = 0, 82 uF – маркировку 824, а 0,27 uF = 270nF будет обозначено кодом 274.

В настоящее время, если на устройстве нанесено значение, не содержащее буквы, то оно обозначает ёмкость в пикофарадах. Если перед цифрами или после них стоит символ «н» («n»), то это означает, что значение даётся в нанофарадах, если «мк» («m», «u») – микрофарадах. В том случае, когда символ располагается перед числом, цифры в нём обозначают сотые доли. Например, n61 расшифровывается как 0,61нФ. Если символ располагается посередине значения, то на место символа нужно поставить запятую. Сам символ покажет единицы измерения. Например, 5u2 обозначает 5,2 мкФ.

Также в настоящее время используется цифровая кодировка, содержащая три числа. Первые две цифры являются числовыми характеристиками ёмкости. Параметр при этом измеряется в пикофарадах. Если значение меньше 1, то первая цифра – 0. Третья цифра определяет множитель, на который нужно умножить число, получаемое из первых двух цифр.

В случае, когда последнее число находится в диапазоне от 0 до 6, к значению дописывают количество нулей, равное третьей цифре. Например, если указано число 270, то устройство имеет параметр 27 пФ, если 271 – то на 270 пФ.

Трёхзначная кодировка

Если число равно 8, то в этом случае множитель равен 0,01. То есть если указано число 278, то ёмкость будет равна 27 · 10-2 = 0,27. Когда третье число равно 9, то множитель будет 0,1. Например, маркировка 109 указывает на электроёмкость в 1 пФ.

Если в кодировке присутствует символ «R», то параметр указывается в пикофарадах, а символ показывает место расположения запятой. Например, 4R1 расшифровывается как 4,1пФ.

Кодировка больших по размерам устройств

На больших по габаритным размерам конденсаторах маркировка наносится сверху на корпус, причём в данном случае будет присутствовать полная информация о параметрах устройства.

В обозначениях может встречаться значение MF. В приставках Международной системы единиц СИ если перед единицей измерения располагается большая буква М, то это обозначает, что должен использоваться множитель 106. В случае с конденсатором это всё равно будет обозначать микрофарады.

Также может встречаться обозначение МFD или mfd. В данном случае сочетание символов «fd» обозначает farad. Таким образом, если на корпусе написано 5 mfd, то значит, что конденсатор используется на 5 микрофарад.

Маркировка больших по размерам конденсаторов

Таким образом, при ремонте электросхемы, содержащей конденсатор, нужно правильно читать маркировку устройства и соответственно информации подбирать нужный прибор.

Видео

Оцените статью:

Электрическая ёмкость: определение, формулы, единицы измерения

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников.  В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

Распределение зарядовРис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

КонденсаторРис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

  • переменные;
  • электролитические;
  • оксидные;
  • бумажные;
  • комбинированные и другие.

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

Электроёмкость проводникаРис. 3. Электроёмкость проводника

По отношению к конденсатору, для  определения его емкости применяют формулу:

C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

Ёмкость конденсатораЁмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принято фараду: 1 Ф = 1 Кл/1В.  Поскольку фарада величина огромная, то для измерения емкости на практике она мало пригодна. Поэтому используют приставки:

  • мили (м) = 10-3;
  • микро (мк) = 10-6;
  • нано (н) = 10-9;
  • пико (пк) = 10
    -12
    ;

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, влиянием на который других элементов цепей можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от него, а как известно, потенциал точки, бесконечно удаленной в пространстве, равен 0.

Электрическую емкость C уединенного проводника, определяют как количество электричества q, которое требуется для повышения электрического потенциала на 1 В: С = q/ϕ. Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной и переменной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой  площадью обкладок физики смогли понять, как взаимная емкость регулируется площадями пластин, что позволило им создать конденсаторы с переменной емкостью (см. рис. 5).

Конденсатор переменной емкостиРис. 5. Конденсатор переменной емкости

Идея изменения емкости состояла в том, чтобы путем поворота плоской обкладки изменять площадь поверхности, которая располагается напротив другой пластины. Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с переменной емкостью нашли применение в первых радиоприемниках для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых электрических схемах.

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

  • высокие показатели емкости при малом объеме;
  • применение в цепях с постоянным током.

Недостатки:

  • необходимо соблюдать полярность;
  • ограниченный срок службы;
  • чувствительность к повышенным напряжениям.

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала применяется керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня промышленность поставляет на рынок множество конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Конденсаторы различных типовКонденсаторы различных типов

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть атомов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С целью увеличения напряжения аккумуляторы последовательно соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 В необходимо создать батарею из трех секций, а на 12 В – батарею из 6 секций.

Для характеристики аккумуляторов (батарей) используются параметры:

  • емкости;
  • номинального напряжения;
  • максимального тока разряда.

Единицей емкости аккумулятора является ампер-час (А*ч) или кратные ей миллиампер-часы (мА*ч). Емкость аккумулятора зависит от площади пластин. Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не применяется, так как проще и надежнее создать аккумулятор с большими пластинами.

Что такое электрическая емкость и в чем она измеряется

Что собой представляет электрическая емкость. Единицы измерения и формулы для расчета данной величины. Электроемкость аккумуляторов и конденсаторов.


В электротехнике часто встречается понятие ёмкости. При этом речь идёт не о ведре или другом сосуде, а об электрической ёмкости проводника, аккумулятора и конденсатора. Путать эти понятия нельзя. В этой статье мы разберемся, что такое электрическая ёмкость, от чего она зависит и в каких единицах измеряется. Содержание:

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Что такое электрическая емкость и в чем она измеряется

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной. Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках. Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Что такое электрическая емкость и в чем она измеряется

Для двух концентрических сфер с общим центром:

Что такое электрическая емкость и в чем она измеряется

Для цилиндрического конденсатора:

Что такое электрическая емкость и в чем она измеряется

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

  • Как определить емкость конденсатора
  • Что такое электрический заряд
  • Закон Кулона простыми словами


НравитсяЧто такое электрическая емкость и в чем она измеряется0)Не нравитсяЧто такое электрическая емкость и в чем она измеряется0)

В чем измеряется емкость конденсатора?

Давайте начнем с предложенной Вами задачи. Основой для ее решения является формула, определяющая емкость:

   

Переведем данные из задачи в единицы системы СИ: нКл=Кл; кВ=В. Теперь можно вычислить емкость конденсатора:

   

Теперь разберемся, в чем измеряется емкость конденсатора. Емкость конденсатора, как и емкость любого другого проводящего тела, измеряется в фарадах. Обозначается фарада буквой (Ф). Название данная единица получила в честь М. Фарадея. 1Ф равен емкости конденсатора, если заряд его пластин равен 1 Кл, а напряжение между обкладками 1 В. Если фарад выражать через основные единицы системы СИ, то получим: Ф=Aкг м.
1 Ф – это очень большая емкость. Если рассматривать уединенный проводник в виде шара, то электроемкость проводника, радиус которого был бы равен радиусу Земли, составил бы всего около Ф.
Поэтому часто на практике используют пикофарады (пФ): 1 пФ=Ф; нанофарады: 1 нФ=Ф; микрофарфды 1 мкФ=Ф.

Тогда ответ в нашей задаче удобнее записать как пФ.
Подробнее о конденсаторах можно прочитать в ответах на вопросы: «Как работает конденсатор?», «Каково обозначение конденсаторов на схеме?», «Для чего нужен конденсатор?», «Как измерить емкость конденсатора?».

В чём измеряется ёмкость конденсатора: как измерить

Конденсаторы являются важнейшими пассивными компонентами электрических цепей. Любая электрическая схема содержит в своем составе такие элементы различных типов и номиналов.

Что это такое

Конденсатор — электрический двухполюсник (элемент с двумя выводами) с постоянным или изменяемым значением емкости. Обладает бесконечно большим сопротивлением постоянному току.

Простейший конденсатор

Важно! Бесконечно большим сопротивлением обладает идеальный конденсатор. Реальные устройства имеют ток утечки, который необходимо учитывать.

Основное назначение устройства — накопление энергии электрического поля и заряда.

Несмотря на то, что конденсаторы являются самостоятельными элементами, емкостью обладают любые другие устройства, даже диод и транзистор.

Характеристики

Как элемент электрической цепи, конденсатор имеет такие параметры:

  • Электрическая емкость, которая характеризуется свойством накапливания электрического заряда.
  • Номинальное напряжение. Значение напряжения на обкладках, при котором элемент в течении срока службы сохраняет свои параметры.

При работе с электрическими цепями необходимо учитывать паразитные параметры, которые являются нежелательными:

  • Ток утечки, который появляется из-за несовершенства диэлектрика, качества изоляции обкладок.
  • Последовательное эквивалентное сопротивление, которое складывается из сопротивления выводов, сопротивление контакта вывод-обкладка, внутренних свойств диэлектрика.
  • Эквивалентная индуктивность, в которую входят индуктивность выводов и обкладок.
  • Тангенс угла диэлектрических потерь, характеризующий электрические потери в конденсаторе на высоких частотах.
  • Температурный коэффициент емкости, показывающий, как она меняется в зависимости от температуры.
  • Паразитный пьезоэффект, проявляющийся как генерация напряжения при физическом воздействии на диэлектрик (тряска, вибрация).
Эквивалентная схема

Устройство конденсатора

Простейший конденсатор состоит из двух металлических пластин (обкладок), разделенных слоем диэлектрика. Емкость (способность накапливать электрический заряд) увеличивается с ростом площади пластин и с уменьшением толщины изолирующего слоя.

Параметры простейшей конструкции слишком малы. Для ее увеличения есть два пути:

  • Увеличение площади обкладок, что приводит к увеличению габаритов.
  • Уменьшение толщины диэлектрика, приводящее к снижению номинального рабочего напряжения из-за электрического пробоя.

Для того, чтобы избежать перечисленных проблем, разработаны специальные конструкции. Например, если сделать обкладки небольшой ширины и большой длины, их можно вместе с гибким диэлектриком свернуть в плотный цилиндр, получится цилиндрический конденсатор. Размещая пластины с диэлектриком попеременно, в виде слоеного пирога и чередуя подключение к выводам, получается прямоугольный компонент с большой эффективной площадью обкладок.

Разные типы конструкции

Еще один путь — использование в качестве диэлектрика тонкого оксидного слоя на поверхности металлической фольги и раствора проводящего электролита в качестве второй обкладки. Таким образом получается электролитический конденсатор, конструкция которого обладает самой большой емкостью.

Важно! Такие устройства имеют недостаток — соблюдение полярности подключения, что ограничивает их применение: оно возможно только в цепях постоянного тока в качестве сглаживающих фильтров.

В чем измеряется

Единицей емкости служит фарада. Но это очень большая величина и лишь некоторые специальные типы устройств имеют величину несколько фарад.

Обычно используются кратные величины:

  • Микрофарада — 10-6 фарады— мкФ, µF.
  • Нанофарада — 10-9 фарады— нФ, nF.
  • Пикофарада — 10-12 фарады— пФ, pF.

Довольно часто в устройствах встречается последовательное и параллельное соединение. Как определить емкость соединенных конденсаторов? Результирующее значение для таких соединений рассчитывается по-разному.

Параллельное и последовательное соединение

Параллельное соединение

При параллельном соединении емкости всех элементов суммируется. Номинальное рабочее напряжение равняется наименьшему из соединенных элементов

Последовательное соединение

В данном случае, чтобы узнать результирующую емкость, придется прибегнуть к расчетам.

Для двух элементов:

С = С1·С2/(С1+С2)

Для трех элементов:

С=(С1·С2+С1·С3+С2·С3)/(С1+С2+С3)

Напряжение равняется сумме напряжений на каждом элементе.

Важно! Напряжение на отдельных конденсаторах распределяется неравномерно, а пропорционально емкости.

Приборы для измерения емкости

Специальные приборы для измерения емкости используют различные принципы. Наиболее распространены такие:

  • Измерение реактивного сопротивления;
  • Измерение частоты резонанса колебательного контура.

Первый тип приборов наиболее распространен. Принцип их работы основан на том, что конденсатор обладает реактивным сопротивлением, обратно пропорциональным частоте приложенного напряжения. То есть, чем выше частота сигнала, тем меньше сопротивление. На клеммах прибора присутствует напряжение заданной величины и частота, а шкала уже откалибрована в единицах емкости, поэтому никаких вычислений производить не надо, за исключением учета положения входных переключателей.

Цифровые приборы для измерения емкости в эксплуатации еще проще. На цифровом индикаторе сразу показывается значение измеряемого параметра.

Цифровой измеритель

Для устройств второго типа используется явление резонанса — скачкообразное измерение параметров колебательного контура из соединенных конденсатора и катушки индуктивности.

Для определения емкости измеряемый элемент подключается к катушке индуктивности с точно определенными параметрами. Изменяя частоту сигнала, добиваются резонанса и отсчитывают в этот момент емкость конденсатора на шкале прибора.

Также как и первые, эти устройства могут быть аналоговыми или цифровыми.

Наиболее часто используются комбинированные измерительные устройства, которыми можно измерять дополнительно индуктивность и сопротивление — RLC-метры.

Измеритель RLC

Специальный измеритель может определять эквивалентное последовательное сопротивление (ЭПС, ESR) и тангенс угла потерь.

Оценить емкость электролитического конденсатора можно, используя обычный мультиметр в режиме измерения сопротивления. Время заряда косвенно будет свидетельствовать о величине емкости (Чем больше величина, тем медленнее будут изменения показаний).

Как правильно измерять емкость

Как измерить ёмкость конденсатора, не имея специального оборудования? Нужно определить величину тока, протекающую через цепь с конденсатором и падение напряжения на нем. Значение измеряемого параметра вычисляют на основании формулы:

Xc = 1/2·π·f·C,

Где Хс — реактивное сопротивление конденсатора,

π — число пи, равное 3.14,

f — частота тока.

Из приведенной формулы можно найти значение емкости:

С = 1/2·π·f·Хс

Реактивное сопротивление Хс находят из показаний измерительных приборов:

Хс = U/I.

Самостоятельное измерение емкости конденсаторов при помощи простейших приборов достаточно трудоемкое и не дает необходимой точности. Лучшие результаты можно получить, используя специализированные измерительные устройства.

виды и применение; принципы работы и маркировка

Электрическая емкостьКонденсатором называется элемент электрической цепи, служащий в качестве накопителя заряда.

Областей применения этого устройства сейчас много, чем и обусловлен их большой ассортимент. Они различаются по материалам, из которых изготовлены, назначению, диапазону основного параметра. Но главной характеристикой конденсатора является его емкость.

Услуги электрика и электромонтажные работы в Запорожье на сайте — https://elektrik.zp.ua/

Принцип работы конденсатора

Конструкция

На схемах конденсатор обозначается в виде двух параллельных линий, не связанных между собой:

Это соответствует его простейшей конструкции — двум пластинам (обкладкам), разделенным диэлектриком. Фактическое исполнение этого изделия чаще всего представляет собой завернутые в рулон обкладки с прослойкой диэлектрика или иные причудливые формы, но суть остается той же самой.

Емкость конденсатора

Электрическая ёмкость – способность проводника накапливать электрические заряды. Чем больше заряд вмещает проводник при данной разности потенциалов, тем больше ёмкость. Зависимость между зарядом Q и потенциалом φ выражается формулой:

C=Q/φ

где Q — заряд в кулонах (Кл), φ — потенциал в вольтах (В).

Определение емкости конденсатораЕмкость измеряется в фарадах (Ф), что вы помните еще с уроков физики. На практике чаще встречаются более мелкие единицы: миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

Накопительная способность зависит от геометрических параметров проводника, диэлектрической проницаемости среды, где он находится. Так, для сферы из проводящего материала она будет выражаться формулой:

C=4πεε0R

где ε0—8,854·10^−12 Ф/м, электрическая постоянная, а ε — диэлектрическая проницаемость среды (табличная величина для каждого вещества).

В реальной жизни нам чаще приходится иметь дело не с одним проводником, а с системами таковых. Так, в обычном плоском конденсаторе емкость будет прямо пропорциональна площади пластин и обратно — расстоянию между ними:

C=εε0S/d

ε здесь — диэлектрическая проницаемость прокладки между пластинами.

Емкость параллельных и последовательных систем

Параллельное соединение емкостей представляет собой один большой конденсатор с тем же слоем диэлектрика и суммарной площадью пластин, поэтому общая емкость системы представляет собой сумму таковых у каждого из элементов. Напряжение при параллельном соединении будет одним и тем же, а заряд распределится между элементами схемы.​

C=C1+C2+C3

Последовательное соединение конденсаторов характеризуется общим зарядом и распределенным напряжением между элементами. Поэтому суммируется не емкость, а обратная ей величина:

1/C=1/С1+1/С2+1/С3

Из формулы емкости одиночного конденсатора можно вывести, что при одинаковых элементах, соединенных последовательно, их можно представить в виде одного большого с той же площадью обкладки, но с суммарной толщиной диэлектрика.

Свойства конденсатора

Реактивное сопротивление

Конденсатор не может проводить постоянный ток, что видно из его конструкции. В такой цепи он может только заряжаться. Зато в цепях переменного тока он прекрасно работает, постоянно перезаряжаясь. Если не ограничения, исходящие из свойств диэлектрика (его можно пробить при превышении предела напряжения), этот элемент заряжался бы бесконечно (т. н. идеальный конденсатор, что-то вроде абсолютно черного тела и идеального газа) в цепи постоянного тока, а ток через него проходить не будет. Проще говоря, сопротивление конденсатора в цепи постоянного тока бесконечно.

При переменном токе ситуация иная: чем выше частота в цепи, тем меньше сопротивление элемента. Такое сопротивление называется реактивным, и оно обратно пропорционально частоте и емкости:

Z=1/2πfC

где f — частота в герцах.

Накопитель энергии

Энергия, запасенная заряженным конденсатором, может быть выражена формулой:

E=(CU^2)/2=(q^2)/2C

где U — напряжение между обкладками, а q — накопленный заряд.

Конденсатор в колебательном контуре

В замкнутом контуре, содержащем катушку и конденсатор, может быть сгенерирован переменный ток.

После зарядки конденсатора он начнет саморазряжаться, давая возрастающий по силе ток. Энергия разряженного конденсатора станет равной нулю, зато магнитная энергия катушки — максимальной. Изменение величины тока вызывает ЭДС самоиндукции катушки, и она по инерции пропустит ток в сторону второй обкладки, пока та полностью не зарядится. В идеальном случае такие колебания бесконечны, а в реальности они быстро затухают. Частота колебаний зависит от параметров как катушки, так и конденсатора:

Элемент схемы

где L — индуктивность катушки.

Паразитная индуктивность

Конденсатор может обладать собственной индуктивностью, что можно наблюдать при повышении частоты тока в цепи. В идеальном случае эта величина незначительна, и ей можно пренебречь, но в реальности, когда обкладки представляют собой свернутые пластинки, не считаться с этим параметром нельзя, особенно если речь идет о высоких частотах. В таких случаях конденсатор совмещает в себе две функции, и представляет собой своеобразный колебательный контур с собственной резонансной частотой.

Чтобы добиться корректной работы схемы, рекомендуется применять конденсаторы, у которых резонансная f больше собственной частоты в цепи.

Эксплуатационные характеристики

Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:

  • Понятие емкостьноминальное напряжение;
  • полярность;
  • ток утечки;
  • сопротивление материала обкладок;
  • диэлектрические потери;
  • зависимость емкости от температуры.

Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:

Q=UIsin 90

В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения — параллельной или последовательной.

Определение тангенса угла диэлектрических потерь

Определение емкости конденсатора

При параллельном соединении величина потерь определяется отношением токов:

tgδ = Ir/Ic = 1/(ωCR)

В случае последовательного соединения угол вычисляется соотношением напряжений:

tgδ = Ur/Uc = ωCR

В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.

Номинальное напряжение

Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.

Полярность

Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.

Температурный коэффициент емкости

Он выражается отношением ΔC/CΔT где ΔT — изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.

Разрушение конденсатора

Технические характеристикиВыход конденсатора из строя обусловлен двумя основными причинами — пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению.

Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых — к пробою и химической реакции между танталом и оксидом марганца.

Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.

Техническое исполнение конденсаторов

Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.

Бумажные конденсаторы

В качестве диэлектрика используется бумага, очень часто — промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.

При отсутствии промасливания имеют существенный недостаток — реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.

Диэлектрик в виде органических пленок

Пленки могут быть выполнены из органических полимеров, таких как:

  • полиэтилентерифталат;
  • полиамид;
  • поликарбонат;
  • полисульфон;
  • полипропилен;
  • полистирол;
  • фторопласт (политетрафторэтилен).

По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.

Твердый неорганический диэлектрик

Это может быть слюда, стекло и керамика.

Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых — даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.

Оксидный диэлектрик

С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.

Вакуум

Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.

Двойной электрический слой

Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип — не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств — ионисторы — содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.

Маркировка конденсаторов

Преимущества емкостиКаким бы ни был конденсатор, есть два обязательным параметра, которые должны быть отражены в маркировке — это его емкость и номинальное напряжение.

Помимо этого, на большинстве из них существует цифро-буквенное обозначение его характеристик. В соответствии с российскими стандартами конденсаторы маркируются четырьмя знаками.

Первая буква К означает «конденсатор», следующая цифра — вид диэлектрика, далее следует указатель назначения в виде буквы; последний значок может означать как тип конструкции, так и номер разработки, это уже зависит от завода-изготовителя. Третий пункт часто пропускается. Используется такая маркировка на достаточно крупных изделиях, где ее можно разместить. По ГОСТ расшифровка будет выглядеть так:

Первые буквы:

  1. К — конденсатор постоянной емкости.
  2. КТ — подстроечник.
  3. КП — конденсатор переменной емкости.

Вторая группа — тип диэлектрика:

  • Вторая группа 1, 61 — вакуум;
  • 2, 60 — воздух;
  • 3 — газ;
  • 4 — твердый;
  • 10, 15 — керамика;
  • 20 — кварц;
  • 21 — стекло;
  • 22 — стеклокерамика;
  • 23 — стеклоэмаль;
  • 31, 32 — слюда;
  • 40, 41, 42 — бумага;
  • 50 — алюминиевый электролитический;
  • 51 — танталовый;
  • 52 — объемно-пористый;
  • 53, 54 — оксидные;
  • 71 — полистирол;
  • 72 — фторопласт;
  • 73 — ПЭТ;
  • 75 — комбинированный;
  • 76 — лак и пленка;
  • 77 — поликарбонат.

На маленьких конденсаторах всего этого не разместить, поэтому там применяется сокращенная маркировка, которая с непривычки может даже потребовать калькулятора, а иногда — лупу. В этой маркировке зашифрованы емкость, номинал напряжения и отклонения от основного параметра. Остальные параметры наносить нет смысла: это, как правило, керамические конденсаторы.

Маркировка керамических конденсаторов

 Расчет емкостей различных конденсаторовИногда с ними все просто — емкость отмечена числом и единицами: pF — пикофарад, nF — нанофарад, μF — микрофарад, mF — миллифарад. То есть, надпись 100nF можно читать прямо. Номинал, соответственно, числом и буквой V. Но иногда не умещается и это, потому применяют сокращения. Так, часто емкость умещается в трех цифрах (103, 109 и т. д.), где последняя означает число нулей, а первые две — емкость в пикофарадах. Если в конце стоит цифра 9, значит, нулей нет, а между первыми двумя ставят запятую. При цифре 8 на конце запятую переносят еще на один знак назад.

Например, обозначение 109 расшифровывается как 1 пикофарад, а 100–10 пикофарад; 681–680 пикофарад, или 0,68 нанофарад, а 104- 100 тыс. пФ или 100нФ

Часто можно встретить первую букву единицы измерения в качестве запятой: p50–0,5 пФ, 1n5–1,5 нФ, 15μ – 15 мкФ, 15m – 15 мФ. Иногда вместо p пишется R.

После трех цифр может стоять буква, означающая разброс параметра емкости:

  1. Особенности опеределенияB — +/-0,1 пФ.
  2. C — +/-0,25 пФ.
  3. D- +/-0,5 пФ.
  4. F — +/-1%.
  5. G — +/-2%.
  6. J — +/-5%.
  7. K — +/-10%.
  8. M — +/-20%.
  9. Z — до 80% отклонение.

Если вы высчитываете характеристику цепи в единицах СИ, то для того, чтобы найти емкость в фарадах, необходимо помнить показатели степеней числа 10:

  1. -3 — миллифарады;
  2. -6 — микрофарады;
  3. -9 — нанофарады;
  4. -12 — пикофарады.

Таким образом, 01 пФ — это 0,1 *10^-12 Ф.

На устройствах SMD емкость в пикофарадах обозначает буква, а цифра после нее — степень 10, на которую надо умножить это значение.

буква C буква C буква C буква C
A 1 J 2,2 S 4,7 a 2,5
B 1,1 K 2,4 T 5,1 b 3,5
C 1,2 L 2,7 U 5,6 d 4
D 1,3 M 3 V 6,2 e 4,5
E 1,5 N 3,3 W 6,8 f 5
F 1,6 P 3,6 X 7,5 m 6
G 1,8 Q 3,9 Y 8,2 n 7
Y 2 R 4,3 Z 9,1 t 8

Номинальное рабочее напряжение таким же образом может маркироваться буквой, если полностью его написать проблематично. В России принят следующий стандарт буквенного обозначения номинала:

буква V буква V
I 1 K 63
R 1,6 L 80
M 2,5 N 100
A 3,2 P 125
C 4 Q 160
B 6,3 Z 200
D 10 W 250
E 16 X 315
F 20 T 350
G 25 Y 400
H 32 U 450
S 40 V 500
J 50

Несмотря на списки и таблицы, лучше все-таки изучить кодировку конкретного производителя — в разных странах они могут отличаться.

К некоторым конденсаторам прилагается более развернутое описание их характеристик.

Емкость конденсатора

Фарад единица измерения единица измерения конденсатор сколько

Фарад.

 

 

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ). Имеет русское обозначение – Ф и международное обозначение – F.

 

Фарад, как единица измерения

Применение фарада

Представление фарада в других единицах измерения – формулы

Кратные и дольные единицы фарада

Другие единицы измерения

 

Фарад, как единица измерения:

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея. Прежнее название – фарада.

Фарад как единица измерения имеет русское обозначение – Ф и международное обозначение – F.

1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон (Кл) создаёт между обкладками конденсатора напряжение 1 вольт (В).

Ф = Кл/В.

1 Ф = 1 Кл/1 В.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

Ф = А · с / В.

1 Ф = 1 А · 1 с / 1 В.

Фарад — очень большая ёмкость. Ёмкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с Землю, как уединенного проводника) составляет всего около 700 микрофарад.

В Международную систему единиц фарад введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада.

 

Применение фарада:

В фарадах измеряют электрическую ёмкость проводников, кабелей, межэлектродные ёмкости различных приборов и конденсаторов, то есть их способность накапливать электрический заряд.

Различается электрическую ёмкость и электрохимическую ёмкость. Электрохимическую ёмкость применяется к обычным батарейкам и аккумуляторам. Она имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

 

Представление фарада в других единицах измерения – формулы:

Через основные и производные единицы системы СИ фарад выражается следующим образом:

Ф = Кл / В.

Ф = А · с / В.

Ф = Дж / В2.

Ф = Вт · с / В2. 

Ф = Н · м / В2.

Ф = Кл · м / Дж.

Ф = Кл2 / Н · м.

Ф = с2 · Кл2 / кг · м2.

Ф = А2 · с4 / кг · м2.

Ф = с / Ом.

Ф = 1 / Ом · Гц.

Ф = с2 / Ом · Гн.

где Ф – фарад, А – ампер, В – вольт, Кл – кулон, Дж – джоуль, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом, Гц – герц, Гн – генри.

 

Кратные и дольные единицы фарада:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф иоттафарад ИФ YF 10−24 Ф иоктофарад иФ yF

 

Источник: https://ru.wikipedia.org/wiki/Фарад

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

карта сайта

перевод 1 2 4 5 10 100 фарад единица измерения в джоули формула
перевести микрофарады пикофарады в фарады
конденсатор емкостью 1 2 4 10 фарада википедия емкость конденсатора фарад это сколько
вольт на фарад
мкф в фарады
нанофарады в фарады
что измеряется в фарадах
фарады в ампер

 

Коэффициент востребованности 2 616

Как работает конденсатор — Физика конденсатора и его применение

В этом руководстве мы узнаем, что такое конденсатор, как он работает, и рассмотрим некоторые основные примеры применения. Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

Обзор

Практически нет схемы без конденсатора, и вместе с резисторами и индукторами они являются основными пассивными компонентами, которые мы используем в электронике.

Конденсатор — это устройство, способное накапливать энергию в виде электрического заряда. По сравнению с батареей того же размера, конденсатор может хранить гораздо меньшее количество энергии, примерно в 10 000 раз меньше, но достаточно полезен для многих схем.

Конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом, называемым диэлектриком. Пластины являются проводящими, и они обычно изготавливаются из алюминия, тантала или других металлов, в то время как диэлектрик может быть сделан из любого изоляционного материала, такого как бумага, стекло, керамика или что-либо, что препятствует прохождению тока.

Capacitor construction and capacitance equation

Емкость конденсатора, измеряемая в фарадах, прямо пропорциональна площади поверхности двух пластин, а также диэлектрической проницаемости ε диэлектрика, в то время как чем меньше расстояние между пластинами, тем больше емкость. При этом давайте посмотрим, как работает конденсатор.

Во-первых, мы можем отметить, что металл обычно имеет равное количество положительно и отрицательно заряженных частиц, что означает, что он электрически нейтрален.

Capacitor construction and capacitance equation

Если мы подключим источник питания или батарею к металлическим пластинам конденсатора, ток будет пытаться течь, или электроны от пластины, подключенной к положительному выводу батареи, начнут двигаться к подключенной пластине к отрицательному выводу аккумулятора. Однако из-за наличия диэлектрика между пластинами электроны не могут проходить через конденсатор, поэтому они начнут накапливаться на пластине.

Capacitor working principle metal plates connected to a battery

После того, как определенное количество электронных компонентов накопится на пластине, у батареи будет недостаточно энергии, чтобы подтолкнуть любую новую электронику к пластине из-за отталкивания тех электронных компонентов, которые уже находятся там.

На этом этапе конденсатор фактически полностью заряжен. Первая пластина выработала чистый отрицательный заряд, а вторая пластина выработала равный суммарный положительный заряд, создавая электрическое поле с силой притяжения между ними, которая удерживает заряд конденсатора.

How Capacitor Works Fully Charged Electric Field

Принцип работы диэлектрика конденсатора

Давайте посмотрим, как диэлектрик может увеличить емкость конденсатора. Диэлектрик содержит полярные молекулы, что означает, что они могут изменять свою ориентацию в зависимости от зарядов на двух пластинах.Таким образом, молекулы выравниваются с электрическим полем таким образом, что позволяет большему количеству электронов притягиваться к отрицательной пластине, отталкивая большее количество электронов из положительной пластины.

Capacitor Dielectric how it works

Итак, если конденсатор полностью заряжен, если мы удалим аккумулятор, он будет удерживать электрический заряд в течение длительного времени, действуя как накопитель энергии.

Теперь, если мы укоротим два конца конденсатора через нагрузку, ток начнет течь через нагрузку. Накопленные электроны с первой пластины начнут перемещаться ко второй пластине, пока обе пластины снова не станут электрически нейтральными.

Capacitor discharge through a load LED - How It Works

Итак, это основной принцип работы конденсатора, а теперь давайте взглянем на некоторые примеры применения.

Конденсаторы развязки (байпаса)

Конденсаторы развязки или конденсаторы байпаса являются типичным примером. Разделительные конденсаторы часто используются вместе с интегральными схемами, и они размещаются между источником питания и землей ИС.

Decoupling Capacitor Bypass How it works

Их работа заключается в фильтрации любых шумов в источнике питания, таких как пульсации напряжения, которые возникают, когда источник питания в течение очень короткого периода времени понижает напряжение или когда часть цепи переключается, вызывая колебания мощности. поставка.В момент падения напряжения конденсатор временно действует как источник питания, минуя основной источник питания.

Преобразователь переменного тока в постоянный

Другой типичный пример применения — конденсаторы, используемые в адаптерах постоянного тока. Для преобразования переменного напряжения в постоянное обычно используется диодный выпрямитель, но без конденсаторов он не сможет справиться с этой задачей.

AC to DC Converter Circuit Schematics Diagram

Выходной сигнал выпрямителя представляет собой форму волны. Таким образом, когда на выходе выпрямителя увеличивается заряд конденсатора, а на выходе выпрямителя падает, конденсатор разряжается и, таким образом, сглаживает выход постоянного тока.

Связано: что такое триггер Шмитта и как он работает

Фильтрация сигналов

Фильтрация сигналов — еще один пример применения конденсаторов. Благодаря особому времени отклика они могут блокировать низкочастотные сигналы, позволяя проходить более высоким частотам.

3 way crossover circuit schematics capacitors usage

Используется в радиоприемниках для настройки нежелательных частот и в схемах кроссовера внутри динамиков, для разделения низких частот для вуфера и высоких частот для твитера.

Конденсаторы как накопители энергии

Еще одно довольно очевидное применение конденсаторов — для накопления и подачи энергии. Хотя они могут накапливать значительно меньше энергии по сравнению с батареями того же размера, их срок службы намного выше, и они способны передавать энергию намного быстрее, что делает их более подходящими для приложений, где требуется большой всплеск мощности.

Capacitor specifications as energy storage device

Вот и все для этого урока, не стесняйтесь задавать любой вопрос в разделе комментариев ниже.

Capacitor specifications as energy storage device.

Конденсаторы Physics A-Level

Изучив этот раздел, вы должны уметь:

  • описать действие конденсатора и рассчитать накопленный заряд
  • Свяжите энергию, запасенную в конденсаторе, с графиком зависимости заряда от напряжения
  • объяснить значение постоянной времени цепи, содержащей конденсатор и резистор

В этом разделе рассматриваются следующие темы

Действие конденсатора

Конденсаторы накапливают заряд и энергию.У них много приложений, включая сглаживание переменных постоянных токов, электронные схемы синхронизации и питание памяти для хранения информации в калькуляторах, когда они выключены.

Конденсатор состоит из двух параллельных проводящих пластин, разделенных изолятором.

Когда он подключен к источнику напряжения, заряд течет на пластины конденсатора до тех пор, пока разность потенциалов на них не станет такой же, как у источника питания. Поток заряда и окончательный заряд на каждой пластине показаны на диаграмме.

capacitors

Когда конденсатор заряжается, заряд течет во всех частях цепи, кроме между пластинами.

По мере заряда конденсатора:

  • заряд –Q течет на пластину, подключенную к отрицательной клемме питания
  • заряд –Q стекает с пластины, подключенной к положительному выводу источника питания, оставляя на ней заряд + Q
  • пластины конденсатора всегда имеют одинаковое количество заряда, но противоположного знака
  • между пластинами конденсатора не течет заряд.

Емкость

Считается, что конденсатор, показанный на диаграмме выше, хранит заряд Q, что означает, что это количество заряда на каждой пластине. Когда конденсатор заряжен, величина накопленного заряда зависит от:

  • напряжение на конденсаторе
  • его емкость: то есть чем больше емкость, тем больше заряда сохраняется при заданном напряжении.

КЛЮЧЕВОЙ МОМЕНТ — Емкость конденсатора C определяется как: capacitance Где Q — это заряд, накопленный при напряжении на конденсаторе V.Емкость измеряется в фарадах (Ф). 1 фарад — это емкость конденсатора, который накапливает 1 C заряда, когда p.d. поперёк — 1 В.

Поскольку обкладки конденсатора имеют одинаковое количество заряда противоположного знака, общий заряд фактически равен нулю. Однако, поскольку заряды разделены, они обладают энергией и могут работать, когда собраны вместе.

Один фарад — это очень большое значение емкости. Общие значения емкости обычно измеряются в пикофарадах (1 пФ = 1.0 × 10 –12 F) и микрофарад (1 мкФ = 1,0 × 10 –6 F).

Конденсаторы комбинированные

Как и резисторы, конденсаторы можно подключать последовательно или параллельно для достижения различных значений емкости.

При последовательном подключении конденсаторов к источнику напряжения:

  • независимо от того, каково значение его емкости, каждый конденсатор в комбинации хранит одинаковое количество заряда, поскольку любая пластина может только потерять или получить заряд, полученный или потерянный пластиной, к которой она подключена
  • общий заряд, накопленный последовательной комбинацией, является зарядом на каждой из двух внешних пластин и равен заряду, накопленному на каждом отдельном конденсаторе
  • поскольку приложенная разность потенциалов распределяется между конденсаторами, общий накопленный заряд меньше, чем заряд, который мог бы накапливать любой из конденсаторов, индивидуально подключенных к источнику напряжения.

Последовательное добавление конденсаторов приводит к уменьшению емкости. При добавлении дополнительного конденсатора p.d. по каждому из них сохраняется меньше заряда.

На схеме показан заряд пластин трех последовательно соединенных конденсаторов.

charge on capacitator plates

Это приводит к тому, что эффективное значение последовательной комбинации конденсаторов меньше, чем конденсатор наименьшего номинала в комбинации.

КЛЮЧЕВОЙ МОМЕНТ — Емкость C ряда конденсаторов, соединенных последовательно, определяется выражением: capacitance series

Распространенной ошибкой при использовании этого отношения является то, что забывают выполнить окончательный ответ, давая ответ, равный 1 / C вместо C.

В отличие от этого, параллельное соединение конденсаторов приводит к увеличению емкости, так что эффективное значение количества конденсаторов, включенных параллельно, всегда больше, чем наибольшее значение комбинации.

При параллельном подключении конденсаторов:

  • все конденсаторы заряжены до одинаковой разности потенциалов
  • каждый конденсатор сохраняет такое же количество заряда, как если бы он был подключен сам по себе к тому же напряжению
  • добавление дополнительного конденсатора увеличивает общий накопленный заряд.

КЛЮЧЕВЫЙ МОМЕНТ — Емкость C нескольких конденсаторов, подключенных параллельно, определяется выражением: C = C 1 + C 2 + C 3

Выражения для конденсаторов, соединенных последовательно и параллельно, аналогичны выражениям для резисторов, но наоборот.

Энергия, запасенная в конденсаторе

Для зарядки конденсатора необходима энергия от источника питания или другого источника.Заряженный конденсатор может поставлять энергию, необходимую для поддержания памяти в калькуляторе или тока в цепи, когда напряжение питания слишком низкое.

Количество энергии, хранящейся в конденсаторе, зависит от:

  • количество заряда на пластинах конденсатора
  • напряжение, необходимое для размещения этого заряда на пластинах конденсатора, то есть емкость конденсатора.

График ниже показывает, как напряжение на пластинах конденсатора зависит от накопленного заряда.

voltage versus charge stored

Когда к конденсатору добавляется заряд ΔQ при разности потенциалов V, выполняемая работа равна ΔQV. Общая работа, выполняемая при зарядке конденсатора, составляет ΣΔQV.

Заштрихованная область между линией графика и осью заряда представляет собой энергию, запасенную в конденсаторе.

КЛЮЧЕВЫЙ ТОЧЕК — Энергия E, запасенная в конденсаторе, определяется выражением E = ½ QV = ½ CV 2 где Q — заряд накапливается на конденсаторе емкости C, когда напряжение на нем равно V.

Зарядка и разрядка конденсатора

Когда конденсатор заряжается путем прямого подключения к источнику питания, в цепи очень мало сопротивления, и кажется, что конденсатор заряжается мгновенно. Это потому, что процесс происходит за очень короткий промежуток времени.

Установка резистора в цепь зарядки замедляет процесс. Чем больше значения сопротивления и емкости, тем больше времени требуется для зарядки конденсатора.

На приведенной ниже диаграмме показано, как ток изменяется со временем при зарядке конденсатора.

charging a capacitor

Наличие резистора в цепи означает, что для зарядки конденсатора необходимо проделать дополнительную работу, поскольку при прохождении заряда через резистор всегда происходит передача энергии в тепло.

Этот график показывает, что:

  • зарядный ток падает по мере того, как заряд конденсатора, и напряжение на конденсаторе увеличивается
  • зарядный ток уменьшается в той же пропорции через равные промежутки времени.

Второй пункт списка показывает, что изменение тока происходит по той же схеме, что и активность радиоактивного изотопа. Это пример экспоненциального изменения , зарядный ток уменьшается экспоненциально.

Приведенный выше график можно использовать для расчета количества заряда, протекающего на конденсатор, путем оценки площади между линией графика и осью времени. Поскольку ток = расход заряда , отсюда следует, что:

КЛЮЧЕВЫЙ МОМЕНТ — На графике зависимости тока от времени область между линией графика и осью времени представляет поток заряда.

Для расчета расхода заряда:

  • Оцените количество целых квадратов между линией графика и осью времени
  • умножьте это на «значение заряда» каждого квадрата, полученное путем вычисления ΔQ × Δt для одного квадрата.

Постоянная времени

Когда конденсатор заряжается или разряжается, величина заряда конденсатора изменяется экспоненциально. Графики на схеме показывают, как заряд конденсатора изменяется со временем, когда он заряжается и разряжается.

Графики, показывающие изменение напряжения во времени, имеют такую ​​же форму. Поскольку В = Q / C , отсюда следует, что единственное различие между графиком заряда-времени и графиком напряжение-время — это метка и масштаб по оси ординат.

Эти графики показывают, что заряд конденсатора приближается к конечному значению, нулю в случае разряда конденсатора, но никогда не достигает его.

capacitor charging

Скорость, с которой изменяется заряд конденсатора, зависит от постоянной времени цепи зарядки или разрядки.

КЛЮЧ — Постоянная времени τ цепи заряда или разряда конденсатора является произведением сопротивления и емкости:
τ = RC. τ измеряется в с.

Чем больше значения R и C , тем дольше длится процесс зарядки или разрядки. Знание значений R и C позволяет рассчитать величину заряда конденсатора в любое время после того, как конденсатор начал заряжаться или разряжаться.Это полезно в схемах синхронизации, где переключатель срабатывает после того, как заряд и, следовательно, p.d. достигли определенного значения.

Постоянная времени τ представляет:

  • время, необходимое для того, чтобы заряд конденсатора упал до 1 / e от его начального значения, когда конденсатор разряжается
  • время, необходимое для повышения заряда конденсатора до 1–1 / e от его окончательного значения, когда конденсатор заряжается

Роль постоянной времени аналогична роли полураспада при радиоактивном распаде.Когда конденсатор разряжается, 1 / e 2 первоначального заряда остается после времени и 1 / e 3 остается после .

Экспоненциальная функция e используется для вычисления заряда, оставшегося на разряжающемся конденсаторе.

КЛЮЧЕВЫЙ МОМЕНТ — Заряд Q на конденсаторе емкости C, оставшееся время t после начала разряда, определяется выражением Q = Q 0 e –t / τ , где Q 0 — это начальный заряд конденсатора.

Здесь e — экспоненциальная функция, обратная натуральному логарифму, ln. Не путайте это с кнопкой EXP на калькуляторе, которая используется для ввода степеней 10.

Это выражение показывает, что когда t равно τ , т.е. по истечении одной постоянной времени, оставшийся заряд равен Q 0 e –1 , или Q 0 / e

ПРОВЕРКА ПРОГРЕССА

progress check

,Емкость

| Определение, формула, единицы измерения и факты

Емкость , свойство электрического проводника или набора проводников, которое измеряется количеством отделенного электрического заряда, который может храниться на нем на единицу изменения электрического потенциала. Емкость также подразумевает соответствующее накопление электрической энергии. Если электрический заряд передается между двумя первоначально незаряженными проводниками, оба становятся одинаково заряженными, один положительно, другой отрицательно, и между ними устанавливается разность потенциалов.Емкость C — это отношение количества заряда q на любом проводе к разности потенциалов V между проводниками, или просто C = q / В.

Британская викторина

Гаджеты и технологии: факт или вымысел?

Виртуальная реальность используется только в игрушках.

Как в практических, так и в научных системах метр-килограмм-секунда единицей электрического заряда является кулон, а единицей разности потенциалов является вольт, так что единица емкости — фарад (обозначенная буквой F) — равна единице. кулон на вольт. Один фарад — это чрезвычайно большая емкость. Обычно используются удобные деления на одну миллионную фарада, называемую микрофарад ( μ F), и одну миллионную микрофарада, называемую пикофарад (пФ; более старый термин, микромикрофарад, μμ F).В электростатической системе единиц емкость имеет размерность расстояния.

Емкость в электрических цепях намеренно вносится устройством, называемым конденсатором. Его открыл прусский ученый Эвальд Георг фон Клейст в 1745 году и независимо голландский физик Питер ван Мушенбрук примерно в то же время, когда исследовал электростатические явления. Они обнаружили, что электричество, полученное от электростатической машины, можно хранить в течение определенного периода времени, а затем высвобождать.Устройство, которое стало известно как лейденская банка, состояло из закрытой пробкой стеклянной колбы или сосуда, наполненного водой, с гвоздем, протыкавшим пробку и погружавшимся в воду. Удерживая банку в руке и прикоснувшись гвоздем к проводнику электростатической машины, они обнаружили, что после отсоединения гвоздя можно получить электрический ток, коснувшись его свободной рукой. Эта реакция показала, что часть электричества от машины была сохранена.

Простой, но фундаментальный шаг в эволюции конденсатора был сделан английским астрономом Джоном Бевисом в 1747 году, когда он заменил воду металлической фольгой, образующей покрытие на внутренней поверхности стекла, и другим, покрывающим внешнюю поверхность.Эта форма конденсатора с проводником, выступающим из горловины сосуда и касающимся футеровки, имела в качестве основных физических характеристик два проводника протяженной площади, которые были почти одинаково разделены изолирующим или диэлектрическим слоем, сделанным настолько тонким, насколько это возможно. Эти особенности сохранены во всех современных конденсаторах.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Конденсатор, также называемый конденсатором, по сути, представляет собой сэндвич из двух пластин из проводящего материала, разделенных изоляционным материалом или диэлектриком.Его основная функция — хранить электрическую энергию. Конденсаторы различаются размером и геометрическим расположением пластин, а также типом используемого диэлектрического материала. Отсюда и такие названия, как слюдяные, бумажные, керамические, воздушные и электролитические конденсаторы. Их емкость может быть фиксированной или регулируемой в диапазоне значений для использования в схемах настройки.

Энергия, запасаемая конденсатором, соответствует работе, выполняемой (например, аккумулятором) по созданию противоположных зарядов на двух пластинах при приложенном напряжении.Количество заряда, которое может быть сохранено, зависит от площади пластин, расстояния между ними, диэлектрического материала в пространстве и приложенного напряжения.

Конденсатор, включенный в цепь переменного тока, попеременно заряжается и разряжается каждый полупериод. Таким образом, время, доступное для зарядки или разрядки, зависит от частоты тока, и если необходимое время больше, чем продолжительность полупериода, поляризация (разделение заряда) не завершается.В таких условиях диэлектрическая проницаемость оказывается меньше, чем наблюдаемая в цепи постоянного тока, и изменяется с частотой, становясь ниже на более высоких частотах. Во время изменения полярности пластин заряды должны перемещаться через диэлектрик сначала в одном направлении, а затем в другом, и преодоление сопротивления, с которым они сталкиваются, приводит к выделению тепла, известному как диэлектрические потери, характеристика, которая должна быть учитывается при применении конденсаторов в электрических цепях, например, в радио- и телевизионных приемниках.Диэлектрические потери зависят от частоты и материала диэлектрика.

За исключением утечки (обычно небольшой) через диэлектрик, через конденсатор не протекает ток, когда на него действует постоянное напряжение. Однако переменный ток проходит легко и называется током смещения.

.Конденсаторы и емкость

— материалы исследования для IIT JEE

  • Полный курс физики — 11 класс
  • ПРЕДЛАГАЕМАЯ ЦЕНА: рупий.2968

  • Просмотр подробностей
 


Что такое конденсатор?

Конденсатор, также известный как Электрический конденсатор , представляет собой двухконтактный электрический компонент, который имеет способность или емкость для хранения энергии в виде электрического заряда .Конденсаторы обычно предназначены для усиления и увеличения эффекта емкости, учитывая размер и форму конденсатора. Емкость для хранения варьируется от небольшой емкости до большой емкости.

 Capacitor

Конденсаторы

Емкость в физике

Способность конденсатора накапливать энергию в виде электрического заряда известна как Емкость .

Другими словами, емкость , может быть описана как способность конденсатора накапливать, и она измеряется в фарадах .

Например, , если мы подключим конденсатор к 9-вольтовой батарее и измерим, что он хранит 9 кулонов заряда, его емкость будет равна 1 фараду

Конструкция конденсатора

Большинство конденсаторов обычно содержат два электрических проводника, поверхность которых разделена диэлектриком или между металлическими пластинами .

Проводники могут быть в форме электролита, тонкой пленки, спеченного металла и т. Д.

 Construction of Capacitor

Конструкция конденсатора

Роль непроводящего диэлектрика в конденсаторе

Непроводящий диэлектрик используется для увеличения емкости конденсатора для зарядки. В качестве диэлектриков в конденсаторе обычно используются следующие материалы:

  • Example of Ceramic Capacitor Слюда

  • Пленка полиэтиленовая

  • Стекло

  • Бумага

  • Керамика

Добавление конденсаторов

Конденсаторы можно добавить двумя способами

  • Либо в серийном

  • Или параллельно

в серии

Конденсатор С 1 и С 2 соединены последовательно.Когда конденсаторы подключаются последовательно, общая емкость, которая составляет С , меньше любой емкости конденсатора.

capacitors connected in series

конденсаторы, включенные последовательно

Емкость конденсатора, соединенного последовательно, можно рассчитать как:

capacitors connected in series

Параллельно

Конденсатор С 1 и С 2 соединены параллельно. Когда конденсаторы подключены параллельно, общая емкость, которая составляет C, всего , равна любой емкости конденсатора

.

Capacitor connected in parallel

Конденсатор, подключенный параллельно

Емкость конденсатора, подключенного параллельно, можно рассчитать как:

Параллельные емкости

C всего = C 1 + C 2 +….С п

Номинал конденсатора

Значение емкости двух разных конденсаторов может быть совершенно одинаковым, а номинальное напряжение двух конденсаторов различается.

Давайте возьмем два конденсатора, один с малым номинальным напряжением, а другой с высоким номинальным напряжением, тогда, если конденсатор меньшего номинального напряжения будет заменен конденсатором с более высоким номинальным напряжением, повышенное напряжение может повредить меньший конденсатор.

Общее рабочее напряжение постоянного тока конденсатора указано на конденсаторе и составляет 10 В, 16 В, 25 В, 35 В, 50 В, 63 В, 100 В, 160 В, 250 В, 400 В и 1000 В. .

voltage rating on Capacitor

Рис. 1.5 Номинальное напряжение постоянного тока на конденсаторе


Свойства или характеристики конденсатора

Свойства или характеристики конденсаторов могут отличаться друг от друга. Немного характеристик конденсаторов:

Номинальная емкость, (C): Это свойство конденсатора является важным из всех свойств конденсаторов.Он измеряется в пикофарадах (пФ), нано-фарадах (нФ) или микрофарадах (мкФ) и печатается на корпусе конденсатора в виде числа или текста.

Рабочее напряжение, (WV): Общее количество постоянного (DC) или переменного (AC) тока, приложенного к конденсатору без каких-либо сбоев в течение всего срока службы конденсатора. Это указанное выше количество можно определить через рабочее напряжение.

Допуск, (±%): Точно так же, как номинальное напряжение, конденсатор также имеет допуски, которые варьируются от плюсового до минусового значения либо в пикофарадах (± пФ) для конденсаторов малой емкости, как правило, менее 100 пФ, либо в процентах (±%) для конденсаторов более высокой емкости обычно выше 100 пФ.

Leakage Current Ток утечки: Конденсаторы Ток утечки — это небольшой постоянный ток, протекающий в области наноампер (нА). Ток утечки является результатом того, что электроны физически проходят через диэлектрическую среду, вокруг ее краев или между выводами и со временем полностью разряжают конденсатор, если напряжение питания снимается.

Суперконденсатор

Суперконденсатор

, также известный как электрический двухслойный конденсатор (EDLC), Supercap , Ultracapacitor или Goldcap имеет гораздо более высокое значение емкости по сравнению с другими конденсаторами, но с более низкими пределами напряжения

Super Capacitor

Классификация суперконденсаторов

Classification of Super Capacitors

Конденсатор с параллельной пластиной

Конденсатор, состоящий из диэлектрика и электрода, известен как конденсатор с параллельными пластинами.

Используются две параллельные проводящие пластины (электроды) и промежуточная среда из диэлектрика . Значение емкости зависит от материала или среды между двумя пластинами

Parallel Plate Capacitor

A — это общая площадь двух пластин, а d — это расстояние между пластинами.


Емкость параллельного пластинчатого конденсатора

C воздух = ε 0 A / d

C med = 0 A / d

Здесь A — это общая площадь двух пластин, а d — это расстояние между пластинами.

Влияние диэлектрика на емкость конденсатора

Фарадей дал эту теорию, то есть , если пространство между двумя электродами заполнено диэлектриком, емкость конденсатора будет увеличена на .

Если все пространство заполнено диэлектриком, которому не осталось места, то емкость конденсатора будет увеличена на К., и здесь К известна как диэлектрическая постоянная .

Effect of Dielectric on Capacitor

Влияние диэлектрика на конденсатор

Проба

Рассмотрим следующую схему

dielectric between two capacitors

Диэлектрик между двумя конденсаторами

E = E o — E p
Электрическое поле E o во внешней области диэлектрика будет нулевым.Теперь уравнение разности потенциалов между двумя пластинами равно

.

V = o (d-t) + Et
Но E o = E r или K

Следовательно, E = E o / k

Так

V = E o (d-t) + E o t / k

V = E или [d-t + t / k]

Как известно

E o = σ / ε 0
= Q / A ε 0

В = Q / A ε 0 [d — t + t / k]

Емкость конденсатора:

C = Q / V

= A ε 0 / (d — t + t / k)
= A / d — t (1-1 / K)

, то есть , C = A / d-t (1-1 / k)

Итак, C> C o
Ясно, что доказано, что если диэлектрическую пластину поместить в пластины конденсатора, его емкость увеличится на некоторую величину.

Энергия, накопленная в конденсаторе

Работа, выполняемая по перемещению положительного заряда от отрицательного проводника к положительному проводнику против сил отталкивания, известна как энергия , накопленная в конденсаторе .

Energy stored in Capacitor

Это может быть , вычисленное как:

Energy stored in Capacitor

Числовой

(добавление конденсаторов)

  • Ниже представлена ​​схема последовательно подключенных конденсаторов .

capacitors connected serially

Рассчитать общую емкость?

Взяв значения трех конденсаторов, мы можем вычислить общую емкость C T для трех последовательно соединенных конденсаторов как:

capacitors connected serially

Общая емкость,

C T = C 1 + C 2 = 47nF + 47nF = 94nF или 0,094 мкФ

Общая емкость,

C T = C 1 + C 2 = 470 нФ + 1 мкФ

, следовательно, C T = 470 нФ + 1000 нФ = 1470 нФ или 1.47 мкФ

Таким образом, общая или эквивалентная емкость C T электрической цепи, содержащей два или более конденсаторов , подключенных параллельно , представляет собой сумму всех индивидуальных емкостей, сложенных вместе по мере увеличения эффективной площади пластин.

(относится к конденсатору с параллельными пластинами)

  • Конденсатор с параллельными пластинами состоит из двух металлических пластин, каждая площадью A = 150 см 2 , разделенных вакуумным зазором d = 0.60 толщиной см. Какая емкость у этого устройства? Какая разность потенциалов должна быть приложена между пластинами, если конденсатор должен удерживать заряд величиной Q = 1,00 × 10 -3 мкКл на каждой пластине?

Емкость определяется как
capacitors connected serially

Разность напряжений между пластинами и величина заряда Q, накопленного на каждой пластине, связаны соотношением C = Q / V.

Следовательно, если Q = 1.00 Х 10 -3

, затем

capacitors connected serially


(Относится к энергии, накопленной в конденсаторе)

  • Заполненный воздухом конденсатор с параллельными пластинами имеет емкость пФ. С помощью аккумуляторной батареи к пластинам, которые находятся на расстоянии см, прикладывается потенциал 100 В. Какая энергия хранится в конденсаторе? Предположим, что аккумулятор отключен, и пластины перемещаются, пока они не окажутся на расстоянии см друг от друга.Какая сейчас энергия хранится в конденсаторе? Вместо этого предположим, что аккумулятор остается подключенным, и пластины снова перемещаются, пока они не окажутся на расстоянии см. Какая энергия в этом случае хранится в конденсаторе?

Начальная энергия, запасенная в конденсаторе, составляет

capacitors connected serially

Когда расстояние между пластинами увеличивается вдвое, емкость конденсатора уменьшается вдвое до пФ. Если аккумулятор отключен, то этот процесс происходит при постоянном заряде Q.Таким образом, из формулы

следует

capacitors connected serially

, что энергия, запасенная в конденсаторе, удваивается. Таким образом, новая энергия составляет 5,0 x 10 -8 Дж. Между прочим, повышенная энергия конденсатора объясняется работой, совершаемой при разрыве пластин конденсатора (поскольку эти пластины заряжены противоположно, они притягиваются друг к другу.

Если аккумулятор оставить подключенным, то емкость все равно уменьшится вдвое, но теперь процесс происходит при постоянном напряжении В .Из формулы

следует

capacitors connected serially

, что энергия, запасенная в конденсаторе, уменьшена вдвое. Итак, новая энергия составляет 1,25 x 10 -8 Дж. Между прочим, энергия, потерянная конденсатором, передается батарее (фактически, она идет на повторную зарядку батареи). Точно так же работа, выполняемая по разъединению пластин, также возлагается на аккумулятор.

Другие показания

Конденсаторы и емкость

capacitors connected serially

Особенности курса

  • 101 Видеолекция
  • Примечания к редакции
  • Документы за предыдущий год
  • Ментальная карта
  • Планировщик обучения
  • Решения NCERT
  • Обсуждение Форум
  • Тестовая бумага с видео-решением

,
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *