Магнитные двигатели. Виды и устройство. Применение и работа
Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.
Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.
Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.
По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.
Принцип работы
Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.
1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус
Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.
Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.
На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.
Магнитный двигатель Тесла
Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.
По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.
Двигатель Минато
Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.
Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.
Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.
Двигатель Лазарева
Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.
При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.
Двигатель Джонсона
Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.
1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание
Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.
Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.
Магнитный двигатель Перендева
Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.
При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.
Синхронные магнитные двигатели
Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.
1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора
Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.
Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.
Похожие темы:
electrosam.ru
Электромагнитные двигатели: схема, принцип работы
Электромагнитные двигатели — это устройства, которые работают по принципу индукции. Некоторые люди называют их электромеханическими преобразователями. Побочным эффектом данных устройств считается обильное выделение тепла. Существуют модели постоянного и переменного типа.
Также устройства различают по типу ротора. В частности, есть короткозамкнутые и фазные модификации. Сфера применения электромагнитных двигателей очень широкая. Встретить их можно в бытовых приборах, а также промышленных агрегатах. Активно используются они и в самолетостроении.
Схема двигателя
Схема электромагнитного двигателя включает в себя статор, а также ротор. Коллекторы, как правило, применяются щеточного типа. Ротор состоит из вала, а также наконечника. Для охлаждения системы часто устанавливаются вентиляторы. Для свободного вращения вала имеются роликовые подшипники. Также существуют модификации с магнитопроводами, которые являются неотъемлемой частью статора. Над ротором располагается контактное кольцо. В мощных модификациях используется втягивающее реле. Непосредственно подача тока осуществляется через кабель.
Принцип работы двигателя
Как говорилось ранее, принцип действия построен на электромагнитной индукции. При подключении модели образуется магнитное поле. Затем на обмотке возрастает напряжение. Под силой действия магнитного поля в действие приводится ротор. Частота вращения устройства в первую очередь зависит от количества магнитных полюсов. Коллектор в данном случае играет роль стабилизатора. Подача тока в цепь происходит через статор. Также важно отметить, что для защиты двигателя используются кожухи и уплотнители.
Как сделать своими руками?
Сделать обычный электромагнитный двигатель своими руками довольно просто. В первую очередь следует заняться ротором. Для этого придется найти металлический стержень, который будет играть роль вала. Также потребуется два мощных магнита. На статоре должна находиться обмотка. Далее останется лишь установить щеточный коллектор. Электромагнитные двигатели-самоделки подсоединяются к сети через проводник.
Модификации для машин
Электромагнитные двигатели для автомобилей изготавливаются только коллекторного типа. Мощность их в среднем составляет 40 кВт. В свою очередь, параметр номинального тока равняется 30 А. Статоры в данном случае используются двухполюсные. У некоторых модификаций имеется клеммная коробка. Для охлаждения системы применяются вентиляторы.
Также в устройствах предусмотрены специальные отверстия для циркуляции воздуха. Роторы в двигателях устанавливаются с металлическими сердечниками. Для защиты вала используются уплотнители. Статор в данном случае находится в кожухе. Электромагнитные двигатели для машин с втягивающими реле встречаются редко. В среднем диаметр вала не превышает 3.5 см.
Устройства для самолетов
Работа двигателей данного типа построена на принципе электромагнитной индукции. Для этого статоры применяются трехполюсного типа. Также электромагнитные двигатели летательных аппаратов включают в себя бесщеточные коллекторы. Клеммные коробки в устройствах располагаются над контактными кольцами. Неотъемлемой частью статора является якорь. Вал вращается благодаря роликовым подшипникам. У некоторых модификаций применяются щеткодержатели. Также важно упомянуть о различных типах клеммных коробок. В данном случае многое зависит о мощности модификации. Электромагнитные двигатели для самолетов с целью охлаждения оборудуются вентиляторами.
Двигатели-генераторы
Электромагнитные двигатели-генераторы выпускаются со специальными бендиксами. Также схема устройства включает в себя втягивающие реле. Для запуска ротора применяются сердечники. Статоры в устройствах используются двухполюсного типа. Непосредственно вал у них крепится на роликовых подшипниках. У большинства двигателей имеется резиновая заглушка. Таким образом, ротор изнашивается медленно. Еще есть модификации с щеткодержателями.
Модели с короткозамкнутым ротором
Электромагнитный двигатель с короткозамкнутым ротором часто устанавливается в бытовых приборах. Мощность моделей в среднем равняется 4 кВт. Непосредственно статоры используются двухполюсного типа. Роторы крепятся в задней части двигателя. Вал у моделей применяется небольшого диаметра. На сегодняшний день чаще всего выпускаются асинхронные модификации.
Клеммные коробки в устройствах отсутствуют. Для подачи тока используются специальные полюсные наконечники. Также схема двигателя включает в себя магнитопроводы. Крепятся они возле статоров. Еще важно отметить, что выпускаются устройства с щеткодержателями и без них. Если рассматривать первый вариант, то в данном случае устанавливаются специальные зубчатые передачи. Таким образом, статор ограждается от магнитного поля. Устройства без щеткодержателя имеют уплотнитель. Бендиксы в двигателях устанавливаются за статором. Для их фиксации применяются шпонки. Недостатком данных устройств считается быстрый износ сердечника. Возникает он из-за повышенной температуры в двигателе.
Модификации с фазным ротором
Электромагнитный двигатель с фазным ротором устанавливается на станки и часто используется в тяжелой промышленности. Магнитопроводы в данном случае имеются с якорями. Отличительной чертой устройств принято считать большие валы. Непосредственно напряжение на обмотку подается через статор. Для вращения вала используется щеткодержатель. В некоторых из них установлены контактные кольца. Также важно отметить, что мощность моделей в среднем составляет 45 кВт. Непосредственно питание двигателей может осуществляться только от сети с переменным током.
Коллекторный электромагнитный двигатель: принцип работы
Коллекторные модификации активно применяются для электроприводов. Принцип действия у них довольно простой. После подачи напряжения в цепь задействуется ротор. Электромагнитное поле запускает процесс индукции. Возбуждение обмотки заставляет вал ротора вращаться. Тем самым приводится в действие диск устройства. Для уменьшения силы трения используются подшипники. Также важно отметить, что в моделях устанавливаются щеткодержатели. В задней части устройств часто имеется вентилятор. Для того чтобы вал не терся об уплотнитель, применяется защитное кольцо.
Бесколлекторные модификации
Бесколлекторные модификации в наше время не являются распространенными. Используются они для вентиляционных систем. Отличительной их особенностью считается бесшумность. Однако следует учитывать, что модели выпускаются небольшой мощности. В среднем указанный параметр не превышает 12 кВт. Статоры в них часто устанавливаются двухполюсного типа. Валы используются короткие. Для ограждения ротора применяются специальные уплотнители. Иногда двигатели заключаются в кожух, у которого имеются вентиляционные каналы.
Модели с независимым возбуждением
Модификации данного типа отличаются клеммными магнитопроводами. В данном случае устройства работают в сети только с переменным током. Непосредственно напряжение в первую очередь подается на статор. Роторы у моделей изготавливаются с коллекторами. У некоторых модификаций мощность достигает 55 кВт.
По типу якорей устройства отличаются. Щеткодержатели часто устанавливаются на стопорном кольце. Также важно отметить, что коллекторы в устройствах используются с уплотнителями. Диски в данном случае располагаются за статорами. У многих двигателей бендиксы отсутствуют.
Схема двигателя с самовозбуждением
Электромагнитные двигатели данного типа способны похвастаться высокой мощностью. В данном случае обмотки имеются высоковольтного типа. Подача напряжения происходит через клеммные контакты. Непосредственно ротор крепится за щеткодержателем. Уровень рабочего тока в устройствах составляет 30 А. В некоторых модификациях применяются якоря с щеткодержателями.
Также есть устройства с однополюсными статорами. Непосредственно вал находится в центре двигателя. Если рассматривать устройства большой мощности, то у них применяются вентилятор для охлаждения системы. Также на кожухе располагаются небольшие отверстия.
Модели с параллельным возбуждением
Электромагнитные двигатели данного типа изготавливаются на базе щеточных коллекторов. Якоря в данном случае отсутствуют. Вал в устройствах крепится на роликовых подшипниках. Также для уменьшения силы трения используются специальные лапы. У некоторых конфигураций есть магнитопроводы. Подключаться модели могут только к сети с постоянным током.
Еще важно отметить, что на рынке в основном представлены трехтактные модификации. Щеткодержатели в устройствах выполнены в форме цилиндров. По мощности модели отличаются. В среднем параметр рабочего тока на холостом ходе не превышает 50 А. Для усиления электромагнитного поля применяются роторы с высоковольтной обмоткой. У некоторых конфигураций используются наконечники на магнитопроводах.
Устройства последовательного возбуждения
Принцип работы двигателей данного типа довольно простой. Непосредственно напряжение подается на статор. Далее ток проходит по обмотке ротора. На данном этапе происходит возбуждение первичной обмотки. Вследствие этого приводится в действие ротор. Однако следует учитывать, что работать двигатели способны только в сети с переменным током. Наконечники в данном случае применяются с магнитопроводом.
Некоторые устройства оснащены щеткодержателями. Мощность моделей колеблется от 20 до 60 кВт. Для фиксации вала используются стопорные кольца. Бендиксы в данном случае располагаются в нижней части конструкции. Клеммники отсутствуют. Также важно отметить, что вал устанавливается различного диаметра.
Двигатели смешанного возбуждения
Электромагнитные двигатели данного типа могут использоваться только для приводов. Ротор здесь чаще всего устанавливается с первичной обмоткой. В данном случае показатель мощности не превышает 40 кВт. Номинальная перегрузка системы составляет около 30 А. Статор в устройствах применяется трехполюсного типа. Подключать указанный двигатель можно только в сеть с переменным током. Клеммные коробки у них используются с контактами.
Некоторые модификации оснащены щеткодержателями. Также на рынке представлены устройства с вентиляторами. Уплотнители чаще всего располагаются над статорами. Действуют устройства по принципу электромагнитной индукции. Первичное возбуждение осуществляется на магнитопроводе статора. Также важно отметить, что в устройствах применятся высоковольтная обмотка. Для фиксации вала используются защитные кольца.
Устройства переменного тока
Схема модели данного типа включает статор двухполюсного типа. В среднем мощность устройства равняется 40 кВт. Ротор здесь применяется с первичной обмоткой. Также есть модификации, у которых имеются бендиксы. Устанавливаются они у статора и играю роль стабилизатора электромагнитного поля.
Для вращения вала применяется ведущая шестерня. В данном случае лапы устанавливаются для уменьшения силы трения. Также используются полюсные наконечники. Для защиты механизма применяются кожухи. Магнитопроводы у моделей устанавливаются лишь с якорями. В среднем рабочий ток в системе поддерживается на уровне 45 А.
Синхронные устройства
Схема синхронного двигателя включает в себя двухполюсный статор, а также щеточный коллектор. В некоторых устройствах применяется магнитопровод. Если рассматривать бытовые модификации, то в них используются щеткодержатели. В среднем параметр мощности составляет 30 кВт. Устройства с вентиляторами встречаются редко. У некоторых моделей применяются зубчатые передачи.
Для охлаждения двигателя на кожухе имеются вентиляционные отверстия. В данном случае стопорное кольцо устанавливается у основания вала. Обмотка используется низковольтного типа. Принцип работы синхронной модификации построен на индукции электромагнитного поля. Для этого в статоре устанавливаются магниты разной мощности. При возбуждении обмотки вал начинается вращаться. Однако частотность у него невысокая. Мощных модели имеют коллекторы с реле.
Схема асинхронного двигателя
Асинхронные модели являются компактными и часто используются в бытовых приборах. Однако в тяжелой промышленности они также являются востребованными. В первую очередь следует отметить их защищенность. Роторы в устройствах применяются только однополюсного типа. Однако статоры устанавливаются с магнитопроводами. В данном случае обмотка применяется высоковольтного типа. Для стабилизации электромагнитного поля есть бендикс.
Крепится он в устройстве благодаря шпонке. Втягивающее реле в них располагается за якорем. Вал устройства вращается на специальных роликовых подшипниках. Также важно отметить, что есть модификации с бесщеточными коллекторами. Используются они в основном для приводов различной мощности. Сердечники в данном случае установлены удлиненные, и располагаются они за магнитопроводами.
fb.ru
Магнитный двигатель своими руками: как сделать вечный электродвигатель
Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.
Что такое магнитный двигатель
Все вечные двигатели можно разделить на 2 вида:
- Первые;
- Вторые.
Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.
Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:
- Николай Лазарев;
- Майк Брэди;
- Говард Джонсон;
- Кохеи Минато;
- Никола Тесла.
Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.
На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:
- Работают благодаря энергии магнитных полей.
- Импульсного действия с возможностью контроля и дополнительного источника питания.
- Технологии, которые совмещают в себе принципы обоих силовых агрегатов.
Общее устройство и принцип работы
Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:
- ротор с постоянным магнитом;
- статор с электрическим магнитом;
- двигатель.
На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.
По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.
История возникновения вечного двигателя
Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.
В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.
Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.
Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.
Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.
Магнитный униполярный двигатель Тесла
Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.
Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.
Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.
Тесла известен большим количеством полезных изобретений.
Двигатель Минато
Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.
Специалисты отмечают высокий уровень бесшумности и вместе с этим, эффективность. Как утверждает его создатель, такой самовращающийся двигатель магнитного типа как этот имеет коэффициент полезного действия, выше 300%.
Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.
Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.
Магнитный мотор Говарда Джонсона
Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.
Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.
Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.
Генератор Перендева
Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.
Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.
Синхронный двигатель на постоянных магнитах
Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.
Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.
Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.
Как собрать двигатель самостоятельно
Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.
Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.
В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.
Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.
Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.
Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.
Какие достоинства и недостатки имеют реально работающие магнитные двигатели
Среди преимуществ таких агрегатов, можно отметить следующие:
- Полная автономность с максимальной экономией топлива.
- Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
- Такой двигатель работает до полного эксплуатационного износа.
Пока что, не лишены такие двигатели и недостатков:
- Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
- Большое количество моделей не может эффективно работать в бытовых условиях.
- Есть небольшие сложности в подключении даже готового агрегата.
- Стоимость таких двигателей достаточно велика.
Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.
odinelectric.ru
Электромагнитный двигатель с КПД > 100%: миф или реальность?
Конечно, это справедливо. Любому двигателю нужен источник энергии. Двигателю внутреннего сгорания — бензин, электродвигателю — источник электроэнергии, например, аккумуляторы. Но бензин не вечен, его запас нужно постоянно пополнять, да и аккумуляторы требуют периодической подзарядки.
Однако если использовать источник энергии, который бы не нуждался в пополнении, то есть неисчерпаемый источник энергии, двигатель с КПД больше 100% вполне мог бы иметь право на существование.
На первый взгляд существование такого источника в природе невозможно. Однако это только на первый, неподготовленный, взгляд.
Возьмем, к примеру, гидроэлектростанцию. Вода, собранная в огромное водохранилище, падает с большой высоты плотины и вращает гидротурбину, которая, в свою очередь, вращает электрогенератор. Электрогенератор вырабатывает электроэнергию.
Вода падает под действием гравитации Земли. При этом совершается работа по выработке электроэнергии, хотя гравитация Земли, являясь источником энергии притяжения, не уменьшается. Затем вода под действием излучения Солнца и все той же гравитации снова возвращается в водохранилище. Солнце, конечно, не вечное, но на пару миллиардов лет его хватит. Ну а гравитация опять совершает работу, вытягивая влагу из атмосферы, и опять не уменьшаясь ни на йоту. По своей сути гидроэлектростанция является гидроэлектрогенератором с КПД больше 100%, только громоздким и дорогим в обслуживании. Тем не менее, работа гидроэлектростанций наглядно показывает то, что создание двигателя с КПД больше 100% вполне осуществимо, ведь не только гравитация может служить источником неисчерпаемой энергии.
Как известно, постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что-либо притягиваешь. Если постоянный магнит притянул к себе железный предмет, он тем самым совершил работу, но его сила при этом не уменьшилась. Это уникальное свойство постоянного магнита позволяет использовать его в качестве источника неисчерпаемой энергии.
Конечно, создание двигателя с КПД больше 100% на основе постоянного магнита очень смахивает на создание пресловутого «вечного двигателя», модели коего заполонили страницы интернета, но это не так. Магнитный двигатель не вечный, но даровой. Рано или поздно его детали износятся и потребуют замены. При этом сам источник энергии — постоянный магнит — практически вечен.
Правда, некоторые специалисты утверждают, что постоянный магнит постепенно теряет свою притягивающую силу в результате так называемого старения. Это утверждение неверно, но даже если бы это было так, он не изнашивается механически и вернуть его в прежнее, рабочее состояние можно всего одним магнитным импульсом. А производители современных постоянных магнитов гарантируют их неизменное состояние в течение как минимум 10 лет.
Двигатель, требующий перезарядки один раз в десять лет и при этом дающий чистую и безопасную энергию, вполне может претендовать на роль спасителя человеческой цивилизации от неизбежного энергетического Армагеддона.
Попытки создания магнитного двигателя с КПД больше 100% делались неоднократно. К сожалению, пока никому не удалось создать чего-либо серьезного. Хотя потребность в таком двигателе в наше время растет с небывалой скоростью. А если есть спрос, то предложения обязательно будут.
Одна из моделей такого двигателя и предлагается на суд специалистов в области электротехники и энтузиастов альтернативной энергетики.
В принципе, ничего сложного в модели магнитного двигателя нет. Однако создание такой модели весьма не просто. Требуются достаточно серьезное станочное оборудование и высокое качество производства.
На рисунке схематически
На схеме изображена конструкция магнитного двигателя с КПД больше 100%.
- Постоянные магниты неодим-железо-бор с максимально возможной индукцией магнитного поля.
- Немагнитный, диэлектрический ротор. Материал ротора — текстолит или стеклотекстолит.
- Статор. Или подшипниковые щиты. Материал — алюминий.
- Контактные кольца. Материал — медь.
- Электромагнитные катушки. Соленоиды, навитые тонким медным проводом.
- Контактные щетки. Материал электрографит.
- Диск управления подачи электрического импульса на электромагнитные катушки.
- Оптопары на просвет. Датчики управления подачи электрического импульса на электромагнитные катушки.
- Шпильки статора, регулирующие зазор между постоянными магнитами и электромагнитными катушками.
- Вал ротора. Материал — сталь.
- Замыкающие магнитопроводы. Кольца из мягкого железа, усиливающие силу постоянных магнитов.
Постоянные магниты расположены в подшипниковых щитах по диаметру с чередующейся полярностью. Электромагнитные катушки расположены в роторе аналогичным способом.
Принцип работы магнитного двигателя основан на взаимодействии постоянного и электромагнитного полей.
Если по катушке намотанной медным проводом (соленоидом) пропустить электрический ток, то в нем возникнет магнитное поле, которое станет взаимодействовать с магнитным полем постоянных магнитов. Другими словами, катушка втянется в зазор между постоянными магнитами.
Если ток выключить, катушка выйдет из зазора между постоянными магнитами без сопротивления.
По своей сути магнитный двигатель является синхронным электромагнитным двигателем, только многополюсным, без использования железа в электромагнитных катушках. Железо хоть и усиливает магнитную силу электромагнитной катушки, в этом двигателе использоваться не может, поскольку остаточная индукция неодимовых магнитов достигает 1,5 Тл, и на перемагничивание железных сердечников электромагнитных катушек, которые намагничиваются под действием постоянных магнитов, затрачивается огромное количество энергии.
А катушка без сердечника будет взаимодействовать с постоянным магнитом при любых (даже самых малых) значениях электрического тока. И будет абсолютно инертна к постоянным магнитам, если тока в катушке не будет.
Конечно, конструкция электромагнитного двигателя, в котором применяются катушки медного провода без железного сердечника, не нова. Есть масса вариантов и масса оригинальных конструкций, в которых используется принцип взаимодействия постоянного тока и электромагнитной катушки без сердечника. Но ни одна конструкция не имеет КПД больше 100%. Причина этого не в конструкции двигателя, а в неправильном понимании природы как постоянного магнита, так и электрического тока.
Дело в том, что до сих пор магнитное поле постоянного магнита считается сплошным и однородным. И электромагнитное поле соленоида также считается однородным и сплошным. К сожалению, это большое заблуждение. Так называемое магнитное поле постоянного магнита в принципе не может быть сплошным, поскольку сам магнит имеет составную структуру из множества спрессованных в одно тело доменов (элементарных магнитов).
По своей сути домены — это те же магниты, только очень маленькие. А если взять два обычных магнита, положить их на стол одноименными полюсами вниз и попытаться сблизить, то нетрудно заметить, что они отталкиваются друг от друга. Так же отталкиваются и их магнитные поля. Так как же магнитное поле постоянного магнита может быть сплошным? Однородным да, но не сплошным.
Магнитное поле постоянного магнита состоит из множества отдельных магнитных полей размером порядка 4 микрон. Их называют силовыми линиями магнитного поля, и еще из школьной программы по физике все знают, как их обнаружить с помощью железных опилок и листа бумаги. На самом деле железные опилки сами становятся доменами и продолжают постоянный магнит. Но поскольку они не закреплены механически, как в толще постоянного магнита, они расходятся веерообразно, что еще раз подтверждает утверждение о том, что магнитное поле постоянного магнита не является сплошным.
Но если магнитное поле постоянного магнита состоит из множества магнитных полей, то и электромагнитное поле соленоида тоже не может быть сплошным. Оно так же должно состоять из множества отдельных магнитных полей. Однако в катушке медного провода нет доменов, есть проводник и электрический ток. А электрический ток — это поток свободных электронов. Каким образом этот электронный поток может создавать магнитное поле?
Магнитный момент электронов обусловлен собственным вращением электронов — спином. Если электроны вращаются в одном направлении и в одной плоскости, их магнитные моменты суммируются. Поэтому они ведут себя подобно доменам в постоянном магните, выстраиваясь в электронные столбы и создавая отдельное электромагнитное поле. Количество таких электромагнитных полей зависит от напряжения электрического тока, приложенного к проводнику.
К сожалению, пока не установлена количественная связь между напряжением и числом магнитных полей. Нельзя сказать, что напряжение в 1 Вольт создает одно поле. Над решением этой задачи еще предстоит поломать голову ученым. Но то, что связь есть, установлено определенно. Определенно установлено и то, что одно магнитное поле постоянного магнита может соединиться только с одним магнитным полем соленоида. Причем наиболее эффективна эта связь будет тогда, когда толщина этих полей совпадет.
Толщина магнитных полей постоянного магнита составляет порядка 4 микрон, поэтому площадь магнитного полюса не должна быть большой, иначе придется пускать на обмотку соленоида слишком большое напряжение.
Возьмем, например, магнит, у которого площадь полюса равна 1 квадратному сантиметру. Разделим его на 4 микрометра. 1/0,0004=2500.
То есть для эффективной работы катушки с магнитом, у которого площадь магнитного полюса 1 квадратный сантиметр, необходимо подать на эту катушку электрический ток с напряжением 2500 Вольт. При этом сила тока должна быть очень маленькой — примерно 0,01 Ампера. Точные значения силы тока еще не установлены, но известно одно: чем меньше сила тока, тем выше КПД. Очевидно, причиной этому является то обстоятельство, что электрическая энергия переносится электронами. Однако один электрон не может перенести большое количество энергии. Чем больше энергии переносит электрон, тем больше потерь от столкновения электронов с атомами в кристаллической решетке проводника электротока.
Если же в работе участвует множество слабо возбужденных электронов, то энергия между ними распределяется поровну и электроны гораздо свободнее проскальзывают между атомами кристаллической решетки проводника. Вот почему по одному и тому же проводнику ток малой силы и высокого напряжения можно передать с гораздо меньшими потерями на сопротивление, чем ток малого напряжения и большой силы.
Таким образом, для эффективного взаимодействия электромагнитной катушки без сердечника с постоянным магнитом необходимо навить катушку тонким проводом (порядка 0,1 мм) с большим количеством витков (около 6 000) и подать на эту катушку электроток большого напряжения. Только при таких условиях двигатель получит возможность иметь КПД больше 100%. Причем чем меньше сила тока в электромагнитных катушках, тем выше КПД. Более того, электрический ток на катушку можно подавать короткими импульсами — в тот момент, когда катушка приблизилась к постоянному магниту на минимальное расстояние. Это еще больше повысит эффективность работы двигателя. Но самую большую эффективность двигатель приобретет в том случае, когда электромагнитные катушки закольцевать с конденсаторами, создав некоторое подобие колебательного контура, широко применяемого в радиоэлектронике для создания электромагнитных волн. Ведь по закону о сохранении энергии электроток не может исчезнуть бесследно. В колебательном контуре он всего лишь перемещается из электромагнитной катушки в конденсатор и обратно, создавая при этом электромагнитные волны. При этом потери электроэнергии минимальные и обусловлены только сопротивлением материала. А на создание электромагнитных волн энергия практически не тратится. По крайней мере, так утверждает учебник по физике. И если использовать это явление на взаимодействие с постоянными магнитами, получим механическую энергию, практически не потратив на это электрическую.
В общем, можно констатировать, что секрет двигателя с КПД больше 100% не в конструкции двигателя, а в принципе взаимодействия постоянного магнита и электромагнитной катушки с электрическим током.
Возьмем, к примеру, автомобильный двигатель внутреннего сгорания. Есть автомобили, двигатели которых имеют простейшую конструкцию и потребляют 20 литров топлива на 100 километров пути, при этом обладая мощностью каких-то 70 лошадиных сил. А есть автомобили, двигатели которых увешаны электроникой, потребляющие всего 10 литров топлива на 100 километров пути, но имеющие мощность до 200 лошадиных сил. Хотя принцип действия у всех автомобилей одинаков. Разница лишь в том, как используется этот принцип действия. Можно просто залить порцию топлива в цилиндр двигателя и как попало поджечь его, а можно подготовить высококачественную топливную смесь, вовремя впрыснуть е в цилиндр и вовремя поджечь.
В электромагнитном двигателе цилиндром служит электромагнитная катушка, а топливом — электрический ток. Но для двигателей внутреннего сгорания придуманы различные виды топлива. От дизельного до высокооктанового. И для каждого типа двигателя предназначен свой тип топлива. Двигатель, рассчитанный на работу с высокооктановым бензином, не может работать на дизельном топливе. И даже работая на низкооктановом бензине, он не сможет дать тех технических возможностей, которые от него требуют.
У электрического тока тоже два параметра — cила тока и напряжение. Электрический ток высокого напряжения можно сравнить с высокооктановым бензином. Пуская на катушку электрический ток высокого напряжения, необходимо следить, чтобы смесь не была слишком обогащенной. То есть сила тока должна быть достаточной, но не превышала необходимой, иначе излишняя энергия просто вылетит в трубу и значительно уменьшит КПД двигателя.
Конечно, сравнивать электромагнитный двигатель с двигателем внутреннего сгорания не совсем уместно. Повысить мощность двигателя внутреннего сгорания можно, увеличив давление в камере сгорания. С электромагнитным двигателем такой фокус не удастся. Можно увеличить длину импульса в электромагнитной катушке. Мощность, конечно, увеличится, но и КПД упадет.
Увеличивать мощность электромагнитного двигателя следует лишь путем увеличения количества полюсов. Это словно собачья упряжка: одно животное, конечно, реальной силы не имеет, но два десятка — это уже что-то весьма серьезное. Поэтому в двигателе применяется многополюсная система, все катушки в которой подключены параллельно. В мощных двигателях количество полюсов может исчисляться сотнями.
В небольшой модели двигателя гораздо эффективнее применять систему, в которой электромагнитные катушки расположены в роторе. В данном случае катушка работает одновременно с двумя магнитами. Это в два раза увеличивает эффективность работы катушки даже при том, что импульс на катушки предается через щеточный узел.
В больших двигателях с многороторной системой гораздо эффективнее применять систему с постоянными магнитами на роторе. Конструкция упрощается, а катушки, которые работают только на одну сторону, находятся только на крайних статорах. Катушки же внутренних статоров работают сразу на две стороны.
В природе самым сильным животным является слон, но он много ест и вес, который он способен поднять, значительно меньше его собственного веса. Поэтому КПД его работы очень низок.
Маленький муравей ест очень мало, а вес, который он может поднять, превышает его собственный вес в 20 раз. Чтобы получить упряжку с большим КПД, нужно запрягать в нее не слона, а кучу муравьев!
Владимир Чернышов
spbenergo.com
Немецкие физики подтвердили работоспособность «невозможного» двигателя на электромагнитной тяге
Немецкие учёные подтвердили, что «невозможный» двигатель на базе электромагнитных волн действительно может создавать ненулевую тягу. Результаты своего исследования они презентовали 27 июля на конференции, посвящённой двигателям и энергетике, которую проводил Американский институт аэронавтики и астронавтики. Представлял работу профессор Мартин Таджмар из Дрезденского технологического университета.
Британский подданный и инженер Роджер Шойер основал компанию Satellite Propulsion Research Ltd в 2001 году специально для разработки электромагнитного двигателя (EmDrive) собственной конструкции. Инженер ранее работал в военной промышленности, принимал участие в космических проектах, включая разработку европейской системы глобальной навигации «Галилео».
Придуманный им двигатель на первый взгляд нарушает закон сохранения импульса — он создаёт тягу из-за отражения электромагнитного излучения от стенок отражательной камеры без какого бы то ни было реактивного выброса. Из-за сомнительной природы двигателя его долго не принимали всерьёз, однако, за проверку работоспособности в конце концов принялось НАСА — агентство с достаточно хорошей репутацией.
Испытания были проведены в прошлом году, и по их результатам агентство в апреле 2014 на конференции по двигателям подтвердило, что двигатель, испытанный ими, действительно создаёт (пусть и небольшую, 30-50 мкН) тягу. Отсутствие нарушений законов физики создатели двигателя объясняют тем, что движущиеся с околосветовыми скоростями магнитные волны подчиняются СТО, поэтому волны и камера находятся в разных системах отсчёта.
За проверку отвечал профессор Гарольд Уайт, который представил свою теоретическую модель работы двигателя. Он считает, что ускорение системе придают виртуальные частицы, которые рождаются в квантовом вакууме и ведут себя так же, как рабочее тело в ионных двигателях — только в данном случае рабочее тело извлекается из «самой ткани пространства-времени», что позволяет не тащить его с собой.
В презентации этого года профессор Мартин Таджмар указывает, что он с командой провели в лаборатории все тесты и подтвердили наличие реальной тяги у двигателя. При этом, как честно указывает учёный, «природа наблюдаемой тяги пока не ясна».
Как говорится в презентации: «Мы пронаблюдали тягу, совпадающую с предсказанными значениями, устранив при этом очень много возможных источников ошибок, что даёт основание для дальнейших исследований. На следующих этапах необходимо будет применить улучшенную магнитную изоляцию, дальнейшее проведение тестов в вакууме и улучшенные модели двигателя с увеличенными показателями тяги, и применением электронного управления, которое позволит настраивать устройство для поиска оптимального режима работы».
Придётся ли учёным переписать кое-какие представления о физических процессах, или же работа этого двигателя вполне объяснима с текущих научных позиций — покажет время. Но повторное подтверждение достаточно авторитетными исследователями даёт повод для осторожного оптимизма.
Интерес к устройству постоянно усиливается. Если на первых порах никто не принимал Шойера всерьёз, в частности, из-за отсутствия у него опубликованных научных работ, то сейчас у него есть и научная работа, и подтверждения работоспособности его детища. Конструкция аппарата гораздо проще, чем, например, те же ионные двигатели, и находится ближе к возможности создания «у себя в гараже».
На тему EmDrive существует уже неплохо наполненная википедия (на английском языке). В мае 2015 года румынский инженер собрал EmDrive самостоятельно и провёл независимое исследование работы этого «ведра с магнетроном», в результате чего также получил подтверждение работоспособности.
Если представить на минуту, что таким двигателем получится оснастить реальный межпланетный аппарат, это откроет невиданные доселе возможности для изучения Солнечной системы. Тот же полёт к Плутону, который у New Horions занял 9 с половиною лет, может быть осуществлён с двигателем типа EmDrive за 18 месяцев. И это только с учётом той тяги, которая была получена в лаборатории на сегодняшний день. Секрет в том, что такой двигатель сможет постоянно ускоряться, а не просто лететь по баллистической траектории.
habr.com
правда или миф, возможности и перспективы, линейный двигатель своими руками
Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.
Что такое магнитный двигатель
В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.
Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.
Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.
И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.
На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:
- Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
- Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
- Устройства, объединяющие в себе принципы работы обоих двигателей.
Устройство магнитного двигателя
Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:
- Сам двигатель;
- Статор с электромагнитом;
- Ротор с установленным постоянным магнитом.
На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.
Принцип работы
Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.
Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.
Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.
Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.
С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.
А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.
Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.
Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.
Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.
Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.
Линейный двигатель своими руками
Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.
Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.
Плюсы и минусы магнитных двигателей
Плюсы:
- Экономия и полная автономия;
- Возможность собрать двигатель из подручных средств;
- Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
- Способен на любой стадии износа выдавать максимальную мощность.
Минусы:
- Негативное влияние магнитных полей на человека;
- Большинство экземпляров не могут пока что работать в нормальных условиях. Но это дело времени;
- Сложности в подключении даже готовых образцов;
- Современные магнитные импульсные моторы имеют довольно высокую цену.
Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.
220v.guru
Красивый соленоидный двигатель
Соленоидный двигатель — это нечто среднее между электродвигателем и ДВС, причём по звуку ближе ко второму. В первой половине девятнадцатого века такую конструкцию всерьёз собирались применять для приведения в движение механизмов. Теперь же на этом принципе строят небольшие макеты, либо работающие просто сами по себе, либо, реже, вращающие крыльчатки вентиляторов. Особенно те самодельщики, которые в детстве прочитали книгу о Карлсоне, запомнившие описанную там аварию, и не решающиеся строить макеты паровых машин, двигателей Стирлинга и ДВС. Автор Instructables под ником Dr Qui решил сделать соленоидный двигатель хоть и без крыльчатки, зато красивым.
Красивым — значит, без единого лишнего отверстия в подставке. Поэтому отладку мастер проводил на временной подставке из фанеры, и лишь определившись с расположением всех компонентов, перенёс их на постоянную. Она сосновая, вырезана ленточной пилой и отшлифована. С обратной стороны в ней сделана выемка для проводов, залитая вместе с ними термоклеем:
Так мастер выполнил клеммы для подключения источника питания:
Этот маховик когда-то был частью двигателя в видеомагнитофоне. Из него удалено всё, кроме, собственно, маховика и вала:
Кривошип выполнен из маховика от CD-привода и винтика от него же:
Вот они по отдельности:
Для крепления всего этого Dr Qui чуть доработал алюминиевый уголок:
И приделал к нему такую штуку с подшипником от того же видеомагнитофонного двигателя:
К маховику для красоты приклеил эпоксидкой «блин» от жёсткого диска (см. КДПВ).
Коромысло вырезал из алюминия:
В центральное отверстие поместил подшипник:
Держатель коромысла сварил средством Durafix из нескольких алюминиевых деталей:
Немного погонял всё это на упомянутой выше фанерной подставке с первым попавшимся соленоидом от телефонного коммутатора. Здесь «блин» от жёсткого диска к маховику ещё не приклеен, а все механические соединения пока сделаны жёсткой проволокой. Контактной группы ещё нет, включать и выключать соленоид пока приходится вручную:
Оказалось, что соленоид быстро перегревается, а способ передачи усилия от него к коромыслу неоптимален. Мастер поискал у себя другой соленоид и нашёл такой:
Закрепил так:
Для передачи усилия от соленоида к коромыслу сделал L-образное звено и держатель для него. Здесь снова не обошлось без Durafix’а:
Передача усилий кусками жёсткой проволоки — это несерьёзно. А вот так солиднее:
В качестве контактной группы Dr Qui применил микропереключатель от CD-привода. К нему приклеил эпоксидкой гайку с полимерной вставкой, шток нарастил держателем, применяемым в авторучках для их крепления на рубашку:
Так мастер сделал кулачок, нажимающий на шток а определённых положениях маховика:
Соединил соленоид механически с L-образным звеном:
Соединил клеммы, микропереключатель и соленоид электрически:
Определившись с расположением компонентов, перенёс их с временной подставки на постоянную:
И запустил двигатель от 12-вольтового аккумулятора, применяемого в ИБП:
Сразу после включения двигателя маховик необходимо подтолкнуть, без этого он вращаться не начнёт, а соленоид перегреется.
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru