+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

какие они бывают / Блог компании НПФ ВЕКТОР / Хабр

В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?

Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».



С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех.

Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.

Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Почему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже.

Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ. Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.


Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся.

Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т. п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.


Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана отдельная статья. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.

Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.


Про принцип работы синхронного двигателя также была отдельная статья. Синхронных приводов бывает несколько подвидов – с магнитами (PMSM) и без (с обмоткой возбуждения и контактными кольцами), с синусоидальной ЭДС или с трапецеидальной (бесколлекторные двигатели постоянного тока, BLDC). Сюда же можно отнести некоторые шаговые двигатели. До эры силовой полупроводниковой электроники уделом синхронных машин было применение в качестве генераторов (почти все генераторы всех электростанций – синхронные машины), а также в качестве мощных приводов для какой-либо серьезной нагрузки в промышленности.

Все эти машины выполнялись с контактными кольцами (можно увидеть на фото), о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется «синхронный двигатель не вошел в синхронизм». Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя «беличью клетку» асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм.
И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.

Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался «бум» синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.



У него много названий. Обычно его коротко называют вентильно-индукторный двигатель (ВИД) или вентильно-индукторная машина (ВИМ) или привод (ВИП). В английской терминологии это switched reluctance drive (SRD) или motor (SRM), что переводится как машина с переключаемым магнитным сопротивлением. Но чуть ниже будет рассматриваться другой подвид этого двигателя, отличающийся по принципу действия. Чтобы не путать их друг с другом, «обычный» ВИД, который рассмотрен в этом разделе, мы на кафедре электропривода в МЭИ, а также на фирме ООО «НПФ ВЕКТОР» называем «вентильно-индукторный двигатель с самовозбуждением» или коротко ВИД СВ, что подчеркивает принцип возбуждения и отличает его от машины, рассмотренной далее. Но другие исследователи его также называют ВИД с самоподмагничиванием, иногда реактивный ВИД (что отражает суть образования вращающего момента).

Конструктивно это самый простой двигатель и по принципу действия похож на некоторые шаговые двигатели. Ротор – зубчатая железка. Статор – тоже зубчатый, но с другим числом зубцов. Проще всего принцип работы поясняет вот эта анимация:

Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):

Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую «на сеть» его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.

Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.

Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются «вверх» от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.
Мы на фирме ООО «НПФ ВЕКТОР» выполнили несколько проектов на базе этого двигателя. Например, делали небольшой привод для насосов горячего водоснабжения, а также недавно закончили разработку и отладку системы управления для мощных (1,6 МВт) многофазных резервируемых приводов для обогатительных фабрик АК «АЛРОСА». Вот машинка на 1,25 МВт:

Вся система управления, контроллеры и алгоритмы были сделаны у нас в ООО «НПФ ВЕКТОР», силовые преобразователи спроектировала и изготовила фирма ООО «НПП «ЦИКЛ+». Заказчиком работы и проектировщиком самих двигателей являлась фирма ООО «МИП «Мехатроника» ЮРГТУ (НПИ)».


Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.

На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).

Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит «посередине» между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.

Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).

С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как «черный ящик», то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:


Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.
Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

На основе данного двигателя мы также сделали несколько успешных проектов. Например, один из них – это серия приводов насосов и вентиляторов для районных теплостанций г. Москвы мощностью 315-1200кВт (ссылка на проект). Это низковольтные (380В) ВИД НВ с резервированием, где одна машина «разбита» на 2, 4 или 6 независимых трехфазных секций. На каждую секцию ставится свой однотипный преобразователь с векторным бездатчиковым управлением. Таким образом можно легко наращивать мощность на базе однотипной конструкции преобразователя и двигателя. При этом часть преобразователей подключено к одному вводу питания районной теплостанции, а часть к другому. Поэтому если происходит «моргушка питания» по одному из вводов питания, то привод не встает: половина секций кратковременно работают в перегрузке, пока питание не восстановится. Как только оно восстанавливается, на ходу в работу автоматически вводятся отдыхавшие секции. Вообще, наверное, этот проект заслуживал бы отдельной статьи, поэтому пока про него закончу, вставив фото двигателя и преобразователей:


К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.

Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.

Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может «отсрочить» переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.

Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой «безмагнитный» привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.

Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):


На рисунке по горизонтальной оси отложен момент двигателя, по вертикальной – частота вращения. Звездочкой отмечена точка номинального режима, например, пусть это будет 60кВт. Заштрихованный прямоугольник – это диапазон, где возможно регулирование синхронной машины без проблем – т.е. «вниз» по моменту и «вниз» по частоте от номинала. Красной линией отмечено, что можно выжать из синхронной машины сверх номинала – небольшое повышение частоты вращения за счет так называемого ослабления поля (на самом деле это создание лишнего реактивного тока по оси d двигателя в векторном управлении), а также показана некоторая возможная форсировка по моменту, чтобы было безопасно для магнитов. Всё. А теперь давайте поставим эту машину в легковое транспортное средство без коробки передач, где батарея рассчитана на отдачу 60кВт. Желаемая тяговая характеристика изображена синим. Т.е. начиная с самой низкой скорости, скажем, с 10км/ч привод должен развивать свои 60кВт и продолжать их развивать вплоть до максимальной скорости, скажем 150км/ч. Синхронная машина и близко не лежала: её момента не хватит даже чтобы заехать на бордюр у подъезда (или на поребрик у парадной, для полит. корректности), а разогнаться машина сможет лишь до 50-60км/ч.
Что же это значит? Синхронная машина не подходит для электротяги без коробки передач? Подходит, конечно же, просто надо по-другому её выбрать. Вот так:

Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60кВт, а 540кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60кВт придется установить синхронную машину и инвертор на 540кВт, просто чтобы «пройти» по требуемому моменту и частоте вращения.

Конечно же, так как описано, никто не делает. Никто не ставит машину на 540кВт вместо 60кВт. Синхронную машину модернизируют, пытаясь «размазать» её механическую характеристику из оптимума в одной точке вверх по скорости и вниз по моменту. Например, прячут магниты в железо ротора (делают инкорпорированными), это позволяет не бояться размагнитить магниты и ослаблять поле смелее, а также перегружать по току побольше. Но от таких модификаций синхронная машина набирает вес, габариты и становится уже не такой легкой и красивой, какой она была раньше. Появляются новые проблемы, такие как «что делать, если в режиме ослабления поля инвертор отключился». ЭДС машины может «накачать» звено постоянного тока инвертора и выжечь всё. Или что делать, если инвертор на ходу пробился — синхронная машина замкнется и может токами короткого замыкания убить и себя, и водителя, и всю оставшуюся живой электронику — нужны схемы защиты и т.п.

Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.

Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?

К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через «теплопроводность» отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным «термосом» — единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.

Здесь нужно отметить, как мастерски обе проблемы асинхронного двигателя обошли в Тесла в своей Model S. Проблему с отводом тепла из ротора они решили… заведя во вращающийся ротор жидкость (у них есть соответствующий патент, где вал ротора полый и он омывается внутри жидкостью, но достоверно я не знаю, применяют ли они это). А вторую проблему с резким уменьшением момента при ослаблении поля… они не решали. Они поставили двигатель с тяговой характеристикой, почти как у меня нарисована для «избыточного» синхронного двигателя на рисунке выше, только у них не 540кВт, а 300кВт. Зона ослабления поля в тесле очень маленькая, где-то два крата. Т.е. они поставили «избыточный» для легкового автомобиля двигатель, сделав вместо бюджетного седана по сути спорт-кар с огромной мощностью. Недостаток асинхронного двигателя обратили в достоинство. Но если бы они попытались сделать менее «производительный» седан, мощностью 100кВт или меньше, то асинхронный двигатель, скорее всего, был бы точно таким же (на 300кВт), просто его искусственно задушили электроникой бы под возможности батареи.

А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее, так как мы на фирме им очень плотно занимаемся. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую мы по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.

Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая «висит» между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, «кинуть» трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – «работают» только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо «работает». Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.

Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

UPD:
Обобщая замечания в комментариях, необходимо дополнить некоторые важные, как оказалось, вещи, которые я изначально опустил как маловажные.
1. Асинхронные двигатели до эры преобразователей частоты регулировали за счет применения так называемого фазного ротора — когда ротор делался в виде обмотки, а не беличьей клетки, а через контактные кольца (как у синхронной машины) фазы ротора выводились наружу. Включая в цепь ротора резисторы можно было мягко пускать АД и безопасно регулировать частоту вращения, изменяя сопротивление. Проблема в том, что очень много энергии при этом терялось в резисторах — иногда до половины от подводимой к приводу мощности.

2. В статье не упомянуты синхронные реактивные машины и их совмещение с синхронными машинами с постоянными магнитами. Если сделать ротор синхронной машины с магнитами явнополюсным — например таким, как нарисован ротор SRD двигателя на gif анимации, то развиваемый момент может быть не только активным, но и реактивным — как у SRD. Подбирая оптимальное сочетание активного и реактивного момента можно частично исключить проблемы классической синхронной машины с магнитами, значительно расширив диапазон работы с постоянством мощности. Получается некий гибрид реактивной машины и синхронной с магнитами.

3. Шаговые двигатели не рассмотрены, потому что по принципу действия они в первом приближении схожи либо с синхронными машинами с постоянными магнитами, либо с SRD двигателями — зависит от конкретного типа шаговика. Только шаговые двигатели, в отличие от «силовых» приводов, имеют гораздо большее количество пар полюсов (зубцов) для увеличения коэффициента электрической редукции: чтобы одному периоду тока соответствовало меньшее угловое перемещение вала. Управление шаговиками обычно тривиальное — последовательный перебор фаз друг за другом (шаги). Более продвинутые системы дробят шаг, подавая в двигатель «микрошаги» — по сути приближая управление к синусоидальному. Еще более продвинутые используют датчик положения ротора и применяют полноценное векторное управление. Но в таком случае и машину нужно делать более качественную, а называться в сумме это будет уже настоящим сервоприводом.

Yamaha представила очень компактный и очень мощный автомобильный электродвигатель (3 фото + видео) » 24Gadget.Ru :: Гаджеты и технологии


Один из мировых лидеров в производстве мотоциклов, скутеров и велосипедов, японская корпорация Yamaha Motor Company, в последнее время активно продвигается на рынке электрического транспорта. Именно инженеры Yamaha первыми предложили в 1993 году устанавливать электрический двигатель на велосипеды. Тем самым было дано начало целой отрасли в промышленности производящей городские малые средства передвижения. Теперь разработчики Yamaha анонсировали выпуск компактных электродвигателей для мотоциклов, а также более мощного, но также небольшого по размерам, электродвигателя для автомобилей.
Японские инженеры анонсировали экономный малогабаритный мотоциклетный электродвигатель мощностью 35 кВт, соответствующий требованием, предъявляемым к современным электромотоциклам. Именно двигатель такой мощности установлен на популярной модели Zero FXS. Вторым двигателем стал более мощный электромотор на 150 кВт, который предназначен для перспективного автомобиля с задним приводом.

Yamaha, по заявлению разработчиков, предлагает силовые блоки для мотоциклов, автомобилей и других транспортных средств, способные обеспечить уникально высокую удельную мощность. Таким образом компания заявила о намерении расширить ассортимент электрических велосипедов и мотоциклов, а также, в перспективе, и выпуск собственного электромобиля.


Значительное снижение массы и размеров двигателя, было достигнуто благодаря фирменным технологиям и инновационным конструкторским решениям. В результате будет уменьшена общая масса средств передвижения, что обеспечит им более высокие скоростные показатели, приведет к снижению потребления энергии, а также снизит производственные расходы, а как следствие и конечную цену продукции.


В настоящее время Yamaha не раскрывает свои дальнейшие планы по развитию электротранспорта и не сообщает конкретную дату выхода на рынок электротранспорта на сверхкомпактных электродвигателях.

Виды электродвигателей и их модификации

Модификации электродвигателей

Асинхронные электродвигатели АИР благодаря несложной конструкции, неимения нестационарных контактов и невысокой цене, при высокой ремонтопригодности, востребованы во всех без исключения отраслях промышленности. Поскольку данный тип моторов очень распространен, он имеет достаточно широкий ряд модификаций. Из-за этого часто встает вопрос, какие электродвигатели выбрать под те или иные задачи. Давайте разберемся, какие бывают электродвигатели и какую маркировку они имеют.

Какие бывают электродвигатели

Электродвигатель с повышенным скольжением (С).

Моторы с повышенным скольжением (АИРС) устанавливают на механизмы, которые работают с большими нагрузками, нежели могут выдержать обычные асинхронные эл двигатели. Также их ставят на агрегаты, которые работают в повторно-кратковременном режиме. Для того чтобы обеспечить данные режимы работы в обмотке ротора используют катанку из стали с более высокой сопротивляемостью к деформациям. По сути, они отличаются от стандартных моторов только лишь внутренним строением. Такие двигатели часто применяют на судовом оборудовании.


Двигатель с самовентиляцией и защищенного исполнения (Н).  

Это машины, у которых вентилятор закреплен на собственном валу и при вращении он создает аэродинамическое давление. В данном случае мотор имеет закрытое исполнение с рубчатой поверхностью. Служит это для повышения плоскости охлаждения. Применяются, например, в силовых насосах, используемых при добыче нефти или газа.


Эл двигатель с фазным ротором (К).

Данный мотор можно регулировать с помощью добавления в цепь ротора дополнительных резисторов. Данное исполнение позволяет повысить пусковой момент и пусковые токи. Сопротивление, в большинстве случаев, дополняется с помощью реостатов.  


Встраиваемый электродвигатель (В).

Как ясно из названия,  они предназначены для встраивания в какой-либо механизм. По своим характеристикам не отличаются от двигателей основного исполнения. Применяются в токарных станках, например.


С электромагнитным тормозом (Е).

Как правило, такие двигатели устанавливаются на оборудование, в котором необходима возможность практически мгновенной остановки (станочно-конвейерное оборудование). На самом деле это обычный асинхронный двигатель, в котором предусмотрен электронный тормоз. Возможно исполнение  с ручкой растормаживания (модификация Е2).


Двигатели для привода центробежных моноблочных насосов (Ж).

Отличаются от обычных электродвигателей наличием продленного вала. Делается это для постановки рабочих колес насосов.


Для мотор-редукторов (РЗ).

Конструктивно ничем не отличаются от остальных электродвигателей АИР, за исключением особой формы фланцевого подшипникового щита, которая обеспечивает установку усиленного подшипника и специального рабочего конца вала.


Эл двигатели АИР для станков-качалок (С).

Находят применение на нефтепромысле. Идентичны моторам, на базе которых созданы. Подразумевается их размещение на открытом воздухе.


Для приводов лифтов (Л).

Предназначены для привода лебедок лифтов. Данная модификация двигателей позволяет получить плавность хода всего механизма за счет постоянного момента на валу ротора.


Со встроенными датчиками (Б).

Как ясно из названия – установленные различные датчики для защиты электродвигателя.  Например, температурный датчик: при нагреве двигателя устройства защиты воздействуют на цепь контактора или пускателя и отключают машину. Используются на атомных станциях или других предприятиях,  где чрезвычайно важна безаварийность.


Двигатели с повышенной точностью по установочным размерам (П).

Имеют повышенную точность таких параметров как биение рабочего конца вала  и так далее. Уменьшен сохранившийся дисбаланс роторов двигателей.

Специалисты компании УЭСК помогут сделать правильный выбор


 Электродвигатель АИР характеристики
Тип двигателя  Р, кВт Номинальная частота вращения, об/мин кпд,* COS ф 1п/1н Мп/Мн Мmах/Мн 1н, А Масса, кг
АИР56А2 0,18 2840 68,0 0,78 5,0 2,2 2,2 0,52 3,4
АИР56В2 0,25 2840 68,0 0,698 5,0 2,2 2,2 0,52 3,9
АИР56А4 0,12 1390 63,0 0,66 5,0 2,1 2,2 0,44 3,4
АИР56В4 0,18 1390 64,0 0,68 5,0 2,1 2,2 0,65 3,9
АИР63А2 0,37 2840 72,0 0,86 5,0 2,2 2,2 0,91 4,7
АИР63В2 0,55 2840 75,0 0,85 5,0 2,2 2,3 1,31 5,5
АИР63А4 0,25 1390 68,0 0,67 5,0 2,1 2,2 0,83 4,7
АИР63В4 0,37 1390 68,0 0,7 5,0 2,1 2,2 1,18 5,6
АИР63А6 0,18 880 56,0 0,62 4,0 1,9 2 0,79 4,6
АИР63В6 0,25 880 59,0 0,62 4,0 1,9 2 1,04 5,4
АИР71А2 0,75 2840 75,0 0,83 6,1 2,2 2,3 1,77 8,7
АИР71В2 1,1 2840 76,2 0,84 6,9 2,2 2,3 2,6 10,5
АИР71А4 0,55 1390 71,0 0,75 5,2 2,4 2,3 1,57 8,4
АИР71В4 0,75 1390 73,0 0,76 6,0 2,3 2,3 2,05 10
АИР71А6 0,37 880 62,0 0,70 4,7 1,9 2,0 1,3 8,4
АИР71В6 0,55 880 65,0 0,72 4,7 1,9 2,1 1,8 10
АИР71А8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
АИР71В8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
АИР80А2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
АИР80А2ЖУ2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
АИР80В2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
АИР80В2ЖУ2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
АИР80А4 1,1 1390 76,2 0,77 6,0 2,3 2,3 2,85 14
АИР80В4 1,5 1400 78,5 0,78 6,0 2,3 2,3 3,72 16
АИР80А6 0,75 905 69,0 0,72 5,3 2,0 2,1 2,3 14
АИР80В6 1,1 905 72,0 0,73 5,5 2,0 2,1 3,2 16
АИР80А8 0,37 675 62,0 0,61 4,0 1,8 1,9 1,49 15
АИР80В8 0,55 680 63,0 0,61 4,0 1,8 2,0 2,17 18
АИР90L2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
АИР90L2ЖУ2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
АИР90L4 2,2 1410 80,0 0,81 7,0 2,3 2,3 5,1 17
АИР90L6 1,5 920 76,0 0,75 5,5 2,0 2,1 4,0 18
АИР90LA8 0,75 680 70,0 0,67 4,0 1,8 2,0 2,43 23
АИР90LB8 1,1 680 72,0 0,69 5,0 1,8 2,0 3,36 28
АИР100S2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
АИР100S2ЖУ2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
АИР100L2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
АИР100L2ЖУ2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
АИР100S4 3,0 1410 82,6 0,82 7,0 2,3 2,3 6,8 21
АИР100L4 4,0 1435 84,2 0,82 7,0 2,3 2,3 8,8 37
АИР100L6 2,2 935 79,0 0,76 6,5 2,0 2,1 5,6 33,5
АИР100L8 1,5 690 74,0 0,70 5,0 1,8 2,0 4,4 33,5
АИР112M2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
АИР112М2ЖУ2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
АИР112М4 5,5 1440 85,7 0,83 7,0 2,3 2,3 11,7 45
АИР112MA6 3,0 960 81,0 0,73 6,5 2,1 2,1 7,4 41
АИР112MB6 4,0 860 82,0 0,76 6,5 2,1 2,1 9,75 50
АИР112MA8 2,2 710 79,0 0,71 6,0 1,8 2,0 6,0 46
АИР112MB8 3,0 710 80,0 0,73 6,0 1,8 2,0 7,8 53
АИР132M2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
АИР132М2ЖУ2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
АИР132S4 7,5 1460 87,0 0,84 7,0 2,3 2,3 15,6 52
АИР132M4 11 1450 88,4 0,84 7,0 2,2 2,3 22,5 60
АИР132S6 5,5 960 84,0 0,77 6,5 2,1 2,1 12,9 56
АИР132M6 7,5 970 86,0 0,77 6,5 2,0 2,1 17,2 61
АИР132S8 4,0 720 81,0 0,73 6,0 1,9 2,0 10,3 70
АИР132M8 5,5 720 83,0 0,74 6,0 1,9 2,0 13,6 86
АИР160S2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
АИР160S2ЖУ2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
АИР160M2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
АИР160М2ЖУ2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
АИР160S4 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
АИР160S4ЖУ2 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
АИР160M4 18,5 1470 90,0 0,86 7,5 2,2 2,3 36,3 142
АИР160S6 11 970 87,5 0,78 6,5 2,0 2,1 24,5 125
АИР160M6 15 970 89,0 0,81 7,0 2,0 2,1 31,6 155
АИР160S8 7,5 720 85,5 0,75 6,0 1,9 2,0 17,8 125
АИР160M8 11 730 87,5 0,75 6,5 2,0 2,0 25,5 150
АИР180S2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
АИР180S2ЖУ2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
АИР180M2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
АИР180М2ЖУ2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
АИР180S4 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
АИР180S4ЖУ2 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
АИР180M4 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
АИР180М4ЖУ2 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
АИР180M6 18,5 980 90,0 0,81 7,0 2,1 2,1 38,6 160
АИР180M8 15 730 88,0 0,76 6,6 2,0 2,0 34,1 172
АИР200M2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
АИР200М2ЖУ2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
АИР200L2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
АИР200L2ЖУ2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
АИР200M4 37 1475 92,0 0,87 7,2 2,2 2,3 70,2 230
АИР200L4 45 1475 92,5 0,87 7,2 2,2 2,3 84,9 260
АИР200M6 22 980 90,0 0,83 7,0 2,0 2,1 44,7 195
АИР200L6 30 980 91,5 0,84 7,0 2,0 2,1 59,3 225
АИР200M8 18,5 730 90,0 0,76 6,6 1,9 2,0 41,1 210
АИР200L8 22 730 90,5 0,78 6,6 1,9 2,0 48,9 225
АИР225M2 55 2970 93,0 0,90 7,5 2,0 2,3 100 320
АИР225M4 55 1480 93,0 0,87 7,2 2,2 2,3 103 325
АИР225M6 37 980 92,0 0,86 7,0 2,1 2,1 71,0 360
АИР225M8 30 735 91,0 0,79 6,5 1,9 2,0 63 360
АИР250S2 75 2975 93,6 0,90 7,0 2,0 2,3 135 450
АИР250M2 90 2975 93,9 0,91 7,1 2,0 2,3 160 530
АИР250S4 75 1480 93,6 0,88 6,8 2,2 2,3 138,3 450
АИР250M4 90 1480 93,9 0,88 6,8 2,2 2,3 165,5 495
АИР250S6 45 980 92,5 0,86 7,0 2,1 2,0 86,0 465
АИР250M6 55 980 92,8 0,86 7,0 2,1 2,0 104 520
АИР250S8 37 740 91,5 0,79 6,6 1,9 2,0 78 465
АИР250M8 45 740 92,0 0,79 6,6 1,9 2,0 94 520
АИР280S2 110 2975 94,0 0,91 7,1 1,8 2,2 195 650
АИР280M2 132 2975 94,5 0,91 7,1 1,8 2,2 233 700
АИР280S4 110 1480 94,5 0,88 6,9 2,1 2,2 201 650
АИР280M4 132 1480 94,8 0,88 6,9 2,1 2,2 240 700
АИР280S6 75 985 93,5 0,86 6,7 2,0 2,0 142 690
АИР280M6 90 985 93,8 0,86 6,7 2,0 2,0 169 800
АИР280S8 55 740 92,8 0,81 6,6 1,8 2,0 111 690
АИР280M8 75 740 93,5 0,81 6,2 1,8 2,0 150 800
АИР315S2 160 2975 94,6 0,92 7,1 1,8 2,2 279 1170
АИР315M2 200 2975 94,8 0,92 7,1 1,8 2,2 248 1460
АИР315МВ2 250 2975 94,8 0,92 7,1 1,8 2,2 248 1460
АИР315S4 160 1480 94,9 0,89 6,9 2,1 2,2 288 1000
АИР315M4 200 1480 94,9 0,89 6,9 2,1 2,2 360 1200
АИР315S6 110 985 94,0 0,86 6,7 2,0 2,0 207 880
АИР315М(А)6 132 985 94,2 0,87 6,7 2,0 2,0 245 1050
АИР315MВ6 160 985 94,2 0,87 6,7 2,0 2,0 300 1200
АИР315S8 90 740 93,8 0,82 6,4 1,8 2,0 178 880
АИР315М(А)8 110 740 94,0 0,82 6,4 1,8 2,0 217 1050
АИР315MВ8 132 740 94,0 0,82 6,4 1,8 2,0 260 1200
АИР355S2 250 2980 95,5 0,92 6,5 1.6 2,3 432,3 1700
АИР355M2 315 2980 95,6 0,92 7,1 1,6 2,2 544 1790
АИР355S4 250 1490 95,6 0,90 6,2 1,9 2,9 441 1700
АИР355M4 315 1480 95,6 0,90 6,9 2,1 2,2 556 1860
АИР355MА6 200 990 94,5 0,88 6,7 1,9 2,0 292 1550
АИР355S6 160 990 95,1 0,88 6,3 1,6 2,8 291 1550
АИР355МВ6 250 990 94,9 0,88 6,7 1,9 2,0 454,8 1934
АИР355L6 315 990 94,5 0,88 6,7 1,9 2,0 457 1700
АИР355S8 132 740 94,3 0,82 6,4 1,9 2,7 259,4 1800
АИР355MА8 160 740 93,7 0,82 6,4 1,8 2,0 261 2000
АИР355MВ8 200 740 94,2 0,82 6,4 1,8 2,0 315 2150
АИР355L8 132 740 94,5 0,82 6,4 1,8 2,0 387 2250

Высоковольтные электродвигатели

Высоковольтные электродвигатели

Высоковольтные двигатели концерна «Русэлпром» рассчитаны на взаимодействие с промышленными электрическими сетями частотой 50 и 60 Гц с номинальным напряжением от 3000 до 11 000 В. Различные виды защиты и охлаждения обеспечивают универсальность применения этих электрических машин. Они долговечны, отличаются удобством обслуживания и эксплуатации, высокими энергетическими параметрами и низким уровнем шума. Для каждого варианта применения концерн «Русэлпром» предлагает соответствующее решение с учетом пожеланий клиентов.

Основные характеристики двигателей в базовом исполнении:

  • Мощность, кВт: 160 — 10000
  • Частота вращения, об/мин: 3000 — 75
  • Напряжение питания переменного тока, В: 3000, 6000, 10000 и другие нестандартные
  • Габарит (в.о.в.), мм: 355 — 1800

Наши конкурентные преимущества:

  • концерн разрабатывает и изготавливает электрические машины по индивидуальным заказам без увеличения сроков изготовления
  • более высокий КПД относительно продукции иных производителей России и стран СНГ
  • изготовление электродвигателей с промежуточной нестандартной мощностью, что сокращает издержки без потери качества и гарантийного срока
  • показатель уровня обслуживания покупателей 95%
  • изготовление электродвигателей под вашей торговой маркой
  • условия оплаты и поставки с учетом особенностей склада на вашей территории
  • процедура trade in, которая распространяется не только на двигатели, но и на агрегаты

При заказе вы можете выбрать:

  • изготовление сертифицированных двигателей для работы в составе частотно-регулируемого привода
  • подшипники различных производителей – SKF, FAG или отечественные. При необходимости в двигателе могут устанавливаться токоизолированные подшипники
  • смазку различных производителей. Унификация еще на этапе поставки смазки с принятой на предприятии эксплуатации позволяет запускать в эксплуатацию двигатель без замены смазки и требующейся при этом промывки подшипник
  • необходимую конфигурацию мест под датчики вибрации. Наиболее частыми являются заказы двигателей с местами под датчики вибрации и датчики ударных испульсов SPM, SLD. При заказе нами предлагается удобная графическая схема выбора осей измерения вибрации. Для установки уровней вибрации «Предупреждение» и «Отключение» рекомендуется использовать нормы, установленные ГОСТ Р ИСО 10816-3
  • диаметр кабельного ввода силовой коробки выводов
  • овальные установочные размеры в лапах
  • необходимый цвет двигателя или поставку в загрунтованном виде
  • протокол приемо-сдаточных испытаний

Электродвигатель, вентиляция салона PFN005 PATRON

5 (E39) 520 i – бензин (M52 B20 (206S3)), 150 л. с., выпуск 01.1996 – 30.2000

5 (E39) 525 tds – Дизель (M51 D25 (256T1)), 143 л. с., выпуск 01.1996 – 30.2003

5 (E39) 523 i – бензин (M52 B25 (256S3)), 170 л. с., выпуск 01.1995 – 30.2000

5 (E39) 528 i – бензин (M52 B28 (286S1), M52 B28 (286S2)), 193 л. с., выпуск 01.1995 – 30.2000

5 (E39) 540 i – бензин (M62 B44 (448S1), M62 B44 (448S2)), 286 л. с., выпуск 01.1996 – 30.2003

5 Touring (E39) 520 i – бензин (M52 B20 (206S3)), 150 л. с., выпуск 01.1997 – 30.2000

5 Touring (E39) 523 i – бензин (M52 B25 (256S3)), 170 л. с., выпуск 01.1997 – 30.2000

5 Touring (E39) 540 i – бензин (M62 B44 (448S1), M62 B44 (448S2)), 286 л. с., выпуск 01.1997 – 31.2004

5 (E39) 525 td – Дизель (M51 D25 (256T1)), 116 л. с., выпуск 01.1997 – 30.2003

5 Touring (E39) 528 i – бензин (M52 B28 (286S1), M52 B28 (286S2)), 193 л. с., выпуск 01.1997 – 30.2000

5 (E39) 530 d – Дизель (M57 D30 (306D1)), 184 л. с., выпуск 01.1998 – 30.2000

5 Touring (E39) 530 d – Дизель (M57 D30 (306D1)), 184 л. с., выпуск 01.1998 – 30.2000

5 (E39) M5 – бензин (S62 B50 (508S1)), 400 л. с., выпуск 01.1998 – 30.2003

5 Touring (E39) 525 tds – Дизель (M51 D25 (256T1)), 143 л. с., выпуск 01.1997 – 31.2004

5 (E39) 535 i – бензин (M62 B35 (358S2)), 245 л. с., выпуск 01.1999 – 30.2003

5 (E39) 520 i – бензин (M52 B20 (206S3)), 136 л. с., выпуск 01.1999 – 30.2003

5 Touring (E39) 520 i – бензин (M52 B20 (206S3)), 136 л. с., выпуск 01.1999 – 31.2004

5 (E39) 520 d – Дизель (M47 D20 (204D1)), 136 л. с., выпуск 01.2000 – 30.2003

5 Touring (E39) 520 d – Дизель (M47 D20 (204D1)), 136 л. с., выпуск 01.2000 – 30.2003

5 (E39) 525 d – Дизель (M57 D25 (256D1)), 163 л. с., выпуск 01.2000 – 30.2003

5 Touring (E39) 525 d – Дизель (M57 D25 (256D1)), 163 л. с., выпуск 01.2000 – 31.2004

X5 (E53) 4.4 i – бензин (M62 B44 (448S2)), 286 л. с., выпуск 01.2000 – 31.2003

X5 (E53) 3.0 d – Дизель (M57 D30 (306D1)), 184 л. с., выпуск 01.2001 – 31.2003

X5 (E53) 4.6 is – бензин (M62 B46 (468S1)), 347 л. с., выпуск 01.2002 – 31.2003

X5 (E53) 3.0 i – бензин (M54 B30 (306S3)), 231 л. с., выпуск 01.2000 – 31.2006

X5 (E53) 4.4 i – бензин (N62 B44, N62 B44 A), 320 л. с., выпуск 01.2003 – 30.2006

X5 (E53) 3.0 d – Дизель (M57 D30 (306D2)), 218 л. с., выпуск 01.2003 – 31.2006

X5 (E53) 4.8 is – бензин (N62 B48 A), 360 л. с., выпуск 01.2004 – 30.2006

Yamaha показала сверхкомпактные моторы для электрических мотоциклов и автомобилей

Yamaha преуспевает в сфере электрических велосипедов, в то время как новостей о её электрических мотоциклах до сих пор было очень мало. Но теперь компания представила серию электродвигателей, которые разрабатываются для быстрого прогресса в области электротранспорта.

Yamaha усердно работает над созданием новых электродвигателей и приводов, предназначенных для мотоциклов и более крупных транспортных средств. Разработка началась в мотоциклетном подразделении Yamaha, но, по-видимому, выросла до более крупных двигателей, способных лечь в основу полноразмерных электромобилей. В новом видео Yamaha впервые показала агрегат мощностью 35 кВт, который был разработан для электрических мотоциклов.

Не ясно, является ли заявленная величина постоянным или пиковым значением мощности. Например, в электрических мотоциклах Zero FXS используются электродвигатели с пиковой мощностью в 35 кВт, которые обеспечивают хороший баланс между скоростью и энергоэффективностью для таких лёгких транспортных средств.

Кроме того, Yamaha показала и новый двигатель мощностью 150 кВт, предназначенный для полноразмерных электромобилей. На видео Yamaha продемонстрировала работу связки из двух таких электродвигателей мощностью 150 кВт, приводящих в действие заднеприводный электромобиль.

Инженер Такаши Хара (Takashi Hara) из 2-го инженерного отдела Yamaha отметил: «Сначала мы разработали электромоторы для наших мотоциклов, а затем продолжили эту работу и использовали ноу-хау наших двигателей для создания этих новых агрегатов. Решение мощностью 35 кВт было разработано для небольших транспортных средств, включая мотоциклы. А силовая установка мощностью 150 кВт предназначена уже для электромобилей».

Господин Хара указал, что Yamaha опиралась на свои существующие производственные технологии: «Мы полагали, что создание компактных двигателей — первостепенная задача. Использование нашей технологии литья корпусов обеспечило чрезвычайно компактный дизайн. Все это привело к появлению маленьких силовых установок в целом».

Хотя Yamaha давно занимается разработкой электрических мотоциклов, до последнего времени прогресс не был слишком заметным. То же самое касается других японских производителей мотоциклов: Honda, Suzuki и Kawasaki.

Тем не менее, все четверо сейчас, похоже, делают некоторые успехи. В прошлом году Honda выпустила электрический внедорожный мотоцикл в стиле CRF и недавно запатентовала комплектующие для электрического Super Cub. Suzuki тоже активно оформляет патенты в области электрических мотоциклов. А Kawasaki наделала шума со своим предстоящим (но несколько неудачным) электрическим мотоциклом, известным как Kawasaki EV Endeavour.

Планирует ли Yamaha интегрировать новые двигатели в свои транспортные средства или, скорее, предложит их в качестве платформ для других компаний, ещё не ясно. В любом случае, Yamaha не сидела сложа руки, как многие думали ранее.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

В России начали готовить самолет для испытаний электродвигателя

https://ria.ru/20200321/1568933873.html

В России начали готовить самолет для испытаний электродвигателя

В России начали готовить самолет для испытаний электродвигателя

В России стартовала подготовка летающей лаборатории, на которой будет испытана первая в стране гибридная силовая установка с электродвигателем в составе,… РИА Новости, 21.03.2020

2020-03-21T03:05

2020-03-21T03:05

2020-03-21T15:08

центральный институт авиационного моторостроения имени баранова (циам)

уфимский авиационный технический университет

як-40

министерство промышленности и торговли рф (минпромторг россии)

технологии

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn24.img.ria.ru/images/156252/35/1562523595_0:81:2017:1215_1920x0_80_0_0_a9efeecb82b739bbd9bd76d1b0bd6d94.jpg

МОСКВА, 21 мар — РИА Новости. В России стартовала подготовка летающей лаборатории, на которой будет испытана первая в стране гибридная силовая установка с электродвигателем в составе, сообщили РИА Новости в пресс-службе Центрального института авиационного моторостроения имени П. И. Баранова (ЦИАМ, входит в НИЦ «Институт имени Н. Е. Жуковского»).Летные испытания, предположительно, проведут в 2022 году. Один из трех двигателей Як-40, которые располагаются в хвостовой части, будет заменен на турбовальный газотурбинный двигатель с электрогенератором, разработанным совместно с Уфимским авиационным техническим университетом.»В «носу» летающей лаборатории планируется установить электродвигатель, использующий эффект высокотемпературной сверхпроводимости и криогенную систему, который разработан ЗАО «СуперОкс» по заказу Фонда перспективных исследований», — сказали в ЦИАМ.Там пояснили, что высокотемпературный сверхпроводящий электроэнергетический комплекс — особенность российской разработки. Он призван обеспечить более высокие удельную мощность и КПД «электрических» компонентов (электродвигателей, генераторов, силовых шин передачи электроэнергии) гибридной силовой установки по сравнению с традиционным электротехническим оборудованием. В салоне самолета будут установлены аккумуляторы и блоки системы управления. Там же будут располагаться и инженеры-испытатели.ЦИАМ является головным исполнителем научно-исследовательской работы «Электролет СУ-2020», реализуемой по заказу Минпромторга России. Основная задача института в рамках этой работы — расчетно-экспериментальные исследования в обеспечение создания демонстратора технологий гибридной силовой установки для перспективных российских самолетов для межрегиональных перевозок.

https://ria.ru/20200205/1564265544.html

https://ria.ru/20200205/1564267589.html

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn25.img.ria.ru/images/156252/35/1562523595_0:0:2017:1512_1920x0_80_0_0_fa9ee4a8d345dd7993d3869b48907ff0.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

центральный институт авиационного моторостроения имени баранова (циам), уфимский авиационный технический университет, як-40, министерство промышленности и торговли рф (минпромторг россии), технологии

Институт

— История — Изобретение электродвигателя 1800-1854

Унив. Проф. Д-р инж. Мартин Доппельбауэр

Сводка

С изобретением батареи (Алессандро Вольта, 1800 г.), генерации магнитного поля из электрического тока (Ганс Кристиан Эрстед, 1820 г.) и электромагнита (Уильям Стерджен, 1825 г.) был заложен фундамент для создания электродвигателей. В то время все еще оставалось открытым вопрос, должны ли электродвигатели быть вращающимися или возвратно-поступательными машинами, т.е.е. имитировать шток плунжера паровой машины.

Во всем мире многие изобретатели работали параллельно над этой задачей — это была проблема «моды». Новые явления открывались почти ежедневно. Изобретения в области электротехники и ее приложений витали в воздухе.

Часто изобретатели ничего не знали друг о друге и самостоятельно разрабатывали подобные решения. Национальная история формируется соответствующим образом до наших дней. Ниже приводится попытка дать исчерпывающую и нейтральную картину.

Первое вращающееся устройство, приводимое в движение электромагнетизмом, было построено англичанином Питером Барлоу в 1822 году (Колесо Барлоу).

После многих других более или менее успешных попыток с относительно слабым вращающимся и возвратно-поступательным аппаратом немецкоязычный прусский Мориц Якоби в мае 1834 года создал первый настоящий вращающийся электродвигатель , который действительно развивал выдающуюся механическую выходную мощность. Его мотор установил мировой рекорд, который был улучшен только четыре года спустя, в сентябре 1838 года, самим Якоби.Его второй мотор был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку. Только в 1839/40 году другим разработчикам во всем мире удалось создать двигатели с аналогичными, а затем и с более высокими характеристиками.

Уже в 1833 году немец Генрих Фридрих Эмиль Ленц опубликовал статью о законе взаимности магнитоэлектрических и электромагнитных явлений, то есть о обратимости электрогенератора и двигателя . В 1838 году он дал подробное описание своих экспериментов с генератором Pixii, который он использовал в качестве двигателя.

В 1835 году двое голландцев Сибрандус Стратинг и Кристофер Беккер построили электродвигатель, который приводил в движение небольшую модель автомобиля. Это первое известное практическое применение электродвигателя. В феврале 1837 года первый патент на электродвигатель был выдан американцу Томасу Дэвенпорту.

Однако все ранние разработки Якоби, Стратинга, Давенпорта и других в конечном итоге не привели к электродвигателям, которые мы знаем сегодня.

Двигатель постоянного тока был создан не на основе этих двигателей, а в результате разработки генераторов энергии (динамометров).Основы были заложены Уильямом Ричи и Ипполитом Пикси в 1832 году с изобретением коммутатора и, что наиболее важно, Вернером Сименсом в 1856 году с двойным Т-образным якорем и его главным инженером Фридрихом Хефнер-Альтенеком в 1872 году с барабанная арматура. Двигатели постоянного тока по-прежнему занимают доминирующее положение на рынке в диапазоне малой мощности (ниже 1 кВт) и низкого напряжения (ниже 60 В).

В период с 1885 по 1889 год была изобретена трехфазная электроэнергетическая система , которая является основой для современной передачи электроэнергии и современных электродвигателей.Единого изобретателя трехфазной системы питания назвать нельзя. Есть несколько более или менее известных имен, которые принимали активное участие в изобретениях (Брэдли, Доливо-Добровольский, Феррарис, Хазельвандер, Тесла и Венстрём). Сегодня трехфазный синхронный двигатель используется в основном в высокодинамичных приложениях (например, в роботах) и в электромобилях. Впервые он был разработан Фридрихом Августом Хазельвандером в 1887 году.

Очень успешный трехфазный асинхронный двигатель был построен Михаилом Доливо-Добровольским в 1889 году.Сегодня это наиболее часто производимая машина в диапазоне мощностей от 1 кВт.

Расписание 1800 — 1834: Первые эксперименты с электромагнитными устройствами
1800 Впервые Allessandro Volta (итальянский) производит непрерывную электрическую энергию (в отличие от искры или статического электричества) из набора серебряных и цинковых пластин.
1820 Ганс Христиан Эрстед (Дениш) обнаруживает генерацию магнитного поля электрическими токами, наблюдая за отклонением стрелки компаса. Это был первый случай, когда механическое движение было вызвано электрическим током.
1820 Андре-Мари Ампер (французский язык) изобретает цилиндрическую катушку (соленоид).
1821 Майкл Фарадей (британский) создает два эксперимента для демонстрации электромагнитного вращения. Вертикально подвешенный провод движется по круговой орбите вокруг магнита.
Вращающийся провод Фарадея, 1821
Фотография любезно предоставлена ​​Отделом труда и промышленности, Национальный музей американской истории, Смитсоновский институт
1822 Питер Барлоу (британец) изобретает прялку (колесо Барлоу = униполярная машина).
Колесо Барлоу, 1822
Philosophical Magazine, 1822, vol. 59
1825-1826 William Sturgeon (Великобритания) изобретает электромагнит , катушку проводов с железным сердечником для усиления магнитного поля.

Первый электромагнит Стерджена, 1825 г.
Труды Общества поощрения художеств, мануфактур и торговли, 1824 г., т.43, пл. 3
1827-1828 Istvan (Ányos) Jedlik (венгерский) изобретает первую роторную машину с электромагнитами и коммутатором.
Однако Джедлик публично сообщил о своем изобретении только десятилетия спустя, и фактическая дата изобретения неизвестна.

До сих пор многие венгры считают, что Едлик изобрел электродвигатели. Функциональная модель его аппарата выставлена ​​в художественном музее в Будапеште.

Хотя на самом деле это может быть первый электродвигатель, следует понимать, что это устройство не повлияло на дальнейшее развитие электрических машин. Изобретение Джедлика долгое время оставалось скрытым, и изобретатель не преследовал его. Электротехника ничем не обязана Джедлику.


Поворотное устройство Jedlik, 1827/28
Фото: Wikipedia

Электромобиль Jedlik, 1827/28
Фото: Wikipedia
перед
1830
Иоганн Михаэль Эклинг, механик из Вены, строит двигатель по планам и идеям проф.Андреас фон Баумгартнер (австрийский физик; с 1823 г. профессор физики и прикладной математики в Вене).

Этот аппарат был приобретен в 1830 году Инсбрукским университетом по цене 50 жидких кубометров. Год постройки неизвестен, но должно быть до 1830 года, поскольку дата покупки подтверждена.


Двигатель Баумгартнера, построенный Эклингом до 1830 г.
Фотография любезно предоставлена ​​Университетом Инсбрука, Музей экспериментальной физики, Ao.Univ. Проф. Маг. Доктор Армин Денот.
1831 Майкл Фарадей (Великобритания) обнаруживает и исследует электромагнитную индукцию, то есть генерацию электрического тока из-за переменного магнитного поля (инверсия открытия Эрстеда). Фарадей закладывает основы развития электрогенератора.
1831 Джозеф Генри (американец) находит, что закон индукции не зависит от Фарадея, и строит небольшой магнитный рокер.Он описывает это как «философскую игрушку».

В статье для английского журнала Philosophical Magazine, в 1838 году англичанин Ф. Уоткинс подробно описывает устройство Генри и называет его первым электродвигателем, когда-либо известным. Эта точка зрения распространяется и по сей день в основном на британскую литературу.


Магнитный рокер Генри, 1831
Американский журнал науки, 1831, т. 20, стр. 342
Апрель
1832
Savatore dal Negro (итальянский) создает устройство, которое может поднять 60 граммов за одну секунду на 5 сантиметров и, следовательно, развивает механическую мощность почти 30 мВт.

Вероятно, он был вдохновлен магнитным рокером Генри и создал аналогичную возвратно-поступательную машину. Однако устройство Даль Негро может производить движение с помощью специальной передачи.

Даль Негро описывает свои эксперименты в письме от апреля 1832 года, а затем в научной статье « Nuova Macchina élettro-Magnetica » в марте 1834 года.
Его устройства хранятся в Музее истории физики при университете Падуи. К сожалению, они не отображаются.


Электромагнитный маятник Даль Негро, 1832
Annali delle Scienze de Regno Lombardo-Veneto, März 1834, pl. 4
июль
1832
Первое публичное описание вращающейся электрической машины .

Автор — анонимный писатель с инициалами П.М. Теперь его с большой вероятностью опознали как ирландца Фредерика Мак-Клинтока из Дублина.

Майкл Фарадей, получатель письма от 26 июля 1832 г., немедленно его публикует. Впервые публично описана вращающаяся электрическая машина.


Первое описание вращающейся электрической машины П.М., 1832 г.
Philosophical Magazine, 1832, стр. 161–162
июль
1832
Hippolyte Pixii (французский язык) создает первое устройство для генерации переменного тока из вращения.

Устройство было публично представлено в сентябре 1832 года на заседании Академии наук . Его описание напечатано уже в июльском номере Annales de Chimie .

Pixii улучшил свое устройство в том же году, добавив переключающее устройство. Теперь он может производить пульсирующий постоянный ток.


Первый генератор постоянного тока Pixii, 1832/33
F.Niethammer, Ein- und Mehrphasen-Wechsel-strom-Erzeuger, Verlag S. Hirzel, Leipzig 1906
1832 Уильям Ритчи (британский) сообщил в марте 1833 года об устройстве, которое, как он утверждал, было построено девятью месяцами ранее летом 1832 года. Это вращающийся электромагнитный генератор с четырьмя катушками ротора, коммутатором и щетками.

Ричи считается изобретателем коммутатора.

В конце своей статьи Ричи описывает, как он смог вращать электрический магнит, используя магнитное поле Земли. Он мог поднять вес на несколько унций (50-100 грамм). Коммутация производилась двумя концами провода, которые входили в два полукруглых желоба с ртутью.


Первый генератор постоянного тока с коммутатором, 1832/33

вращающаяся катушка Ричи, 1833
Philosophical Trans.Лондонского королевского общества, 1833, Vol. 132, стр.316, пл.7
Янв
1833
A Доктор Шультесс читает лекцию в Обществе инженеров в Цюрихе в 1832 году, в которой описывает свои идеи электродвигателя. В январе 1833 года он успешно продемонстрировал машину перед тем же цюрихским обществом.
Никаких подробностей не известно.
Март
1833
Осенью 1832 года Уильям Стерджен строит вращающееся электрическое устройство, которое он публично демонстрирует в марте 1833 года в Лондоне.

Как и в случае с Джедликом, нет никаких определенных доказательств даты и деталей его строительства. Осетр сообщил об этом изобретении в 1836 году в первом выпуске своего собственного журнала.


Ротационное устройство Осетровых, 1832
Осетровые Летопись Электричества, 1836/37, т. 1
Декабрь
1833
В первые годы развития электротехники проводилось строгое различие между магнитно-электрическими машинами, т.е.е. электрические генераторы и электромагнитные машины, то есть электродвигатели.

Генрих Фридрих Эмиль Ленц (немецкий) обнаружил « закон взаимности магнитоэлектрических и электромагнитных явлений », то есть обратимость электрического генератора и двигателя.

Его научный текст читается в конце 1833 года в Петербургской Академии наук и опубликован в 1834 году в журнале Annalen der Physik und Chemie Поггендорфа.Его идеи постепенно становятся обычным явлением, особенно в 1838 году после нескольких сообщений об успешных экспериментах по обращению.

Иногда утверждают, что принцип обращения был открыт в 1861 году итальянцем Пачинотти или даже только в 1873 году случайно на Всемирной выставке в Вене. Оба утверждения ложны. Эмиль Ленц широко сообщил еще в 1838 году в Annalen der Physik und Chemie Поггендорфа , как он использовал генератор Pixii в качестве двигателя.

июля
1834
Джузеппе Доменико Ботто (итальянец), профессор физики из Турина, в июле 1834 года публикует в женевском журнале Bibliotheque Universelle описание электродвигателя, над которым он работает.

Его устройство соответствует метроному (похожему на конструкции Генри и Даль Негро), действующему на маятник с помощью двух электромагнитов.Вращательное движение создается штоком поршня.

Реплика устройства сейчас выставлена ​​в Museo Galileo во Флоренции.


Роторная машина Ботто, июль 1834 г. (реконструкция)
Фото любезно предоставлено Museo Galileo, Флоренция

Расписание 1834 — 1837: Первые настоящие электродвигатели
Май
1834
Мориц Герман Якоби (немецкоязычный прусский, натурализованный русский) начинается с экспериментов с подковообразным электромагнитом в начале 1833 года в Кенигсберге (тогда Пруссия, ныне Россия).В январе 1834 года он пишет в письме Поггендорфу, редактору Annalen der Physik und Chemie , о своих успехах.

Он переходит к созданию электродвигателя, которое он завершает в мае 1834 года. Его двигатель поднимает вес от 10 до 12 фунтов со скоростью один фут в секунду, что эквивалентно примерно 15 ваттам механической мощности.
В ноябре 1834 года он отправляет отчет Академии наук в Париже и публикует подробные научные мемуары весной 1835 года.Позже за эту работу он получил звание почетного доктора факультета Кенигсбергского университета. Его текст разделен на 23 раздела и был расширен в 1837 году еще на 15 разделов.

Якоби прямо заявил в меморандуме 1835 года, что он не единственный изобретатель электромагнитного двигателя. Он указывает на приоритет изобретений Ботто и Даль Негро.

Однако Якоби, несомненно, был первым, кто создал пригодный для использования вращающийся электродвигатель.

Полнофункциональная копия его двигателя выставлена ​​в Институте электротехники (ETI) Технологического института Карлсруэ (KIT) по адресу Engelbert-Arnold-Strasse 5 (Building 11.10) в Карлсруэ, Германия.


Первый настоящий электродвигатель
Мориц Якоби, Кенигсберг, май 1834 г.
Октябрь
1834
Американско-американский T. Эдмундсон создает электромагнитное вращающееся устройство, напоминающее водяное колесо.
Электромагнитное колесо Эдмундсона
Американский журнал науки, 1834, т. 26, стр. 205
1834-1835 В декабре 1833 года кузнец Томас Дэвенпорт (американец) покупает соленоид непосредственно у Джозефа Генри и начинает эксперименты вместе с Orange Smalley (американец) в мастерской в ​​Форестдейле, штат Вермонт.

В июле 1834 года двое мужчин создают свою первую роторную машину. Они улучшают устройство в несколько этапов, прежде чем впервые публично продемонстрировать его в декабре 1834 года.

В следующем году Давенпорт отделяется от Смолли.

Летом 1835 года Давенпорт едет в Вашингтон, округ Колумбия, чтобы продемонстрировать свою машину в патентном бюро и зарегистрировать ее. Однако из-за отсутствия денег ему пришлось безуспешно вернуться домой.


Первый двигатель Давенпорта из его первой заявки на патент в июне 1835 г.
Август
1835
Фрэнсис Уоткинс (британец) создает электрическую «игрушку», с помощью которой он может приводить во вращение несколько магнитных игл. Он описывает устройство в статье для Philosophical Magazine .

Он признается, что его вдохновила электромагнитная машина (генератор) Джозефа Сакстона, которая выставлена ​​в публичной галерее в Лондоне с августа 1833 года.

Watkins можно считать одним из первых, кто понял принцип реверсирования двигателя и генератора.


Игрушка Ваткина, 1835 г.
Philosophical Magazine , 1835 г., т. 7, стр. 112
1835 Sibrandus Stratingh и Christopher Becker (голландский) создают небольшой (30 x 25 см) трехколесный автомобиль с электрическим приводом и весом около 3 кг.Он может проехать по столу от 15 до 20 минут, пока батарея не разрядится.

Stratingh и Becker публикуют отчет о своем успехе в том же году. Стратинг знал работы Якоби и в 1840 году хотел построить настоящий электромобиль, но ему это так и не удалось.


Электромодель фирмы Stratingh and Becker, 1835 год
Май
1836
Johann Philipp Wagner (немецкий) представляет электродвигатель на Stiftungsfest из Sencken-bergischen naturforschenden Gesellschaft .Его аппарат похож на устройство, созданное Стратингом и Беккером. Он может работать около 10 минут, пока батарея не разрядится.

Вагнер хранит свою конструкцию в секрете, поэтому есть отчеты о демонстрации, но нет чертежей машины. В последующие годы Вагнер продолжает развивать свой двигатель и публично демонстрирует улучшенные версии.

1836
1837
Давенпорт продолжает совершенствовать свои устройства.В 1836 году он находит нового партнера в лице Ransom Cook и переезжает в Саратога-Спрингс, штат Нью-Йорк, для дальнейшего развития своих двигателей. С помощью Кука он строит модель патентного бюро.
24 января 1837 года Давенпорт подает в Вашингтон свое предостережение, а 5 февраля 1837 года он получает первый в США патент на электродвигатель: « Усовершенствование движущей силы с помощью магнетизма и электромагнетизма ».

Его модель двигателя сейчас выставлена ​​в Смитсоновском институте в Вашингтоне, округ Колумбия.

В запатентованной конструкции

Davenport используются четыре вращающихся электромагнита, которые переключаются с помощью коммутатора, и постоянные постоянные магниты в форме кольца, сделанные из мягкого железа.

Усовершенствованный двигатель, который он представляет в августе 1837 года, имеет диаметр 6 дюймов, вращается со скоростью около 1000 оборотов в минуту и ​​может поднять 200-фунтовый груз на один фут за одну минуту. Это соответствует мощности 4,5 Вт.

Давенпорт в последующие годы постоянно совершенствовал свои конструкции.

Вместе с Эдвином Вильямсом из Нью-Йорка и его партнером Рэнсомом Куком Давенпорт 3 марта 1837 года формирует объединенную акционерную ассоциацию. Однако Уильямс не может продать достаточное количество акций, и все предприятие рушится всего через год. .


Запатентованный двигатель Давенпорта, февраль 1837 г.

Томас Дэвенпорт — Изобретатель электродвигателя?

Есть несколько текстов пафоса в американо-американской литературе, в которых Томас Дэвенпорт прославляется как изобретатель электродвигателя.Это утверждение основано на том, что бесспорном Davenport был первым американцем, который создал годный к употреблению электрического двигателя, а также первому, чтобы получить патент на такое устройство в начале 1837.

Однако

Davenport был далеко не первым, кто построил электродвигатель. В Европе (особенно в Англии, Италии и Пруссии) технологии были уже значительно продвинуты. Уже летом 1834 года, за три года до патента, Мориц Якоби представил двигатель, который был в три раза мощнее усовершенствованной машины, которую Давенпорт разработал через несколько месяцев после подачи заявки на патент.Вдобавок мотор Давенпорта работал быстрее, чем у Якоби. Таким образом, выходной крутящий момент двигателя Давенпорта, решающий фактор при сравнении электрических машин, составлял лишь около одной десятой от конструкции Якоби, разработанной тремя годами ранее.

В 1835 году, вскоре после появления двигателя Якоби, двое голландцев Стрейтинг и Беккер уже представили первое практическое применение, управляя небольшой электромобилем.

За годы, прошедшие после патента Давенпорта, продвижение Якоби практически не уменьшилось.В то же время, когда Якоби продемонстрировал свою следующую машину осенью 1838 года, двигатель, который имел выходную мощность 300 Вт и мог вести лодку с 14 людьми через широкую реку, Давенпорт показал крошечную модель поезда.

Мотор

Давенпорта не примечателен в историческом контексте. Его конструкция не является существенным улучшением других современных конструкций.

За прошедшие годы компания Davenport произвела большое количество машин.Но в отличие от Вернера Сименса, Джорджа Вестингауза и Томаса Эдисона он не был основателем важной компании. И в отличие от Николы Теслы, например, Томас Давенпорт никогда не мог продать или лицензировать свой патент.

Давенпорт не получил патент на электродвигатель как таковой, а только на его особые конструктивные особенности. В период с 1837 по 1866 год только в Англии другим изобретателям было выдано около 100 патентов на электродвигатели. После того, как Давенпорт модернизировал свой двигатель уже в 1837 году, его патент стал практически бесполезным.

Davenport — это честь быть первым из тысяч инженеров, получивших патент на электродвигатель. Но он не является их изобретателем, и его разработки не оказали существенного влияния на дальнейшее развитие электродвигателей.


Расписание 1838 — 1854: более мощные двигатели, новые применения
февр.
1838
Уоткинс публикует обширную статью в Philosophical Magazine , где представляет свой двигатель.
Двигатель Уоткина, февраль 1838 г.
Philosophical Magazine, 1838 г., т. 12, пл. 4
Август 1838 г. В августе 1838 года в Лондоне выставлена ​​крошечная модель поезда с одним из двигателей Davenport . Он движется со скоростью 3 мили в час.
Модель поезда Давенпорта, 1838
Фото любезно предоставлено Отделом труда и промышленности Национального музея американской истории Смитсоновского института.
сен.
1838
Якоби переезжает в Санкт-Петербург в августе 1838 года по просьбе русского царя. Он был принят в Петербургскую Академию наук и щедро поддержан царем в его дальнейшей работе над электродвигателями.

13 сентября 1838 года Якоби впервые демонстрирует на Неве лодку с электрическим приводом и гребными колесами длиной около 8 м.

Цинковые батареи имеют 320 пар пластин и весят 200 кг.Они размещены вдоль двух боковых стенок сосуда. Мотор развивает мощность от 1/5 до 1/4 л.с. (300 Вт), лодка движется со скоростью 2,5 км / ч по маршруту длиной 7,5 км. Он может перевозить более десятка пассажиров. Якоби целыми днями разъезжает по Неве. В современных газетных статьях говорится, что после двух-трех месяцев работы потребление цинка составило 24 фунта.


Улучшенный мотор Якоби, 1838
1838 Чарльз Г. Page (американец) начинает всю жизнь заниматься электромоторами.

В течение следующих 20 лет Пейдж будет искать лучшие и более мощные машины. Его двигатели продавались по каталогам в США и достигли высокого уровня осведомленности общественности.

В первые годы многие изобретатели электродвигателей имитировали паровые двигатели с качающимся (возвратно-поступательным) поршнем. Пейдж тоже строит такую ​​машину (см. Справа), но затем обращается к вращающимся устройствам.


Первый двигатель Пейджа, 1838
Американский журнал науки , 1838, т. 35, стр. 264
Август
1839
8 августа года Якоби испытывает усовершенствованный электродвигатель, механические характеристики которого в три-четыре раза превышают его характеристики второй машины 1838 года (около 1 кВт).Его лодка сейчас развивает скорость 4 км / ч. По словам Уильяма Роберта Гроува, ключевым фактором его успеха является улучшенная цинк-платиновая батарея, которую он сделал сам.

В октябре 1841 года Якоби снова демонстрирует усовершенствованный двигатель, который, однако, лишь немного превосходит модель 1839 года. Это последний электродвигатель, построенный Якоби. Теперь он обращается к теории электродвигателей, а затем переходит к другим электрическим явлениям.

1837-
1842
Роберт Дэвидсон (Шотландия) также занимается разработкой электродвигателей с 1837 года.Сделал несколько приводов для токарного станка и модельных машин.

В 1839 году Дэвидсон руководит постройкой первого автомобиля с электрическим приводом.

В сентябре 1842 года он совершает пробные пробеги с 5-тонным локомотивом длиной 4,8 м на железнодорожной линии Эдинбург — Глазго. Его двигатель развивает около 1 л.с. (0,74 кВт) и развивает скорость 4 мили в час (6,4 км / ч).


Первый электровоз Дэвидсона, 1839 год
От Т.du Moncel, Электричество как движущая сила , Лондон, 1883 г., рис. 32

В последующие годы начинается поток патентов на электромагнитные машины — около 100 в одной только Англии с 1837 по 1866 год.

Среди изобретателей, имеющих дело с электродвигателями: Джеймс Джоул (англ., 1838 г.), Уильям Тейлор (англ., 1838 г.), Урайа Кларк (1840 г.), Томас Райт (1840 г.), Уитстон (англ., 1841 г.) , де Гарлем (ab 1841), П.Элиас (американец, ab 1842), Дж. Фромент (французский, ab 1844), Мозес Г. Фармер (американец, ab 1846), GQ Colton (американец, ab 1847), Hjorth (ab 1849), Томас Холл (американец в США, около 1850 г.), Т.К. Эйвери (около 1851 г.), Серен Хьорт (датчанин, около 1851 г.), Дю Монсель (француз, около 1851 г.), Мари Дэви (франц. 1861)
и другие.

Изначально идет соревнование между колебательными (возвратно-поступательными) и вращательными машинами. Позже колебательные машины полностью исчезают из поля зрения.

Основная проблема первых электродвигателей заключалась в том, что электрический ток от гальванических элементов (цинковых батарей) был слишком дорогим, чтобы конкурировать с паровыми двигателями. Р. Хант сообщил в 1850 году в British Philosophical Magazine , что электроэнергия даже в самых лучших условиях в 25 раз дороже, чем паровой двигатель. Только с продолжающейся разработкой электрогенератора (динамо-машины) ситуация начинает меняться.

1840 18 января 1840 года выходит первое издание новой газеты Давенпорта, Electro Magnet and Mechanics Intelligencer . Печатный станок приводится в движение двумя собственными моторами. Моторы выдают якобы около 2 л.с., что составляет около 1,5 кВт.
1841-
1844
По инициативе Вагнера, Германская Конфедерация под руководством Пруссии, Баварии и Австрии устанавливает в 1841 году приз в размере 100000 гульденов за создание электрической машины, мощность которой дешевле, чем мощность лошади, пара или человека. мощность.

Конечно, эта цена привлекает других изобретателей, которые параллельно с Вагнером начинают работать над электродвигателем. Среди них господин Карл Людвиг Althans из Бюкебурга недалеко от Миндена, Эмиль Stöhrer из Лейпцига, Эмиль Groos из Карлсруэ и Петер Bauer из Нюрнберга. В частности, в 1843 году Штёрер конструирует замечательную машину.

При исследовании последней машины Вагнера в мае и июне 1844 г. во Франкфурте-на-Майне федеральная комиссия определила мощность всего в 50 Вт.Потребление цинка настолько велико, что лошадь, пар и рабочая сила значительно дешевле. Из-за этой неудачи Вагнеру отказывают в цене, и он впадает в немилость.

Без мощного электрогенератора это соревнование невозможно было бы выиграть, и человечеству пришлось ждать еще 25 лет.

1851 Page увеличивает мощность двигателей с 8 до 20 л.с.

С двумя двигателями он ведет 10-тонный локомотив с максимальной скоростью 30 км / ч. Он путешествует по маршруту из Вашингтона в Бладенбург за 19 минут.

1854 Другой, 12-тонный локомотив Пейджа едет по маршруту Балтимор — Огайо.
… подробнее в части 2.

Общие типы электродвигателей

Электродвигатель — это электрическое устройство, преобразующее электрическую энергию в механическую.Механическая сила может использоваться для вращения вентиляторов, миксера, конвейеров или шин электромобиля. Электродвигатель — это рабочая лошадка в отрасли передачи электроэнергии.

Все двигатели обладают определенными характеристиками, поэтому мы можем классифицировать их по определенным характеристикам или стандартам.

Двигатели, используемые в Северной Америке, чаще всего соответствуют стандартам NEMA (Национальная ассоциация производителей электрооборудования). Обычно называемые двигателями NEMA. Практически во всем остальном мире используется метрическая версия, называемая SI или международным стандартом, известная как стандарты IEC.Часто называют двигателями IEC. NEMA использует лошадиные силы и дюймы, IEC использует миллиметры и киловатты

.

Мы классифицируем 2 типа электродвигателей в зависимости от источника питания:

  • Двигатели постоянного или постоянного тока
  • Двигатели переменного или переменного тока


Двигатели постоянного тока Двигатели постоянного тока

были первой разновидностью двигателей, широко используемых, поскольку они могли питаться от существующих систем распределения электроэнергии постоянного тока.Они обычно снабжены постоянными магнитами в их статической части, но есть и другие, которые содержат электромагниты вместо постоянных магнитов в своем статоре. Скорость двигателя постоянного тока можно регулировать в широком диапазоне, используя либо переменное напряжение питания, либо изменяя силу тока в его обмотках возбуждения. Небольшие двигатели постоянного тока используются в игрушках, инструментах и ​​бытовой технике.

Двигатели переменного тока

Переменный ток, что означает, что ток вместо того, чтобы течь в одном направлении, движется вперед и назад, меняет направление с определенной частотой в герцах.В большинстве стран в качестве частоты переменного тока используется 50 Гц (50 Гц или 50 циклов в секунду). Лишь немногие используют 60 Гц. Стандарт в США — электричество переменного тока частотой 60 Гц.

Мы классифицируем 2 основных типа двигателей переменного тока по фазам:

Однофазный двигатель

Однофазный двигатель работает от однофазного источника питания. Они содержат два типа проводки: горячую и нейтральную. Их мощность может достигать 3 кВт.Их можно использовать в основном в домах, офисах, магазинах и небольших непромышленных компаниях, а также во многих других устройствах, таких как дрели, кондиционеры и системы открывания и закрывания гаражных ворот.

Трехфазный двигатель

Трехфазный двигатель работает от трехфазного источника питания. Они управляются тремя переменными токами одинаковой частоты, которые достигают максимума в переменные моменты времени. Они могут иметь мощность до 300 кВт и скорость от 900 до 3600 об / мин.Из-за высокой эффективности и низкой стоимости трехфазный двигатель переменного тока является наиболее часто используемым двигателем в промышленных приложениях.

Мы также можем классифицировать двигатели по типу корпуса. Мы расскажем об этом в другой статье.
Читайте здесь: Самые распространенные типы корпусов электродвигателей

Использование электродвигателей

Электричество — это наиболее экономичный способ передачи энергии на очень большие расстояния по проводам.Однако практически невозможно использовать электричество напрямую, например, для перекачивания воды, для чего требуется механическая энергия. В этом случае нам нужно производить механическую энергию из электричества так или иначе, чтобы выполнять механическую работу. По этой причине мы используем электродвигатели, которые потребляют электричество на входе и выдают механическую энергию на выходе.

Ознакомьтесь с некоторыми приложениями, в которых требуются электродвигатели:

  • Промышленное использование — Существуют различные процессы во всех отраслях промышленности, в которых нам требуется механическая энергия от электродвигателей, например смешивание, подъем, вытягивание и т. Д.

  • Домашнее хозяйство — Для комфортной жизни мы полагаемся на многие электрические приборы, для которых требуются электродвигатели, такие как кондиционер, электрические вентиляторы, пылесос, водяной насос, измельчитель, миксер и т. Д.

Не стесняйтесь: Свяжитесь с нами , если у вас есть какие-либо вопросы, вам нужна дополнительная информация или если вы заинтересованы в покупке электродвигателей.

HVH Industrial Solutions является авторизованным дистрибьютором следующих производителей электродвигателей: Elektrim Motors, Aurora Motors, Worldwide Electric , 0003 Rossi . Мы тесно сотрудничаем с их командами инженеров, чтобы обеспечить превосходное обслуживание и поддержку клиентов.

Сделать запрос


Владимир Арутюнян

Владимир Арутюнян — основатель HVH Industrial.Он имеет степень магистра машиностроения и более 10 лет опыта работы в области передачи механической энергии.

Не стесняйтесь связываться с Владом на Linkedin: https://www.linkedin.com/in/vladharut



Различные типы электродвигателей и их применение

Как мы знаем, электродвигатель играет жизненно важную роль во всех секторах промышленности, а также в широком диапазоне применений.На рынке доступно множество типов электродвигателей. Выбор этих двигателей может быть сделан в зависимости от режима работы, напряжения и применения. Каждый двигатель состоит из двух основных частей: обмотки возбуждения и обмотки якоря. Основная функция обмотки возбуждения — создание фиксированного магнитного поля, тогда как обмотка якоря выглядит как проводник, расположенный внутри магнитного поля. Из-за магнитного поля обмотка якоря использует энергию для создания крутящего момента, необходимого для вращения вала двигателя.В настоящее время классификация двигателей постоянного тока может быть сделана на основе соединений обмоток, что означает, как две катушки в двигателе связаны друг с другом.

Типы электродвигателей

Типы электродвигателей доступны в трех основных сегментах, таких как электродвигатели переменного тока, электродвигатели постоянного тока и электродвигатели специального назначения.


типов двигателей

Двигатели постоянного тока

Типы двигателей постоянного тока в основном включают в себя серийные двигатели, шунтирующие двигатели и двигатели с комбинированной обмоткой и постоянным током постоянного тока.

двигатель постоянного тока
1).Параллельный двигатель постоянного тока

Параллельный двигатель постоянного тока работает от постоянного тока, и обмотки этого электродвигателя, такие как обмотки якоря и обмотки возбуждения, соединены параллельно, что называется шунтом. Этот тип двигателя также называется двигателем постоянного тока с шунтирующей обмоткой, а тип обмотки известен как шунтирующая обмотка. Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателя постоянного тока и его применениях

2). Двигатель с раздельным возбуждением

В двигателе с раздельным возбуждением соединение статора и ротора может быть выполнено с использованием другого источника питания.Таким образом, двигателем можно управлять с помощью шунта, а обмотку якоря можно усилить для создания магнитного потока.

3). Двигатель постоянного тока

В двигателе постоянного тока обмотки ротора соединены последовательно. Принцип работы этого электродвигателя во многом зависит от простого электромагнитного закона. Этот закон гласит, что всякий раз, когда магнитное поле может быть сформировано вокруг проводника, оно взаимодействует с внешним полем, создавая вращательное движение. Эти двигатели в основном используются в стартерах, которые используются в лифтах и ​​автомобилях.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателя постоянного тока и его применениях

Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о ДВИГАТЕЛЯХ постоянного тока — Основы, типы и применение

4). Двигатель PMDC

Термин PMDC означает «двигатель постоянного тока с постоянными магнитами». Это один из видов двигателей постоянного тока, в который может быть встроен постоянный магнит для создания магнитного поля, необходимого для работы электродвигателя. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о двигателе PMDC: конструкция, работа и применение

5).Составной двигатель постоянного тока

Обычно составной двигатель постоянного тока представляет собой гибридный компонент последовательного и параллельного двигателей постоянного тока. В этом типе двигателя присутствуют оба поля, такие как последовательный и шунтирующий. В этом типе электродвигателя статор и ротор могут быть соединены друг с другом через соединение последовательных и шунтирующих обмоток. Последовательная обмотка может быть спроектирована с несколькими витками широких медных проводов, что дает небольшой путь сопротивления. Шунтирующая обмотка может быть спроектирована с несколькими обмотками из медного провода для получения полного i / p напряжения.

Двигатели переменного тока

Двигатели переменного тока в основном включают синхронные, асинхронные и асинхронные двигатели.

двигатель переменного тока
1). Синхронный двигатель

Работа синхронного двигателя в основном зависит от трехфазного источника питания. Статор электродвигателя генерирует ток возбуждения, который вращается со стабильной скоростью в зависимости от частоты переменного тока. Так же как и ротор, от аналогичной скорости зависит ток статора. Между скоростью тока статора и ротора нет воздушного зазора.При высоком уровне точности вращения эти двигатели применимы в автоматизации, робототехнике и т. Д. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах синхронных двигателей и их применениях.

2). Асинхронный двигатель

Электродвигатель, работающий с асинхронной скоростью, известен как асинхронный двигатель, и альтернативное название этого двигателя — асинхронный двигатель. Асинхронный двигатель в основном использует электромагнитную индукцию для изменения энергии с электрической на механическую. По конструкции ротора эти двигатели подразделяются на два типа: с короткозамкнутым ротором и с фазовой обмоткой.Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах и преимуществах асинхронных двигателей.

Двигатели специального назначения

К двигателям специального назначения в основном относятся серводвигатель, шаговый двигатель, линейный асинхронный двигатель и т. Д.

Электродвигатель специального назначения
1) . Шаговый двигатель

Шаговый двигатель может использоваться для обеспечения углового шага вращения в качестве альтернативы стабильному вращению. Мы знаем, что для любого ротора полный угол вращения составляет 180 градусов. Однако в шаговом двигателе полный угол вращения может быть разделен на множество шагов, например, 10 градусов X 18 шагов.Это означает, что за полный цикл оборота ротор совершит ступенчатое движение восемнадцать раз, каждый раз на 10 градусов. Шаговые двигатели применимы в плоттерах, производстве схем, инструментах управления технологическим процессом, генераторах обычных движений и т. Д. Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о типах шаговых двигателей и их применениях

2). Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока были впервые разработаны для достижения превосходных характеристик на меньшем пространстве, чем щеточные двигатели постоянного тока. Эти двигатели меньше по размеру по сравнению с моделями переменного тока.Контроллер встроен в электродвигатель, чтобы облегчить процесс за счет отсутствия коммутатора и контактного кольца. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о бесщеточном двигателе постоянного тока — преимущества, применение и управление

3). Гистерезисный двигатель

Гистерезисный двигатель работает исключительно уникально. Ротор этого двигателя может быть вызван гистерезисом и вихревым током для создания необходимой задачи. Работа двигателя может зависеть от конструкции, однофазное питание или трехфазное питание.Эти двигатели обеспечивают очень плавный процесс со стабильной скоростью, как и другие синхронные двигатели. Уровень шума этого двигателя довольно мал, по этой причине они применимы во многих сложных приложениях, где бы ни использовался звуконепроницаемый двигатель, например, в аудиоплеере, аудиомагнитофоне и т. Д.

4). Реактивный двигатель

В основном, реактивный двигатель является однофазным синхронным двигателем, и эта конструкция двигателя аналогична асинхронному двигателю, например, клеточного типа. Ротор в двигателе похож на короткозамкнутый ротор, а статор двигателя включает в себя наборы обмоток, такие как вспомогательная и основная обмотка.Вспомогательная обмотка очень полезна при запуске двигателя. Поскольку они предлагают ровную работу со стабильной скоростью. Эти двигатели обычно используются в приложениях синхронизации, которые включают генераторы сигналов, записывающие устройства и т. Д.

5). Универсальный двигатель

Это особый тип двигателя, и этот двигатель работает от одного источника переменного тока, иначе от источника постоянного тока. Универсальные двигатели имеют последовательную намотку, при этом обмотки возбуждения и якоря соединены последовательно и, таким образом, создают высокий пусковой момент.Эти двигатели в основном предназначены для работы на высоких оборотах свыше 3500 об / мин. Они используют источник переменного тока при низкой скорости и источник постоянного тока аналогичного напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше об универсальном двигателе

Таким образом, речь идет о типах электродвигателей. В настоящее время существуют разные и гибкие. Мотор предназначен для управления движением, это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Вот вам вопрос, что такое моторы особого типа?

Управление температурным режимом электродвигателя | Исследования транспорта и мобильности

NREL проводит исследование управления тепловым режимом электродвигателя, на основе которого получены экспериментальные данные процессы моделирования для моделирования, анализа, проектирования и строительства новых электрических моторы.

Управление тепловым режимом электродвигателя включает в себя многогранное взаимодействие работы электродвигателя. условия, распределение тепловой нагрузки, температурные ограничения материала, пассивное тепловое распространение тепла и активное конвективное охлаждение.

Отраслевые партнеры хотят лучше понять теплопередачу в электродвигателях в их усилиях по разработке надежных двигателей с уменьшенными размерами и стоимостью.Исследование NREL решает эту проблему и поддерживает широкий отраслевой спрос на данные, методы анализа и экспериментальные методы для улучшения управления тепловым режимом двигателя.

Исследования по характеристике и улучшению терморегулирования двигателя включают следующее:

  • Разработка технологий охлаждения на основе жидкости (трансмиссионное масло, вода-этиленгликоль) для статора и ротора

  • Геометрическая характеристика столкновения и потока жидкости автоматической коробки передач репрезентативные поверхности и предоставление проверенных моделей вычислительной гидродинамики

  • Выполнение тепловых характеристик пассивной батареи и улучшение статора и ротор, включая пластинки, концевые обмотки и пазовые обмотки

  • Сотрудничество с другими национальными лабораториями и отраслевыми партнерами для измерения тепловых производительность материалов, улучшение характеристик двигателя и терморегулирования, а также облегчение будущая лабораторная тепловая оценка компонентов электродвигателя

  • Поддержка проекта терморегулирования для двигателей, разработанных партнерами NREL.

Марафон

Как важный бизнес, мы здесь, чтобы помочь во время кризиса COVID-19!

  • Наличие готового продукта
  • Поддержка местных продаж

Наши двигатели помогают во многих важных приложениях, которые в настоящее время поддерживают критически важные системы в рабочем состоянии.

Узнать больше

Торговая марка Marathon ® включает тысячи продуктов и решений, включая однофазные и трехфазные двигатели переменного тока, двигатели NEMA и IEC, двигатели низкого и среднего напряжения, двигатели с постоянным постоянным током, а также двигатели с радиальным и осевым магнитным потоком.

Marathon предлагает электродвигатели и интегрированные решения для двигателей / управления с классом эффективности IE4 и выше для самых сложных отраслей в мире. Мы проектируем, конструируем и производим двигатели мощностью от 1/4 до 5000 лошадиных сил с напряжением от 120 до 13 В переменного тока.8кВ. Наши двигатели NEMA и IEC используются во всем мире как в коммерческих, так и в промышленных приложениях.

Каждый двигатель Marathon опирается на более чем 100-летний опыт производства, а также новейшие разработки и производство, а также комплексное обслуживание, начиная с самых ранних этапов проектирования вашего двигателя. Двигатели Marathon — от двигателей с регулируемой скоростью, используемых в коммерческих целях, до двигателей, используемых для перекачивания, до высокоскоростных экструдеров и двигателей для критически важных задач, используемых на ледоколах в Арктике, — это правильный выбор.

Вся наша линейка двигателей общего назначения Globetrotter ® предназначена для тяжелых условий эксплуатации. Эти двигатели предназначены для промышленного применения, которое чаще всего встречается на перерабатывающих предприятиях, таких как конвейеры, насосы, редукторы и воздуховоды.

Двигатели

Blue MAX ® Inverter Duty разработаны для инверторных и векторных приложений, где функции в тяжелых условиях сочетаются с диапазоном скоростей 2000: 1, обеспечивающим выдающиеся характеристики.

Наши прецизионные сбалансированные трехфазные электродвигатели XRI ® для тяжелых условий эксплуатации разработаны для использования в тяжелых условиях, где требуются долгий срок службы и сверхвысокая эффективность. Диапазоны от 1 л.с. до 500 л.с., 2, 4 и 6 полюсов, 230/460 В (только до 30 л.с.), 9 выводов, 460 В, 575 В, 3 вывода — для всего диапазона. и токовая защита подшипников (BCP) и максимальная изоляция, как указано.


Инверторный двигатель microMAX ™

Наш двигатель microMAX ™ Inverter Duty идеально подходит для конвейеров, насосов, воздушного и промышленного оборудования, где требуются высокая производительность и широкий диапазон скоростей.

SyMAX ® Двигатель

Наши радиальные двигатели SyMAX ® PMAC разработаны для насосов, вентиляторов, компрессоров и промышленного оборудования, где требуется эффективность IE4.

Отрасли промышленности

Торговая марка Marathon применяется во множестве приложений и во множестве отраслей. Вы можете найти интересные решения и нововведения, перейдя по ссылкам ниже.

Посмотреть все Regal Industries>

Решения

Технологические двигатели Blue Chip XRI ® уже более 30 лет лидируют в автомобильной промышленности в критически важных приложениях, где требуется эффективность NEMA Premium ® IE3.Запатентованная система изоляции MAX GUARD ® выдержала испытание временем как выбор инженеров-проектировщиков при выборе двигателей с регулируемой скоростью. Благодаря неограниченной длине проводов и защите от потенциальных разрушительных сил, связанных с высокими частотами переключения современных приводов с ШИМ, вы можете быть уверены в надежной и надежной работе из года в год.


Награды за качество

За прошедшие годы наши двигатели Marathon завоевали множество наград за качество и продукцию от клиентов, торговых ассоциаций и журналов, таких как Control Engineering, Plant Engineering и Design Engineering News .Мы производим высококачественные, надежные двигатели, предназначенные для критически важных задач, для широкого спектра применений по всему миру. Наши двигатели работают на автомобильных заводах, химических предприятиях, горнодобывающих предприятиях и нефтегазовых платформах по всему побережью залива.

Это имя используется, введите другое

{0} было успешно создано.

{0} успешно удалено.

Новый пароль и пароль подтверждения не совпадают.

Введенный пароль не соответствует нашей политике паролей. Пожалуйста, попробуйте еще раз.

Введенный пароль не соответствует нашей политике паролей. Пожалуйста, попробуйте еще раз.

У вас уже есть доступ к зарегистрированной учетной записи.

Учетная запись уже добавлена ​​

Пожалуйста, выберите учетную запись

Введенный номер учетной записи недействителен или учетная запись еще не переведена для использования на Regalbeloit.com.

Для добавления необходимо указать действующий номер счета.Если вы не знаете номер своего счета, обратитесь к своему торговому представителю или администратору учетной записи.

Установите флажок «Дополнительный доступ».

Пожалуйста, введите свой адрес.

Пожалуйста, введите ваш адрес (продолжение).

Пожалуйста, проверьте, чтобы согласиться с Условиями использования и Политикой конфиденциальности.

Пожалуйста, укажите ваш город.

Пожалуйста, введите название вашей компании.

Пожалуйста, введите пароль для подтверждения.

Пожалуйста, выберите вашу страну.

Пожалуйста, введите правильный формат вашего электронного адреса.

Пожалуйста, введите свой адрес электронной почты.

Пожалуйста, введите ваше имя.

Просмотрите и выберите склад для каталогов / номеров деталей: {0}

Пожалуйста, введите название должности.

Пожалуйста, введите вашу фамилию.

Текущий введенный пароль не соответствует вашему паролю, или новый пароль совпадает с предыдущим, или пароль изменен за последние 30 дней.

Профиль успешно обновлен.

Ошибка при запросе доступа.

Регистрационная информация получена.Спасибо за проявленный интерес к Regal.

Пожалуйста, введите новый пароль.

Пожалуйста, введите старый пароль.

Пожалуйста, введите правильный формат вашего номера телефона.

Пожалуйста, введите свой номер телефона.

Пожалуйста, введите допустимый формат для вашего добавочного номера.

Выберите хотя бы одну категорию продуктов.

Убедитесь, что вы не робот.

Регистрационная информация получена. Спасибо за проявленный интерес к Regal.

Вы должны указать имя сотрудника Regal Beloit, который может подтвердить вашу потребность в доступе к технической документации Genteq.

Пожалуйста, выберите ваш штат.

Этот адрес электронной почты уже используется. Пожалуйста, авторизуйтесь.

Пожалуйста, введите свой почтовый индекс.

Новые авиационные электродвигатели Safran — Интервью с CleanTechnica

Две недели назад я встретился с командой Safran на мероприятии Национальной ассоциации деловой авиации — конференции и выставке деловой авиации (NBAA-BACE), чтобы представить их недавно представленные авиационные электродвигатели ENGINeUS. Я узнал немного больше о том, что компания делает в мире электрической авиации и как она планирует развивать свои технологии для будущего нашей городской воздушной мобильности (UAM).

Safran запускает новый портфель авиационных электродвигателей

Экспозиция Safran на NBAA-BACE 2019. Фото Николя Зарта

Safran недавно представила линейку авиационных электродвигателей ENGINeUS. Компания будет использовать два двигателя ENGINeUS мощностью 45 кВт на VoltAero Cassio 1. Он был представлен на выставке NBAA-BACE в Лас-Вегасе, где я разговаривал с Эрве Бланом, исполнительным вице-президентом и генеральным менеджером подразделения электрических систем и двигателей Safran Electrical. & Power, о важности этого объявления.

Экспозиция Safran на NBAA-BACE 2019. Фото Николя Зарта

Блан сообщил мне, что Safran инвестирует в портфель интеллектуальных электрических авиационных двигателей и силовых установок, которые они называют интеллектуальными двигателями. Система представляет собой элегантное решение, включающее аккумуляторную батарею, систему управления батареями (BMS) и электродвигатель с пропеллером. Компания называет всю систему BPMS — системой управления аккумулятором и питанием.

Электродвигатели мощностью от 20 кВт до 500 кВт.Они имеют воздушное охлаждение мощностью до 100 кВт и затем масляное охлаждение до 500 кВт. Углеродное волокно широко используется для снижения веса всей системы.

Что касается типов батарей, которые изучает Safran, Блан сказал, что они изучают различные химические продукты, но не будут разрабатывать батареи внутри компании. Пока что работа ведется вокруг литий-ионных, литий-серных и будущих твердотельных производных.

Safran приобрела компанию Zodiac несколько лет назад. Интегрированная компания фокусируется на краш-тестах аккумуляторной батареи на ударопрочность для использования в авиации.

Интеллектуальная система BPMS

Safran является модульной и означает, что оператор может заменить электродвигатели на те же модули и теоретически может увеличить мощность до 1 МВт.

Что касается электрического самолета VoltAero Cassio 1 с Safran ENGINeUS 45, то он начнет полеты в этом месяце. Вместо того чтобы выбрать путь, по которому Ampaire использовала свой Electric EEL — один электродвигатель и один тепловой двигатель, — Safran выбрала два электродвигателя ENGINeUS 45, установленных на крыльях лицом вперед.Это заменяет предыдущую пару электродвигателей более раннего поколения, которые использовались на начальном этапе тестирования. Электродвигатели ENGINeUS 45 выдают 45 кВт непрерывной мощности с максимальной мощностью 70 кВт. Safran также обеспечивает установку и специализированную управляющую электронику.

«С момента открытия ENGINeUS TM мы ежедневно работали над постоянным улучшением исключительных характеристик двигателей, и мы только начали их индустриализацию, чтобы удовлетворить растущий рынок самолетов с большим количеством электрических двигателей», — сказал Блан.

Технический директор Дидье Эстейн подготавливает двигатель ENGINeUS 45 для проверки его пригонки на опоре крыла летно-испытательного самолета VoltAero Cassio 1. Изображение предоставлено VoltAero.

Safran выбрала испытательный стенд VoltAero Cassio 1 для пассажировместимости от 4 до 9 человек. Он составит 15 тестовых летных часов. На заключительном этапе проекта первоначальный центральный передний двигатель внутреннего сгорания (ДВС) планера и связанный с ним пропеллер будут заменены аэродинамическим носовым обтекателем с дополнительными литий-ионными батареями внутри.Кормовой тепловой двигатель будет заменен фирменным гибридным силовым модулем VoltAero — тремя высокопроизводительными электродвигателями EMRAX мощностью 60 кВт и тепловым двигателем мощностью 250 лошадиных сил (184 кВт). Проект направлен на то, чтобы предложить частным владельцам, авиатакси, чартерным компаниям и операторам коммерческих рейсов альтернативу более крупным самолетам с реактивным двигателем между двумя точками и региональными самолетами.

Жан Ботти, генеральный директор и технический директор VoltAero, сказал: «VoltAero находится в авангарде внедрения новой эры безопасных, эффективных и экологичных полетов.Используя двигатели ENGINeUS TM 45, мы в полной мере воспользуемся передовыми технологиями Safran в области интеллектуальных, эффективных и оптимизированных электрических силовых установок ».

Электрическая авиация взлетела, наконец

Мы рады видеть, что основные средства массовой информации с энтузиазмом относятся к тому, что мы освещаем последние 4 года. За последние 6 лет электрическая авиация получила впечатляющий рост и в настоящее время насчитывает около 215 различных проектов электрической авиации.

Мы продолжим освещать отрасль электроэнергетики и ее влияние на UAM завтрашнего дня.А пока поздравляем Safran с портфелем интеллектуальных электрических авиационных двигателей.


Цените оригинальность CleanTechnica? Подумайте о том, чтобы стать участником, сторонником или представителем CleanTechnica — или покровителем Patreon. Есть совет для CleanTechnica, вы хотите разместить рекламу или предложить гостя для нашего подкаста CleanTech Talk? Свяжитесь с нами здесь.

Новый подкаст: Прогнозирование продаж электромобилей и цен на батареи и металл для электромобилей — Интервью с руководителем BloombergNEF по исследованиям чистой энергии

Пример использования мониторинга состояния

для большого электродвигателя

Фото 1.Рассматриваемый огромный двигатель на химическом заводе Eastman

В организациях по обеспечению надежности мы уделяем так много внимания применению технологий и экономии средств, связанных с обнаружением проблемы и предотвращением незапланированного отключения или катастрофического отказа. Много раз мы повторяем эту же процедуру, снова и снова по всему предприятию, потому что мы останавливаемся на выявлении физической проблемы, а наши результирующие действия не устраняют скрытую причину. Мы должны стать более активными и сделать следующий шаг при выявлении проблем с технологиями мониторинга состояния, определить систему или скрытую причину и применить последующее решение и / или полученные знания на всем предприятии.В следующем примере рассматривается электродвигатель мощностью 450 лошадиных сил, 1200 об / мин, 4160 вольт (Фото 1).

В этом исследовании специалист по анализу вибрации отметил значительное увеличение уровней вибрации на двигателе объекта (График 1).


Фото 1. Огромный двигатель, о котором идет речь, на химическом заводе Eastman.

Уровни вибрации повысились с менее 0,1 дюйма в секунду до 0,25 дюйма в секунду. Никаких других изменений связанного с ним машинного поезда не произошло.Анализ спектра подвесных подшипников двигателя выявил пик с высокой амплитудой около 7200 циклов в минуту и ​​еще один значительный пик около 71-кратной скорости вращения двигателя (График 2).


График 2. Анализ спектра выходных подшипников двигателя.

Первым подозрением аналитика была проблема с электродвигателем, связанная с электричеством. Поэтому он попросил группу моторного анализа оценить подозрительный мотор. Группа анализа двигателя провела анализ тока (График 3) и анализ мощности рассматриваемого двигателя, и никаких электрических проблем выявлено не было.


График 3. Текущие показания анализа для рассматриваемого двигателя.

Затем специалист по анализу вибрации решил продолжить более глубокий анализ. Был получен низкочастотный спектр с высоким разрешением, который показал, что фактический пик, примерно в два раза превышающий частоту линии, на самом деле составлял 7 239 имп / мин. Дальнейшая проверка компонентов двигателя показала, что эта частота эквивалентна частоте прохода шарика наружного кольца (BPFO) внутреннего подшипника двигателя.На основании этих выводов и того факта, что у нас ранее были проблемы с этим приложением, было принято решение о замене двигателя во время предстоящего планового профилактического обслуживания машинного поезда.

Не останавливайтесь на достигнутом — найдите первопричину

Часто наши группы надежности хотят остановиться на этом этапе и потребовать сбережения для предотвращения незапланированного простоя или катастрофического отказа. Но чтобы получить больше преимуществ от наших технологий мониторинга состояния, мы должны сделать следующий шаг.

Наша группа по анализу двигателей проследовала за рассматриваемым двигателем в нашу местную мастерскую по ремонту двигателей, чтобы проверить проблему с подшипником и попытаться определить причины этой проблемы. После снятия маслозаливной и сливной трубок команда отметила, что смазка в заливной трубке не была рекомендованной нами смазкой для двигателей. В заправочной трубке находилась смазка Interlube Red Hi-Lo, а в качестве моторной смазки мы использовали Exxon Polyrex EM (фото 2).


Фото 2. Анализ заполнения и слива
пробки выявляют проблемы.

При разборке внутреннего подшипника бригада и ремонтная мастерская также отметили, что смазка в подшипнике затвердела. Дальнейший анализ смазки, содержащейся в выпускной трубке, показал, что подшипник был смазан консистентной смазкой Chevron Black Pearl, когда он был ранее восстановлен. Стороны определили, что две смазки несовместимы и привели к затвердеванию смазки. Дальнейший анализ подшипников также подтвердил, что внешнее кольцо подшипника было повреждено.

Также было отмечено, что мы использовали сферический роликовый подшипник в ременной передаче. Было принято решение заменить подшипник на цилиндрический роликоподшипник для увеличения радиальной грузоподъемности.

Не останавливайтесь здесь

Часто наши группы по надежности испытывают искушение остановиться на этом этапе, и мы похлопываем себя по плечу и заявляем, что наша проблема решена путем корректировки спецификации подшипников и смазки на рассматриваемом двигателе. Но чтобы получить максимальную пользу от нашей технологии мониторинга состояния, мы должны сделать следующий шаг.Мы должны определить систему или скрытую причину сбоя и устранить эти причины, чтобы получить максимальную выгоду для нашей компании. Как неправильная смазка попала в этот подшипник? Есть ли в этом районе или на предприятии другие двигатели, которые получают смазки, не указанные в спецификации? Почему мастерская по ремонту двигателей использует не ту смазку, которую мы указали для наших двигателей на заводе?

Вот некоторые из других действий, которые были предприняты в результате выводов и последующего анализа первопричин:

  1. Результаты были переданы в нашу группу смазочных услуг, чтобы убедиться, что рассматриваемая смазка не использовалась в других областях.Хотя мы больше не указывали эту смазку ни на каком заводском оборудовании, было установлено, что многие лубрикаторы все еще имеют запасы этой смазки на своих участках. Смазка Interlube Red Hi-Lo была удалена из всех зон хранения смазки.

  2. Группа смазочных услуг изменила спецификацию пластичной смазки на заводе, но об этом не было сообщено затронутым поставщикам услуг. Состоялась встреча с представителями нашей моторной мастерской, на которой мы рассказали о наших выводах, результате смешивания несовместимых смазок и наших ожиданиях на будущее.

  3. В результате этого и нескольких других серьезных отказов двигателя была разработана новая спецификация ремонта. Спецификация смазки была включена в спецификацию ремонта. Предыдущая спецификация ремонта не содержала спецификации пластичной смазки.

  4. В результате этих выводов и выводов по нескольким другим двигателям было принято решение разработать процесс и команду по оценке ремонта двигателей.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *