Постоянный ток — Википедия
Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению.
Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток (англ. direct current) — это электрический ток, не изменяющий своего направления[1]. Часто можно встретить сокращения DC от первых букв англ. слов, или символом (ГОСТ 2.721-74), или —
На рисунке к этой статье красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t{\displaystyle t}, а по вертикальной — масштаб тока I{\displaystyle I} или электрического напряжения U{\displaystyle U}. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).
Величина постоянного тока I{\displaystyle I} и электрического напряжения U{\displaystyle U} для любого момента времени сохраняется неизменной.
При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).
Постоянный ток — это постоянное направленное движение заряженных частиц в электрическом поле.
В каждой точке проводника, по которому протекает постоянный ток, одни элементарные электрические заряды непрерывно сменяются другими, совершенно одинаковыми по сумме электрическими зарядами. Несмотря на непрерывное перемещение электрических зарядов вдоль проводника, общее пространственное их расположение внутри проводника как бы остаётся неизменным во времени, или стационарным.
Переносчиками электрических зарядов являются:
Постоянное движение электрических зарядов создаётся и поддерживается
Электрическое поле, сопутствующее постоянному току в проводнике и в соответствии с этим стационарное распределение в нём электрических зарядов, называется стационарным (неизменным во времени) электрическим полем.
Электрические заряды в стационарном электрическом поле нигде не накапливаются и нигде не исчезают, так как при всяком пространственном перераспределении зарядов неизбежно должно было бы измениться стационарное электрическое поле и соответственно ток перестал бы быть постоянным по времени.
Для стационарности поля и тока требуется, чтобы электрические заряды нигде не накапливались и нигде не терялись, а перемещались непрерывным и равномерным потоком вдоль проводников. Для этого необходимо, чтобы проводники совместно образовывали замкнутый на себя контур. В этом случае будет достигнуто непрерывное круговое равномерное движение электрических зарядов вдоль всего контура.
Постоянный электрический ток может существовать только в замкнутом на себя контуре, состоящем из совокупности проводников электричества, в котором действует стационарное электрическое поле.
Самыми первыми источниками постоянного тока являлись химические источники тока: гальванические элементы, затем были изобретены аккумуляторы. Полярность химических источников тока самопроизвольно измениться не может.
Для получения постоянного тока в промышленных масштабах используют электрические машины — генераторы постоянного тока, а также солнечные батареи.
В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют блоки питания. Как правило, переменный ток понижается трансформатором до нужного значения, затем выпрямляется. Далее для уменьшения пульсаций используется сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения или регулятор напряжения.
В современной радиоэлектронной аппаратуре получили распространение импульсные блоки питания. Сглаживание пульсаций выходного напряжения происходит благодаря наличию интегрирующего элемента, способного накапливать электрическую энергию и отдавать её в нагрузку. В результате на выходе можно получить практически постоянный ток.
Электрическую энергию могут накапливать электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток (постепенно уменьшающийся). Однако, если конденсатор разряжается через катушку индуктивности, то в цепи появляется двунаправленный переменный ток, это устройство называется колебательный контур. Электролитические конденсаторы могут иметь очень большую электрическую ёмкость (сотни и тысячи микрофарад и более). При разряде таких конденсаторов через большое сопротивление ток уменьшается медленнее, и для короткого времени можно считать, что во внешней цепи протекает постоянный ток.
Ионисторы — гибрид конденсатора и химического источника тока, способны накапливать и отдавать довольно большое количество электрической энергии, например, чтобы электромобиль с ионисторами проехал некоторое расстояние.
Направление постоянного тока и обозначения на электроприборах и схемах[править | править код]
Условное обозначение однонаправленного тока на электроприборахТочки с бо́льшими потенциалами (например, на зажимах батареек и аккумуляторов) носят название «
Исторически сложилось, что электрическая изоляция положительного провода окрашена в красный цвет, а отрицательного провода — в синий или чёрный.
Условное обозначение на электроприборах: −{\displaystyle \mathbf {-} } или ={\displaystyle \mathbf {=} }. Однонаправленный ток (в том числе постоянный) обозначается латинскими буквами DC{\displaystyle DC}. Для однонаправленного тока может быть также использован символ Юникода ⎓ (U+2393).
В ряде случаев можно встретить другие символы, например на малогабаритных штекерах, предназначенных для подключения к электронному устройству сетевого блока питания (или на корпусе самого электронного устройства, возле разъёма для подключения штекера) ⊙{\displaystyle \odot } с указанием полярности.
Электроды каких-либо устройств или радиодеталей (диодов, тиристоров, вакуумных электронных приборов), подключаемые к положительному проводу, носят название «анод», а электроды, подключаемые к отрицательному проводу, называются «катод»[2].
Величина постоянного тока (сила тока)[править | править код]
Мерой интенсивности движения электрических зарядов в проводниках является величина тока
Величина тока — это количество электрических зарядов (электричества), протекающих через поперечное сечение проводника в единицу времени.
Общепринято, что вместо терминов «ток» и «величина тока» часто применяется термин «сила тока».
- Термин «сила тока» является некорректным, так как сила тока не есть какая-то сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника. В проводах нет никаких сил. Мы с вами не будем нарушать эту традицию.
Если при равномерном движении электрических зарядов по проводнику за время
В проводнике ток равен одному амперу A{\displaystyle A}, если через площадь поперечного сечения его за одну секунду протекает один кулон электричества.
Ампер — единица измерения силы тока, названа в честь Андре-Мари Ампера.
Кулон — единица измерения электрического заряда (количества электричества), названа в честь Шарля Кулона. В тех случаях, когда приходится иметь дело с большими токами, количество электричества измеряется более крупной единицей, называемой ампер-часом
Сила тока измеряется амперметром, он включается в цепь так, чтобы через него проходил весь измеряемый ток, то есть последовательно.
Плотность тока[править | править код]
В электротехнике часто бывает важно знать не только силу тока в проводнике, но и плотность тока, так как плотность тока является мерой допустимой нагрузки проводов.
Плотностью тока называют ток (j{\displaystyle (j} или δ){\displaystyle \delta )}, приходящийся на единицу площади проводника: j=IS{\displaystyle j={\frac {I}{S}}}, где
- I{\displaystyle I} — сила тока, в Амперах;
- S{\displaystyle S} — площадь поперечного сечения проводника, в квадратных метрах,
- j{\displaystyle j} — плотность тока, выражается в амперах на квадратный метр: [Am2]{\displaystyle \left[{\frac {A}{m^{2}}}\right]}.
Так как провода с поперечным сечением, исчисляемым квадратными метрами, встречаются крайне редко, то плотность тока обычно выражается в амперах на квадратный миллиметр [Amm2]{\displaystyle \left[{\frac {A}{mm^{2}}}\right]}.
Электродвижущая сила и электрическое напряжение[править | править код]
Разность потенциалов между точками, между которыми протекает постоянный ток, могут охарактеризовать электродвижущая сила и электрическое напряжение.
Электродвижущая сила[править | править код]
Каждый первичный источник электрической энергии создаёт стороннее электрическое поле. В электрических машинах (генераторах постоянного тока) стороннее электрическое поле создаётся в металлических проводниках якоря, вращающегося в магнитном поле, а в гальванических элементах и аккумуляторах — в месте соприкосновения электродов с электролитом (растворами солей или кислот) при их химическом взаимодействии.
Стороннее электрическое поле, имеющееся в источнике электрической энергии постоянного тока, непрерывно взаимодействует на электрические заряды проводников, образующих вместе с ним замкнутую цепь, и создаёт в ней постоянный электрический ток.
Перемещая электрические заряды по замкнутой цепи, силы стороннего электрического поля преодолевают сопротивление противодействующих сил, например вещественных частиц проводников. Это приводит к тому, что силы стороннего электрического поля совершают работу за счёт энергии этого поля. По мере расхода энергии стороннее электрическое поле пополняет её за счёт механической или химической энергии.
В результате работы сил стороннего электрического поля энергия этого поля переходит в электрической цепи в какие-либо иные виды энергии, например в тепловую энергию в металлических проводниках, тепловую и химическую в электролитах, тепловую и световую энергию в электрических лампах и так далее.
Выражение «работа сил стороннего электрического поля» источника электрической энергии ради краткости обычно заменяют выражением «работа источника электрической энергии».
Если известна работа, совершаемая источником электрической энергии при перемещении единичного электрического заряда по всей замкнутой электрической цепи, то легко определить работу, совершаемую им при переносе некого электрического заряда Q{\displaystyle Q} по этой цепи, так как величина работы пропорциональна величине заряда.
- Величина, численно равная работе, совершаемой источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется электродвижущей силой E{\displaystyle E}.
Следовательно, если источник электрической энергии при переносе заряда Q{\displaystyle Q} по всей замкнутой цепи совершил работу A{\displaystyle A}, то его электродвижущая сила E{\displaystyle E} равна E=AQ{\displaystyle E={\frac {A}{Q}}}.
В Международной системе единиц (СИ) за единицу измерения электродвижущей силы принимается один вольт ( v, V ){\displaystyle (~v,~V~)}. Единица названа в честь итальянского физика и физиолога Алессандро Вольта.
- Электродвижущая сила источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой цепи им была совершена работа, равная одному джоулю : 1 volt=1 joule1 coulomb{\displaystyle 1~volt={\frac {1~joule}{1~coulomb}}}.
Например, если электродвижущая сила какого-либо источника электрической энергии E=220 volt{\displaystyle E=220~volt}, то это надо понимать так, что источник электрической энергии, перемещая один кулон электричества по всей замкнутой цепи, совершит работу A=220 joule{\displaystyle A=220~joule}, так как E=AQ=220 joule1 coulomb{\displaystyle E={\frac {A}{Q}}={\frac {220~joule}{1~coulomb}}}.
Из формулы E=AQ{\displaystyle E={\frac {A}{Q}}} следует, что
ru.wikipedia.org
каким символом обозначается на электроустановках
Заряженные частицы, перемещаясь, создают такое явление, как электрический ток. Применимо к электричеству этими частицами являются электроны. Они движутся по проводнику в электрической цепи от источника, выдающего заряд, к объекту, который этот заряд потребляет. Если это движение неизменно во времени и не меняет своего направления, его называют постоянным. Если такие изменения имеют место, говорят о переменном токе.
Движение заряженных частиц
Что такое переменный ток
В цепях постоянного электричества отрицательно заряженные частицы движутся от плюса к минусу. Если рассматривать источник тока как некоторый двухполюсник, имеющий два электрода, к которым подключается питаемая цепь, то на одном всегда будет плюс, а на другом – минус.
Переменный ток не позволяет зафиксировать такую маркировку полюсов. У двухполюсника переменного тока нельзя чётко обозначить, какой заряд присутствует на том или ином выводе. Можно рассматривать только мгновенные значения зарядов в определённый промежуток времени. Изменение полярности имеет временную зависимость. Это значит, что переменный ток меняет своё направление с течением времени.
Важно! Переменное электричество изменяется по гармоническому синусоидальному закону. Его графиком на оси координат является синусоида, в то время как график постоянного движения электронов представляет собой прямую линию, параллельную оси ОХ.
Графическое изображение двух типов электричества
Источники электрической энергии
Мировое производство электроэнергии базируется на работе электростанций. Основной принцип работы станций заключается в том, что турбины установленных в них электрогенераторов вращаются с помощью других видов энергии. Они получили своё название соответственно типу используемой энергии:
- тепловые (ТЭС) – в качестве сырья используются органические виды топлива: уголь, газ, мазут и другие;
- гидроэлектростанции (ГЭС) – лопасти турбины вращает падающая вода, она же используется для охлаждения рабочих поверхностей генераторов;
- атомные станции (АЭС) – один из видов ТЭС, где для получения пара, вращающего турбину, используют тепло, выделяемое в результате ядерной реакции.
Размещение тех или иных видов электростанций зависит от распределения по регионам сырьевых ресурсов, географического расположения рек и выбора подходящих мест для возведения АЭС.
Внимание! Основную долю производства мировой электроэнергии до сих пор берут на себя ТЭС. Опасность при эксплуатации АЭС пока является сдерживающим фактором для полного перехода на этот мощный вид производства электричества.
Неравномерная плотность проживания населения на планете не позволяет максимально приблизить такие источники энергии к местам потребления. Поэтому приходится передавать производимое электричество на дальние расстояния. Так как и потребление, и получение энергии происходит в реальном режиме, созданы энергосистемы, объединяющие электростанции между собой. Кроме того, сами системы организованы в более мощные энергосистемы. Это сделано для создания резерва рабочей мощности и возможности регулировать подачу электроэнергии к потребителям в бесперебойном режиме.
Разница в часовых поясах, сезонные колебания потребления – всё это нагружает одни станции и недогружает другие. Энергосистемы позволяют станциям подпитывать друг друга в случае перегрузок.
Кроме традиционных электростанций, хорошо зарекомендовали себя альтернативные источники: ветряные генераторы и солнечные батареи. С их помощью решают задачи по обеспечению электропитанием потребителей в отдельных случаях.
Что касается источников постоянного тока, то их можно разделить на два типа:
- химические – гальванические элементы, использующие реакции окисления, и электролитические, генерирующие энергию посредством электролиза;
- электромеханические – генераторы постоянного тока, превращающие энергию вращения в её электрический вид.
Гальванические элементы (батарейки) имеют конечный срок службы. Они конструктивно изготовлены так, что после окончания реакции окисления вырабатывание электричества прекращается. Электролитические элементы (аккумуляторы) имеют периодический режим работы. После разряда их можно заряжать, подавая на их полюса ток заряда, и использовать снова.
Источники электроэнергии
Обозначения на схемах и в приборах
Графическое обозначение тока постоянной полярности на схемы наносится в виде знаков плюс (+) и минус (-). Источник электричества постоянной полярности имеет вид двух вертикальных чёрточек, одна из которых вдвое длиннее. Та, что короче, – это минус, длинная – плюс. Запомнить различие можно легко. Если длинную черту разделить пополам, то из неё можно сложить знак «+». На корпусах приборов, блоков питания, на гнёздах подключения разъёмов питания можно увидеть буквенное обозначение DC (direct current). Это по-английски означает «однонаправленный ток». Рядом часто наносят графическое обозначение – длинная горизонтальная линия, под ней располагается пунктирная линия, у которой длина штрихов равна длине промежутков.
Обозначение переменного тока на схемах и на приборах осуществляется в буквенном изображении AC (Alternating Current) и графическим символом – отрезком синусоиды длиной в период. Число фаз может указываться цифрой или количеством волнистых линий, если это необходимо.
Обозначения постоянного и переменного электричества
Измерительные приборы и электрооборудование
Как обозначается ток на приборах, позволяющих измерять электрические характеристики? Обозначения те же самые, как и на приборах, его потребляющих. При измерении тока или напряжения прежде, чем прикасаться щупами к токоведущим частям электроустановок или открытых участков тоководов, необходимо выставить пределы измерения на приборе и род тока, которые соответствуют параметрам измеряемого участка.
Осторожно. Неправильная подготовка прибора к измерениям может вывести его из строя, привести к короткому замыканию измеряемого участка линии и поражению оператора электрическим током.
На корпуса электрооборудования, на защитные щиты и кожухи электродвигателей и генераторов наносятся опознавательные символы, информирующие о полярности, частоте, величине напряжения и других характеристиках.
Области применения DC напряжения
Постоянный ток, обозначение которого наносится на устройства, получают не только с помощью гальванических элементов. Преобразователи переменного электричества в постоянное имеют в своём составе выпрямительные устройства. Использование выпрямителей расширило область применения DC напряжения. Оно применяется в следующих сферах:
- на линиях постоянного напряжения (ЛЭП) в электросетях;
- при организации мини,- и микросетей для электропитания локальных потребителей постоянным током;
- на транспорте;
- в устройствах управления электроприводами;
- в бытовой технике и электронике.
Цепи и устройства, работающие на постоянном напряжении, не только востребованы, но и подвергаются усовершенствованию и широкому повсеместному внедрению.
Расшифровка обозначения мощности AC на схеме и корпусах
Из таблички на картинке ниже видно, как обозначается Р переменного тока. Она указывается в киловаттах (кВт). Такие же обозначения присутствуют и на электрических схемах. Это номинальная мощность оборудования, при которой оно работает в штатном режиме, и её КПД соответствует заявленному.
Характеристики электродвигателя на шильдике машины
Что означает AC и DC на панели мультиметра
На рабочей панели любого прибора DC – это обозначение постоянного напряжения. При установке переключателя на такие значки постоянного тока можно тестировать постоянные электрические величины.
Знак AC призван обозначать пределы, в которых тестер может работать с переменными значениями электричества.
Важно! Если численный порядок измеряемой величины не известен, то необходимо устанавливать максимально высокий предел измерения, постепенно снижая его до достижения необходимой точности тестирования. Если тип тока тоже не ясен, лучше предположить, что он изменяется во времени.
Обозначение переменного тока на схемах и приборах обязательно указывает его напряжение, частоту и количество фаз. Стандарты обозначений предусматривают однозначное и понятное для специалистов символьное отображение информации.
Видео
amperof.ru
Переменный ток — Википедия
СинусоидальныйПереме́нный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1].
Хотя переменный ток часто переводят на английский как alternating current, эти термины не эквивалентны. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ∼{\displaystyle \thicksim } или ≈{\displaystyle \thickapprox } (знак синусоиды), или латинскими буквами AC{\displaystyle AC}.
Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.
Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.
Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.
Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока Im{\displaystyle I_{m}}.
- График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.
На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси 0t{\displaystyle 0t} отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки 0{\displaystyle 0} — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени 0t{\displaystyle 0t}, характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени 0t{\displaystyle 0t}, — изменение отрицательных величин.
В начальный момент времени t=0{\displaystyle t=0} ток равен нулю (i=0){\displaystyle (i=0)}. Затем он с течением времени растёт в положительном направлении, в момент времени t=T4{\displaystyle t={\frac {T}{4}}} достигает максимального значения, после чего убывает по величине и в момент времени t=T2{\displaystyle t={\frac {T}{2}}} становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t=34T{\displaystyle t={\frac {3}{4}}T}, после чего убывает и при t=T{\displaystyle t=T} становится равным нулю.
Развёрнутая диаграмма периодического переменного токаПериодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.
На представленной диаграмме мы видим, что через равные промежутки времени T{\displaystyle T} график тока воспроизводится полностью без каких-либо изменений.
Время T{\displaystyle T}, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.
Величина, обратная периоду, называется частотой переменного тока:
- f=1T{\displaystyle f={\frac {1}{T}}}, где
- f{\displaystyle f} — частота переменного тока;
- T{\displaystyle T} — период переменного тока.
Если выразить время T{\displaystyle T} в секундах (sec), то будем иметь:
- f=1T[1sec]{\displaystyle f={\frac {1}{T}}\left[{\frac {1}{sec}}\right]}, то есть размерность частоты переменного тока выражается в 1/с.
Частота переменного тока численно равна числу периодов в секунду.
За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz).
Герц — единица Международной системы единиц (СИ), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).
Стандарты частоты[править | править код]
В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока).
Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).
В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.
- Число оборотов ротора n[1min]{\displaystyle n\left[{\frac {1}{min}}\right]} синхронного электродвигателя определяется по формуле:
n=60fp{\displaystyle n={\frac {60f}{p}}}, где
f{\displaystyle f} — частота переменного тока;
p{\displaystyle p} — число пар полюсов.
- Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, работающий на переменном токе частотой 400 герц, разовьёт 24 000 оборотов в минуту. Частота вращения ротора асинхронного электродвигателя меньше, чем частота питающего его тока и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.
В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.
Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по гармоническому закону синуса.
Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи[2].
Переменный синусоидальный ток выражается формулой:
i=Imsinωt{\displaystyle i=I_{m}\sin \omega t}, где
Im{\displaystyle I_{m}} — амплитуда синусоидального тока;
ωt{\displaystyle \omega t} — некоторый угол, называемый фазой синусоидального тока.
Фаза синусоидального тока ωt{\displaystyle \omega t} изменяется пропорционально времени t{\displaystyle t}.
Множитель ω{\displaystyle \omega }, входящий в выражение фазы ωt{\displaystyle \omega t} — величина постоянная, называемая угловой частотой переменного тока (круговой частотой переменного тока).
Угловая частота ω{\displaystyle \omega } синусоидального тока зависит от частоты f{\displaystyle f} этого тока и определяется формулой:
ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, где
ω{\displaystyle \omega } — угловая (круговая) частота синусоидального тока;
f{\displaystyle f} — частота синусоидального тока;
T{\displaystyle T} — период синусоидального тока;
2π{\displaystyle 2\pi } — центральный угол окружности, выраженный в радианах.
Исходя из формулы ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, можно определить размерность угловой (круговой) частоты:
[ω]=[2πT]=[1sec]{\displaystyle \left[\omega \right]=\left[{2\pi \over T}\right]=\left[{1 \over sec}\right]}, где
sec{\displaystyle sec} — время в секундах,
2π{\displaystyle 2\pi } — угол в радианах, является безразмерной величиной.
Фаза ωt{\displaystyle \omega t} синусоидального тока измеряется радианами.
- 1 радиан = 57,29° = 57°17′, угол 90° = π2{\displaystyle \pi \over 2} радиан, угол 180° = π{\displaystyle \pi } радиан, угол 270° = 3π2{\displaystyle 3\pi \over 2} радиан, угол 360° = 2π{\displaystyle 2\pi } радиан,
где π=3,14{\displaystyle \pi =3,14} радиан; π{\displaystyle \pi } — число «Пи», ° — угловой градус и ′ — угловая минута.
Формула i=Imsinωt{\displaystyle i=I_{m}\sin \omega t} описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени t=0{\displaystyle t=0}. Если начальный момент времени не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока принимает следующий вид:
i=
ru.wikipedia.org
Вопрос 2. Электрический ток (определение, сила тока, единицы измерения, направление тока, плотность тока), работа и мощность тока.
Электрический ток— направленное движение электрических зарядов под действием электрического поля. Для того чтобы шёл ток, нужна замкнутая цепь, которая состоит из источников электрической энергии, приёмников электроэнергии и соединительных проводов.
За направление тока принимают направление движения положительного заряда. Поэтому во внешней цепи ток направлен от зажима “+” к зажиму “–”, внутри источника — наоборот.
Сила тока— количество электричества, прошедшее через поперечное сечение проводника за 1 секунду.
— для постоянного тока
— для переменного тока (ток равен скорости изменения заряда)
Плотность тока:
Работа и мощность тока
При прохождении тока проводник нагревается и совершается работа:
—работатока
—мощностьтока
Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.
Электрическую энергию получают путём преобразования химической, механической и других видов энергии.
Устройство, которое даёт в цепь энергию, называется источником.
Источник тока— источник, ток которого не зависит от сопротивления нагрузки.
Источниками тока являются электронные лампы, транзисторы.
Схемное изображение источника тока:
На практике источник тока можно получить, если к источнику напряжения подключить очень большое внутренне сопротивление.
Можно при расчётах преобразовать источник напряжения в эквивалентный источник тока, если ток источника тока рассчитать по формуле
и внутренне сопротивление источника напряжения, включенное последовательно, включить к источнику тока параллельно.
Схема с источником напряжения:
Схема с эквивалентным источником тока:
Вопрос 4. Классификация электрических сигналов (простые и сложные, периодические и непериодические, детерминированные и случайные). Способы представления сигналов (математическая модель, временная, спектральная и векторная диаграммы).
Классификация электрических сигналов:
Периодические и непериодические
Периодические сигналыповторяются через определённый промежуток времени.
Непериодические сигналыпоявляются один раз и больше не повторяются.
Детерминированные и случайные
Детерминированные сигналы— сигналы, которые можно описать с помощью функции времени.
Случайные сигналы— сигналы, мгновенные значения которых заранее не может быть предсказано.
Простые и сложные
Простые сигналы— сигналы, токи и напряжения которых имеют одну частоту (синусоида).
Сложные сигналы— сигналы, которые состоят из суммы токов и напряжений нескольких частот.
Вопрос 5. Основные параметры детерминированных периодических сигналов (период, угловая и циклическая частота, амплитуда, размах, мгновенное и действующее значения, скважность). Примеры периодических сигналов различной формы.
Основные параметры детерминированных периодических сигналов:
Мгновенное значение— значение переменной в любой момент времени:
Максимальное (амплитудное) значение— наибольшее из мгновенных значений:
Размах сигнала— разность между максимальным и минимальным значениями сигнала:
Действующее значение переменного тока— такой постоянный ток, который за время равное периоду, выделяет сопротивлението же количество тепла, что и переменный ток:
Все приборы показывают действующие значения. Для гармонического сигнала максимальные и действующие значения связаны формулой:
Период— наименьший промежуток времени, через который значения переменной повторяются:
Циклическая частота— количество колебаний переменной за 1 с:
Угловая частота
Примеры периодических сигналов разной формы:
Сигнал, не изменяющийся во времени (постоянное напряжение или ток)
Гармонический сигнал
Изменяется по закону косинуса или синуса
Сигнал треугольной формы
Сигнал пилообразной формы
Сигнал прямоугольной формы
Биполярный импульс
Однополярный импульс
— длительность импульса
Скважность:
(безразмерная величина)
Скважность— отношение периода к длительности импульса.
Ток на выходе однополупериодного выпрямителя
Ток на выходе двухполупериодного выпрямителя
Вопрос 6. Двухполюсники и четырехполюсники, коэффициент передачи четырехполюсника по напряжению, току, мощности. Логарифмические единицы измерения коэффициента передачи. Понятие о воздействие и отклике.
Двухполюсник— участок цепи, который имеет 2 зажима:
Четырёхполюсник— участок цепи, который имеет 2 входных и 2 выходных зажима:
Коэффициент передачи по напряжению— отношение напряжения на выходе к напряжению на входе четырёхполюсника:
Коэффициент передачи по току — отношение тока на выходе к току на входе четырёхполюсника:
Коэффициент передачи по мощности— отношение мощности на выходе к мощности на входе четырёхполюсника:
studfile.net
Электрический ток — Википедия
У этого термина существуют и другие значения, см. Ток.Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда[1][2][3].
Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определённых условиях — электроны, в полупроводниках — электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля[4].
Электрический ток имеет следующие проявления:
Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционным[3].
Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.
- Постоянный ток — ток, направление и величина которого не меняются во времени.
- Переменный ток — электрический ток, изменяющийся во времени[5]. Под переменным током понимают любой ток, не являющийся постоянным.
- Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности[5].
- Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени[5]. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону[6]. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
- Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ)[7]. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.[7] Электромагнитные возмущения распространяются по электрической цепи со скоростью света, поэтому для периодически изменяющихся токов условие квазистационарности имеет вид: τ=lc≪T{\displaystyle \tau ={\frac {l}{c}}\ll T}, где l{\displaystyle l} — характерные размеры электрической цепи, c{\displaystyle c} — скорость света, T{\displaystyle T} — период изменений. Например, ток промышленной частоты 50 Гц квазистационарен для цепей протяженностью до 100 км.[8]
- Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля[5].
- Однонаправленный ток — это электрический ток, не изменяющий своего направления[5].
Вихревые токи[править | править код]
Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока»[10], поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.
Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.
Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.[2].
Дрейфовая скорость электронов[править | править код]
Скорость (дрейфовая) направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм[11] — в 20 раз меньше скорости улитки[источник не указан 1089 дней]. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.
Сила и плотность тока[править | править код]
Электрический ток имеет количественные характеристики: скалярную — силу тока, и векторную — плотность тока.
Сила тока — физическая величина, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего за некоторое время Δt{\displaystyle \Delta t} через поперечное сечение проводника, к величине этого промежутка времени.
- I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}
Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A).
По закону Ома сила тока I{\displaystyle I} на участке цепи прямо пропорциональна напряжению U{\displaystyle U}, приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению R{\displaystyle R}:
- I=UR.{\displaystyle I={\frac {U}{R}}.}
Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна. Поэтому применяют следующие понятия:
- мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
- амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
- эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.[12]
Плотность тока — вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.
Согласно закону Ома в дифференциальной форме плотность тока в среде j→{\displaystyle {\vec {j}}} пропорциональна напряжённости электрического поля E→{\displaystyle {\vec {E}}} и проводимости среды σ{\displaystyle \ \sigma }:
- j→=σE→.{\displaystyle {\vec {j}}=\sigma {\vec {E}}.}
Мощность[править | править код]
При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:
- активное сопротивление — сопротивление теплообразованию;
- реактивное сопротивление — «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ)[13].
Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:
- P=IU=I2R=U2R{\displaystyle P=IU=I^{2}R={\frac {U^{2}}{R}}}
Мощность измеряется в ваттах.
В сплошной среде объёмная мощность потерь p{\displaystyle p} определяется скалярным произведением вектора плотности тока j→{\displaystyle {\vec {j}}} и вектора напряжённости электрического поля E→{\displaystyle {\vec {E}}} в данной точке:
- p=(j→E→)=σE2=j2σ{\displaystyle p=\left({\vec {j}}{\vec {E}}\right)=\sigma E^{2}={\frac {j^{2}}{\sigma }}}
Объёмная мощность измеряется в ваттах на кубический метр.
Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны λ{\displaystyle \lambda }, зависимость сопротивления от длины волны и проводника относительно проста:
- R=3200(Lλ){\displaystyle R=3200\left({\frac {L}{\lambda }}\right)}
Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.
Частота[править | править код]
Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.
Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются[12]. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.
Ток смещения[править | править код]
Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения jD→{\displaystyle {\vec {j_{D}}}} — векторная величина, пропорциональная скорости изменения электрического поля E→{\displaystyle {\vec {E}}} во времени:
- jD→=ε0∂E→∂t{\displaystyle {\vec {j_{D}}}=\varepsilon _{0}{\frac {\partial {\vec {E}}}{\partial t}}}
Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, пер
ru.wikipedia.org
Обозначение постоянного и переменного электрического тока
Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять, о чём идёт речь в этой статье.
Электрическое напряжение делят на два вида:
- постоянное (dc)
- переменное (ас)
Обозначение постоянного тока (—), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.
В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.
Помимо этого, у переменного электрического тока существует деление ещё на два вида:
- однофазный
- трёхфазный
Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.
А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.
Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.
Применение
Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов.
Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.
Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы.
Переменный применяют почти везде, в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником. По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.
Переменный ток используется и в медицине
Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.
Таким образом, мы узнали, что есть два вида электрического тока: постоянный и переменный, по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (—) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.
remontoni.guru
чем отличаются и что это такое, обозначение на схемах
В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.
Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.
Что такое электрический ток и напряжение
Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:
- сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
- мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
- частота, измеряемая в герцах (Гц).
Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.
Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.
Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).
Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд – это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.
Что такое переменный ток
Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.
Что такое постоянный ток
Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.
Источники электрического тока
Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.
Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.
Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.
Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.
Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.
Преобразование переменного тока в постоянный
Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.
Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.
В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.
Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.
Где используется и в чём преимущества переменного и постоянного тока
Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.
Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.
Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети – переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.
Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.
Почему переменный ток используется чаще
Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.
Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» – противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.
Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.
Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.
В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.
При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.
Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.
odinelectric.ru