+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Основные электрические законы. Базовые формулы и расчеты

В предыдущей статье мы познакомились с основными электрическими понятиями, такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом – законом Ома. В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой, и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:


Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно подобрать и заменить проволоку.

Применив закон Ома, можно рассчитать мощность и по другой формуле:

При расчетах надо учитывать, что часть потребляемой электроэнергии расходуется на нагрев и преобразуется в тепло. При работе греются не только электрообогреватели, но и телевизоры, и компьютеры и другая бытовая техника.

И в завершение, в качестве бонуса, вот такая шпаргалка, которая поможет определить любой из основных электрических параметров, по уже известным.

Таблица большая основных формул электричества и магнетизма





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма.  / / Таблица большая основных формул электричества и магнетизма

Поделиться:   

Таблица большая основных формул электричества и магнетизма

 Физические законы, формулы, переменные  Формулы электричество и магнетизм

Закон Кулона:

  • где q1 и q2 — величины точечных зарядов, 
  • ε1  — электрическая постоянная;
  • ε — диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
  • r — расстояние между зарядами.

Напряженность электрического поля,

где:

 F — сила, действующая на заряд q0 , находящийся в данной точке поля.

Напряженность поля на расстоянии r от источника поля:
1) точечного заряда
2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:
3) плоскости с поверхностной плотностью заряда σ (не зависит от расстояния):
4) между двумя разноименно заряженными плоскостями с поверхностной плотностью заряда σ
(во вне такого «суперконденсатора» поле равно нулю по принцину суперпозиции):
Потенциал электрического поля:
где W — потенциальная энергия заряда q0 .
Потенциал поля точечного заряда на расстоянии r от заряда:
По принципу суперпозиции полей,
  • Напряженность, принцип суперпозиции: 
  • Εi — напряженность и в данной точке поля, создаваемая i-м зарядом.
  • Потенциал, принцип суперпозиции:

Электронные формулы атомов химических элементов (109)

№ эл-та Химический
знак
Название
элемента
Электронная формула
1 H водород 1s 1
2 He гелий 1s 2
II период
3 Li литий 1s 22s 1
4 Be бериллий 1s 22s 2
5 B бор 1s 22s 22p 1
6 C углерод 1s 22s 22p 2
7 N азот 1s 22s 22p 3
8 O кислород 1s 22s 22p 4
9 F фтор 1s 22s 22p 5
10 Ne неон 1s 22s 22p 6
III период
11 Na натрий 1s 22s 22p 63s 1
12 Mg магний 1s 22s 22p 63s 2
13 Al алюминий 1s 22s 22p 63s 23p1
14 Si кремний 1s 22s 22p 63s 23p2
15 P фосфор 1s 22s 22p 63s 23p3
16 S сера 1s 22s 22p 63s 23p4
17 Cl хлор 1s 22s 22p 63s 23p5
18 Ar аргон 1s 22s 22p 63s 23p6
IV период
19 K калий 1s 22s 22p 63s 23p64s 1
20 Ca кальций 1s 22s 22p 6
3s 23p64s 2
21 Sc скандий 1s 22s 22p 63s 23p64s 23d1
22 Ti титан 1s 22s 22p 63s 23p64s 23d2
23 V ванадий 1s 22s 22p 63s 23p64s 23d3
24 Cr хром 1s 22s 22p 63s 23p64s 13d5
25 Mn марганец 1s 22s 22p 63s 23p64s 23d5
26 Fe железо 1s 22s 22p 63s 23p64s 23d6
27 Co кобальт 1s 22s 22p 63s 23p64s 23d7
28 Ni никель 1s 22s 22p 63s 23p64s 23d8
29 Cu медь 1s 22s 22p 63s 23p64s 13d10
30 Zn цинк 1s 22s 22p 63s 23p64s 23d10
31 Ga галлий 1s 22s 22p 63s 23p64s 23d104p1
32 Ge германий 1s 22s 22p 63s 23p64s 23d104p2
33 As мышьяк 1s 22s 22p 63s 23p64s 23d104p3
34 Se селен 1s 22s 22p 63s 23p64s 23d104p4
35 Br бром 1s 22s 22p 63s 23p64s 23d104p5
36 Kr криптон 1s 22s 22p 63s 23p64s 23d104p6
V период
37 Rb рубидий 1s 22s 22p 63s 23p64s 23d104p65s1
38 Sr стронций 1s 22s 22p 63s 23p64s 23d104p65s2
39 Y иттрий 1s 22s 22p 63s 23p64s 23d104p65s24d1
40 Zr цирконий 1s 22s 22p 63s 23p64s 23d104p65s24d2
41 Nb ниобий 1s 22s 22p 63s 23p64s 23d104p65s14d4
42 Mo молибден 1s 22s 22p 63s 23p64s 23d104p65s14d5
43 Tc технеций 1s 22s 22p 63s 23p64s 23d104p65s24d5
44 Ru рутений 1s 22s 22p 63s 23p64s 23d104p65s14d7
45 Rh родий 1s 22s 22p 63s 23p64s 23d104p65s14d8
46 Pd палладий 1s 22s 22p 63s 23p64s 23d104p65s04d10
47 Ag серебро 1s 22s 22p 63s 23p64s 23d104p65s14d10
48 Cd кадмий 1s 22s 22p 63s 23p64s 23d104p65s24d10
49 In индий 1s 22s 22p 63s 23p64s 23d104p65s24d105p1
50 Sn олово 1s 22s 22p 63s 23p64s 23d104p65s24d105p2
51 Sb сурьма 1s 22s 22p 63s 23p64s 23d104p65s224d105p3
52 Te теллур 1s 22s 22p 63s 23p64s 23d104p65s24d105p4
53 I йод 1s 22s 22p 63s 23p64s 23d104p65s24d105p5
54 Xe ксенон 1s 22s 22p 63s 23p64s 23d104p65s24d105p6
VI период
55 Cs цезий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1
56 Ba барий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2
57 La лантан 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1
58 Ce церий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2
59 Pr празеодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3
60 Nd неодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4
61 Pm прометий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5
62 Sm самарий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6
63 Eu европий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7
64 Gd гадолиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1
65 Tb тербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9
66 Dy диспрозий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10
67 Ho гольмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11
68 Er эрбий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12
68 Tm тулий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13
70 Yb иттербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14
71 Lu лютеций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1
72 Hf гафний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2
73 Ta тантал 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3
74 W вольфрам 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4
75 Re рений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5
76 Os осмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6
77 Ir иридий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7
78 Pt платина 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9
79 Au золото 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10
80 Hg ртуть 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10
81 Tl таллий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1
82 Pb свинец 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2
83 Bi висмут 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3
84 Po полоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4
85 At астат 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5
86 Rn радон 1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6
VII период
87 Fr франций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1
88 Ra радий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2
89 Ac актиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1
90 Th торий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0
91 Pa протактиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1
92 U уран 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1
93 Np нептуний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1
94 Pu плутоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1
95 Am америций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7
96 Cm кюрий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1
97 Bk берклий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1
98 Cf калифорний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10
99 Es эйнштейний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11
100 Fm фермий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12
101 Md менделеевий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13
102 No нобелий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14
103 Lr лоуренсий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1
104 Rf резерфордий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2
105 Db дубний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3
106 Sg сиборгий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4
107 Bh борий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5
108 Hs хассий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6
109 Mt мейтнерий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7
Обозначения элементов:
s-элементы p-элементы d-элементы f-элементы

формулы тоэ | энергетик

меню сайта для мобильных приложений

 

ФОРМУЛЫ ТЕОРИИ ОСНОВ ЭЛЕКТРОТЕХНИКИ (ТОЭ)

 Формулы ТОЭДанный раздел основных формул ТОЭ предназначен для начинающих,  как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:

      Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях). Поэтому определимся сразу с буквенным обозначением:   😥

Формулы ТОЭ

При расчётах всегда приводить все значения в одну единицу, например если расчеты по мощности в ваттах, соответственно напряжение в вольтах, сопротивление в омах и т.д. 

Формулы ТОЭ

  •         А теперь формулы по электротехнике (ТОЭ) часто применяемые для расчетов (дома, на работе), рассмотрим в порядке от простых к очень простым, для студенческого сообщества выложу отдельно сложные и очень сложные, и напишу целую лекцию по ТОЭ.

ФОРМУЛЫ ПОСТОЯННОГО ТОКА

       Закон Ома для участка цепи и всей цепи постоянного тока:

Формулы ТОЭ

    Пример для расчета сопротивления  проводника (подробнее можете посмотреть, что такое величина удельного сопротивления проводника на стр. понятия и определения):

Формулы ТОЭ

       Мощность в цепи постоянного тока, здесь нет ничего сложного, как и все в постоянном токе, замечу только, что значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, единица мощности (Р) равна -1 кВт = 1000 Вт:

Формулы ТОЭ

    •     На заметку для любознательных, можно например, электрическую мощность пересчитать в механическую и наоборот: 1 кВт*ч = 367000 кгс*м; 1кВт = 102кгс*м/с, т.е. за 1 кВтч. Т.е. можно поднять груз массой 367 кг на высоту 1 км, или 102 кг за 1 сек. на один метр.

 

ФОРМУЛЫ ПЕРЕМЕННОГО ТОКА

            В отличие от постоянного тока, особенностью переменного тока является то, что электрический ток с течением времени изменяется по величине и направлению. Элементы такой электрической цепи влияют на амплитуду тока и на его фазу. Условное обозначение переменного тока на электроприборах   ̴ (англ.  alternating current и обозначается латинскими буквами АС):

Формулы ТОЭ

Формулы ТОЭ

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны, поэтому далее формулы тоэ будут носить более учебный характер, чем практический, иначе говоря для учащихся и  просто для любознательных.

Перевод (конвертировать) мощности (Р в Вт), тока (I в А), сопротивления (R в Ом) и напряжения (U в В) можно, как показано ниже на простом примере (см. рис. ниже):

Формулы ТОЭ

При этом надо учитывать, если у Вас в цепи U 220 В есть электродвигатели, трансформаторы и т.д. (индуктивные или емкостные нагрузки — реактивные элементы), то тогда нужно учитывать cos φ , например:

I = P/(U*cos φ),

в цепи U 380 В подставляем ещё √3 (корень из трёх равен — 1,73), например:

для тока: I = P/(√3*U*cos φ), или I = P/(1,73*U*cos φ), для мощности: P = √3*U*I*cos φ.

Продолжение  формулы тоэ:  

См. также ниже продолжение раздела формулы:

перейти:  формулы тоэ 1   краткое описание страницы — электрический ток (I, ампер), электродвижущая сила (ЭДС, E=A/q=Дж/Кл=В, вольт), электрическое напряжение (U, вольт), электрическая энергия и мощность (Eq, Дж, джоуль) и ватт (Р, Вт, ватт)…

 перейти:   формулы тоэ 2    краткое описание страницы —  пассивные элементы цепи (резистор, катушка индуктивности и конденсатор), их основные характеристики и параметры…

 

Автор сайта надеяться, что информация Вам будет полезна, как доступно простая, так и более углублённая в других разделах сайта. Не забывайте просмотреть рекламу от гугл, реклама для Вас бесплатно, а мне развитие сайта, удачи.

формула формула мощности электрического тока

Электрический ток является физическим процессом. Если говорить упрощенно, то это упорядоченное движение заряженных частиц. Его протекание можно измерить и соответственно выразить в символьном и цифровом виде. Формула электрического тока, представляет собой выражение качественных и количественных параметров через сопротивление проводника, напряжение или разность потенциалов, а также через его силу. Так как любое перемещение чего-либо, подразумевает под собой совершение работы, то дополнительно можно вести разговор об электричестве используя формулу мощности электрического тока.

какая формула электрического тока

Основные понятия и формулы характеризующие электрический ток

Количественным параметром электрического тока является его сила, представляющая собой скалярную величину и выражающуюся в отношении заряда (принято обозначать буквой q) к периоду времени (t), за которое он пересекает сечение проводника. Следовательно, формула электрического тока, а если говорить правильно его сила, будет выглядеть следующим образом — I=q/t. Измеряется данный параметр в амперах. Так как скалярные величины являются действительными числами и определяются только значением, сила тока не может иметь отрицательный знак. С учетом того, что величина заряда не является постоянным параметром для разных электрических цепей, было введено понятие – плотность электрического тока (j), формула которой выглядят так – j=I/S, где S – площадь, пересекаемая зарядами. Следовательно, при увеличении силы тока и уменьшении поперечного сечения проводника плотность тока возрастает и наоборот. Как отмечалось выше, важными параметрами электричества, вернее электрической цепи являются напряжение в ней и сопротивление проводящих ток элементов.

электрический ток формула

Формула выражения силы электрического тока через сопротивление и напряжение

В отличие от фундаментальных исследований, в основе которых лежат теоретические выкладки данная зависимость была выведена практическим путем. Автором открытия является физик Ом, в честь которого закон и получил свое имя. По результатам своих опытов и экспериментов Ом пришел к выводу что сила тока (I) напрямую зависит от величины напряжения (U)и имеет обратную зависимость от сопротивления (R) элементов и деталей, включенных в электрическую цепь. Эту связь можно представить в виде – I=U/R. Путем несложных преобразований, формулы сопротивления и напряжения, выраженные через силу тока, будут выглядеть следующим образом – R=U/I и U=IxR, соответственно.

формула силы электрического тока
Формула силы электрического тока
сопротивление электрического тока формула
Сопротивление электрического тока: формула формула напряжения электрического тока
Формула напряжения электрического тока

Работа и мощность электрического тока

Формула мощности (Р) электрического тока напрямую зависит от его работы (А). Под работой тока подразумевается преобразование электрической энергии в механический, тепловой, световой или иной ее вид. Величина данного процесса напрямую зависит от времени его протекания, силы тока и напряжения в сети. Это можно выразить следующей формулой – А=IxUxt. Произведение (IxU) является ничем иным как мощностью. Следовательно, чем выше напряжение или сила тока в сети, тем большую мощность имеет электрический ток и большую работу он может совершить за единицу времени. Формула мощности электрического тока имеет следующий вид – Р=А/t или Р=IxU.

работа электрического тока формула
Работа электрического тока формула формула мощности электрического тока
Формула мощности электрического тока

Поэтому, если необходимо вычислить, какую работу производит ток, протекая по цепи в течение определенного времени, необходимо умножить мощность на временной промежуток, выраженный в секундах. Рассмотрим применение формул расчета работы и мощности электрического тока на примере электрического двигателя, подключенного к сети 220 В, а сила тока, измеренная амперметром для этого участка, составила 10А.

Р (мощность двигателя) = 10А (сила тока) х 220В (напряжение в сети) = 2200 Вт = 2,2 кВт.

Зная данный показатель, а также реальное или предполагаемое время функционирования электродвигателя можно определить какую работу он совершит за этот отрезок времени или другим словами сколько будет потрачено электроэнергии. Если двигатель был включен, например, 1 час, то можно найти искомое значение.

А (работа, совершенная двигателем) = 2,2 кВт (мощность) х 1 (время работы в часах) = 2,2 кВт ч. Именно этот показатель будет отражен на приборе учета расхода электроэнергии.

Исходя из того, что электрический ток является физическим процессом, то какой-либо его неизвестный параметр можно определить, зная его остальные характеристики. Приведем наиболее распространенные формулы для определения характеристик электрической цепи применяемые в электротехнике.

Напряжение или разность потенциалов
  • U = RxI
  • U = P/I
  • U = (P*R)1/2
Сила электрического тока
Сопротивление
  • R = U / I
  • R = U2/ P
  • R = P / I2
Мощность

В заключение отметим, что приведенная информация справедлива для цепей с постоянным электрическим током. Формулы, применяемые для расчета характеристик переменного тока, будут отличаться за счет введения дополнительных переменных и характеристик свойственных данному типу электричества.

Мощность электрического тока: особенности, формулы расчета

Мощность электрического тока является величиной, которая характеризует его свойства. Она определяется силой тока и напряжением. Единицей измерения является Ватт, в честь первооткрывателя этой величины. Обозначается она буквами Вт, в английском языке буквой W. В формулах эта характеристика имеет другое условное обозначение – латинская буква Р. Измеряется мощность тока ваттметром. Найти мощности нужно умножив силу тока на напряжение, то есть амперы на вольты получаем Ватты.

В статье будет рассказано подробно, о том, что такое мощность, как ее можно определить, от чего зависит и на что влияет. В качестве дополнения, материал содержит несколько видеоматериалов и один скачиваемый файл с подробным описанием этой характеристики.

Что такое мощность тока

Что такое мощность в электричестве

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Материал в тему: что такое электрическая цепь.

Как измерить мощность

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Что такое мощность электрического тока и как ее рассчитать

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах. Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Мощность электрического тока расчет и формулы

Для вычисления мощности тока в ваттах, силу тока в амперах умножаем на напряжение в вольтах. Обозначить мощность электрического тока латинским символом P, то приведенное выше правило можно записать в виде математической формулы P = I × U (1).

Воспользуемся этой формулой на практике. Необходимо вычислить, какая мощность электрического тока требуется для накала нити лампы, если напряжение накала равно 4 в, а ток накала 75 мА. Р= 0,075 А × 4 В = 0,3 Вт Мощность электрического тока можно определить и другим способом. Например, нам известны сила тока и сопротивление цепи, а напряжение величина неизвестная, тогда мы воспользуемся соотношением из закона Ома: U=I × R Подставим правую часть формулы (1) IR вместо напряжения U. P = I× U = I×IR или Р = I2×R.

Рассмотрим пример расчета: какая мощность теряется в реостате сопротивлением в 5 Ом, если через него идет ток, силой 0,5 А. Пользуясь формулой (2), вычислим:. P= I2 × R = 0,52×5 =0,25×5 = 1,25 Вт. Кроме того, мощность электрического тока можно рассчитать если известны напряжение и сопротивление, а сила тока величина неизвестна.

Для этого вместо силы тока I в формулу подставляется отношение U/R и тогда формула приобретает следующий вид: Р = I × U=U2/R (3) Разберем очередной практический пример с использованием этой формулы, при 2,5 вольта падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет определяться: Р = U2/R=(2,5)2/5=1,25 Вт; Выводы: Для нахождения мощности необходимо знать любые две из величин, из закона Ома. Мощность электрического тока равна работе тока, производимой в течение времени. P = A/t

Основные электротехнические формулы

Основные электротехнические формулы

Работа электрического тока

Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t

Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,

Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.

Мощность электрического тока

Мощность электрического тока

Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Интересно почитать: все о законе Ома.

Мощность тока

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Расчетные формулы мощности тока

Расчетные формулы мощности тока

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

Таблица потребления мощности тока для различных типов приборов

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно о мощности тока рассказано в материале  Мощность переменного тока. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electricalschool.info

www.ruselectronic.com

www.electrohobby.ru

www.remont220.ru

www.texnic.ru

www.nado5.ru

www.meanders.rul

Предыдущая

ТеорияКак устроен трехфазный выпрямитель

Следующая

ТеорияЧто такое шаговое напряжение и чем оно опасно

нахождения величины заряда и количество заряда

Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.

Что такое электрический заряд q

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

Понятие из учебного пособия

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Основные формулы

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон сохранения

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

Закон Кулона

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.

Формула для решения

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Формула электрической мощности

Электрическая мощность — это скорость, с которой энергия передается в или из части электрической цепи. Батарея может отдавать энергию, или такой элемент схемы, как резистор, может выделять энергию в виде тепла. Для любого элемента схемы мощность равна разности напряжений на элементе, умноженной на ток. По закону Ома V = IR, поэтому существуют дополнительные формы формулы электрической мощности для резисторов. Мощность измеряется в ваттах (Вт), где ватт равен джоулю в секунду (1 Вт = 1 Дж / с).

Общая форма:

электрическая мощность = разница напряжений x ток

P = VI

Резисторы:

P = электрическая мощность (Вт)

В = разница напряжений (В = Дж / К)

I = электрический ток (A = C / s)

R = сопротивление (Ом = В / А)

Формула электроэнергии Вопросы:

1) Если аккумулятор сотового телефона работает при напряжении 12,0 В, и он должен выдавать ток 0.9 А во время воспроизведения музыки какая мощность требуется?

Ответ: Требуемая мощность аккумулятора может быть найдена по формуле электрической мощности:

P = VI

P = (12,0 В) (0,9 А)

P = (12,0 Дж / C) (0,9 C / с)

P = 10,8 Дж / с

P = 10,8 Вт

Потребляемая мощность аккумулятора телефона составляет 10,8 Вт.

2) Резистор с разностью потенциалов 24,0 В излучает тепло. Тепловая энергия вырабатывается в размере 16.0 Вт. Какое значение сопротивления?

Ответ: Значение сопротивления можно найти, переставив одну из форм формулы электрической мощности. Применимая форма относится к мощности, напряжению и сопротивлению:

R = 36,0 В / А

R = 36,0 Ом

Значение сопротивления 36,0 Ом.

.

Электрические формулы

Общие электрические единицы, используемые в формулах и уравнениях:

  • Вольт — единица электрического потенциала или движущей силы — потенциал требуется для передачи одного ампера тока через один ом сопротивления
  • Ом — единица сопротивления — один ом — это сопротивление, обеспечиваемое прохождению одного ампера при подаче одного вольт
  • Ампера — единицы тока — один ампер — это ток, который один вольт может передать через сопротивление в один ом
  • Ватт — единица электрической энергии или мощности — один ватт равен произведению одного ампера на один вольт — один ампер тока, протекающего под действием силы одного вольта, дает один ватт энергии
  • вольт ампер — произведение вольт и ампер как показывают вольтметр и амперметр — в системах постоянного тока вольт-ампер совпадает с ваттами или подаваемой энергией — в системах переменного тока — объем ts и амперы могут быть или не быть на 100% синхронными — при синхронности вольт-амперы равны ваттам на ваттметре — когда несинхронные вольт-амперы превышают ватты — реактивная мощность
  • киловольт-ампер — один киловольт-ампер — кВА — равно 1000 вольт-ампер
  • Коэффициент мощности — отношение ватт к вольт-амперам

Электрический потенциал — закон Ома

Закон Ома может быть выражен как:

U = RI (1a)

U = P / I (1b)

U = (PR) 1/2 (1c)

Электрический ток — закон Ома

I = U / R (2a )

I = P / U (2b)

I = (P / R) 1/2 (2c)

Электрическое сопротивление — закон Ома

R = U / I (3a)

R = U 2 / P (3b)

R = P / I 2 (3c)

Пример — закон Ома

Батарея 12 вольт обеспечивает питание до сопротивления 18 Ом .

I = (12 В) / (18 Ом )

= 0,67 (A)

ohm

Электроэнергия

P = UI (4a)

P = RI 2 (4b)

P = U 2 / R (4c)

где

P = мощность (Вт, Вт, Дж / с)

U = напряжение (вольт, В)

I = ток (амперы, А)

R = сопротивление (Ом, Ом)

Электроэнергия

Электрическая энергия — это мощность, умноженная на время:

W = P t (5)

, где

W = энергия (Ws, Дж)

t = время (с) 9 0041

Альтернатива — мощность может быть выражена

P = Вт / т (5b)

Мощность — это потребление энергии за счет затрат времени.

Пример — потеря энергии в резисторе

Батарея 12 В подключена последовательно с сопротивлением 50 Ом . Мощность, потребляемая резистором, может быть рассчитана как

P = (12 В) 2 / (50 Ом)

= 2,9 Вт

Энергия, рассеиваемая за 60 секунд , может быть рассчитана

Вт = (2,9 Вт) (60 с)

= 174 Вт, Дж

= 0.174 кВт

= 4,8 10 -5 кВтч

Пример — электрическая плита

Электрическая плита потребляет 5 МДж энергии от источника питания 230 В при включении в течение 60 минут .

Номинальная мощность — энергия в единицу времени — печи может быть рассчитана как

P = (5 МДж) (10 6 Дж / МДж) / ((60 мин) (60 с / мин))

= 1389 Вт

= 1.39 кВт

Ток можно вычислить

I = (1389 Вт) / (230 В)

= 6 ампер

Электродвигатели

КПД электродвигателя

μ = 746 P / P input_w (6)

где

μ = КПД

P л.с. )

или альтернативно

μ = 746 P л.с. / (1.732 VI PF) (6b)

Электродвигатель — мощность

P 3-фазный = (UI PF 1,732) / 1,000 (7)

где

P 3-фазный = электрическая мощность трехфазного двигателя (кВт)

PF = коэффициент мощности электродвигателя

Электродвигатель — Ампер

I 3-фазный = (746 P л.с. ) / (1 ,732 В μ PF) (8)

где

I 3-фазный = электрический ток 3-фазный двигатель (амперы)

PF = коэффициент мощности электродвигателя

.

Список всех электротехнических формул

Длина кабеля от провисания, пролет

Формула:
Cable Length
L = S + ((8 * d 2 ) / (3 * S))


Где,

L = длина кабеля
S = длина кабеля
d = провисание кабеля
Соответствующий калькулятор:

Частота резонанса пружины

Формула:
f res = (1/2) * √ (k / M)


Где,

f res = Spring Resonance
k = Постоянная пружины
M = Вес пружины
Соответствующий калькулятор:

Электромагнитная сила катушки соленоида

Формула:

F = (n x i) 2 x магнитная постоянная x a / (2 x g 2 )

Где,
F = сила,
я = Текущий,
г = длина зазора между соленоидом и куском металла,
a = Площадь
n = количество витков,
Магнитная постоянная = 4 x PI x 10 -7 .

Соответствующий калькулятор:

Энергия конденсатора (E) и постоянная времени RC

Формула:
E = (V² x C) / 2
T = R x C


Где,

E = Накопленная энергия (Джоули),
T = постоянная времени (S),
V = Volatge (В),
C = емкость (мкФ),
R = сопротивление нагрузки (Ом).
Связанный калькулятор:

Физические свойства рулона / материала

Используемая формула:

Т = бл / д
n = Оборотов / T
кд = (2 x n x d) + bd
г = (п х г + ш) / 2
a = PI x r x r
L = (2 x PI x r x n) / 1000
об / мин =.0333 * ((0,812 / 2) * (0,812 / 2)) / ((г / 2) * (d / 2))
R = об / мин x L
В = R x I
P = V x I

Где,
T = витков на обмотку,
bl = длина шпульки,
d = диаметр проволоки,
n = количество витков,
cd = Внешний диаметр катушки,
bd = диаметр шпульки,
r = радиус середины катушки,
a = Площадь поперечного сечения,
L = Общая длина,
об / мин = сопротивление / метр,
R = Сопротивление,
В = напряжение при номинальном токе,
I = ток,
P = мощность при номинальном токе,

Соответствующий калькулятор:

Индуктивность катушки с воздушным сердечником

Формула:

Индуктивность = ((d 2 ) x (n 2 )) / (18d + 40l)

Где,
d = диаметр рулона,
l = длина змеевика,
n = Количество витков.

Связанный калькулятор:

Параллельный резистор

Используемая формула:

р = 1 / ((1/ 1 ) + (1/ 2 ))

Где,
R p = общее параллельное сопротивление
R 1 и R 2 = резисторы, подключенные параллельно

Соответствующий калькулятор:

Индуктивность прямого провода / индуктивность

Формула:

L = 0,00508 x a x (журнал (2 x a / d) -0,75)

Где,
L = индуктивность,
a, d = длина и диаметр провода,

Связанный калькулятор:

8051 PIC Microcontroller (UC) Time Delay

Используемая формула:

TIC12 = 1 / (МГц / 12) TIC6 = 1 / (МГц / 6)
Максимальное время работы 8-битного таймерного счетчика для 12 тактов = TIC12 * 256/1000
8-битный таймерный счетчик Максимальное время работы для 6 тактов = TIC6 * 256/1000
Максимальное время работы 16-битного счетчика таймера для 12 часов = TIC12 * 65536/1000
Максимальное время работы 16-битного счетчика таймера для 6 часов = TIC6 * 65536/1000
8-битная перезагрузка DRT Значение для 12 тактов = 256 — (DRT / TIC12 * 1000)
Значение перезагрузки 8-битного DRT для 6 тактов = 256 — (DRT / TIC6 * 1000)
Значение перезагрузки 16-битного DRT для 12 тактов = 65536 — (DRT / TIC12 * 1000)
Значение перезагрузки 16-битного DRT для 6 тактов = 65536 — (DRT / TIC6 * 1000)
Связанный калькулятор:

Параллельное сопротивление электронной схемы

Формула:


parallel

Где R 1 , R 2 ,…R n — значения отдельных резисторов
R total — полное сопротивление параллельно

Связанный калькулятор:

Резистор / сопротивление серии

Формула:
series-resistor

R = R 1 + R 2 + R 3 + …….


Где,

R = общее значение резисторов
R 1 = значение отдельных резисторов
R 2 = значение отдельных резисторов
R 3 = значение отдельных резисторов

Связанный калькулятор:

Полное сопротивление линий передачи микрополосковых полос (Z0)

Формула:

series-resistor series-resistor
Связанный калькулятор:

Электрическая проводимость (Y)

Формула:
admittance
Связанный калькулятор:
Конденсатор серии

/ емкость

Формула:
1 / C Итого = 1 / C 0 + 1 / C 1 + 1 / C 2 +…. + 1 / C n

Где,
C 0 , C 1 , .., C n — значения отдельных конденсаторов
C Итого — это общее значение емкости электрической цепи
Соответствующий калькулятор:

Параллельный конденсатор / емкость

Формула:
C Итого = C 1 + C 2 + C 3 + …. + C n

Где,
C 1 , C 2 ,.., C n — номиналы отдельных конденсаторов
C Total — это общее количество конденсаторов, подключенных параллельно.

С помощью этого онлайн-калькулятора электрооборудования
Параллельные конденсаторы
Здесь упрощен расчет в схеме.
Связанный калькулятор:

Мощность (л.с.) и преобразование в ваттах

Формула:


Мощность (л.с.) = Вт / л.с.


Где,


W = мощность в ваттах HP = стоимость одного л.с.

1 электрический л.с. = 746 Вт

1 механическая л.с. = 745.69987 Вт

1 метрическая HP = 735,49875 Вт
Связанный калькулятор:

Коэффициент мощности для переменного тока

Формула:


Коэффициент мощности = кВт / √ (кВт) 2 + (кВАр) 2

Где,


кВт = реальная мощность
кВАр = реактивная мощность
Соответствующий калькулятор:

Мощность трехфазного трансформатора

Формула:
В = (kx 1000) / (A x Ph)
A = (kx 1000) / (V x Ph)
k = (Ph x V x A) / 1000


Где,

В =
В A =
ампер k = кВА
Ph = 3 фазы (√3 = 1.732050808)
Связанный калькулятор:

Удельная работа газовой турбины

Формула:
w = K / ((K — 1) * R * T 1 * [1 — ((p 2 / p 1 ) ((К-1) / К) )])


Где,

w = Специальная рабочая газовая турбина
K = удельная теплоемкость воздуха
R = индивидуальная газовая постоянная
T 1 = Абсолютная температура
p 1 = первичное давление
p 2 = вторичное давление
Связанный калькулятор:

Трехфазная мощность с помощью двух ваттметров Метод

Формула:
Three Phase Power

P = (V 12 * I 2 * cos (30 + θ)) + (V 13 * I 3 * cos (30 — θ))


Где,

P = трехфазная мощность
В 12 , В 13 = Напряжение
I 2 , I 3 = Текущий
θ = Угол смещения
cos = Косинус

Связанный калькулятор:

Удельная работа

Формула:
w = (p 1 — p 2 ) / ρ
t = (p 2 — p 1 ) / ρ


Где,

w = удельная работа насоса
t = удельная работа турбины
p 1 = первичное давление
p 2 = вторичное давление
ρ = Плотность
Связанный калькулятор:

Таймер АРН


Формула:
f = cf / p
o = ttt / tr 2
rtt = t — (o * tr 2 )
rt = ttt / f
nf = f / ttt


Где,

f = частота
cf = Системная тактовая частота
p = значение тактовой частоты предделителя
o = Счетчик переполнения
tr = Разрешение таймера
ttt = Общее количество тактов таймера
rtt = оставшиеся тики таймера
rt = в реальном времени
nf = новая частота
Связанный калькулятор:

Резонансная частота пружины модуля Юнга

Формула:
f res = (d / (9 * D 2 * n f )) * √ (G / ρ)


Где,

f res = Частота резонанса пружины
d = Диаметр проволоки
D = диаметр пружины
n f = общее количество витков
G = модуль Юнга материала
ρ = Плотность материала
Связанный калькулятор:

Передаточное число

Формула:
GF = (eRPM * h * 0.002975) / a
МИЛЬ / Ч = GF / GR


Где,

GF = коэффициент передачи
GR = передаточное число
eRPM = Обороты двигателя (оборотов в минуту)
h = Высота шин
a = передаточное число
MPH = миль в час
Связанный калькулятор:

Калькулятор энергопотребления мАч

Формула:
b = (ц / ч) * 0,70


Где,

b = Среднее потребление тока
c = Емкость аккумулятора
h = Расчетное количество часов
Соответствующий калькулятор:

Стоимость электроэнергии

Формула:
Энергия, потребляемая в день = (p × h) / 1000
Энергия, потребляемая в месяц = ​​((p × h) / 1000) × 30
Энергия, потребляемая в Год = ((p × h) / 1000) × 365
Стоимость электроэнергии в день = ((p × h) / 1000) × r
Стоимость электроэнергии в месяц = ​​(((p × h) / 1000) × 30) × r
Стоимость электроэнергии в год = (((p × h) / 1000) × 365) × r


Где,

p = Потребляемая мощность
h = Часы использования в день
r = Стоимость электроэнергии на единицу
Соответствующий калькулятор:

Диаметр провода

Формула:
D = 2 × √ (A / π)


Где,

D = диаметр проволоки
A = Площадь
Соответствующий калькулятор:

Калибр проволоки

Формула:
Диаметр проволоки в AWG = -10-20 × log (d)


Где,

d = Диаметр проволоки
g = Диаметр проволоки калибра
Соответствующий калькулятор:

Электрическая потенциальная энергия

Формула:
Electric Potential

Где,

V = электрический потенциал
q N = Заряд
ε 0 = Проницаемость (8.8541878176e-12 Ф / м)
r N = Расстояние до точки
Связанный калькулятор:

Ток трансформатора

Формула:
I = P / V


Где,

I = текущий
P = номинальная мощность
V = напряжение
Соответствующий калькулятор:

Размер первичного проводника трансформатора

Формула:
δ = I / A


Где,

δ = Размер проводника
I = текущий
A = плотность тока
Соответствующий калькулятор:

Число витков в катушке трансформатора

Формула:
T e = (1 / (4.44 × F × M × A))
T = T e × V


Где,

T e = число оборотов на вольт
T = общее количество витков
M = магнитный поток
A = площадь Сердечник
F = Рабочая частота
В = Напряжение

Соответствующий калькулятор:

Длина провода трансформатора

Формула:
Общая длина провода = Число витков × Периметр катушки
Связанный калькулятор:

Объем проводника

Формула:
Объем проводника = Площадь × Длина
Соответствующий калькулятор:

Вес обмоток трансформатора

Формула:
Вес обмоток (кг) = Плотность × Объем (м 3 )

Связанный калькулятор:

NE555 Timer Astable Circuit

Формула:
astable circuit
f = 1.44 / ((R1 + 2 (R2)) × C)
T Высокая = 0,693 × (R1 + R2) × C
T низкая = 0,693 × R2 × C
d = (T Высокая / ( Т Высокая + л)) × 100


Где,

R1 = резистор 1
R2 = резистор 2
C = конденсатор
d = Рабочий цикл
f = частота
T High = Максимум времени
T low = Time Low
Связанный калькулятор:

Электростатический

Формула:
p = ε 0 × e 2 /2


Где,

p = Электростатическое давление
e = электрическое поле
ε 0 = электрическая постоянная (8.854 × 10 -12 )
Связанный калькулятор:

Реальная и реактивная мощность

Формула:
для однофазной сети
t = v × i × cos (p)
r = v × i × sin (p)

Для трехфазного
t = √3 × v × i × cos (p)
r = √3 × v × i × sin (p)


Где,

t = Действительная мощность
r = реактивная мощность
v = Напряжение
i = текущий
p = фазовый угол
Соответствующий калькулятор:

DC Power

Формула:
P = V × I
V = P / I
I = P / V


Где,

P = мощность
V = Напряжение
I = ток
Связанный калькулятор:

Питание переменного тока

Формула:
для однофазной сети
P = V × I × cos (θ)
V = P / (I × cos (θ)
I = P / (V × cos (θ)

) Для трехфазного
P = √3 × V × I × cos (θ)
V = P / (3 × I × cos (θ)
I = P / (3 × V × cos (θ)

)
Где,

P = мощность
θ = Угол коэффициента мощности
V = Напряжение
I = Current
Связанный калькулятор:

Энергопотребление Южная Африка

Формула:
p = (e × t) / 1000


Где,

p = Потребляемая мощность
e = Использование электроэнергии
t = Общее время использования
Связанный калькулятор:

Потери меди

Формула:
l = (a 2 × b) + (c 2 × d)


Где,

l = потеря меди
a = ток первичной обмотки
b = Омическое сопротивление первичной обмотки
c = Ток вторичной обмотки
d = омическое сопротивление вторичной обмотки
Соответствующий калькулятор:

Общий световой поток

Формула:
Ом = 2π (1-Cosθ)
F = ΩI v


Где,

I v = максимальная сила света
θ = Полный угол конуса
Ω = эквивалентный твердый угол
F = общий световой поток
Соответствующий калькулятор:

Импеданс коаксиального кабеля

Формула:
Z = (138 × log 10 (d 1 / (d 2 )) / √ (R)
F = 11 ,8 / (√ (R) × π × ((d 1 + d 2 ) / 2))
T = ((7.354 × R) / (log 10 (d 1 / d 2) ))) / 0,3048
D = (140,4 × log 10 (d 1 / d 2 )) / 0,3048
V = (1 / √ (R)) × 100


Где,

Z = Импеданс
d 1 = Внешний диаметр диэлектрика
d 2 = внутренний диаметр проводника
R = диэлектрическая постоянная
F = частота среза
T = емкость
D = индуктивность
V = Скорость распространения
. Связанный калькулятор:
.

Электротехника Общие формулы

Electrical Engineering General Formulas Electrical Engineering General Formulas Общие формулы электротехники (фото Thomas W @ Flickr)

Введение

В этой электронной таблице вычисляются наиболее общие и основные формулы электротехники.

Это:

  1. Однофазная мощность в кВА
  2. Трехфазная мощность в кВА
  3. Однофазный ток в амперах
  4. Трехфазный ток в амперах
  5. Рассеиваемая мощность в ваттах
  6. Индуктивность по Генри
  7. Импеданс в Ом
  8. Сопротивление в Ом

Электронная таблица довольно проста в использовании, ячейки с синим текстом могут быть изменены пользователем, а ячейки с зеленым текстом представляют результат.

Electrical Engineering General Formulas Spreadsheet Electrical Engineering General Formulas Spreadsheet Таблица общих формул электротехники

Связанный контент EEP с рекламными ссылками

,
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *