+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

устройство и принцип действия, конструкция и управление, применение дпт

Принцип действия двигателя постоянного токаУстройство, которое преобразует электрическую энергию в механическую, может использоваться как двигатель или генератор, так как конструкция и принцип действия двигателя постоянного тока (ДПТ) аналогична конструкции генератора. Особенностью ДПТ является механический инвертор (коммутатор). Этот коммутатор имеет скользящие контакты в виде щёток, которые расположены так, что они изменяют полярность обмоток якоря (катушек) во время вращательного движения.

Содержание

Особенности и устройство ДПТ

ДПТ представляет собой вращающуюся электрическую машину, работающую от постоянного тока. В зависимости от направления потока мощности проводится различие между двигателем (электродвигатель с электрической и механической мощностью) и генератором (электрический генератор, на который подаётся механическая мощность, а также электроэнергия). ДПТ могут запускаться под нагрузкой, их скорость легко изменить. В режиме генератора ДПТ преобразует напряжение переменного тока

, подаваемое ротором, в пульсирующее постоянное напряжение.

Устройство двигателя постоянного тока

История изобретения

Основываясь на развитии первых гальванических элементов в первой половине XIX века, первыми электромеханическими преобразователями энергии были машины постоянного тока. Первоначальная форма электродвигателя была разработана в 1829 году, а в 1832 году француз Ипполит Пиксии построил первый генератор. Антонио Пачинотти построил в 1860 году электродвигатель постоянного тока с многокомпонентным коммутатором. Фридрих фон Хефнер-Алтенек разработал барабанный якорь в 1872 году, который открыл возможность промышленного использования в области крупномасштабного машиностроения.

В последующие десятилетия такие машины из-за развития трехфазного переменного тока потеряли свою значимость в крупномасштабном машиностроении. Синхронные машины и системы с низким уровнем обслуживания асинхронного двигателя заменили их во многих устройствах.

Конструкция двигателя

Чтобы понять принцип действия ДПТ, нужно сначала изучить его конструктивные особенности, одной из которых является то, что в магнитном поле постоянного магнита установлен вращающийся проводящий контур.

Основной магнит вигателя постоянного тока

Упрощая эту структуру, можно сказать, что двигатель состоит из двух основных компонентов:

  1. Основной магнит (постоянный магнит), который прикреплён к статору. Магнитное поле также может быть электрически сгенерировано. На статоре находятся так называемые возбуждающие обмотки (катушки).
  2. Проводящая петля (арматура) на сердечнике якоря, обычно состоящая из слоистых металлических листов.

Обе конструкции называются двигателями постоянного тока с внешним возбуждением. Электродинамический закон указывает, что токопроводящая петля проводника в магнитном поле представляет собой силу [F], зависящую от тока [I] и напряжённости магнитного поля [B]. Токопроводящий проводник окружен круговым магнитным полем. Если объединить магнитное поле магнитного поля с магнитным полем проводящей петли, можно обнаружить суперпозицию двух полей, а также результирующий силовой эффект.

Обмотка якоря состоит из двух половин катушки. Если применить напряжение постоянного тока к двум концам обмотки якоря, можно представить, что движущиеся носители заряда поступают в нижнюю половину катушки из верхней половины катушки.

Якорь тягового двигателя

Каждая токопроводящая катушка развивает собственное магнитное поле, и магнитное поле постоянного магнита накладывается на магнитное поле нижней половины катушки и поле верхней половины катушки. Линии поля постоянного магнитного поля всегда одного направления, они всегда показывают с севера на южный полюс. Напротив, поля двух половин катушки имеют противоположные направления.

В левой части поля половины катушки полевые линии поля возбудителя и поля катушки имеют одно и то же направление. Благодаря этому силовому эффекту в противоположном направлении на нижнем и верхнем концах арматуры создаётся крутящий момент, который вызывает вращательное движение якоря.

Якорь представляет собой так называемый двутавровый якорь. Эта конструкция получила название из-за своей формы, которая напоминает два составных «Т». Катушки якоря соединены с платами коммутатора (коллектора). Подача тока в обмотке якоря обычно осуществляется через угольные щётки, которые обеспечивают скользящий контакт с вращающимся коммутатором и подают катушкам электричество. Щётки изготавливаются из самосмазывающихся графитов, частично смешанных с медным порошком для небольших двигателей.

Принцип действия и использование

Это устройство представляет собой электромашину, которая преобразовывает электрическую энергию в механическую. Принцип работы двигателя постоянного тока заключается в том, что всякий раз, когда проводник, переносимый током, помещается в магнитное поле, он испытывает механическую силу.

Как работает тяговый двигатель

Постоянный магнит преобразовывает электрическую энергию в механическую через взаимодействие двух магнитных полей. Одно поле создаётся сборкой постоянными магнитами, другое — электрическим током, протекающим в обмотках двигателя. Эти два поля приводят к крутящему моменту, который имеет тенденцию вращать ротор. Когда ротор вращается, ток в обмотках коммутируется, обеспечивая непрерывный выход крутящего момента.

Коммутатор состоит из проводящих сегментов (стержней) из меди, которые представляют собой завершение отдельных катушек проволоки, распределённых вокруг арматуры. Вторая половина механического выключателя комплектуется щётками. Эти щётки обычно остаются неподвижными с корпусом двигателя.

По мере прохождения электрической энергии через щётки и арматуру создаётся крутильная сила в виде реакции между полем двигателя и якорем, вызывающим поворот якоря двигателя. Когда арматура поворачивается, щётки переключаются на соседние полосы на коммутаторе. Это действие переносит электрическую энергию на соседнюю обмотку и якорь.

Движение магнитного поля достигается переключением тока между катушками внутри двигателя. Это действие называется коммутацией. Очень многие двигатели имеют встроенную коммутацию. Это означает, что при вращении двигателя механические щётки автоматически коммутируют катушки на роторе.

Настройка скорости

ДПТ можно легко регулировать. Скорость можно изменить с помощью следующих переменных:

  1. Настройка скорости тягового двигателяНапряжение якоря U_A (управление напряжением).
  2. Основной поток поля (полевое управление), сила магнитного поля.
  3. Анкерное сопротивление.

Простейшим методом управления скоростью вращения является управление приводным напряжением. Чем выше напряжение, тем выше скорость, которую двигатель пытается достичь. Во многих приложениях простое регулирование напряжения может привести к большим потерям мощности в цепи управления, поэтому широко используется метод широтно-импульсной модуляции.

В основном способе с широтно-импульсной модуляцией рабочая мощность включается и выключается для модуляции тока. Отношение времени включения к «выключенному» времени определяет скорость двигателя.

Электродвигатель с внешним возбуждением легко контролировать, поскольку токи через обмотки якоря и статора можно контролировать отдельно. Поэтому такие двигатели имели определённое значение, особенно в области высоко динамичных приводных систем, например, для привода станков с точной регулировкой скорости и крутящего момента.

Современное применение

ДПТ используются в различных областях.

Применение тягового двигателя

Он является важным элементом в различных продуктах:

  1. игрушках;
  2. сервомеханических устройствах;
  3. приводах клапанов;
  4. роботах;
  5. автомобильной электронике.

Высококачественные предметы повседневного назначения (кухонные приборы) используют серводвигатель, известный как универсальный двигатель. Эти универсальные двигатели являются типичными ДПТ, в которых стационарные и вращающиеся катушки представляют собой последовательные провода.

Как устроен и принцип действия двигателя постоянного тока (видео)

Подавляющее большинство электроприводов нашего времени использует энергию переменного тока в асинхронном режиме. Тем не менее, двигатель постоянного тока, устройство и принцип действия которого будут рассматривать в этой статье, востребован ничуть не меньше. Что он собой представляет, какие существуют теоретические и технические особенности его эксплуатации, постараемся разобраться далее.

Что такое постоянный ток и чем он отличается от переменного?

Начать рассмотрение вопроса работы эл. двигателей необходимо с того, на чем она базируется, то есть с определения понятия «электрический ток» и его основных видов. Еще со школы нам должно быть известно, что в физике электрическим током называют направленное движение заряженных частиц (электронов или ионов). Его разделение на постоянный и переменный происходит в зависимости от величины и направления тока в некотором промежутке времени. Это хорошо видно на следующем графике:

График постоянного и переменного тока

Как видим, график (красная линия) не меняется по времени, напряжение остается стабильным. В то же время, переменный ток (зеленый график) имеет форму синусоиды, постоянно меняя свое значение и направление со временем. Периодичность, с которой график проходит через одинаковые точки по ординате называется частотой и ее стандартное значение 50 Гц.

На самом деле, практически любой бытовой прибор, электроинструмент использует постоянный ток, который преобразовывается из переменного (сетевого). Может возникнуть закономерный вопрос, а для чего тогда использовать синусоидальный ток? Дело в том, что такая форма задания тока позволяет легко преобразовывать напряжение, идущее от генератора электростанции с 200-300 тысяч Вольт до привычных 220, с учетом коэффициента эффективности.

Принцип действия электродвигателя

Принцип действия электродвигателяРабота любого эл. двигателя пост. тока базируется на принципе взаимного действия магнитных полей статора и ротора. Здесь также нужно вспомнить базовую физику и историю с рамкой, вращающейся в однородном магнитном поле. Задание предполагает подачу на нее тока, индуцирующего собственное круговое магнитное поле. При взаимодействии с предыдущим формирует направленную перпендикулярно силу Ампера. Она выталкивает рамку из однородного поля.

В нашем случае, принцип действия тот же, но роль неподвижного однородного магнитного поля играет статор, а рамки – вращающийся ротор электродвигателя, обмотками, который еще называется якорем.

Структура двигателя постоянного тока

Как видим, два полюса статора создают однородное магнитное поле. Обмотка ротора состоит из двух частей, которые наматываются на его полюсах и соединены между собой последовательно. Концы обмоток замыкаются на разделенных, расположенных на валу электродвигателя коллекторных пластинах. Они имеют физический контакт (трение) с неподвижными щетками из графита, на которые подается пост. ток. Если при подключении соблюсти принцип расположение полюсов тока, как показано на рисунке, то полюс якоря, расположенный на схеме слева, станет условно северным, как и находящийся в непосредственной близости полюс статора электродвигателя.

Естественная реакция на действие магнитных сил заключается в том, что равнозначные полюса отталкиваются. В нашем случае такое возможно только за счет вращения. По инерции, северный полюс якоря, провернувшись на 180º станет напротив южного полюса статора. По логике вещей они должны начать притягиваться, что приведет к торможению. Чтобы этого не допустить, в момент перехода нейтральной линии коллектор переключает обмотки якоря местами, чтобы вновь организовать отторжение полюсов.

Учитывая эту информацию устройство двигателя постоянного тока можно изобразить следующим образом:

Устройство двигателя постоянного тока

Характеристики эл. двигателя

Любой электродвигатель – это оборудование, которым можно и нужно управлять в зависимости от требуемых условий. Регулирование происходит одним из трех основных способов/принципов:

  1. Изменение напряжения, которое подается на обмотки ротора,
  2. Ввод в цепь дополнительного сопротивления,
  3. Изменения возбуждения (величины потока).

Работа эл. двигателя оценивается по графикам характеристик, которые бывают:

  1. Механическими. Представляют собой зависимость частоты/скорости вращения от момента на валу с учетом поправочного коэффициента,
  2. Регулировочными. Зависимость частоты вращения от напряжения в цепи питания обмоток якоря, сопротивления или потока.

На графике механической характеристики откладываются значения частоты вращения (ось ординат) и момента (ось абсцисс). По форме она представляет прямую с отрицательным уклоном. Построение графика происходит для определенной величины напряжения. Базовым уравнением механической характеристики является:

Базовое уравнение механической характеристики

где ω – скорость вращения якоря, U – напряжение якорной цепи, К – конструктивный коэффициент, Ф – значение потока, RЯ – активное сопротивление якорной обмотки, М – электромагнитный момент электродвигателя.

В отличие от нее, график регулировочной характеристики строится для определенного момента на валу (ось абсцисс). На оси ординат по-прежнему находится частота. Для каждого из видов регулирования электродвигателя, уравнение будет иметь отдельную форму:

  1. Уравнение при регулировании напряжением: Уравнение при регулировании напряжением
  2. Уравнение при реостатном регулировании (сопротивлением): Уравнение при реостатном регулировании
  3. Уравнение при потоковом регулировании: Уравнение при потоковом регулировании

Сравнительный вид графиков представлен ниже:

Сравнительный вид графиков

Также следует напомнить, что механические характеристики могут быть естественными (снятые при номинальном режиме) или искусственными (получаются при изменении напряжения, сопротивления или потока).

Режимы работы эл. двигателей

Используя уже известный нам график для характеристик, но расширив его на четыре квадранта, можно оценить существующие режимы работы оборудования.

Нумерация квадрантов происходит против часовой стрелки, начиная с правого верхнего, в котором координаты по обеим осям идут со знаком «+». Как видно из графика, в первом и третьем квадрантах наблюдается двигательный режим, для которого мощность Р = М·ω >, 0. В двух других квадрантах реализуется режим генератора или тормозной, имеющий отрицательное значение мощности.

Как видим, график образует несколько характерных точек и зон, ответственных за отдельные режимы:

  • Холостой ход. Образуется в точке ωо. В этом случае ток и момент равны нулю, а сам эл. двигатель не получает энергии,
  • Генератор при параллельном подключении. Называется еще тормозным с рекуперацией в сеть. Реализуется при ω >, ωо и E >, U. Эл. двигатель получает механическую энергию от работающего оборудования, а в сеть взамен отдается электрическая (генератор тока),
  • Короткое замыкание. В этом случае ω = 0 и Е = 0. Механическая энергия от вращения вала не отдается, а электрическая превращается в тепловую,
  • Генератор при последовательном соединении. Этот режим еще называется торможением с противовключением. При этом ω <, 0, а ток и ЭДС имеют одинаковое направление. Выработка электричества происходит за счет вращения оборудования, совмещенного с валом ротора,
  • Автономный генератор. Режим динамического торможения предполагает выработку электричества за счет одной лишь механической энергии вращения вала от привода, без участия сети.

Технические и энергетические параметры функционирования двигателей постоянного тока позволяют с большой эффективностью использовать их в разных сферах, от машиностроения до легкой промышленности и даже игрушек. Они могут действовать в чисто двигательном или режиме генератора (тормозном), используя различные коэффициенты.

Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.


Двигатели постоянного тока — Устройство, принцип действия электродвигателя

Электрическая машина постоянного тока состоит из статора, якоря, коллектора, щеткодержателя и подшипниковых щитов (рисунок 1). Статор состоит из станины (корпуса), главных и добавочных полюсов, которые имеют обмотки возбуждения. Эту неподвижную часть машины иногда называют индуктором. Главное его назначение — создание магнитного потока. Станина изготавливается из стали, к ней болтами крепятся главные и добавочные полюса, а также подшипниковые щиты. Сверху на станине имеются кольца для транспортирования, снизу — лапы для крепления машины к фундаменту. Главные полюса машины набираются из листов электротехнической стали толщиной 0,5 -1 мм с целью уменьшения потерь, которые возникают из-за пульсаций магнитного поля полюсов в воздушном зазоре под полюсами. Стальные листы сердечника полюса спрессованы и скреплены заклепками.


Рисунок 1 – Машина постоянного тока:
I — вал; 2 — передний подшипниковый щит; 3 — коллектор; 4 — щеткодержатель; 5 — сердечник якоря с обмоткой; б — сердечник главного полюса; 7 — полюсная катушка; 8 — станина; 9 — задний подшипниковый щит; 10 — вентилятор; 11 — лапы; 12 — подшипник

Рисунок 2 – Полюса машины постоянного тока:
а — главный полюс; б — дополнительный полюс; в — обмотка главного полюса; г — обмотка дополнительного полюса; 1 — полюсный наконечник; 2 — сердечник
В полюсах различают сердечник и наконечник (рисунок 2). На сердечник надевают обмотку возбуждения, по которой проходит ток, создавая магнитный поток. Обмотка возбуждения наматывается на металлический каркас, оклеенный электрокартоном (в больших машинах), или размещается на изолированном электрокартоном сердечнике (малые машины). Для лучшего охлаждения катушку делят на несколько частей, между которыми оставляют вентиляционные каналы. Добавочные полюса устанавливаются между главными. Они служат для улучшения коммутации. Их обмотки включаются последовательно в цепь якоря, поэтому проводники обмотки имеют большое сечение.
Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собирается из штампованных листов электротехнической стали толщиной 0,5 мм и спрессовывается с обеих сторон с помощью нажимных шайб. В машинах с радиальной системой вентиляции листы сердечника собираются в отдельные пакеты толщиной 6-8 см, между которыми делают вентиляционные каналы шириной 1 см. При осевой вентиляции в сердечнике выполняют отверстие для прохождения воздуха вдоль вала. На внешней поверхности якоря имеются пазы для обмотки.

Рисунок 3 – Расположение секции обмотки якоря в пазах сердечника
Обмотка якоря изготавливается из медных проводов круглого или прямоугольного сечения в виде заранее выполненных секций (рисунок 3). Они укладываются в пазы, где тщательно изолируются. Обмотку делают двухслойной: размещают в каждом пазу две стороны разных якорных катушек — одну над другой. Обмотку закрепляют в пазах клиньями (деревянными, гетинаксовыми или текстолитовыми), а лобовые части крепят специальным проволочным бандажом. В некоторых конструкциях клинья не применяют, а обмотку крепят бандажом. Бандаж изготовляют из немагнитной стальной проволоки, которая наматывается с предварительным натяжением. В современных машинах для бандажировки якорей используют стеклянную ленту.
Коллектор машины постоянного тока собирается из клиноподобных пластин холоднокатаной меди. Пластины изолируют одну от другой прокладками из коллекторного миканита толщиной 0,5 — 1 мм. Нижние (узкие) края пластин имеют вырезы в виде ‘ласточкина хвоста’, которые служат для крепления медных пластин и миканитовой изоляции. Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность ‘ласточкина хвоста’, при втором — на ‘ласточкин хвост’ и конец пластины.
Коллекторы с первым способом крепления называют арочными, со вторым — клиновыми. Наиболее распространены арочные коллекторы.
В коллекторных пластинах со стороны якоря при небольшой разнице в диаметрах коллектора и якоря делают выступы, в которых фрезеруют прорези (шлицы). В них укладывают концы обмотки якоря и припаивают оловянистым припоем. При большой разнице в диаметрах припайка к коллектору делается с помощью медных полосок, которые называются ‘петушками’.
В быстроходных машинах большой мощности для предотвращения выпучивания пластин под действием центробежных сил применяют внешние изолированные бандажные кольца.
Щеточный аппарат состоит из траверсы, щеточных пальцев (болтов), щеткодержателей и щеток. Траверса предназначена для крепления на ней щеточных пальцев щеткодержателей, образующих электрическую цепь.
Щеткодержатель состоит из обоймы, в которую помещается щетка, рычага для прижима щетки к коллектору и пружины. Давление на щетку составляет 0,02 — 0,04 МПа.
Для соединения щетки с электрической цепью имеется гибкий медный тросик.
В машинах малой мощности применяют трубчатые щеткодержатели, которые крепят в подшипниковом щите. Все щеткодержатели одной полярности соединяются между собой сборными шинами, которые подключаются к выводам машины.
Щетки (рисунок 4) в зависимости от состава порошка, способа изготовления и физических свойств разделяют на шесть основных групп: угольно-графитовые, графитовые, электрографитовые, медно-графитовые, бронзографитовые и серебряно-графитовые.
Подшипниковые щиты электрической машины служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.

Рисунок 4 – Щетки:
а — для машин малой и средней мощности; б — для машин большой мощности; 1 — щеточный канатик; 2 — наконечник
Различают обычные и фланцевые подшипниковые щиты.
Подшипниковые щиты изготовляют из стали (реже из чугуна или алюминиевых сплавов) методом литья, а также сварки или штамповки. В центре щита делается расточка под подшипник качения: шариковый или роликовый. В машинах большой мощности в ряде случаев используют подшипники скольжения.
В последние годы статор двигателей постоянного тока собирают из отдельных листов электротехнической стали. В листе одновременно штампуются ярмо, пазы, главные и добавочные полюса.

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи. Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач. Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Принцип электродвигателя

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Принцип работы электродвигателя

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Принцип действия двигателя постоянного тока

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Схема включения двигателя постоянного тока

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Что касается электрической то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

 • Скачать лекцию: двигатели постоянного тока 




Свежие записи:

Принцип работы двигателя постоянного тока

Принцип работы

Двигатели постоянного тока

На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток — в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.

В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера — создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.

По способу возбуждения двигатели постоянного тока делятся на четыре группы:

  • С независимым возбуждением — обмотка возбуждения питается от независимого источника
  • С параллельным возбуждением — обмотка возбуждения включается параллельно источнику питания обмотки якоря
  • С последовательным возбуждением — обмотка возбуждения включена последовательно с обмоткой якоря
  • Со смешанным возбуждением — у двигателя есть две обмотки: параллельная и последовательная.

Пуск двигателя постоянного тока

При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым — в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается — ступени выключаются одна за другой.

Регулирование скорости вращения двигателя постоянного тока

  • Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
  • Скорость выше номинальной регулируется током обмотки возбуждения — чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)

Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).

Преимущества и недостатки двигателей постоянного тока

Преимущества:
  • Практически линейные характеристики двигателя:
    • механическая характеристика (зависимость частоты от момента)
    • регулировочная характеристика (зависимость частоты от напряжения якоря)
  • Просто регулировать частоту вращения в широких пределах
  • Большой пусковой момент
  • Компактный размер.
Недостатки:
  • Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
  • Ограниченный срок службы из-за износа коллектора
  • Дороже асинхронных двигателей.

Принцип действия двигателя постоянного тока: конструкция и особенности

Главной конструктивной и характерной принадлежностью машины постоянного тока, служит использование для присоединения к электрической сети коммутатора, предназначенного для преобразования величин постоянного тока в переменный ток. Коммутатор является непременным элементом любой машины этого типа ввиду того, что ее якорная обмотка двигателя подразумевает наличие переменного тока.

Особенности двигателя постоянного тока

Двигательные устройства постоянного тока отличаются широкими возможностями регулирования скорости вращения и обладают способностью сохранять во всем диапазоне регулирования высокий КПД, а также имеют в наличии механические характеристики, благодаря которым двигатели могут использоваться по специальному назначению, в соответствии с необходимыми требованиями.

Принцип работы

Функционально двигатель принадлежит к классу синхронных машин обращенного типа, это объясняется тем, что статор и ротор поменяли выполнение задач. Статор выполняет функции по возбуждению магнитного поля, ротор принял задачи направленные на преобразование энергии.

Во время вращения якоря в магнитном поле, производимым статором в витках обмотки, наводится ЭДС. Направление ее движения находится по правилу правой руки.

После того, как якорь и коллектор повернутся на 180 градусов виток меняет свои стороны, на противоположное направление меняется движение ЭДС.

Так происходит процесс индуцирования переменной электродвижущей силы, выпрямляемой посредством коллектора.

Коллектор, через щеточный механизм, соединен с обеими сторонами витка, в результате этого происходит снятие щетками текущего в неизменном направлении пульсирующего напряжения, это способствует наличию во внешней цепи, идущего в постоянном направлении, пульсирующего тока. Для того, чтобы снизить пульсацию в пазах якоря, прибавляют добавочное количество витков.

Конструкция двигателя

Двигатель, как и любая другая машина этого типа, содержит в своей конструкции статор, являющегося неподвижным элементом, и ротор (якорь) – вращающийся элемент машины, между ними находится воздушный зазор. В якоре двигателя происходит индуцирование ЭДС. Создание основного магнитного поля происходит при помощи главных полюсов, состоящих из сердечников и катушек возбуждения.

Равномерное распределение полученной магнитной индукции в области воздушного зазора обеспечивается полюсными наконечниками.

Чередование полярности полюсов во время движения электрического тока достигается за счет соединения катушек главных полюсов в обмотку возбуждения. Для улучшения коммутации предусмотрены добавочные полюса.

Уменьшение вихревых токов, которые появляются в результате перемагничивания якоря в процессе его вращения в созданном магнитном поле, происходит за счет конструкции сердечника, исполненного из пластин электротехнической стали, для большего эффекта он покрывается специальным лаком.

Контакт внешней цепи машины с коллектором осуществляется за счет щеток, основным материалом для них является графит.

Область применения

Несмотря на то, что себестоимость этого типа двигателя намного дороже асинхронных машин, их особенности могут сыграть решающую роль в узкоцелевом специальном назначении.

С помощью таких двигателей приводятся в работу прокатные станы, они используются для привода гребного винта на кораблях, а также для транспортных средств, имеющих систему питания на постоянном токе.

Поэтому их область использования характерна для нужд там, где необходима электрическая тяга, это: тепловозы, электровозы, электропоезда, городской транспорт, то есть там, где необходимо применить мягкие механические характеристики и широкие пределы регулировки количества оборотов вращения.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

DC Motors | Принцип действия | Ресурсы для инженеров

Электродвигатели работают на электромагнетизме. Однако есть и другие типы двигателей, которые используют электростатические силы или пьезоэлектрический эффект. В случае электродвигателя постоянного тока с постоянным магнитом движение вызывается электромагнитом (якорем), взаимодействующим с фиксированным полевым магнитом (корпус в сборе).

В щеточном двигателе электрический ток протекает через клеммы двигателя в узле концевой крышки, который входит в контакт с коммутатором в узле якоря через угольные щетки или листья щеток.Электрический ток приводит в действие катушки, генерирующие магнитное поле, заставляющее якорь вращаться, когда он взаимодействует с магнитами, заключенными в сборку корпуса. Правило левой руки Флемминга помогает определить направление силы, тока и магнитного потока.

В бесщеточном двигателе, когда на клемму двигателя подается электричество, ток течет через неподвижное поле статора и взаимодействует с движущимся постоянным магнитом или движущимся индуцированным магнитным полем внутри ротора / якоря.После того, как движение и силовая нагрузка будут удовлетворены имеющимся источником тока, он возвращается к источнику, выходящему из двигателя.

Ключевые элементы, взаимодействующие для создания движения

Магнитный поток — Двигатель может иметь катушку с фиксированной намоткой или статор с постоянным магнитом и подвижную обмотку катушки с намоткой или ротор PM, которые будут иметь взаимодействующие поля магнитного потока для создания силы и движения.

Force — Количество тока, протекающего через электромагнитное поле, пропорционально величине силы взаимодействующего электромагнитного поля, необходимой для достижения противоположной рабочей нагрузки.Помимо силы и движения, необходимых для устройства, необходимо учитывать любые потери эффективности при преобразовании электроэнергии в механическую работу (ватт).


Обзор шагового двигателя

Что такое шаговый двигатель

Шаговые двигатели работают не так, как другие двигатели постоянного тока, которые просто вращаются при подаче напряжения. Вращательный шаговый двигатель — это электромеханическое устройство, которое может разделить один полный оборот (360 °) на большое количество ступеней вращения.Шаговые двигатели управляются электронным способом и не требуют дорогостоящих устройств обратной связи. Линейный шаговый двигатель аналогичен вращательному двигателю, за исключением того, что вал движется линейно или в продольном направлении. Оба типа имеют два обмоточных устройства для своих электромагнитных катушек: униполярное и биполярное. Униполярный означает, что каждый конец катушки имеет одну полярность. Рекомендуемый стабилитрон используется для быстрого затухания тока в отключенной катушке. Это даст увеличенный крутящий момент двигателя, особенно на более высоких частотах.

Биполярный означает, что каждый конец катушки имеет обе полярности. Катушка будет положительной и отрицательной в течение каждого цикла движения. Поскольку каждая катушка используется полностью, двигатель имеет более высокий крутящий момент по сравнению с однополюсной катушкой. Биполярный драйвер может включать в себя возможность привода постоянного тока, называемого приводом прерывателя. Это обеспечит повышенный выходной крутящий момент на более высоких частотах и ​​уменьшит влияние колебаний температуры и напряжения питания.

Основы шагового двигателя

Шаговый двигатель PM или «консервная банка» — это недорогое решение для ваших задач позиционирования с типичными углами шага 7.5 ° — 15 °. Меньшие углы шага могут быть получены через Microstepping. При подаче электрических управляющих импульсов вал двигателя движется с определенным шагом. Текущая полярность и частота приложенных импульсов определяет направление и скорость движения вала.

Одним из наиболее значительных преимуществ шагового двигателя является его способность точно контролироваться в системе с разомкнутым контуром. Управление в разомкнутом контуре означает, что информация о положении вала не требуетсяЭтот тип управления устраняет необходимость в дорогостоящих устройствах обратной связи, просто отслеживая входные шаговые импульсы. Шаговый двигатель — хороший выбор, когда требуется контролируемое движение. Они рекомендуются в тех случаях, когда вам необходимо контролировать угол поворота, скорость, положение и синхронизацию. Значения крутящего момента, фиксирующего, удерживающего, выдвигающего и выдвигающего моментов, скорости (об / мин) и числа шагов на оборот (угол шага) характеризуют шаговый двигатель.

Момент фиксации — определяет максимальный крутящий момент, который может быть приложен к обесточенному двигателю без его вращения.

Удерживающий момент — определяет максимальный крутящий момент, с которым двигатель с напряжением может быть загружен, не вызывая вращательного движения.

Pull-In — производительность определяет способность двигателя запускаться или останавливаться. Это максимальная частота, при которой двигатель может запускаться или останавливаться мгновенно, с приложенной нагрузкой, без потери синхронизации.

Pull-Out определяет максимальный крутящий момент при применении рампы ускорения / замедления без потери шагов.Он определяет максимальную частоту, на которой двигатель может работать без потери синхронизма.

Наш вращающийся шаговый двигатель может быть объединен с нашей полной линейкой редукторов для увеличения крутящего момента и снижения скорости.

,

Двигатель постоянного тока (DC)

Electric NEMA DC motor Electric NEMA DC motor DC Двигатель с постоянными магнитами — NEMA Рамы, полностью закрытые, без вентиляции с С-образной поверхностью и основанием Двигатели постоянного тока

были использованы в промышленных целях в течение многих лет. В сочетании с приводом постоянного тока, двигатели постоянного тока обеспечивают очень точное управление. Двигатели постоянного тока могут использоваться с конвейерами, элеваторами, экструдерами, морскими установками, погрузочно-разгрузочными работами, бумагой, пластиком, резиной, сталью и текстилем, и многие другие.

Двигатели постоянного тока состоят из нескольких основных компонентов, которые включают следующее:

• Рама
• Вал
• Подшипники
• Главный.Field.Windings. (Статор)
• Арматура. (Ротор)
• Коммутатор
• Щетка. Сборка

Основная конструкция двигателя постоянного тока показана в Рисунок 1 . Стандартные двигатели постоянного тока легко доступны в одной из двух основных форм:

  • Обмоточное поле , где магнитный поток в двигателе регулируется током, протекающим в поле или обмотке возбуждения, обычно расположенной на статоре.
  • Постоянный магнит , где магнитный поток в двигателе создается постоянными магнитами, которые имеют изогнутую поверхность для создания постоянного воздушного зазора для обычной арматуры, расположенной на роторе.Они обычно используются при мощности приблизительно до 3 кВт.

Крутящий момент в двигателе постоянного тока создается произведением магнитного поля , создаваемого обмоткой возбуждения или магнитами, и током, протекающим в обмотке якоря. Действие механического коммутатора переключает ток якоря с одной обмотки на другую, чтобы поддерживать относительное положение тока в поле, создавая тем самым крутящий момент, независимый от положения ротора.

Схема шунтирующего двигателя постоянного тока ( Рис.2 ) показывает якорь M , сопротивление якоря R a и обмотку возбуждения. Напряжение питания якоря В и обычно подается от управляемой тиристорной системы, а полевое напряжение В f от отдельного мостового выпрямителя.

DC motor in schematic form DC motor in schematic form Рисунок 1 — Двигатель постоянного тока в схематической форме
Figure 2 -Shunt wound DC motor Figure 2 -Shunt wound DC motor Рисунок 2 — Двигатель постоянного тока с обмоткой

При вращении якоря в цепи якоря возникает электродвижущая сила (ЭДС) E и , которая называется противо-ЭДС , поскольку она противодействует приложенному напряжению В и (согласно закону Ленца). ).Ea связано со скоростью якоря и потоком основного поля:

E a = k 1 (1)

, где n — скорость вращения, φ — поток поля, а k 1 — постоянная двигателя. Из Рис. 1 видно, что напряжение якорной клеммы В и определяется как:

V a = E a + I a R a (2)

Умножая каждую сторону экв. 2 на I a дает:

V a I a = E a I a + I a 2 R a (3)

(или общая подаваемая мощность = выходная мощность + потери на якорь).Взаимодействие потока поля и потока якоря создает крутящий момент якоря, как указано в (4 ).

Крутящий момент M = k 2 I f I a (4)

, где k 2 — постоянная двигателя, а I f — ток поля. Это подтверждает прямолинейную и линейную характеристику двигателя постоянного тока, и рассмотрение этих простых уравнений покажет его управляемость и присущую ему стабильность.Характеристика скорости двигателя, как правило, представлена ​​кривыми скорости относительно входного тока или крутящего момента, и ее форма может быть получена из уравнений 1 и 2 :

k 1 nφ = V a — (I a R a ) (5)

Если поток поддерживается постоянным путем поддержания постоянного тока возбуждения в правильно скомпенсированном двигателе, то:

n = k 2 [V a — (I a R a )] (6)

Из уравнений 4 и 6 следует, что полное управление двигателем постоянного тока может быть достигнуто путем управления током поля и током якоря.В шунтирующем двигателе постоянного тока, показанном в , рис. 2 , эти токи могут управляться независимо.

Большинство промышленных контроллеров двигателей постоянного тока или приводов питаются напряжением; то есть, что напряжение приложено, и ток управляется, измеряя ток и регулируя напряжение, чтобы дать желаемый ток.

Figure 3 - Control structure for a shunt wound DC motor Figure 3 - Control structure for a shunt wound DC motor Рисунок 3 — Структура управления для двигателя постоянного тока с шунтирующим контактом

Это базовое расположение показано в Рисунок 3 .

Двигатели постоянного тока

существуют в других форматах. Последовательный двигатель постоянного тока, показанный в Рисунок 4 имеет обмотки возбуждения и якоря, соединенные последовательно. В этом случае ток поля и ток якоря равны и показывают характерно отличающиеся результаты производительности, хотя все еще определяются уравнениями 4 и 6 .

В шунтирующем двигателе поток поля φ лишь незначительно зависит от тока якоря, и значение IaRa при полной нагрузке редко превышает 5% от В до , давая кривую крутящий момент-скорость, которая обычно представлена ​​как в Рисунок 6 , где скорость остается ощутимо постоянной в широком диапазоне крутящего момента нагрузки.

Figure 4 - Schematic of series DC motor Figure 4 - Schematic of series DC motor Рисунок 4 — Схема серийного двигателя постоянного тока
Figure 5 - Compound DC motor Figure 5 - Compound DC motor Рисунок 5 — Составной двигатель постоянного тока

Двигатель постоянного тока со сложным заводом, показанный в Рисунок 5 сочетает в себе как шунтирующие, так и последовательные характеристики. Форма характеристики крутящий момент-скорость определяется значениями сопротивления шунтирующего и последовательного полей.

Слабопадающая характеристика (, кривая b на рис. 6, , ) имеет преимущество во многих применениях в снижении механических эффектов ударной нагрузки.

Figure 6 - Torque–speed characteristic Figure 6 - Torque–speed characteristic Рисунок 6 — Характеристика крутящего момента (a — двигатель постоянного тока с шунтовым намотом, b — двигатель постоянного тока, c — двигатель постоянного тока серии)

Кривая последовательного двигателя постоянного тока ( с на рис. 6 ) показывает, что начальный поток увеличивается пропорционально току, падая из-за магнитного насыщения. Кроме того, цепь якоря включает в себя сопротивление обмотки возбуждения, и скорость становится примерно обратно пропорциональной току. Если нагрузка падает до низкого значения, скорость резко возрастает, что может быть опасно, поэтому последовательный двигатель обычно не следует использовать там, где есть вероятность потери нагрузки.

Но поскольку он выдает высокие значения крутящего момента на низкой скорости, а его характеристика — скорость падения при увеличении нагрузки, он полезен в таких приложениях, как тяга и подъем, а также в некоторых режимах смешивания, где преобладает начальная задержка.

Под управлением полупроводникового преобразователя с обратной связью по скорости от тахогенератора форма кривой скорость-нагрузка в значительной степени определяется внутри контроллера. Стало стандартным использование шунтирующего двигателя постоянного тока с управлением от преобразователя, даже несмотря на то, что кривая скорость-нагрузка, когда под управлением в разомкнутом контуре, часто слегка понижается.

Предел скорости вращения двигателя постоянного тока составляет приблизительно 3 × 106 кВт / мин из-за ограничений, налагаемых коммутатором.

Ссылка:

D.F.Warne — Справочник Newnes Electric Power Engineer
Siemens — Основы двигателей постоянного тока

,

Принцип работы двигателя постоянного тока

Двигатель постоянного тока — это электрическая машина, которая преобразует электрическую энергию в механическую энергию .

Работа двигателя постоянного тока основана на том принципе, что когда токопроводящий проводник находится в магнитном поле, он испытывает механическую силу.

Направление механической силы определяется правилом Левого Флеминга , а его величина определяется значением F = BIL Ньютон.

Нет принципиальной разницы в конструкции генератора постоянного тока и двигателя постоянного тока.Фактически, одна и та же машина постоянного тока может использоваться взаимозаменяемо в качестве генератора или двигателя.

Как и генераторы, существуют различные типы двигателей постоянного тока, которые также классифицируются на шунтовых, последовательных и комбинированных моторов постоянного тока .

Двигатели постоянного тока редко используются в обычных приложениях, потому что все компании, поставляющие электричество, поставляют переменный ток.

Однако для специальных применений, таких как сталелитейные заводы, шахты и электропоезда , выгодно преобразовывать переменный ток в постоянный ток для использования двигателей постоянного тока.Причина в том, что скорость / крутящий момент характеристики двигателей постоянного тока намного превосходят характеристики двигателей переменного тока.

Поэтому неудивительно, что для промышленных приводов двигатели постоянного тока так же популярны, как и трехфазные асинхронные двигатели.

Принцип двигателя постоянного тока

Устройство, преобразующее электроэнергию постоянного тока в механическую, называется двигателем постоянного тока.

Работа двигателя постоянного тока основана на том принципе, что, когда токопроводящий проводник находится в магнитном поле, он испытывает механическую силу.

Направление этой силы определяется левым правилом Флеминга , а величина определяется как;

F = BIL Ньютоны

Согласно правилу левой руки Флеминга, когда электрический ток проходит через катушку в магнитном поле, магнитная сила создает крутящий момент, который вращает двигатель постоянного тока.

Направление этой силы перпендикулярно как проводу, так и магнитному полю.

Flemings Left Hand Rule Flemings Left Hand Rule Flemings Left Hand Правило

По существу, нет конструктивной разницы между двигателем постоянного тока и генератором постоянного тока.Та же машина постоянного тока может работать как генератор или двигатель.

Cross-Section of a DC Machine Cross-Section of a DC Machine Поперечное сечение машины постоянного тока

Работа двигателя постоянного тока

Рассмотрим часть многополярного двигателя постоянного тока , как показано на рисунке ниже. Когда клеммы двигателя подключены к внешнему источнику постоянного тока:

  • , полевые магниты возбуждаются, развивая чередующиеся северный и южный полюсы
  • , проводники якоря несут токи.
Part of a Multi-polar DC Motor Part of a Multi-polar DC Motor Часть многополярного двигателя постоянного тока

Все проводники под северным полюсом несут токи в одном направлении, в то время как все проводники под южным полюсом несут токи в противоположном направлении.

Проводники якоря под N-полюсом переносят токи в плоскость бумаги (обозначена на рисунке как ⊗). А проводники под S-полюсом переносят токи из плоскости бумаги (обозначены на рисунке как ⨀).

Поскольку каждый провод якоря несет ток и находится в магнитном поле, на него действует механическая сила .

При применении левого правила Флеминга становится ясно, что сила на каждом проводнике имеет тенденцию вращать якорь в направлении против часовой стрелки.Все эти силы складываются вместе, чтобы создать приводного крутящего момента , который устанавливает вращение якоря.

Когда проводник перемещается с одной стороны щетки на другую, ток в этом проводнике меняется на противоположный. В то же время он находится под влиянием следующего полюса противоположной полярности. Следовательно, направление силы на проводнике остается тем же .

Следует отметить, что функция коммутатора в двигателе такая же, как в генераторе.Путем изменения тока в каждом проводнике, когда он проходит от одного полюса к другому, это помогает развить непрерывного и однонаправленного крутящего момента .

Видео Анимация

Далее: Обратная ЭДС в двигателе постоянного тока

.

DC Motors — принципы работы


В любом электродвигателе работа основана на простом электромагнетизм. Токонесущий проводник генерирует магнитное поле; когда это затем помещенный во внешнее магнитное поле, он будет испытать силу, пропорциональную току в проводнике, и в силу внешнее магнитное поле.Как вы хорошо знаете от игры с магнитами в детстве, напротив (север и юг) полярности притягиваются, пока как полярности (север и север, юг и юг) отталкиваются. Внутренняя конфигурация постоянного тока двигатель предназначен для использования магнитного взаимодействие между токонесущей проводник и внешнее магнитное поле генерировать вращательное движение.

Давайте начнем с рассмотрения простого 2-полюсного ОКРУГ КОЛУМБИЯ электродвигатель (здесь красный обозначает магнит или обмотка с «северной» поляризацией, а зеленая представляет собой магнит или обмотку с «юга» поляризация).

каждый DC Мотор имеет шесть основных частей — ось, ротор (а.К.А., арматура), статор, коммутатор, полевой магнит (ы) и кисти. В большинстве распространенных двигателей постоянного тока (и все такое излучатели увидим), внешнее магнитное поле создается высокопрочными постоянными магнитами 1 . Статор — это неподвижная часть двигателя — это включает в себя кожух двигателя, а также два или более части полюса постоянного магнита.Ротор (вместе с осью и присоединенным коммутатором) вращаться с уважение к статору. Ротор состоит из обмотки (обычно на сердечнике), причем электрически подключен к коммутатору. Над диаграмма показывает общую схему двигателя — с ротор внутри статора (поля) магниты.

Геометрия щеток, коммутатор контакты и обмотки ротора таковы, что при подаче питания полярности под напряжением обмотки и статора магнит (ы) смещены, а ротор будет вращаться, пока не будет почти выровнен с полевыми магнитами статора.Как ротор достигает выравнивания, щетки двигаются к следующим контактам коммутатора и возбудить следующую обмотку. Учитывая наш пример двухполюсного двигателя, вращение меняет направление тока через обмотку ротора, ведущую к «переворот» магнитного поля ротора, ведя его, чтобы продолжить вращение.

В реальной жизни, правда, DC у моторов всегда будет больше двух полюса (три — очень распространенное число). В В частности, это позволяет избежать «мертвых зон» в коммутатор. Вы можете представить, как с наш пример двухполюсный мотор, если ротор точно в середине его вращения (идеально выровнен по полю магниты), он застрянет там.Между тем, с двухполюсным двигателем, есть момент, когда коммутатор замыкается источник питания (т.е. обе щетки касаются оба коммутатора одновременно). Это было бы плохо для блока питания, потеря энергии и повреждение компонентов двигателя также. Еще один недостаток такого простой мотор в том, что он будет демонстрировать высокий крутящий момент «рябь» (величина крутящего момента он может производить циклически с положение ротора).

Так как большинство маленьких DC двигатели имеют трехполюсную конструкцию, давайте повозимся с работой одного через интерактивный анимация (требуется JavaScript):

Вы заметите несколько вещей из этого, а именно: один полюс полностью заряжается за раз (но два другие «частично» под напряжением).Как каждая кисть переходы от одного коммутатора к контакту затем поле одной катушки будет быстро разрушаться, так как поле следующей катушки будет быстро заряжаться (это происходит в течение нескольких микросекунд). Мы увидим больше о последствиях этого позже, но в Между тем вы можете видеть, что это прямой результат из серии проводов обмоток катушки:

Наверное, нет лучшего способа увидеть как средний DC мотор собран, чем просто открывая один вверх.К сожалению это утомительная работа, а также требует разрушение совершенно хорошего мотора.

К счастью для вас, я пошел вперед и сделал это вместо тебя. Кишки разобранный мотор Mabuchi FF-030-PN ( тем же модель, которая Solarbotics продает) доступны для просмотра Вот (на миллиметровой бумаге 10 строк / см).Это основной 3-полюсный DC мотор, с 2 щетками и тремя коммутаторами контакты.

Использование арматуры с железным сердечником (как в Mabuchi, выше) довольно часто встречается и имеет ряд из достоинств 2 .Во-первых, железное ядро обеспечивает прочную жесткую опору для обмоток — особенно важное соображение для с высоким крутящим моментом моторы. Ядро также отводит тепло от обмотки ротора, позволяющие приводить двигатель в движение сложнее, чем могло бы быть в противном случае. Железное ядро строительство также относительно недорого по сравнению с другими типами строительства.

Но железный сердечник также имеет несколько недостатки. Железная арматура имеет относительно высокая инерция, которая ограничивает ускорение двигателя. это конструкция также приводит к высокой индуктивности обмотки которые ограничивают жизнь щетки и коммутатора.

В небольших двигателях альтернативный дизайн часто используется с обмоткой якоря без сердечника.Эта конструкция зависит от самого провода катушки для целостность конструкции. В результате якорь полый, и постоянный магнит может быть установлен внутри катушка ротора. DC без сердечника двигатели имеют гораздо меньшую индуктивность якоря чем двигатели с железным сердечником сопоставимых размеров, расширяющихся жизнь кисти и коммутатора.


Диаграмма предоставлена MicroMo

Конструкция без сердечника также позволяет производителям строить меньшие двигатели; Между тем, из-за отсутствия железо в своих роторах, моторы без сердечника несколько склонен к перегреву.В результате этот дизайн обычно используется только в небольших, маломощных двигателях. излучатели чаще всего будут видеть DC без сердечника моторы в виде пейджеров

Опять разборка двигателя без сердечника может быть поучительным — в этом случае мой несчастной жертвой стал дешевый пейджер-вибратор двигатель.Внутренности этого разобранного мотора доступны для просмотра здесь (на миллиметровой бумаге 10 строк / см). Это (или точнее, было ) 3-полюсный Двигатель постоянного тока без сердечника.

Я их снимаю, чтобы у тебя не было к …

Чтобы получить лучшее от DC моторы в BEAMbots, нам нужно поближе взглянуть на DC моторное поведение — как очевидное, так и нет.



Примечания:

1. Другое (как правило, либо очень большой или довольно старый) DC двигатели используют обмотки для производства внешнее поле также. Используя постоянные магниты, современный DC моторы более эффективны, имеют уменьшено внутреннее отопление, и использовать меньше мощность.

2. Следующие 3 абзаца заимствовать довольно свободно из материала по ряду страниц MicroMo интернет сайт. Это отличный сайт, и более подробно рассказывает о и выходы без сердечника моторостроения и производительность. Особое внимание следует уделить к их страницам на мотор Строительство, и на развитие электродвижущей силы ,

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о