Применение диодов
Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.
1. Нелинейная обработка аналоговых сигналов
В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.
2. Выпрямители
Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.
3. Стабилизаторы
Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.
4. Ограничители
Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.
5. Устройства коммутации
Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.
6.Логические цепи
В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.
Светодиоды
Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.
1. Одиночные светодиоды
Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.
2. 7’Segment
Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.
3. Матрица светодиодов
Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.
4. LED телевизоры
LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.
Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.
для чего применяются, принцип действия, ВАХ
Выпрямительный диод особая разновидность диодов, созданные для трансформации переменного тока, если необходимо получить постоянный на входе или выходе. Это не единственная работа, которую выполняют данные диоды. Они нашли свое применение во всех сферах и направлениях радиоэлектроники. Они применяются для создания цепей управления, для коммутации, контроля напряжения, в цепях, где протекает сильный ток. От номинального значения тока, производится классификация выпрямительных диодов. Они бывают следующих видов:
- малой;
- средней;
- высокой.
По сфере применения на диоды из элементов германия (Gr) или кремния (Si). В статье будут описаны все особенности, технические характеристики устройства этих радиодеталей. Также читатель найдет познавательные видеоролики и интересный материал из научной статьи по данной теме.
Выпрямительные диоды.
Технология изготовления и конструкция
Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными. Технология изготовления таких диодов заключается в следующем. На поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.
Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.
Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором.
Германиевые диоды.
Электрические параметры
У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:
- Iобр – постоянный обратный ток, мкА;
- Uпр – постоянное прямое напряжение, В;
- Iпр max – максимально допустимый прямой ток, А;
- Uобр max – максимально допустимое обратное напряжение, В;
- Р max – максимально допустимая мощность, рассеиваемая на диоде;
- Рабочая частота, кГц;
- Рабочая температура, С.
Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.
Материал в тему: Что такое кондесатор
Схема простого выпрямителя переменного тока на одном диоде
На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).
При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).
В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.
Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.
Силовой выпрямительный диод.
Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.
Диодный мост
Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус. Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «—» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово. На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста. Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения. Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.
Диодный мост.
Применение диодов
Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).
Выпрямительные диоды.
С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.
Параметры диодов
Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.
Таблица основных параметров выпрямительных диодов.
В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:
- U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
- U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).
Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.
Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.
- I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
- I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
- U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.
Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.
Диоды высокого тока.
Заключение
В статье описаны все тонкости и нюансы работы и устройства выпрямительных диодов и схема их устройства. Более подробно о них можно узнать из стать Что такое диоды.
В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.go-radio.ru
www.electrik.info
www.gaw.ru
www.sesaga.ru
ПредыдущаяПолупроводникиКак устроен туннельный диод?
СледующаяПолупроводникиМаркировка различных видов диодов
Диоды и их применение
Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя убыль электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок. В этом случае сопротивление р-n перехода мало, вследствие чего через диод идет ток, называемый прямым током. Чем больше площадь р-n перехода и напряжение источника питания, тем больше этот прямой ток.Если полюсы элемента поменять местами, как это показано на рис. 1, в, диод окажется в закрытом состоянии. В этом случае электрические заряды в диоде поведут себя иначе. Теперь, удаляясь от р-n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, в она заштрихована) и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр, а обратный Iобр.
А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр и закрывания при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления обратный ток Iобр. Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в ток постоянный.
Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпр) или пропускным, а напряжение обрат ной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром.
Внутреннее сопротивление открытого диода величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр = 100 мА (0,1 А) и при этом на нем падает напряжение 1 В, то (по закону Ома) прямое сопротивление диода будет: R = U/I = 1/0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.
Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода. Такую характеристику ты видишь на рис. 2. Здесь по вертикальной оси вверх отложены значения прямого тока Iпр, а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпр, влево обратного напряжения Uобр.
На такой вольт-амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь, соответствующую обратному току. Из нее видно, что ток Iпр диода в сотни раз больше тока Iобр
ДИОДЫ И ИХ ПРИМЕНЕНИЕ
Продолжаем изучать полупроводниковые приборы — диоды, это одни из основных элементов в радиоэлектронике. А в этой статье вы можете прочитать про транзисторы:http://www.radioingener.ru/tranzistory/
Устройство и принцип действия диода (полупроводника)
Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название
Эти две области — два электрода диода: анод и катод. Анодом, т.е. положительным электродом, является область типа р, а катодом, т.е. отрицательным электродом,- область типа n.
На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т.е. с областью типа р, а отрицательный — с катодом, т.е. с областью типа, n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи потечет ток, значение которого зависит от приложенного к нему напряжения и свойств диода. При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой
Рис. 1 Схематическое устройство и работа полупроводникового диода.
В этом случае сопротивление р — n перехода мало, вследствие чего через диод течет ток, называемый прямым током. Чем больше площадь р — n перехода и напряжение источника питания, тем больше этот прямой ток. Если полюсы элемента поменять местами, как это показано на (рис. 1, в), диод окажется в закрытом состоянии. В этом случае электрические заряды на диоде поведут себя иначе. Теперь, удаляясь от р — n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р — к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, (в) она заштрихована и, следовательно, оказывающую току очень большое сопротивление.
Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода.
Рабочие характеристики диода.
На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления — обратный ток Iобр. — Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный.
Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпp.) или пропускным, а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр.) или непропускным.
При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром. Внутреннее сопротивление открытого диода — величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.
Вольт-амперная характеристика (ВАХ)
Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт — амперной характеристикой диода (ВАХ).
Такую характеристику вы видите на (рис. 2). Здесь по вертикальной оси вверх отложены значения прямого тока Iпр., а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпp., влево — обратного напряжения. На такой вольт — амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь вольт — амперной характеристики, соответствующую обратному току. Из нее видно, что ток Iпр. диода в сотни раз больше тока Iобр. Так, например, уже при прямом напряжении Uпp. = 0,5 В ток Iпр. равен 50 мА (точка (а) на характеристике), при Uпp. = 1 В он возрастает до 150 мА (точка (б) на характеристике), а при обратном напряжении Uобр. = 100 В обратный ток Iобр. не превышает 0,5 мА (500 мкА). Подсчитайте, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.
Рис. 2 Вольт — амперная характеристика полупроводникового диода.
Рис. 3 Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б).
Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видите, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов. Примерно такие вольт — амперные характеристики имеют все германиевые диоды. Вольт — амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1-0,2 В, а кремниевый при 0,5-0,6 В. Прибор, на примере которого я рассказал вам о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными.
Плоскостные диоды
В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2 — 4 мм квадратных и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р — n переход. Контактами электродов диода служат капелька индия и металлический диск или стержень с выводными проводниками. Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на (рис. 3, б). Приборы заключены в цельнометаллические или стеклянные корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств. Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов.
Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными Диодами.
Выпрямители тока
Теперь познакомимся с принципом преобразования переменного тока в ток постоянный. Схему простейшего выпрямителя переменного тока вы видите на (рис. 4, а). На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямительного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке. При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диода закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть форма выпрямленного переменного тока.
Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока. Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутках между импульсами, поэтому мерцания света будут едва заметными. А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой.
В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор (Сф) большой емкости, это показано на (рис. 4, б). Заряжаясь: от импульсов тока, конденсатор (Сф) в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на (рис. 4, б) сплошной волнистой линией. Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы.
В выпрямителе, с работой которого мы сейчас разбираемся, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.
Рис. 4 Схемы однополупериодного выпрямителя.
Рис. 5 Двухполупериодный выпрямитель с трансформатором.
Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление. В выпрямителе на (рис. 5) четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1 — 2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.
Постарайтесь вникнуть и запомнить классическую схему диодного моста! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.
Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40%. Именно такой выпрямитель я позже буду рекомендовать вам для питания транзисторных конструкций. Теперь о точечном диоде. Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на (рис. 6). Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм квадратных) пластина полупроводника германия или кремния типа n и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов. После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно — дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.
Рис. 6 Схематическое устройство и внешний вид точечного диода серии Д9.
Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50мкм. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами. Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р — n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В. Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя.
Спасибо lessonradio.narod.ru
определение, особенности, схема и применение :: SYL.ru
Что такое диод? Это элемент, получивший различную проводимость. Она зависит от того, как именно течет электрический ток. Применение устройства зависит от цепи, которой нужно ограничение следования данного элемента. В этой статье мы расскажем об устройстве диода, а также о том, какие виды существуют. Рассмотрим схему и то, где применяются эти элементы.
История появления
Так вышло, что работать над созданием диодов стало сразу два ученых: британец и немец. Следует заметить, что их открытия немного отличались. Первый основал изобретение на ламповых триодах, а второй — на твердотельных.
К сожалению, в то время наука не смогла сделать прорыв в этой сфере, однако для размышлений было дано очень много поводов.
Через несколько лет снова были открыты диоды (формально). Томас Эдисон запатентовал это изобретение. К сожалению, во всех своих работах при жизни это ему не пригодилось. Поэтому подобную технологию развивали другие ученые в разные годы. До начала XX века эти изобретения были названы выпрямителями. И только спустя время Вильям Иклз использовал два слова: di и odos. Первое слово переводится как два, а второе – путь. Язык, на котором было дано название, является греческим. И если переводить выражение полностью, то «диод» означает «два пути».
Принцип работы и основные сведения о диодах
Диод в своем строении имеет электроды. Речь идет об аноде и катоде. Если первый имеет положительный потенциал, то диод называется открытым. Таким образом, сопротивление становится маленьким, а ток проходит. Если же потенциал положительный имеется у катода, то диод не раскрыт. Он не пропускает электрический ток и имеет большой показатель сопротивления.
Как устроен диод
В принципе, что такое диод, мы разобрались. Теперь нужно понять, как он устроен.
Корпус зачастую изготавливается из стекла, металла или же керамики. Чаще всего вместо последней используются определенные соединения. Под корпусом можно заметить два электрода. Наиболее простой будет иметь нить небольшого диаметра.
Внутри катода располагается проволока. Она считается подогревателем, так как имеет в своих функциях подогрев, который совершается по законам физики. Нагревается диод за счет работы электрического тока.
При изготовлении также используется кремний или германий. Одна сторона прибора имеет нехватку электродов, вторая — их переизбыток. За счет этого создаются специальные границы, которые обеспечивает переход типа p-n. Благодаря ему ток проводится в том направлении, в котором это необходимо.
Характеристики диодов
Диод на схеме уже показан, теперь следует узнать, на что нужно обращать внимание при покупке устройства.
Как правило, покупатели ориентируются только по двум нюансам. Речь идет о максимальной силе тока, а также обратном напряжении на максимальных показателях.
Использование диодов в быту
Довольно часто диоды используют в автомобильных генераторах. То, какой диод выбрать, следует решать самому. Нужно заметить, что в машинах используются комплексы из нескольких приборов, которые признаны называться диодным мостом. Нередко подобные устройства встраиваются в телевизоры и в приемники. Если использовать их вместе с конденсаторами, то можно добиться выделения частот и сигналов.
Для того чтобы защитить потребителя от электрического тока, нередко в устройства встраивается комплекс из диодов. Такая система защиты считается довольно действенной. Также нужно сказать, что блок питания чаще всего у любых приборов использует такое устройство. Таким образом, светодиодные диоды сейчас довольно распространены.
Виды диодов
Рассмотрев, что такое диод, необходимо подчеркнуть, какие виды существуют. Как правило, приборы делятся на две группы. Первой считается полупроводниковая, а вторая не полупроводниковой.
На данный момент популярной является первая группа. Название связано с материалами, из которых такое устройство изготовлено: либо из двух полупроводников, либо из обычного металла с полупроводником.
На данный момент разработан ряд особых видов диодов, которые используются в уникальных схемах и приборах.
Диод Зенера, или стабилитрон
Этот вид используется в стабилизации напряжения. Дело в том, что такой диод при возникновении пробоя резко увеличивает ток, при этом точность максимально большая. Соответственно, характеристики диода такого типа довольно удивительны.
Туннельный
Если простыми словами объяснить, что это за диод, то следует сказать, что этот вид создает отрицательный тип сопротивления на вольт-амперных характеристиках. Зачастую такое приспособление используется в генераторах и усилителях.
Обращенный диод
Если говорить о данном типе диодов, то это устройство может изменять напряжение в минимальную сторону, работая в открытом режиме. Это устройство является аналогом диода тоннельного типа. Хоть и работает оно немного по другому признаку, но основано оно именно на вышеописанном эффекте.
Варикап
Данное устройство является полупроводниковым. Оно характеризуется тем, что имеет повышенную емкость, которой можно управлять. Зависит это от показателей обратного напряжения. Нередко такой диод применяется при настройке и калибровке контуров колебательного типа.
Светодиод
Данный тип диода излучает свет, но только в том случае, если ток течет в прямом направлении. Чаще всего именно это устройство используется везде, где следует создать освещение при минимальных затратах электроэнергии.
Фотодиод
Данное устройство имеет полностью обратные характеристики, если говорить о предыдущем описанном варианте. Таким образом, он вырабатывает заряды, только если на него попадает свет.
Маркировка
Нужно заметить, что особенностью всех устройств является то, что на каждом из элементов имеется специальное обозначение. Благодаря им, можно узнать характеристику диода, если он относится к полупроводниковому типу. Корпус состоит из четырех составных частей. Теперь следует рассмотреть маркировку.
На первом месте всегда будет стоять буква или цифра, которая говорит о материале, из которого изготовлен диод. Таким образом, параметры диода будет узнать несложно. Если указана буква Г, К, А или И, то это означает германий, кремний, арсенид галлия и индий. Иногда вместо них могут указываться цифры от 1 до 4 соответственно.
На втором месте будет указываться тип. Он также имеет разные значения и свои характеристики. Могут быть выпрямительные блоки (Ц), варикапы (В), туннельные (И) и стабилитроны (С), выпрямители (Д), сверхвысокочастотные (А).
Предпоследнее место занимает цифра, которая будет указывать на область, в которой применяется диод.
На четвертом месте будет установлено число от 01 до 99. Оно будет указывать на номер разработки. Помимо этого, на корпус производитель может наносить различные обозначения. Однако, как правило, их используют только на устройствах, создаваемых для определенных схем.
Для удобства диоды могут маркироваться графическими изображениями. Речь идет о точках, полосках. Логики в данных рисунках нет никакой. Поэтому для того, чтобы понять, что имел в виду производитель, придется ознакомиться с инструкцией.
Триоды
Этот вид электродов является аналогом диода. Что такое триод? Он немного по комплексу своему похож на описываемые выше устройства, однако имеет другие функции и конструкцию. Основное различие между диодом и триодом будет заключаться в том, что у него есть три вывода, и чаще всего его самого называют транзистором.
Принцип работы рассчитана на то, что, используя небольшой сигнал, будет выводиться ток в цепь. Диоды и транзисторы используются практически в каждом устройстве, которое имеет электронный тип. Речь идет также и о процессорах.
Плюсы и минусы
Лазерный диод, как и любой другой, имеет преимущества и недостатки. Для того чтобы подчеркнуть достоинства данных устройств, необходимо их конкретизировать. Помимо этого, составим и небольшой список минусов.
Из плюсов следует отметить небольшую стоимость диодов, отличный ресурс работы, высокий показатель службы эксплуатации, еще можно использовать данные устройства при работе с переменным током. Также нужно отметить небольшие размеры, которые позволяют размещать устройства на любой схеме.
Что касается минусов, то нужно выделить, что не существует на данный момент устройств полупроводникового типа, которые можно использовать в приборах с высоким напряжением. Именно поэтому придется встраивать старые аналоги. Также нужно заметить, что на диоды очень пагубно сказываются высокая температура. Она сокращает срок эксплуатации.
Немного интересных сведений о диодах
Первые экземпляры имели совершенно небольшую точность. Именно поэтому характеристики устройств были довольно плохими. Лампы-диоды приходилось распаковывать. Что же это означает? Некоторые устройства могли получать совершенно разные свойства, даже изготовленные в одной партии. После отсева негодных приспособлений элементы проходили маркировку, в которой описывались их реальные характеристики.
Все диоды, которые изготовлены из стекла, получили особенность: они чувствительны к свету. Таким образом, если прибор может открываться, то есть имеет крышку, то вся схема будет работать совершенно по-разному, в зависимости от того, открыто пространство для света или закрыто.
Диод описание и принцип работы. Применение диодов
Диод — 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью электрического тока: он хорошо пропускает через себя ток в одном направлении и очень плохо — в другом. Это основное свойство диода используется, в частности, для преобразования переменного тока электросети в постоянный ток.
Схематическое устройство диода:
Конструктивно диод представляет собой небольшую пластинку германия или кремния, одна область (часть объема) которой обладает электропроводимостью p-типа, то есть «дырочной» (содержащей искусственно созданный недостаток электронов), другая — электропроводимостью n-типа, то есть электронной (содержащей избыток электронов). Границу между ними называют p-n переходом. Здесь буквы p и n — первые в латинских словах positiv — «положительный», и negativ — «отрицательный». Область p-типа исходного полупроводника такого прибора является анодом (положительным электродом), а область n-типа — катодом (отрицательным электродом) диода.
Принцип работы диода .
Если к диоду VD через лампу накаливания HL подключить батарею GB так, чтобы вывод положительного полюса батареи был соединен с анодом, а вывод отрицательного полюса с катодом диода (рис а), тогда в образовавшейся электрической цепи появится ток, о чем будет сигнализировать загоревшаяся лампа HL. Значение этого тока зависит от сопротивления p-n перехода диода и поданного на него постоянного напряжения. Такое состояние диода называют открытым, ток, текущий через него,- прямым током Iпр, а поданное на него напряжение, благодаря которому диод оказался в открытом состоянии,- прямым напряжением Uпр.
Если полюсы батареи GB поменять местами, как показано на рис. б, то лампа HL не загорится, так как в этом случае диод находится в закрытом состоянии и оказывает току в цепи большое сопротивление. Небольшой ток через p-n переход диода в обратном направлении все же пойдет, но по сравнению с прямым током будет столь незначительным, что нить накала лампы даже не среагирует. Такой ток называют обратным током Iобр, а напряжение, создающее его,- обратным напряжением Uобр.
Можно ли опытным путем проверить эти свойства диода? Конечно, можно. Для этого понадобятся любой плоскостной диод, например из серий Д226, Д202, Д7, миниатюрная лампа накаливания, рассчитанная на ток накала 100…300 мА, например МН 3,5-0,14 (напряжение 3,5 В, ток накала 140 мА), и батарея 3336 (для плоского карманного электрического фонаря) или составленная из трех элементов 343 или 373. Соединять их между собой следует по схемам, приведенным на последнем рисунке. Попеременное изменение полярности включения батареи в цепь будет то открывать, то закрывать диод и тем самым автоматически зажигать и гасить лампу накаливания.
В таком опыте лампа накаливания выполняет двоякую роль: служит индикатором и ограничителем тока в цепи. При непосредственном прямом подключении батареи к диоду ток в цепи может оказаться столь значительным, что p-n переход перегреется и диод выйдет из строя.
Принцип устройства и работы так называемых точечных полупроводниковых диодов, например Д9, Д2, Д220, аналогичен. Площади p-n переходов полупроводниковых диодов в этом случае значительно меньше, чем у плоскостных диодов, поэтому и допустимые токи, текущие через них, меньше.
Главное отличие германиевых диодов от кремниевых в значении прямых напряжений, при которых они открываются и практически не оказывают заметного сопротивления текущим через них токам. Германиевые диоды открываются при прямом напряжении 0,1…0,15 В, а кремниевые — при 0,6…0,7 В.
Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.
1. Нелинейная обработка аналоговых сигналов
В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.
2. Выпрямители
Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.
3. Стабилизаторы
Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.
4. Ограничители
Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого ти
Что такое светодиод (устройство, параметры, маркировка)
Светодиод (led) – это полупроводниковый элемент, в котором при прохождении электрического тока создается видимое глазу оптическое излучение. В настоящее время такие устройства используются практически в любом приборе: телефоны, бытовая техника, автомобили, светильники и многие другие. Led-элементы потребляют гораздо меньше энергии, что важно для энергосбережения.
Разные типы светодиодов.
История создания светодиода.
Она насчитывает всего чуть больше ста лет. Первое упоминание о свечении диода относится к 1907 году. Английский физик Генри Раунд заметил разноцветное излучение при течении электричества через соединения карбид кремния-металл. Такое явление получило название электролюминесценция.
Спустя почти двадцать лет в 1923 году российский ученый Олег Лосев проводил подобные эксперименты в Нижнем Новгороде. Физик обнаружил свечение на месте контакта карбида кремния и стальной проволоки. Лосев опубликовал результаты своих исследований, и обосновал, что электролюминесценция наблюдается именно на границе соприкосновения разнородных материалов. Теоретическую базу под открытие подвести не смогли, и дальнейшего развития оно не получило. Хотя Лосев предсказал использование электролюминесценции для создания маломощных и миниатюрных источников света. Физик даже придумал конструкцию светового реле, но дальше исследования не продолжились.
В 1961 году, еще через сорок лет, американские изобретатели Д. Р. Байард и Г. Питтман придумали технологию выпуска светодиодов из арсенида галлия. В 1962 году они получили патент, и начался промышленный выпуск. Однако, их led-элемент испускал инфракрасное излучение, то есть был не видим человеческому глазу.
Но в том же 1962 году американский физик Ник Холоньяк изобрел красный светодиод. В 1971 году его соотечественник Жак Панков придумал синий. А в 1972 Джордж Крафорд открыл желтый led.
Впрочем, до семидесятых годов XX века светоизлучающие диоды оставались очень дорогими. Фирма «Монсанто» первой в мире удалось организовать массовое производство led в качестве индикатора.
В семидесятых годах группе советских ученых под начальством Ж. Алферова удалось синтезировать неизвестные до этого полупроводниковые вещества. Их начали получать на предприятиях и в лабораториях. А на основе этих соединений запустили серийное изготовление светодиодов.
В 1983 году Citizen Electronics придумала и внедрила на своих предприятиях светодиоды плоской конструкции (SMD).
В девяностые годы японские ученые И. Акасаки, Х. Амано и С. Накамура придумали, как значительно удешевить производство синих led. Технологию успешно опробовала фирма Nichia с 1993 года. А с 1996 года они начали изготовление белых led-элементов, чей свет получается из сочетания красного, синего и зеленого. В дальнейшем на базе открытия японских ученых стали стремительно развиваться новые методы производства световой техники: лампочек, дисплеев с подсветкой и других приборов.
В 2003 Citizen Electronics придумали новейшую технологию производства СОВ (Chip-On-Board). Она заключается в монтаже полупроводникового элемента на подложку при помощи специального непроводящего клея.
Очевидно, что история светоизлучающих диодов только набирает обороты, а технологии становятся все более совершенными.
Для создания разных цветов потребовалось много времени.
Принцип работы.
Кристалл состоит из полупроводниковых материалов, которые расположены слоями. Свечение появляется после протекания электричества между границами их соприкосновения. В одном полупроводнике (n) преобладают электроны (отрицательные частицы), а в другом (p) – ионы – дырки (положительные частицы). Полупроводниковые соединения способны пропускать электричество только от p -слоя к n -слою, т.е. в одну сторону.
Схема появления излучения.
Под воздействием электричества электроны из n-слоя и дырки из р-слоя начинают двигаться к р-n-переходу. Происходит рекомбинация дырки и электрона – между р-n-границей протекает ток. Электроны переходят на низший энергетический уровень, с высоких орбиталей на более низкие. Освобождается энергия, которая излучается в виде фотонов.
Описанный процесс протекает во всех полупроводниковых диодах. Но длина волны фотона не всегда находится в заметном человеческому глазу спектре. Для появления видимости необходимо движение элементарных частиц в определенном интервале: от 400 до 700 нм. Это достигается подбором определенных химических веществ. У каждого есть особая длина волны и цвет излучения.
Самые удачные материалы получаются из соединений типа AIIIBV и AIIBVI где II, III, V и VI – валентности элементов. Например, уже упоминавшийся арсенид галлия, фосфат индия или селенид цинка и теллурид кадмия. Подобные соединения называют прямозонными. Возможно получение разнообразных по свечению светодиодов: от ультрафиолетовых до инфракрасных.
К другой группе относятся непрямозонные полупроводники. Это карбид кремния, сам кремний, германий и другие. Диоды из них свет светят очень неярко. Впрочем, научные работы по использованию таких веществ продолжаются. Основные поиски решения ведутся в области технологий квантовых точек и фотонных кристаллов.
Кроме света при p-n-переходе освобождается еще и тепло. Для его отвода необходим теплоотвод (часто в этой роли выступает корпус изделия) или радиатор.
Виды и характеристики светодиодов.
Светоизлучающие диоды различают по конструкции корпуса:
- DIP – маломощные индикаторные цилиндрические элементы. Востребованы для подсветок экранов, индикации, световых гирлянд.
- «Пиранья» – четырехконтактный DIP. Они крепче держатся на своем месте и меньше греются. Востребованы в автомобильной промышленности для подсветок.
- SMD – внешне выглядит, как параллелепипед. За счет своей надежности и универсальности востребованы во многих отраслях светотехнической промышленности.
- PCB Star светодиоды. Разновидность SMD.
- СОВ – плоский SMD. Новейший тип.
Независимо от исполнения корпуса выделяют светодиоды:
- Двухцветные. Они излучают одновременно два цвета. Обладают тремя контактами, один из которых общий.
- Полноцветные RGB (красный-зеленый-синий). Изготавливаются из трех полупроводниковых кристаллов под общей линзой, обладают четырьмя электродами. По одному выводу для каждого полупроводникового элемента и один общий вывод. В SMD у прибора будет шесть выводов.
Пропорциональное смешение цветов дает всевозможные оттенки света. Например, при включении на 100% красного и зеленого получится желтый.
- Адресные светодиоды − разновидность полноцветных. Отличаются от обычных RGB тем, что включаются по собственному индивидуальному коду. Востребован в лентах, где на адресном светодиоде можно задать неповторяющийся цветовой оттенок. При этом led-диод обладает собственным адресом, на который поступают команды от специального управляющего драйвера. Управление цветами происходит через микрочипы, которые встраиваются рядом с адресными светодиодами.
- Сверхмощные (сверхяркие) светодиоды – элементы мощностью выше 1 Вт с силой тока от 300 мА. (Мощность обычных светодиодов измеряется чаще всего в милливаттах). Такие устройства светят очень ярким светом. Используются в фонариках, фарах, прожекторах и т.п.
Также led-элементы подразделяются на:
- Индикаторные – маломощные.
- Осветительные – приборы большой мощности.
- Инфракрасные – излучают невидимый человеческому глазу инфракрасный спектр.
Инфракрасные диоды. Благодаря специально подобранным материалам проводников они испускают невидимые глазу инфракрасные лучи. Они безвредны для живых существ, но заметны для электронных систем регистрации. Востребованы во многих технических устройствах и станках во всевозможных отраслях промышленности.
Индикаторные led-диоды. Выступают в роли индикаторов для техники, подсветок дисплеев и т.п. Их делят по типу используемых полупроводников на:
- двойные – светят зеленым и оранжевым;
- тройные – светят желтым и оранжевым;
- тройные – светят красным и желто-зеленым.
Независимо от вида светодиоды характеризуются некоторыми параметрами.
Цвет излучения. Обусловлен химическим составом полупроводников. Некоторые вещества и соответствующие им цвета обозначены в таблице.
Яркость. Она пропорциональна силе тока, текущей сквозь элемент. Среди led-диоды, которые светят белым светом, выделяют яркие (20-25 милликандел) и сверхяркие (свыше 20 тысяч милликандел).
Сила тока. Светодиоды весьма чувствительны к силе тока. При превышении ее значения выше номинального led может перегореть. Поэтому не рекомендуется превышать максимальный прямой ток элемента. Точные значения для конкретного светодиода приводятся в техническом описании.
Падение напряжения. Характеризует допустимую разницу между величинами входного и выходящего напряжения. У значения напряжения для светодиодов есть максимальное значение, превышение которого приведет к поломке led. Значения указываются в техническом описании.
Полярность. Поскольку ток в светодиоде течет только от p -слоя к n -слою, для предотвращения поломок стоит полярность. Обычно ее определяют по внешнему виду, маркировке или особым пометкам на корпусе. (Подробнее смотрите в статье «определение полярности»). Также узнать полярность можно из технической документации.
Угол рассеивания света. Определяется формой линзы, конструкцией кристалла и от используемых для изготовления кристалла веществ. Может меняться от 15 до 180 градусов.
Устройство светодиода.
Led-диод состоит из полупроводникового кристалла, который закреплен на подложке, корпуса с контактами и оптической системы.
Устройства индикаторных (DIP), плоских (SMD) и СОВ элементов различаются снаружи.
Конструктивное устройство DIP.
DIР-светодиод в разрезе.
В основании прибора монтируются контакты. Кристалл (один или несколько) закреплен на катоде. К кристаллу присоединяется проволока. Она соединяет полупроводники с анодом. Это необходимо для группировки двух проводников с различными типами проводимости. Сверху led-элемент герметично покрывается линзой. Корпус устройства изготавливается в виде цилиндра из эпоксидной смолы, край которого обрезан со стороны катода. Монтаж led-элемента происходит путем пайки длинных выводов.
Конструктивное устройство SMD.
SMD-светодиод в разрезе.
Корпус изготавливается параллелепипедом. Его основа – теплоотвод от кристалла. На нее монтируется полупроводниковый элемент. Контактный провод соединяет его с анодом. Контакты выполняются плоскими. Сверху элемент герметично накрывается линзой.
Конструктивное устройство СОВ.
COB-технология – новейшее направление в производстве.
Такие светоизлучающие диоды имеют в основании теплопроводящую подложку (обычно алюминиевую). На нее непроводящим клеем закрепляют полупроводниковые кристаллы, которые объединены по последовательно-параллельной схеме. Сверху все покрывается люминофором.
Такой тип led легко монтируется, выдает хороший световой поток и не искажает цвета. Востребованы в производстве небольших, ярких прожекторов и декоративной подсветки. В отличие от DIP и SMD способны работать при повышенных температурах. Но из-за своего устройства имеют меньший срок эксплуатации по сравнению.
Если на одной подложке смонтировано множество кристаллов, то такой led-элемент называется светодиодной матрицей.
Конструктивное устройство PCB Star.
Состоит из одного большого кристалла, который монтируется на алюминиевую подложку в форме звезды. За счет увеличенной площади кристалла повышается мощность светодиода. Упрощается его фокусировка. Поэтому РCB Star востребованы в производстве ярких источников света: от фонариков до прожекторов.
Вольт-амперная характеристика светодиода.
Она имеет нелинейный характер. Led начинает пропускать ток с определенного значения напряжения. Оно называется пороговым. Пороговый вольтаж определяется химическими соединениями полупроводников.
Вольт-амперная зависимость.
Синяя кривая описывает протекание электричества при прямом включении. Красная кривая – при обратном включении.
UMAX и UMAXОБР – предельно допустимые значения напряжений. При их превышении элемент сгорает.
UMIN – минимальное величина напряжения. Начинается свечение.
Интервал между минимальным и максимальным – рабочая зона. Именно в ней диод светоизлучается.
IMAX – предельное допустимое значение тока. При превышении светодиод перегорает.
Подключение светодиода.
Самым простым случаем подключения светодиода является подключение с резистором. Последний необходим для токоограничения, чтобы исключить перегорание led при скачках напряжения.
При подключении led-элементов по любой схеме не забывайте придерживаться полярности! Иначе полупроводниковый прибор не будет светить и перегорит.
Электрическая схема соединения светодиода (LED) и резистора (R).
При соединении нескольких светоизлучающих диодов возможны разные варианты их соединения.
Последовательное подключение.
Схема последовательного соединения.
Элементы соединяются последовательно с учетом полярности. В цепи значение тока постоянно, а напряжение на led-элементах суммируется.
Параллельное соединение.
Схема параллельного соединения светодиодов через один резистор.
В этом случае постоянным в цепи сохраняется напряжение, а силы тока на элементах складываются. У данного типа соединения есть недостаток. На разных светодиодах может быть неодинаковое падение напряжения. Поэтому ток на каком-нибудь элементе может превысить допустимый, что приведет к поломке.
Во избежание этого следует подключать к каждой параллельной цепи свой резистор.
Схема параллельного подключения.
Параллельно-последовательное соединение.
При подключении большого количества светодиодов стоит использовать параллельно-последовательную электрическую схему. При этом в параллельных ветках напряжение одинаковое.
Электрическая схема параллельно-последовательного соединения.
Производители светодиодов
Монтаж светодиодов.
В рейтинге производителей лидируют несколько фирм с мировым именем. Именно они выпускают самые качественные изделия на рынке.
- Philips. Пожалуй, производитель, с самым известным именем. Под этой маркой выпускается множество изделий от лампочек, до телефонов. Фирма имеет заводы более чем в шестидесяти странах. Активно вкладывается в новейшие разработки. Покупает другие, более мелкие заводы и производства, которые изготавливают светодиоды.
- Cree. Американская фирма, которая начинала свой путь с производства чипов для телефонов. Специализируется на производстве led-изделий разного назначения. РРаРазработали и выпускают светодиоды из карбида кремния, которые ярко светят.
- Nichia. Японская компания. Одна из старейших в области изготовления светодиодной техники. Именно она разработала и внедрила выпуск синих и белых цветов led. Специализируется на производстве кристаллов. Лидер на рынке по доходам от продаж.
- Osram. Немецкий изготовитель. Работает более ста лет в паре с Siemens. Выпускает светоизлучающие диоды, которые соответствуют мировым стандартам качества.
Из российских производителей можно отметить «Оптоган» и «Светлана-Оптоэлектроника». Обе фирмы располагаются в Санкт-Петербурге и производят светотехнические изделия. Впрочем, кристаллы для выпуска продукции закупаются за рубежом.
Цветовая маркировка.
Маркировка led в мире не стандартизирована. Изготовитель сам решает, что он будет обозначать на корпусе.
Светодиоды российского производства маркируются цветовым кодом. Он состоит из цветных кружочков или черточек. Примеры маркировки приведены ниже на рисунке.
Цветовая маркировка российских индикаторных светодиодов.
Рассмотрим маркировку известных мировых производителей.
Philips.
В качестве примера возьмем модель Luxeon Rebel. Она маркируется LXML-ABCD-EFGH. В этой аббревиатуре зашифровано следущее:
- LXML – серия;
- ABC – информация о свете: как распределяется, цветовая температура;
- D – величина тока;
- E – запасная буква на будущие модели;
- FGH – яркость (в люменах).
Cree.
Фирма предлагает обозначение SSSCCC-BD-0000-NNNNN, где:
- SSS – серия;
- CCC – описание цвета:
- BD – индекс цветопередачи:
- 0000 – код производителя;
- NNNNN – индивидуальный номер по цветовой температуре и яркости. Стоит уточнить в техническом описании.
Достоинства и недостатки светодиодов
Плюсы
- Высокая механическая и вибрационная стойкость.
- Небольшой разогрев.
- Маленькие габаритные размеры, легкий
- Долговечность.
- Низкое энергопотребление и мощность.
- Возможность регулирования интенсивности свечения.
- Высокие декоративные качества: разнообразие цветов и оттенков свечения.
- Безынерционность: включаются сразу на полную мощность.
- Возможность работы при низких температурах.
- Низкая цена индикаторных светодиодов.
- Безопасность: низкие рабочие значения напряжения и тока.
Минусы
- Высокая цена SMD.
- Ухудшения со временем качества кристалла: чем дольше светодиод работает, тем он тусклее.
- Повышенные требования к источнику питания.
- Недопустимы даже небольшие превышения минимальных и максимальных значений электрических параметров.
Интересные факты.
Светодиодная лента.
Получение белого цвета. Есть три варианта. Первый – по технологии RGB. Включение всех трех цветов на 100% дает белый цвет. Во втором случае на линзу наносят три люминофора: голубой, красный и зеленый. Третий вариант заключается в нанесении красного и зеленого люминофора на оптическую систему голубого светодиода.
Работа при повышенных температурах. С ростом температуры в области p-n-перехода уменьшается яркость свечения. Причем у красных и желтых падение яркости больше, чем у синих и зеленых. Поэтому важно использовать хороший теплоотвод и не допускать эксплуатации led при повышенных температурах.
Как готовят полупроводники? В основном по технологии металлоорганической эпитаксии в атмосфере особо чистых газов. Выращиваются пленки толщиной от ангстремов до микрон. Разные слои легируются примесями, которые дадут слою высокую концентрацию электронов или дырок, то есть сформируют n или p структуру полупроводника. Зачем пленки травят, создают контакты к n и p слоям и разделяют на чипы нужных размеров.
Чем хороша СОВ-технология? Тем, что кристаллы монтируются на металлическую подложку, которая одновременно выполняет функции радиатора. Таким образом получают отличный теплоотвод непосредственно от полупроводникового кристалла. Дополнительно можно получить разную форму светодиода, разную гибкость и и.п.
диодов — learn.sparkfun.com
Избранные любимец 57Применение диодов
Для такого простого компонента диоды имеют огромное применение. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.
Выпрямители
Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.
Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Таким образом, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!
Однополупериодный выпрямитель может быть изготовлен только из одного диода.Если сигнал переменного тока, такой как, например, синусоида, посылается через диод, любая отрицательная составляющая сигнала отсекается.
Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему полуволнового выпрямителя (в центре).
Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выступов в сигнале переменного тока в положительные.
Схема мостового выпрямителя (в центре) и форма выходной волны, которую она создает (синий / правый).
Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенной бородавку, вы, скорее всего, увидели бы там несколько диодов, которые ее исправили.
Вы можете заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?
Защита от обратного тока
Вы когда-нибудь вставляли батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, включенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.
Этот диод полезен, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.
Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диоды Шоттки отличным выбором для диодов обратной защиты.
Логические ворота
Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.
Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.
Логический элемент И построен аналогичным образом. Аноды , обоих диодов соединены вместе, где и находится выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на одном из входов низкий уровень, ток от источника питания 5 В проходит через диод.
Для обоих логических вентилей можно добавить больше входов, добавив только один диод.
Обратные диоды и подавление скачков напряжения
Диодыочень часто используются для ограничения потенциального повреждения от неожиданных больших скачков напряжения. Диоды подавления переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большими номинальными мощностями (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.
Обратные диодывыполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, таким как двигатель.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.
Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.
← Предыдущая страница
Типы диодов ,
применений и применений диодов в повседневной жизни
Что такое полупроводниковый диод?
Диод — это устройство с двумя выводами, образованное двумя легированными областями кремния, разделенными pn переходом. Рассматривается наиболее распространенная категория диодов, известная как диоды общего назначения.
Другие названия, такие как выпрямительный диод или сигнальный диод, зависят от конкретного типа применения, для которого был разработан диод. Вы узнаете, как использовать напряжение, чтобы диод проводил ток в одном направлении и блокировал в нем другое.Этот процесс называется смещением.
Применение диодов
- Распознать электрический символ для диода и несколько конфигураций корпусов диодов
- Приложить прямое смещение к диоду
- Определить прямое смещение и указать необходимые условия
- Обсудить влияние прямого смещения на область истощения
- определяет потенциал барьера и его эффекты во время прямого смещения
3. Обратное смещение диода
- Определите обратное смещение и укажите требуемые условия
- Обсудите обратный ток и обратный пробой
Диод
As Как уже упоминалось, диод изготовлен из небольшого кусочка полупроводникового материала, обычно кремния, половина которого легирована как область p , а половина легирована как область n с переходом pn и обедненной областью между ними. ,
Область p называется анодом и подключается к проводящей клемме. n называется катодом и подключается ко второй проводящей клемме. Основная структура диода и схематический символ показаны на рисунке выше.
Типичные диодные блоки
Показаны несколько распространенных физических конфигураций диода, установленного в сквозное отверстие. Анод (A) и катод (K) обозначены на диоде несколькими способами, в зависимости от типа корпуса.Катод обычно помечается рукой, выступом или каким-либо другим элементом. В этих корпусах, где один вывод является условием для корпуса, корпус является катодом.
Блоки диодов для поверхностного монтажа
Типовые блоки диодов для поверхностного монтажа на печатной плате. Пакеты SOD и SOT имеют выводы в форме крыла чайки. В корпусе SMA имеются выводы L-образной формы, которые загибаются под корпусом. Типы SOD и SMA имеют полосу на конце для обозначения катода. Тип SOT представляет собой трехконтактный корпус с одним или двумя диодами.В корпусе SOT с одним диодом вывод 1 обычно является анодом, а вывод 3 — катодом. В корпусе SOT с двумя диодами третий вывод является общим выводом и может быть либо анодом, либо катодом. Всегда сверяйтесь с таблицей данных на конкретный диод, чтобы проверить конфигурацию контактов.
Типовые диодные блоки с идентификацией клемм. Буква K используется для обозначения катода, чтобы избежать путаницы с определенными электрическими величинами, обозначенными буквой C. Номера типов корпуса указаны для каждого диода.
Полупроводниковый диод (видео)
.
Типы диодов и их применение
Различные типы диодов с их характеристиками и применением
Диод является наиболее часто используемым полупроводниковым прибором в электронных схемах. Это двухконтактный электрический обратный клапан, позволяющий протекать току в одном направлении. . В основном они состоят из кремния, но также используется германий. Обычно их используют для ректификации. Но есть разные свойства и характеристики диодов, которые можно использовать для разных целей.Эти характеристики изменены для формирования диодов разных типов. В настоящее время доступно несколько различных типов диодов с разными свойствами.
Некоторые из различных типов диодов с их свойствами и областями применения обсуждаются ниже:
Диод с P-N переходом
Диод с P-N переходом изготовлен из полупроводникового материала. Он состоит из двух слоев полупроводников. Один слой легирован материалом P-типа, а другой слой — материалом N-типа.Комбинация этих слоев P- и N-типа образует соединение, известное как соединение P-N. Отсюда и название P-N диод .
Он позволяет току течь в прямом направлении и блокирует его в обратном направлении. Они также известны как выпрямительные диоды, используемые для выпрямления.
Существуют различные типы диодов, в которых используется P-N переход с изменением концентрации легирования. Они обсуждаются ниже.
Малый сигнальный диод
Это тип диода с P-N переходом, который работает с сигналами низкого напряжения.Площадь стыка очень мала. Благодаря этому переход имеет меньшую емкость и низкую емкость накопления заряда. Это позволяет малому сигнальному диоду иметь высокую скорость переключения с очень коротким временем восстановления. Однако его ограничениями являются низкого напряжения и токовых параметров.
Из-за высокой скорости переключения эти типы диодов используются в цепях с высокими частотами.
Выпрямительный диод
Выпрямительный диод — это тип диода с P-N переходом, у которого площадь P-N перехода очень велика.Это приводит к высокой емкости в обратном направлении. Имеет низкую скорость переключения.
Это самый распространенный и наиболее часто используемый тип диода. Эти типы диодов могут выдерживать большие токи и используются для преобразования переменного тока в постоянный ( Rectification ).
Диод Шоттки
Диод Шоттки, названный в честь немецкого физика Вальтера Х. Шоттки, — это тип диода, который состоит из небольшого перехода между полупроводником N-типа и металлом.Он имеет без перекрестка P-N.
Плюс диода Шоттки в том, что он имеет очень низкое прямое падение напряжения и быстрое переключение . Поскольку нет емкостного перехода (P-N переход), скорость переключения диода Шоттки очень высокая.
Ограничение диода Шоттки заключается в том, что он имеет низкое обратное напряжение пробоя и высокий обратный ток утечки.
Супербарьерные диоды
Супербарьерные диоды (SBR) также являются выпрямительными диодами, но имеют низкое прямое падение напряжения , как и диод Шоттки.У них низкий ток обратной утечки , как и у нормального диода с P-N переходом.
SBR использует полевой МОП-транзистор путем короткого контакта между его затвором и истоком.
SBR имеет низкое прямое падение напряжения, меньший обратный ток утечки и возможность быстрого переключения.
Светоизлучающий диод (LED)
Светоизлучающий диод также относится к типу диодов с P-N переходом, которые излучают свет в конфигурации прямого смещения.
Светодиод состоит из полупроводника с прямой полосой пропускания. Когда носители заряда (электроны) пересекают барьер и рекомбинируют с электронными дырками на другой стороне, они испускают фотонные частицы (свет). В то время как цвет света зависит от запрещенной зоны полупроводника.
Светодиод преобразует электрическую энергию в световую.
Фотодиод
Фотодиод — это тип диода с P-N переходом, который преобразует световую энергию в электрический ток.Его работа противоположна таковой у LED .
На каждый полупроводниковый диод воздействуют оптические носители заряда. Вот почему они упакованы в легкий блокирующий материал.
В фотодиоде есть специальное отверстие, через которое свет проникает в его чувствительную часть.
Когда свет (частицы фотона) попадает на PN-переход, он создает пару электрон-дырка. Эти электрон и дырка вытекают как электрический ток. Для повышения его эффективности используется диод PIN junction .
Фотодиод используется с обратным смещением, и они могут использоваться в солнечных элементах.
Лазерный диод
Лазерный диод похож на светодиод, поскольку он преобразует электрическую энергию в энергию света. Но в отличие от светодиода, лазерный диод излучает когерентный свет.
Лазерный диод состоит из PIN-перехода, , где электрон и дырки объединяются вместе во внутренней (I) области. когда они объединяются, он генерирует лазерный луч.
Лазерные диоды используются в оптической связи, лазерных указателях, приводах компакт-дисков, лазерных принтерах и т. Д.
Туннельный диод
Туннельный диод изобрел Лео Эсаки в 1958 г. , за что он получил Нобелевскую премию в 1973 г., поэтому он также известен как диод Эсаки .
Туннельный диод — это сильно легированный диод с P-N переходом . Он работает по принципу туннельного эффекта . Из-за высокой концентрации легирования барьер перехода становится очень тонким. Это позволяет электрону легко выйти через барьер.Это явление известно как туннельный эффект .
Туннельный диод имеет область на кривой VI , где ток уменьшается по мере увеличения напряжения. Эта область известна как область отрицательного сопротивления . Туннельный диод работает в этой области в различных приложениях, таких как генератор и микроволновый усилитель .
Обозначение с VI характеристикой кривой туннельного диода приведено ниже:
Туннельный диод также проводит ток в обратном направлении и является устройством быстрого переключения.
Стабилитрон
Стабилитрон назван в честь Кларенса Малвина Зенера , открывшего эффект Зенера .
Это тип диода, который позволяет току течь не только в прямом, но и в обратном направлении. когда обратное напряжение достигает напряжения пробоя, известного как напряжение стабилитрона , оно позволяет протекать току.
Стабилитрон имеет более высокую концентрацию легирования, чем обычный диод с P-N переходом.Следовательно, он имеет очень тонкую область истощения.
При прямом смещении он работает как простой диод с P-N переходом (выпрямитель).
При обратном смещении он блокируется, пока обратное напряжение не достигнет пробоя. После этого он позволяет току течь с постоянным падением напряжения.
Обратный пробой стабилитрона вызван двумя причинами: квантовое туннелирование электронов и Лавинный пробой .
Стабилитрон в основном используется в конфигурации с обратным смещением.Он обеспечивает стабилизированное напряжение для защиты цепей от перенапряжения.
Обратный диод
Обратный диод или задний диод представляет собой диод с P-N переходом, работа которого аналогична работе туннельного диода и стабилитрона . Но рабочие напряжения намного ниже.
Обратный диод — это, по сути, туннельный диод, у которого одна сторона перехода имеет относительно меньшую концентрацию легирования по сравнению с другой стороной.
В прямом смещении он работает как туннельный диод , но его туннельный эффект значительно снижен по сравнению с туннельным диодом.В противном случае он работает как обычный диод с фазовым переходом.
В обратном смещении он работает как стабилитрон , но напряжения пробоя намного ниже.
Широко не используется, но может использоваться для выпрямления слабого сигнала напряжения (от 0,1 до 0,6 В). Благодаря высокой скорости переключения его можно использовать в качестве переключателя в ВЧ-смесителе и умножителе.
Лавинный диод
Лавинный диод представляет собой диод с P-N переходом, который специально разработан для работы в области лавинного пробоя .
Лавинный пробой — это явление, при котором на переход P-N подается достаточное обратное напряжение. За счет этого неосновной носитель ионизируется и запускает сильный ток в обратном направлении.
Лавинный диод электрически похож на стабилитрон. Однако концентрация легирования в стабилитроне относительно выше, чем в лавинном диоде.
Сильное легирование внутри стабилитрона создает небольшой переход, и низкие напряжения могут легко его сломать.Однако лавинный диод имеет широкий переход из-за концентрации легкого легирования. Таким образом, для его пробоя требуется высокое напряжение. Этот широкий переход делает его лучшим устройством защиты от перенапряжения по сравнению с простым стабилитроном.
Диод подавления переходного напряжения (TVS)
Диод подавления переходного напряжения или TVS-диод — это тип лавинного диода, который защищает цепь от высоких скачков напряжения.
TVS-диод способен выдерживать высокие напряжения по сравнению с лавинным диодом.
Однонаправленный TVS-диод работает аналогично лавинному диоду. он действует как выпрямитель при прямом смещении и как устройство защиты от перенапряжения при обратном смещении.
Двунаправленный TVS-диод действует как два лавинных диода, последовательно противостоящих друг другу. Он изготавливается как однокомпонентный. Он работает в обоих направлениях и обеспечивает защиту от перенапряжения при использовании параллельно цепи.
Диод, легированный золотом
В диодах такого типа в качестве легирующей примеси (легирующего материала) используется золото или платина.Это позволяет диоду работать с высокой скоростью переключения, но за счет увеличения прямого падения напряжения. Кроме того, его обратный ток утечки выше, чем у обычного диода с P-N переходом.
Диод постоянного тока
Диод постоянного тока AKA токоограничивающий диод (CLD) представляет собой двухконтактный диод, сделанный из JFET. Он регулирует ток через него до фиксированного уровня.
CLD создается путем короткого контакта между затвором и истоком JFET.Он ограничивает ток так же, как стабилитрон ограничивает напряжение.
Диод восстановления ступени
Диод восстановления ступени или отключающий диод — это диод с P-N переходом, который резко прекращает прохождение тока при изменении его направления.
SRD (ступенчатый восстанавливающий диод) состоит из P-N перехода с очень низкой концентрацией легирования около перехода. За счет этого уменьшается количество носителей заряда (электронов и дырок) вблизи перехода.Следовательно, емкость накопления заряда вблизи перехода становится незначительной. Это позволяет SRD очень быстро переключаться с ON на OFF.
В нормальном диоде, когда он переключается с прямой проводимости на обратную отсечку, ток ненадолго течет из-за накопленного заряда. Из-за чего нормальный диод требует времени на переключение. SRD не хранит заряд, поэтому может мгновенно прекратить прохождение тока.
Пельтье или термодиоды
Пельтье или термодиоды — это тип диодов, тепловое сопротивление которых в одном направлении отличается от другого.Таким образом, выделяемое тепло течет в одном направлении в одну сторону (терминал) и оставляет другую сторону более холодной.
Этот диод используется для контроля температуры в микропроцессоре и в холодильниках для эффекта охлаждения.
Вакуумный диод
Это простейшая форма диода, состоящая из вакуумной трубки и двух электродов (катода и анода). Анод и катод заключены внутри вакуумной трубки (пустой стакан).
Когда катод нагревается, он испускает электроны, анод улавливает электроны, и поток продолжается.
Катод может нагреваться прямо или косвенно.
При прямом смещении свободный электрон на катоде выходит в вакуум после нагрева. Анод собирает эти электроны, и ток течет.
При обратном смещении свободный электрон в вакууме отталкивается анодом, когда он подключен к отрицательной клемме, поэтому ток не течет.
Таким образом, ток течет только в одном направлении.
Варакторный диод
Варакторный диод, также известный как диод Верикапа, представляет собой конденсаторы с регулируемым напряжением.У них есть переход P-N с переменной емкостью перехода.
Варакторный диод работает в условиях обратного смещения. Слой обеднения между материалами P- и N-типа варьируется путем изменения обратного напряжения.
Емкость перехода всех диодов зависит от обратного напряжения, но варакторный диод может использовать этот эффект с большим диапазоном емкости.
Диоды Varactor применяются в качестве генератора , управляемого напряжением, в контуре фазовой синхронизации, в фильтрах настройки RF и умножителях частоты .
Связанный пост: Типы микросхем. Классификация интегральных схем и их ограничения
Диод Ганна
Диод Ганна AKA « Transferred Electron Device » (TED) — это тип диода, имеющего отрицательное сопротивление, как туннельный диод. Он назван в честь британского физика Дж. Б. Ганна , открывшего «эффект Ганна » в 1962 году.
Диод Ганна не имеет P-N перехода. Фактически, он состоит из только материала N-типа , поэтому он не выпрямляет переменный ток и не работает как обычный диод.Это также причина, по которой многие люди называют его «устройством с переносом электронов» (TED) вместо диода.
Состоит из трех слоев N-типа; два из них, которые находятся на стороне вывода, имеют более высокую концентрацию легирования, тогда как средний тонкий слой имеет меньшую концентрацию легирования.
Когда на диод Ганна подается напряжение, сначала его ток увеличивается с увеличением напряжения.
При более высоком напряжении сопротивление среднего слоя начинает увеличиваться с увеличением напряжения.Это приводит к падению тока. Это область отрицательного сопротивления . В этой области работает и диод Ганна.
Диод Ганна используется в генераторе для генерации микроволн высокой частоты .
PIN-диод
PIN-диод — это трехслойный диод, то есть P-слой, I-слой и N-слой. Собственный полупроводниковый слой « I » помещен между сильно легированным P и полупроводником N-типа.
Электрон и дырки из областей N и P соответственно текут во внутреннюю область (I).Когда область «I» полностью заполняется электронными дырками, диод начинает проводить.
При обратном смещении широкий внутренний слой диода может блокировать и выдерживать высокие обратные напряжения.
При более высокой частоте PIN-диод действует как линейный резистор. Это из-за того, что PIN-диод имеет плохое время обратного восстановления . Причина в том, что сильно заряженная область «I» не успевает разрядиться во время быстрых циклов.
На низкой частоте действует как выпрямительный диод.Потому что у него достаточно времени, чтобы разрядиться и выключиться во время цикла.
Если фотон попадает в область «I» PIN-диода с обратным смещением, он создает пару электрон-дырка. Эта электронно-дырочная пара течет как ток. Таким образом, он также используется в фотодетекторах и фотоэлектрических элементах .
PIN диоды используются в выпрямлении высокого напряжения, в ВЧ приложениях в качестве аттенюатора и переключающего элемента.
Кремниевый управляемый выпрямитель (SCR)
SCR — это четырехслойное полупроводниковое переключающее устройство типа P-N-P-N.Он имеет три терминала: анод, катод и затвор.
SCR — это, по сути, диод с входом внешнего управления, известным как вход затвора. Это позволяет току течь в одном направлении.
Когда SCR подключен в прямом смещении, он еще не позволяет протекать току. Это известно как режим прямой блокировки .
Для того, чтобы тиристор работал в прямом режиме, ему необходимо либо необходимое напряжение, чтобы пересечь его предел отключения, либо подать положительный импульс на вход затвора.
Чтобы выключить SCR, либо уменьшите ток ниже точки удерживающего тока, либо отключите вход затвора и на мгновение закоротите анод-катод.
При обратном смещении SCR не пропускает ток даже после подачи затвора. Но если обратное напряжение достигает обратного напряжения пробоя, тиристор начинает проводить из-за лавинных явлений.
SCR используется для управления цепями большой мощности, выпрямления переменного тока высокой мощности
Диод Шокли
Диод Шокли представляет собой четырехслойный диод PNPN.Он похож на SCR, но у него нет входа управления или затвора.
Диод Шокли имеет тенденцию оставаться «ВКЛЮЧЕННЫМ», когда он включен «ВКЛЮЧЕННЫМ», и имеет тенденцию оставаться «ВЫКЛЮЧЕННЫМ», когда он «ВЫКЛЮЧЕН».
Как мы знаем, диод Шокли не имеет входа затвора, поэтому единственный способ включить его — подать прямое напряжение, превышающее его напряжение пробоя.
После подачи напряжения, превышающего его напряжение пробоя, он пропускает ток.
В состоянии проводимости он не выключится, даже если напряжение упадет с его напряжения пробоя.Чтобы он отключился, напряжение должно быть достаточно ниже, чем его напряжение пробоя.
Диод с точечным контактом
Он также известен как диод Cat Whisker или кристаллический диод .
Это тип диода, в котором небольшой точечный переход образован между металлической проволокой и полупроводниковым кристаллом N-типа.
« кошачий ус » — это тонкая пружинящая проволока из фосфорной бронзы или вольфрама.Он создает точечный переход с полупроводником N-типа, отсюда и название точечный диод .
Поскольку образующийся переход очень мал, емкость перехода точечного диода очень мала. Таким образом, емкость накопителя для заряда очень мала, что делает его устройством быстрого переключения.
Во время производства пропускание относительно большого тока через провод кошачьих усов приводит к образованию небольшой P-области на полупроводнике N-типа .Этот небольшой переход действует как переход P-N.
Диоды с точечным контактом используются для сигналов низкого напряжения, а также в микроволновых смесителях и детекторах.
Это одни из наиболее распространенных типов диодов, используемых при проектировании и эксплуатации электронных схем. Если вы хотите добавить другие типы диодов, сообщите нам об этом в поле для комментариев ниже.
.СветодиодыСхема, принцип работы и применение
Светодиод представляет собой двухпроводной полупроводниковый источник света. В 1962 году Ник Холоняк придумал светоизлучающий диод, и он работал в компании General Electric. Светодиод — это особый тип диода, который имеет электрические характеристики, аналогичные диодам с PN переходом. Следовательно, светодиод позволяет току течь в прямом направлении и блокирует ток в обратном направлении. Светодиод занимает небольшую площадь, которая меньше 1 мм 2 .Применение светодиодов в различных электрических и электронных проектах. В этой статье мы обсудим принцип работы светодиода и его применение.
Что такое светоизлучающий диод?
Светоизлучающий диод представляет собой диод с p-n переходом. Это специально легированный диод, сделанный из особого типа полупроводников. Когда свет излучается в прямом смещении, он называется светоизлучающим диодом.
Светоизлучающий диод
Как работает светоизлучающий диод?
Светоизлучающий диод просто, мы его знаем как диод.Когда диод смещен в прямом направлении, электроны и дырки быстро перемещаются через переход, и они постоянно объединяются, удаляя друг друга. Вскоре после того, как электроны переходят из кремния n-типа в кремний p-типа, он соединяется с дырками, а затем исчезает. Следовательно, он делает атом в целом более стабильным и дает небольшой всплеск энергии в форме крошечного светового пакета или фотона.
Работа светоизлучающего диодаНа приведенной выше диаграмме показано, как работает светоизлучающий диод, и пошаговый процесс диаграммы.
- Из диаграммы мы можем видеть, что кремний N-типа имеет красный цвет и содержит электроны, они обозначены черными кружками.
- Кремний P-типа синего цвета, в нем есть дырки, они обозначены белыми кружками.
- Источник питания через p-n переход вызывает прямое смещение диода и перевод электронов из n-типа в p-тип. Продвигая отверстия в обратном направлении.
- Электрон и дырки на стыке совмещены.
- Фотоны испускаются при рекомбинации электронов и дырок.
Типы светоизлучающих диодов
Существуют различные типы светодиодов, некоторые из которых упомянуты ниже.
- Арсенид галлия (GaAs) — инфракрасный
- Фосфид арсенида галлия (GaAsP) — красный к инфракрасному, оранжевый
- Фосфид арсенида галлия алюминия (AlGaAsP) — красный, оранжево-красный, оранжевый и желтый
- Фосфид галлия (GaP) — красный, желтый и зеленый
- Фосфид алюминия-галлия (AlGaP) — зеленый
- Нитрид галлия (GaN) — зеленый, изумрудно-зеленый
- Нитрид галлия-индия (GaInN) — ближний ультрафиолетовый, голубоватый- зеленый и синий
- Карбид кремния (SiC) — синий в качестве подложки
- Селенид цинка (ZnSe) — синий
- Нитрид алюминия и галлия (AlGaN) — ультрафиолетовый
Принцип работы светодиода
Принцип работы светоизлучающего диод основан на квантовой теории.Квантовая теория говорит, что когда электрон опускается с более высокого энергетического уровня на более низкий энергетический уровень, энергия излучается фотоном. Энергия фотона равна энергетической щели между этими двумя энергетическими уровнями. Если диод с PN-переходом смещен в прямом направлении, то ток течет через диод.
Принцип работы светодиода
Поток тока в полупроводниках вызван как потоком дырок в противоположном направлении тока, так и потоком электронов в направлении тока.Следовательно, будет рекомбинация из-за потока этих носителей заряда.
Рекомбинация показывает, что электроны в зоне проводимости прыгают вниз в валентную зону. Когда электроны переходят из одной полосы в другую, электроны излучают электромагнитную энергию в виде фотонов, а энергия фотонов равна запрещенной энергетической щели.
Для примера рассмотрим квантовую теорию, энергия фотона является произведением постоянной Планка и частоты электромагнитного излучения.Математическое уравнение показано
Eq = hf
Где h известна как постоянная Планка, а скорость электромагнитного излучения равна скорости света, т.е. c. Частота излучения связана со скоростью света как a f = c / λ. λ обозначается как длина волны электромагнитного излучения, и приведенное выше уравнение превратится в
Eq = he / λ
Из приведенного выше уравнения мы можем сказать, что длина волны электромагнитного излучения обратно пропорциональна запрещенной зоне. ,В обычных кремниевых и германиевых полупроводниках этот запрещенный энергетический зазор находится между условием и валентными зонами, так что полное излучение электромагнитной волны во время рекомбинации находится в форме инфракрасного излучения. Мы не можем видеть длины инфракрасных волн, потому что они находятся вне нашего видимого диапазона.
Инфракрасное излучение называется тепловым, потому что кремний и германий полупроводники не являются прямозонными полупроводниками, а являются непрямозонными полупроводниками.Но в прямозонных полупроводниках максимальный уровень энергии валентной зоны и минимальный уровень энергии зоны проводимости не возникают в один и тот же момент электронов. Следовательно, во время рекомбинации электронов и дырок происходит миграция электронов из зоны проводимости в валентную зону, импульс электронной зоны будет изменяться.
Вольт-амперные характеристики светодиода
На рынке доступны светоизлучающие диоды различных типов, и существуют различные характеристики светодиодов, в том числе цветовой свет или длина волны излучения, интенсивность света.Важная характеристика светодиода — цвет. При запуске светодиода используется только красный цвет. Поскольку использование светодиодов расширяется с помощью полупроводникового процесса и исследования новых металлов для светодиодов, были сформированы различные цвета.
ВАХ светодиодаНа следующем графике показаны приблизительные кривые между прямым напряжением и током. Каждая кривая на графике обозначает свой цвет. В таблице приведены сводные характеристики светодиодов.
Характеристики светодиодаПрименение светоизлучающих диодов
Существует множество применений светодиода, некоторые из которых описаны ниже.
- Светодиод используется в качестве лампочки в домах и на производстве.
- Светодиоды используются в мотоциклах и автомобилях.
- . Они используются в мобильных телефонах для отображения сообщений.
- . На светофорах используются светодиоды.
Преимущества светодиодов
- Стоимость светодиодов меньше и они крошечные.
- С помощью светодиодов регулируется электричество.
- Яркость светодиода меняется с помощью микроконтроллера.
В этой статье мы обсудили принцип работы и применение светоизлучающих диодов. Надеюсь, прочитав эту статью, вы получили некоторую основную и рабочую информацию о светодиодах. Если у вас есть какие-либо вопросы об этой статье или о электрическом проекте последнего года, пожалуйста, не стесняйтесь оставлять комментарии в разделе ниже.Вот вам вопрос, Что такое светодиод и как он работает?
.