Что такое диодный мост [+ схема подключения], для чего нужен и как работает
Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.
Содержание статьи
Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.
Схема диодного моста из 4 диодов
Что такое диодный мост и из каких элементов он состоит
Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом.
Устройство диода
Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник.
Как работает диодный мост: для чайников, просто и коротко
Обозначение диодного моста на схеме
Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.
Работа диодного моста
На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны.
Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.
На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.
Чем можно заменить диодный мост-сборку
Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:
- меньшей площади, занимаемой сборкой на схеме;
- упрощению работы сборщика схемы;
- единому тепловому режиму для всех четырех полупроводниковых устройств.
Различные варианты сборки диодного моста
У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.
Для чего нужен диодный мост в генераторе автотехники
Диодный мост в генераторе
- маломощные – до 300 мА;
- средней мощности – от 300 мА до 10 А;
- высокомощные – выше 10 А.
Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.
Чем заменить диодный мост в генераторе
В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост.
- на плату попала жидкость;
- грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
- изменение положения полюсов контактов на АКБ.
Видео: принцип работы диодного моста
Была ли статья полезна?
Да
Нет
Оцените статью
Что вам не понравилось?
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Диодный мост, принцип работы и схема
Диодный мост – это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.
Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.
Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:
Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.
Схема и принцип работы диодного моста
На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В.
Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку. При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.
В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.
Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.
Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста. Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.
Диодный мост | Принцип работы, обозначение, виды
Что такое диодный мост
Словосочетание “диодный мост” образуется от слова “диод“. Значит, диодный мост – это радиодеталь, которая состоит из диодов. Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов.
Диод на электрических схемах обозначается вот так.
Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.
Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.
Упрощенный вариант выглядит вот так.
Можно увидеть на схемах даже что-то типа этого.
Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.
Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение. Отсюда можно сделать вывод:
Диодный мост используется в схемах для того, чтобы получить из переменного тока постоянный ток.
Видео на тему: Что такое диодный мост:
Принцип работы диодного моста
Диод в цепи переменного напряжения
Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.
Мы на диод подавали переменное напряжение.
А на выходе после диода получали уже вот такой сигнал.
То есть у нас получилось вот так.
Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.
Как работает диодный мост в теории
Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.
Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.
Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.
После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.
В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.
Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств.
Работа диодного моста на практике
Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост. Важно, чтобы диоды были одной марки.
На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.
Итак, на вход я подаю вот такой сигнал.
На выходе получаю постоянное пульсирующее напряжение.
Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?
Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.
Теперь можно с гордостью нарисовать рисунок.
Виды диодных мостов
Примерно так выглядит импортный и советский диодные мосты.
Например, на советском показаны контакты, на которые надо подавать переменное напряжение значком ” ~ “, а контакты, с которых сниамем постоянное пульсирующее напряжение значком “+” и “-“.
Существует множество видов диодных мостов в разных корпусах.
Есть даже диодный мост для трехфазного напряжения.
Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы, а два другие – на постоянное напряжение.
Он собирается по так называемой схеме Ларионова и состоит из 6 диодов.
В основном трехфазные мосты используются в силовой электронике.
Характеристики диодного моста
Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.
Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.
Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.
Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.
Распиновка и корпус
Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.
Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.
Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.
Package – тип корпуса. Корпуса GBU выглядят вот так.
Максимальный ток
Итак, с этим разобрались. Далее следующий параметр. IF(AV) – максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.
Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.
В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.
Максимальное пиковое обратное напряжение
Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”. Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.
Как проверить диодный мост
1-ый способ.
Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.
То есть все, что мне надо сделать – это просто прозвонить каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.
Второй способ.
Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-” припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.
То есть все должно выглядеть вот так.
Смотрим осциллограмму
Значит, диодный мост исправен.
Диодный мост генератора
Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.
Диодный мост генератора ВАЗ 2110
В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.
Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.
Как проверить диодный мост генератора
Для проверки диодного моста генератора есть два способа.
Проверка с помощью лампы накаливания
Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)
Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.
Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.
Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.
Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.
Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода
а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!
Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.
Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.
Таким же образом проверяем все диоды таблетки.
Маленькие черные диоды проверяются точь-в-точь таким же способом.
Меняем выводы и убеждаемся, что диод рабочий.
Правила:
1) Если лампочка не горит ни так ни сяк, значит диод неисправен.
2) Если лампочка горит и так и сяк, значит диод тоже неисправен.
3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.
Проверка с помощью мультиметра
Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.
В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.
Берем в руки мультиметр и ставим его в режим прозвонки диодов.
И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.
Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).
Таким же образом проверяем все оставшиеся диоды.
Похожие статьи по теме “диодный мост”
Автомобильное зарядное устройство
Как получить постоянное напряжение из переменного
Как проверить диод и светодиод мультиметром
Простой блок питания
устройство, принцип работы, обозначение на схеме
Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы. Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента. Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.
Устройство и принцип работы
Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.
Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.
Рис. 1. Принцип работы диодного мостаДля пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.
Поэтому работа выпрямительного устройства будет иметь такие этапы:
- На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
- Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
- Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
- Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.
В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.
Обозначение на схеме и маркировка
На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:
Рис. 2. Обозначение на схемеПервый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.
Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.
Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.
Разновидности диодных мостов
В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.
Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.
Рис. 3. Схема трехфазного диодного мостаДиодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:
Рис. 4. Напряжение выпрямленное трехфазным мостомКак видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.
Технические характеристики
При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.
Среди таких характеристик наиболее значимыми для диодного моста являются:
- Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или Vrpm для зарубежных.
- Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение Uобр в отечественных образцах или Vr(rms) для зарубежных диодных мостов.
- Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
- Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
- Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как Vfm.
Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.
Преимущества и недостатки
Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:
- И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
- За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
- Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
- Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.
К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.
Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.
Практическое применение
На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.
Примеры схем с диодным мостом и их описание
Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере
Рис. 5. Схема зарядного устройстваКак видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.
Рис. 6. Схема карманного фонаряНа рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.
Пример схемы сварочного агрегатаЗдесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.
Как работает диодный мост (однофазный)
Рисунок 1. Схема однофазного диодного моста. |
Поскольку мы уже разобрались, как работает однополупериодный выпрямитель, нам будет не сложно двинуться дальше и разобраться, как работает диодный мост.
Схема двухполупериодного выпрямителя представлена на рисунке 1. Здесь G1 – источник питания переменного напряжения, Н – нагрузка, а VD1-VD4 – диоды, включенные по схеме моста.
Далее, для рассмотрения принципа работы диодного моста обратимся к поясняющим схемам на рисунке 2 и диаграммам на рисунке 3.
Рисунок 2. Схемы, поясняющие работу диодного моста. |
Рисунок 3. Диаграммы, поясняющие работу диодного моста. |
Рассматривая полный период (волну) переменного напряжения выделим два полупериода, в один из которых на зажимах генератора возникает условно положительная полуволна напряжения, а в другой – отрицательная. На диаграмме рисунка 3 положительная полуволна напряжения выделена красным цветом, а отрицательная – синим.
Вернёмся к рисунку 2.
Во время действия положительной полуволны напряжения (рисунок 2-а) на верхнем зажиме генератора по схеме возникает плюс, на нижнем – минус. Условное направление электрического тока, протекающего в цепи изображено кривыми стрелками красного цвета. В данном случае диоды VD1 и VD4 заперты, то к течёт по пути «плюс генератора»->VD3->Н->VD2->«минус генератора».
При отрицательной полуволне напряжения (рисунок 2-б) на верхнем зажиме генератора по схеме возникает минус, на нижнем – плюс. Ток потечёт по пути «плюс генератора»->VD4->Н->VD1->«минус генератора».
Обратите внимание, что и в первом и во втором полупериодах через нагрузку ток протекает в одном и том же направлении. Поэтому на диаграмме напряжения нагрузки UН обе полуволны будут положительными. В этом и заключается выпрямляющий эффект мостовой схемы двухполупериодного выпрямителя.
Что такое диодный мост, как его проверить
Диодный мост — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный).
Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.
Устройство
Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.
Мостом называется именно включение четырёх диодов.
Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом — точки с которых снимают постоянное.
Переменное напряжение подают в точки, в которых соединены анод с катодом диодов. На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.
На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены «AC ~», а выход постоянного «+» и «-«.
Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.
На современных диодных мостах контакты помечены также: вход переменки «AC» или «~», а выход по стоянки «+» и «-«. Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.
Где устанавливают
Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте (смотрите — Как устроен компьютерный блок питания) . Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.
В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).
Будьте осторожны:
Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.
Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.
Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.
Приступим к проверке диодного моста
Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.
Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.
После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать «жучки» вместо предохранителя, тогда, тем более, нельзя включать плату.
Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.
Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.
Если диодный мост пробит — лампа засветится в полный накал.
Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.
Проверка диодного моста мультиметром
Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.
Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке. В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.
Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.
Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй — минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.
Как известно — диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500…700.
Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения — диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего — диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 — диод пробит.
Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана — так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие — диод неисправен, он пробит.
Если оба замера совпали с описанными — с диодом все в порядке.
Таким образом проверяют диодный мост из отдельных диодов.
У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.
Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.
Проверка диодного моста в корпусе мультиметром
Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!
Сразу оговорюсь, что черный щуп вставлен в разъём «COM» на мультиметре.
Ставим черный щуп мультиметра на контакт, помеченный как «+», а красным попеременно касаемся контактов «~» к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.
На некоторых мультиметрах вместо единицы используют символы 0L.
Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод «-» диодного моста, а красным по очереди касаемся выводов «~», вы должны увидеть на экране мультиметра значения прямого падения — около 600 при касании любого из контактов со знаком «~» (AC). Меняем щупы местами — на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.
Быстрая проверка диодного моста
Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.
Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) «~». Если диодный мост пробит — сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.
Второе положение щупов: красный щуп ставим на вывод со знаком «-«, а черный на вывод со знаком «+», если диоды исправны — на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 — значит один диод пробит, и вы видите падение напряжения на одном оставшемся.
На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.
Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.
Третье положение щупов — красный щуп на вывод со знаком «-«, а черный на вывод со знаком «+», тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.
Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его.
Проверка другими средствами
Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют «цешка» или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.
Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода — высокое.
Если у вас и этого нет — вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.
Заключение
Проверка диодного моста — базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.
Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.
Возможно он «пробивался» под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом «посмотреть» процессы, происходящие в схеме — это осциллограф.
В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло — пробой или обрыв.
Ранее ЭлектроВести писали, что компания AE Solar начала свою деятельность в Германии в 2003 году со строительства солнечных электростанций. С 2009 года компания производит солнечные батареи в Китае. Теперь же она начинает производство в Грузии. В одном из интервью директор по продажам компании Вальдемар Хартманн отвечает на вопросы о продуктах и рыночной стратегии компании.
По материалам: electrik.info.
Диодный мост схема, принцип работы
В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.
Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.
Принцип работы диодного моста
Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.
Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.
Трехфазный диодный мост схема
Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.
Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.
Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.
Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.
Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.
Как работает выпрямитель?
Обновлено 28 декабря 2020 г.
Автор: С. Хуссейн Атер
Вы можете задаться вопросом, как линии электропередач посылают электрические токи на большие расстояния для различных целей. И есть разные «виды» электричества. Электроэнергия, питающая электрические железнодорожные системы, может не подходить для бытовых приборов, таких как телефоны и телевизоры. Выпрямители помогают, преобразуя эти разные типы электричества.
Мостовой выпрямитель и выпрямительный диод
Выпрямители позволяют преобразовывать переменный ток (AC) в постоянный (DC).Переменный ток — это ток, который переключается между течением вперед и назад через равные промежутки времени, в то время как постоянный ток течет в одном направлении. Обычно они используют мостовой выпрямитель или выпрямительный диод.
Во всех выпрямителях используются переходы P-N , полупроводниковые устройства, которые пропускают электрический ток только в одном направлении от образования полупроводников p-типа с полупроводниками n-типа. Сторона «p» имеет избыток дырок (места, где нет электронов), поэтому она заряжена положительно.Сторона «n» отрицательно заряжена электронами в их внешних оболочках.
Многие схемы с этой технологией построены с мостовым выпрямителем . Мостовые выпрямители преобразуют переменный ток в постоянный, используя систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление переменного сигнала, либо полноволновым методом, который выпрямляет оба направления входного переменного тока.
Полупроводники — это материалы, которые пропускают ток, потому что они сделаны из металлов, таких как галлий, или металлоидов, таких как кремний, которые загрязнены такими материалами, как фосфор, в качестве средства контроля тока.Вы можете использовать мостовой выпрямитель для различных применений в широком диапазоне токов.
Мостовые выпрямители также имеют то преимущество, что они выдают больше напряжения и мощности, чем другие выпрямители. Несмотря на эти преимущества, мостовые выпрямители страдают от необходимости использовать четыре диода с дополнительными диодами по сравнению с другими выпрямителями, что вызывает падение напряжения, которое снижает выходное напряжение.
Кремниевые и германиевые диоды
Ученые и инженеры обычно используют кремний при создании диодов чаще, чем германий.Кремниевые p-n-переходы работают более эффективно при более высоких температурах, чем германиевые. Кремниевые полупроводники облегчают прохождение электрического тока и могут быть созданы с меньшими затратами.
Эти диоды используют p-n-переход для преобразования переменного тока в постоянный как своего рода электрический «переключатель», который позволяет току течь в прямом или обратном направлении в зависимости от направления p-n-перехода. Диоды с прямым смещением позволяют току продолжать течь, в то время как диоды с обратным смещением блокируют его. Это то, что заставляет кремниевые диоды иметь прямое напряжение около 0.7 вольт, так что они пропускают ток, только если он больше вольт. Для германиевых диодов прямое напряжение составляет 0,3 В.
Анодный вывод батареи, электрода или другого источника напряжения, где в цепи происходит окисление, снабжает отверстия катодом диода при формировании p-n перехода. Напротив, катод источника напряжения, где происходит восстановление, обеспечивает электроны, которые отправляются на анод диода.
Схема полуволнового выпрямителя
Вы можете изучить, как полуволновые выпрямители соединены в схемах, чтобы понять, как они работают.Полупериодные выпрямители переключаются между прямым и обратным смещением в зависимости от положительного или отрицательного полупериода входной волны переменного тока. Он отправляет этот сигнал на нагрузочный резистор, так что ток, протекающий через резистор, пропорционален напряжению. Это происходит из-за закона Ома, который представляет напряжение В как произведение тока I и сопротивления R в
В = IR
Напряжение на нагрузочном резисторе можно измерить как напряжение питания В, с , что равно выходному постоянному напряжению В, на выходе .Сопротивление, связанное с этим напряжением, также зависит от диода самой схемы. Затем схема выпрямителя переключается на обратное смещение, в котором она принимает отрицательный полупериод входного сигнала переменного тока. В этом случае ток не течет через диод или схему, и выходное напряжение падает до 0. Таким образом, выходной ток является однонаправленным.
Схема двухполупериодного выпрямителя
••• Syed Hussain Ather
Двухполупериодные выпрямители, напротив, используют полный цикл (с положительными и отрицательными полупериодами) входного сигнала переменного тока.Четыре диода в схеме двухполупериодного выпрямителя расположены так, что, когда входной сигнал переменного тока является положительным, ток течет через диод от D 1 к сопротивлению нагрузки и обратно к источнику переменного тока через Д 2 . Когда сигнал переменного тока отрицательный, ток принимает вместо этого путь D 3 -load- D 4 . Сопротивление нагрузки также выводит напряжение постоянного тока от двухполупериодного выпрямителя.
Среднее значение напряжения двухполупериодного выпрямителя в два раза больше, чем у полуволнового выпрямителя, а среднеквадратичное значение напряжения (метод измерения переменного напряжения) двухполупериодного выпрямителя в √2 раза больше, чем у двухполупериодного выпрямителя. однополупериодный выпрямитель.
Компоненты и приложения выпрямителя
Большинство электронных устройств в вашем доме используют переменный ток, но некоторые устройства, такие как ноутбуки, перед использованием преобразуют этот ток в постоянный ток. В большинстве ноутбуков используется источник питания с переключаемым режимом (SMPS), который позволяет выходному напряжению постоянного тока больше мощности для размера, стоимости и веса адаптера.
SMPS работают с использованием выпрямителя, генератора и фильтра, которые управляют широтно-импульсной модуляцией (метод уменьшения мощности электрического сигнала), напряжением и током.Генератор — это источник сигнала переменного тока, по которому вы можете определить амплитуду тока и направление, в котором он течет. Затем адаптер переменного тока ноутбука использует это для подключения к источнику переменного тока и преобразует высокое напряжение переменного тока в низкое напряжение постоянного тока, форму, которую он может использовать для питания самого себя во время зарядки.
В некоторых выпрямительных системах также используется сглаживающая цепь или конденсатор, который позволяет им выдавать постоянное напряжение, а не то, которое изменяется во времени. Электролитический конденсатор сглаживающих конденсаторов может достигать емкости от 10 до тысяч микрофарад (мкФ).Для большего входного напряжения требуется большая емкость.
В других выпрямителях используются трансформаторы, которые изменяют напряжение, используя четырехслойные полупроводники, известные как тиристоры , наряду с диодами. Выпрямитель с кремниевым управлением , другое название тиристора, использует катод и анод, разделенные затвором и его четырьмя слоями, для создания двух p-n-переходов, расположенных один поверх другого.
Использование выпрямительных систем
Типы выпрямительных систем различаются в зависимости от приложений, в которых необходимо изменять напряжение или ток.Помимо уже рассмотренных приложений, выпрямители находят применение в паяльном оборудовании, электросварке, радиосигналах AM, генераторах импульсов, умножителях напряжения и схемах питания.
Паяльники, которые используются для соединения частей электрических цепей, используют полуволновые выпрямители для одного направления входного переменного тока. Методы электросварки, в которых используются мостовые выпрямительные схемы, являются идеальными кандидатами для обеспечения стабильного поляризованного постоянного напряжения.
AM-радио, модулирующее амплитуду, может использовать полуволновые выпрямители для обнаружения изменений входящего электрического сигнала.В схемах генерации импульсов, которые генерируют прямоугольные импульсы для цифровых схем, используются полуволновые выпрямители для изменения входного сигнала.
Выпрямители в цепях питания преобразуют переменный ток в постоянный от различных источников питания. Это полезно, поскольку постоянный ток обычно передается на большие расстояния, прежде чем он будет преобразован в переменный ток для бытовой электроэнергии и электронных устройств. В этих технологиях широко используется мостовой выпрямитель, который может справляться с изменением напряжения.
Мостовой выпрямитель — определение, изготовление и работа
Раньше собираясь мостовой выпрямитель, нам нужно знать, что на самом деле выпрямитель есть и зачем нужен выпрямитель.Так Сначала давайте посмотрим на эволюцию выпрямителей.
Эволюция выпрямители
Выпрямители находятся в основном подразделяется на три типа: полуволна выпрямитель, Центр двухполупериодный выпрямитель с отводом и мостовой выпрямитель. Все у этих трех выпрямителей есть общая цель — преобразовать Чередование Ток (переменный ток) в постоянный Ток (постоянный ток).
Нет
все эти три выпрямителя эффективно преобразуют
Переменный ток (AC) в постоянный ток (DC), только
двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель
эффективно преобразовывать переменный ток (AC) в постоянный
Ток (постоянный ток).
В однополупериодный выпрямитель, допускается только 1 полупериод и оставшаяся половина цикла заблокирована.В результате почти половина приложенная мощность тратится на полуволновой выпрямитель. В в дополнение к этому, выходной ток или напряжение производимый однополупериодным выпрямителем — это не чистый постоянный ток, а пульсирующий постоянный ток, который не очень полезен.
В чтобы преодолеть эту проблему, ученые разработали новый тип выпрямителя, известный как двухполупериодный с отводом по центру выпрямитель.
Основным преимуществом двухполупериодного выпрямителя с центральным ответвлением является то, что пропускает электрический ток как во время положительного, так и отрицательного полупериоды входного сигнала переменного тока. В результате DC выходная мощность двухполупериодного выпрямителя с отводом в два раза больше то из полуволнового выпрямителя. В дополнение к этому DC выход двухполупериодного выпрямителя с центральным ответвлением содержит очень меньше ряби.В результате выход постоянного тока центра двухполупериодный выпрямитель с ответвлениями более плавный, чем полуволновой выпрямитель.
Однако двухполупериодный выпрямитель с центральным ответвлением имеет один недостаток: трансформатор с центральным отводом, используемый в нем, очень дорого и занимает большую площадь.
Кому
сократить эти дополнительные расходы, ученые разработали новый тип
выпрямитель, известный как мостовой выпрямитель.В мостовом выпрямителе,
центральный кран не требуется. Если уйти или подняться
напряжения не требуется, тогда даже трансформатор можно
устраняется в мостовом выпрямителе.
выпрямительный КПД мостового выпрямителя практически равен к центру двухполупериодного выпрямителя. Единственное преимущество мостового выпрямителя над двухполупериодным выпрямителем с отводом по центру это снижение стоимости.
В мостовой выпрямитель, вместо использования центрального отвода трансформатор, используются четыре диода.
Сейчас мы получаем представление о трех типах выпрямителей. Половина волновой выпрямитель и двухполупериодный выпрямитель с отводом по центру (двухполупериодный выпрямитель) уже обсуждались в предыдущем учебные пособия. В этом уроке основное внимание уделяется мосту. выпрямитель.
Let’s взгляните на мостовой выпрямитель…!
Мост выпрямитель определение
А мостовой выпрямитель — это тип двухполупериодного выпрямителя, в котором используется четыре или более диодов в конфигурации мостовой схемы для эффективного преобразовать переменный ток (AC) в постоянный ток (ОКРУГ КОЛУМБИЯ).
Мост выпрямитель строительный
строительство Схема мостового выпрямителя показана на рисунке ниже. Мостовой выпрямитель состоит из четырех диодов. а именно D 1 , D 2 , D 3 , D 4 и нагрузочный резистор R L . Четыре диода подключены по замкнутому контуру (мост) к эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).Главное достоинство этой мостовой схемы конфигурация такова, что нам не нужен дорогой центр трансформатор с ответвлениями, что снижает его стоимость и габариты.
входной сигнал переменного тока подается на две клеммы A и B и выходной сигнал постоянного тока получается через нагрузочный резистор R L , который подключается между клеммами C и Д.
четыре диода D 1 , D 2 , D 3 , D 4 расположены последовательно только с двумя диодами, что позволяет электрическому ток в течение каждого полупериода. Например, диоды Д 1 и D 3 рассматриваются как одна пара, что позволяет электрический ток в течение положительного полупериода, тогда как диоды D 2 и D 4 считаются другая пара, которая пропускает электрический ток во время отрицательный полупериод входного сигнала переменного тока.
Как мост выпрямитель работает?
Когда входной сигнал переменного тока подается на мостовой выпрямитель, во время положительного полупериода диоды D 1 и D 3 имеют прямое смещение и пропускают электрический ток, в то время как диоды D 2 и D 4 имеют обратное смещение и блокирует электрический ток.С другой стороны, во время диоды отрицательного полупериода D 2 и D 4 имеют прямое смещение и пропускают электрический ток, а диоды D 1 и D 3 имеют обратное смещение и блокирует электрический ток.
Во время положительный полупериод, клемма A становится положительной в то время как клемма B становится отрицательной.Это вызывает диоды D 1 и D 3 с прямым смещением и при при этом вызывает диоды D 2 и D 4 обратный смещенный.
направление тока в течение положительного полупериода равно
показано на рисунке A (то есть от A до D, от C до B).
Во время отрицательный полупериод, клемма B становится положительной в то время как клемма A становится отрицательной.Это вызывает диоды D 2 и D 4 с прямым смещением и при при этом вызывает диоды D 1 и D 3 обратный смещенный.
показано текущее направление потока во время отрицательного полупериода
на рисунке B (то есть от B до D, от C до A).
От
на двух рисунках (A и B), мы можем заметить, что
направление тока через нагрузочный резистор R L то же самое в течение положительного полупериода и отрицательного полупериода
цикл.Следовательно, полярность выходного сигнала постоянного тока
то же самое как для положительных, так и для отрицательных полупериодов. Выход
Полярность сигнала постоянного тока может быть либо полностью положительной, либо
отрицательный. В нашем случае это полностью положительно. Если направление
диодов перевернут, то мы получаем полный отрицательный постоянный ток
Напряжение.
Таким образом, мостовой выпрямитель пропускает электрический ток во время обоих положительные и отрицательные полупериоды входного сигнала переменного тока.
формы выходных сигналов мостового выпрямителя показаны на рисунок ниже.
Характеристики из мостовой выпрямитель
Peak Inverse Напряжение (PIV)
максимальное напряжение, которое диод может выдержать при обратном смещении состояние называется пиковым обратным напряжением (PIV)
или
максимальное напряжение, которое может выдержать непроводящий диод называется пиковым обратным напряжением (PIV).
Во время положительный полупериод, диоды D 1 и D 3 находятся в проводящем состоянии, а диоды D 2 и D 4 находятся в непроводящем состоянии. На с другой стороны, во время отрицательного полупериода диоды D 2 и D 4 находятся в проводящем состоянии, в то время как диоды D 1 и D 3 находятся в непроводящее состояние.
Пиковое обратное напряжение (PIV) для мостового выпрямителя дано по
PIV = V Smax
Коэффициент пульсации
гладкость выходного сигнала постоянного тока измеряется с использованием известного коэффициента как фактор пульсации. Выходной сигнал постоянного тока с очень меньшим рябь рассматривается как плавный сигнал постоянного тока, в то время как выходной сигнал постоянного тока с высокой пульсацией считается высоким пульсирующий сигнал постоянного тока.
Пульсация фактор математически определяется как отношение пульсации напряжения к чистое постоянное напряжение.
коэффициент пульсаций для мостового выпрямителя равен
.коэффициент пульсаций мостового выпрямителя составляет 0,48, что аналогично в качестве двухполупериодного выпрямителя с отводом по центру.
Выпрямитель КПД
выпрямитель КПД определяет, насколько эффективно выпрямитель преобразует Переменный ток (AC) в постоянный ток (DC).
Высокая выпрямитель КПД указывает на самый надежный выпрямитель, в то время как низкий КПД выпрямителя указывает на плохой выпрямитель.
Выпрямитель эффективность определяется как отношение выходной мощности постоянного тока к мощности переменного тока. входная мощность.
Максимальный выпрямительный КПД мостового выпрямителя — 81.2% который аналогичен двухполупериодному выпрямителю с отводом по центру.
Преимущества мостового выпрямителя
Низкий пульсации в выходном сигнале постоянного тока
Выходной сигнал постоянного тока мостового выпрямителя более плавный, чем однополупериодный выпрямитель. Другими словами, мост выпрямитель имеет меньше пульсаций по сравнению с полуволновым выпрямитель.Однако коэффициент пульсации моста Выпрямитель такой же, как двухполупериодный выпрямитель с отводом по центру.
Высокая выпрямитель эффективность
выпрямитель КПД мостового выпрямителя очень высок по сравнению с к однополупериодному выпрямителю. Однако выпрямитель КПД мостового выпрямителя и двухполупериодного отвода с центральным ответвлением выпрямитель такой же.
Низкий потеря мощности
В полупериодный выпрямитель только один полупериод входного переменного тока сигнал разрешен, а оставшийся полупериод ввода Сигнал переменного тока заблокирован. В результате почти половина приложенная входная мощность тратится впустую.
Однако в мостовом выпрямителе допускается наличие электрического тока в течение как положительных, так и отрицательных полупериодов ввода Сигнал переменного тока.Таким образом, выходная мощность постоянного тока почти равна входная мощность переменного тока.
Недостатки из мостовой выпрямитель
Мост выпрямитель схема выглядит очень сложной
В полуволновой выпрямитель, используется только один диод, тогда как в двухполупериодном выпрямителе с отводом по центру используются два диода. Но в мостовом выпрямителе мы используем четыре диода для схема работы.Так выглядит схема мостового выпрямителя сложнее, чем однополупериодный выпрямитель и с отводом по центру двухполупериодный выпрямитель.
Подробнее потеря мощности по сравнению с полной волной с центральным ответвлением выпрямитель
В электронный цепей, чем больше диодов мы используем, тем больше будет падение напряжения происходить. Потери мощности в мостовом выпрямителе почти равны двухполупериодный выпрямитель с отводом по центру.Однако в мосту выпрямитель, падение напряжения немного выше по сравнению с двухполупериодный выпрямитель с отводом по центру. Это связано с двумя дополнительные диоды (всего четыре диода).
В
двухполупериодный выпрямитель с центральным ответвлением, проводит только один диод
в течение каждого полупериода. Значит падение напряжения в цепи
составляет 0,7 вольт. Но в мостовом выпрямителе два диода, которые
соединены последовательно в течение каждого полупериода.Так
падение напряжения происходит из-за двух диодов, что равно
1,4 вольта (0,7 + 0,7 = 1,4 вольта). Однако потеря мощности
из-за этого падение напряжения очень мало.
«Это статья посвящена только мостовому выпрямителю. Если вы хотите читайте про мостовой выпрямитель с посещением фильтра: мостовой выпрямитель с фильтром «
Схема мостового выпрямителя— Детали конструкции и советы »Электроника
Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.
Цепи диодного выпрямителя Включают:
Цепи диодного выпрямителя
Полуволновой выпрямитель
Двухполупериодный выпрямитель
Двухдиодный двухполупериодный выпрямитель
Двухполупериодный мостовой выпрямитель
Синхронный выпрямитель
Мостовой выпрямитель — это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.
Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке.
Благодаря своим характеристикам и возможностям, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление.
Типовой мостовой выпрямитель для монтажа на печатной платеЦепи мостового выпрямителя
Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре. Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента.
Двухполупериодный выпрямитель с использованием мостового выпрямителяМостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка.
Электронные компонентыс обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение.Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств.
Чтобы увидеть, как работает двухполупериодный выпрямитель на мостовых диодах, полезно увидеть ток, протекающий в течение полного цикла входящего сигнала.
Двухполупериодный мостовой выпрямитель, показывающий протекание тока
В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки.
Эти электронные компоненты принимают заряд во время высоковольтных частей формы волны, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно.
Примечание по сглаживанию конденсатора источника питания:
Конденсаторыиспользуются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания, чтобы сгладить выпрямленную форму волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы.
Подробнее о Конденсаторное сглаживание.
Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора.
Период, в течение которого конденсатор источника питания заряжаетсяПри выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока.
Мостовые выпрямители
Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов можно легко изготовить как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой.
Схема мостового выпрямителя и маркировкаВ качестве альтернативы мостовые выпрямители поставляются как отдельные электронные компоненты, содержащие четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и — очевидны.
Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа.
Некоторые мостовые выпрямители заключены в корпуса большего размера и предназначены для установки на радиаторе. Поскольку эти выпрямители рассчитаны на пропускание значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов.
Рекомендации по проектированию мостового выпрямителя
При использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока необходимо учитывать несколько моментов:
- Падение напряжения: Не следует забывать, что ток, протекающий через мостовой выпрямитель, будет проходить через два диода. В результате выходное напряжение упадет на эту величину. Поскольку в большинстве мостовых выпрямителей используются кремниевые диоды, это падение будет минимум 1.2 вольта и будет увеличиваться с увеличением тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 вольт от пикового напряжения на входе переменного тока.
Рассчитайте количество тепла, рассеиваемого в выпрямителе: Напряжение на диодах будет падать минимум на 1,2 В (при использовании стандартного кремниевого диода), которое будет расти по мере увеличения тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой.
Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя.
Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору.
Пиковое обратное напряжение: Очень важно следить за тем, чтобы максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, в противном случае диоды могут выйти из строя.
Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с центральным ответвлением трансформатора. Если пренебречь падением диода, мостовому выпрямителю требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования этой конфигурации.
Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V сек , потому что в течение одного полупериода диоды D1 и D4 проводят ток, а диоды D2 и D3 имеют обратное смещение.
Двухполупериодный мостовой выпрямитель с обратным пиковым напряжениемПредположение, что диоды идеальны, и на них нет падения напряжения — хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде.
Мостовые выпрямители — идеальный способ обеспечить выпрямленный выходной сигнал от переменного входа. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности.
Мостовой выпрямитель с разделенным питанием
Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным отводом, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя.
Двухполупериодный мостовой выпрямитель с двойным питаниемСхема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора.
Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания.
Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты.
Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .
Полноволновая схема выпрямителя — мостовой выпрямитель — принципиальная схема с конструкцией и теорией
Двухполупериодный выпрямитель — это схема, которая использует оба полупериода входного переменного тока (AC) и преобразует их в постоянный ток (DC). В нашем руководстве по Полупериодный выпрямитель мы видели, что полуволновой выпрямитель использует только половину цикла входного переменного тока. Таким образом, двухполупериодный выпрямитель намного более эффективен (двойной +), чем полуволновой выпрямитель.Этот процесс преобразования обоих полупериодов входного питания (переменного тока) в постоянный ток (DC) называется двухполупериодным выпрямлением.
Двухполупериодный выпрямительможет быть сконструирован двумя способами. В первом методе используется трансформатор с отводом от центра и 2 диода. Эта конструкция известна как полноволновой выпрямитель с центральным отводом .
Во втором методе используется обычный трансформатор с 4 диодами, расположенными в виде моста. Это устройство известно как мостовой выпрямитель.
Теория полноволнового выпрямителя
Чтобы в совершенстве понять теорию двухполупериодного мостового выпрямителя , вам нужно сначала изучить полуволновой выпрямитель. В руководстве по полуволновому выпрямителю мы четко объяснили основы работы выпрямителя. Кроме того, мы также объяснили теорию , лежащую в основе pn-перехода , и характеристики диода с pn-переходом .
Полноволновой выпрямитель — Работа и эксплуатация
Работа и эксплуатация двухполупериодного мостового выпрямителя довольно проста.Приведенные ниже принципиальные схемы и формы сигналов помогут вам в совершенстве понять принцип работы мостового выпрямителя. На принципиальной схеме 4 диода расположены в виде моста. Вторичная обмотка трансформатора подключена к двум диаметрально противоположным точкам моста в точках A и C. Сопротивление нагрузки R L подключено к мосту через точки B и D.
Полноволновой мостовой выпрямитель — принципиальная схема с формами входной и выходной волныВ течение первой половины цикла
Во время первого полупериода входного напряжения верхний конец вторичной обмотки трансформатора является положительным по отношению к нижнему концу.Таким образом, в течение первого полупериода диоды D1 и D 3 смещены в прямом направлении, и ток течет через плечо AB, входит в сопротивление нагрузки R L и возвращается обратно, протекая через плечо DC. В течение этой половины каждого входного цикла диоды D 2 и D 4 смещены в обратном направлении, и ток не может течь в плечах AD и BC. На рисунке выше поток тока обозначен сплошными стрелками. Ниже мы разработали еще одну диаграмму, которая поможет вам быстро понять текущий поток.См. Схему ниже — зеленые стрелки указывают начало протекания тока от источника (вторичной обмотки трансформатора) до сопротивления нагрузки. Красные стрелки указывают обратный путь тока от сопротивления нагрузки к источнику, таким образом замыкая цепь.
Протекание тока в мостовом выпрямителеВо время второго полупериода
Во время второго полупериода входного напряжения нижний конец вторичной обмотки трансформатора является положительным по отношению к верхнему концу. Таким образом, диоды D 2 и D 4 становятся смещенными в прямом направлении, и ток течет через плечо CB, входит в сопротивление нагрузки R L и возвращается обратно к источнику, протекая через плечо DA.Течение тока показано на рисунке пунктирными стрелками. Таким образом, направление протекания тока через сопротивление нагрузки R L остается неизменным в течение обоих полупериодов входного напряжения питания. См. Схему ниже — зеленые стрелки указывают начало протекания тока от источника (вторичной обмотки трансформатора) до сопротивления нагрузки. Красные стрелки указывают обратный путь тока от сопротивления нагрузки к источнику, таким образом замыкая цепь.
Путь тока во 2-м полупериоде Пиковое обратное напряжение двухполупериодного мостового выпрямителя:Давайте проанализируем пиковое обратное напряжение (PIV) двухполупериодного мостового выпрямителя, используя принципиальную схему.В любой момент, когда вторичное напряжение трансформатора достигает положительного пикового значения Vmax, диоды D1 и D3 будут смещены в прямом направлении (проводящие), а диоды D2 и D4 будут смещены в обратном направлении (непроводящие). Если рассматривать идеальные диоды в мосте, то смещенные в прямом направлении диоды D1 и D3 будут иметь нулевое сопротивление. Это означает, что падение напряжения на проводящих диодах будет нулевым. Это приведет к тому, что все вторичное напряжение трансформатора будет развиваться через сопротивление нагрузки RL.
Таким образом, PIV мостового выпрямителя = Vmax (макс. Вторичное напряжение)
Анализ схемы мостового выпрямителяЕдинственная разница в анализе между двухполупериодным и центральным выпрямителями состоит в том, что
- В схеме мостового выпрямителя два диода проводят в течение каждого полупериода, и прямое сопротивление становится двойным (2R F ).
- В схеме мостового выпрямителя Vsmax — это максимальное напряжение на вторичной обмотке трансформатора, тогда как в выпрямителе с центральным ответвлением Vsmax представляет это максимальное напряжение на каждой половине вторичной обмотки.
Различные параметры объясняются уравнениями ниже:
- Пиковый ток
Мгновенное значение напряжения, подаваемого на выпрямитель, равно
.vs = Vsmax Sin wt
Если предполагается, что диод имеет прямое сопротивление R F Ом и обратное сопротивление, равное бесконечности, ток, протекающий через сопротивление нагрузки, определяется как
i1 = Imax Sin wt и i2 = 0 для первого полупериода
и i1 = 0 и i2 = Imax Sin wt для второго полупериода
Полный ток, протекающий через сопротивление нагрузки R L , где является суммой токов i1 и i2, дается как
i = i1 + i2 = Imax Sin wt для всего цикла.
Где пиковое значение тока, протекающего через сопротивление нагрузки R L , задается как
Imax = Vsmax / (2R F + R L )
2. Выходной токПоскольку ток через сопротивление нагрузки RL в двух половинах цикла переменного тока одинаков, величина od постоянного тока Idc, которая равна среднему значению переменного тока, может быть получена путем интегрирования тока i1 между 0 и pi. или текущий i2 между пи и 2пи.
Выходной ток полноволнового выпрямителя 3. Выходное напряжение постоянного токаСреднее или постоянное значение напряжения на нагрузке задается как
. Выходное напряжение постоянного тока полнополупериодного выпрямителя 4. Среднеквадратичное значение токаДействующее значение или действующее значение тока, протекающего через сопротивление нагрузки R L дается как
Среднеквадратичное значение тока двухполупериодного выпрямителя 5. Среднеквадратичное значение выходного напряженияДействующее значение напряжения на нагрузке равно
. Среднеквадратичное значение выходного напряжения двухполупериодного выпрямителя 6.Эффективность выпрямленияМощность, передаваемая на нагрузку,
Эффективность выпрямления полноволнового выпрямителя 7. Коэффициент пульсацииФорм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя равен
. Коэффициент пульсаций полноволнового выпрямителяИтак, коэффициент пульсаций, γ = 1,11 2 — 1) = 0,482
8. ПостановлениеВыходное напряжение постоянного тока равно
. Регулировка двухполупериодного выпрямителя Достоинства и недостатки двухполупериодного выпрямителя над полуволновым выпрямителемДостоинства — Позвольте нам сначала поговорить о преимуществах двухполупериодного мостового выпрямителя перед полуволновым вариантом.На данный момент я могу выделить 4 конкретных достоинства.
- Для двухполупериодного мостового выпрямителя КПД удваивается. Причина в том, что полуволновой выпрямитель использует только половину входного сигнала. Мостовой выпрямитель использует обе половины и, следовательно, имеет двойной КПД
- Остаточные пульсации переменного тока (до фильтрации) очень низкие на выходе мостового выпрямителя. Такой же процент пульсаций очень высок у полуволнового выпрямителя. Достаточно простого фильтра, чтобы получить постоянное напряжение от мостового выпрямителя.
- Мы знаем, что эффективность моста FW вдвое выше, чем у выпрямителя HW. Это означает более высокое выходное напряжение, более высокий коэффициент использования трансформатора (TUF) и более высокую выходную мощность.
Недостатки — Двухполупериодный выпрямитель требует больше элементов схемы и дороже.
Достоинства и недостатки мостового выпрямителя над выпрямителем с отводом от центра.
Выпрямитель с центральным ответвлением всегда сложно реализовать из-за использования специального трансформатора. Трансформатор с центральным ответвлением также является дорогостоящим.Одно из ключевых различий между центральным отводом и мостовым выпрямителем заключается в количестве диодов, задействованных в конструкции. Двухполупериодный выпрямитель с центральным ответвлением требует всего 2 диода, тогда как мостовой выпрямитель требует 4 диода. Но кремниевые диоды дешевле, чем трансформатор с центральным ответвлением, поэтому мостовой выпрямитель является более предпочтительным решением в источниках питания постоянного тока. Ниже приведены преимущества мостового выпрямителя над выпрямителем с центральным отводом.
- Мостовой выпрямитель может быть сконструирован с трансформатором или без него.Если задействован трансформатор, с этим справится любой обычный понижающий / повышающий трансформатор. Эта роскошь недоступна для выпрямителя с центральным отводом. Здесь конструкция выпрямителя зависит от трансформатора с центральным ответвлением, который не подлежит замене.
- Мостовой выпрямитель подходит для приложений высокого напряжения. Причина в высоком пиковом обратном напряжении (PIV) мостового выпрямителя по сравнению с PIV выпрямителя с центральным ответвлением.
- Коэффициент использования трансформатора (TUF) выше для мостового выпрямителя.
Существенным недостатком мостового выпрямителя над центральным отводом является использование 4 диодов в конструкции мостового выпрямителя. В мостовом выпрямителе 2 диода проводят одновременно на полупериоде входного сигнала. Выпрямитель с центральным ответвлением имеет только 1 диод, проводящий за половину цикла. Это увеличивает чистое падение напряжения на диодах в мостовом выпрямителе (оно вдвое превышает значение центрального отвода).
Применение двухполупериодного мостового выпрямителя
Двухполупериодный выпрямитель находит применение при создании источников постоянного напряжения постоянного тока, особенно в источниках питания общего назначения. Мостовой выпрямитель с эффективным фильтром идеально подходит для любого типа общих источников питания, таких как зарядка аккумулятора, питание устройства постоянного тока (например, двигателя, светодиода и т. Д.) И т. Д. Однако для аудиоприложения общий источник питания может не подходить. достаточно. Это связано с остаточным коэффициентом пульсаций в мостовом выпрямителе.Есть ограничения на фильтрацию ряби. Для аудиоприложений могут быть идеальными специально сконструированные блоки питания (использующие регуляторы IC).
Полноволновой мостовой выпрямитель с конденсаторным фильтром
Выходное напряжение двухполупериодного выпрямителя непостоянно, оно всегда пульсирует. Но это не может быть использовано в реальных приложениях. Другими словами, нам нужен источник питания постоянного тока с постоянным выходным напряжением. Чтобы добиться плавного и постоянного напряжения, используется фильтр с конденсатором или катушкой индуктивности.На схеме ниже показан полуволновой выпрямитель с конденсаторным фильтром.
Полноволновой выпрямитель — с конденсаторным фильтромКоэффициент пульсаций мостового выпрямителя
Коэффициент пульсации — это отношение остаточной составляющей переменного тока к составляющей постоянного тока в выходном напряжении. Коэффициент пульсаций мостового выпрямителя вдвое меньше, чем у полуволнового выпрямителя.
Список литературы 2. Чтобы создать простые для понимания изображения, мы сослались на статью .Полноволновой мостовой выпрямитель — инженеры в последнюю минуту
Существует еще одна, более популярная двухполупериодная конструкция выпрямителя, построенная на основе конфигурации четырехдиодного моста. Он известен как полноволновой мостовой выпрямитель или просто мостовой выпрямитель .
Преимущество этого типа конструкции перед версией с центральным отводом состоит в том, что он не требует специального трансформатора с центральным отводом, что резко снижает его размер и стоимость.
Также эта конструкция использует все вторичное напряжение в качестве входа для выпрямителя.Используя тот же трансформатор, мы получаем в два раза больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным ответвлением.
Вот почему мостовые выпрямители используются гораздо чаще, чем двухполупериодные.
Двухполупериодный мостовой выпрямитель
Для выпрямления обоих полупериодов синусоидальной волны в мостовом выпрямителе используются четыре диода, соединенные вместе в «мостовой» конфигурации. Вторичная обмотка трансформатора подключена с одной стороны сети диодного моста, а нагрузка — с другой.
На следующем изображении показана схема мостового выпрямителя.
Работа этой схемы легко понять по одному полупериоду за раз.
Во время положительного полупериода источника диоды D1 и D2 проводят ток, в то время как D3 и D4 имеют обратное смещение. Это создает положительное напряжение нагрузки на нагрузочном резисторе (обратите внимание на положительную полярность нагрузочного резистора).
В течение следующего полупериода полярность напряжения источника меняется на противоположную. Теперь D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном.Это также создает положительное напряжение нагрузки на нагрузочном резисторе, как и раньше.
Обратите внимание, что независимо от полярности входа напряжение нагрузки имеет одинаковую полярность, а ток нагрузки — в одном направлении.
Таким образом, схема преобразует входное напряжение переменного тока в пульсирующее выходное напряжение постоянного тока.
Если вам неприятно вспоминать правильное расположение диода в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы.Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.
Значение постоянного тока для двухполупериодного сигнала
Поскольку мостовой выпрямитель производит двухполупериодный выходной сигнал, формула для расчета среднего значения постоянного тока такая же, как и для двухполупериодного выпрямителя:
Это уравнение говорит нам, что значение постоянного тока двухполупериодного сигнала составляет около 63,6 процента от пикового значения. Например, если пиковое напряжение двухполупериодного сигнала составляет 10 В, постоянное напряжение будет равно 6.36V
Когда вы измеряете полуволновой сигнал с помощью вольтметра постоянного тока, показания будут равны среднему значению постоянного тока.
A Приближение второго порядка
В действительности мы не можем получить идеальное двухполупериодное напряжение на нагрузочном резисторе. Из-за барьерного потенциала диод не включается, пока напряжение источника не достигнет примерно 0,7В .
И поскольку мостовой выпрямитель управляет двумя диодами одновременно, два диодных падения (0,7 * 2 = 1,4 В) напряжения источника теряются в диоде.Таким образом, пиковое выходное напряжение определяется по формуле:
Выходная частота
Двухполупериодный выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого двухполупериодный выход имеет в два раза больше циклов, чем входной.
Следовательно, частота двухполупериодного сигнала в два раза превышает входную частоту.
Например, если частота сети 60 Гц, выходная частота будет 120 Гц.
Фильтрация выхода выпрямителя
Выходной сигнал, который мы получаем от двухполупериодного выпрямителя, представляет собой пульсирующее напряжение постоянного тока, которое увеличивается до максимума, а затем уменьшается до нуля.
Нам не нужно такое постоянное напряжение. Что нам нужно, так это стабильное и постоянное напряжение постоянного тока, без каких-либо колебаний или пульсаций напряжения, которые мы получаем от батареи.
Чтобы получить такое напряжение, нам нужно отфильтровать двухполупериодный сигнал. Один из способов сделать это — подключить конденсатор, известный как сглаживающий конденсатор , через нагрузочный резистор, как показано ниже.
Изначально конденсатор не заряжен. В течение первой четверти цикла диоды D1 и D2 смещены в прямом направлении, поэтому конденсатор начинает заряжаться.Зарядка продолжается до тех пор, пока входной сигнал не достигнет пикового значения. В этот момент напряжение на конденсаторе равно Vp.
После того, как входное напряжение достигает пика, оно начинает уменьшаться. Как только входное напряжение становится меньше Vp, напряжение на конденсаторе превышает входное напряжение, что отключает диоды.
Когда диоды выключены, конденсатор разряжается через нагрузочный резистор и обеспечивает ток нагрузки, пока не будет достигнут следующий пик.
Когда наступает следующий пик, диоды D3 и D4 ненадолго проводят ток и заряжают конденсатор до максимального значения.
Недостаток
Единственным недостатком мостового выпрямителя является то, что выходное напряжение на два диодных падения (1,4 В) меньше входного.
Этот недостаток проявляется только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, напряжение нагрузки будет иметь пиковое значение всего 3,6 В. Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению (падение на диоде незначительно).
PREVПолноволновой выпрямитель
Полноволновой мостовой выпрямитель, конденсаторные фильтры, полуволновой выпрямитель
Изучите двухполупериодный мостовой выпрямитель, полуволновой выпрямитель, двухполупериодный выпрямитель, трансформаторы с центральным ответвлением, диоды, нагрузку, осциллограф, форму волны, постоянный и переменный ток, ток напряжения, конденсаторы, спускной резистор, чтобы узнать, как работают двухполупериодные мостовые выпрямители.
Прокрутите вниз, чтобы просмотреть руководство YouTube.
Это двухполупериодный мостовой выпрямитель. Он используется для питания наших электронных схем, поэтому в этой статье мы подробно узнаем, как они работают.
Электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ. .
Что такое мостовой выпрямитель
Полномостовые выпрямители выглядят следующим образом, существуют разные формы и размеры, но по существу они состоят из 4 диодов в определенном расположении.Обычно они выравниваются в конфигурации Dimond, но их также можно выровнять другими способами, такими как эти.
Обычно мы находим их изображенными на таких инженерных чертежах.
Это символ диода. Стрелка указывает в направлении обычного тока. Это показывает, что электричество переменного тока является входом, а электричество постоянного тока — выходом.
Полный мостовой выпрямитель преобразует переменный переменный ток в постоянный постоянный ток. Почему это важно? Поскольку розетки в наших домах обеспечивают переменный ток, а наши электронные устройства используют постоянный ток, нам необходимо преобразовать переменный ток в постоянный ток.
Например, зарядное устройство для ноутбука берет переменный ток от розетки и преобразует его в постоянный ток для питания ноутбука. Если вы посмотрите на адаптер питания для ноутбука и электронных устройств, на этикетке производителя указано, что он преобразует переменный ток в постоянный. В этом примере он заявляет, что ему требуется входное напряжение от 100 до 240 В с обозначением электричества переменного тока, и он потребляет 1,5 А тока. Затем он будет выдавать 19,5 В постоянного тока и 3,33 А тока. Обратите внимание, что здесь также указано 50-60 Гц, это частота переменного тока, и мы рассмотрим это через мгновение.
В сети переменного тока напряжение и ток постоянно меняют направление с прямого на обратное. Это потому, что в генераторе переменного тока есть магнитное поле, которое, по сути, толкает и притягивает электроны в проводах. Таким образом, он меняется между положительными и отрицательными значениями, когда он течет вперед и назад, напряжение не является постоянным, даже если мультиметр делает его похожим на него. Если мы построим это, мы получим синусоидальную волну. Напряжение изменяется между пиковым положительным и пиковым отрицательным значением, когда максимальная напряженность магнитного поля проходит через катушки с проволокой.
В этом примере пики достигаются 170 В, поэтому, если мы построим эти значения, мы получим положительные и отрицательные пики 170 В. Если мы возьмем среднее значение этих значений, мы получим ноль вольт. Это не очень полезно, поэтому умный инженер решил использовать среднеквадратичное значение напряжения. Это то, что рассчитывают наши мультиметры, когда мы подключаем их к розеткам.
Чтобы найти пиковое напряжение, мы умножаем среднеквадратичное значение напряжения на квадратный корень из 2, который составляет примерно 1,41.
Чтобы найти среднеквадратичное значение напряжения, мы делим пиковое напряжение на 0.707.
Например, у меня есть розетка для Северной Америки, Великобритании, Австралии и Европы. Этот мультиметр показывает основные формы сигналов, и когда я подключаюсь к любому из них между фазой и нейтралью, мы видим синусоидальную волну, указывающую, что это электричество переменного тока. Обратите внимание, что британская и европейская розетки — 230 В, австралийская — 240 В, но все три имеют частоту 50 Гц, однако розетка в Северной Америке показывает 120 В с частотой 60 Гц.
Частота измеряется в герцах, но это просто означает, что синусоида повторяется 60 раз в секунду в электрических системах Северной Америки и 50 раз в секунду в остальном мире.Напряжение ниже в североамериканской системе и составляет 120 В, тогда как в остальном мире оно составляет 230–240 В. Таким образом, пиковое напряжение каждой электрической системы выглядит следующим образом.
В электричестве постоянного тока напряжение постоянно, и в положительной области электроны не меняют направление, они все текут только в одном направлении. Итак, если я измерю эту батарею, мы увидим плоскую линию в положительной области около 1,5 В, так что это электричество постоянного тока.
Эта солнечная панель также вырабатывает постоянный ток, мы видим, что на мультиметре она выдает ровную линию около 4 В.Мы можем использовать этот адаптер для измерения USB-порта, мы видим, что он обеспечивает около 5 В, и если мы построим это с помощью другого мультиметра, мы снова увидим постоянную ровную линию, указывающую, что это электричество постоянного тока.
Это двухполупериодный мостовой выпрямитель. На этих входных клеммах мы видим около 12 В переменного тока с синусоидальной волной. И на этих выходных клеммах мы видим около 14 В постоянного тока. Итак, это устройство преобразует переменный ток в постоянный. Напряжение немного выше из-за конденсатора, и мы увидим, почему это так, позже в этом видео.
Преобразует только переменный ток в постоянный, но не преобразует постоянный ток в переменный. Для этого нам понадобится инвертор, в котором для этого используются специальные электронные компоненты, но мы не будем рассматривать это в этой статье.
Кстати, мы подробно рассмотрели, как работают силовые инверторы в нашей предыдущей статье, посмотрите ЗДЕСЬ.
Как это работает
Выпрямитель состоит из диодов. Диод — это полупроводниковое устройство, которое позволяет току течь через него, но только в одном направлении.Итак, если мы подключим эту лампу к источнику постоянного тока, она загорится. Мы можем поменять местами провода, и он все равно будет светиться. Если я поставлю диод на красный провод и подключу его к плюсу, он снова загорится. Но теперь, когда я меняю местами провода, диод блокирует ток, а лампа остается выключенной. Таким образом, он позволяет току течь только в одном направлении, и мы можем использовать это для управления направлением тока в цепи, чтобы сформировать электричество постоянного тока.
Полуволновой выпрямитель
Если мы посмотрим на источник переменного тока с понижающим трансформатором, который снижает напряжение, электроны текут вперед и назад.Итак, нагрузка испытывает синусоидальную волну. Нагрузкой может быть что угодно: резистор, лампа, двигатель и т. Д.
Если мы вставим диод, он будет пропускать ток только в одном направлении, поэтому теперь нагрузка будет иметь пульсирующую форму волны. Отрицательная половина синусоиды заблокирована. Мы можем перевернуть диод, чтобы заблокировать положительную половину и разрешить только отрицательную половину. Следовательно, это полуволновой выпрямитель. Выходной сигнал технически постоянный ток, поскольку электроны текут только в одном направлении, это просто не очень хороший выход постоянного тока, поскольку он не полностью плоский.
Здесь у меня есть резистор, подключенный к низковольтному источнику переменного тока. Мы видим на осцископе синусоидальную волну переменного тока. Когда я подключаю к нему последовательно диод, осцилископ показывает пульсирующую диаграмму в положительной области. Если я переверну диод, осцилископ покажет пульсирующую картину в отрицательной области.
Если я соединю две лампы параллельно, одну с диодом, мы увидим, что лампа без диода ярче, потому что в ней используется полная форма волны. Другая лампа более тусклая, потому что использует только половину этой лампы.Если мы рассмотрим это в замедленном режиме, мы увидим, что подключенная диодная лампа мигает больше из-за перерывов в питании.
Таким образом, мы можем использовать его для простых схем, таких как освещение или зарядка некоторых аккумуляторов, но мы не можем использовать его для электроники, поскольку компонентам требуется постоянное питание, иначе они не будут работать правильно.
Мы можем добавить конденсатор параллельно нагрузке, чтобы улучшить этот выход. Мы рассмотрим это позже в этой статье. Лучшее улучшение — использовать двухполупериодный выпрямитель, и есть два основных способа сделать это.
Полноволновой выпрямитель
Мы можем создать двухполупериодный выпрямитель, просто используя трансформатор с центральным ответвлением и два диода. Трансформатор с центральным ответвлением просто имеет еще один провод на вторичной стороне, который подключен к центру катушки трансформатора, что позволяет нам использовать всю длину трансформатора или только половину ее.
Поскольку в электричестве переменного тока ток постоянно меняется на противоположный, в то время как в положительной или передней половине ток течет через диод 1 в нагрузку, а затем обратно к трансформатору через центральный провод с ответвлениями.Диод 2 блокирует ток, поэтому он не может вернуться сюда. Таким образом, используется только половина катушки трансформатора. В обратной или отрицательной половине ток течет через диод 2, через нагрузку, а затем обратно к трансформатору. Диод 1 блокирует ток.
Ток протекает через нагрузку в одном направлении, поэтому он считается постоянным, но он все еще пульсирует, хотя зазоров нет. Отрицательная половина преобразована в положительную. Форма волны не гладкая, поэтому нам нужно применить некоторую фильтрацию, например, конденсатор.Мы рассмотрим это подробно позже в этой статье.
Полноволновой мостовой выпрямитель
Чаще всего используется двухполупериодный мостовой выпрямитель. Здесь используются 4 диода. Источник переменного тока подключается между диодами 1 и 2, а нейтраль между 3 и 4. Положительный выход постоянного тока подключен между диодами 2 и 3, а отрицательный — между диодами 1 и 4.
В положительной половине синусоидальной волны ток течет через диод 1, через нагрузку, через диод 2 и затем обратно к трансформатору.В отрицательной половине ток течет через диод 3, а через нагрузку — через диод 1 и обратно к трансформатору. Таким образом, трансформатор подает синусоидальную волну переменного тока, но нагрузка испытывает волнообразную форму волны постоянного тока, потому что ток течет в одном направлении.
На этой схеме мы можем видеть выпрямленный сигнал на осциллографе. Но это не плоский выход постоянного тока, поэтому нам нужно улучшить его, добавив фильтрацию.
Фильтрация
Использование выпрямителя приведет к пульсации формы волны.Чтобы сгладить это, нам нужно добавить несколько фильтров.
Основной метод — просто добавить электролитический конденсатор параллельно нагрузке. Конденсатор заряжается при повышении напряжения и накапливает электроны. Затем он освобождает их во время уменьшения, поэтому это снижает пульсацию. Осциллограф покажет пики каждого импульса, но теперь напряжение не падает до нуля, оно медленно снижается, пока импульс снова не зарядит конденсатор. Мы можем еще больше уменьшить это, используя конденсатор большего размера или несколько конденсаторов.
В этом простом примере вы можете увидеть, как светодиод гаснет при отключении питания. Но если я помещу конденсатор параллельно светодиоду, он останется включенным, потому что теперь конденсатор разряжается и питает светодиод.
В этой схеме у меня в качестве нагрузки подключена лампа. Осциллограф показывает волнообразную форму волны. Когда я добавляю небольшой конденсатор на 10 мкФ, мы видим, что он очень мало влияет на форму сигнала. Когда я использую конденсатор на 100 мкФ, мы видим, что провал больше не падает до нуля вольт.На 1000 микрофаррад пульсация очень мала. На 2200 микрофаррадах это почти полностью гладко, хотя это можно было бы использовать для многих схем. Мы также могли бы использовать несколько конденсаторов, здесь у нас есть конденсатор на 470 мкФ, который имеет некоторое значение, но если я использую два конденсатора параллельно, мы видим, что форма волны значительно улучшается.
При использовании конденсатора необходимо установить на выходе резистор утечки. Это резистор высокого номинала, который разряжает конденсатор, когда цепь отключена, чтобы обеспечить нашу безопасность.Обратите внимание: когда я включаю эту схему, конденсатор быстро заряжается до более 15 В. Когда я выключаю его, выход постоянного тока все еще составляет 15 В, потому что нет нагрузки, поэтому энергия все еще сохраняется. Это может быть опасно при высоком напряжении. В этом примере я помещаю резистор 4,7 кОм на выход, мы видим, что конденсатор заряжается до 15 В, и когда я его выключаю, конденсатор быстро разряжается. Электроны проходят через резистор, который разряжает конденсатор.
Мы также видим, что без конденсатора выходное напряжение ниже входного из-за падения напряжения на диодах.
Вот простой двухполупериодный мостовой выпрямитель. На входе мы видим 12 В переменного тока, на выходе 10,5 В постоянного тока. Напряжение на выходе ниже из-за диодов. На каждом диоде падение напряжения составляет около 0,7 В. Если мы посмотрим на эту схему, с диодом и светодиодом. Мы можем измерить напряжение на диоде и увидеть падение напряжения около 0,7 В. Ток в нашем полном мостовом выпрямителе должен проходить через 2 диода на положительной половине и 2 на отрицательной половине. Итак, падение напряжения складывается и составляет около 1.От 4 до 1,5 В. Так что выход снижается.
Однако, если мы подключим конденсатор к выходу, мы увидим, что выходное напряжение теперь выше входного. Как такое возможно? Это потому, что вход переменного тока измеряет действующее значение напряжения, а не пиковое напряжение. Пиковое напряжение в 1,41 раза выше среднеквадратичного напряжения. Конденсаторы заряжаются до пикового напряжения, а затем отпускаются. По-прежнему существует небольшое падение напряжения из-за диодов, поэтому выходной сигнал меньше пикового входа, но все равно будет выше, чем входной среднеквадратичный.
Например, если бы на входе было среднеквадратичное значение 12 В, пиковое напряжение было бы умножено на 12 В на 1,41, что составляет 16,9 В.
Здесь и здесь падение 0,7 В. Таким образом, 16,9, вычесть 1,4 В, составляет 15,5 В. Конденсаторы заряжаются до этого напряжения. Это только приблизительный ответ, количество пульсаций и фактическое падение напряжения на диодах будут немного отличаться в действительности, но мы видим, что выходное значение выше входного.
Другой распространенный фильтр — это размещение двух конденсаторов параллельно с последовательной катушкой индуктивности между ними.Это используется для цепей с большими нагрузками. Первый конденсатор сглаживает пульсацию. Катушка индуктивности противодействует изменению тока и пытается поддерживать его постоянным, а второй конденсатор, который намного меньше, затем сглаживает окончательную оставшуюся пульсацию.
Дополнительно к выходу можно подключить регулятор напряжения. Это очень распространено и допускает некоторые изменения на входе, но обеспечивает постоянное выходное напряжение. По обе стороны от регулятора опять же есть конденсаторы, обеспечивающие плавный выход постоянного тока.Вот настоящая версия, которая подключена к источнику переменного тока 12 В, и мы видим, что она имеет выходное напряжение около 5 В постоянного тока.
Вы можете научиться создавать собственный стабилизатор напряжения в нашей предыдущей статье ЗДЕСЬ.
Идеальный диодный мост | Analog Devices
Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта.Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.
Принять и продолжить Принять и продолжитьФайлы cookie, которые мы используем, можно разделить на следующие категории:
- Строго необходимые файлы cookie:
- Это файлы cookie, которые необходимы для работы analog.com или определенных предлагаемых функций. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
- Аналитические / рабочие файлы cookie:
- Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
- Функциональные файлы cookie:
- Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт.