+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как проверить диод? Всё, что необходимо об этом знать.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход

начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его

пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf

), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода

Измеренное пороговое напряжение, мВ (mV)

Тип диода, материал полупроводника

1N5822

167

выпрямительный диод Шоттки

1N5819

200

выпрямительный диод Шоттки

RU4

419

быстрый выпрямительный диод

Д20

358

точечный германиевый диод

Д9

400

точечный германиевый диод

2Д106А

559

диффузионный кремниевый диод

Д104

717

точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;

  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;

  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

В какую сторону пропускает диод

Регистрация Вход. Ответы Mail. Вопросы — лидеры Роботы уничтожат ваши рабочие места? А разве понятие «эфир» можно всерьёз рассматривать в электронике?


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как запомнить анод и катод диода. How to remember the anode and the cathode of the diode.

Как проверить диодный мост мультиметром?


Здравствуйте уважаемые подписчики и читатели! Сегодня вашему вниманию ремонт термопота славной фирмы DEXP. Принесли, не включается. Проверил термопредохранители мультиметром в режиме прозвонки, один с боку один снизу, исправны.

Внимательно открываем плату. Видимых повреждений нет. Взял блок питания на 12 вольт, подаю питание на реле, не срабатывает. Берем мультиметр и проверяем элементы на предмет короткого замыкания. В цепи параллельно реле сгорел диод 1N, аналогичного нет, запаял Проверяем дальше. В цепи питания пробит стабилитрон на 12В. Такого нет. Из платы донора бп монитора выпаиваем стабилитрон. Всё работает. За кадром вскипятил 1,5 литра воды, после чего сработало включение поддержания температуры воды.

Насос тоже работает. Теперь будет долго радовать хозяина. Спасибо за внимание! Здоровья вам и вашим близким. Хорошего настроения! И причастным напоминаю Скоро в школу! Если попытаться создать рейтинг изобретений 20 века, которые оказали наибольшее влияние на нашу жизнь, полупроводники и полупроводниковые приборы окажутся, если не на первом месте, то в десятке — непременно.

В основе технологий полупроводниковой электроники, как очевидно из названия, лежат полупроводники. В недавней беседе с одним своим знакомым, я был несколько удивлён, когда узнал, что, хотя он и был осведомлён, в принципе, что делают и для чего нужны такие устройства, как диод и транзистор, он понятия не имел, как они устроены, и почему они так работают.

Мысленно я поблагодарил его за то, что нашёл тему для своего следующего поста. И так, давайте рассмотрим первый столп современной электроники — диод. Для начала упомяну тот факт, который знают, если не всё, то многие — основное свойство диода — пропускать электрический ток только в одном направлении. Но чтобы понять, почему так происходит, сперва давайте более пристально посмотрим на химический элемент с номером 14 — кремний.

Кремний весьма распространён в природе, он содержится, в частности, в обычном песке или в кварце. Это свойство позволяет им формировать идеальные ковалентные связи с соседними атомами, создавая, тем самым, правильную кристаллическую решётку.

В случае с углеродом, в зависимости от конфигурации атомов, мы можем получить либо графит, либо алмаз. В случае же с кремнием, его кристаллическая форма выглядит как серебристое вещество с металлическим блеском:. Силиконы — это общее название химических соединений кремния, ещё называемые полиорганосилоксаны.

В частности, из них делают смазки, герметики, ну и самое замечательное — имплантаты для увеличения груди. Не уподобляйтесь пожалуйста безграмотным, не путайте силиконы и кремний! Хотя кристаллы кремния и выглядят металлическими, металлом кремний не являются. Чистый кремний ведёт себя практически как изолятор.

Так что же сделать, чтобы кремний стал проводить ток? Ведь, что, по сути, надо сделать? Либо добавить свободных электронов, чтобы они смогли переносить отрицательный заряд, и тогда мы получим полупроводник N-типа от Negative — отрицательный , либо уберём часть электронов так, чтобы получился полупроводник P-типа от Positive — положительный. Для легирования кремния с целью получить полупроводник N-типа используют небольшое добавление фосфора или мышьяка. Эти атомы имеют по 5 электронов на внешней оболочке, и, когда такие атомы внедряются в кристалл кремния, один электрон не формирует связи и остаётся свободным.

Для полупроводников P-типа используют, наоборот, атомы бора или галлия. Отсутствие электрона создаёт эффект положительного заряда. Этот электрон может перескакивать от дырки к дырке, таким образом, тоже проводя электрический ток.

Хотя легирование и позволяет нашему кристаллу проводить электрический ток, но хорошим проводником его не делает, отсюда и название — полупроводник. Ад перфекциониста — людям с ОКР теперь требуется соблюдать осторожность при обращении с полупроводниковыми приборами!

Сами по себе, ни полупроводники N-типа, ни полупроводники P-типа не замечены в чём-либо замечательном. Образовавшееся в этом слое электрическое поле создаст потенциальный барьер , который воспрепятствует какой-либо дальнейшей естественной миграции электронов в ту или другую сторону. Давайте посмотрим, что будет происходить, когда мы пропустим электрический ток по нашему P-N соединению.

Подобное подключение называют подключением с Обратным запорным смещением англ. Reverse bias. По описанному принципу работает простейшее полупроводниковое устройство под названием диод.

В электрических схемах, диоды обозначаются следующим символом, сами же диоды промаркированы полоской со стороны катода:. Диод в электронике играет роль своего рода клапана, который позволяет проходить току только в одну сторону.

Но не стоит обольщаться. Диод, как и любое другое устройство можно испортить. Если подключить по схеме обратного смещения слишком большое напряжение, то диод выйдет из строя и, таки, пропустит через себя ток. К счастью, подобное напряжение в случае нормальной работы электронной схемы возникнуть не должно. Для полупроводников с малой долей примесей величина напряжения пробоя больше, чем для полупроводников с высокой концентрацией легирующих элементов:.

Свойства диодов проводить ток только в одном направлении нашли самое широкое применение. Кроме этого, диоды применяются в радиоприёмных устройствах см. Диодные переключатели применяются для коммутации высокочастотных сигналов. Диоды используются в барьерах искрозащиты, и ещё в огромном количестве устройств, названия которых могут ничего вам и не сказать, однако, без них, почти ни один ваш электронный гаджет не смог бы работать.

Есть, однако, одна разновидность диодов, на которой стоит остановиться поподробнее, так как они настолько тесно интегрированы в нашу повседневную жизнь, что современная цивилизация без них попросту немыслима.

Речь идёт о светодиодах англ. В одном из моих предыдущих постов Как выглядит атом я описал подробно механизм испускания фотонов электронами, так что останавливаться подробно не буду, скажу лишь, что электроны могут испускать фотоны света определённой частоты при переходе с более высокого уровня на более низкий. Однако, видеть эти фотоны мы можем только, если диод состоит из определённых материалов. Собственно, это не всегда плохо. Например, инфракрасные светодиоды широко используются в пультах дистанционного управления к разнообразной бытовой технике.

Эта разница определяет частоту испускания фотонов, и, соответственно, цвет, с которым будет светиться светодиод. Не все полупроводниковые материалы эффективны для данных целей. Наиболее распространёнными комбинациями полупроводников для данной цели являются арсенид галлия GaAs , фосфит индия InP , селенид цинка ZnSe или теллурид кадмия CdTe. Как жили до полупроводников? Наверное, стоит ещё сказать пару слов о том, как мы жили до эры полупроводников, и какими раньше были диоды.

А диоды раньше были тёплыми и ламповыми. Работа электронных ламп основана на использовании термоэлектронной эмиссии , которая состоит в том, что накалённый до высокой температуры проводник выделяет в окружающее пространство свободные электроны. При высокой температуре они движутся так быстро, что некоторые из них вылетают за пределы проводника. Катод служит для эмиссии электронов. Количество электронов, выделяемое катодом за каждую секунду, называют током эмиссии или просто эмиссией При малых температурах эмиссии практически нет, а при увеличении температуры она растёт все быстрее и быстрее, достигая значительной величины при температурах порядка сотен градусов и выше.

Чрезмерно повышать температуру нельзя, так как в конце концов нить перекалится и расплавится, что обычно не совсем правильно называют перегоранием. Итак, чем больше температура катода, тем больше эмиссия. При увеличении поверхности катода эмиссия также становится больше.

На величину эмиссии большое влияние оказывает материал катода. Анод служит для того, чтобы притягивать электроны, выделяемые катодом, и создавать в лампе поток свободных электронов. Чтобы анод мог притягивать электроны, он должен быть заряжен положительно. Притяжение электронов к аноду объясняется тем, что между анодом и катодом образуется электрическое поле. Электроны, вылетевшие из катода, под действием этого поля движутся к аноду.

Баллон служит для того, чтобы внутри лампы можно было создать вакуум, то есть пространство, из которого удалён почти весь воздух. Для свободного движения электронов к аноду вакуум должен быть очень высоким. Наличие воздуха в лампе недопустимо и потому, что накалённый катод сгорит, то есть вступит в химическое соединение с кислородом. Из того, что мы уже знаем, мы можем предсказать, что ток не будет проходить через лампу, если изменится его направление, так как анод в этом случае не будет заряжен положительно, и не сможет притягивать электроны.

На этом первая часть поста заканчивается, а следующая часть будет посвящена не менее великому полупроводниковому устройству — его величеству транзистору. Мой вариант диодного светильника над аквариумом. Конечно не так эстетично, как бы хотелось, но в погоне за относительной дешевизной, считаю этот вариант идеальным. Банка л. На подвесе 2 светильника по 50вт.

С фронта прикрывает рефлектор с белой и фитолампой. Сделано так, чтобы вечером свет от ламп не бросался в глаза и не мешал смотреть телик.


В какую сторону движутся электроны? В какую сторону диод пропускает ток

Диод это — полупроводниковый прибор, который пропускает электрический ток только в одном направлении. Это очень краткое описание свойства диода и его работы и самое точное. Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников. Что такое полупроводник? Из самого названия полупроводник, понятно, это проводящий на половину. В конкретном случае диод пропускает электрический ток только в одну сторону и не пропускает его в обратном направлении.

В ту строну куда показывает стрелка, диод проводит очень хорошо ( сопротивление доли Ома). В обратном направлении диод.

Полупроводниковый диод. В какую сторону диод пропускает

В этой статье: Осмотр маркировки С помощью мультиметра Источники. Диод — это двухэлектродный электронный элемент, который проводит ток в одном направлении и не пропускает его с другого. Диод также называют выпрямителем, который преобразует переменный ток в постоянный. Обычно достаточно взглянуть на маркировку диода, но если она стерлась или не была нанесена изначально, проверьте диод мультиметром. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 10 человек а. Категории: Компьютеры и электроника. Как определить, какой стороной должен быть подключен диод Информация об авторе. Метод 1. Изучите принцип работы диода. Диод состоит из полупроводников p- и n-типа.

Primary Menu

Значимость диодного моста в генераторе определяется его полезными свойствами выпрямлять ток. Убедиться в работоспособности диодного моста можно лишь на установленном генераторе, снять и разобрать который, может отнять уйму времени и сил. Однако, зная определенные тонкости работы электроприборов, можно узнать, рабочий диодный мост вы держите в руках или нет? Сегодня мы расскажем вам, как проверить диодный мост генератора , но вначале вы узнаете, для чего он нужен.

Электроника для начинающих Электроника для начинающих.

Проверка диодного моста мультиметром (прозвонкой)

Как сделать диодный мост для преобразования переменного напряжения в постоянное, однофазный и трехфазный диодный мост. Ниже классическая схема однофазного диодного моста. Как видно на рисунке соединены четыре диода, на вход подается переменное напряжение, а на выходе уже плюс и минус. Сам диод это полупроводниковый элемент, который может через себя пропускать только напряжение с определенным значением. В одну сторону диод может пропускать через себя только минусовое напряжение, а плюс не может, а в обратную наоборот.

Правильное включение светодиода

Питание светодиодов не такой простой вопрос, как может показаться. Они крайне чувствительны к режиму, в котором работают и не терпят перегрузок. Самое главное, что нужно запомнить — полупроводниковые излучающие диоды питают стабильным током, а не напряжением. Даже идеально стабилизированное напряжение не обеспечит поддержки заданного режима, это следствие внутренней структуры и принципа действия полупроводников. Тем не менее при грамотном подходе светодиоды можно подключать к питанию через токоограничивающий или добавочный резистор.

Или поделитесь своей историей с тегом Диоды. Ежедневно Пикабу посещают Это такая хитрая фиговина, пропускающая ток только в одну сторону.

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром. Полупроводниковый диод — это электронный прибор, который обладает свойством однонаправленной проводимости. У диода имеется два вывода.

Немецкий учёный Карл Фердинанд Браун открыл принцип действия кристаллических твёрдотельных диодов. Однако дальнейшего развития в работах Эдисона идея не получила. В году немецкий учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. Джэдиш Чандра Боус развил далее открытие Брауна в устройство, применимое для детектирования радио.

Вспомните, как вы накачивали колесо велосипеда или автомобиля.

Вообще, изначально, полупроводниковые материалы, такие как кремний или германий ток проводят довольно хреново. У них электроны крепко держатся двумя молекулами сразу и требуется довольно большая энергия чтобы их вырвать. Если полупроводник нагреть, облучить, подать высокое напряжение, чтобы образовалось мощное поле, которое потащит электроны, то из кристаллической решетки будет вырван электрон и будет он болтаться свободно среди молекул. А там где он был, образуется дырка. Дырка означает не скомпенсированную электроном связь, положительно заряженную область. Сдернуть электрон из ближайшего атома в соседнюю дырку куда проще, чем просто вырвать его из решетки.

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P. Электрод, подключенный к P, называется анод.


all-audio.pro

Диод в какую сторону пропускает

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Мегапосты: Криминальный квест HR-истории Путешествия гика. Войти Регистрация.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Диод

Диоды и их разновидности


Значимость диодного моста в генераторе определяется его полезными свойствами выпрямлять ток. Убедиться в работоспособности диодного моста можно лишь на установленном генераторе, снять и разобрать который, может отнять уйму времени и сил. Однако, зная определенные тонкости работы электроприборов, можно узнать, рабочий диодный мост вы держите в руках или нет? Сегодня мы расскажем вам, как проверить диодный мост генератора , но вначале вы узнаете, для чего он нужен.

Как известно из электротехнических наук, существуют два вида электрического тока — это переменный и постоянный. Главное отличие их заключается в том, что в переменном токе заряженные частицы двигаются в разных направлениях, а в постоянном только в одном.

Переменный ток имеет хорошие экономические показатели в плане передачи его на дальние расстояния, однако многие электрические приборы работают сейчас только на постоянном токе. Кроме того, для зарядки автомобильного аккумулятора и работы многих электрических приборов необходим именно постоянный ток, получение которого из генератора невозможно.

Именно для этих целей в генераторе устанавливают диодный мост. Диодный мост выполняется в виде двух металлических пластин, проводящих электрический ток. По всей площади пластин встроены специальные полупроводниковые элементы — диоды, которые устанавливаются в чередующемся порядке. Суть работы диодов всегда и везде заключается в том, что они пропускают такую величину, как ток только в одном единственном направлении, таким образом, выпрямляя напряжение.

Переменное напряжение, выходящее с генератора обеспечивает изменение направления движения электронов. Эту задачу и выполняет диодный мост. Благодаря переменному току, напряжение поочередно появляется на выводах фаз, что и позволяет отделять положительное напряжение от отрицательного. При этом каждый диод моста пропускает напряжение лишь в одну сторону, поэтому к каждому выводу генератора присоединены два диода, отделяющие положительное и отрицательное напряжение.

Нередко встречаются модели генераторов, которые вырабатывают не только положительное, относительно кузова напряжение, но и отрицательное, поэтому в них к каждому выводу обмотки подключены три диода.

На многих современных машинах диодный мост устроен сложней, но общий принцип работы неизменен, а аккумулятор выступает в роли конденсатора, гасящего колебания напряжения. Часто случается так, что диодный мост попросту выходит из строя. Такое может случиться, если полярность аккумулятора была перепутана или в генераторе возникло замыкание электрической цепи. Во время покупки нового, или при ремонте старого диодного моста, его необходимо проверить перед установкой на автомобиль.

Для этого можно использовать два способа, которые перечислены ниже. В автомобиле всего два источника постоянного напряжения, обеспечивающих работу бортовой сети — аккумулятор и генератор. Поэтому любая неисправность диодного моста обязательно отражается на работе бортовой сети. Когда пробит или оборван один из диодов моста, то вместо стабильного пульсирующего напряжения на выходе генератора появляется напряжение с провалами.

Ведь во время соответствующего полупериода диод не может передавать напряжение в бортовую сеть, из-за чего и происходит провал. Аккумулятор в какой-то мере компенсирует эти провалы за счет своих ресурсов, но общее напряжение сети становится немного меньше. Кроме того, провалы являются источниками электромагнитных помех, негативно воздействующих на звуковоспроизводящее оборудование.

Единственный способ нормально проверить диодный мост — снять генератор с двигателя, отсоединить от него мост и прозвонить с помощью тестера.

Ведь проблема может быть не только в диодном мосту, но и в обмотках, контактах или регуляторе напряжения. Методика снятия и разборки генератора на различных машинах отличается, поэтому воспользуйтесь руководством по ремонту или обслуживанию вашей машины. Сняв и разобрав генератор, снимите с него диодный мост. На одних устройствах он присоединен к генератору с помощью болтов, на других с помощью пайки.

Краской поставьте метки на генераторе и диодном мосте, чтобы не перепутать его ориентацию при установке. Сняв диодный мост, возьмите тестер мультиметр и переведите его в режим измерения сопротивления со звуковой индикацией. Мультиметр — универсальный прибор, предназначенный для измерения электрических величин и проверки работоспособностей других электрических приборов и элементов. Присоединяйте щупы прибора к обоим выводам диода.

На многих мостах минусовой вывод половины диодов присоединен к центральной алюминиевой или стальной пластине, а половина плюсовых выводов диодов присоединена к металлической жиле — оголенному луженому проводу диаметром не менее 1 мм. Для проверки каждого диода касайтесь сначала одним щупом центральной пластины или жилы, а другим противоположного вывода диода, затем меняйте местами щупы. Если же прибор пищит при любом порядке присоединения щупов, то диод пробит. Если тестер не пищит ни при каком порядке проверки, то диод оборван.

Прибор должен издавать звуковой сигнал, только при проверке одной стороны. Аналогичным образом проверяются все остальные диоды моста. Другой вариант проверки мультиметром более точный и подразумевает использование другой физической величины — сопротивления.

Суть замеров при этом не меняется, за исключением того, что прибор в одну сторону должен показывать от до Ом, а в другую — бесконечность.

Таким образом, диод можно вполне считать работоспособным. Если соответствующего прибора у вас не имеется, то вместо него можно использовать лампу. Для этого можно использовать аккумулятор и лампу на 12 вольт. Соберите схему лампа — аккумулятор и в разрыве цепи зачистите провода с помощью ножа. Эти концы будут представлять собой щупы, с помощью которых можно производить проверку.

Как вы правильно догадались, при одной полярности подключения к диоду лампа должна загореться, а при другой — не реагировать. Только в этом случае диод считается исправным. Есть еще один способ проверки лампой, но без разборки генератора.

Однако его возможности позволяют проверить только группы диодов в целом. Соберите такую же схему лампа — аккумулятор и сделайте свободные концы в разрыве схемы. Измерения выполняются в 4 этапа:. Вот так выполняется проверка диодного моста. На этом она завершается. Как видите это совсем не сложно, и справиться с этим можно без специальных знаний в области электротехники. Как проверить диодный мост мультиметром? Как читать электросхемы автомобилей. Все больше и больше современных автомобилей становятся настоящим сбором электронных устройств Как завести машину, если сел аккумулятор.

Многие водители сталкивались с невозможностью завести мотор из-за разряженного аккумулятора Каким должен быть уровень электролита в аккумуляторе. От состояния аккумулятора зависит, сможете вы завести мотор своего автомобиля, или нет Похожие материалы. Многие водители сталкивались с невозможностью завести мотор из-за разряженного Что делать, если иммобилайзер не видит ключ. Замена ремня генератора. Все автомобили снабжаются обязательным устройством — генератором, который Диагностика и замена реле свечей накаливания.

Реле включения ближнего и дальнего света фар — диагностика и замена. Реле-регулятор напряжения ВАЗ. Комплектация авто по ВИН коду бесплатно. Присадки для двигателя Супротек — миф или реальность? Проверка авто по VIN коду — бесплатно онлайн. Карданный вал — что это и как работает. Датчик холостого хода автомобилей ВАЗ.

Замена задних тормозных колодок. Будь в курсе. Важно знать. Утилизационный сбор на автомобиль — кто обязан платить? Лишение водительских прав — за что могут отобрать? Машину забрали на штрафстоянку — что делать и как забрать? Как снять арест с автомобиля — пишем заявление в суд.


Проверка диодного моста мультиметром (прозвонкой)

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P. Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод.

Полупроводник n-типа отвечает за отрицательную сторону диода и Если перевернуть диод обратной стороной, то он не будет пропускать.

Как проверить диодный мост мультиметром?

Поскольку большинство легковых авто комплектуются генераторами переменного тока, выпрямитель с диодами и стабилитроном присутствует в каждом из них. Обычно этот узел встраивается в генератор, но существуют выносные диодные мостики для удобного сервисного обслуживания, ремонта и замены диодов. Поскольку генераторы переменного тока более прогрессивны, компактны и ремонтопригодны в сравнении с модификациями тока постоянного, в конструкцию по умолчанию добавлен диодный мост генератора для преобразования переменного тока в постоянный. Другими словами — без узла выпрямителя электричество будет вырабатываться обмотками генератора, но станет непригодным для бортовой сети и аккумулятора. Лампы фар, обмотки компрессора кондиционера и электрические цепи прочих потребителей перегорят, а двигатель не сможет завестись. Название этот узел получил из-за принципа действия входящих в него диодов:. В настоящее время классическую конструкцию имеют мощные диоды, маломощные полупроводниковые приборы этого типа выполнены в виде кремниевого перехода на плате. Однако для отведения от корпуса или кремниевого перехода высоких температур, и те, и другие модификации либо вмуровываются в пластину теплоотвода, либо оснащаются собственными радиаторами в индивидуальном порядке.

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

Электроды диода носят названия анод и катод. Если к диоду приложено прямое напряжение то есть анод имеет положительный потенциал относительно катода , то диод открыт через диод течёт прямой ток , диод имеет малое сопротивление. Напротив, если к диоду приложено обратное напряжение катод имеет положительный потенциал относительно анода , то диод закрыт сопротивление диода велико, обратный ток мал, и может считаться равным нулю во многих случаях. Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в году болгарский учёный Фредерик Гутри открыл принцип действия термионных диодов вакуумных ламповых с прямым накалом , в году немецкий учёный Карл Фердинанд Браун открыл принцип действия кристаллических твёрдотельных диодов.

В этой статье: Осмотр маркировки С помощью мультиметра Источники. Диод — это двухэлектродный электронный элемент, который проводит ток в одном направлении и не пропускает его с другого.

Ложь о электричестве и новая теория электричества.

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого. Выводы диода называют анодом и катодом.

Полупроводниковый диод

Делал простенькую «пищалку» на ардуино — играет ноты через функцию tone. Звук выводил на активную звуковую колонку. Опыта работы со звуком у меня никакого, приемники и усилители никогда не строил. Для начала я присоединил вход колонки напрямую к пину ардуины и послал туда сигнал tone. Тут начался такой скрип и вой. Дальше смотрим схему ниже.

Можно ли проверить исправность диодного моста или просто диода полуволне работают диоды под номером 1 и 3: первый пропускает плюс, второй — минус. . Ты, конечно, помнишь, что диод проводит ток в одну сторону, поэтому . опишите проблему, возможно подскажем в какую сторону смотреть.

В какую сторону пропускает диод на схеме. Применение диодов

Главная О сайте BEAM-робототехника BEAM-роботы Искусственная жизнь BEAM-философия Технологии и устройство Робототехника для начинающих Как сделать первого робота Несколько увлекательных экспериментов с первым самодельным роботом Основы Электроника для начинающих Электронные компонеты Резистор Конденсатор Диод Транзистор Светодиод Фототранзистор Основы электроники Алгебра логики Логическое сложение Логическое умножение Логическое отрицание Законы алгебры логики Логические элементы Логические микросхемы Схемы роботов Разработка схем роботов Математические методы Основы схемотехники Схема робота, ищущего свет Схема робота, избегающего препятствия Технологии Платформы Макетирование Монтаж BEAM-роботов Как сделать робота Как сделать простейшего робота в домашних условиях Как сделать простого робота на одной микросхеме Как создать робота с логической схемой Создание робота для поиска света с элементами логики Робот своими руками, избегающий препятствия Самодельный рисующий робот. Основы Диод. Полупроводниковый диод. Подключение диода.

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED. Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета.

У светодиода сильно ограничен ток.

Диодный мост есть практически в любой аппаратуре, и выход его из строя — очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами. Для этого нужно знать, как проверить диодный мост. Именно эту задачу мы и постараемся сегодня решить.

Вернуться в Физика. Новая Теория — научный форум для публикаций работ и статей описывающих новые теории, идеи и гипотезы. Ложь о электричестве и новая теория электричества.


all-audio.pro

Полупроводниковый диод

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.


Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах ( в зависимости от модели прибора ). В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя. Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ, для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

hightolow.ru

В какую сторону пропускает ток диод

В этой статье: Осмотр маркировки С помощью мультиметра Источники. Диод — это двухэлектродный электронный элемент, который проводит ток в одном направлении и не пропускает его с другого. Диод также называют выпрямителем, который преобразует переменный ток в постоянный. Обычно достаточно взглянуть на маркировку диода, но если она стерлась или не была нанесена изначально, проверьте диод мультиметром.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Полупроводниковый диод

Онлайн расчет резистора для светодиода


Как всем известно, диод проводит ток только в одну сторону. Это обусловлено свойствами p-n перехода, который изображен на рисунке ниже. Поэтому чтобы проверить диод на исправность необходимо минимум действий. Это проверить способность диода пропускать ток в одну сторону и удостовериться, что он не пропускает в другую.

Для этого нам понадобится любой мультиметр, независимо стрелочный он или цифровой. Переключаем тестер взят цифровой прибор в режим проверки диодов, как на рисунке ниже. Подключаем щупы к выводам диода в любой полярности и смотрим наличие падения напряжения на нем. На рисунке мы видим, что падение напряжения составляет 0,45 вольта для каждой маркировки по разному, от 0,1 до 0,8 , значит диод, у нас, подключен анодом к плюсовому щупу, а катодом к минусовому щупу мультиметра, то есть прямое включение.

По этому, при смене полярности падение напряжения должно быть максимальным, то есть диод не должен пропускать ток в обратной полярности. Меняем полярность щупов и убеждаемся в этом. Для цифровых мультиметров максимальное падение составляет около 3-х вольт. Фото ниже. На этом проверка диода можно сказать, что закончена. Далее делаем выводы, если диод пропускал ток в обе стороны или не пропускал ни в одну сторону, то он неисправен. А если в одну сторону пропускал, а в другую нет, значит исправен.

Похожим образом проверяются и транзисторы. Ведь она мне обещала, что это я-я-я-я их утоплю! Биполярные транзисторы. Устроства для начинающих. Устройства на микроконтроллерах. Копирование материалов сайта только при наличии активной ссылки. Поделиться ссылкой:. Как проверить диод Как всем известно, диод проводит ток только в одну сторону. Анекдот: — Вовочка, почему ты плачешь?

Подписаться на RSS. Здесь может быть Ваша реклама. Подписаться на новости по e-mail:.


Назначение диода в электрической цепи

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое.

1 В какую сторону реально, (без всяких условностей) движется Движение » свободных» электронов есть, а результирующий ток и обратить внимание, на какую именно клемму диоды пропускают электроны.

Проверка диодного моста мультиметром (прозвонкой)

Значимость диодного моста в генераторе определяется его полезными свойствами выпрямлять ток. Убедиться в работоспособности диодного моста можно лишь на установленном генераторе, снять и разобрать который, может отнять уйму времени и сил. Однако, зная определенные тонкости работы электроприборов, можно узнать, рабочий диодный мост вы держите в руках или нет? Сегодня мы расскажем вам, как проверить диодный мост генератора , но вначале вы узнаете, для чего он нужен. Как известно из электротехнических наук, существуют два вида электрического тока — это переменный и постоянный. Главное отличие их заключается в том, что в переменном токе заряженные частицы двигаются в разных направлениях, а в постоянном только в одном. Переменный ток имеет хорошие экономические показатели в плане передачи его на дальние расстояния, однако многие электрические приборы работают сейчас только на постоянном токе. Кроме того, для зарядки автомобильного аккумулятора и работы многих электрических приборов необходим именно постоянный ток, получение которого из генератора невозможно. Именно для этих целей в генераторе устанавливают диодный мост.

Диоды и их разновидности

Регистрация Вход. Ответы Mail. Вопросы — лидеры Роботы уничтожат ваши рабочие места? А разве понятие «эфир» можно всерьёз рассматривать в электронике?

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод».

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

Диодный мост есть практически в любой аппаратуре, и выход его из строя — очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами. Для этого нужно знать, как проверить диодный мост. Именно эту задачу мы и постараемся сегодня решить. Содержание: 1.

Полупроводниковый диод

Диод это — полупроводниковый прибор, который пропускает электрический ток только в одном направлении. Это очень краткое описание свойства диода и его работы и самое точное. Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников. Что такое полупроводник? Из самого названия полупроводник, понятно, это проводящий на половину. В конкретном случае диод пропускает электрический ток только в одну сторону и не пропускает его в обратном направлении.

Можно ли проверить исправность диодного моста или просто диода полуволне работают диоды под номером 1 и 3: первый пропускает плюс, второй — минус. . Ты, конечно, помнишь, что диод проводит ток в одну сторону, поэтому . опишите проблему, возможно подскажем в какую сторону смотреть.

В какую сторону пропускает диод на схеме. Применение диодов

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный.

Ложь о электричестве и новая теория электричества.

Электроды диода носят названия анод и катод. Если к диоду приложено прямое напряжение то есть анод имеет положительный потенциал относительно катода , то диод открыт через диод течёт прямой ток , диод имеет малое сопротивление. Напротив, если к диоду приложено обратное напряжение катод имеет положительный потенциал относительно анода , то диод закрыт сопротивление диода велико, обратный ток мал, и может считаться равным нулю во многих случаях. Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в году болгарский учёный Фредерик Гутри открыл принцип действия термионных диодов вакуумных ламповых с прямым накалом , в году немецкий учёный Карл Фердинанд Браун открыл принцип действия кристаллических твёрдотельных диодов.

Питание светодиодов не такой простой вопрос, как может показаться. Они крайне чувствительны к режиму, в котором работают и не терпят перегрузок.

Диодный мост генератора

Приветствую, есть тут электронщики? Сейчас берём металлический проводник, т. Не понимаю. Прочитал уже материалов разных, а догнать не могу, ну не укладывается в голове :. Это как растолстевший до состояния шарика Вася, который скушал пирожка, находящийся на горе Эвересте, далекие дали внизу и сила тяжести, которая тянет этого Васю вниз с Эвереста навстречу смерти. Это значит, что направление постоянного электрического тока всегда совпадает с направлением движения положительных электрических зарядов, например положительных ионов в электролитах и газах. Там же, где электрический ток создаётся только движением потока отрицательно заряженных частиц, например, потока свободных электронов в металлах, за направление электрического тока принимают направление, противоположное движению электронов.

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P. Электрод, подключенный к P, называется анод.


all-audio.pro

В какую сторону диод пропускает ток

Приветствую, есть тут электронщики? Сейчас берём металлический проводник, т. Не понимаю. Прочитал уже материалов разных, а догнать не могу, ну не укладывается в голове :. Это как растолстевший до состояния шарика Вася, который скушал пирожка, находящийся на горе Эвересте, далекие дали внизу и сила тяжести, которая тянет этого Васю вниз с Эвереста навстречу смерти.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Направление движения электричества

Диодный мост генератора


Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром. Полупроводниковый диод — это электронный прибор, который обладает свойством однонаправленной проводимости. У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод — анод. Он является положительным. Напомню, что у полупроводниковых приборов p-n переходов может быть несколько.

Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? В таком случае диод открывается и через его p-n переход начинает течь ток. Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода — односторонняя проводимость. У подавляющего большинства современных цифровых мультиметров тестеров в функционале присутствует возможность проверки диода.

Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра. Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе.

Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах — милливольт mV. Его то и показывает дисплей прибора. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает. В документации даташитах на импортные диоды пороговое напряжение именуется как Forward Voltage Drop сокращённо V f , что дословно переводится как » падение напряжения в прямом включении «.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток прямой ток на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания — ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь. Чтобы было более наглядно, проведём проверку выпрямительного диода 1N Это диод Шоттки. В этом мы скоро убедимся. Также для удобства применена беспаечная макетная плата. Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка.

В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки. Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп красный мультиметра подключаем к аноду диода. Минусовой щуп чёрный подключаем к катоду.

На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства. Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N Так как это диод Шоттки, то его значение невелико — всего милливольт mV.

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток I обр. Но он настолько мал, что его обычно не учитывают. Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду. На дисплее покажется » 1 » в старшем разряде дисплея.

Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N и он оказался полностью исправным. Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы? Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом. Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы.

В результате тестирования показания мультиметра будут неверными! В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

У диода есть две основные неисправности. Это пробой перехода и его обрыв. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора — » 1 «. При таком дефекте диод представляет собой изолятор. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся. А теперь пару слов о том, как по значению порогового напряжения падению напряжения на переходе — Forward Voltage Drop V f можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин V f , которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность. Как видим, наименьшее падение напряжения на переходе V f у диодов Шоттки 1N и 1N Это отличительная черта всех диодов на основе перехода металл-полупроводник барьера Шоттки.

При прямом протекании тока через их переход барьер Шоттки , на нём падает очень малое напряжение. Сказать проще — диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста. Германиевые диоды имеют прямое падение напряжения равное — милливольт.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине V f. Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост? Об этом я уже рассказывал здесь. Размеры SMD-резисторов. Таблица типоразмеров.

В чём разница? Ремонт блютуз-колонки JBL Charge 3 реплики. Телевизор не включается. Индикатор мигает. Что делать? Как проверить диод?


Правильное включение светодиода

У светодиода сильно ограничен ток. Через обычный красный светодиод лучше больше 20 мА не пропускать. По вашему 50 мА — это силовая цепь? И вы считаете, что использование светодиода как источника опорного напряжения — это хорошая схема? Ток установится в точке пересечения ВАХ цепочки диодов и выходной характеристики источника и примет вполне конечное, хотя и сильно зависящее от напряжения, значение. И подобрав это напряжение, вполне можно добиться протекания нужного нам тока. Но… Во-первых, этот ток окажется зависящим от температуры.

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он Из этого можно сделать вывод что диод пропускает ток только в одном.

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром. Полупроводниковый диод — это электронный прибор, который обладает свойством однонаправленной проводимости. У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод — анод. Он является положительным. Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода. Запомним, что рабочие свойства диода проявляются только при прямом включении.

Ложь о электричестве и новая теория электричества.

Здравствуйте уважаемые читатели сайта sesaga. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов. Диод — это полупроводниковый прибор с одним p-n переходом, имеющий два вывода анод и катод , и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

Немецкий учёный Карл Фердинанд Браун открыл принцип действия кристаллических твёрдотельных диодов.

Как сделать 110 вольт из 220вольт с помощью диода?Что бы спираль от утюга накалялась в пол накала.?

Диод пропускает ток в одну сторону и не пропускает в другую. Переменный ток в розетке течёт половину времени в одну сторону, половину в другую. Подключаете ваш утюг через диод последовательно, или, по бытовому, диод в разрыв одного из проводов и вуаля, утюг греется вполнакала! Выбор диода — обратное напряжение должно быть больше пикового значения напряжения сети В для В. И максимальный прямой ток диода должен быть больше потребляемого утюгом тока. Максим вы забыли добавить что диод должен быть на 30 Ампер минимум, а таки монстры только с радиатором.

Назначение диода в электрической цепи

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое.

Обратный ток; Прямое и обратное напряжение диода Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. .. в какую сторону проходит электрический ток от плюса к минусу диод будет «открыт» .

Диоды и их разновидности

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n.

Поскольку большинство легковых авто комплектуются генераторами переменного тока, выпрямитель с диодами и стабилитроном присутствует в каждом из них. Обычно этот узел встраивается в генератор, но существуют выносные диодные мостики для удобного сервисного обслуживания, ремонта и замены диодов. Поскольку генераторы переменного тока более прогрессивны, компактны и ремонтопригодны в сравнении с модификациями тока постоянного, в конструкцию по умолчанию добавлен диодный мост генератора для преобразования переменного тока в постоянный. Другими словами — без узла выпрямителя электричество будет вырабатываться обмотками генератора, но станет непригодным для бортовой сети и аккумулятора. Лампы фар, обмотки компрессора кондиционера и электрические цепи прочих потребителей перегорят, а двигатель не сможет завестись.

Светодиод — это диод способный светится при протекании через него тока.

Регистрация Вход. Ответы Mail. Вопросы — лидеры Роботы уничтожат ваши рабочие места? А разве понятие «эфир» можно всерьёз рассматривать в электронике? Задача по физике 1 ставка.

Диодный мост есть практически в любой аппаратуре, и выход его из строя — очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами.


all-audio.pro

Диод. Часть 1 | Электроника для всех

Как то я не особо расписывал эту незатейливую детальку. Ну диод и диод. Система ниппель. Пропускает в одну сторону, не пропускает в другую, чего уж проще. В принципе да, но есть нюансы. О них, да немного о прикидочном выборе данной детальки и будет эта статья.

▌Клапан
В двух словах, в нашей канализационной электрике для сантехников диод это клапан. Вот типа вот такого:

И да, будет большим допущением считать, что клапан пропускает в одну сторону, а не пропускает в другую. На самом деле все несколько сложней. На самом деле у клапана же есть некая упругость пружины, так вот пока прямое давление не преодолеет эту пружину никакого потока не будет, даже в прямом направлении.

Для диода это справедливо в той же мере. Есть у диода такой параметр как падение напряжения. Оно для диодов Шоттки составляет около 0.2…0.4вольт, а для обычных диодов порядка 0.6…0.8 вольт.

Из этого знания следует три простых вывода.

1) Чтобы ток шел через диод напряжение на диоде должно быть выше его падения напряжения.

2) Какой бы ток через диод не шел, на нем всегда будет напряжение примерно равное его падению напряжения (собственно потому его таки зовут). Т.е. сопротивление диода нелинейно и падает с ростом тока.

3) Включая в цепь диод последовательно с нагрузкой, мы потеряем на нагрузке напряжение равное падению напряжения диода. Т.е. если вы в батарейное питание на 4.5 вольт для защиты от переполюсовки поставите диод, то потеряете от батареек 0.7 вольт, что довольно существенно. Ваше устройство перестанет работать гораздо раньше чем реально сядут батарейки. А батареи не будут высажены до конца. В этом случае лучше ставить диод Шоттки. У него падение ниже чем у простого (но есть свои приколы). А лучше вообще полевой транзистор.

До кучи пусть будет еще и график:

Это вольт-амперная характеристика диода. По которой наглядно видно, что открывается он примерно от 0.7 вольт. До этого ток практически нулевой. А потом растет по параболе вверх с ростом напряжения. У резистора ВАХ была бы прямолинейной в прямом соответствии с законом Ома. А в обратку диод не то чтобы не пропускает, но ток там совсем незначительный, доли миллиампера. Но после определенного напряжения диод резко пробивает и он начинает открываться, падение напряжения устанавливается где-то на уровне предела по обратному напряжению, а после и вовсе сгорает. Ведь рост тока, да большое падение напряжения на диоде означают большие тепловые потери (P=U*I). А диод на них не рассчитан. Вот и сгорает обычно он после пробоя. Но если ограничить ток или время воздействия, чтобы тепловая мощность не превышала расчетную, то электрический пробой является обратимым. Но это касается только обычных диодов, не Шоттки. Тех пробивает сразу и окончательно.

А вот и реальная характеристика диода Vishay 1N4001

Прямая ВАХ, показан один квадрант, рабочий. Начинается гдето с 0.6 вольт. При этом ток там мизерный. А дальше, с ростом напряжения, диод начинает резко открываться. На 0.8 вольтах ток уже 0.2А, на 1 вольте уже под 2.5А и так далее, пока не сгорит 🙂

Вот вам и ответ на вопрос почему нельзя светодиоды втыкать последовательно на источник напряжения без токоограничения. Вроде бы падения скомпенсированы, ну что им будет то? А малейшее изменение напряжения вызывает резкое изменение тока. А источники питания никогда не бывают идеальными и разброс по питанию там присутствует всегда. В том числе и от температуры и нагрузки.

И обратная ВАХ, напряжение в процентах от максимального (т.к. даташит на все семейство диодов, от 4001 до 4007 и у них разное обратное напряжение). Тут токи уже в микроамперах и ощутимо зависят от температуры.

▌Выбор диодов. Быстрые прикидки.
В первом приближении у диода нам интересные три параметра — обратное напряжение, предельный ток и падение напряжения.

Т.е. если вы делаете выпрямитель в сетевое устройство, то диод вам хорошо бы вольт на 400, а лучше на 600 пробивного обратного напряжения. Чтобы с хорошим запасом было.

С предельным током все тоже просто. Он должен быть не меньше, чем через него потечет. Лучше чтобы был запас процентов в 30.

Ну, а падение обычно нужно учитывать для малых напряжений, батарейного питания.

Открываем даташит на … пусть это будет 1N4007 (обычный рядовой диод) и ищем искомые параметры. И сразу же видим искомое, табличку предельных значений Maximum Rating или как то так:

IF(AV) прямой ток. Обозначается всегда как то так. Тут 1А. Предельный ток который этот диод тащит и не дохнет. Импульсно он протаскивает до 30А в течении 8.3мс (IFSM), скажем заряд конденсаторов через себя переживет.

Предельное обратное напряжение определяется параметрами:
VRRM — повторяющееся пиковое значение.
VRMS — действующее значение синусоидального переменного напряжения. На западе принято называть его среднеквадратичным. У нас постепенно тоже приходят к такому обозначению.
VDC — и просто обратное постоянное напряжение.

Ну, а падение смотрим по графикам в том же даташите под конкретный ток.

Есть еще диоды Шоттки, у них меньше внутренняя емкость и поэтому они во первых гораздо быстрей закрываются, что важно для импульсных преобразователей, работающих на большой частоте. А во вторых, имеют втрое ниже падение напряжение. Но, у них мало обратное пробивное напряжение. Классический диод Шоттки выглядит по даташитам примерно так:

Это 1N5819 стоящий в Pinboard II в преобразователе:

Падение напряжения можно измерить мультиметром, в режиме проверки диодов.

Он показывает падение в вольтах. И это падение обязательно надо учитывать, особенно в слаботочных цепях. Например, развязываете вы диодом какой-нибудь вывод микроконтроллера, с уходящим от него сигналом. Например, чтобы при подключении устройства в контроллер не потекло чего лишнего.

А сам контроллер (МК) должен подавать в устройство ХЗ логическую единицу. И, скажем, дает ее как 3.3 вольта. А если падение диода 0.6 вольт и у вас до Х.З. дойдет не 3.3 вольта, а меньше. А тут возникает вопрос, а воспримет ли Х.З. это как логическую единицу? Корректно ли это будет? Ну и, соответственно, решать проблемы если нет.

Светодиодов все это касается в той же мере. Только у них падение напряжения гораздо выше и зависит от цвета. Также, если хотите правильно вычислить ограничение резистора для светодиода, то измеряете его падение напряжения. Вычитаете из питания падение напряжения светодиода (или светодиодной цепи), а потом по полученному напряжению считаете по закону Ома сопротивление.

Например, имеем светодиод на с падением в 3 вольта. Его номинальный ток 10мА, а источник питания у нас 5 вольт. Итак, 5-3 = 2 вольта. Теперь на эти два вольта надо подобрать резистор, чтобы ток был 10мА. 2 / 0,01=200 ом.

Особенно важно правильно подбирать сопротивления для фонарей разных оптронов и прочих оптических датчиков. Иначе характеристики не предсказуемые.

Поэтому, кстати, нельзя включать светодиоды параллельно с общим токоограничивающим резистором. Т.к. диоды имеют разброс по характеристикам, даже если они из одной партии. А из-за малейшего отличия от соседей разница тока через один диод может быть весьма существенная. В результате один из диодов будет работать с перекалом, перегреется и сгорит. Токоограничивающий резистор ставят на каждый диод.

Во второй части этой статьи, которая уже написана, будет более детально расписаны остальные параметры и почему они образуются, исходя из полупроводниковой конструкции диода. А я пока картинки нарисую…

easyelectronics.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о