+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Принцип работы и таблица истинности D-триггеров

Триггеры представляют собой электронные устройства, которые могут находиться в одном из двух состояний длительное время. При внешнем воздействии (подаче сигнала извне) они изменяют своё состояние. Благодаря этому свойству их называют логическими элементами с памятью.

Микросхема 4х д-триггер SO16

Выходные сигналы зависят не только от того, какие импульсы подаются на вход, но и от того, что в триггере хранилось перед этим.

Данные устройства используются в основном в микропроцессорной технике. Микросхемы, как правило, имеют в своём составе триггер или бистабильный элемент и управляющую систему.

Триггеры бывают двух типов: асинхронные, или нетактируемые, и синхронные, или тактируемые.

В асинхронном – переход из одного положения в другое выполняется фронтом или перепадом напряжения. То есть для того, чтобы осуществился переход, на управляющем входе должна быть смена 1 на 0 или 0 на 1.

Синхронный тип переключается в новое положение в том случае, когда на управляющий вход подаётся импульс.

Выпускаются нескольких типов:

  • RS-триггер;
  • D-триггер;
  • Т-триггер;
  • JS-триггер.

Устройство д триггера

В цифровой и вычислительной технике наиболее распространённым является d-триггер. Иначе его называют триггером задержки (от английского слова delay).

Для производства d-триггера обычно используются полевые или биполярные транзисторы, а также интегральные микросхемы.

Для управления логическими элементами используются входы, которые делятся на информационные и вспомогательные. Информационные – воспринимают управляющие импульсы. В зависимости от его значения, в д-триггер записывается то или иное значение. Вспомогательные – предназначены для синхронизации работы.

Слово «задержка» в названии характеризует то, что поступивший информационный сигнал задерживается в нём ровно на один такт. Время задержки зависит от частоты импульсов синхронизации.

Схематическое изображение d-триггера

На картинке выше символом D обозначен информационный или вход данных, а С – тактовый или синхронизирующий. На информационный – подаётся информационный сигнал, который необходимо сохранить в д-триггере, а на тактовый вход подаётся тактовый импульс, в зависимости от значения которого определяется режим д-триггера: режим записи или режим хранения.

Принцип работы

Логическое устройство будет находиться в устойчивом положении в том случае, если на С=0. В этом случае импульсы, подающиеся на информационный D-вход, никак не влияют на прибор, и выходной импульс определяется записанным ранее значением. Если С=1, то выходной сигнал будет зависеть от того, какой т подан на информационный D-вход. Если D=1, то на выходе будет 1, если D=0, то на выходе будет 0.

Таблица истинности будет иметь вид

Входной сигналВыходной сигналРежим работы
СDQ
00определяется предыдущим состояниемХранение информации
01определяется предыдущим состоянием
100Запись информации
111

Внимание! Логический компонент хранит информацию только при подаче нулевого значения на C-вход.

Д-триггер выполняется двух типов: с управлением по уровню и с управлением по фронту.

Элементы с управлением по уровню

Временная диаграмма работы прибора со статическим управлением (по уровню сигнала) изображена на рисунке ниже.

Временная диаграмма работы d-триггера со статическим управлением

При статическом управлении переход из одного состояния в другое выполняется по уровню. Сигнал с D-входа будет записываться только при высоком уровне на тактовом C-входе.

Элементы с управлением по фронту

Данный тип логического устройства срабатывает при переходе с одного уровня на другой. Срабатывание может выполняться в двух случаях: по переднему и заднему фронту. По переднему, если переход выполняется от 0 к 1, и по заднему, если от 1 к 0.

Чтобы переключить d-триггер в нужное нам положение, сначала подаётся 0 или 1 на информационный D-вход. Если необходимо на выходе получить единицу, то D=1, если нужно, чтобы был на выходе ноль, то на D=0.

Затем на С-вход подаётся тактовый импульс. По его изменению элемент переключится в нужное нам состояние. При этом сигнал, который подаётся на D-вход, будет сохранён.

Такая логика работы делает электронный компонент очень удобным для хранения одного разряда двоичного числа (0 или 1). Причём, это состояние д-триггер будет сохранять до тех пор, пока не поступит следующий бит информации.

Временная диаграмма работы d-триггера с динамическим управлением

Для сброса д-триггера нужно, чтобы на входах D=0, а С=1. Однако таким образом не всегда можно управлять состоянием, поэтому в схемах используют компоненты с тремя входами.

Схематичное изображение d-триггера с тремя входами

В этом случае добавляется третий R-вход, который отвечает за сброс информации.

Схема реализации d-триггера

Реализация д-тригера может выполняться на основе ТТЛ (транзисторно-транзисторная логика) элементов,  а также логических элементах КМОП.

Большинство микросхем относятся к компонентам с комплиментарной структурой – металл-оксид-полупроводник (КМОП). Данная технология основывается на использовании полевых транзисторов с изолированными затворами.

Реализация д-триггера на ТТЛ элементах приведена на рисунке ниже.

Схема устройства на ТТЛ-элементах

Если в логическом элементе D-вход соединить с инверсным выходом, то в этом случае прибор можно использовать в качестве счётного или Т-триггера. В этом случае при подаче импульса на С-вход логический компонент переходит в противоположное положение.

В сети интернет имеются сайты с сервисами, на которых можно просмотреть результат работы разного вида триггеров. Тип устройства выбирается из соответствующего списка.

Демонстрация работы устройств

Триггеры являются важной компонентой для создания различных микросхем. Их использование позволяет выполнять устройства с цифровой памятью. В микропроцессорной технике они являются основой для реализации электронных компонентов оперативной памяти. Их используют в регистрах сдвига и регистрах хранения.

Видео

Оцените статью:

jelectro.ru

D-триггер. Принцип работы и обозначение на схемах.

Принцип работы и обозначение D-триггера

Возможно, вы уже познакомились с RS-триггером и JK-триггером на страницах сайта Go-radio.ru, но разговор о триггерах был бы неполным без упоминания D-триггера. D-триггер (англ. Delay-задержка) имеет свойственные всем триггерам входы: S (установка), R (сброс), С — вход синхронизации и D-вход. Ещё D-триггер называют – триггер с динамическим управлением. Работа D-триггера аналогична работе JK-триггера с небольшими отличиями.

Особенностью триггера является то, что при подаче на вход D низкого уровня (логического 0) и по спаду импульса на входе С, триггер сбрасывается в нулевое состояние. Если на входе D высокий уровень (логическая 1), то по спаду импульса на входе С триггер устанавливается в единицу.

Что такое спад импульса? Объяснить это лучше наглядно, например, с помощью рисунка. Вот взгляните.

Напомним, что вход C является входом синхронизации или, по-другому, входом тактирования. Он нужен для того, чтобы упорядочить работу множества отдельных микросхем в одной общей схеме.

На принципиальных схемах D-триггер обозначается следующим образом.

Бывает, что изображение на схеме несколько отличается. Но, несмотря на это, на условном обозначении D-триггера всегда присутствует указание входа «D«.

В cерии логических микросхем К561, выполненных по технологии КМОП, есть наборы D-триггеров. Например, микросхема

К561ТМ2 содержит два D-триггера в одном корпусе. А в составе микросхемы К561ТМ3 уже четыре D-триггера. Для построения несложных счётчиков и делителей частоты эти микросхемы гораздо удобнее.

Вот так обозначается на схемах микросхема К561ТМ2 (К176ТМ2, К564ТМ2). Импортный аналог микросхемы К561ТМ2 — CD4013, HEF4013.

Как видим, в составе этой микросхемы два D-триггера. Для подключения питания к этой микросхеме используются вывод 14 (это плюс «+», VDD) и вывод 7 (это минус «-«, GND).

Для того чтобы получить из D-триггера делитель частоты на два достаточно соединить инверсный выход со входом D. То есть соединяются выводы 2 и 5 (12 и 9), а импульсы подаются на вход С.

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

принцип работы и простейшие схемы устройств, их назначение и практическое использование

Под определение триггера попадают довольно много схем в электронных устройствах. Их общая черта — это способность находиться в одном из двух устойчивых состояний, которые сменяют друг друга под воздействием какого-либо сигнала. Кроме того, триггеры обладают двоичной памятью, то есть могут запоминать своё положение и оставаться в нём даже после прекращения влияния переключающего фактора, таким образом запоминая разряд числа в двоичном коде.

Описание и принцип работы

В широком смысле триггером (от английского trigger — спусковой крючок, запускающий механизм) называют любой импульс или событие, ставшее причиной чего-либо. Термин применяют в электронике, психологии, медицине, программировании и других областях деятельности. В создании микросхем и других устройств так называют элемент, который способен принимать одно из двух стойких состояний (0 или 1) и сохранять их в течение долгого времени.

Положение триггера зависит от получаемых им сигналов на прямом и инверсном выходах. Отличительной чертой устройства является то, что его переход из одной позиции в другую обусловлен не только получением внешних инструкций, поступающих от выбранной системы управления, но и посредством обратной связи. То есть текущее положение элемента зависит от предыстории его работы.

Триггеры могут сохранять свою память только при постоянном поступлении напряжения. Если его отключить, а затем снова подключить, устройство перейдёт в случайное состояние. Поэтому при конструировании устройства важно предусмотреть способ, которым он изначально будет вводиться в правильное положение.

В основе любого триггера лежит схема, которая состоит из двух логических элементов типа И-НЕ либо ИЛИ-НЕ, имеющих друг с другом обратную положительную связь. Такой тип подключения позволяет системе иметь всего два возможных устойчивых состояния, из которых выбирается одно. Важной деталью является то, что после того как триггер перешёл в положение, он может сохранять его сколько угодно времени, до тех пор, пока не будет подан очередной управляющий сигнал.

Другой характерной особенностью устройств является возможность мгновенного осуществления перехода от одного состояния в другое после получения соответствующей команды. Задержка настолько мала, что её можно не учитывать при проведении расчётов.

Число входов может быть разным и зависит от требуемых функций. Если подать сигнал одновременно на два из них, то он примет произвольную позицию после прекращения их поступления. По своим функциям входы делятся на несколько типов, которые входят в две большие группы: информационные и управляющие. Первые из них получают сигналы и запоминают их в виде информации, в то время как вторые разрешают или запрещают её запись, а также выполняют функцию синхронизации.

На схемах они имеют следующие обозначения:

  • S — устанавливает триггер в состояние «1» на прямом выходе;
  • R — противоположен S, сбрасывает состояние обратно на «0»;
  • С — вход синхронизации;
  • D — принимает информацию для последующего занесения на триггер;
  • T — счётный вход.

Комбинация разных типов входов и выходов определяет то, как работает триггер. Существует множество схем этих устройств, использующихся для разных целей.

Классификация триггеров

Триггерные системы отличаются друг от друга по функциональному признаку, типу управления, числу возможных состояний и уровней, способу реагирования на помехи, составу основных логических элементов и другим особенностям. Однако все они, начиная от самых простых схем и заканчивая сложными многоступенчатыми структурами с множеством состояний, работают по одинаковому принципу.

Общие различия

Триггеры делят на несколько больших групп по функциональным и практическим различиям.

Вот некоторых из них:

  • По принципу управления они бывают статические (или потенциальные) и динамические. Первые реагируют на непосредственную подачу сигналов на вход, соответствующих единице или нулю. Вторые воспринимают изменение сигнала с одного на другой.
  • Статические, в свою очередь, делятся на две группы: симметричные и несимметричные. Они отличаются по внутреннему строению электрических связей в схеме — у симметричных они идентичны во всех отдельных ячейках устройства. Именно они составляют основную массу триггеров.
  • По функциональным особенностям. Самый частый тип такой классификации — синхронные и асинхронные. Первые приходят в действие только при смене такса с нуля на единицу или наоборот, в то время как вторые воспринимают непосредственный момент появления сигнала.
  • Согласно количеству ступеней и уровней.
  • По реагированию на возникновение помех триггеры можно поделить на прозрачные и непрозрачные, которые, в свою очередь, бывают проницаемыми и непроницаемыми.
  • В соответствии с числом возможных устойчивых состояний. Чаще всего их два, но бывают и троичные, четверичные и прочие элементы.
  • По логическому составу, количеству и соотношению элементов И-НЕ и ИЛИ-НЕ.
  • Со сложной и простой логикой.

Все системы классификации триггеров взаимодействуют и дополняют друг друга. Например, двухступенчатый триггер может быть синхронным или асинхронным, иметь статическое или динамическое управление и так далее. Выделены также отдельные виды этих систем с разными названиями.

Типы устройств

Говоря о различиях триггеров, стоит рассмотреть их отдельные типы. Самый простой из них — это RS-триггер, на основе которого строятся все остальные разновидности этих устройств, потому именно с него нужно начинать знакомство «для чайников». Это асинхронный тип системы, который состоит из двух входов — S (от английского set — установить) и R (соответственно, reset — сбросить). Он может работать как на основе логических систем И-НЕ, так и на ИЛИ-НЕ. В первом случае входы будут прямыми, во втором — инверсными.

Подача активного сигнала на элемент S приведёт РС триггер в состояние логической единицы, а на R — сбросит его до нуля. Если их подать одновременно, результат зависит от реализации схемы, а когда убрать, то он будет определён случайным образом.

Из-за низкой устойчивости к помехам такой тип устройства редко применяют в электронике и микросхемах. Чаще всего его используют для устранения так называемого дребезга контактов — многократных хаотичных замыканий и размыканий, вызванных упругостью используемых для них материалов и происходящих после их подключения.

Система типа RS является асинхронной. Если возникает необходимость сохранить поступаемую на неё информацию, к устройству подключают отдельно составленную систему управления, которая будет переводить его в режимы хранения и записи.

Вторым типом является D триггер (по некоторым данным, название происходит от английского слова delay — задержка, по другим — от data — данные). В его составе должны присутствовать минимум два элемента: D-вход для получения информации и C — для синхронизации. Такие системы бывают статичными и динамичными. Первые записывают данные всё время, при котором уровень сигнала на C соответствует единице, вторые — только тогда, когда происходит перепад напряжения.

Вход на схеме D триггера изображается в виде треугольника. Когда его вершина направлена на микросхему, то его ввод прямой, а если наоборот — инверсный.

Информация на выходах в этом типе системы задерживается по сравнению с входной на один такт. Поскольку она остаётся неизменной до активации очередной команды синхронизации, устройство как бы помнит её, что и позволяет ему выполнять свои основные функции. Главная из них — это создание регистров сдвига и хранения для управления записью информации. Это очень важные элементы, без которых невозможно создать даже простейший микропроцессор.

Из-за того, что все изменения на входе D системы точно повторяются на её выходе, иногда возможны ложные срабатывания контролируемых ею устройств. Чтобы избежать этого, необходимо создать двухступенчатый триггер. Его первая ступень записывает информацию, но во вторую она не попадает до поступления сигнала перезаписи. Затем, после получения команды, первая ступень переходит в режим хранения, а вторая переписывает с неё данные, что помогает избежать состояния их «прозрачности».

Двухступенчатые триггеры обозначают как TT. Они могут управляться как статически, так и динамически.

T триггер (от слова «toggle», которое значит «переключатель») ещё называют счётчиковым, так как это простейший вариант счётчика до двух. Состоит из входа T и выхода C. Синхронные системы такого типа переключаются по каждому тактовому импульсу на выводе, в то время как работа асинхронного зависит от состояния ввода. Когда оно соответствует единице, при получении импульса на выходе триггер меняет своё значение на противоположное, а если равно нулю, то никакой реакции не происходит.

Построить такую асинхронную систему можно на основе JK или двухстепенного D-триггера. Её в основном применяют для деления частоты вдвое.

Последний из используемых наиболее часто видов — JK триггер. По принципу работы он почти идентичен RS. Его единственное отличие в том, что система типа JK меняет своё состояние на противоположное при подаче единицы на оба входа. Это помогает избежать возникающих иногда неопределённостей.

JK иногда называют универсальным триггером. У этого есть две причины. Первая — широкий спектр применения подобных элементов. Второе — тот факт, что из него можно легко получить любой другой тип системы, если это зачем-то понадобится.

Практическое использование

Чаще всего триггер используется для генерации сигнала, длительность которого соответствует продолжительности процесса в системе, которую он контролирует. Он может как непосредственно разрешать его начало и конец, так и передавать другим элементам информацию о том, что процесс запустился. Таким образом достигается контроль системы, далее нужно только позаботиться о разрешении ситуации неопределённости.

Вторая важная функция триггера — синхронизация процессов. Это помогает избавиться от лишних и случайных импульсов, возникающих, например, когда несколько входных сигналов изменились в течение очень короткого промежутка времени. Кроме того, с помощью триггеров можно «пропустить» в систему только полные по длительности импульсы или задержать поступающую информацию.

Реализация триггеров и их применение на практике происходит в различных устройствах для запоминания и хранения памяти. Именно этот элемент представляет собой базовую ячейку ОЗУ, способную хранить 1 бит информации в статическом состоянии. Кроме того, его используют для следующих целей:

  • в качестве компонентов для создания микросхем различного назначения;
  • как организатор вычислительных систем;
  • в регистрах сдвига и хранения;
  • для изготовления полупроводниковых систем, например, транзисторов и реле.

Триггер является не только базовым элементом электроники, но и простейшим кибернетическим устройством, способным выполнять свою логическую функцию, одновременно поддерживая обратную связь. Таким образом, он используется для создания множества механизмов, целью или условием работы которых является возможность запоминания, хранения, передачи и преобразования информации. Найти триггер можно в любом приборе, начиная от систем переключения питания и заканчивая элементами цифровой микроэлектроники.

Создание запчастей для компьютеров, мобильных телефонов, роботов, управляющих панелей, транспорта и многих других приборов невозможно без использования триггеров. Применяют их и для изготовления простых схем на основе электромагнитного реле — такие конструкции всё ещё используются благодаря своей простоте и высокой защите от помех, несмотря на высокое потребление энергии.

rusenergetics.ru

Триггеры. Принцип работы | HomeElectronics

Всем доброго времени суток! Сегодняшний мой пост посвящён цифровым микросхемам, которые имеют память. Подобно тому, как человек помнит события из своей жизни, так и эти микросхемы могут долго хранить заложенную в них информацию, а когда необходимо выдавать её.

Такими цифровыми микросхемами являются триггеры (англ. – Trigger или Flip-Flop). В отличие от простых логических микросхем, которые называют комбинационными (НЕ, И-НЕ, ИЛИ и другие) и их сигналы на выходе чётко соответствуют сигналам на входе, то триггеры относятся к последовательным или последовательностным микросхемам, уровень выходного напряжения которых, зависит от того в какой последовательности поступали сигналы на вход триггера. С помощью триггеров строят более сложные цифровые микросхемы.

Сигналы, поступившие на вход триггера, могут храниться только до тех пор, пока на него подается напряжение питания. После каждого включения триггера на его выходах появляются случайные логические уровни напряжения. Триггеры обладают очень высоким быстродействием, сравнимым с задержками при переключении простейших логических элементов, однако объём хранимой информации мал. Один триггер может хранить только один сигнал или бит.

Внутреннее устройство триггера

Не вдаваясь в глубину схемотехники триггера, скажу сразу, что простейший триггер представляет собой схему из двух логических элементов, взаимодействуя между собой с помощью положительной обратной связи, которая обеспечивает нахождения выходов триггера в одном их двух логических состояний неограниченное время.



Схема триггерной ячейки на логических элементах (RS триггер).

Схема на рисунке выше представляет простейший триггер (или триггерная ячейка), который имеет два входа и два выхода. Входы триггера реагируют на низкий логический уровень: вход R – сброс (англ. Reset – сброс) и вход S – установка (англ. Set – установка), выходы: прямой Q (англ. Quit – выход) и инверсный –Q.

Как говорилось выше, входы триггера R и S реагируют на низкий логический уровень и сигналы на них должны поступать с некоторой разницей во времени. Опишем работу данной схемы. Когда на обоих входах триггера присутствует низкий логический уровень, то это никак не отразится на уровне напряжения на выходах. Когда на вход S поступит сигнал лог. 1, то на выходах Q будет лог. 0, а на –Q – лог. 1. Если теперь на вход R триггера поступит лог. 1, то выходные сигналы не изменятся. И наконец если изменить уровень сигнала на входе S с высокого на низкий уровень, то на выходе триггера Q будет лог. 1, а на –Q – лог. 0. Таким образом, для данной триггерной ячейки можно составить таблицу истинности.

Таблица истинности триггерной ячейки (RS триггер).
ВходыВыходы
RSQ-Q
00Не определено
0101
11Без изменений
1010

Схемы с такой таблицей истинности называются RS триггерами. RS триггеры служат основой для многих динамических устройств: делители частоты, счётчики, регистры. Кроме вышеописанного RS триггера существует ещё несколько типов триггеров, которые отличаются методом управления, входными и выходными сигналами. Все современные триггеры объединены в серии цифровых микросхем:

  • RS триггеры – самый простой и редко используемый триггер, имеет обозначение ТР;
  • JK триггер – имеет сложное управление, обозначение ТВ;
  • D триггер – самый распространённый и имеет сложность среднюю, обозначение ТМ;

RS триггеры

Рассмотрим принцип работы RS триггера возьмём микросхему К555ТР2.



Обозначение RS триггера К555ТР2

Данная микросхема имеет 4 RS триггера, два из которых имеют по одному R входу и одному S входу, а два других – по одному R входу и по два S входа, объединенных по функции И. Все 4 RS триггера данной микросхемы имеют по одному прямому выходу. Принцип работы данных триггеров не отличатся от триггерной ячейки описанной выше. Импульс с низким уровнем на входе триггера R приводит состояние выхода к низкому уровню, а импульс с низким логическим уровнем на входе триггера S – состояние выхода в высоком логическом уровне. В случае появления одновременных сигналов на входах триггера переводит его выход в состояние лог. 1, а после окончания импульсов в одно из устойчивых состояний.

JK триггер

Микросхема типа К555ТВ9, является представителем семейства JK триггеров, который имеет следующий принцип работы.



Обозначение JK триггера К555ТВ9.

Микросхема К555ТВ9 содержит два JK триггера. Триггеры данного типа сложнее по устройству и по управлению по сравнению с RS триггером. В дополнение к стандартным входам R и S, которые работают аналогично с RS триггером, в JK триггере имеются информационные входа J и K, а также вход синхронизации С.

Таблица истинности JK триггера.
ВходыВыходы
-S-RCJKQ-Q
01ХХХ10
10ХХХ01
00ХХХНе определено
111→01010
111→00101
111→000Не изменяется
111→011Меняется на
противоположное
111ХХНе изменяется
110ХХНе изменяется
110→1ХХНе изменяется

Принцип работы JK триггера следующий. Вход R триггера служит для перевода прямого выхода в лог.1, а вход S триггера – в состояние лог.0. Вход С (англ. Clock – часы)служит для тактирования JK триггера, то есть все изменения выходов происходят только когда на входе С сигнал изменяется с высокого уровня на низкий. Информационные входа J (англ. Jump – прыжок) и К (англ. Kill – убить) работают следующим образом: если на J лог.1 и на К лог.0, то по импульсу со входа С на Q будет лог.1 и на –Q будет лог.0. Для изменения уровня сигнала на выходах на противоположные необходимо на J подать лог.0, а на К лог.1, тогда по импульсу на входе С состояние выходов измениться.

D триггер

D триггер является самым используемым, а по управлению он занимает промежуточное положение между RS триггером и JK триггером. Представителем D триггеров является микросхема К555ТМ2.



Обозначение D триггера микросхемы К555ТМ2

В составе данной микросхемы содержится два D триггера, которые имеют два входа сброса и установки R и C, информационный вход D (англ. Dalay – задержка) триггера и один тактируемый вход С триггера, а также два выхода: прямой Q и инверсный –Q. Как и все триггеры, у которых имеется тактируемый вход С, принцип работы D триггера основан на переключении уровней напряжений на выходе триггера только стробированием по входу С. Таким образом можно составить таблицу истинности D триггера.


Таблица истинности D триггера
ВходыВыходы
-S-RCDQ-Q
01XX10
10XX01
00XXНе определено
110→1001
110→1110
110ХНе меняется
111ХНе меняется
111→0ХНе меняется

D триггер является наиболее универсальным потому, что данным триггером можно заменить все остальные RS триггеры и JK триггеры. Для замены RS триггера необходимо просто не использовать входы D и C входы D триггера, а относительно JK триггера, то для большинства схем одной пары входов вполне достаточно. Ниже приведены схемы замены триггеров



Схема замены D триггером: RS триггера (слева) и JK триггера в счётном режиме (справа).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

D – триггеры

D– триггеры имеет один информационный вход (D- вход) для установки в “1” или “0” и вход синхронизации С (происходит от словаdelay — задержка)

ОсобенностьD– триггеров:

Сигнал на входе Qв тактеt+ 1 повторяет входной сигналв предыдущем тактеи сохраняет (запоминает) это состояние до следующего тактового импульса, т. е.D– триггер задерживает на один такт информацию, существовавшую на входеD.

Закон функционирования D– триггера:

Структурная схема D– триггера и условные значения

а) – со статическим управлением

б) – с динамическим управлением

Таблица истинности.

Такт t

Такт t+ 1

C

0

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

0

1

1

0

1

1

1

1

1

При С = 0 состояние Тг устойчиво и не зависит от уровня сигнала на информационном входе D.

Сокращенная таблица

Такт t

Такт t+ 1

0

0

1

1

D– триггер можно образовать из любого синхронногоRS- илиJK– триггера, если на их информационные входы одновременно подавать взаимно инверсные сигналыDи.

Хранение информации D– триггерами обеспечиваются за счет цепей синхронизации, поэтому все реальныеD– триггеры –тактируемые.

Управление может быть статическим, динамическим и двухступенчатым.

Временная диаграмма

Минимальный интервал времени между двумя тактовыми импульсами, при котором Тг работает без сбоев

Соответственно максимальная частота переключателей

Dv – триггеры

DV– триггер представляет собой модификациюD– триггера. Их логические функции определяются наличием дополнительного разрешающего входаV, играющего роль разрешающего по отношению ко входуD.

ПриV= 1 триггер работает какD– триггер

При V= 0 — переходит в режим хранения информации независимо от состояния входаD.

Управление функционированием DV– триггера имеет следующий вид:

Наличие V– входа расширяет функциональные возможностиD– триггера, позволяя в нужный момент времени сохранять информацию на выходах в течение нужного числа тактов.

Поскольку вход V– подготавливающий, сигналV= 1должен перекрывать по длительности оба фронта тактового импульса.

Наиболее удобны эти триггеры в быстродействующих схемах, поскольку передача информации происходит по одному входу, т. е. исключено состязание сигналов.Основные применения: запоминание информации в качестве разряда регистра или счетчика.

T – триггер (счетный триггер)

T– триггер имеет один информационныйT– вход (toggle- чека) и отличается простотой действия.

Информация на выходе такого триггера меняет свой знак на противоположный при каждом положительном (или отрицательном) перепаде напряжения на входе.

В сериях выпускаемых микросхем таких триггеров, как правило, нет. Но они могут быть созданы на базе других триггеров.

На основе D– триггера Временная диаграмма

T– триггер – единственный вид триггера, текущее состояние которого определяется не информацией на входах, а состояние в предыдущем такте.

Уравнение T– триггер имеет вид:

Как видно из временной диаграммы частота на выходе T– триггер в два раза ниже частоты сигнала на входе, поэтому такой триггер можно использовать как делитель частоты и двоичный счетчик.

Состояние счетных триггеров Сокращенная таблица состояний

T– триггер с прямым

динамическим управлением.

studfile.net

D-триггер: принцип работы, таблица истинности

Триггер – элементарное устройство, представляющее собой цифровой автомат с двумя состояниями устойчивости, одному из которых присваивается значение «1», а другому — «0».

По способу реализации логических связей различают следующие виды устройств: T-триггер, D-триггер, JK-триггер, RS-триггеры. Естественно, здесь перечислены наиболее распространенные варианты, но кроме них существуют автоматические устройства и других типов.

В этой статье мы более подробно рассмотрим D-триггер. Упомянутый автомат имеет один-единственный информационный (D) вход, таким образом, он предназначен для реализации функции временной задержки.

Принцип работы

Характеристическое уравнение Q(t+1)=Dt описывает функционирование такого типа устройства, как D-триггер. Таблица истинности (таблица переходов) для данного цифрового автомата приведена ниже.

Как видим, в первой и четвертой строке значения сигналов Q в моменты времени t и t+1 совпадают. То есть D-триггер является элементом задержки сигнала. В результате рассматриваемые приборы асинхронного типа не нашли своего применения, так как на выходе будет повторяться входной сигнал с небольшой временной задержкой.

D-триггер синхронного типа строится из одноуровневых (одноступенчатых) и двухуровневых (двухступенчатых) RS-устройств такого же типа. Упомянутые автоматы функционируют согласно таблице переходов.

Одноступенчатый D-триггер может быть выполнен из одноуровневого синхронного RS-устройства и одного элемента И-НЕ1, который соединяет в единый информационный (D) вход оба инверсных входа D-триггера.

При поступлении логического нуля на синхронизирующий вход автомат типа RS заблокирован уровнем логической единицы с выходов элементов И-НЕ2 и И-НЕ3. При смене сигнала синхронизации уровень, поданный на информационный вход, создаст логический нуль либо на входе S (при D=1), либо на входе R (при D=0) асинхронного триггера Т. Он переключится в состояние, соответствующее логическому уровню D. Одноступенчатый триггер D-типа задерживает распространение входного на время паузы между синхронизирующими сигналами.

D-триггер с динамическим управлением. Описание работы, функциональная схема

Автоматическое устройство такого вида конструируется из трех RS-триггеров асинхронного типа. Они построены на элементах И-НЕ, при этом два из них выполняют коммутирующую функцию, а третий является выходным. Выходные сигналы коммутирующих триггеров предназначены для управления выходным триггером.

При уровне сигнала С, равного логическому нулю, на входы выходного триггера поступает нейтральная для него комбинация сигналов, и он переключается в режим хранения. При изменении информационного сигнала коммутирующие триггеры переходят в режим ожидания, и как только поступает сигнал логической единице на разрешающий вход триггера С, выходной автомат устанавливается в новое состояние, которое соответствует информационному сигналу на D-входе в предыдущем такте.

В случае если изменение уровня информационного сигнала пройдет в период установки выходного триггера, тогда коммутирующие устройства сигнал не пропустят. Получается, что цель коммутирующих триггеров заключается в приеме информационных сигналов, передаче их на вход выходного прибора в момент перемены сигнала на управляющем входе С от логического нуля к логической единице и самоблокировки от воздействия сигнала на информационном входе.

fb.ru

D-триггер с работой по уровню (защелка) и по фронту — Help for engineer

D-триггер с работой по уровню (защелка) и по фронту

D-триггер получил название от английского слова «delay» — задержка, которая реализуется подачей сигналов на вход синхронизации. В раннее рассмотренном RS-триггере было два входных сигнала, но для передачи двоичного кода достаточно одного входа с разными уровнями напряжения: высокий (1) и низкий (0). На два входа нельзя было подавать единицу одновременно, поэтому в D триггере эти входы объединены с помощью инвертора (рисунок 1 а), что исключает возможность возникновения запрещенного состояния.

Рисунок 1 – а) усовершенствованная схема RS-триггера б) графическое изображение D-триггера

Триггер D может работать по уровню сигнала, он еще называется защелка. В таком устройстве нужно ограничивать длительность синхронизирующего сигнала, потому что пока синхросигнал подается — переходной процесс со входа поступает на выход.

Схема зещелки собранная на логических элементах 2ИЛИ-НЕ (синий провод – логический ноль, красный – единица):

Временная диаграмма работы:


Триггер-защелка включается в работу только по синхросигналу. Когда на С логический ноль, то выход Q хранит прошлое записанное в него состояние, при этом уровень напряжения на входе D никак не может на него повлиять. Если подать «1» на вход синхронизации, то устройство будет работать в режиме «прозрачности» — выходной сигнал мгновенно повторяет сигнал входа. Но при отключении синхросигнала в памяти триггера останется последнее состояние входа и именно оно будет на Q. То есть получается «защелкнутый входной сигнал».

Исходя из описанного принципа работы, составим таблицу истинности:

Х означает, что состояние не имеет значения, иногда обозначают, как «тильда»

D-триггер, работающий по фронту, не требует контроля длительности синхронизирующего (тактового) сигнала, потому что фронт сигнала С проходит практически мгновенно (не может длиться продолжительное время). Триггер, который будет запоминать информацию лишь по фронту синхросигнала, можно построить из двух D-триггеров, тактовый сигнал на которые будет подаваться в противофазе:

Соответственно, схему на логических элементах можно сконструировать с помощью четырех ИЛИ-НЕ и одного инверсного блока:

На рисунке 2 (анимации) в правом верхнем углу для упрощения восприятия, на первом кадре написана цифра «1». Начиная рассматривать с этого кадра, будет проще проследить принцип работы (синий цвет – «0», красный – «1»).


Временная диаграмма Д-триггера, работающего по фронту

Рассмотрим принцип работы. Q’ – выход первого триггера, Q – второго. Так как тактовый сигнал на первый и второй вход подаются инверсировано, то когда один находится в режиме хранения, другой пропускает информацию со входа на выход. По диаграмме видно, что значение на выходе триггера Q изменится только по спадающему фронту синхронизирующего (тактового) сигнала С. То есть значение на Q будет соответствовать величине напряжения на входе D в момент изменения синхросигнала с 1 на 0.

Так как данное устройство состоит из двух более простых устройств, то условное его обозначение следующее:

Где ТТ означает наличие в строении двух простых триггеров, а «треугольник» около входа С – работу триггера по фронту сигнала.

Недостаточно прав для комментирования

h4e.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *